1
|
Cresswell AK, Haller-Bull V, Gonzalez-Rivero M, Gilmour JP, Bozec YM, Barneche DR, Robson B, Anthony KRN, Doropoulos C, Roelfsema C, Lyons M, Mumby PJ, Condie S, Lago V, Ortiz JC. Capturing fine-scale coral dynamics with a metacommunity modelling framework. Sci Rep 2024; 14:24733. [PMID: 39433778 PMCID: PMC11494194 DOI: 10.1038/s41598-024-73464-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Natural systems exhibit high spatial variability across multiple scales. Models that can capture ecosystem dynamics across space and time by explicitly incorporating major biological mechanisms are crucial, both for management and for ecological insight. In the case of coral reef systems, much focus has been on modelling variability between reefs, despite substantial variability also existing within reefs. We developed C~scape, a coral metacommunity modelling framework that integrates the demography of corals with population-level responses to physical and environmental spatial layers, to facilitate spatiotemporal predictions of coral dynamics across reefs at fine (100s of metres to kilometres) scales. We used satellite-derived habitat maps to modulate community growth spatially, as a proxy for the many interacting physical and environmental factors-e.g., depth, light, wave exposure, temperature, and substrate type-that drive within-reef variability in coral demography. With a case study from the Great Barrier Reef, we demonstrate the model's capability for producing hindcasts of coral cover dynamics and show that overlooking within-reef variability may lead to misleading conclusions about metacommunity dynamics. C~scape provides a valuable framework for exploring a range of management and restoration scenarios at relevant spatial scales.
Collapse
Affiliation(s)
- Anna K Cresswell
- Australian Institute of Marine Science, Perth, WA, 6009, Australia.
- Oceans Institute, University of Western Australia, Perth, WA, 6009, Australia.
| | | | | | - James P Gilmour
- Australian Institute of Marine Science, Perth, WA, 6009, Australia
- Oceans Institute, University of Western Australia, Perth, WA, 6009, Australia
| | - Yves-Marie Bozec
- School of the Environment, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Diego R Barneche
- Australian Institute of Marine Science, Perth, WA, 6009, Australia
- Oceans Institute, University of Western Australia, Perth, WA, 6009, Australia
| | - Barbara Robson
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
- AIMS@JCU , Townsville, Queensland, Australia
| | | | | | - Chris Roelfsema
- School of the Environment, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mitchell Lyons
- University of New South Wales, Sydney, NSW, 2052, Australia
| | - Peter J Mumby
- School of the Environment, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | - Veronique Lago
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
- University of New South Wales, Sydney, NSW, 2052, Australia
| | - Juan-Carlos Ortiz
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
| |
Collapse
|
2
|
Matthews SA, Williamson DH, Beeden R, Emslie MJ, Abom RTM, Beard D, Bonin M, Bray P, Campili AR, Ceccarelli DM, Fernandes L, Fletcher CS, Godoy D, Hemingson CR, Jonker MJ, Lang BJ, Morris S, Mosquera E, Phillips GL, Sinclair-Taylor TH, Taylor S, Tracey D, Wilmes JC, Quincey R. Protecting Great Barrier Reef resilience through effective management of crown-of-thorns starfish outbreaks. PLoS One 2024; 19:e0298073. [PMID: 38656948 PMCID: PMC11042723 DOI: 10.1371/journal.pone.0298073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/18/2024] [Indexed: 04/26/2024] Open
Abstract
Resilience-based management is essential to protect ecosystems in the Anthropocene. Unlike large-scale climate threats to Great Barrier Reef (GBR) corals, outbreaks of coral-eating crown-of-thorns starfish (COTS; Acanthaster cf. solaris) can be directly managed through targeted culling. Here, we evaluate the outcomes of a decade of strategic COTS management in suppressing outbreaks and protecting corals during the 4th COTS outbreak wave at reef and regional scales (sectors). We compare COTS density and coral cover dynamics during the 3rd and 4th outbreak waves. During the 4th outbreak wave, sectors that received limited to no culling had sustained COTS outbreaks causing significant coral losses. In contrast, in sectors that received timely and sufficient cull effort, coral cover increased substantially, and outbreaks were suppressed with COTS densities up to six-fold lower than in the 3rd outbreak wave. In the Townsville sector for example, despite exposure to comparable disturbance regimes during the 4th outbreak wave, effective outbreak suppression coincided with relative increases in sector-wide coral cover (44%), versus significant coral cover declines (37%) during the 3rd outbreak wave. Importantly, these estimated increases span entire sectors, not just reefs with active COTS control. Outbreaking reefs with higher levels of culling had net increases in coral cover, while the rate of coral loss was more than halved on reefs with lower levels of cull effort. Our results also indicate that outbreak wave progression to adjoining sectors has been delayed, probably via suppression of COTS larval supply. Our findings provide compelling evidence that proactive, targeted, and sustained COTS management can effectively suppress COTS outbreaks and deliver coral growth and recovery benefits at reef and sector-wide scales. The clear coral protection outcomes demonstrate the value of targeted manual culling as both a scalable intervention to mitigate COTS outbreaks, and a potent resilience-based management tool to "buy time" for coral reefs, protecting reef ecosystem functions and biodiversity as the climate changes.
Collapse
Affiliation(s)
| | | | - Roger Beeden
- Great Barrier Reef Marine Park Authority, Townsville, QLD, Australia
| | | | | | | | - Mary Bonin
- Great Barrier Reef Foundation, Brisbane City, QLD, Australia
| | - Peran Bray
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | | | | | - Leanne Fernandes
- Great Barrier Reef Marine Park Authority, Townsville, QLD, Australia
| | | | - Dan Godoy
- Blue Planet Marine, Canberra, ACT, Australia
| | - Christopher R. Hemingson
- The University of Texas at Austin, Marine Science Institute, Port Aransas, Texas, United States of America
| | | | - Bethan J. Lang
- Great Barrier Reef Marine Park Authority, Townsville, QLD, Australia
- The University of New South Wales, Sydney, NSW, Australia
- ARC Centre of Excellence, James Cook University, Townsville, QLD, Australia
| | | | | | - Gareth L. Phillips
- Association of Marine Park Tourism Operators Ltd, Cairns, QLD, Australia
| | | | - Sascha Taylor
- Queensland Department of Environment and Science, Queensland Parks and Wildlife Service and Partnerships (Marine Parks), Brisbane, Queensland, Australia
| | - Dieter Tracey
- Great Barrier Reef Marine Park Authority, Townsville, QLD, Australia
| | | | - Richard Quincey
- Great Barrier Reef Marine Park Authority, Townsville, QLD, Australia
| |
Collapse
|
3
|
Sommer B, Hodge JM, Lachs L, Cant J, Pandolfi JM, Beger M. Decadal demographic shifts and size-dependent disturbance responses of corals in a subtropical warming hotspot. Sci Rep 2024; 14:6327. [PMID: 38491152 PMCID: PMC10943097 DOI: 10.1038/s41598-024-56890-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
Long-term demographic studies at biogeographic transition zones can elucidate how body size mediates disturbance responses. Focusing on subtropical reefs in eastern Australia, we examine trends in the size-structure of corals with contrasting life-histories and zoogeographies surrounding the 2016 coral bleaching event (2010-2019) to determine their resilience and recovery capacity. We document demographic shifts, with disproportionate declines in the number of small corals and long-term persistence of larger corals. The incidence of bleaching (Pocillopora, Turbinaria) and partial mortality (Acropora, Pocillopora) increased with coral size, and bleached corals had greater risk of partial mortality. While endemic Pocillopora experienced marked declines, decadal stability of Turbinaria despite bleaching, coupled with abundance increase and bleaching resistance in Acropora indicate remarkable resilience of these taxa in the subtropics. Declines in the number of small corals and variable associations with environmental drivers indicate bottlenecks to recovery mediated by inhibitory effects of thermal extremes for Pocillopora (heat stress) and Acropora (heat and cold stress), and stimulatory effects of chlorophyll-a for Turbinaria. Although our study reveals signs of resilience, it foreshadows the vulnerability of subtropical corals to changing disturbance regimes that include marine heatwaves. Disparity in population dynamics suggest that subtropical reefs are ecologically distinct from tropical coral reefs.
Collapse
Affiliation(s)
- Brigitte Sommer
- School of Life and Environmental Science, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Jessica M Hodge
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Maldives Underwater Initiative, Six Senses Laamu, Olhuveli Island, Laamu Atoll, Republic of Maldives
| | - Liam Lachs
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - James Cant
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Centre for Biological Diversity, University of St Andrews, St Andrews, KY16 9TH, Scotland, UK
| | - John M Pandolfi
- School of the Environment, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
4
|
Leung SK, Mumby PJ. Mapping the susceptibility of reefs to rubble accumulation across the Great Barrier Reef. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:211. [PMID: 38285268 PMCID: PMC10824869 DOI: 10.1007/s10661-024-12344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024]
Abstract
Disturbance-induced rubble accumulations are described as "killing fields" on coral reefs as coral recruits suffer high post-settlement mortality, creating a bottleneck for reef recovery. The increasing frequency of coral bleaching events, that can generate rubble once coral dies, has heightened concerns that rubble beds will become more widespread and persistent. But we currently lack the tools to predict where rubble is most likely to accumulate. Here, we developed a modelling framework to identify areas that are likely to accumulate rubble on forereef slopes across the Great Barrier Reef. The algorithm uses new high-resolution bathymetric and geomorphic datasets from satellite remote sensing. We found that 47 km of reef slope (3% of the entire reef surveyed), primarily in the southern region, could potentially reach 50% rubble cover. Despite being statistically significant (p < 0.001), the effects of depth and aspect on rubble cover were minimal, with a 0.2% difference in rubble cover between deeper and shallower regions, as well as a maximum difference of 0.8% among slopes facing various directions. Therefore, we conclude that the effects of depth and aspect were insufficient to influence ecological processes such as larval recruitment and recovery in different coral communities. Maps of potential rubble accumulation can be used to prioritise surveys and potential restoration, particularly after major disturbances have occurred.
Collapse
Affiliation(s)
- Shu Kiu Leung
- Marine Spatial Ecology Lab, School of the Environment, University of Queensland, Level 5, Goddard Building, St. Lucia, QLD, Brisbane, 4072, Australia.
| | - Peter J Mumby
- Marine Spatial Ecology Lab, School of the Environment, University of Queensland, Level 5, Goddard Building, St. Lucia, QLD, Brisbane, 4072, Australia
| |
Collapse
|
5
|
Edmunds PJ. Coral recruitment: patterns and processes determining the dynamics of coral populations. Biol Rev Camb Philos Soc 2023; 98:1862-1886. [PMID: 37340617 DOI: 10.1111/brv.12987] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023]
Abstract
Coral recruitment describes the addition of new individuals to populations, and it is one of the most fundamental demographic processes contributing to population size. As many coral reefs around the world have experienced large declines in coral cover and abundance, there has been great interest in understanding the factors causing coral recruitment to vary and the conditions under which it can support community resilience. While progress in these areas is being facilitated by technological and scientific advances, one of the best tools to quantify recruitment remains the humble settlement tile, variants of which have been in use for over a century. Here I review the biology and ecology of coral recruits and the recruitment process, largely as resolved through the use of settlement tiles, by: (i) defining how the terms 'recruit' and 'recruitment' have been used, and explaining why loose terminology has impeded scientific advancement; (ii) describing how coral recruitment is measured and why settlement tiles have value for this purpose; (iii) summarizing previous efforts to review quantitative analyses of coral recruitment; (iv) describing advances from hypothesis-driven studies in determining how refuges, seawater flow, and grazers can modulate coral recruitment; (v) reviewing the biology of small corals (i.e. recruits) to understand better how they respond to environmental conditions; and (vi) updating a quantitative compilation of coral recruitment studies extending from 1974 to present, thus revealing long-term global declines in density of recruits, juxtaposed with apparent resilience to coral bleaching. Finally, I review future directions in the study of coral recruitment, and highlight the need to expand studies to deliver taxonomic resolution, and explain why time series of settlement tile deployments are likely to remain pivotal in quantifying coral recruitment.
Collapse
Affiliation(s)
- Peter J Edmunds
- Department of Biology, California State University, 18111 Nordhoff Street, Northridge, CA, 91330-8303, USA
| |
Collapse
|
6
|
Bay LK, Gilmour J, Muir B, Hardisty PE. Management approaches to conserve Australia's marine ecosystem under climate change. Science 2023; 381:631-636. [PMID: 37561873 DOI: 10.1126/science.adi3023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/23/2023] [Indexed: 08/12/2023]
Abstract
Australia's coastal marine ecosystems have a deep cultural significance to Indigenous Australians, include multiple World Heritage sites, and support the nation's rapidly growing blue economy. Yet, increasing local pressures and global climate change are expected to undermine the biological, social, cultural, and economic value of these ecosystems within a human generation. Mitigating the causes of climate change is the most urgent action to secure their future; however, conventional and new management actions will play roles in preserving ecosystem function and value until that is achieved. This includes strategies codeveloped with Indigenous Australians that are guided by traditional ecological knowledge and a modeling and decision support framework. We provide examples of developments at one of Australia's most iconic ecosystems, the Great Barrier Reef, where recent, large block funding supports research, governance, and engagement to accelerate the development of tools for management under climate change.
