1
|
Sun S, Wang W. Mechanosensitive adhesion G protein-coupled receptors: Insights from health and disease. Genes Dis 2025; 12:101267. [PMID: 39935605 PMCID: PMC11810715 DOI: 10.1016/j.gendis.2024.101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/15/2024] [Accepted: 02/28/2024] [Indexed: 02/13/2025] Open
Abstract
Ontogeny cannot be separated from mechanical forces. Cells are continuously subjected to different types of mechanical stimuli that convert into intracellular signals through mechanotransduction. As a member of the G protein-coupled receptor superfamily, adhesion G protein-coupled receptors (aGPCRs) have attracted extensive attention due to their unique extracellular domain and adhesion properties. In the past few decades, increasing evidence has indicated that sensing mechanical stimuli may be one of the main physiological activities of aGPCRs. Here, we review the general structure and activation mechanisms of these receptors and highlight the lesion manifestations relevant to each mechanosensitive aGPCR.
Collapse
Affiliation(s)
- Shiying Sun
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Hebei Key Laboratory of Stomatology, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Wen Wang
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Hebei Key Laboratory of Stomatology, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| |
Collapse
|
2
|
Olaniru OE, Toczyska K, Guccio N, Giera S, Piao X, King AJF, Jones PM, Persaud SJ. Spatiotemporal profiling of adhesion G protein-coupled receptors in developing mouse and human pancreas reveals a role for GPR56 in islet development. Cell Mol Life Sci 2025; 82:129. [PMID: 40137991 PMCID: PMC11947406 DOI: 10.1007/s00018-025-05659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
INTRODUCTION G protein-coupled receptors (GPCRs) are cell-surface proteins that are targeted therapeutically for a range of disorders, including diabetes. Adhesion GPCRs (aGPCRs) are the second largest class of the GPCR superfamily and some members of this family have been implicated in appropriate organ development. However, the role of aGPCRs in endocrine pancreas specification is not yet known. METHODS Here, we systematically characterised expression of mRNAs encoding aGPCRs and their ligands in developing mouse and human pancreas using our own and publicly available single-cell RNA sequencing and spatial transcriptomics data, and we conducted qPCR analysis of aGPCR expression in human pancreas at different gestational stages. We then investigated the role of GPR56 (ADGRG1), the most abundant aGPCR in pancreatic endocrine progenitors, in islet development using Gpr56 null mice and their wildtype littermates. RESULTS We demonstrated that aGPCRs are dynamically expressed during mouse and human pancreas development, with specific aGPCR mRNAs expressed in distinct endocrine, endothelial, mesenchymal, acinar, ductal, and immune cell clusters. aGPCR ligand mRNAs were mostly expressed by non-endocrine cells, and the most highly expressed receptor-ligand interacting mRNA pairs were those encoding GPR56 and COL3A1. Deletion of Gpr56 in neonatal mice was associated with an altered α-/β-/δ-cell ratio and reduced β-cell proliferation. CONCLUSION Our data show that aGPCRs are expressed at key stages of human and mouse pancreas endocrine lineage decisions, and analysis of pancreases from Gpr56 knockout mice implicate this aGPCR in the development of a full complement of β-cells.
Collapse
Affiliation(s)
- Oladapo E Olaniru
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Klaudia Toczyska
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Nunzio Guccio
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Stefanie Giera
- Department of Medicine, Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xianhua Piao
- Department of Medicine, Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pediatrics, University of California at San Francisco, San Francisco, CA, USA
| | - Aileen J F King
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Peter M Jones
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Shanta J Persaud
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
3
|
Bagger SM, Schihada H, Walser ALS, Drzazga AK, Grätz L, Palmisano T, Kuhn CK, Mavri M, Mølleskov-Jensen AS, Tall GG, Schöneberg T, Mathiasen SJ, Javitch JA, Schulte G, Spiess K, Rosenkilde MM. Complex G-protein signaling of the adhesion GPCR, ADGRA3. J Biol Chem 2025:108441. [PMID: 40127866 DOI: 10.1016/j.jbc.2025.108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025] Open
Abstract
ADGRA3 (GPR125) is an orphan adhesion G protein-coupled receptor (aGPCR) that plays a role in planar cell polarity (PCP), primarily through recruitment of the signaling components Dishevelled (DVL) during vertebrate gastrulation, and Discs large homolog 1 (Dlg1), which is implicated in cancer. Limited knowledge exists of the signaling capacity in the canonical GPCR pathways of ADGRA3. Here, we employed a series of human cell line-based signaling assays to gain insight into the heterotrimeric G protein-mediated signaling of ADGRA3. We based the design of ADGRA3 constructs on analyses of transcript variants in publicly available human liver and brain RNA-seq datasets. As cleavage in the GPCR autoproteolysis site (GPS) is a hallmark for many aGPCRs, we generated a truncated ADGRA3 (C-terminal fragment, CTF) corresponding to a potential cleavage at the GPS. We found low-level activation of Gi and Gs by ADGRA3 and slightly more by its CTF. As the N terminus of the CTF constitutes a class-defined tethered agonist known as the stachel peptide, we removed the initial three amino acids of the CTF. This resulted in abrogated G protein-mediated signaling, as observed for other aGPCRs. Due to the central role of ADGRA3 in PCP signaling through DVL recruitment, we investigated the G-protein signaling in absence of DVL1-3 and found it sustained. No transcriptional activation was observed downstream of β-catenin in an assay reporting T-cell factor/lymphoid enhancer factor (TCF/LEF)-mediated transcriptional activity. Collectively, this establishes a classical G protein-mediated signaling for ADGRA3 in addition to its association with components of non-canonical Wnt-signaling pathways.
Collapse
Affiliation(s)
- Sofie M Bagger
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen; Copenhagen, Denmark
| | - Hannes Schihada
- Department of Physiology and Pharmacology, Section of Receptor Biology and Signaling, Karolinska Institutet; Stockholm, Sweden
| | - Anna L S Walser
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen; Copenhagen, Denmark
| | - Anna Katarzyna Drzazga
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen; Copenhagen, Denmark
| | - Lukas Grätz
- Department of Physiology and Pharmacology, Section of Receptor Biology and Signaling, Karolinska Institutet; Stockholm, Sweden
| | - Tiago Palmisano
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons; New York, NY, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute; New York, NY, USA
| | - Christina K Kuhn
- Molecular Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry; Leipzig, Germany
| | - Maša Mavri
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen; Copenhagen, Denmark
| | - Ann-Sophie Mølleskov-Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen; Copenhagen, Denmark
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan School of Medicine; Ann Arbor, MI, USA
| | - Torsten Schöneberg
- Molecular Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry; Leipzig, Germany
| | - Signe J Mathiasen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen; Copenhagen, Denmark; Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons; New York, NY, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute; New York, NY, USA
| | - Jonathan A Javitch
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons; New York, NY, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute; New York, NY, USA
| | - Gunnar Schulte
- Department of Physiology and Pharmacology, Section of Receptor Biology and Signaling, Karolinska Institutet; Stockholm, Sweden
| | - Katja Spiess
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen; Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen; Copenhagen, Denmark.
| |
Collapse
|
4
|
Südhof TC. Signaling by latrophilin adhesion-GPCRs in synapse assembly. Neuroscience 2025:S0306-4522(25)00243-X. [PMID: 40127755 DOI: 10.1016/j.neuroscience.2025.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025]
Abstract
Latrophilins are evolutionarily conserved adhesion-GPCRs with diverse roles, including a prominent function in synapse organization. In mammals, the primary transcripts of three latrophilin genes (ADGRL1-3) are extensively alternatively spliced, producing hundreds of isoforms with diverse cytoplasmic sequences. Extracellularly, latrophilins feature N-terminal lectin- and olfactomedin-like domains that bind to Teneurin and FLRT adhesion molecules, respectively, and are followed by an autoproteolytic GAIN domain typical for adhesion-GPCRs. Since Teneurins and FLRTs in turn interact with other ligands, latrophilins form a large trans-cellular protein interaction network. Intracellularly, latrophilins bind to G proteins, arrestins, and postsynaptic scaffold proteins. Latrophilins stimulate all Gα proteins tested, with the Gα isoform preference regulated by alternative splicing. In brain, latrophilins act as essential postsynaptic organizers that functionally require extracellular binding to teneurins and FLRTs, intracellular activation of GαS, and recruitment of postsynaptic scaffolds. Thus, latrophilins are signaling platforms that connect trans-cellular interactions to cellular responses in a manner regulated by alternative splicing.
Collapse
Affiliation(s)
- Thomas C Südhof
- Dept. of Molecular and Cellular Physiology & of Neurosurgery, Stanford University School of Medicine & Howard Hughes Medical Institute, Stanford Institute of Medicine I (SIM1)/Lorry Lokey Stem Cell Building, 265 Campus Drive, Room G1021, Stanford, CA 94305-5453, USA.
| |
Collapse
|
5
|
Linnert J, Kusuluri DK, Güler BE, Patnaik SR, May-Simera HL, Wolfrum U. The BBS/CCT chaperonin complex ensures the localization of the adhesion G protein-coupled receptor ADGRV1 to the base of primary cilia. Front Cell Dev Biol 2025; 13:1520723. [PMID: 40103630 PMCID: PMC11913874 DOI: 10.3389/fcell.2025.1520723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/03/2025] [Indexed: 03/20/2025] Open
Abstract
Primary cilia are antenna-like sensory organelles present on almost all eukaryotic cells. Their sensory capacity relies on receptors, in particular G-protein-coupled receptors (GPCRs) which localize to the ciliary membrane. Here we show that ADGRV1, a member of the GPCR subfamily of adhesion GPCRs, is part of a large protein network, interacting with numerous proteins of a comprehensive ciliary proteome. ADGRV1 is localized to the base of prototypic primary cilia in cultured cells and the modified primary cilia of retinal photoreceptors, where it interacts with TRiC/CCT chaperonins and the Bardet Biedl syndrome (BBS) chaperonin-like proteins. Knockdown of ADGRV1, CCT2 and 3, and BBS6 result in common ciliogenesis phenotypes, namely reduced ciliated cells combined with shorter primary cilia. In addition, the localization of ADGRV1 to primary cilia depends on the activity of a co-complex of TRiC/CCT chaperonins and the BBS chaperonin-like proteins. In the absence of components of the TRiC/CCT-BBS chaperonin co-complex, ADGRV1 is depleted from the base of the primary cilium and degraded via the proteasome. Defects in the TRiC/CCT-BBS chaperonin may lead to an overload of proteasomal degradation processes and imbalanced proteostasis. Dysfunction or absence of ADGRV1 from primary cilia may underly the pathophysiology of human Usher syndrome type 2 and epilepsy caused by mutations in ADGRV1.
Collapse
Affiliation(s)
- Joshua Linnert
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Deva Krupakar Kusuluri
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Baran E Güler
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sarita Rani Patnaik
- Institute of Molecular Physiology, Cilia Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Helen Louise May-Simera
- Institute of Molecular Physiology, Cilia Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
- Institute for Quantitative and Computational Biosciences (IQCB), Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
6
|
Lorente JS, Sokolov AV, Ferguson G, Schiöth HB, Hauser AS, Gloriam DE. GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 2025:10.1038/s41573-025-01139-y. [PMID: 40033110 DOI: 10.1038/s41573-025-01139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 03/05/2025]
Abstract
G protein-coupled receptors (GPCRs) form one of the largest drug target families, reflecting their involvement in numerous pathophysiological processes. In this Review, we analyse drug discovery trends for the GPCR superfamily, covering compounds, targets and indications that have reached regulatory approval or that are being investigated in clinical trials. We find that there are 516 approved drugs targeting GPCRs, making up 36% of all approved drugs. These drugs act on 121 GPCR targets, one-third of all non-sensory GPCRs. Furthermore, 337 agents targeting 133 GPCRs, including 30 novel targets, are being investigated in clinical trials. Notably, 165 of these agents are approved drugs being tested for additional indications and novel agents are increasingly allosteric modulators and biologics. Remarkably, diabetes and obesity drugs targeting GPCRs had sales of nearly US $30 billion in 2023 and the numbers of clinical trials for GPCR modulators in the metabolic diseases, oncology and immunology areas are increasing strongly. Finally, we highlight the potential of untapped target-disease associations and pathway-biased signalling. Overall, this Review provides an up-to-date reference for the drugged and potentially druggable GPCRome to inform future GPCR drug discovery and development.
Collapse
Affiliation(s)
- Javier Sánchez Lorente
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aleksandr V Sokolov
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Gavin Ferguson
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- ALPX S.A.S., Grenoble, France
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Lehmann L, Groß VE, Behlendorf R, Prömel S. The N terminus-only function of adhesion GPCRs: emerging concepts. Trends Pharmacol Sci 2025; 46:231-248. [PMID: 39955242 DOI: 10.1016/j.tips.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/17/2025]
Abstract
Adhesion G-protein-coupled receptors (aGPCRs) play key roles in health and disease. They are unique in that they not only activate G-protein pathways but also have distinct functions that rely solely on their N termini, making them complex drug targets. To date there have been only descriptive observations about these enigmatic N terminus-only functions. Emerging evidence from several aGPCRs now indicates that these are a defining characteristic of these receptors that allows them to operate bidirectionally across environments. Recent advances in characterizing aGPCR splice variants and receptor structure have revealed the G protein-independent mechanisms that underlie their N terminus-only functions. This review consolidates current findings, explores how the N termini integrate functions, and identifies common principles across aGPCRs. We consider the therapeutic implications and discuss how specifically targeting N terminus functions provides a novel perspective on the pharmacological potential of aGPCRs.