Collapse
Affiliation(s)
- Line K Bay
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - James Gilmour
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Bob Muir
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Paul E Hardisty
- Australian Institute of Marine Science, Townsville, QLD, Australia
| |
Collapse
|
7
|
González-Barrios FJ, Estrada-Saldívar N, Pérez-Cervantes E, Secaira-Fajardo F, Álvarez-Filip L. Legacy effects of anthropogenic disturbances modulate dynamics in the world's coral reefs. GLOBAL CHANGE BIOLOGY 2023; 29:3285-3303. [PMID: 36932916 DOI: 10.1111/gcb.16686] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 05/16/2023]
Abstract
Rapidly changing conditions alter disturbance patterns, highlighting the need to better understand how the transition from pulse disturbances to more persistent stress will impact ecosystem dynamics. We conducted a global analysis of the impacts of 11 types of disturbances on reef integrity using the rate of change of coral cover as a measure of damage. Then, we evaluated how the magnitude of the damage due to thermal stress, cyclones, and diseases varied among tropical Atlantic and Indo-Pacific reefs and whether the cumulative impact of thermal stress and cyclones was able to modulate the responses of reefs to future events. We found that reef damage largely depends on the condition of a reef before a disturbance, disturbance intensity, and biogeographic region, regardless of the type of disturbance. Changes in coral cover after thermal stress events were largely influenced by the cumulative stress of past disturbances and did not depend on disturbance intensity or initial coral cover, which suggests that an ecological memory is present within coral communities. In contrast, the effect of cyclones (and likely other physical impacts) was primarily modulated by the initial reef condition and did not appear to be influenced by previous impacts. Our findings also underscore that coral reefs can recover if stressful conditions decrease, yet the lack of action to reduce anthropogenic impacts and greenhouse gas emissions continues to trigger reef degradation. We uphold that evidence-based strategies can guide managers to make better decisions to prepare for future disturbances.
Collapse
Affiliation(s)
- F Javier González-Barrios
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Nuria Estrada-Saldívar
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Esmeralda Pérez-Cervantes
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | | | - Lorenzo Álvarez-Filip
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| |
Collapse
|
8
|
Sharma S, Sharma V, Chatterjee S. Contribution of plastic and microplastic to global climate change and their conjoining impacts on the environment - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162627. [PMID: 36889403 DOI: 10.1016/j.scitotenv.2023.162627] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/05/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Plastics are fossil fuel-derived products. The emissions of greenhouse gases (GHG) during different processes involved in the lifecycle of plastic-related products are a significant threat to the environment as it contributes to global temperature rise. By 2050, a high volume of plastic production will be responsible for up to 13 % of our planet's total carbon budget. The global emissions of GHG and their persistence in the environment have depleted Earth's residual carbon resources and have generated an alarming feedback loop. Each year at least 8 million tonnes of discarded plastics are entering our oceans, creating concerns regarding plastic toxicity on marine biota as they end up in the food chain and ultimately affect human health. The unsuccessful management of plastic waste and its presence on the riverbanks, coastlines, and landscapes leads to the emission of a higher percentage of GHG in the atmosphere. The persistence of microplastics is also a significant threat to the fragile and extreme ecosystem containing diverse life forms with low genetic variation, making them vulnerable to climatic change. In this review, we have categorically discussed the contribution of plastic and plastic waste to global climate change covering the current plastic production and future trends, the types of plastics and plastic materials used globally, plastic lifecycle and GHG emission, and how microplastics become a major threat to ocean carbon sequestration and marine health. The conjoining impact of plastic pollution and climate change on the environment and human health has also been discussed in detail. In the end, we have also discussed some strategies to reduce the climate impact of plastics.
Collapse
Affiliation(s)
- Shivika Sharma
- Biochemical Conversion Division, Sardar Swaran Singh, National Institute of Bioenergy, Kapurthala, Punjab, India
| | - Vikas Sharma
- Department of Molecular Biology & Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-Jalandhar, India
| | - Subhankar Chatterjee
- Bioremediation and Metabolomics Research Group, Dept. of Ecology & Environmental Sciences, School of Life Sciences, Pondicherry University, R.V. Nagar, Kalapet, Puducherry 605 014, India.
| |
Collapse
|
9
|
Hadi TA, Utama RS, Arfianti T. Species richness and the dynamics of coral cover in Bangka Belitung Islands, Indonesia. PeerJ 2023; 11:e14625. [PMID: 36860768 PMCID: PMC9969856 DOI: 10.7717/peerj.14625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 12/02/2022] [Indexed: 03/03/2023] Open
Abstract
Pressures on the world's tropical coral reefs that threaten their existence have been reported worldwide due to many stressors. Loss of coral cover and declines in coral richness are two of the most common changes often reported in coral reefs. However, a precise estimate of species richness and the coral cover dynamics for most Indonesian regions, particularly in the Bangka Belitung Islands, have been poorly documented. Annual monitoring data from 2015 to 2018 at 11 fixed sites in the Bangka Belitung Islands using the photo quadrat transect method identified 342 coral species from 63 genera. Of these, 231 species (>65%) were rare or uncommon, occurring in <40% of all sites. The species richness of hard corals was categorized as moderate compared to other studies in Indonesia, averaging 53 species across sites and years, and there was an increasing number of sites with high species richness. The percent cover of live and dead hard corals was greater than other benthic and substrate categories in all sites; revealing a live-dead hard corals pattern with dead coral cover averaged 12% higher than live hard coral across the years, but they did not show a significant difference (P > 0.05). There was a slightly increasing trend in hard coral cover in ten out of 11 sites in 2018, indicating the reefs are in a recovery process. The results support the need to identify recovering or stable areas despite apparent anthropogenic and natural variations recently. This vital information is essential for early detection and preparation for management strategies in the current context of climate change and for ensuring future coral reef survival.
Collapse
Affiliation(s)
- Tri Aryono Hadi
- Research Center for Oceanography - National Research and Innovation Agency, North Jakarta, Jakarta, Indonesia
| | - Rizkie Satriya Utama
- Research Center for Oceanography - National Research and Innovation Agency, North Jakarta, Jakarta, Indonesia
| | - Tri Arfianti
- Research Center for Biosystematics and Evolution - National Research and Innovation Agency, Cibinong, West Java, Indonesia
| |
Collapse
|
10
|
Álvarez-Noriega M, Marrable I, Noonan SHC, Barneche DR, Ortiz JC. Highly conserved thermal performance strategies may limit adaptive potential in corals. Proc Biol Sci 2023; 290:20221703. [PMID: 36629109 PMCID: PMC9832572 DOI: 10.1098/rspb.2022.1703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Increasing seawater temperatures are expected to have profound consequences for reef-building corals' physiology. Understanding how demography changes in response to chronic exposure to warming will help forecast how coral communities will respond to climate change. Here, we measure growth rates of coral fragments of four common species, while exposing them to temperatures ranging from 19°C to 31°C for one month to calibrate their thermal-performance curves (TPCs). Our results show that, while there are contrasting differences between species, the shape of the TPCs was remarkably consistent among individuals of the same species. The low variation in thermal sensitivity within species may imply a reduced capacity for rapid adaptive responses to future changes in thermal regimes. Additionally, interspecific differences in thermal responses show a negative relationship between maximum growth and thermal optima, contradicting expectations derived from the classic 'warmer-is-better' hypothesis. Among species, there was a trade-off between current and future growth, whereby most species perform well under current thermal regimes but are susceptible to future increases in temperature. Increases in water temperature with climate change are likely to reduce growth rates, further hampering future coral reef recovery rates and potentially altering community composition.
Collapse
Affiliation(s)
| | - Isabella Marrable
- Australian Institute of Marine Science, PMB 3, Townsville MC, Queensland 4810, Australia
| | - Sam H. C. Noonan
- Australian Institute of Marine Science, PMB 3, Townsville MC, Queensland 4810, Australia
| | - Diego R. Barneche
- Australian Institute of Marine Science, Crawley, Western Australia 6009, Australia
- Oceans Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Juan C. Ortiz
- Australian Institute of Marine Science, PMB 3, Townsville MC, Queensland 4810, Australia
| |
Collapse
|
11
|
Untapped policy avenues to protect coral reef ecosystems. Proc Natl Acad Sci U S A 2022; 119:e2117562119. [PMID: 36459644 PMCID: PMC9894228 DOI: 10.1073/pnas.2117562119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Coral reefs are experiencing severe decline, and urgent action is required at local and global scales to curb ecosystem loss. Establishing new regulations to protect corals, however, can be time consuming and costly, and it is therefore necessary to leverage existing legal instruments, such as policies originally designed to address terrestrial rather than marine activities, to prevent coral reef degradation. Focusing on the United States, but drawing on successful examples worldwide, we present actionable pathways to increase coral protections under legislation that was originally designed to advance clean freshwater, safe drinking water, and emergency management. We identify specific legal policies and procedures (e.g., industrial permit limits, nonpoint source management incentives, and floodplain restoration programs) that can curb coral reef pollution and can be extended to other countries with similar regulations in place. Coral reef practitioners should consider a broad array of currently underused, actionable, and intersecting environmental policies that can be applied to mitigate coral stress.
Collapse
|
12
|
Ostrowski A, Connolly RM, Brown CJ, Sievers M. Fluctuating fortunes: Stressor synchronicity and fluctuating intensity influence biological impacts. Ecol Lett 2022; 25:2611-2623. [PMID: 36217804 PMCID: PMC9828260 DOI: 10.1111/ele.14120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/22/2022] [Accepted: 09/07/2022] [Indexed: 01/12/2023]
Abstract
Ecosystems remain under enormous pressure from multiple anthropogenic stressors. Manipulative experiments evaluating stressor interactions and impacts mostly apply stressors under static conditions without considering how variable stressor intensity (i.e. fluctuations) and synchronicity (i.e. timing of fluctuations) affect biological responses. We ask how variable stressor intensity and synchronicity, and interaction type, can influence how multiple stressors affect seagrass. At the highest intensities, fluctuating stressors applied asynchronously reduced seagrass biomass 36% more than for static stressors, yet no such difference occurred for photosynthetic capacity. Testing three separate hypotheses to predict underlying drivers of differences in biological responses highlighted alternative modes of action dependent on how stressors fluctuated over time. Given that environmental conditions are constantly changing, assessing static stressors may lead to inaccurate predictions of cumulative effects. Translating multiple stressor experiments to the real world, therefore, requires considering variability in stressor intensity and the synchronicity of fluctuations.
Collapse
Affiliation(s)
- Andria Ostrowski
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and ScienceGriffith UniversityGold CoastQueenslandAustralia
| | - Rod M. Connolly
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and ScienceGriffith UniversityGold CoastQueenslandAustralia
| | - Christopher J. Brown
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and ScienceGriffith UniversityGold CoastQueenslandAustralia
| | - Michael Sievers
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and ScienceGriffith UniversityGold CoastQueenslandAustralia
| |
Collapse
|
13
|
Meyer ALS, Bentley J, Odoulami RC, Pigot AL, Trisos CH. Risks to biodiversity from temperature overshoot pathways. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210394. [PMID: 35757884 PMCID: PMC9234811 DOI: 10.1098/rstb.2021.0394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/13/2022] [Indexed: 12/15/2022] Open
Abstract
Temperature overshoot pathways entail exceeding a specified global warming level (e.g. 1.5°C or 2°C) followed by a decline in warming, achieved through anthropogenically enhanced CO2 removal from the atmosphere. However, risks to biodiversity from temperature overshoot pathways are poorly described. Here, we explore biodiversity risks from overshoot by synthesizing existing knowledge and quantifying the dynamics of exposure and de-exposure to potentially dangerous temperatures for more than 30 000 species for a 2°C overshoot scenario. Our results suggest that climate risk to biodiversity from temperature overshoot pathways will arrive suddenly, but decrease only gradually. Peak exposure for biodiversity occurs around the same time as peak global warming, but the rate of de-exposure lags behind the temperature decline. While the global overshoot period lasts around 60 years, the duration of elevated exposure of marine and terrestrial biodiversity is substantially longer (around 100 and 130 years, respectively), with some ecological communities never returning to pre-overshoot exposure levels. Key biodiversity impacts may be irreversible and reliance on widespread CO2 removal to reduce warming poses additional risks to biodiversity through altered land use. Avoiding any temperature overshoot must be a priority for reducing biodiversity risks from climate change, followed by limiting the magnitude and duration of any overshoot. More integrated models that include direct and indirect impacts from overshoot are needed to inform policy. This article is part of the theme issue 'Ecological complexity and the biosphere: the next 30 years'.
Collapse
Affiliation(s)
- Andreas L. S. Meyer
- African Climate and Development Initiative, University of Cape Town, Cape Town 7700, South Africa
| | - Joanne Bentley
- African Climate and Development Initiative, University of Cape Town, Cape Town 7700, South Africa
| | - Romaric C. Odoulami
- African Climate and Development Initiative, University of Cape Town, Cape Town 7700, South Africa
| | - Alex L. Pigot
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Christopher H. Trisos
- African Climate and Development Initiative, University of Cape Town, Cape Town 7700, South Africa
- Centre for Statistics in Ecology, Environment and Conservation, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
14
|
Devlin MJ. Coral reefs: The good and not so good news with future bright and dark spots for coral reefs through climate change. GLOBAL CHANGE BIOLOGY 2022; 28:4506-4508. [PMID: 35593317 PMCID: PMC9327719 DOI: 10.1111/gcb.16271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 06/12/2023]
Abstract
COMMENTARY ON Present and future bright and dark spots for coral reefs through climate change. This is a commentary on Sully et al., 2022, https://doi.org/10.1111/gcb.16083
Collapse
|
15
|
van Woesik R, Shlesinger T, Grottoli AG, Toonen RJ, Vega Thurber R, Warner ME, Marie Hulver A, Chapron L, McLachlan RH, Albright R, Crandall E, DeCarlo TM, Donovan MK, Eirin‐Lopez J, Harrison HB, Heron SF, Huang D, Humanes A, Krueger T, Madin JS, Manzello D, McManus LC, Matz M, Muller EM, Rodriguez‐Lanetty M, Vega‐Rodriguez M, Voolstra CR, Zaneveld J. Coral-bleaching responses to climate change across biological scales. GLOBAL CHANGE BIOLOGY 2022; 28:4229-4250. [PMID: 35475552 PMCID: PMC9545801 DOI: 10.1111/gcb.16192] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 05/26/2023]
Abstract
The global impacts of climate change are evident in every marine ecosystem. On coral reefs, mass coral bleaching and mortality have emerged as ubiquitous responses to ocean warming, yet one of the greatest challenges of this epiphenomenon is linking information across scientific disciplines and spatial and temporal scales. Here we review some of the seminal and recent coral-bleaching discoveries from an ecological, physiological, and molecular perspective. We also evaluate which data and processes can improve predictive models and provide a conceptual framework that integrates measurements across biological scales. Taking an integrative approach across biological and spatial scales, using for example hierarchical models to estimate major coral-reef processes, will not only rapidly advance coral-reef science but will also provide necessary information to guide decision-making and conservation efforts. To conserve reefs, we encourage implementing mesoscale sanctuaries (thousands of km2 ) that transcend national boundaries. Such networks of protected reefs will provide reef connectivity, through larval dispersal that transverse thermal environments, and genotypic repositories that may become essential units of selection for environmentally diverse locations. Together, multinational networks may be the best chance corals have to persist through climate change, while humanity struggles to reduce emissions of greenhouse gases to net zero.
Collapse
Affiliation(s)
- Robert van Woesik
- Institute for Global EcologyFlorida Institute of TechnologyMelbourneFloridaUSA
| | - Tom Shlesinger
- Institute for Global EcologyFlorida Institute of TechnologyMelbourneFloridaUSA
| | | | - Rob J. Toonen
- Hawai'i Institute of Marine Biology, KāneʻoheUniversity of Hawaiʻi at MānoaHonoluluHawaiiUSA
| | | | - Mark E. Warner
- School of Marine Science and PolicyUniversity of DelawareLewesDelawareUSA
| | - Ann Marie Hulver
- School of Earth SciencesThe Ohio State UniversityColumbusOhioUSA
| | - Leila Chapron
- School of Earth SciencesThe Ohio State UniversityColumbusOhioUSA
| | - Rowan H. McLachlan
- School of Earth SciencesThe Ohio State UniversityColumbusOhioUSA
- Department of MicrobiologyOregon State UniversityCorvallisOregonUSA
| | | | - Eric Crandall
- Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | | | - Mary K. Donovan
- Center for Global Discovery and Conservation Science and School of Geographical Sciences and Urban PlanningArizona State UniversityTempeArizonaUSA
| | - Jose Eirin‐Lopez
- Institute of EnvironmentFlorida International UniversityMiamiFloridaUSA
| | - Hugo B. Harrison
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| | - Scott F. Heron
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Physics and Marine Geophysical LaboratoryJames Cook UniversityTownsvilleQueenslandAustralia
| | - Danwei Huang
- Department of Biological SciencesNational University of SingaporeSingapore
| | - Adriana Humanes
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Thomas Krueger
- Department of BiochemistryUniversity of CambridgeCambridgeUnited Kingdom
| | - Joshua S. Madin
- Hawai'i Institute of Marine Biology, KāneʻoheUniversity of Hawaiʻi at MānoaHonoluluHawaiiUSA
| | - Derek Manzello
- Center for Satellite Applications and ResearchSatellite Oceanography & Climate DivisionNational Oceanic and Atmospheric AdministrationCollege ParkMarylandUSA
| | - Lisa C. McManus
- Hawai'i Institute of Marine Biology, KāneʻoheUniversity of Hawaiʻi at MānoaHonoluluHawaiiUSA
| | - Mikhail Matz
- Department of Integrative BiologyUniversity of Texas at AustinAustinTexasUSA
| | | | | | | | | | - Jesse Zaneveld
- Division of Biological SciencesUniversity of WashingtonBothellWashingtonUSA
| |
Collapse
|
16
|
Tsai CH, Sweatman HPA, Thibaut LM, Connolly SR. Volatility in coral cover erodes niche structure, but not diversity, in reef fish assemblages. SCIENCE ADVANCES 2022; 8:eabm6858. [PMID: 35704577 PMCID: PMC9200288 DOI: 10.1126/sciadv.abm6858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 05/02/2022] [Indexed: 05/26/2023]
Abstract
The world's coral reefs are experiencing increasing volatility in coral cover, largely because of anthropogenic environmental change, highlighting the need to understand how such volatility will influence the structure and dynamics of reef assemblages. These changes may influence not only richness or evenness but also the temporal stability of species' relative abundances (temporal beta-diversity). Here, we analyzed reef fish assemblage time series from the Great Barrier Reef to show that, overall, 75% of the variance in abundance among species was attributable to persistent differences in species' long-term mean abundances. However, the relative importance of stochastic fluctuations in abundance was higher on reefs that experienced greater volatility in coral cover, whereas it did not vary with drivers of alpha-diversity. These findings imply that increased coral cover volatility decreases temporal stability in relative abundances of fishes, a transformation that is not detectable from static measures of biodiversity.
Collapse
Affiliation(s)
- Cheng-Han Tsai
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Australian Institute of Marine Science, Townsville MC, QLD 4810, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, Townsville, QLD 4811, Australia
| | | | - Loïc M. Thibaut
- School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, NSW, Australia
- Centre for Population Genomics, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Sean R. Connolly
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, Townsville, QLD 4811, Australia
- Smithsonian Tropical Research Institute, Panama, Republic of Panama
| |
Collapse
|
17
|
Ford HV, Jones NH, Davies AJ, Godley BJ, Jambeck JR, Napper IE, Suckling CC, Williams GJ, Woodall LC, Koldewey HJ. The fundamental links between climate change and marine plastic pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150392. [PMID: 34583073 DOI: 10.1016/j.scitotenv.2021.150392] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 05/25/2023]
Abstract
Plastic pollution and climate change have commonly been treated as two separate issues and sometimes are even seen as competing. Here we present an alternative view that these two issues are fundamentally linked. Primarily, we explore how plastic contributes to greenhouse gas (GHG) emissions from the beginning to the end of its life cycle. Secondly, we show that more extreme weather and floods associated with climate change, will exacerbate the spread of plastic in the natural environment. Finally, both issues occur throughout the marine environment, and we show that ecosystems and species can be particularly vulnerable to both, such as coral reefs that face disease spread through plastic pollution and climate-driven increased global bleaching events. A Web of Science search showed climate change and plastic pollution studies in the ocean are often siloed, with only 0.4% of the articles examining both stressors simultaneously. We also identified a lack of regional and industry-specific life cycle analysis data for comparisons in relative GHG contributions by materials and products. Overall, we suggest that rather than debate over the relative importance of climate change or marine plastic pollution, a more productive course would be to determine the linking factors between the two and identify solutions to combat both crises.
Collapse
Affiliation(s)
- Helen V Ford
- School of Ocean Sciences, Bangor University, Anglesey LL59 5AB, UK.
| | - Nia H Jones
- School of Ocean Sciences, Bangor University, Anglesey LL59 5AB, UK
| | - Andrew J Davies
- Biological Sciences, University of Rhode Island, 120 Flagg Road University of Rhode Island Kingston, RI 02881, USA
| | - Brendan J Godley
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Jenna R Jambeck
- College of Engineering, University of Georgia, GA 30602, Athens, USA
| | - Imogen E Napper
- International Marine Litter Research Unit, School of Biological and Marine Sciences University of Plymouth, Plymouth PL4 8AA, UK
| | - Coleen C Suckling
- Fisheries, Animal and Veterinary Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | | | - Lucy C Woodall
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK; Nekton, Science Park, Begbroke, Oxford, OX5 1PF, UK
| | - Heather J Koldewey
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, TR10 9FE, UK; Zoological Society of London, Regent's Park, London, UK
| |
Collapse
|
18
|
Baumann JH, Zhao L, Stier AC, Bruno JF. Remoteness does not enhance coral reef resilience. GLOBAL CHANGE BIOLOGY 2022; 28:417-428. [PMID: 34668280 PMCID: PMC8671335 DOI: 10.1111/gcb.15904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 05/02/2023]
Abstract
Remote coral reefs are thought to be more resilient to climate change due to their isolation from local stressors like fishing and pollution. We tested this hypothesis by measuring the relationship between local human influence and coral community resilience. Surprisingly, we found no relationship between human influence and resistance to disturbance and some evidence that areas with greater human development may recover from disturbance faster than their more isolated counterparts. Our results suggest remote coral reefs are imperiled by climate change, like so many other geographically isolated ecosystems, and are unlikely to serve as effective biodiversity arks. Only drastic and rapid cuts in greenhouse gas emissions will ensure coral survival. Our results also indicate that some reefs close to large human populations were relatively resilient. Focusing research and conservation resources on these more accessible locations has the potential to provide new insights and maximize conservation outcomes.