Collapse
Affiliation(s)
- Laura Lehmann
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Victoria Elisabeth Groß
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rene Behlendorf
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Simone Prömel
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
8
|
Joshi K, Miao Y. Mechanisms of Peptide Agonist Dissociation and Deactivation of Adhesion G-Protein-Coupled Receptors. Biochemistry 2025; 64:871-878. [PMID: 39902762 DOI: 10.1021/acs.biochem.4c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Adhesion G protein-coupled receptors (ADGRs) belong to Class B2 of GPCRs and are involved in a wide array of important physiological processes. ADGRs contain a GPCR autoproteolysis-inducing domain that is proximal to the receptor N-terminus and undergoes autoproteolysis during the biosynthesis to generate two fragments: the N-terminal fragment (NTF) and the C-terminal fragment (CTF). Dissociation of NTF reveals a tethered agonist to activate the CTF of ADGRs for G protein signaling. Synthetic peptides that mimic the tethered agonist can also activate ADGRs. However, mechanisms of peptide agonist dissociation and the deactivation of ADGRs remain poorly understood. In this study, we have performed all-atom enhanced sampling simulations using a novel protein-protein interaction Gaussian-accelerated molecular dynamics (PPI-GaMD) method on the ADGRG2-IP15 and ADGRG1-P7 complexes. The PPI-GaMD simulations captured the dissociation of the IP15 and P7 peptide agonists from their target receptors. We were able to identify important low-energy conformations of ADGRG2 and ADGRG1 in the active, intermediate, and inactive states, as well as different states of the peptide agonists IP15 and P7 during dissociation. Therefore, our PPI-GaMD simulations have revealed dynamic mechanisms of peptide agonist dissociation and deactivation of ADGRG1 and ADGRG2, which will facilitate the rational design of peptide regulators of the two receptors and other ADGRs.
Collapse
Affiliation(s)
- Keya Joshi
- Department of Pharmacology and Computational Medicine Program, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yinglong Miao
- Department of Pharmacology and Computational Medicine Program, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
9
|
Blackburn JK, Islam QS, Benlaouer O, Tonevitskaya SA, Petitto E, Ushkaryov YA. α-Latrotoxin Actions in the Absence of Extracellular Ca 2+ Require Release of Stored Ca 2. Toxins (Basel) 2025; 17:73. [PMID: 39998090 PMCID: PMC11860464 DOI: 10.3390/toxins17020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
α-Latrotoxin (αLTX) causes exhaustive release of neurotransmitters from nerve terminals in the absence of extracellular Ca2+ (Ca2+e). To investigate the mechanisms underlying this effect, we loaded mouse neuromuscular junctions with BAPTA-AM. This membrane-permeable Ca2+-chelator demonstrates that Ca2+e-independent effects of αLTX require an increase in cytosolic Ca2+ (Ca2+cyt). We also show that thapsigargin, which depletes Ca2+ stores, induces neurotransmitter release, but inhibits the effect of αLTX. We then studied αLTX's effects on Ca2+cyt using neuroblastoma cells expressing signaling-capable or signaling-incapable variants of latrophilin-1, a G protein-coupled receptor of αLTX. Our results demonstrate that αLTX acts as a cation ionophore and a latrophilin agonist. In model cells at 0 Ca2+e, αLTX forms membrane pores and allows the influx of Na+; this reverses the Na+-Ca2+ exchanger, leading to the release of stored Ca2+ and inhibition of its extrusion. Concurrently, αLTX stimulates latrophilin signaling, which depletes a Ca2+ store and induces transient opening of Ca2+ channels in the plasmalemma that are sensitive to inhibitors of store-operated Ca2+ entry. These results indicate that Ca2+ release from intracellular stores and that Ca2+ influx through latrophilin-activated store-operated Ca2+ channels contributes to αLTX actions and may be involved in physiological control of neurotransmitter release at nerve terminals.
Collapse
Affiliation(s)
- Jennifer K. Blackburn
- Medway School of Pharmacy, University of Kent, Chatham ME4 4TB, UK; (J.K.B.); (Q.S.I.); (O.B.); (E.P.)
| | - Quazi Sufia Islam
- Medway School of Pharmacy, University of Kent, Chatham ME4 4TB, UK; (J.K.B.); (Q.S.I.); (O.B.); (E.P.)
| | - Ouafa Benlaouer
- Medway School of Pharmacy, University of Kent, Chatham ME4 4TB, UK; (J.K.B.); (Q.S.I.); (O.B.); (E.P.)
| | | | - Evelina Petitto
- Medway School of Pharmacy, University of Kent, Chatham ME4 4TB, UK; (J.K.B.); (Q.S.I.); (O.B.); (E.P.)
| | - Yuri A. Ushkaryov
- Medway School of Pharmacy, University of Kent, Chatham ME4 4TB, UK; (J.K.B.); (Q.S.I.); (O.B.); (E.P.)
| |
Collapse
|
10
|
Zhang L, Dong W, Li J, Gao S, Sheng H, Kong Q, Guan F, Zhang L. C1ql3 knockout affects microglia activation, neuronal integrity, and spontaneous behavior in Wistar rats. Animal Model Exp Med 2025; 8:332-343. [PMID: 38379452 PMCID: PMC11871103 DOI: 10.1002/ame2.12383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/27/2023] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND C1QL3 is widely expressed in the brain and is specifically produced by a subset of excitatory neurons. However, its function is still not clear. We established C1ql3-deficient rats to investigate the role of C1QL3 in the brain. METHODS C1ql3 knockout (KO) rats were generated using CRISPR/Cas9. C1ql3 KO was determined by polymerase chain reaction (PCR), DNA sequencing, and western blotting. Microglia morphology and cytokine expression with or without lipopolysaccharide (LPS) stimulus were analyzed using immunohistochemistry and real-time PCR. The brain structure changes in KO rats were examined using magnetic resonance imaging. Neuronal architecture alteration was analyzed by performing Golgi staining. Behavior was evaluated using the open field test, Morris water maze test, and Y maze test. RESULTS C1ql3 KO significantly increased the number of ramified microglia and decreased the number of hypertrophic microglia, whereas C1ql3 KO did not influence the expression of pro-inflammatory factors and anti-inflammatory factors except IL-10. C1ql3 KO brains had more amoeboid microglia types and higher Arg-1 expression compared with the WT rats after LPS stimulation. The brain weights and HPC sizes of C1ql3 KO rats did not differ from WT rats. C1ql3 KO damaged neuronal integrity including neuron dendritic arbors and spine density. C1ql3 KO rats demonstrated an increase in spontaneous activity and an impairment in short working memory. CONCLUSIONS C1ql3 KO not only interrupts the neuronal integrity but also affects the microglial activation, resulting in hyperactive behavior and impaired short memory in rats, which highlights the role of C1QL3 in the regulation of structure and function of both neuronal and microglial cells.
Collapse
Affiliation(s)
- Li Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal SciencePeking Union Medicine College, Chinese Academy of Medical SciencesBeijingChina
| | - Wei Dong
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC)Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical SciencesBeijingChina
| | - Jingwen Li
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC)Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical SciencesBeijingChina
| | - Shan Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC)Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical SciencesBeijingChina
| | - Hanxuan Sheng
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC)Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical SciencesBeijingChina
| | - Qi Kong
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC)Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical SciencesBeijingChina
| | - Feifei Guan
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal SciencePeking Union Medicine College, Chinese Academy of Medical SciencesBeijingChina
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC)Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical SciencesBeijingChina
- Neuroscience Center, Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
11
|
Bormann A, Körner MB, Dahse AK, Gläser MS, Irmer J, Lede V, Alenfelder J, Lehmann J, Hall DCN, Thane M, Schleyer M, Kostenis E, Schöneberg T, Bigl M, Langenhan T, Ljaschenko D, Scholz N. Intron retention of an adhesion GPCR generates 1TM isoforms required for 7TM-GPCR function. Cell Rep 2025; 44:115078. [PMID: 39705141 DOI: 10.1016/j.celrep.2024.115078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/22/2024] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are expressed in all organs and are involved in various mechanobiological processes. They are heavily alternatively spliced, forecasting an extraordinary molecular structural diversity. Here, we uncovered the existence of unconventional single-transmembrane (1TM)-containing ADGRL/Cirl proteins devoid of the conventional GPCR layout (i.e., the 7TM signaling unit) in Drosophila. These 1TM proteins are made as a result of intron retention and provide an N-terminal fragment that acts as an interactor to allow Gαo-dependent signaling through conventional 7TM-containing Cirl isoforms encoded by the same gene. This molecular mechanism determines sensory precision of neurons in response to mechanical stimulation in vivo. This action mode of aGPCR provides a promising entry point for experimental and therapeutic approaches to intervene in aGPCR signaling and implicates alternative splicing as a physiological strategy to express a given aGPCR together with its molecular interactor.
Collapse
Affiliation(s)
- Anne Bormann
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Marek B Körner
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany; Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Anne-Kristin Dahse
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Marie S Gläser
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Johanna Irmer
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Vera Lede
- Rudolf Schönheimer Institute of Biochemistry, Division of Molecular Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Judith Alenfelder
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | - Joris Lehmann
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany; Institute of Biology/Zoology, Department of Animal Physiology, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Daniella C N Hall
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany; Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Michael Thane
- Department of Genetics Learning and Memory, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Michael Schleyer
- Department of Genetics Learning and Memory, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Institute for the Advancement of Higher Education, Hokkaido University, Sapporo 060-08080, Japan
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Division of Molecular Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Marina Bigl
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Dmitrij Ljaschenko
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany.
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany.
| |
Collapse
|
12
|
Wu XR, Yang L, Wu BS, Liu WS, Deng YT, Kang JJ, Dong Q, Sahakian BJ, Feng JF, Cheng W, Yu JT. Exome sequencing identifies genes for socioeconomic status in 350,770 individuals. Proc Natl Acad Sci U S A 2025; 122:e2414018122. [PMID: 39772748 PMCID: PMC11745334 DOI: 10.1073/pnas.2414018122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Socioeconomic status (SES) is a critical factor in determining health outcomes and is influenced by genetic and environmental factors. However, our understanding of the genetic structure of SES remains incomplete. Here, we conducted a large-scale exome study of SES markers (household income, occupational status, educational attainment, and social deprivation) in 350,770 individuals. For rare coding variants, we identified 56 significant associations by gene-based collapsing tests, unveiling 7 additional SES-associated genes (NRN1, CCDC36, RHOB, EP400, NCAM1, TPTEP2-CSNK1E, and LINC02881). Exome-wide single common variant analysis revealed nine lead single-nucleotide polymorphisms (SNPs) associated with household income and 34 lead SNPs associated with EduYears, replicating previous GWAS findings. The gene-environment correlations had a substantial impact on the genetic associations with SES, as indicated by the significantly increased P values in several associations after controlling for geographic regions. Furthermore, we observed the pleiotropic effects of SES-associated genetic factors on a wide range of health outcomes, such as cognitive function, psychosocial status, and diabetes. This study highlights the contribution of coding variants to SES and their associations with health phenotypes.
Collapse
Affiliation(s)
- Xin-Rui Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai200040, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200040, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai200040, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200040, China
| | - Bang-Sheng Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai200040, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200040, China
| | - Wei-Shi Liu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai200040, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200040, China
| | - Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai200040, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200040, China
| | - Ju-Jiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai200433, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai200040, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200040, China
| | - Barbara J. Sahakian
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai200433, China
- Department of Psychiatry and Behavioural and Clinical Neuroscience Institute, University of Cambridge, CambridgeCB2 0SZ, United Kingdom
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai200433, China
- Department of Computer Science, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai200040, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200040, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai200433, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai200040, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200040, China
| |
Collapse
|
13
|
Lin HH. An Alternative Mode of GPCR Transactivation: Activation of GPCRs by Adhesion GPCRs. Int J Mol Sci 2025; 26:552. [PMID: 39859266 PMCID: PMC11765499 DOI: 10.3390/ijms26020552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
G protein-coupled receptors (GPCRs), critical for cellular communication and signaling, represent the largest cell surface protein family and play important roles in numerous pathophysiological processes. Consequently, GPCRs have become a primary focus in drug discovery efforts. Beyond their traditional G protein-dependent signaling pathways, GPCRs are also capable of activating alternative signaling mechanisms, including G protein-independent signaling, biased signaling, and signaling crosstalk. A particularly novel signaling mode employed by these receptors is GPCR transactivation, which enables cross-communication between GPCRs and other receptor types. Intriguingly, GPCR transactivation by distinct GPCRs has also been identified. In this review, I provide an overview of the known GPCR transactivation mechanisms and explore recently uncovered GPCR transactivation mediated by adhesion-class GPCRs (aGPCRs). These aGPCR-GPCR transactivation processes regulate unique cell type-specific functions, offering an exciting opportunity to develop therapies that precisely modulate specific GPCR-mediated biological effects.
Collapse
Affiliation(s)
- Hsi-Hsien Lin
- Department of Microbiology and Immunology, Graduate School of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; ; Tel.: +886-03-2118800-3321
- Center for Molecular and Clinical Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung 20401, Taiwan
| |
Collapse
|
14
|
da Silva MRG, Veroneze R, Marques DBD, da Silva DA, Machado II, Brito LF, Lopes PS. A meta-analysis of genome-wide association studies to identify candidate genes associated with feed efficiency traits in pigs. J Anim Sci 2025; 103:skaf010. [PMID: 39847436 PMCID: PMC11833465 DOI: 10.1093/jas/skaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/21/2025] [Indexed: 01/24/2025] Open
Abstract
Pig production is an agricultural sector of great economic and social relevance to Brazil and global markets. Feed efficiency traits directly influence the sustainability of pig production due to the economic impact of feed costs on the production system and the environmental footprint of the industry. Therefore, breeding for improved feed efficiency has been a target of worldwide pig breeding programs. Genome-wide association studies (GWAS) enable the assessment of the genetic background of complex traits, which contributes to a better understanding of the biological mechanisms regulating their phenotypic expression. In this context, the primary objective of this study was to identify and validate genomic regions and candidate genes associated with feed conversion ratio (FCR) and residual feed intake (RFI) in pigs based on a comprehensive systematic review and meta-analysis of GWAS. The METAL software was used to implement the meta-analysis and the Bonferroni multiple testing correction considering a significance threshold 0.05. The significant single nucleotide polymorphisms (SNPs) in the meta-analysis were used to identify candidate genes, followed by a functional genomic enrichment analysis. The systematic review identified 13 studies, of which 7 evaluated FCR, 3 evaluated RFI, and 3 studies investigated both traits, with 160 and 96 SNPs identified for FCR and RFI, respectively. After the meta-analysis, 145 markers were significantly associated with FCR and 90 with RFI. The gene annotation process resulted in 105 and 114 genes for FCR and RFI, respectively. The enrichment analysis for FCR resulted in 16 significant gene ontology (GO) terms, while 6 terms were identified for RFI. The main GO terms were actin cytoskeleton (GO_BP:0030036), membrane (GO_CC:0016020), integral components of the peroxisomal membrane (GO_CC:0005779), and carbohydrate-binding (GO_MF:0030246). The main candidate genes identified were MED18, PHACTR4, ABCC2, TRHDE, FRS2, FAR2 and FIS1 for FCR, and ADGRL2, ASGR1, ASGR2, and MAN2B1 for RFI. These findings contribute to a better understanding of the genetic mechanisms associated with feed efficiency traits in pigs, providing a foundation for future improvements in pig breeding programs.
Collapse
Affiliation(s)
- Maria Rita Gonçalves da Silva
- Department of Animal Science, Federal University of Viçosa, Viçosa, MG, Brazil
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Renata Veroneze
- Department of Animal Science, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Daniele B D Marques
- Department of Animal Science, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Delvan A da Silva
- Department of Animal Science, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Inaê I Machado
- Department of Animal Science, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Paulo S Lopes
- Department of Animal Science, Federal University of Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
15
|
Parag RR, Yamamoto T, Saito K, Zhu D, Yang L, Van Meir EG. Novel Isoforms of Adhesion G Protein-Coupled Receptor B1 (ADGRB1/BAI1) Generated from an Alternative Promoter in Intron 17. Mol Neurobiol 2025; 62:900-917. [PMID: 38941066 PMCID: PMC11711277 DOI: 10.1007/s12035-024-04293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024]
Abstract
Brain-specific angiogenesis inhibitor 1 (BAI1) belongs to the adhesion G-protein-coupled receptors, which exhibit large multi-domain extracellular N termini that mediate cell-cell and cell-matrix interactions. To explore the existence of BAI1 isoforms, we queried genomic datasets for markers of active chromatin and new transcript variants in the ADGRB1 (adhesion G-protein-coupled receptor B1) gene. Two major types of mRNAs were identified in human/mouse brain, those with a start codon in exon 2 encoding a full-length protein of a predicted size of 173.5/173.3 kDa and shorter transcripts starting from alternative exons at the intron 17/exon 18 boundary with new or exon 19 start codons, predicting two shorter isoforms of 76.9/76.4 and 70.8/70.5 kDa, respectively. Immunoblots on wild-type and Adgrb1 exon 2-deleted mice, reverse transcription PCR, and promoter-luciferase reporter assay confirmed that the shorter isoforms originate from an alternative promoter in intron 17. The shorter BAI1 isoforms lack most of the N terminus and are very close in structure to the truncated BAI1 isoform generated through GPS processing from the full-length receptor. The cleaved BAI1 isoform has a 19 amino acid extracellular stalk that may serve as a receptor agonist, while the alternative transcripts generate BAI1 isoforms with extracellular N termini of 5 or 60 amino acids. Further studies are warranted to compare the functions of these isoforms and examine the distinct roles they play in different tissues and cell types.
Collapse
Affiliation(s)
- Rashed Rezwan Parag
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham (UAB), WTI 520E, 1824 6th Avenue South, Birmingham, AL, 35233, USA
- Graduate Biomedical Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Takahiro Yamamoto
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham (UAB), WTI 520E, 1824 6th Avenue South, Birmingham, AL, 35233, USA
- Department of Neurosurgery, Kumamoto University, Kumamoto, Japan
| | - Kiyotaka Saito
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham (UAB), WTI 520E, 1824 6th Avenue South, Birmingham, AL, 35233, USA
| | - Dan Zhu
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Liquan Yang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Erwin G Van Meir
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham (UAB), WTI 520E, 1824 6th Avenue South, Birmingham, AL, 35233, USA.
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| |
Collapse
|
16
|
Liessmann F, von Bredow L, Meiler J, Liebscher I. Targeting adhesion G protein-coupled receptors. Current status and future perspectives. Structure 2024; 32:2188-2205. [PMID: 39520987 DOI: 10.1016/j.str.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/29/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
G protein-coupled receptors (GPCRs) orchestrate many physiological functions and are a crucial target in drug discovery. Adhesion GPCRs (aGPCRs), the second largest family within this superfamily, are promising yet underexplored targets for treating various diseases, including obesity, psychiatric disorders, and cancer. However, the receptors' unique and complex structure and miscellaneous interactions complicate comprehensive pharmacological studies. Despite recent progress in determining structures and elucidation of the activation mechanism, the function of many receptors remains to be determined. This review consolidates current knowledge on aGPCR ligands, focusing on small molecule orthosteric ligands and allosteric modulators identified for the ADGRGs subfamily (subfamily VIII), (GPR56/ADGRG1, GPR64/ADGRG2, GPR97/ADGRG3, GPR114/ADGRG5, GPR126/ADGRG6, and GPR128/ADGRG7). We discuss challenges in hit identification, target validation, and drug discovery, highlighting molecular compositions and recent structural breakthroughs. ADGRG ligands can offer new insights into aGPCR modulation and have significant potential for novel therapeutic interventions targeting various diseases.
Collapse
Affiliation(s)
- Fabian Liessmann
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany; Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, 04105 Leipzig, Saxony, Germany
| | - Lukas von Bredow
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany
| | - Jens Meiler
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany; Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, 04105 Leipzig, Saxony, Germany; Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany.
| |
Collapse
|
17
|
Chen F, Zhao J, Mo R, Ding X, Zhang Y, Huang L, Xie T, Ding Y. Genetic Variants in the Adhesive G Protein-Coupled Receptor ADGRG6 are Associated with Increased Susceptibility to COPD in the Elderly Han Chinese Population of Southern China. Int J Chron Obstruct Pulmon Dis 2024; 19:2599-2610. [PMID: 39650745 PMCID: PMC11624663 DOI: 10.2147/copd.s478095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
Background Mutations in ADGRG6 are associated with a variety of cancers and multiple types of diseases. However, the impact of genetic variations in ADGRG6 on chronic obstructive pulmonary disease (COPD) susceptibility has not yet been evaluated. Methods Considering the high prevalence of COPD among the elderly population in China, this study specifically targets the elderly Han population in Southern China as the study subject. Following the acquisition of participants' whole-genome DNA, genotyping was conducted using the Agena MassARRAY platform. The online tool 'SNPStats', which utilizes logistic regression, was employed to analyze and assess the correlation. Multi-factor dimensionality reduction was utilized to clarify the impact of "SNP-SNP" interactions on COPD risk. The False-Positive Report Probability (FPRP) was applied to determine whether significant results are noteworthy findings. Results The mutant allele "C" of rs11155242 was a protective genetic factor against COPD susceptibility (OR = 0.57, 95% CI = 0.36 to 0.91, p = 0.017). The heterozygous mutant genotype "CA" of rs11155242 was found to be significantly associated with reduced COPD risk (CA Vs AA: OR = 0.53, 95% CI = 0.32 to 0.90, p = 0.018). ADGRG6-rs11155242 was found to be strongly associated with a reduced risk of COPD in males, non-smokers, and subjects with a BMI below 24 kg/m2 (OR < 1, p < 0.05). The FPRP analysis indicated that the positive results identified in this study are noteworthy new findings. Conclusion The mutant allele "C" and mutant genotype "CA" of rs11155242 act as protective genetic factors against COPD susceptibility. This study will provide a new research direction for the personalized prevention and treatment of COPD in the elderly Han population in southern China, and lay a potential scientific basis.
Collapse
Affiliation(s)
- Fei Chen
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
- Department of General Practice, Bai Majing Town Central Health Center, Danzhou City, Hainan Province, People’s Republic of China
| | - Jie Zhao
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| | - Rubing Mo
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| | - Xiuxiu Ding
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| | - Yue Zhang
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| | - Linhui Huang
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| | - Tian Xie
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| | - Yipeng Ding
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| |
Collapse
|
18
|
Wang Z, Pu N, Zhao W, Chen X, Zhang Y, Sun Y, Bo X. RNA sequencing reveals dynamic expression of genes related to innate immune responses in canine small intestinal epithelial cells induced by Echinococcus granulosus protoscoleces. Front Vet Sci 2024; 11:1503995. [PMID: 39679172 PMCID: PMC11638162 DOI: 10.3389/fvets.2024.1503995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
Background Dogs are definitive hosts of Echinococcus granulosus, with the small intestine being the only site of parasitic infections. However, the immunomodulatory processes that occur during interactions between E. granulosus and its definitive host remain unclear. Therefore, this study aimed to evaluate gene transcription patterns in canine small intestinal epithelial cells (CIECs) following stimulation by E. granulosus protoscoleces (PSCs). Particularly, this study investigated the roles of pattern recognition receptors (PRRs), involved in recognizing pathogen-associated molecular patterns (PAMPs) and mediating the host innate immune response to the tapeworm E. granulosus. Methods RNA sequencing (RNA-seq) was used to examine gene transcription patterns in CIECs following stimulation with PSCs for 12 and 24 h. The potential roles of differentially expressed (DE) genes were inferred through Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Results RNA-seq analysis identified 78,206,492-90,548,214 clean reads in 12 RNA samples. This included six samples stimulated with PSCs for 12 h (PSC1_12h-PSC3_12h) and 24 h (PSC1_24h-PSC3_24h) and six corresponding control samples (PBS1_12h-PBS3_12h and PBS1_24h-PBS3_24h). In the PSC_12h vs. PBS_12h and PSC_24h vs. PBS_24h groups, 3,520 (2,359 upregulated and 1,161 downregulated) and 3,287 (1765 upregulated and 1,522 downregulated) DEgenes were identified, respectively. The expression of 45 PRRs genes was upregulated in the PSC_12h and PSC_24h groups compared to those in the control groups, including 4 Toll-like receptors (TLRs), 4C-type lectin receptors (CLRs), 3 NOD-like receptors (NLRs), 17 G protein-coupled receptors (GPCRs), 4 scavenger receptors (SRs), and 13 leucine-rich repeat-containing proteins (LRRCs). GO enrichment and KEGG analyses revealed that these DEgenes were mainly involved in the regulation of host immune response processes and molecules. These included antigen processing and presentation, Th17, PI3K-Akt, Th1, and Th2 cell differentiation, neutrophil extracellular trap formation, NOD- and Toll-like receptors, TNF, intestinal immune network for IgA production and IL-17 signaling pathway. Furthermore, the identified DEgenes were involved in the regulation of signaling molecules and interaction (e.g., cell adhesion molecules and ECM-receptor interaction). Conclusion These preliminary findings provide novel perspectives on the host innate immune response to E. granulosus PSC stimulation, with a focus on the involvement of E. granulosus-specific PRRs in host defense mechanisms against infection.
Collapse
Affiliation(s)
- Zhengrong Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Na Pu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Wenqing Zhao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Tarim University, Alar, China
| | - Xuke Chen
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yanyan Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Yan Sun
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Xinwen Bo
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
19
|
Kang M, Lee CS, Son H, Lee J, Lee J, Seo HJ, Kim MK, Choi M, Cho HJ, Kim HS. Latrophilin-2 Deletion in Cardiomyocyte Disrupts Cell Junction, Leading to D-CMP. Circ Res 2024; 135:1098-1115. [PMID: 39421931 DOI: 10.1161/circresaha.124.324670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Latrophilin-2 (Lphn2), an adhesive GPCR (G protein-coupled receptor), was found to be a specific marker of cardiac progenitors during the differentiation of pluripotent stem cells into cardiomyocytes or during embryonic heart development in our previous studies. Its role in adult heart physiology, however, remains unclear. METHODS The embryonic lethality resulting from Lphn2 deletion necessitates the establishment of cardiomyocyte-specific, tamoxifen-inducible Lphn2 knockout mice, which was achieved by crossing Lphn2 flox/flox mice with mice having MerCreMer (tamoxifen-inducible Cre [Cyclization recombinase] recombinase) under the α-myosin heavy chain promoter. RESULTS Tamoxifen treatment for several days completely suppressed Lphn2 expression, specifically in the myocardium, and induced the dilated cardiomyopathy (D-CMP) phenotype with serious arrhythmia and sudden death in a short period of time. Transmission electron microscopy showed mitochondrial abnormalities, blurred Z-discs, and dehiscent myofibrils. The D-CMP phenotype, or heart failure, worsened during myocardial infarction. In a mechanistic study of D-CMP, Lphn2 knockout suppressed PGC-1α (Peroxisome proliferator-activated receptor gamma coactivator 1-alpha) and mitochondrial dysfunction, leading to the accumulation of reactive oxygen species and the global suppression of junctional molecules, such as N-cadherin (adherens junction), DSC-2 (desmocollin-2; desmosome), and connexin-43 (gap junction), leading to the dehiscence of cardiac myofibers and serious arrhythmia. In an experimental therapeutic trial, activators of p38-MAPK (p38 mitogen-activated protein kinases), which is a downstream signaling molecule of Lphn2, remarkably rescued the D-CMP phenotype of Lphn2 knockout in the heart by restoring PGC-1α and mitochondrial function and recovering global junctional proteins. CONCLUSIONS Lphn2 is a critical regulator of heart integrity by controlling mitochondrial functions and cell-to-cell junctions in cardiomyocytes. Its deficiency leads to D-CMP, which can be rescued by activators of the p38-MAPK pathway.