Collapse
Affiliation(s)
- Justin H. Baumann
- The Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3280 USA
- Department of Marine Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3300 USA
- Biology Department, Bowdoin College, Brunswick, Maine, 04011 USA
- Correspondence to: or
| | - Lily Zhao
- Department of Ecology, Evolution, and Marine Biology, The University of California Santa Barbara, Santa Barbara CA, 93106-9620, USA
| | - Adrian C. Stier
- Department of Ecology, Evolution, and Marine Biology, The University of California Santa Barbara, Santa Barbara CA, 93106-9620, USA
| | - John F. Bruno
- The Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3280 USA
- Correspondence to: or
| |
Collapse
|
19
|
Bozec Y, Hock K, Mason RAB, Baird ME, Castro‐Sanguino C, Condie SA, Puotinen M, Thompson A, Mumby PJ. Cumulative impacts across Australia’s Great Barrier Reef: a mechanistic evaluation. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yves‐Marie Bozec
- Marine Spatial Ecology Lab School of Biological Sciences & ARC Centre of Excellence for Coral Reef Studies University of Queensland St Lucia Queensland 4072 Australia
| | - Karlo Hock
- Marine Spatial Ecology Lab School of Biological Sciences & ARC Centre of Excellence for Coral Reef Studies University of Queensland St Lucia Queensland 4072 Australia
| | - Robert A. B. Mason
- Marine Spatial Ecology Lab School of Biological Sciences & ARC Centre of Excellence for Coral Reef Studies University of Queensland St Lucia Queensland 4072 Australia
| | - Mark E. Baird
- CSIRO Oceans and Atmosphere Hobart Tasmania 7001 Australia
| | - Carolina Castro‐Sanguino
- Marine Spatial Ecology Lab School of Biological Sciences & ARC Centre of Excellence for Coral Reef Studies University of Queensland St Lucia Queensland 4072 Australia
| | | | - Marji Puotinen
- Australian Institute of Marine Science & Indian Ocean Marine Research Centre Crawley Western Australia 6009 Australia
| | - Angus Thompson
- Australian Institute of Marine Science Townsville Queensland 4810 Australia
| | - Peter J. Mumby
- Marine Spatial Ecology Lab School of Biological Sciences & ARC Centre of Excellence for Coral Reef Studies University of Queensland St Lucia Queensland 4072 Australia
| |
Collapse
|
20
|
Kramer N, Tamir R, Ben‐Zvi O, Jacques SL, Loya Y, Wangpraseurt D. Efficient light‐harvesting of mesophotic corals is facilitated by coral optical traits. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Raz Tamir
- School of Zoology Tel‐Aviv University Tel Aviv Israel
- The Interuniversity Institute for Marine Sciences of Eilat Eilat Israel
| | - Or Ben‐Zvi
- School of Zoology Tel‐Aviv University Tel Aviv Israel
- The Interuniversity Institute for Marine Sciences of Eilat Eilat Israel
| | - Steven L. Jacques
- Department of Bioengineering University of Washington Seattle WA USA
| | - Yossi Loya
- School of Zoology Tel‐Aviv University Tel Aviv Israel
| | - Daniel Wangpraseurt
- Department of Nanoengineering University of California San Diego San Diego CA USA
- Department of Chemistry University of Cambridge Cambridge UK
| |
Collapse
|
21
|
Cheung MWM, Hock K, Skirving W, Mumby PJ. Cumulative bleaching undermines systemic resilience of the Great Barrier Reef. Curr Biol 2021; 31:5385-5392.e4. [PMID: 34739820 DOI: 10.1016/j.cub.2021.09.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/23/2021] [Accepted: 09/28/2021] [Indexed: 10/19/2022]
Abstract
Climate change and ENSO have triggered five mass coral bleaching events on Australia's Great Barrier Reef (GBR), three of which occurred in the last 5 years.1-5 Here, we explore the cumulative nature of recent impacts and how they fragment the reef's connectivity. The coverage and intensity of thermal stress have increased steadily over time. Cumulative bleaching in 2016, 2017, and 2020 is predicted to have reduced systemic larval supply by 26%, 50%, and 71%, respectively. Larval disruption is patchy and can guide interventions. The majority of severely bleached reefs (75%) are predicted to have experienced an 80%-100% loss of larval supply. Yet restoration would not be cost-effective in the 2% of such reefs (∼30) that still experience high larval supply. Managing such climate change impacts will benefit from emerging theory on the facilitation of genetic adaptation,6,7 which requires the existence of regions with predictably high or low thermal stress. We find that a third of reefs constitute warm spots that have consistently experienced bleaching stress. Moreover, 13% of the GBR are potential refugia that avoid significant warming more than expected by chance, with a modest proportion (14%) within highly protected areas. Coral connectivity is likely to become increasingly disrupted given the predicted escalation of climate-driven disturbances,8 but the existence of thermal refugia, potentially capable of delivering larvae to 58% of the GBR, may provide pockets of systemic resilience in the near-term. Theories of conservation planning for climate change will need to consider a shifting portfolio of thermal environments over time.
Collapse
Affiliation(s)
- Mandy W M Cheung
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia; Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Karlo Hock
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia; Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, QLD 4072, Australia
| | - William Skirving
- Coral Reef Watch, U.S. National Oceanic and Atmospheric Administration, College Park, MD 20740, USA; ReefSense Pty Ltd, Cranbrook, QLD 4814, Australia
| | - Peter J Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia; Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
22
|
Warne DJ, Crossman KA, Jin W, Mengersen K, Osborne K, Simpson MJ, Thompson AA, Wu P, Ortiz J. Identification of two‐phase recovery for interpretation of coral reef monitoring data. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.14039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David J. Warne
- School of Mathematical Sciences Faculty of Science Queensland University of Technology Brisbane Qld. Australia
- Centre for Data Science Queensland University of Technology Brisbane Qld. Australia
- Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers Brisbane Qld. Australia
| | | | - Wang Jin
- The Kirby Institute University of New South Wales Sydney New South Wales Australia
| | - Kerrie Mengersen
- School of Mathematical Sciences Faculty of Science Queensland University of Technology Brisbane Qld. Australia
- Centre for Data Science Queensland University of Technology Brisbane Qld. Australia
- Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers Brisbane Qld. Australia
| | - Kate Osborne
- Australian Institute of Marine Science Townsville Qld. Australia
| | - Matthew J. Simpson
- School of Mathematical Sciences Faculty of Science Queensland University of Technology Brisbane Qld. Australia
- Centre for Data Science Queensland University of Technology Brisbane Qld. Australia
- Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers Brisbane Qld. Australia
| | | | - Paul Wu
- School of Mathematical Sciences Faculty of Science Queensland University of Technology Brisbane Qld. Australia
- Centre for Data Science Queensland University of Technology Brisbane Qld. Australia
- Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers Brisbane Qld. Australia
| | - Juan‐C. Ortiz
- Australian Institute of Marine Science Townsville Qld. Australia
| |
Collapse
|
23
|
Lapointe BE, Tewfik A, Phillips M. Macroalgae reveal nitrogen enrichment and elevated N:P ratios on the Belize Barrier Reef. MARINE POLLUTION BULLETIN 2021; 171:112686. [PMID: 34271509 DOI: 10.1016/j.marpolbul.2021.112686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Macroalgal blooms are increasing on the Belize Barrier Reef (BBR) as scleractinian coral cover declines. Although some have attributed this to reduced grazing, the role of land-based nutrient pollution has not been assessed. Nutrient enrichment was quantified through macroalgal tissue analysis from Belize City to the offshore fore reef and at several central BBR lagoon sites. These recent data were compared to baseline data from the 1980s. Significant nearshore-to-offshore gradients of %N, %P and δ13C in macroalgae all indicated land-based sources of these nutrients. Macroalgal δ15N values were generally enriched in nearshore waters where values matched those reported for human sewage. Notably, the N:P ratios of recent macroalgae measurements were elevated at all sites, more than two-fold higher than values from the 1980s (~30: 1 to 70:1). These results support the hypothesis that nitrogen enrichment from land-based sources has increased phosphorus limitation driving macroalgal blooms and coral stress on the BBR.
Collapse
Affiliation(s)
- Brian E Lapointe
- Florida Atlantic University-Harbor Branch Oceanographic Institute, 5600 US 1 North, Ft. Pierce, FL 34946, USA
| | - Alexander Tewfik
- Wildlife Conservation Society, Belize Program, PO Box 768, 1755 Coney Drive, 2nd Floor, Belize City, Belize.
| | - Myles Phillips
- Wildlife Conservation Society, Belize Program, PO Box 768, 1755 Coney Drive, 2nd Floor, Belize City, Belize
| |
Collapse
|
24
|
Rodgers KS, Richards Donà A, Stender YO, Tsang AO, Han JHJ, Weible RM, Prouty N, Storlazzi C, Graham AT. Rebounds, regresses, and recovery: A 15-year study of the coral reef community at Pila'a, Kaua'i after decades of natural and anthropogenic stress events. MARINE POLLUTION BULLETIN 2021; 171:112306. [PMID: 34456034 DOI: 10.1016/j.marpolbul.2021.112306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 03/01/2021] [Accepted: 03/24/2021] [Indexed: 06/13/2023]
Abstract
Pila'a reef on the north shore of Kaua'i, Hawai'i was subjected to a major flood event in 2001 that deposited extensive sediment on the reef flat, resulting in high coral mortality. To document potential recovery, this study replicated benthic and sediment surveys conducted immediately following the event and 15 years later. Coral cores were analyzed to determine coral growth rates and density. Our results suggest that significant reduction in terrigenous sediments has led to partial ecosystem recovery based on coral species and colony increases, more balanced size frequency distributions, improved coral condition, and enhanced coral recruitment despite lack of recovery of large dead coral colonies. However, within this 15-year period, episodic storms and a bleaching event impeded the recovery process, preventing full recovery and continuously threatening the coral reef community. As climate change progresses, the intensity and frequency of these disturbances are predicted to increase.
Collapse
Affiliation(s)
- Kuʻulei S Rodgers
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Angela Richards Donà
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Yuko O Stender
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Anita O Tsang
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Ji Hoon J Han
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Rebecca M Weible
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Honolulu, HI, USA.
| | - Nancy Prouty
- U.S. Geological Survey Pacific Coastal and Marine Science Center, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Curt Storlazzi
- U.S. Geological Survey Pacific Coastal and Marine Science Center, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Andrew T Graham
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| |
Collapse
|
25
|
Mumby PJ, Steneck RS, Roff G, Paul VJ. Marine reserves, fisheries ban, and 20 years of positive change in a coral reef ecosystem. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:1473-1483. [PMID: 33909928 DOI: 10.1111/cobi.13738] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 12/31/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
By 2004, Belize was exhibiting classic fishing down of the food web. Groupers (Serranidae) and snappers (Lutjanidae) were scarce and fisheries turned to parrotfishes (Scarinae), leading to a 41% decline in their biomass. Several policies were enacted in 2009-2010, including a moratorium on fishing parrotfish and a new marine park with no-take areas. Using a 20-year time series on reef fish and benthos, we evaluated the impact of these policies approximately 10 years after their implementation. Establishment of the Southwater Caye Marine Reserve led to a recovery of snapper at 2 out of 3 sites, but there was no evidence of recovery outside the reserve. Snapper populations in an older reserve continued to increase, implying that at least 9 years is required for their recovery. Despite concerns over the feasibility of banning parrotfish harvest once it has become a dominant fin fishery, parrotfishes returned and exceeded biomass levels prior to the fishery. The majority of these changes involved an increase in parrotfish density; species composition and adult body size generally exhibited little change. Recovery occurred equally well in reserves and areas open to other forms of fishing, implying strong compliance. Temporal trends in parrotfish grazing intensity were strongly negatively associated with the cover of macroalgae, which by 2018 had fallen to the lowest levels observed since measurements began in 1998. Coral populations remained resilient and continued to exhibit periods of net recovery after disturbance. We found that a moratorium on parrotfish harvesting is feasible and appears to help constrain macroalgae, which can otherwise impede coral resilience.
Collapse
Affiliation(s)
- Peter J Mumby
- Marine Spatial Ecology Lab & ARC Centre of Excellence for Coral Reef Science, School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Robert S Steneck
- Darling Marine Center, School of Marine Sciences, University of Maine, Walpole, Maine, USA
| | - George Roff
- Marine Spatial Ecology Lab & ARC Centre of Excellence for Coral Reef Science, School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | | |
Collapse
|
26
|
Abstract
The ability of corals to adapt to global warming may involve trade-offs among the traits that influence their success as the foundational species of coral reefs.
Collapse
Affiliation(s)
- Line K Bay
- Reef Recovery, Restoration and Adaptation, Australian Institute of Marine Science, Townsville, Australia
| | - Emily J Howells
- National Marine Science Centre, Southern Cross University, Coffs Harbour, Australia
| |
Collapse
|
27
|
Cox KD, Woods MB, Reimchen TE. Regional heterogeneity in coral species richness and hue reveals novel global predictors of reef fish intra-family diversity. Sci Rep 2021; 11:18275. [PMID: 34521952 PMCID: PMC8440613 DOI: 10.1038/s41598-021-97862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023] Open
Abstract
Habitat heterogeneity shapes biological communities, a well-known process in terrestrial ecosystems but substantially unresolved within coral reef ecosystems. We investigated the extent to which coral richness predicts intra-family fish richness, while simultaneously integrating a striking aspect of reef ecosystems-coral hue. To do so, we quantified the coral richness, coral hue diversity, and species richness within 25 fish families in 74 global ecoregions. We then expanded this to an analysis of all reef fishes (4465 species). Considering coral bleaching as a natural experiment, we subsequently examined hue's contribution to fish communities. Coral species and hue diversity significantly predict each family's fish richness, with the highest correlations (> 80%) occurring in damselfish, butterflyfish, emperors and rabbitfish, lower (60-80%) in substrate-bound and mid-water taxa such as blennies, seahorses, and parrotfish, and lowest (40-60%) in sharks, morays, grunts and triggerfish. The observed trends persisted globally. Coral bleaching's homogenization of reef colouration revealed hue's contribution to maintaining fish richness, abundance, and recruit survivorship. We propose that each additional coral species and associated hue provide added ecological opportunities (e.g. camouflage, background contrast for intraspecific display), facilitating the evolution and co-existence of diverse fish assemblages.
Collapse
Affiliation(s)
- Kieran D Cox
- Department of Biology, University of Victoria, Cunningham 202, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada.
- Hakai Institute, Heriot Bay, BC, V0P 1H0, Canada.
| | - Mackenzie B Woods
- Department of Biology, University of Victoria, Cunningham 202, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Thomas E Reimchen
- Department of Biology, University of Victoria, Cunningham 202, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada.
| |
Collapse
|
28
|
Nolan MKB, Schmidt-Roach S, Davis AR, Aranda M, Howells EJ. Widespread bleaching in the One Tree Island lagoon (Southern Great Barrier Reef) during record-breaking temperatures in 2020. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:590. [PMID: 34417871 PMCID: PMC8379602 DOI: 10.1007/s10661-021-09330-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
The global marine environment has been impacted significantly by climate change. Ocean temperatures are rising, and the frequency, duration and intensity of marine heatwaves are increasing, particularly affecting coral reefs. Coral bleaching events are becoming more common, with less recovery time between events. Anomalous temperatures at the start of 2020 caused widespread bleaching across the Great Barrier Reef (GBR), extending to southern, previously less affected reefs such as One Tree Island. Here, nine video transects were conducted at One Tree Island, in the Capricorn Bunker Group, and analysed for community composition and diversity, and the extent of bleaching across taxa. Average live hard coral cover across the area was 11.62%, and almost half of this was identified as severely bleached. This bleaching event is concerning as it occurred in an area previously considered a potential refuge for corals and associated fauna from the risks of climate warming. Due to the global impacts of COVID-19 during 2020, this report provides one of potentially few monitoring efforts of coral bleaching.
Collapse
Affiliation(s)
- Megan K B Nolan
- Red Sea Research Centre, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| | - Sebastian Schmidt-Roach
- Red Sea Research Centre, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Andrew R Davis
- Centre for Sustainable Ecosystem Solutions and School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Manuel Aranda
- Red Sea Research Centre, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Emily J Howells
- Centre for Sustainable Ecosystem Solutions and School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
29
|
Gouezo M, Fabricius K, Harrison P, Golbuu Y, Doropoulos C. Optimizing coral reef recovery with context-specific management actions at prioritized reefs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113209. [PMID: 34346392 DOI: 10.1016/j.jenvman.2021.113209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/06/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Assisting the natural recovery of coral reefs through local management actions is needed in response to increasing ecosystem disturbances in the Anthropocene. There is growing evidence that commonly used resilience-based passive management approaches may not be sufficient to maintain coral reef key functions. We synthesize and discuss advances in coral reef recovery research, and its application to coral reef conservation and restoration practices. We then present a framework to guide the decision-making of reef managers, scientists and other stakeholders, to best support reef recovery after a disturbance. The overall aim of this management framework is to catalyse reef recovery, to minimize recovery times, and to limit the need for ongoing management interventions into the future. Our framework includes two main stages: first, a prioritization method for assessment following a large-scale disturbance, which is based on a reef's social-ecological values, and on a classification of the likelihood of recovery or succession resulting in degraded, novel, hybrid or historical states. Second, a flow chart to assist with determining management actions for highly valued reefs. Potential actions are chosen based on the ecological attributes of the disturbed reef, defined during ecological assessments. Depending on the context, management actions may include (1) substrata rehabilitation actions to facilitate natural coral recruitment, (2) repopulating actions using active restoration techniques, (3) resilience-based management actions and (4) monitoring coral recruitment and growth to assess the effectiveness of management interventions. We illustrate the proposed decision framework with a case study of typhoon-damaged eastern outer reefs in Palau, Micronesia. The decisions made following this framework lead to the conclusion that some reefs may not return to their historical state for many decades. However, if motivation and funds are available, new management approaches can be explored to assist coral reefs at valued locations to return to a functional state providing key ecosystem services.
Collapse
Affiliation(s)
- Marine Gouezo
- Palau International Coral Reef Center, PO Box 7086, Koror, Palau; Marine Ecology Research Centre, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia.
| | - Katharina Fabricius
- Australian Institute of Marine Science, PMB 3, Townsville, QLD 4810, Australia.
| | - Peter Harrison
- Marine Ecology Research Centre, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia.
| | - Yimnang Golbuu
- Palau International Coral Reef Center, PO Box 7086, Koror, Palau.
| | | |
Collapse
|
30
|
Ortiz JC, Pears RJ, Beeden R, Dryden J, Wolff NH, Gomez Cabrera MDC, Mumby PJ. Important ecosystem function, low redundancy and high vulnerability: The trifecta argument for protecting the Great Barrier Reef's tabular
Acropora. Conserv Lett 2021. [DOI: 10.1111/conl.12817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Juan C. Ortiz
- Australian Institute of Marine Science Townsville Queensland Australia
| | - Rachel J. Pears
- Great Barrier Reef Marine Park Authority Townsville Queensland Australia
| | - Roger Beeden
- Great Barrier Reef Marine Park Authority Townsville Queensland Australia
| | - Jen Dryden
- Great Barrier Reef Marine Park Authority Townsville Queensland Australia
| | | | | | - Peter J Mumby
- School of Biological Sciences The University of Queensland St Lucia Queensland Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies Douglas Queensland Australia
| |
Collapse
|
31
|
Devlin MJ, Lyons BP, Johnson JE, Hills JM. The tropical Pacific Oceanscape: Current issues, solutions and future possibilities. MARINE POLLUTION BULLETIN 2021; 166:112181. [PMID: 33676108 DOI: 10.1016/j.marpolbul.2021.112181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Marine ecosystems across the world's largest ocean - the Pacific Ocean - are being increasingly affected by stressors such as pollution, overfishing, ocean acidification, coastal development and warming events coupled with rising sea levels and increasing frequency of extreme weather. These anthropogenic-driven stressors, which operate cumulatively at varying spatial and temporal scales, are leading to ongoing and pervasive degradation of many marine ecosystems in the Pacific Island region. The effects of global warming and ocean acidification threaten much of the region and impact on the socio-cultural, environmental, economic and human health components of many Pacific Island nations. Simultaneously, resilience to climate change is being reduced as systems are overburdened by other stressors, such as marine and land-based pollution and unsustainable fishing. Consequently, it is important to understand the vulnerability of this region to future environmental scenarios and determine to what extent management actions can help protect, and rebuild ecosystem resilience and maintain ecosystem service provision. This Special Issue of papers explores many of these pressures through case studies across the Pacific Island region, and the impacts of individual and cumulative pressures on the condition, resilience and survival of ecosystems and the communities that depend on them. The papers represent original work from across the tropical Pacific oceanscape, an area that includes 22 Pacific Island countries and territories plus Hawaii and the Philippines. The 39 papers within provide insights on anthropogenic pressures and habitat responses at local, national, and regional scales. The themes range from coastal water quality and human health, assessment of status and trends for marine habitats (e.g. seagrass and coral reefs), and the interaction of local pressures (pollution, overfishing) with increasing temperatures and climate variability. Studies within the Special Issue highlight how local actions, monitoring, tourism values, management, policy and incentives can encourage adaptation to anthropogenic impacts. Conclusions identify possible solutions to support sustainable and harmonious environment and social systems in the unique Pacific Island oceanscape.
Collapse
Affiliation(s)
- Michelle J Devlin
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft Laboratory, Pakefield Road, Lowestoft NR330HT, Suffolk, UK; CCSUS, University of East Anglia, Norwich, Norwich, Norfolk, UK; TropWater, James Cook University, Townsville, Queensland, Australia.
| | - Brett P Lyons
- Cefas, Weymouth Laboratory, Barrack Road, Weymouth DT4 8UB, Dorset, UK
| | - Johanna E Johnson
- C2O Pacific, Port Vila, Vanuatu & Cairns, Australia; College of Science & Engineering, James Cook University, Queensland, Australia
| | | |
Collapse
|
32
|
O’Hara CC, Frazier M, Halpern BS. At-risk marine biodiversity faces extensive, expanding, and intensifying human impacts. Science 2021; 372:84-87. [DOI: 10.1126/science.abe6731] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/03/2021] [Indexed: 01/09/2023]
Abstract
Human activities and climate change threaten marine biodiversity worldwide, though sensitivity to these stressors varies considerably by species and taxonomic group. Mapping the spatial distribution of 14 anthropogenic stressors from 2003 to 2013 onto the ranges of 1271 at-risk marine species sensitive to them, we found that, on average, species faced potential impacts across 57% of their ranges, that this footprint expanded over time, and that the impacts intensified across 37% of their ranges. Although fishing activity dominated the footprint of impacts in national waters, climate stressors drove the expansion and intensification of impacts. Mitigating impacts on at-risk biodiversity is critical to supporting resilient marine ecosystems, and identifying the co-occurrence of impacts across multiple taxonomic groups highlights opportunities to amplify the benefits of conservation management.
Collapse
Affiliation(s)
- Casey C. O’Hara
- Bren School of Environmental Science and Management, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Melanie Frazier
- National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Benjamin S. Halpern
- Bren School of Environmental Science and Management, University of California Santa Barbara, Santa Barbara, CA, USA
- National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
33
|
Shlesinger T, van Woesik R. Different population trajectories of two reef-building corals with similar life-history traits. J Anim Ecol 2021; 90:1379-1389. [PMID: 33666226 PMCID: PMC8252767 DOI: 10.1111/1365-2656.13463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/26/2021] [Indexed: 01/01/2023]
Abstract
Increases in the frequency and intensity of acute and chronic disturbances are causing declines of coral reefs world‐wide. Although quantifying the responses of corals to acute disturbances is well documented, detecting subtle responses of coral populations to chronic disturbances is less common, but can also result in altered population and community structures. We investigated the population dynamics of two key reef‐building Merulinid coral species, Dipsastraea favus and Platygyra lamellina, with similar life‐history traits, in the Gulf of Eilat and Aqaba, Red Sea from 2015 to 2018, to assess potential differences in their population trajectories. Demographic processes, which included rates of survival, growth, reproduction and recruitment were used to parametrize integral projection models and estimate population growth rates and the likely population trajectories of both coral species. The survival and reproduction rates of both D. favus and P. lamellina were positively related to coral colony size, and elasticity analyses showed that large colonies most influenced population dynamics. Although both species have similar life‐history traits and growth morphologies and are generally regarded as ‘stress‐tolerant’, the populations showed contrasting trajectories—D. favus appears to be increasing whereas P. lamellina appears to be decreasing. As many corals have long‐life expectancies, the process of local and regional decline might be subtle and slow. Ecological assessments based on total living coral coverage, morphological groups or functional traits might overlook subtle, species‐specific trends. However, demographic approaches capable of detecting subtle species‐specific population changes can augment ecological studies and provide valuable early warning signs of decline before major coral loss becomes evident.
Collapse
Affiliation(s)
- Tom Shlesinger
- Institute for Global Ecology, Florida Institute of Technology, Melbourne, FL, USA
| | - Robert van Woesik
- Institute for Global Ecology, Florida Institute of Technology, Melbourne, FL, USA
| |
Collapse
|
34
|
Hall TE, Freedman AS, de Roos AM, Edmunds PJ, Carpenter RC, Gross K. Stony coral populations are more sensitive to changes in vital rates in disturbed environments. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02234. [PMID: 33064870 DOI: 10.1002/eap.2234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/10/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Reef-building corals, like many long-lived organisms, experience environmental change as a combination of separate but concurrent processes, some of which are gradual yet long-lasting, while others are more acute but short-lived. For corals, some chronic environmental stressors, such as rising temperature and ocean acidification, are thought to induce gradual changes in colonies' vital rates. Meanwhile, other environmental changes, such as the intensification of tropical cyclones, change the disturbance regime that corals experience. Here, we use a physiologically structured population model to explore how chronic environmental stressors that impact the vital rates of individual coral colonies interact with the intensity and magnitude of disturbance to affect coral population dynamics and cover. We find that, when disturbances are relatively benign, intraspecific density dependence driven by space competition partially buffers coral populations against gradual changes in vital rates. However, the impact of chronic stressors is amplified in more highly disturbed environments, because disturbance weakens the buffering effect of space competition. We also show that coral cover is more sensitive to changes in colony growth and mortality than to external recruitment, at least in open populations, and that space competition and size structure mediate the extent and pace of coral population recovery following a large-scale mortality event. Understanding the complex interplay among chronic environmental stressors, mass-mortality events, and population size structure sharpens our ability to manage and to restore coral-reef ecosystems in an increasingly disturbed future.
Collapse
Affiliation(s)
- Tessa E Hall
- Biomathematics Program, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Andrew S Freedman
- Biomathematics Program, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - André M de Roos
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Santa Fe Institute, Santa Fe, New Mexico, 87501, USA
| | - Peter J Edmunds
- Department of Biology, California State University, Northridge, California, 91330, USA
| | - Robert C Carpenter
- Department of Biology, California State University, Northridge, California, 91330, USA
| | - Kevin Gross
- Biomathematics Program, North Carolina State University, Raleigh, North Carolina, 27695, USA
| |
Collapse
|
35
|
Graves CA, Powell A, Stone M, Redfern F, Biko T, Devlin M. Marine water quality of a densely populated Pacific atoll (Tarawa, Kiribati): Cumulative pressures and resulting impacts on ecosystem and human health. MARINE POLLUTION BULLETIN 2021; 163:111951. [PMID: 33472138 DOI: 10.1016/j.marpolbul.2020.111951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
The resilience of coastal ecosystems and communities to poor environmental and health outcomes is threatened by cumulative anthropogenic pressures. In Kiribati, a developing Pacific Island country where human activities are closely connected with the ocean, both people and environment are particularly vulnerable to coastal pollution. We present a survey of environmental and human health water quality parameters around urban South Tarawa, and an overview of their impacts on the semi-enclosed atoll. Tarawa has significant water quality issues and decisions to guide improvements are hindered by a persistent lack of appropriate and sufficient observations. Our snapshot assessment identifies highest risk locations related to chronic focused and diffuse pollution inputs, and where mixing and dilution with ocean water is restricted. We demonstrate the importance of monitoring in the context of rapidly changing pressures. Our recommendations are relevant to other atoll ecosystems where land-based activities and ocean health are tightly interlinked.