Collapse
MESH Headings
- Animals
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Mice, Knockout
- Mice
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Intercellular Junctions/metabolism
- Intercellular Junctions/drug effects
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Mice, Inbred C57BL
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/deficiency
- Tamoxifen/pharmacology
- p38 Mitogen-Activated Protein Kinases/metabolism
- Gene Deletion
- Male
- Cells, Cultured
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
Collapse
Affiliation(s)
- Minjun Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine or College of Pharmacy, Seoul National University, South Korea (M.K., C.-S.L., H.S., H.J.S., H.-S.K.)
- Biomedical Research Institute (M.K., C.-S.L., H.S., Jaewon Lee, H.J.S., M.-K.K., H.-S.K.), Seoul National University Hospital, South Korea
| | - Choon-Soo Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine or College of Pharmacy, Seoul National University, South Korea (M.K., C.-S.L., H.S., H.J.S., H.-S.K.)
- Biomedical Research Institute (M.K., C.-S.L., H.S., Jaewon Lee, H.J.S., M.-K.K., H.-S.K.), Seoul National University Hospital, South Korea
| | - HyunJu Son
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine or College of Pharmacy, Seoul National University, South Korea (M.K., C.-S.L., H.S., H.J.S., H.-S.K.)
- Biomedical Research Institute (M.K., C.-S.L., H.S., Jaewon Lee, H.J.S., M.-K.K., H.-S.K.), Seoul National University Hospital, South Korea
| | - Jeongha Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, South Korea (Jeongha Lee, M.C.)
| | - Jaewon Lee
- Biomedical Research Institute (M.K., C.-S.L., H.S., Jaewon Lee, H.J.S., M.-K.K., H.-S.K.), Seoul National University Hospital, South Korea
| | - Hyun Ju Seo
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine or College of Pharmacy, Seoul National University, South Korea (M.K., C.-S.L., H.S., H.J.S., H.-S.K.)
- Biomedical Research Institute (M.K., C.-S.L., H.S., Jaewon Lee, H.J.S., M.-K.K., H.-S.K.), Seoul National University Hospital, South Korea
| | - Moo-Kang Kim
- Department of Internal Medicine (M.-K.K., H.-J.C., H.-S.K.), Seoul National University Hospital, South Korea
- Biomedical Research Institute (M.K., C.-S.L., H.S., Jaewon Lee, H.J.S., M.-K.K., H.-S.K.), Seoul National University Hospital, South Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, South Korea (Jeongha Lee, M.C.)
| | - Hyun-Jai Cho
- Department of Internal Medicine (M.-K.K., H.-J.C., H.-S.K.), Seoul National University Hospital, South Korea
| | - Hyo-Soo Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine or College of Pharmacy, Seoul National University, South Korea (M.K., C.-S.L., H.S., H.J.S., H.-S.K.)
- Department of Internal Medicine (M.-K.K., H.-J.C., H.-S.K.), Seoul National University Hospital, South Korea
- Biomedical Research Institute (M.K., C.-S.L., H.S., Jaewon Lee, H.J.S., M.-K.K., H.-S.K.), Seoul National University Hospital, South Korea
| |
Collapse
|
20
|
Matúš D, Post WB, Groß VE, Knierim AB, Kuhn CK, Fiedler F, Tietgen DB, Schön JL, Schöneberg T, Prömel S. The N terminus-only (trans) function of the adhesion G protein-coupled receptor latrophilin-1 controls multiple processes in reproduction of Caenorhabditis elegans. G3 (BETHESDA, MD.) 2024; 14:jkae206. [PMID: 39243387 PMCID: PMC11540312 DOI: 10.1093/g3journal/jkae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024]
Abstract
Adhesion G protein-coupled receptors are unique molecules. They are able to transmit classical signals via G protein activation as well as mediate functions solely through their extracellular N termini, completely independently of the seven transmembrane helices domain and the C terminus. This dual mode of action is highly unusual for G protein-coupled receptors and allows for a plethora of possible cellular consequences. However, the physiological implications and molecular details of this N terminus-mediated signaling are poorly understood. Here, we show that several distinct seven transmembrane helices domain-independent/trans functions of the adhesion G protein-coupled receptor latrophilin homolog latrophilin-1 in the nematode Caenorhabditis elegans together regulate reproduction: sperm guidance, ovulation, and germ cell apoptosis. In these contexts, the receptor elicits its functions in a noncell autonomous manner. The functions might be realized through alternative splicing of the receptor specifically generating N terminus-only variants. Thus, our findings shed light on the versatility of seven transmembrane helices domain-independent/N terminus-only/trans functions of adhesion G protein-coupled receptor and discuss possible molecular details.
Collapse
Affiliation(s)
- Daniel Matúš
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Willem Berend Post
- Department of Biology, Institute of Cell Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Victoria Elisabeth Groß
- Department of Biology, Institute of Cell Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Alexander Bernd Knierim
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
- IFB Adiposity Diseases, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Christina Katharina Kuhn
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103 Leipzig, Germany
| | - Franziska Fiedler
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Darian Benno Tietgen
- Department of Biology, Institute of Cell Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Johanna Lena Schön
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, Leipzig University, 04103 Leipzig, Germany
| | - Torsten Schöneberg
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali 6955, Rwanda
| | - Simone Prömel
- Department of Biology, Institute of Cell Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
21
|
Jakobs P, Rafflenbeul A, Post WB, Ale-Agha N, Groß VE, Pick S, Dolata S, Cox FF, von Ameln F, Eckermann O, Altschmied J, Prömel S, Haendeler J. The Adhesion GPCR ADGRL2/LPHN2 Can Protect Against Cellular and Organismal Dysfunction. Cells 2024; 13:1826. [PMID: 39594576 PMCID: PMC11592504 DOI: 10.3390/cells13221826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
The most common trigger of sepsis and septic shock is bacterial lipopolysaccharide (LPS). Endothelial cells are among the first to encounter LPS directly. Generally, their function is closely linked to active endothelial NO Synthase (eNOS), which is significantly reduced under septic conditions. LPS treatment of endothelial cells leads to their activation and apoptosis, resulting in loss of integrity and vascular leakage, a hallmark of septic shock. Hence, therapies that prevent endothelial leakage or restore the endothelial barrier would be invaluable for patients. Adhesion GPCRs (aGPCRs) have been largely overlooked in this context, although particularly one of them, ADGRL2/LPHN2, has been implicated in endothelial barrier function. Our study shows that overexpression of ADGRL2 protects endothelial cells from LPS-induced activation, apoptosis, and impaired migration. Mechanistically, ADGRL2 preserves eNOS activity by shifting its binding from Caveolin-1 to Heat Shock Protein 90. Furthermore, ADGRL2 enhances antioxidative responses by increasing NRF2 activity. Notably, we found that this function may be evolutionarily conserved. In the absence of lat-2, a homolog of ADGRL2 in Caenorhabditis elegans, worms show higher ROS levels and altered stress response gene expression. Additionally, lat-2 mutants have a significantly reduced lifespan, altogether indicating a protective role of ADGRL2 against oxidative stress across species.
Collapse
Affiliation(s)
- Philipp Jakobs
- Cardiovascular Degeneration, Haendeler Group, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (P.J.); (N.A.-A.); (O.E.)
| | - Anne Rafflenbeul
- Cardiovascular Degeneration, Altschmied Group, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (A.R.); (F.F.C.); (F.v.A.); (J.A.)
| | - Willem Berend Post
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (W.B.P.); (V.E.G.); (S.P.); (S.D.)
| | - Niloofar Ale-Agha
- Cardiovascular Degeneration, Haendeler Group, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (P.J.); (N.A.-A.); (O.E.)
| | - Victoria Elisabeth Groß
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (W.B.P.); (V.E.G.); (S.P.); (S.D.)
| | - Stephanie Pick
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (W.B.P.); (V.E.G.); (S.P.); (S.D.)
| | - Sascha Dolata
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (W.B.P.); (V.E.G.); (S.P.); (S.D.)
| | - Fiona F. Cox
- Cardiovascular Degeneration, Altschmied Group, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (A.R.); (F.F.C.); (F.v.A.); (J.A.)
| | - Florian von Ameln
- Cardiovascular Degeneration, Altschmied Group, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (A.R.); (F.F.C.); (F.v.A.); (J.A.)
| | - Olaf Eckermann
- Cardiovascular Degeneration, Haendeler Group, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (P.J.); (N.A.-A.); (O.E.)
| | - Joachim Altschmied
- Cardiovascular Degeneration, Altschmied Group, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (A.R.); (F.F.C.); (F.v.A.); (J.A.)
| | - Simone Prömel
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (W.B.P.); (V.E.G.); (S.P.); (S.D.)
| | - Judith Haendeler
- Cardiovascular Degeneration, Haendeler Group, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (P.J.); (N.A.-A.); (O.E.)
| |
Collapse
|
22
|
Sangwung P, Ho JD, Siddall T, Lin J, Tomas A, Jones B, Sloop KW. Class B1 GPCRs: insights into multireceptor pharmacology for the treatment of metabolic disease. Am J Physiol Endocrinol Metab 2024; 327:E600-E615. [PMID: 38984948 PMCID: PMC11559640 DOI: 10.1152/ajpendo.00371.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
The secretin-like, class B1 subfamily of seven transmembrane-spanning G protein-coupled receptors (GPCRs) consists of 15 members that coordinate important physiological processes. These receptors bind peptide ligands and use a distinct mechanism of activation that is driven by evolutionarily conserved structural features. For the class B1 receptors, the C-terminus of the cognate ligand is initially recognized by the receptor via an N-terminal extracellular domain that forms a hydrophobic ligand-binding groove. This binding enables the N-terminus of the ligand to engage deep into a large volume, open transmembrane pocket of the receptor. Importantly, the phylogenetic basis of this ligand-receptor activation mechanism has provided opportunities to engineer analogs of several class B1 ligands for therapeutic use. Among the most accepted of these are drugs targeting the glucagon-like peptide-1 (GLP-1) receptor for the treatment of type 2 diabetes and obesity. Recently, multifunctional agonists possessing activity at the GLP-1 receptor and the glucose-dependent insulinotropic polypeptide (GIP) receptor, such as tirzepatide, and others that also contain glucagon receptor activity, have been developed. In this article, we review members of the class B1 GPCR family with focus on receptors for GLP-1, GIP, and glucagon, including their signal transduction and receptor trafficking characteristics. The metabolic importance of these receptors is also highlighted, along with the benefit of polypharmacologic ligands. Furthermore, key structural features and comparative analyses of high-resolution cryogenic electron microscopy structures for these receptors in active-state complexes with either native ligands or multifunctional agonists are provided, supporting the pharmacological basis of such therapeutic agents.
Collapse
Affiliation(s)
- Panjamaporn Sangwung
- Molecular Pharmacology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States
| | - Joseph D Ho
- Department of Structural Biology, Lilly Biotechnology Center, San Diego, California, United States
| | - Tessa Siddall
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Jerry Lin
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Ben Jones
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Kyle W Sloop
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States
| |
Collapse
|
23
|
Lyukmanova EN, Bychkov ML, Chernikov AM, Kukushkin ID, Kulbatskii DS, Shabelnikov SV, Shulepko MA, Zhao R, Guo W, Kirpichnikov MP, Shenkarev ZO, Paramonov AS. In Search of the Role of Three-Finger Starfish Proteins. Mar Drugs 2024; 22:488. [PMID: 39590767 PMCID: PMC11595613 DOI: 10.3390/md22110488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Three-finger proteins (TFPs), or Ly6/uPAR proteins, are characterized by the beta-structural LU domain containing three protruding "fingers" and stabilized by four conserved disulfide bonds. TFPs were initially characterized as snake alpha-neurotoxins, but later many studies showed their regulatory roles in different organisms. Despite a known expression of TFPs in vertebrates, they are poorly studied in other taxa. The presence of TFPs in starfish was previously shown, but their targets and functional role still remain unknown. Here, we analyzed expression, target, and possible function of the Lystar5 protein from the Asterias rubens starfish using bioinformatics, qPCR, and immunoassay. First, the presence of Lystar5 homologues in all classes of echinoderms was demonstrated. qPCR revealed that mRNA of Lystar5 and LyAr2 are expressed mainly in coelomocytes and coelomic epithelium of Asterias, while mRNA of other TFPs, LyAr3, LyAr4, and LyAr5, were also found in a starfish body wall. Using anti-Lystar5 serum from mice immunized by a recombinant Lystar5, we confirmed that this protein is expressed on the surface of coelomocytes and coelomic epithelium cells. According to ELISA, a recombinant analogue of Lystar5 bound to the membrane fraction of coelomocytes and coelomic epithelium but not to the body wall or starfish arm tip. Analysis by LC-MALDI MS/MS suggested integrin α-8-like protein expressed in the coelomocytes and coelomic epithelium as a target of Lystar5. Thus, our insights propose the important role of TFPs in regulation of starfish physiology and show prospects for their further research.
Collapse
Affiliation(s)
- Ekaterina N. Lyukmanova
- Shenzhen MSU-BIT University, No. 1, International University Park Road, Dayun New Town, Longgang District, Shenzhen 518172, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Maxim L. Bychkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia
| | - Andrei M. Chernikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia
| | - Ilya D. Kukushkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Dmitrii S. Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia
| | - Sergey V. Shabelnikov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Prospect 4, 194064 St. Petersburg, Russia
| | - Mikhail A. Shulepko
- Shenzhen MSU-BIT University, No. 1, International University Park Road, Dayun New Town, Longgang District, Shenzhen 518172, China
| | - Ran Zhao
- Shenzhen MSU-BIT University, No. 1, International University Park Road, Dayun New Town, Longgang District, Shenzhen 518172, China
| | - Wenxiao Guo
- Shenzhen MSU-BIT University, No. 1, International University Park Road, Dayun New Town, Longgang District, Shenzhen 518172, China
| | - Mikhail P. Kirpichnikov
- Shenzhen MSU-BIT University, No. 1, International University Park Road, Dayun New Town, Longgang District, Shenzhen 518172, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Zakhar O. Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Alexander S. Paramonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia
| |
Collapse
|
24
|
Gao Y, Zhan W, Guo D, Lin H, Farooq MA, Jin C, Zhang L, Zhou Y, Yao J, Duan Y, He C, Jiang S, Jiang W. GPR97 depletion aggravates imiquimod-induced psoriasis pathogenesis via amplifying IL-23/IL-17 axis signal pathway. Biomed Pharmacother 2024; 179:117431. [PMID: 39260323 DOI: 10.1016/j.biopha.2024.117431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
Skin psoriasis is defined as receiving external stimulation to activate skin dendritic cells (DCs) which can release interleukin 23 (IL-23) to interlink the innate and adaptive immunity as well as induce T helper 17 (Th17) cell differentiation leading to elevated production of interleukin 17 (IL-17) for keratinocytes over production. This autoimmune loop in psoriasis pathogenesis is influenced by G protein-coupled receptor (GPCR) signalling transduction, and in particular, function of adhesion molecule GPR97 in psoriasis endures to be utterly addressed. In this research, our team allocated GPR97 depletion (GPR97-/-), GPR97 conditional depletion on dendritic cell (DC-cKO), and keratin 14-conditional knockout (K14-cKO) mice models to explore the function of GPR97 which influences keratinocytes and skin immunity. It was found that significantly aggravated psoriasis-like lesion in GPR97-/- mice. In addition, hyperproliferative keratinocytes as well as accumulation of DCs and Th17 cells were detected in imiquimod (IMQ)-induced GPR97-/- mice, which was consistent with the results in DC-cKO and K14-cKO psoriasis model. Additional investigations indicated that beclomethasone dipropionate (BDP), an agonist of GPR97, attenuated the psoriasis-like skin disease and restricted HaCaT cells abnormal proliferation as well as Th17 cells differentiation. Particularly, we found that level of NF-κB p65 was increased in GPR97-/- DCs and BDP could inhibit p65 activation in DCs. Role of GPR97 is indispensable and this adhesion receptor may affect immune cell enrichment and function in skin and alter keratinocytes proliferation as well as differentiation in psoriasis.
Collapse
Affiliation(s)
- Yaoxin Gao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Weirong Zhan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dandan Guo
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Haizhen Lin
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Muhammad Asad Farooq
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chenxu Jin
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Li Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ying Zhou
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jie Yao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yixin Duan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Cong He
- Laboratory of Cancer Genomics and Biology, Department of Urology and Institute of Translational Medicine. Shanghai General Hospital Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shuai Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute Fudan University, Shanghai 200438, China
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
25
|
Buzatu IM, Costachi A, Docea AO, Manea EV, Zlatian O. Research Progress of EMR2 Receptor Function in Glioma and its Potential Application as Therapeutic Target. CURRENT HEALTH SCIENCES JOURNAL 2024; 50:467-477. [PMID: 40144939 PMCID: PMC11936079 DOI: 10.12865/chsj.50.04.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 11/12/2024] [Indexed: 03/28/2025]
Abstract
The most frequent primary brain malignancy is glioma. Alterations in several adhesion G-protein-coupled receptors (aGPCRs) are present in cancer as they regulate adhesion, migration, and guidance. Epidermal growth factor (EGF) module-containing mucin-like receptor 2 (EMR2) is included in group II GPCRs and functionally in a family of brain angiogenesis inhibitor molecules (BAIs). Recent studies have shown that BAIs regulate phagocytosis and synaptogenesis, and their extracellular domain inhibits angiogenesis and tumor growth. In neoplastic processes, EMR2 appears to play a role in disease aggressiveness, patient survival rates, and tumor grade. This review summarizes the EMR2 involvement in cellular mechanisms and pathologies, particularly in cancer. We searched the Pubmed Central, Google Scholar and Scopus databases for terms "EMR2" and "glioma". The initial search yielded a total of 92 results. After excluding studies not written in English, based on design, and excluding duplicates and non-relevant studies, we included 38 studies in the review. EMR2 was shown to be expressed in various histologic grades of gliomas and to be linked to the PI3K pathway, as both are upregulated in glioblastoma after bevacizumab therapy. The PI3K-Akt pathway is involved in tumorigenesis, and upregulation of EMR2 may in turn upregulate PI3K, leading to increased tumor invasiveness. Indeed, overexpression of EMR2 was associated with the mesenchymal glioblastoma subtype, tumor invasiveness, and poor survival. EMR2 also regulates neutrophil function by producing reactive oxygen species (ROS) and degranulation. Possible therapeutic approaches have been studied, such as the stimulation of microglia and monocytes to inhibit tumor-initiating cells by down-regulating the EMR2 gene or through an antibody against EMR2. The current review summarizes the knowledge about the EMR2 receptor that can serve as motivation for future studies on its role in the clinical evolution and tumor biology of gliomas in order to find new modulator therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Faculty of Pharmacy, Romania
| | - Elena Victoria Manea
- Biochemistry Department, University of Medicine and Pharmacy of Craiova, Faculty of Medicine, Romania
| | - Ovidiu Zlatian
- Department of Microbiology, University of Medicine and Pharmacy of Craiova, Faculty of Medicine, Romani
| |
Collapse
|
26
|
Einspahr J, Xu H, Roy R, Dietz N, Melchior J, Raja J, Carter R, Piao X, Tilley D. Loss of cardiomyocyte-specific adhesion G-protein-coupled receptor G1 (ADGRG1/GPR56) promotes pressure overload-induced heart failure. Biosci Rep 2024; 44:BSR20240826. [PMID: 39264336 PMCID: PMC11427730 DOI: 10.1042/bsr20240826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/24/2024] [Accepted: 09/12/2024] [Indexed: 09/13/2024] Open
Abstract
Adhesion G-protein-coupled receptors (AGPCRs), containing large N-terminal ligand-binding domains for environmental mechano-sensing, have been increasingly recognized to play important roles in numerous physiologic and pathologic processes. However, their impact on the heart, which undergoes dynamic mechanical alterations in healthy and failing states, remains understudied. ADGRG1 (formerly known as GPR56) is widely expressed, including in skeletal muscle where it was previously shown to mediate mechanical overload-induced muscle hypertrophy; thus, we hypothesized that it could impact the development of cardiac dysfunction and remodeling in response to pressure overload. In this study, we generated a cardiomyocyte (CM)-specific ADGRG1 knockout mouse model, which, although not initially displaying features of cardiac dysfunction, does develop increased systolic and diastolic LV volumes and internal diameters over time. Notably, when challenged with chronic pressure overload, CM-specific ADGRG1 deletion accelerates cardiac dysfunction, concurrent with blunted CM hypertrophy, enhanced cardiac inflammation and increased mortality, suggesting that ADGRG1 plays an important role in the early adaptation to chronic cardiac stress. Altogether, the present study provides an important proof-of-concept that targeting CM-expressed AGPCRs may offer a new avenue for regulating the development of heart failure.
Collapse
Affiliation(s)
- Jeanette Einspahr
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Philadelphia, PA, U.S.A
| | - Heli Xu
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Philadelphia, PA, U.S.A
| | - Rajika Roy
- Department of Surgery, Duke University Medical Center, Durham, NC, U.S.A
| | - Nikki Dietz
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Philadelphia, PA, U.S.A
| | - Jacob Melchior
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Philadelphia, PA, U.S.A
| | - Jhansi Raja
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Philadelphia, PA, U.S.A
| | - Rhonda Carter
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Philadelphia, PA, U.S.A
| | - Xianhua Piao
- Weill Institute for Neuroscience, University of California at San Francisco, San Francisco, CA, U.S.A
| | - Douglas G. Tilley
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Philadelphia, PA, U.S.A
| |
Collapse
|
27
|
Joshi K, Miao Y. Mechanisms of peptide agonist dissociation and deactivation of adhesion G-protein-coupled receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.07.611823. [PMID: 39314495 PMCID: PMC11419055 DOI: 10.1101/2024.09.07.611823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Adhesion G protein-coupled receptors (ADGRs) belong to Class B2 of GPCRs and are involved in a wide array of important physiological processes. ADGRs contain a GPCR autoproteolysis-inducing (GAIN) domain that is proximal to the receptor N-terminus and undergoes autoproteolysis during biosynthesis to generate two fragments: the N-terminal fragment (NTF) and C-terminal fragment (CTF). Dissociation of NTF reveals a tethered agonist to activate CTF of ADGRs for G protein signaling. Synthetic peptides that mimic the tethered agonist can also activate the ADGRs. However, mechanisms of peptide agonist dissociation and deactivation of ADGRs remain poorly understood. In this study, we have performed all-atom enhanced sampling simulations using a novel Protein-Protein Interaction-Gaussian accelerated Molecular Dynamics (PPI-GaMD) method on the ADGRG2-IP15 and ADGRG1-P7 complexes. The PPI-GaMD simulations captured dissociation of the IP15 and P7 peptide agonists from their target receptors. We were able to identify important low-energy conformations of ADGRG2 and ADGRG1 in the active, intermediate, and inactive states, as well as exploring different states of the peptide agonists IP15 and P7 during dissociation. Therefore, our PPI-GaMD simulations have revealed dynamic mechanisms of peptide agonist dissociation and deactivation of ADGRG1 and ADGRG2, which will facilitate rational design of peptide regulators of the two receptors and other ADGRs.
Collapse
Affiliation(s)
- Keya Joshi
- Department of Pharmacology and Computational Medicine Program, University of North Carolina – Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yinglong Miao
- Department of Pharmacology and Computational Medicine Program, University of North Carolina – Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
28
|
Karayay B, Olze H, Szczepek AJ. Mammalian Inner Ear-Resident Immune Cells-A Scoping Review. Cells 2024; 13:1528. [PMID: 39329712 PMCID: PMC11430779 DOI: 10.3390/cells13181528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Several studies have demonstrated the presence of resident immune cells in the healthy inner ear. AIM This scoping review aimed to systematize this knowledge by collecting the data on resident immune cells in the inner ear of different species under steady-state conditions. METHODS The databases PubMed, MEDLINE (Ovid), CINAHL (EBSCO), and LIVIVO were used to identify articles. Systematic reviews, experimental studies, and clinical data in English and German were included without time limitations. RESULTS The search yielded 49 eligible articles published between 1979 and 2022. Resident immune cells, including macrophages, lymphocytes, leukocytes, and mast cells, have been observed in various mammalian inner ear structures under steady-state conditions. However, the physiological function of these cells in the healthy cochlea remains unclear, providing an opportunity for basic research in inner ear biology. CONCLUSIONS This review highlights the need for further investigation into the role of these cells, which is crucial for advancing the development of therapeutic methods for treating inner ear disorders, potentially transforming the field of otolaryngology and immunology.
Collapse
Affiliation(s)
- Betül Karayay
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (B.K.); (H.O.)
| | - Heidi Olze
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (B.K.); (H.O.)
| | - Agnieszka J. Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (B.K.); (H.O.)
- Faculty of Medicine and Health Sciences, University of Zielona Góra, 65-046 Zielona Góra, Poland
| |
Collapse
|
29
|
Shi W, Xu C, Lei P, Sun X, Song M, Guo Y, Song W, Li Y, Yu L, Zhang H, Wang H, Zhang DL. A correlation study of adhesion G protein-coupled receptors as potential therapeutic targets for breast cancer. Breast Cancer Res Treat 2024; 207:417-434. [PMID: 38834774 DOI: 10.1007/s10549-024-07373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Adhesion G protein-coupled receptors (aGPCRs), a distinctive subset of the G protein-coupled receptor (GPCR) superfamily, play crucial roles in various physiological and pathological processes, with implications in tumor development. Despite the global prevalence of breast cancer (BRCA), specific aGPCRs as potential drug targets or biomarkers remain underexplored. METHODS UALCAN, GEPIA, Kaplan-Meier Plotter, MethSurv, cBiopportal, String, GeneMANIA, DAVID, Timer, Metascape, and qPCR were applied in this work. RESULTS Our analysis revealed significantly increased transcriptional levels of ADGRB2, ADGRC1, ADGRC2, ADGRC3, ADGRE1, ADGRF2, ADGRF4, and ADGRL1 in BRCA primary tumors. Further analysis indicated a significant correlation between the expressions of certain aGPCRs and the pathological stage of BRCA. High expression of ADGRA1, ADGRF2, ADGRF4, ADGRG1, ADGRG2, ADGRG4, ADGRG6, and ADGRG7 was significantly correlated with poor overall survival (OS) in BRCA patients. Additionally, high expression of ADGRF2 and ADGRF4 indicated inferior recurrence-free survival (RFS) in BRCA patients. The RT-qPCR experiments also confirmed that the mRNA levels of ADGRF2 and ADGRF4 were higher in BRCA cells and tissues. Functional analysis highlighted the diverse roles of aGPCRs, encompassing GPCR signaling and metabolic energy reserves. Moreover, aGPCRs may exert influence or actively participate in the development of BRCA through their impact on immune status. CONCLUSION aGPCRs, particularly ADGRF2 and ADGRF4, hold promise as immunotherapeutic targets and prognostic biomarkers in BRCA.