Collapse
Affiliation(s)
- Carolyn A Graves
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK; Centre for Environment, Fisheries and Aquaculture Science, The Nothe, Barrack Road, Weymouth, Dorset DT4 8UB, UK; Marine Collaborative Centre for Sustainable Use of the Seas (CCSUS), School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Andy Powell
- Centre for Environment, Fisheries and Aquaculture Science, The Nothe, Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Michelle Stone
- Centre for Environment, Fisheries and Aquaculture Science, The Nothe, Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Farran Redfern
- Environment and Conservation Division, Ministry of Environment Lands and Agriculture Developments, Bikenibeu, Tarawa, Kiribati.
| | - Teema Biko
- Environment and Conservation Division, Ministry of Environment Lands and Agriculture Developments, Bikenibeu, Tarawa, Kiribati.
| | - Michelle Devlin
- Centre for Environment, Fisheries and Aquaculture Science, The Nothe, Barrack Road, Weymouth, Dorset DT4 8UB, UK; Marine Collaborative Centre for Sustainable Use of the Seas (CCSUS), School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
36
|
González-Barrios FJ, Cabral-Tena RA, Alvarez-Filip L. Recovery disparity between coral cover and the physical functionality of reefs with impaired coral assemblages. GLOBAL CHANGE BIOLOGY 2021; 27:640-651. [PMID: 33131196 DOI: 10.1111/gcb.15431] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
The ecology and structure of many tropical coral reefs have been markedly altered over the past few decades. Although long-term recovery has been observed in terms of coral cover, it is not clear how novel species configurations shape reef functionality in impaired reefs. The identities and life-history strategies of the corals species that recover are essential for understanding reef functional dynamics. We used a species identity approach to quantify the physical functionality outcomes over a 13 year period across 56 sites in the Mexican Caribbean. This region was affected by multiple stressors that converged and drastically damaged reefs in the early 2000s. Since then, the reefs have shown evidence of a modest recovery of coral cover. We used Bayesian linear models and annual rates of change to estimate temporal changes in physical functionality and coral cover. Moreover, a functional diversity framework was used to explore changes in coral composition and the traits of those assemblages. Between 2005 and 2018, physical functionality increased at a markedly lower rate compared to that of coral cover. The disparity between recovery rates depended on the identity of the species that increased (mainly non-framework and foliose-digitate corals). No changes in species dominance or functional trait composition were observed, whereas non-framework building corals consistently dominated most reefs. Although the observed recovery of coral cover and functional potential may provide some ecological benefits, the long-term effects on reef frameworks remain unclear, as changes in the cover of key reef-building species were not observed. Our findings are likely to be representative of many reefs across the wider Caribbean basin, as declines in coral cover and rapid increases in the relative abundance of weedy corals have been reported regionally. A coral identity approach to assess species turnover is needed to understand and quantify changes in the functionality of coral reefs.
Collapse
Affiliation(s)
- F Javier González-Barrios
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, México
- Department of Marine Ecology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, México
| | - Rafael A Cabral-Tena
- Department of Marine Ecology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, México
| | - Lorenzo Alvarez-Filip
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, México
| |
Collapse
|
37
|
Clements CS, Burns AS, Stewart FJ, Hay ME. Parasite-host ecology: the limited impacts of an intimate enemy on host microbiomes. Anim Microbiome 2020; 2:42. [PMID: 33499998 PMCID: PMC7807496 DOI: 10.1186/s42523-020-00061-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Impacts of biotic stressors, such as consumers, on coral microbiomes have gained attention as corals decline worldwide. Corallivore feeding can alter coral microbiomes in ways that contribute to dysbiosis, but feeding strategies are diverse - complicating generalizations about the nature of consumer impacts on coral microbiomes. RESULTS In field experiments, feeding by Coralliophila violacea, a parasitic snail that suppresses coral growth, altered the microbiome of its host, Porites cylindrica, but these impacts were spatially constrained. Alterations in microbial community composition and variability were largely restricted to snail feeding scars; basal or distal areas ~ 1.5 cm or 6-8 cm away, respectively, were largely unaltered. Feeding scars were enriched in taxa common to stressed corals (e.g. Flavobacteriaceae, Rhodobacteraceae) and depauperate in putative beneficial symbionts (e.g. Endozoicomonadaceae) compared to locations that lacked feeding. CONCLUSIONS Previous studies that assessed consumer impacts on coral microbiomes suggested that feeding disrupts microbial communities, potentially leading to dysbiosis, but those studies involved mobile corallivores that move across and among numerous individual hosts. Sedentary parasites like C. violacea that spend long intervals with individual hosts and are dependent on hosts for food and shelter may minimize damage to host microbiomes to assure continued host health and thus exploitation. More mobile consumers that forage across numerous hosts should not experience these constraints. Thus, stability or disruption of microbiomes on attacked corals may vary based on the foraging strategy of coral consumers.
Collapse
Affiliation(s)
- Cody S Clements
- Aquatic Chemical Ecology Center, and Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, GA, 30332-0230, USA.
| | - Andrew S Burns
- Aquatic Chemical Ecology Center, and Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, GA, 30332-0230, USA
- NIAID Microbiome Program, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Frank J Stewart
- Aquatic Chemical Ecology Center, and Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, GA, 30332-0230, USA
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT, 59717-3520, USA
| | - Mark E Hay
- Aquatic Chemical Ecology Center, and Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, GA, 30332-0230, USA
| |
Collapse
|
38
|
Devlin M, Smith A, Graves CA, Petus C, Tracey D, Maniel M, Hooper E, Kotra K, Samie E, Loubser D, Lyons BP. Baseline assessment of coastal water quality, in Vanuatu, South Pacific: Insights gained from in-situ sampling. MARINE POLLUTION BULLETIN 2020; 160:111651. [PMID: 33181931 DOI: 10.1016/j.marpolbul.2020.111651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/05/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Nearshore deterioration of water quality in Pacific coastal waters is a growing problem, associated with increasing urban and industrial sewage discharges, and agricultural runoff. Published water quality studies in the Pacific region are limited in both number and scope, making it difficult to resolve the extent of the issue or quantify the variability of water quality across Pacific islands and countries. This study collected water quality measurements over three years in the coastal waters around the Island of Efate (Vanuatu) with majority of work carried out in Port Vila, its capital. Port Vila is the key urban centre for Vanuatu where the increasing population and pollution inputs are placing substantial pressure on the coastal environment. Highest concentrations of dissolved nutrients and suspended sediments were measured adjacent or near the urban drains that enter the coastal areas along the capital's seafront, highlighting many of the issues around anthropogenic inputs are linked to the increasing urbanisation in Port Vila Bay. We provide baseline data that explores variability of coastal water quality and these types of datasets for Pacific islands are a first step towards facilitating development of long-term monitoring programmes and informing coastal zone management decision making.
Collapse
Affiliation(s)
- Michelle Devlin
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, UK; Marine Collaborative Centre for Sustainable Use of the Seas (CCSUS), School of Environmental Sciences, University of East Anglia, Norwich, UK; Centre for Tropical Water & Aquatic Research (TropWATER), Townsville, Australia.
| | - Andy Smith
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, UK
| | - Carolyn A Graves
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, UK; Marine Collaborative Centre for Sustainable Use of the Seas (CCSUS), School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Caroline Petus
- Centre for Tropical Water & Aquatic Research (TropWATER), Townsville, Australia
| | - Dieter Tracey
- Centre for Tropical Water & Aquatic Research (TropWATER), Townsville, Australia
| | - Michael Maniel
- Department of Water Resources, Ministry of Lands and Natural Resources, Port Vila, Vanuatu
| | - Eryn Hooper
- C(2)O Pacific, Port Vila, Vanuatu & Auckland, New Zealand
| | - Krishna Kotra
- School of Biological and Chemical Sciences, Faculty of Science, Technology and Environment, The University of the South Pacific, Emalus Campus, Port Vila, Vanuatu
| | - Erie Samie
- Department of Water Resources, Ministry of Lands and Natural Resources, Port Vila, Vanuatu
| | - David Loubser
- Ecosystem Services Ltd, P.O. Box 25126, Wellington, 6140, New Zealand.
| | - Brett P Lyons
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK
| |
Collapse
|
39
|
Ceccarelli DM, McLeod IM, Boström-Einarsson L, Bryan SE, Chartrand KM, Emslie MJ, Gibbs MT, Gonzalez Rivero M, Hein MY, Heyward A, Kenyon TM, Lewis BM, Mattocks N, Newlands M, Schläppy ML, Suggett DJ, Bay LK. Substrate stabilisation and small structures in coral restoration: State of knowledge, and considerations for management and implementation. PLoS One 2020; 15:e0240846. [PMID: 33108387 PMCID: PMC7591095 DOI: 10.1371/journal.pone.0240846] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Coral reef ecosystems are under increasing pressure from local and regional stressors and a changing climate. Current management focuses on reducing stressors to allow for natural recovery, but in many areas where coral reefs are damaged, natural recovery can be restricted, delayed or interrupted because of unstable, unconsolidated coral fragments, or rubble. Rubble fields are a natural component of coral reefs, but repeated or high-magnitude disturbances can prevent natural cementation and consolidation processes, so that coral recruits fail to survive. A suite of interventions have been used to target this issue globally, such as using mesh to stabilise rubble, removing the rubble to reveal hard substrate and deploying rocks or other hard substrates over the rubble to facilitate recruit survival. Small, modular structures can be used at multiple scales, with or without attached coral fragments, to create structural complexity and settlement surfaces. However, these can introduce foreign materials to the reef, and a limited understanding of natural recovery processes exists for the potential of this type of active intervention to successfully restore local coral reef structure. This review synthesises available knowledge about the ecological role of coral rubble, natural coral recolonisation and recovery rates and the potential benefits and risks associated with active interventions in this rapidly evolving field. Fundamental knowledge gaps include baseline levels of rubble, the structural complexity of reef habitats in space and time, natural rubble consolidation processes and the risks associated with each intervention method. Any restoration intervention needs to be underpinned by risk assessment, and the decision to repair rubble fields must arise from an understanding of when and where unconsolidated substrate and lack of structure impair natural reef recovery and ecological function. Monitoring is necessary to ascertain the success or failure of the intervention and impacts of potential risks, but there is a strong need to specify desired outcomes, the spatial and temporal context and indicators to be measured. With a focus on the Great Barrier Reef, we synthesise the techniques, successes and failures associated with rubble stabilisation and the use of small structures, review monitoring methods and indicators, and provide recommendations to ensure that we learn from past projects.