Collapse
Affiliation(s)
- Wenning Shi
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Cong Xu
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Ping Lei
- Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Xiaoli Sun
- Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Mengju Song
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yacong Guo
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Wenxuan Song
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yizheng Li
- The Second School of Clinical Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Liting Yu
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Hui Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China.
| | - Hongmei Wang
- Shaanxi University of Chinese Medicine, No.1, Middle Century Avenue, Chenyangzhai, Xianyang, 712046, Shaanxi, China.
| | - Dao-Lai Zhang
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China.
| |
Collapse
|
30
|
Bahabayi A, Guan Z, Zheng M, Yu H, Hasimu A, Nie Y, Zhao M, Zhu Y, Ren J, Zhao Y, Ma X, Li Q, Zhang Z, Zeng X, Liu C. Expression of GPR56 reflects a hypoactivated state of circulating B cells and is downregulated in B cell subsets in patients with early-stage lung adenocarcinoma. Immunology 2024; 173:172-184. [PMID: 38840413 DOI: 10.1111/imm.13819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer, and the early detection and diagnosis of this disease are crucial in reducing mortality rates. The timely diagnosis of LUAD is essential for controlling tumour development and enabling early surgical treatment. GPR56 is a vital G protein-coupled receptor and its role in T lymphocytes has received considerable attention. However, its function in B cells remains unclear. This study aimed to investigate the significance of GPR56 in LUAD. We found that GPR56 exhibited a significant increase in circulating plasmablasts and a decrease in new memory B cells. GPR56 expression in B cells was significantly reduced after LPS stimulation and the proportion of HLA-DR+ and CD40+ proportions were also decreased in GPR56+ B cells after stimulation. Additionally, GPR56 exhibited significant down-regulation in circulating B cell subsets of early-stage LUAD patients, and there were significant correlations between GPR56+ B cell subsets and tumour markers. In conclusion, GPR56 could reflect the hypoactivation state of B cells and the decreased proportion of GPR56+ B cell subset in LUAD patients can signify the active humoral immunity in vivo. The expression of GPR56 in B cells could potentially hold value in the early diagnosis of LUAD.
Collapse
Affiliation(s)
- Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Zhao Guan
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Mohan Zheng
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - He Yu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ainizati Hasimu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yuying Nie
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ming Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yaoyi Zhu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Jiaxin Ren
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yiming Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xiancan Ma
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qi Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Zhonghui Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xingyue Zeng
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| |
Collapse
|
31
|
Qi W, Guan W. GPR56: A potential therapeutic target for neurological and psychiatric disorders. Biochem Pharmacol 2024; 226:116395. [PMID: 38942087 DOI: 10.1016/j.bcp.2024.116395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
GPR56, also known as GPR56/ADGRG1, is a member of the ADGRG subgroup belonging to adhesion G protein-coupled receptors (aGPCRs). aGPCRs are the second largest subfamily of the GPCR superfamily, which is the largest family of membrane protein receptors in the human genome. Studies in recent years have demonstrated that GPR56 is integral to the normal development of the brain and functions as an important player in cortical development, suggesting that GPR56 is involved in many physiological processes. Indeed, aberrant expression of GPR56 has been implicated in multiple neurological and psychiatric disorders, including bilateral frontoparietal polymicrogyria (BFPP), depression and epilepsy. In a recent study, it was found that upregulated expression of GPR56 reduced depressive-like behaviours in an animal model of depression, indicating that GPR56 plays an important role in the antidepressant response. Given the link of GPR56 with the antidepressant response, the function of GPR56 has become a focus of research. Although GPR56 may be a potential target for the development of antidepressants, the underlying molecular mechanisms remain largely unknown. Therefore, in this review, we will summarize the latest findings of GPR56 function in neurological and psychiatric disorders (depression, epilepsy, autism, and BFPP) and emphasize the mechanisms of GPR56 in activation and signalling in those conditions. After reviewing several studies, attributing to its significant biological functions and exceptionally long extracellular N-terminus that interacts with multiple ligands, we draw a conclusion that GPR56 may serve as an important drug target for neuropsychological diseases.
Collapse
Affiliation(s)
- Wang Qi
- Department of Pharmacology, The First People's Hospital of Yancheng, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, China.
| |
Collapse
|
32
|
Xu Y, Huang S, Zhou S, Wang X, Wei M, Chen X, Zong R, Lin X, Li S, Liu Z, Chen Q. Iron Chelator Deferiprone Restores Iron Homeostasis and Inhibits Retinal Neovascularization in Experimental Neovascular Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2024; 65:5. [PMID: 39093298 PMCID: PMC11305424 DOI: 10.1167/iovs.65.10.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024] Open
Abstract
Purpose Retinal neovascularization is a significant feature of advanced age-related macular degeneration (AMD) and a major cause of blindness in patients with AMD. However, the underlying mechanism of this pathological neovascularization remains unknown. Iron metabolism has been implicated in various biological processes. This study was conducted to investigate the effects of iron metabolism on retinal neovascularization in neovascular AMD (nAMD). Methods C57BL/6J and very low-density lipoprotein receptor (VLDLR) knockout (Vldlr-/-) mice, a murine model of nAMD, were used in this study. Bulk-RNA sequencing was used to identify differentially expressed genes. Western blot analysis was performed to test the expression of proteins. Iron chelator deferiprone (DFP) was administrated to the mice by oral gavage. Fundus fluorescein angiography was used to evaluate retinal vascular leakage. Immunofluorescence staining was used to detect macrophages and iron-related proteins. Results RNA sequencing (RNA-seq) results showed altered transferrin expression in the retina and RPE of Vldlr-/- mice. Disrupted iron homeostasis was observed in the retina and RPE of Vldlr-/- mice. DFP mitigated iron overload and significantly reduced retinal neovascularization and vascular leakage. In addition, DFP suppressed the inflammation in Vldlr-/- retinas. The reduced signals of macrophages were observed at sites of neovascularization in the retina and RPE of Vldlr-/- mice after DFP treatment. Further, the IL-6/JAK2/STAT3 signaling pathway was activated in the retina and RPE of Vldlr-/- mice and reversed by DFP treatment. Conclusions Disrupted iron metabolism may contribute to retinal neovascularization in nAMD. Restoring iron homeostasis by DFP could be a potential therapeutic approach for nAMD.
Collapse
Affiliation(s)
- Yuan Xu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shiya Huang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shengmei Zhou
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xin Wang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Mingyan Wei
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaodong Chen
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Rongrong Zong
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiang Lin
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Shiying Li
- Department of Ophthalmology, the First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Zuguo Liu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qian Chen
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
33
|
Xie L, Cheng Y, Hu B, Chen X, An Y, Xia Z, Cai G, Li C, Peng H. PCLAF induces bone marrow adipocyte senescence and contributes to skeletal aging. Bone Res 2024; 12:38. [PMID: 38961077 PMCID: PMC11222446 DOI: 10.1038/s41413-024-00337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/30/2024] [Accepted: 04/11/2024] [Indexed: 07/05/2024] Open
Abstract
Bone marrow adipocytes (BMAds) affect bone homeostasis, but the mechanism remains unclear. Here, we showed that exercise inhibited PCNA clamp-associated factor (PCLAF) secretion from the bone marrow macrophages to inhibit BMAds senescence and thus alleviated skeletal aging. The genetic deletion of PCLAF in macrophages inhibited BMAds senescence and delayed skeletal aging. In contrast, the transplantation of PCLAF-mediated senescent BMAds into the bone marrow of healthy mice suppressed bone turnover. Mechanistically, PCLAF bound to the ADGRL2 receptor to inhibit AKT/mTOR signaling that triggered BMAds senescence and subsequently spread senescence among osteogenic and osteoclastic cells. Of note, we developed a PCLAF-neutralizing antibody and showed its therapeutic effects on skeletal health in old mice. Together, these findings identify PCLAF as an inducer of BMAds senescence and provide a promising way to treat age-related osteoporosis.
Collapse
Affiliation(s)
- Lingqi Xie
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Yalun Cheng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Biao Hu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Xin Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Yuze An
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Zhuying Xia
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Guangping Cai
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, 410008, China
| | - Hui Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
34
|
Latypova AA, Yaremenko AV, Pechnikova NA, Minin AS, Zubarev IV. Magnetogenetics as a promising tool for controlling cellular signaling pathways. J Nanobiotechnology 2024; 22:327. [PMID: 38858689 PMCID: PMC11163773 DOI: 10.1186/s12951-024-02616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
Magnetogenetics emerges as a transformative approach for modulating cellular signaling pathways through the strategic application of magnetic fields and nanoparticles. This technique leverages the unique properties of magnetic nanoparticles (MNPs) to induce mechanical or thermal stimuli within cells, facilitating the activation of mechano- and thermosensitive proteins without the need for traditional ligand-receptor interactions. Unlike traditional modalities that often require invasive interventions and lack precision in targeting specific cellular functions, magnetogenetics offers a non-invasive alternative with the capacity for deep tissue penetration and the potential for targeting a broad spectrum of cellular processes. This review underscores magnetogenetics' broad applicability, from steering stem cell differentiation to manipulating neuronal activity and immune responses, highlighting its potential in regenerative medicine, neuroscience, and cancer therapy. Furthermore, the review explores the challenges and future directions of magnetogenetics, including the development of genetically programmed magnetic nanoparticles and the integration of magnetic field-sensitive cells for in vivo applications. Magnetogenetics stands at the forefront of cellular manipulation technologies, offering novel insights into cellular signaling and opening new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Anastasiia A Latypova
- Institute of Future Biophysics, Dolgoprudny, 141701, Russia
- Moscow Center for Advanced Studies, Moscow, 123592, Russia
| | - Alexey V Yaremenko
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Nadezhda A Pechnikova
- Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- Saint Petersburg Pasteur Institute, Saint Petersburg, 197101, Russia
| | - Artem S Minin
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russia
| | - Ilya V Zubarev
- Institute of Future Biophysics, Dolgoprudny, 141701, Russia.
| |
Collapse
|
35
|
Matúš D, Lopez JM, Sando RC, Südhof TC. Essential Role of Latrophilin-1 Adhesion GPCR Nanoclusters in Inhibitory Synapses. J Neurosci 2024; 44:e1978232024. [PMID: 38684366 PMCID: PMC11154861 DOI: 10.1523/jneurosci.1978-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/03/2024] [Accepted: 02/20/2024] [Indexed: 05/02/2024] Open
Abstract
Latrophilin-1 (Lphn1, aka CIRL1 and CL1; gene symbol Adgrl1) is an adhesion GPCR that has been implicated in excitatory synaptic transmission as a candidate receptor for α-latrotoxin. Here we analyzed conditional knock-in/knock-out mice for Lphn1 that contain an extracellular myc epitope tag. Mice of both sexes were used in all experiments. Surprisingly, we found that Lphn1 is localized in cultured neurons to synaptic nanoclusters that are present in both excitatory and inhibitory synapses. Conditional deletion of Lphn1 in cultured neurons failed to elicit a detectable impairment in excitatory synapses but produced a decrease in inhibitory synapse numbers and synaptic transmission that was most pronounced for synapses close to the neuronal soma. No changes in axonal or dendritic outgrowth or branching were observed. Our data indicate that Lphn1 is among the few postsynaptic adhesion molecules that are present in both excitatory and inhibitory synapses and that Lphn1 by itself is not essential for excitatory synaptic transmission but is required for some inhibitory synaptic connections.
Collapse
Affiliation(s)
- Daniel Matúš
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305
| | - Jaybree M Lopez
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37240
| | - Richard C Sando
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37240
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305
- Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
36
|
Birgül Iyison N, Abboud C, Abboud D, Abdulrahman AO, Bondar AN, Dam J, Georgoussi Z, Giraldo J, Horvat A, Karoussiotis C, Paz-Castro A, Scarpa M, Schihada H, Scholz N, Güvenc Tuna B, Vardjan N. ERNEST COST action overview on the (patho)physiology of GPCRs and orphan GPCRs in the nervous system. Br J Pharmacol 2024. [PMID: 38825750 DOI: 10.1111/bph.16389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/09/2024] [Accepted: 02/24/2024] [Indexed: 06/04/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that play a critical role in nervous system function by transmitting signals between cells and their environment. They are involved in many, if not all, nervous system processes, and their dysfunction has been linked to various neurological disorders representing important drug targets. This overview emphasises the GPCRs of the nervous system, which are the research focus of the members of ERNEST COST action (CA18133) working group 'Biological roles of signal transduction'. First, the (patho)physiological role of the nervous system GPCRs in the modulation of synapse function is discussed. We then debate the (patho)physiology and pharmacology of opioid, acetylcholine, chemokine, melatonin and adhesion GPCRs in the nervous system. Finally, we address the orphan GPCRs, their implication in the nervous system function and disease, and the challenges that need to be addressed to deorphanize them.
Collapse
Affiliation(s)
- Necla Birgül Iyison
- Department of Molecular Biology and Genetics, University of Bogazici, Istanbul, Turkey
| | - Clauda Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | - Dayana Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | | | - Ana-Nicoleta Bondar
- Faculty of Physics, University of Bucharest, Magurele, Romania
- Forschungszentrum Jülich, Institute for Computational Biomedicine (IAS-5/INM-9), Jülich, Germany
| | - Julie Dam
- Institut Cochin, CNRS, INSERM, Université Paris Cité, Paris, France
| | - Zafiroula Georgoussi
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anemari Horvat
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Christos Karoussiotis
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Alba Paz-Castro
- Molecular Pharmacology of GPCRs research group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago, Spain
| | - Miriam Scarpa
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Schihada
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Bilge Güvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Nina Vardjan
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
37
|
Lei Q, Zhang S, Wang J, Qi C, Liu J, Cao D, Li F, Han H, Liu W, Li D, Tang C, Zhou Y. Genome-wide association studies of egg production traits by whole genome sequencing of Laiwu Black chicken. Poult Sci 2024; 103:103705. [PMID: 38598913 PMCID: PMC11636908 DOI: 10.1016/j.psj.2024.103705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
Compared to high-yield commercial laying hens, Chinese indigenous chicken breeds have poor egg laying capacity due to the lack of intensive selection. However, as these breeds have not undergone systematic selection, it is possible that there is a greater abundance of genetic variations related to egg laying traits. In this study, we assessed 5 egg number (EN) traits at different stages of the egg-laying period: EN1 (from the first egg to 23 wk), EN2 (from 23 to 35 wk), EN3 (from 35 to 48 wk), EN4 (from the first egg to 35 wk), and EN5 (from the first egg to 48 wk). To investigate the molecular mechanisms underlying egg number traits in a Chinese local chicken breed, we conducted a genome-wide association study (GWAS) using data from whole-genome sequencing (WGS) of 399 Laiwu Black chickens. We obtained a total of 3.01 Tb of raw data with an average depth of 7.07 × per individual. A total of 86 genome-wide suggestive or significant single-nucleotide polymorphisms (SNP) contained within a set of 45 corresponding candidate genes were identified and found to be associated with stages EN1-EN5. The genes vitellogenin 2 (VTG2), lipase maturation factor 1 (LMF1), calcium voltage-gated channel auxiliary subunit alpha2delta 3 (CACNA2D3), poly(A) binding protein cytoplasmic 1 (PABPC1), programmed cell death 11 (PDCD11) and family with sequence similarity 213 member A (FAM213A) can be considered as the candidate genes associated with egg number traits, due to their reported association with animal reproduction traits. Noteworthy, results suggests that VTG2 and PDCD11 are not only involved in the regulation of EN3, but also in the regulation of EN5, implies that VTG2 and PDCD11 have a significant influence on egg production traits. Our study offers valuable genomic insights into the molecular genetic mechanisms that govern egg number traits in a Chinese indigenous egg-laying chicken breed. These findings have the potential to enhance the egg-laying performance of chickens.
Collapse
Affiliation(s)
- Qiuxia Lei
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Shuer Zhang
- Shandong Animal Husbandry General Station, 250023, Ji'nan, China
| | - Jie Wang
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Chao Qi
- Shandong Animal Husbandry General Station, 250023, Ji'nan, China
| | - Jie Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Dingguo Cao
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Fuwei Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Haixia Han
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Wei Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Dapeng Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Cunwei Tang
- Fujian Sunnzer Biological Technology Development Co. Ltd., 354100, Guang'ze, China
| | - Yan Zhou
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China..
| |
Collapse
|
38
|
Stephan G, Haddock S, Wang S, Erdjument-Bromage H, Liu W, Ravn-Boess N, Frenster JD, Bready D, Cai J, Ronnen R, Sabio-Ortiz J, Fenyo D, Neubert TA, Placantonakis DG. Modulation of GPR133 (ADGRD1) signaling by its intracellular interaction partner extended synaptotagmin 1. Cell Rep 2024; 43:114229. [PMID: 38758649 PMCID: PMC11209873 DOI: 10.1016/j.celrep.2024.114229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 10/12/2023] [Accepted: 04/26/2024] [Indexed: 05/19/2024] Open
Abstract
GPR133 (ADGRD1) is an adhesion G-protein-coupled receptor that signals through Gαs/cyclic AMP (cAMP) and is required for the growth of glioblastoma (GBM), an aggressive brain malignancy. The regulation of GPR133 signaling is incompletely understood. Here, we use proximity biotinylation proteomics to identify ESYT1, a Ca2+-dependent mediator of endoplasmic reticulum-plasma membrane bridge formation, as an intracellular interactor of GPR133. ESYT1 knockdown or knockout increases GPR133 signaling, while its overexpression has the opposite effect, without altering GPR133 levels in the plasma membrane. The GPR133-ESYT1 interaction requires the Ca2+-sensing C2C domain of ESYT1. Thapsigargin-mediated increases in cytosolic Ca2+ relieve signaling-suppressive effects of ESYT1 by promoting ESYT1-GPR133 dissociation. ESYT1 knockdown or knockout in GBM slows tumor growth, suggesting tumorigenic functions of ESYT1. Our findings demonstrate a mechanism for the modulation of GPR133 signaling by increased cytosolic Ca2+, which reduces the signaling-suppressive interaction between GPR133 and ESYT1 to raise cAMP levels.
Collapse
Affiliation(s)
- Gabriele Stephan
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Sara Haddock
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Shuai Wang
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Wenke Liu
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Niklas Ravn-Boess
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Joshua D Frenster
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA; Department of Health and Experimental Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Devin Bready
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Julia Cai
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Rebecca Ronnen
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | | | - David Fenyo
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Thomas A Neubert
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitris G Placantonakis
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA; Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
39
|
Kösters P, Cazorla-Vázquez S, Krüger R, Daniel C, Vonbrunn E, Amann K, Engel FB. Adhesion G Protein-Coupled Receptor Gpr126 ( Adgrg6) Expression Profiling in Diseased Mouse, Rat, and Human Kidneys. Cells 2024; 13:874. [PMID: 38786096 PMCID: PMC11119830 DOI: 10.3390/cells13100874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Uncovering the function of understudied G protein-coupled receptors (GPCRs) provides a wealth of untapped therapeutic potential. The poorly understood adhesion GPCR Gpr126 (Adgrg6) is widely expressed in developing kidneys. In adulthood, Gpr126 expression is enriched in parietal epithelial cells (PECs) and epithelial cells of the collecting duct and urothelium. Whether Gpr126 plays a role in kidney disease remains unclear. Here, we characterized Gpr126 expression in diseased kidneys in mice, rats, and humans. RT-PCR data show that Gpr126 expression is altered in kidney disease. A quantitative RNAscope® analysis utilizing cell type-specific markers revealed that Gpr126 expression upon tubular damage is mainly increased in cell types expressing Gpr126 under healthy conditions as well as in cells of the distal and proximal tubules. Upon glomerular damage, an increase was mainly detected in PECs. Notably, Gpr126 expression was upregulated in an ischemia/reperfusion model within hours, while upregulation in a glomerular damage model was only detected after weeks. An analysis of kidney microarray data from patients with lupus nephritis, IgA nephropathy, focal segmental glomerulosclerosis (FSGS), hypertension, and diabetes as well as single-cell RNA-seq data from kidneys of patients with acute kidney injury and chronic kidney disease indicates that GPR126 expression is also altered in human kidney disease. In patients with FSGS, an RNAscope® analysis showed that GPR126 mRNA is upregulated in PECs belonging to FSGS lesions and proximal tubules. Collectively, we provide detailed insights into Gpr126 expression in kidney disease, indicating that GPR126 is a potential therapeutic target.
Collapse
Affiliation(s)
- Peter Kösters
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (P.K.); (S.C.-V.); (C.D.); (E.V.); (K.A.)
| | - Salvador Cazorla-Vázquez
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (P.K.); (S.C.-V.); (C.D.); (E.V.); (K.A.)
| | - René Krüger
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Christoph Daniel
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (P.K.); (S.C.-V.); (C.D.); (E.V.); (K.A.)
| | - Eva Vonbrunn
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (P.K.); (S.C.-V.); (C.D.); (E.V.); (K.A.)
| | - Kerstin Amann
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (P.K.); (S.C.-V.); (C.D.); (E.V.); (K.A.)
| | - Felix B. Engel
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (P.K.); (S.C.-V.); (C.D.); (E.V.); (K.A.)
| |
Collapse
|
40
|
Dintzner E, Bandekar SJ, Leon K, Cechova K, Vafabakhsh R, Araç D. The far extracellular CUB domain of the adhesion GPCR ADGRG6/GPR126 is a key regulator of receptor signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580607. [PMID: 38766069 PMCID: PMC11100614 DOI: 10.1101/2024.02.16.580607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Adhesion G Protein-coupled receptors (aGPCRs) transduce extracellular adhesion signals into cytoplasmic signaling pathways. ADGRG6/GPR126 is an aGPCR critical for axon myelination, heart development and ear development; and is associated with developmental diseases and cancers. ADGRG6 has a large, alternatively-spliced, five-domain extracellular region (ECR) that samples different conformations and regulates receptor signaling. However, the molecular details of how the ECR regulates signaling are unclear. Herein, we studied the conformational dynamics of the conserved CUB domain which is located at the distal N-terminus of the ECR and is deleted in an alternatively-spliced isoform ( Δ CUB). We showed that the Δ CUB isoform has decreased signaling. Molecular dynamics simulations suggest that the CUB domain is involved in interdomain contacts to maintain a compact ECR conformation. A cancer-associated CUB domain mutant, C94Y, drastically perturbs the ECR conformation and results in elevated signaling, whereas another CUB mutant, Y96A, located near a conserved Ca 2+ -binding site, decreases signaling. Our results suggest an ECR-mediated mechanism for ADGRG6 regulation in which the CUB domain instructs conformational changes within the ECR to regulate receptor signaling.
Collapse
|
41
|
Dietzsch AN, Al-Hasani H, Altschmied J, Bottermann K, Brendler J, Haendeler J, Horn S, Kaczmarek I, Körner A, Krause K, Landgraf K, Le Duc D, Lehmann L, Lehr S, Pick S, Ricken A, Schnorr R, Schulz A, Strnadová M, Velluva A, Zabri H, Schöneberg T, Thor D, Prömel S. Dysfunction of the adhesion G protein-coupled receptor latrophilin 1 (ADGRL1/LPHN1) increases the risk of obesity. Signal Transduct Target Ther 2024; 9:103. [PMID: 38664368 PMCID: PMC11045723 DOI: 10.1038/s41392-024-01810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Obesity is one of the diseases with severe health consequences and rapidly increasing worldwide prevalence. Understanding the complex network of food intake and energy balance regulation is an essential prerequisite for pharmacological intervention with obesity. G protein-coupled receptors (GPCRs) are among the main modulators of metabolism and energy balance. They, for instance, regulate appetite and satiety in certain hypothalamic neurons, as well as glucose and lipid metabolism and hormone secretion from adipocytes. Mutations in some GPCRs, such as the melanocortin receptor type 4 (MC4R), have been associated with early-onset obesity. Here, we identified the adhesion GPCR latrophilin 1 (ADGRL1/LPHN1) as a member of the regulating network governing food intake and the maintenance of energy balance. Deficiency of the highly conserved receptor in mice results in increased food consumption and severe obesity, accompanied by dysregulation of glucose homeostasis. Consistently, we identified a partially inactivating mutation in human ADGRL1/LPHN1 in a patient suffering from obesity. Therefore, we propose that LPHN1 dysfunction is a risk factor for obesity development.
Collapse
Affiliation(s)
- André Nguyen Dietzsch
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munich-Neuherberg, Germany
| | - Joachim Altschmied
- Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute (CARID), Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katharina Bottermann
- Cardiovascular Research Institute (CARID), Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Pharmacology, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jana Brendler
- Institute of Anatomy, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Judith Haendeler
- Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute (CARID), Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Antje Körner
- Center for Pediatric Research, Hospital for Children and Adolescents, Medical Faculty, Leipzig University, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Kerstin Krause
- Department of Endocrinology, Nephrology, Rheumatology, Leipzig University Medical Center, Leipzig, Germany
| | - Kathrin Landgraf
- Center for Pediatric Research, Hospital for Children and Adolescents, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics, Leipzig University Medical Center, Leipzig, Germany
| | - Laura Lehmann
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Lehr
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munich-Neuherberg, Germany
| | - Stephanie Pick
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Albert Ricken
- Institute of Anatomy, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Rene Schnorr
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Angela Schulz
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Martina Strnadová
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Akhil Velluva
- Institute of Human Genetics, Leipzig University Medical Center, Leipzig, Germany
| | - Heba Zabri
- Institute of Pharmacology, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany.
| | - Simone Prömel
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
42
|
Kuhn CK, Stenzel U, Berndt S, Liebscher I, Schöneberg T, Horn S. The repertoire and structure of adhesion GPCR transcript variants assembled from publicly available deep-sequenced human samples. Nucleic Acids Res 2024; 52:3823-3836. [PMID: 38421639 DOI: 10.1093/nar/gkae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Alternative splicing and multiple transcription start and termination sites can produce a diverse repertoire of mRNA transcript variants from a given gene. While the full picture of the human transcriptome is still incomplete, publicly available RNA datasets have enabled the assembly of transcripts. Using publicly available deep sequencing data from 927 human samples across 48 tissues, we quantified known and new transcript variants, provide an interactive, browser-based application Splice-O-Mat and demonstrate its relevance using adhesion G protein-coupled receptors (aGPCRs) as an example. On average, 24 different transcript variants were detected for each of the 33 human aGPCR genes, and several dominant transcript variants were not yet annotated. Variable transcription starts and complex exon-intron structures encode a flexible protein domain architecture of the N- and C termini and the seven-transmembrane helix domain (7TMD). Notably, we discovered the first GPCR (ADGRG7/GPR128) with eight transmembrane helices. Both the N- and C terminus of this aGPCR were intracellularly oriented, anchoring the N terminus in the plasma membrane. Moreover, the assessment of tissue-specific transcript variants, also for other gene classes, in our application may change the evaluation of disease-causing mutations, as their position in different transcript variants may explain tissue-specific phenotypes.
Collapse
Affiliation(s)
- Christina Katharina Kuhn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Udo Stenzel
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Sandra Berndt
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
- Department of Biochemistry, School of Medicine, University of Global Health Equity (UGHE), PO Box 6955 Kigali, Rwanda
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| |
Collapse
|
43
|
Yao Y, Wang D, Zheng L, Zhao J, Tan M. Advances in prognostic models for osteosarcoma risk. Heliyon 2024; 10:e28493. [PMID: 38586328 PMCID: PMC10998144 DOI: 10.1016/j.heliyon.2024.e28493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
The risk prognosis model is a statistical model that uses a set of features to predict whether an individual will develop a specific disease or clinical outcome. It can be used in clinical practice to stratify disease severity and assess risk or prognosis. With the advancement of large-scale second-generation sequencing technology, along Prognosis models for osteosarcoma are increasingly being developed as large-scale second-generation sequencing technology advances and clinical and biological data becomes more abundant. This expansion greatly increases the number of prognostic models and candidate genes suitable for clinical use. This article will present the predictive effects and reliability of various prognosis models, serving as a reference for their evaluation and application.