Collapse
Affiliation(s)
- Daniela M. Ceccarelli
- Marine Ecology Consultant, Nelly Bay, QLD, Australia
- ARC Centre of Excellence for Coral Reef Studies, Townsville, QLD, Australia
- * E-mail: (DMC); (IMM)
| | - Ian M. McLeod
- TropWATER (Centre for Tropical Water and Aquatic Ecosystem Research), James Cook University, Townsville, Queensland, Australia
- * E-mail: (DMC); (IMM)
| | - Lisa Boström-Einarsson
- TropWATER (Centre for Tropical Water and Aquatic Ecosystem Research), James Cook University, Townsville, Queensland, Australia
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Scott E. Bryan
- School of Earth & Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kathryn M. Chartrand
- TropWATER (Centre for Tropical Water and Aquatic Ecosystem Research), James Cook University, Townsville, Queensland, Australia
| | - Michael J. Emslie
- Australian Institute of Marine Science, PMB 3 Townsville MC, Townsville, Queensland, Australia
| | - Mark T. Gibbs
- Australian Institute of Marine Science, PMB 3 Townsville MC, Townsville, Queensland, Australia
- Division of Business Development, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Manuel Gonzalez Rivero
- Australian Institute of Marine Science, PMB 3 Townsville MC, Townsville, Queensland, Australia
| | - Margaux Y. Hein
- TropWATER (Centre for Tropical Water and Aquatic Ecosystem Research), James Cook University, Townsville, Queensland, Australia
| | - Andrew Heyward
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, University of Western Australia, Crawley, Western Australia, Australia
| | - Tania M. Kenyon
- Marine Spatial Ecology Lab, The University of Queensland, St. Lucia, Queensland, Australia
| | - Brett M. Lewis
- School of Earth & Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Neil Mattocks
- Reef Joint Field Management Program, Great Barrier Reef Marine Park Authority, Townsville, Queensland, Australia
| | - Maxine Newlands
- TropWATER (Centre for Tropical Water and Aquatic Ecosystem Research), James Cook University, Townsville, Queensland, Australia
- School of Social Science, James Cook University, Townsville, Queensland, Australia
| | - Marie-Lise Schläppy
- Australian Institute of Marine Science, PMB 3 Townsville MC, Townsville, Queensland, Australia
- Faculty of Engineering, Oceans Graduate School, The University of Western Australia, Crawley, WA, Australia
| | - David J. Suggett
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Line K. Bay
- Australian Institute of Marine Science, PMB 3 Townsville MC, Townsville, Queensland, Australia
| |
Collapse
|
40
|
Size-specific recolonization success by coral-dwelling damselfishes moderates resilience to habitat loss. Sci Rep 2020; 10:17016. [PMID: 33046807 PMCID: PMC7550353 DOI: 10.1038/s41598-020-73979-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/05/2020] [Indexed: 11/08/2022] Open
Abstract
Increasing degradation of coral reef ecosystems and specifically, loss of corals is causing significant and widespread declines in the abundance of coral reef fishes, but the proximate cause(s) of these declines are largely unknown. Here, we examine specific responses to host coral mortality for three species of coral-dwelling damselfishes (Dascyllus aruanus, D. reticulatus, and Pomacentrus moluccensis), explicitly testing whether these fishes can successfully move and recolonize nearby coral hosts. Responses of fishes to localized coral loss was studied during population irruptions of coral feeding crown-of-thorns starfish, where starfish consumed 29 (34%) out of 85 coral colonies, of which 25 (86%) were occupied by coral-dwelling damselfishes. Damselfishes were not tagged or individually recognizable, but changes in the colonization of different coral hosts was assessed by carefully assessing the number and size of fishes on every available coral colony. Most damselfishes (> 90%) vacated dead coral hosts within 5 days, and either disappeared entirely (presumed dead) or relocated to nearby coral hosts. Displaced fishes only ever colonized corals already occupied by other coral-dwelling damselfishes (mostly conspecifics) and colonization success was strongly size-dependent. Despite movement of damselfishes to surviving corals, the local abundance of coral-dependent damselfishes declined in approximate accordance with the proportional loss of coral habitat. These results suggest that even if alternative coral hosts are locally abundant, there are significant biological constraints on movement of coral-dwelling damselfishes and recolonization of alternative coral habitats, such that localized persistence of habitat patches during moderate or patchy disturbances do not necessarily provide resilience against overall habitat loss.
Collapse
|
41
|
Settlement of larvae from four families of corals in response to a crustose coralline alga and its biochemical morphogens. Sci Rep 2020; 10:16397. [PMID: 33009428 PMCID: PMC7532448 DOI: 10.1038/s41598-020-73103-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/11/2020] [Indexed: 11/22/2022] Open
Abstract
Healthy benthic substrates that induce coral larvae to settle are necessary for coral recovery. Yet, the biochemical cues required to induce coral settlement have not been identified for many taxa. Here we tested the ability of the crustose coralline alga (CCA) Porolithon onkodes to induce attachment and metamorphosis, collectively termed settlement, of larvae from 15 ecologically important coral species from the families Acroporidae, Merulinidae, Poritidae, and Diploastreidae. Live CCA fragments, ethanol extracts, and hot aqueous extracts of P. onkodes induced settlement (> 10%) for 11, 7, and 6 coral species, respectively. Live CCA fragments were the most effective inducer, achieving over 50% settlement for nine species. The strongest settlement responses were observed in Acropora spp.; the only non-acroporid species that settled over 50% were Diploastrea heliopora, Goniastrea retiformis, and Dipsastraea pallida. Larval settlement was reduced in treatments with chemical extracts compared with live CCA, although high settlement (> 50%) was reported for six acroporid species in response to ethanol extracts of CCA. All experimental treatments failed (< 10%) to induce settlement in Montipora aequituberculata, Mycedium elephantotus, and Porites cylindrica. Individual species responded heterogeneously to all treatments, suggesting that none of the cues represent a universal settlement inducer. These results challenge the commonly-held notion that CCA ubiquitously induces coral settlement, and emphasize the critical need to assess additional cues to identify natural settlement inducers for a broad range of coral taxa.
Collapse
|
42
|
Pisapia C, Edmunds PJ, Moeller HV, M Riegl B, McWilliam M, Wells CD, Pratchett MS. Projected shifts in coral size structure in the Anthropocene. ADVANCES IN MARINE BIOLOGY 2020; 87:31-60. [PMID: 33293015 DOI: 10.1016/bs.amb.2020.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Changes in the size structure of coral populations have major consequences for population dynamics and community function, yet many coral reef monitoring projects do not record this critical feature. Consequently, our understanding of current and future trajectories in coral size structure, and the demographic processes underlying these changes, is still emerging. Here, we provide a conceptual summary of the benefits to be gained from more comprehensive attention to the size of coral colonies in reef monitoring projects, and we support our argument through the use of case-history examples and a simplified ecological model. We neither seek to review the available empirical data, or to rigorously explore causes and implications of changes in coral size, we seek to reveal the advantages to modifying ongoing programs to embrace the information inherent in changing coral colony size. Within this framework, we evaluate and forecast the mechanics and implications of changes in the population structure of corals that are transitioning from high to low abundance, and from large to small colonies, sometimes without striking effects on planar coral cover. Using two coral reef locations that have been sampled for coral size, we use demographic data to underscore the limitations of coral cover in understanding the causes and consequences of long-term declining coral size, and abundance. A stage-structured matrix model is used to evaluate the demographic causes of declining coral colony size and abundance, particularly with respect to the risks of extinction. The model revealed differential effects of mortality, growth and fecundity on coral size distributions. It also suggested that colony rarity and declining colony size in association with partial tissue mortality and chronic declines in fecundity, can lead to a demographic bottleneck with the potential to prolong the existence of coral populations when they are characterized by mostly very small colonies. Such bottlenecks could have ecological importance if they can delay extinction and provide time for human intervention to alleviate the environmental degradation driving reductions in coral abundance.
Collapse
Affiliation(s)
- Chiara Pisapia
- Department of Biology, California State University, Northridge, CA, United States; Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong.
| | - Peter J Edmunds
- Department of Biology, California State University, Northridge, CA, United States
| | - Holly V Moeller
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Bernhard M Riegl
- Department of Marine and Environmental Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, United States
| | - Mike McWilliam
- Hawai'I Institute of Marine Biology, University of Hawai'I at Manoa, Kaneohe, HI, United States
| | - Christopher D Wells
- Department of Geology, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Morgan S Pratchett
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
43
|
Anthony KRN, Helmstedt KJ, Bay LK, Fidelman P, Hussey KE, Lundgren P, Mead D, McLeod IM, Mumby PJ, Newlands M, Schaffelke B, Wilson KA, Hardisty PE. Interventions to help coral reefs under global change-A complex decision challenge. PLoS One 2020; 15:e0236399. [PMID: 32845878 PMCID: PMC7449401 DOI: 10.1371/journal.pone.0236399] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Climate change is impacting coral reefs now. Recent pan-tropical bleaching events driven by unprecedented global heat waves have shifted the playing field for coral reef management and policy. While best-practice conventional management remains essential, it may no longer be enough to sustain coral reefs under continued climate change. Nor will climate change mitigation be sufficient on its own. Committed warming and projected reef decline means solutions must involve a portfolio of mitigation, best-practice conventional management and coordinated restoration and adaptation measures involving new and perhaps radical interventions, including local and regional cooling and shading, assisted coral evolution, assisted gene flow, and measures to support and enhance coral recruitment. We propose that proactive research and development to expand the reef management toolbox fast but safely, combined with expedient trialling of promising interventions is now urgently needed, whatever emissions trajectory the world follows. We discuss the challenges and opportunities of embracing new interventions in a race against time, including their risks and uncertainties. Ultimately, solutions to the climate challenge for coral reefs will require consideration of what society wants, what can be achieved technically and economically, and what opportunities we have for action in a rapidly closing window. Finding solutions that work for coral reefs and people will require exceptional levels of coordination of science, management and policy, and open engagement with society. It will also require compromise, because reefs will change under climate change despite our best interventions. We argue that being clear about society's priorities, and understanding both the opportunities and risks that come with an expanded toolset, can help us make the most of a challenging situation. We offer a conceptual model to help reef managers frame decision problems and objectives, and to guide effective strategy choices in the face of complexity and uncertainty.
Collapse
Affiliation(s)
- Kenneth R. N. Anthony
- Australian Institute of Marine Science, QLD, Australia
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Kate J. Helmstedt
- ARC Centre of Excellence in Mathematical and Statistical Frontiers, School of Mathematical Sciences, Queensland University of Technology, QLD, Australia
| | - Line K. Bay
- Australian Institute of Marine Science, QLD, Australia
| | - Pedro Fidelman
- Centre for Policy Futures, The University of Queensland, QLD, Australia
| | - Karen E. Hussey
- Centre for Policy Futures, The University of Queensland, QLD, Australia
| | | | - David Mead
- Australian Institute of Marine Science, QLD, Australia
| | | | - Peter J. Mumby
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | | | | | - Kerrie A. Wilson
- ARC Centre of Excellence for Environmental Decisions, The University of Queensland, QLD, Australia
| | | |
Collapse
|
44
|
Vercelloni J, Liquet B, Kennedy EV, González-Rivero M, Caley MJ, Peterson EE, Puotinen M, Hoegh-Guldberg O, Mengersen K. Forecasting intensifying disturbance effects on coral reefs. GLOBAL CHANGE BIOLOGY 2020; 26:2785-2797. [PMID: 32115808 DOI: 10.1111/gcb.15059] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/28/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
Anticipating future changes of an ecosystem's dynamics requires knowledge of how its key communities respond to current environmental regimes. The Great Barrier Reef (GBR) is under threat, with rapid changes of its reef-building hard coral (HC) community structure already evident across broad spatial scales. While several underlying relationships between HC and multiple disturbances have been documented, responses of other benthic communities to disturbances are not well understood. Here we used statistical modelling to explore the effects of broad-scale climate-related disturbances on benthic communities to predict their structure under scenarios of increasing disturbance frequency. We parameterized a multivariate model using the composition of benthic communities estimated by 145,000 observations from the northern GBR between 2012 and 2017. During this time, surveyed reefs were variously impacted by two tropical cyclones and two heat stress events that resulted in extensive HC mortality. This unprecedented sequence of disturbances was used to estimate the effects of discrete versus interacting disturbances on the compositional structure of HC, soft corals (SC) and algae. Discrete disturbances increased the prevalence of algae relative to HC while the interaction between cyclones and heat stress was the main driver of the increase in SC relative to algae and HC. Predictions from disturbance scenarios included relative increases in algae versus SC that varied by the frequency and types of disturbance interactions. However, high uncertainty of compositional changes in the presence of several disturbances shows that responses of algae and SC to the decline in HC needs further research. Better understanding of the effects of multiple disturbances on benthic communities as a whole is essential for predicting the future status of coral reefs and managing them in the light of new environmental regimes. The approach we develop here opens new opportunities for reaching this goal.
Collapse
Affiliation(s)
- Julie Vercelloni
- ARC Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, St Lucia, Qld, Australia
- The Global Change Institute, The University of Queensland, St Lucia, Qld, Australia
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Brisbane, Qld, Australia
- School of Mathematical Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Qld, Australia
| | - Benoit Liquet
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Brisbane, Qld, Australia
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, LMAP, Pau, France
| | - Emma V Kennedy
- The Global Change Institute, The University of Queensland, St Lucia, Qld, Australia
| | - Manuel González-Rivero
- ARC Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, St Lucia, Qld, Australia
- The Global Change Institute, The University of Queensland, St Lucia, Qld, Australia
| | - M Julian Caley
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Brisbane, Qld, Australia
- School of Mathematical Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Qld, Australia
| | - Erin E Peterson
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Brisbane, Qld, Australia
- Institute for Future Environments, Queensland University of Technology, Brisbane, Qld, Australia
| | - Marji Puotinen
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, University of Western Australia, Crawley, WA, Australia
| | - Ove Hoegh-Guldberg
- ARC Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, St Lucia, Qld, Australia
- The Global Change Institute, The University of Queensland, St Lucia, Qld, Australia
| | - Kerrie Mengersen
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Brisbane, Qld, Australia
- School of Mathematical Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Qld, Australia
- Institute for Future Environments, Queensland University of Technology, Brisbane, Qld, Australia
| |
Collapse
|
45
|
Courtney TA, Barnes BB, Chollett I, Elahi R, Gross K, Guest JR, Kuffner IB, Lenz EA, Nelson HR, Rogers CS, Toth LT, Andersson AJ. Disturbances drive changes in coral community assemblages and coral calcification capacity. Ecosphere 2020. [DOI: 10.1002/ecs2.3066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Travis A. Courtney
- Scripps Institution of Oceanography University of California San Diego La Jolla California 92093 USA
| | - Brian B. Barnes
- College of Marine Science University of South Florida St. Petersburg Florida 33701 USA
| | | | - Robin Elahi
- Hopkins Marine Station Stanford University Pacific Grove California 93950 USA
| | - Kevin Gross
- Department of Statistics North Carolina State University Raleigh North Carolina 27695 USA
| | - James R. Guest
- School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne NE17RU UK
| | - Ilsa B. Kuffner
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center St. Petersburg Florida 33701 USA
| | - Elizabeth A. Lenz
- Hawai'i Institute of Marine Biology University of Hawai'i Kāne'ohe Hawai'i 96744 USA
| | - Hannah R. Nelson
- Department of Biology California State University Northridge California 91330 USA
| | - Caroline S. Rogers
- U.S. Geological Survey, Wetland and Aquatic Research Center St John U.S. Virgin Islands USA
| | - Lauren T. Toth
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center St. Petersburg Florida 33701 USA
| | - Andreas J. Andersson
- Scripps Institution of Oceanography University of California San Diego La Jolla California 92093 USA
| |
Collapse
|
46
|
Lam VYY, Doropoulos C, Bozec YM, Mumby PJ. Resilience Concepts and Their Application to Coral Reefs. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
47
|
Gouezo M, Golbuu Y, Fabricius K, Olsudong D, Mereb G, Nestor V, Wolanski E, Harrison P, Doropoulos C. Drivers of recovery and reassembly of coral reef communities. Proc Biol Sci 2020; 286:20182908. [PMID: 30963834 DOI: 10.1098/rspb.2018.2908] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding processes that drive community recovery are needed to predict ecosystem trajectories and manage for impacts under increasing global threats. Yet, the quantification of community recovery in coral reefs has been challenging owing to a paucity of long-term ecological data and high frequency of disturbances. Here we investigate community re-assembly and the bio-physical drivers that determine the capacity of coral reefs to recover following the 1998 bleaching event, using long-term monitoring data across four habitats in Palau. Our study documents that the time needed for coral reefs to recover from bleaching disturbance to coral-dominated state in disturbance-free regimes is at least 9-12 years. Importantly, we show that reefs in two habitats achieve relative stability to a climax community state within that time frame. We then investigated the direct and indirect effects of drivers on the rate of recovery of four dominant coral groups using a structural equation modelling approach. While the rates of recovery differed among coral groups, we found that larval connectivity and juvenile coral density were prominent drivers of recovery for fast growing Acropora but not for the other three groups. Competitive algae and parrotfish had negative and positive effects on coral recovery in general, whereas wave exposure had variable effects related to coral morphology. Overall, the time needed for community re-assembly is habitat specific and drivers of recovery are taxa specific, considerations that require incorporation into planning for ecosystem management under climate change.
Collapse
Affiliation(s)
- Marine Gouezo
- 1 Palau International Coral Reef Center , PO Box 7086, Koror , Palau.,2 Marine Ecology Research Centre, Southern Cross University , PO Box 157, Lismore, New South Wales 2480 , Australia
| | - Yimnang Golbuu
- 1 Palau International Coral Reef Center , PO Box 7086, Koror , Palau
| | - Katharina Fabricius
- 3 Australian Institute of Marine Science , PMB 3, Townsville, Queensland 4810 , Australia
| | - Dawnette Olsudong
- 1 Palau International Coral Reef Center , PO Box 7086, Koror , Palau
| | - Geory Mereb
- 1 Palau International Coral Reef Center , PO Box 7086, Koror , Palau
| | - Victor Nestor
- 1 Palau International Coral Reef Center , PO Box 7086, Koror , Palau
| | - Eric Wolanski
- 4 TropWATER and College of Marine and Environmental Sciences, James Cook University , Townsville, Queensland , Australia
| | - Peter Harrison
- 2 Marine Ecology Research Centre, Southern Cross University , PO Box 157, Lismore, New South Wales 2480 , Australia
| | | |
Collapse
|
48
|
Watts N, Amann M, Arnell N, Ayeb-Karlsson S, Belesova K, Boykoff M, Byass P, Cai W, Campbell-Lendrum D, Capstick S, Chambers J, Dalin C, Daly M, Dasandi N, Davies M, Drummond P, Dubrow R, Ebi KL, Eckelman M, Ekins P, Escobar LE, Fernandez Montoya L, Georgeson L, Graham H, Haggar P, Hamilton I, Hartinger S, Hess J, Kelman I, Kiesewetter G, Kjellstrom T, Kniveton D, Lemke B, Liu Y, Lott M, Lowe R, Sewe MO, Martinez-Urtaza J, Maslin M, McAllister L, McGushin A, Jankin Mikhaylov S, Milner J, Moradi-Lakeh M, Morrissey K, Murray K, Munzert S, Nilsson M, Neville T, Oreszczyn T, Owfi F, Pearman O, Pencheon D, Phung D, Pye S, Quinn R, Rabbaniha M, Robinson E, Rocklöv J, Semenza JC, Sherman J, Shumake-Guillemot J, Tabatabaei M, Taylor J, Trinanes J, Wilkinson P, Costello A, Gong P, Montgomery H. The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate. Lancet 2019; 394:1836-1878. [PMID: 31733928 DOI: 10.1016/s0140-6736(19)32596-6] [Citation(s) in RCA: 593] [Impact Index Per Article: 118.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Nick Watts
- Institute for Global Health, University College London, London, UK.
| | - Markus Amann
- Air Quality and Greenhouse Gases Programme, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Nigel Arnell
- Department of Meteorology, University of Reading, Reading, UK
| | | | - Kristine Belesova
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Maxwell Boykoff
- Cooperative Institute for Research in Environmental Sciences and Environmental Studies, University of Colorado Boulder, Boulder, CO, USA
| | - Peter Byass
- Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden
| | - Wenjia Cai
- Department of Earth System Science, Tsinghua University, Beijing, China
| | | | | | - Jonathan Chambers
- Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Carole Dalin
- Institute for Sustainable Resources, University College London, London, UK
| | - Meaghan Daly
- Department of Environmental Studies, University of New England, Biddeford, ME, USA
| | - Niheer Dasandi
- School of Government, University of Birmingham, Birmingham, UK
| | - Michael Davies
- Institute for Environmental Design and Engineering, University College London, London, UK
| | - Paul Drummond
- Institute for Sustainable Resources, University College London, London, UK
| | - Robert Dubrow
- Yale Climate Change and Health Initiative, Yale University, New Haven, CT, USA
| | - Kristie L Ebi
- Department of Global Health, University of Washington, Washington, DC, USA
| | - Matthew Eckelman
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Paul Ekins
- Institute for Sustainable Resources, University College London, London, UK
| | - Luis E Escobar
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | | | - Hilary Graham
- Department of Health Sciences, University of York, York, UK
| | - Paul Haggar
- School of Psychology, Cardiff University, Cardiff, UK
| | - Ian Hamilton
- Energy Institute, University College London, London, UK
| | - Stella Hartinger
- The Integrated Development, Health and Environment Unit, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jeremy Hess
- Centre for Health and the Global Environment, University of Washington, Washington, DC, USA
| | - Ilan Kelman
- Institute for Global Health, University College London, London, UK
| | - Gregor Kiesewetter
- Air Quality and Greenhouse Gases Programme, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Tord Kjellstrom
- Health and Environment International Trust, Nelson, New Zealand
| | | | - Bruno Lemke
- Nelson Marlborough Institute of Technology, Nelson, New Zealand
| | - Yang Liu
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Melissa Lott
- Center on Global Energy Policy School of International and Public Affairs, Columbia University, New York City, NY, USA
| | - Rachel Lowe
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | | | | | - Mark Maslin
- Department of Geography, University College London, London, UK
| | - Lucy McAllister
- History and Society Division, Babson College, Wellesley, MA, USA
| | - Alice McGushin
- Institute for Global Health, University College London, London, UK
| | | | - James Milner
- Department of Public Health, Environments, and Society, London School of Hygiene & Tropical Medicine, London, UK
| | - Maziar Moradi-Lakeh
- Preventive Medicine and Public Health Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Karyn Morrissey
- European Centre for Environment and Human Health, University of Exeter, Exeter, UK
| | - Kris Murray
- Faculty of Medicine, School of Public Health, Imperial College London, London, UK
| | | | - Maria Nilsson
- Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden
| | - Tara Neville
- Department of Public Health and the Environment, WHO, Geneva, Switzerland
| | | | - Fereidoon Owfi
- Iranian Fisheries Science Research Institute, Agricultural Research, Education, and Extension Organisation, Tehran, Iran
| | - Olivia Pearman
- Center for Science and Technology Policy Research, University of Colorado Boulder, Boulder, CO, USA
| | | | - Dung Phung
- School of Medicine, Griffith University, Brisbane, QLD, Australia
| | - Steve Pye
- Energy Institute, University College London, London, UK
| | - Ruth Quinn
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Mahnaz Rabbaniha
- Iranian Fisheries Science Research Institute, Agricultural Research, Education, and Extension Organisation, Tehran, Iran
| | - Elizabeth Robinson
- School of Agriculture, Policy, and Development, University of Reading, Reading, UK
| | - Joacim Rocklöv
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Jan C Semenza
- Scientific Assessment Section, European Centre for Disease Prevention and Control, Solna, Sweden
| | - Jodi Sherman
- Department of Anesthesiology, Yale University, New Haven, CT, USA
| | | | - Meisam Tabatabaei
- Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, Shah Alam, Malaysia
| | - Jonathon Taylor
- Institute for Environmental Design and Engineering, University College London, London, UK
| | - Joaquin Trinanes
- Physical Oceanography Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA
| | - Paul Wilkinson
- Department of Public Health, Environments, and Society, London School of Hygiene & Tropical Medicine, London, UK
| | - Anthony Costello
- Office of the Vice Provost for Research, University College London, London, UK
| | - Peng Gong
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Hugh Montgomery
- Institute for Human Health and Performance, University College London, London, UK
| |
Collapse
|
49
|
Rogers A, Mumby PJ. Mangroves reduce the vulnerability of coral reef fisheries to habitat degradation. PLoS Biol 2019; 17:e3000510. [PMID: 31714938 PMCID: PMC6850520 DOI: 10.1371/journal.pbio.3000510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/07/2019] [Indexed: 11/19/2022] Open
Abstract
Despite general and wide-ranging negative effects of coral reef degradation on reef communities, hope might exist for reef-associated predators that use nursery habitats. When reef structural complexity is lost, refuge density declines and prey vulnerability increases. Here, we explore whether the presence of nursery habitats can promote high predator productivity on degraded reefs by mitigating the costs of increased vulnerability in early life, whilst allowing for the benefits of increased food availability in adulthood. We apply size-based ecosystem models of coral reefs with high and low structural complexity to predict fish biomass and productivity in the presence and absence of mangrove nurseries. Our scenarios allow us to elucidate the interacting effects of refuge availability and ontogenetic habitat shifts for fisheries productivity. We find that low complexity, degraded reefs with nurseries can support fisheries productivity that is equal to or greater than that in complex reefs that lack nurseries. We compare and validate model predictions with field data from Belize. Our results should inform reef fisheries management strategies and protected areas now and into the future. Despite wide-ranging negative effects of coral reef degradation on reef communities, hope might exist for reef-associated predators that use nursery habitats. This study uses size-based ecosystem models of coral reefs to assess the effects of the presence and absence of mangrove nurseries.
Collapse
Affiliation(s)
- Alice Rogers
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- * E-mail:
| | - Peter J. Mumby
- Marine Spatial Ecology Lab and Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
50
|
Tamburello L, Ravaglioli C, Mori G, Nuccio C, Bulleri F. Enhanced nutrient loading and herbivory do not depress the resilience of subtidal canopy forests in Mediterranean oligotrophic waters. MARINE ENVIRONMENTAL RESEARCH 2019; 149:7-17. [PMID: 31136874 DOI: 10.1016/j.marenvres.2019.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
The interaction between top-down and bottom-up forces determines the recovery trajectory of macroalgal forests exposed to multiple stressors. In an oligotrophic system, we experimentally investigated how nutrient inputs affected the recovery of Cystoseira brachycarpa following physical disturbance of varying intensities, both inside forested areas and at the boundary with sea urchin barrens. Unexpectedly, Cystoseira forests were highly resilient to disturbance, as they were able to recover from any partial damage. In general, the addition of nutrients sped up the recovery of Cystoseira. Thus, only the total canopy removal, in combination with either low nutrient availability or intense grazing pressure, promoted the expansion of mat-forming algae or urchin barrens, respectively. Our study suggests that the effects of enhanced nutrient levels may vary according to the trophic characteristics of the waterbody, and hence, are likely to vary among regions of the Mediterranean basin.
Collapse
Affiliation(s)
| | - Chiara Ravaglioli
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, Pisa, 56126, Italy
| | - Giovanna Mori
- Dipartimento di Biologia, Università di Firenze, Via Micheli 1, Firenze, 50121, Italy
| | - Caterina Nuccio
- Dipartimento di Biologia, Università di Firenze, Via Micheli 1, Firenze, 50121, Italy
| | - Fabio Bulleri
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, Pisa, 56126, Italy
| |
Collapse
|