Collapse
Affiliation(s)
- Yi Yao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Dapeng Wang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Manli Tan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
44
|
Cao R, Su Y, Li J, Ao R, Xu X, Liang Y, Liu Z, Yu Q, Xie J. Exploring research hotspots and future directions in neural tube defects field by bibliometric and bioinformatics analysis. Front Neurosci 2024; 18:1293400. [PMID: 38650623 PMCID: PMC11033379 DOI: 10.3389/fnins.2024.1293400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/11/2024] [Indexed: 04/25/2024] Open
Abstract
Background Neural tube defects (NTDs) is the most common birth defect of the central nervous system (CNS) which causes the death of almost 88,000 people every year around the world. Much efforts have been made to investigate the reasons that contribute to NTD and explore new ways to for prevention. We trawl the past decade (2013-2022) published records in order to get a worldwide view about NTDs research field. Methods 7,437 records about NTDs were retrieved from the Web of Science (WOS) database. Tools such as shell scripts, VOSviewer, SCImago Graphica, CiteSpace and PubTator were used for data analysis and visualization. Results Over the past decade, the number of publications has maintained an upward trend, except for 2022. The United States is the country with the highest number of publications and also with the closest collaboration with other countries. Baylor College of Medicine has the closest collaboration with other institutions worldwide and also was the most prolific institution. In the field of NTDs, research focuses on molecular mechanisms such as genes and signaling pathways related to folate metabolism, neurogenic diseases caused by neural tube closure disorders such as myelomeningocele and spina bifida, and prevention and treatment such as folate supplementation and surgical procedures. Most NTDs related genes are related to development, cell projection parts, and molecular binding. These genes are mainly concentrated in cancer, Wnt, MAPK, PI3K-Akt and other signaling pathways. The distribution of NTDs related SNPs on chromosomes 1, 3, 5, 11, 14, and 17 are relatively concentrated, which may be associated with high-risk of NTDs. Conclusion Bibliometric analysis of the literature on NTDs field provided the current status, hotspots and future directions to some extant. Further bioinformatics analysis expanded our understanding of NTDs-related genes function and revealed some important SNP clusters and loci. This study provided some guidance for further studies. More extensive cooperation and further research are needed to overcome the ongoing challenge in pathogenesis, prevention and treatment of NTDs.
Collapse
Affiliation(s)
- Rui Cao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention of Ministry of Education, Shanxi Medical University, Taiyuan, China
- Translational Medicine Research Centre, Shanxi Medical University, Taiyuan, China
| | - Yanbing Su
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianting Li
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Ruifang Ao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Xiangchao Xu
- Sci-Tech Information and Strategic Research Center of Shanxi Province, Taiyuan, China
| | - Yuxiang Liang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Qi Yu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention of Ministry of Education, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
45
|
Schön JL, Groß VE, Post WB, Daum A, Matúš D, Pilz J, Schnorr R, Horn S, Bäumers M, Weidtkamp-Peters S, Hughes S, Schöneberg T, Prömel S. The adhesion GPCR and PCP component flamingo (FMI-1) alters body size and regulates the composition of the extracellular matrix. Matrix Biol 2024; 128:1-10. [PMID: 38378098 DOI: 10.1016/j.matbio.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
The extracellular matrix (ECM) is a network of macromolecules that presents a vital scaffold for cells and enables multiple ways of cellular communication. Thus, it is essential for many physiological processes such as development, tissue morphogenesis, homeostasis, the shape and partially the size of the body and its organs. To ensure these, the composition of the ECM is tissue-specific and highly dynamic. ECM homeostasis is therefore tightly controlled by several mechanisms. Here, we show that FMI-1, the homolog of the Adhesion GPCR Flamingo/CELSR/ADGRC in the nematode Caenorhabditis elegans, modulates the composition of the ECM by controlling the production both of ECM molecules such as collagens and also of ECM modifying enzymes. Thereby, FMI-1 affects the morphology and functionality of the nematode´s cuticle, which is mainly composed of ECM, and also modulates the body size. Mechanistic analyses highlight the fact that FMI-1 exerts its function from neurons non-cell autonomously (trans) solely via its extracellular N terminus. Our data support a model, by which the activity of the receptor, which has a well-described role in the planar cell polarity (PCP) pathway, involves the PCP molecule VANG-1, but seems to be independent of the DBL-1/BMP pathway.
Collapse
Affiliation(s)
- Johanna Lena Schön
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany; Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, Leipzig University, Leipzig, Germany
| | - Victoria Elisabeth Groß
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Willem Berend Post
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexandra Daum
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Matúš
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany; Department of Molecular and Cellular Physiology, Stanford University, Stanford, USA
| | - Johanna Pilz
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Rene Schnorr
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Miriam Bäumers
- Center for Advanced Imaging, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Samantha Hughes
- A-LIFE, Section Environmental Health and Toxicology, Free University Amsterdam, Amsterdam, the Netherlands
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany; School of Medicine, University of Global Health Equity, Kigali, Rwanda
| | - Simone Prömel
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
46
|
Alamin M, Humaira Sultana M, Babarinde IA, Azad AKM, Moni MA, Xu H. Single-cell RNA-seq data analysis reveals functionally relevant biomarkers of early brain development and their regulatory footprints in human embryonic stem cells (hESCs). Brief Bioinform 2024; 25:bbae230. [PMID: 38739758 PMCID: PMC11089419 DOI: 10.1093/bib/bbae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/07/2024] [Accepted: 04/27/2024] [Indexed: 05/16/2024] Open
Abstract
The complicated process of neuronal development is initiated early in life, with the genetic mechanisms governing this process yet to be fully elucidated. Single-cell RNA sequencing (scRNA-seq) is a potent instrument for pinpointing biomarkers that exhibit differential expression across various cell types and developmental stages. By employing scRNA-seq on human embryonic stem cells, we aim to identify differentially expressed genes (DEGs) crucial for early-stage neuronal development. Our focus extends beyond simply identifying DEGs. We strive to investigate the functional roles of these genes through enrichment analysis and construct gene regulatory networks to understand their interactions. Ultimately, this comprehensive approach aspires to illuminate the molecular mechanisms and transcriptional dynamics governing early human brain development. By uncovering potential links between these DEGs and intelligence, mental disorders, and neurodevelopmental disorders, we hope to shed light on human neurological health and disease. In this study, we have used scRNA-seq to identify DEGs involved in early-stage neuronal development in hESCs. The scRNA-seq data, collected on days 26 (D26) and 54 (D54), of the in vitro differentiation of hESCs to neurons were analyzed. Our analysis identified 539 DEGs between D26 and D54. Functional enrichment of those DEG biomarkers indicated that the up-regulated DEGs participated in neurogenesis, while the down-regulated DEGs were linked to synapse regulation. The Reactome pathway analysis revealed that down-regulated DEGs were involved in the interactions between proteins located in synapse pathways. We also discovered interactions between DEGs and miRNA, transcriptional factors (TFs) and DEGs, and between TF and miRNA. Our study identified 20 significant transcription factors, shedding light on early brain development genetics. The identified DEGs and gene regulatory networks are valuable resources for future research into human brain development and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Md Alamin
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | | | - Isaac Adeyemi Babarinde
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - A K M Azad
- Department of Mathematics and Statistics, College of Science, Imam Muhammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia
| | - Mohammad Ali Moni
- Artificial Intelligence and Cyber Futures Institute, Charles Sturt University, Bathurst, NSW 2795, Australia
| | - Haiming Xu
- Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
47
|
Scharf MM, Humphrys LJ, Berndt S, Di Pizio A, Lehmann J, Liebscher I, Nicoli A, Niv MY, Peri L, Schihada H, Schulte G. The dark sides of the GPCR tree - research progress on understudied GPCRs. Br J Pharmacol 2024. [PMID: 38339984 DOI: 10.1111/bph.16325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024] Open
Abstract
A large portion of the human GPCRome is still in the dark and understudied, consisting even of entire subfamilies of GPCRs such as odorant receptors, class A and C orphans, adhesion GPCRs, Frizzleds and taste receptors. However, it is undeniable that these GPCRs bring an untapped therapeutic potential that should be explored further. Open questions on these GPCRs span diverse topics such as deorphanisation, the development of tool compounds and tools for studying these GPCRs, as well as understanding basic signalling mechanisms. This review gives an overview of the current state of knowledge for each of the diverse subfamilies of understudied receptors regarding their physiological relevance, molecular mechanisms, endogenous ligands and pharmacological tools. Furthermore, it identifies some of the largest knowledge gaps that should be addressed in the foreseeable future and lists some general strategies that might be helpful in this process.
Collapse
Affiliation(s)
- Magdalena M Scharf
- Karolinska Institutet, Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Stockholm, Sweden
| | - Laura J Humphrys
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Sandra Berndt
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Juliane Lehmann
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Alessandro Nicoli
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lior Peri
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hannes Schihada
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Gunnar Schulte
- Karolinska Institutet, Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Stockholm, Sweden
| |
Collapse
|
48
|
Mao C, Zhao RJ, Dong YJ, Gao M, Chen LN, Zhang C, Xiao P, Guo J, Qin J, Shen DD, Ji SY, Zang SK, Zhang H, Wang WW, Shen Q, Sun JP, Zhang Y. Conformational transitions and activation of the adhesion receptor CD97. Mol Cell 2024; 84:570-583.e7. [PMID: 38215752 DOI: 10.1016/j.molcel.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/23/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are evolutionarily ancient receptors involved in a variety of physiological and pathophysiological processes. Modulators of aGPCR, particularly antagonists, hold therapeutic promise for diseases like cancer and immune and neurological disorders. Hindered by the inactive state structural information, our understanding of antagonist development and aGPCR activation faces challenges. Here, we report the cryo-electron microscopy structures of human CD97, a prototypical aGPCR that plays crucial roles in immune system, in its inactive apo and G13-bound fully active states. Compared with other family GPCRs, CD97 adopts a compact inactive conformation with a constrained ligand pocket. Activation induces significant conformational changes for both extracellular and intracellular sides, creating larger cavities for Stachel sequence binding and G13 engagement. Integrated with functional and metadynamics analyses, our study provides significant mechanistic insights into the activation and signaling of aGPCRs, paving the way for future drug discovery efforts.
Collapse
Affiliation(s)
- Chunyou Mao
- Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Ru-Jia Zhao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ying-Jun Dong
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mingxin Gao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Li-Nan Chen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Chao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jia Guo
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jiao Qin
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Dan-Dan Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Su-Yu Ji
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shao-Kun Zang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huibing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Wei-Wei Wang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Qingya Shen
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| | - Yan Zhang
- Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
49
|
Wang Y, Li Z, Lu J. Single-cell RNA sequencing reveals the epithelial cell, fibroblast, and key gene alterations in chronic rhinosinusitis with nasal polyps. Sci Rep 2024; 14:2270. [PMID: 38280891 PMCID: PMC10821928 DOI: 10.1038/s41598-024-52341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/17/2024] [Indexed: 01/29/2024] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a chronic inflammatory disease of the nasal mucosa, and epithelial-mesenchymal transition (EMT) is thought to be an essential process in the pathogenesis of CRSwNP. However, the mechanisms of epithelial and fibroblastic changes at the single-cell level are unclear. In this study, we investigated the epithelial cell, fibroblast, and key gene alterations in the development of CRSwNP. We revealed major cell types involved in CRSwNP and nasal mucosal inflammation formation, then mapped epithelial and fibroblast subpopulations. We showed that the apical and glandular epithelial cells and the ADGRB3+ and POSTN+ fibroblasts were the key cell subtypes in the progression of CRSwNP. Pseudotime and cell cycle analysis identified dynamic changes between epithelial cells and fibroblasts during its development. WFDC2 and CCL26 were identified as the key marker genes involved in the development of CRSwNP and were validated by IHC staining, which may provide a potential novel target for future CRSwNP therapy. ScRNA-seq data provided insights into the cellular landscape and the relationship between epithelial cells and fibroblasts in the progression of CRSwNP. WFDC2 and CCL26 were identified as the key genes involved in the development of CRSwNP and may be the potential markers for gene therapy.
Collapse
Affiliation(s)
- Yakun Wang
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongti South Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Zufei Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Jun Lu
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongti South Road, Chaoyang District, Beijing, 100020, People's Republic of China.
| |
Collapse
|
50
|
Bandekar SJ, Garbett K, Kordon SP, Dintzner E, Shearer T, Sando RC, Araç D. Structure of the extracellular region of the adhesion GPCR CELSR1 reveals a compact module which regulates G protein-coupling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577439. [PMID: 38328199 PMCID: PMC10849658 DOI: 10.1101/2024.01.26.577439] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Cadherin EGF Laminin G seven-pass G-type receptors (CELSRs or ADGRCs) are conserved adhesion G protein-coupled receptors which are essential for animal development. CELSRs have extracellular regions (ECRs) containing 23 adhesion domains which couple adhesion to intracellular signaling. However, molecular-level insight into CELSR function is sparsely available. We report the 4.3 Å cryo-EM reconstruction of the mCELSR1 ECR with 13 domains resolved in the structure. These domains form a compact module mediated by interdomain interactions with contact between the N- and C-terminal domains. We show the mCELSR1 ECR forms an extended species in the presence of Ca 2+ , which we propose represents the antiparallel cadherin repeat dimer. Using assays for adhesion and G protein-coupling, we assign the N-terminal CADH1-8 module as necessary for cell adhesion and we show the C-terminal CAHD9-GAIN module regulates signaling. Our work provides important molecular context to the literature on CELSR function and opens the door towards further mechanistic studies.
Collapse
|