1
|
Gvozdenov Z, Peng AYT, Biswas A, Barcutean Z, Gestaut D, Frydman J, Struhl K, Freeman BC. TRiC/CCT Chaperonin Governs RNA Polymerase II Activity in the Nucleus to Support RNA Homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615188. [PMID: 39386699 PMCID: PMC11463447 DOI: 10.1101/2024.09.26.615188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The chaperonin TRiC/CCT is a large hetero-oligomeric ringed-structure that is essential in eukaryotes. While present in the nucleus, TRiC/CCT is typically considered to function in the cytosol where it mediates nascent polypeptide folding and the assembly/disassembly of protein complexes. Here, we investigated the nuclear role of TRiC/CCT. Inactivation of TRiC/CCT resulted in a significant increase in the production of nascent RNA leading to the accumulation of noncoding transcripts. The influence on transcription was not due to cytoplasmic TRiC/CCT-activities or other nuclear proteins as the effect was observed when TRiC/CCT was evicted from the nucleus and restricted to the cytoplasm. Rather, our data support a direct role of TRiC/CCT in regulating RNA polymerase II activity, as the chaperonin modulated nascent RNA production both in vivo and in vitro. Overall, our studies reveal a new avenue by which TRiC/CCT contributes to cell homeostasis by regulating the activity of nuclear RNA polymerase II.
Collapse
|
2
|
G Popova P, Chen SP, Liao S, Sadarangani M, Blakney AK. Clinical perspective on topical vaccination strategies. Adv Drug Deliv Rev 2024; 208:115292. [PMID: 38522725 DOI: 10.1016/j.addr.2024.115292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Vaccination is one of the most successful measures in modern medicine to combat diseases, especially infectious diseases, and saves millions of lives every year. Vaccine design and development remains critical and involves many aspects, including the choice of platform, antigen, adjuvant, and route of administration. Topical vaccination, defined herein as the introduction of a vaccine to any of the three layers of the human skin, has attracted interest in recent years as an alternative vaccination approach to the conventional intramuscular administration because of its potential to be needle-free and induce a superior immune response against pathogens. In this review, we describe recent progress in developing topical vaccines, highlight progress in the development of delivery technologies for topical vaccines, discuss potential factors that might impact the topical vaccine efficacy, and provide an overview of the current clinical landscape of topical vaccines.
Collapse
Affiliation(s)
- Petya G Popova
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sunny P Chen
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Suiyang Liao
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada; Life Science Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, British Columbia V5Z 4H4, Canada; Department of Pediatrics, University of British Columbia, 4480 Oak St, Vancouver, BC V6H 0B3, Canada
| | - Anna K Blakney
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
3
|
Oladejo M, Tijani AO, Puri A, Chablani L. Adjuvants in cutaneous vaccination: A comprehensive analysis. J Control Release 2024; 369:475-492. [PMID: 38569943 DOI: 10.1016/j.jconrel.2024.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Skin is the body's largest organ and serves as a protective barrier from physical, thermal, and mechanical environmental challenges. Alongside, the skin hosts key immune system players, such as the professional antigen-presenting cells (APCs) like the Langerhans cells in the epidermis and circulating macrophages in the blood. Further, the literature supports that the APCs can be activated by antigen or vaccine delivery via multiple routes of administration through the skin. Once activated, the stimulated APCs drain to the associated lymph nodes and gain access to the lymphatic system. This further allows the APCs to engage with the adaptive immune system and activate cellular and humoral immune responses. Thus, vaccine delivery via skin offers advantages such as reliable antigen delivery, superior immunogenicity, and convenient delivery. Several preclinical and clinical studies have demonstrated the significance of vaccine delivery using various routes of administration via skin. However, such vaccines often employ adjuvant/(s), along with the antigen of interest. Adjuvants augment the immune response to a vaccine antigen and improve the therapeutic efficacy. Due to these reasons, adjuvants have been successfully used with infectious disease vaccines, cancer immunotherapy, and immune-mediated diseases. To capture these developments, this review will summarize preclinical and clinical study results of vaccine delivery via skin in the presence of adjuvants. A focused discussion regarding the FDA-approved adjuvants will address the experiences of using such adjuvant-containing vaccines. In addition, the challenges and regulatory concerns with these adjuvants will be discussed. Finally, the review will share the prospects of adjuvant-containing vaccines delivered via skin.
Collapse
Affiliation(s)
- Mariam Oladejo
- Department of Immunotherapeutics and Biotechnology, Jerry H Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Akeemat O Tijani
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA.
| | - Lipika Chablani
- Wegmans School of Pharmacy, St. John Fisher University, 3690 East Ave, Rochester, NY 14618, USA.
| |
Collapse
|
4
|
Beirigo EDF, Franco PIR, do Carmo Neto JR, Guerra RO, de Assunção TFS, de Sousa IDOF, Obata MMS, Rodrigues WF, Machado JR, da Silva MV. RNA vaccines in infectious diseases: A systematic review. Microb Pathog 2023; 184:106372. [PMID: 37743026 DOI: 10.1016/j.micpath.2023.106372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Infectious diseases are a major health concern worldwide, especially as they are one of the main causes of mortality in underdeveloped and developing countries. Those that are considered emerging and re-emerging are characterized by unpredictability, high morbidity and mortality, exponential spread, and substantial social impact. These characteristics highlight the need to create an "on demand" control method, with rapid development, large-scale production, and wide distribution. In view of this, RNA vaccines have been investigated as an effective alternative for the treatment and prevention of infectious diseases since they can meet those needs and are considered safe, affordable, and totally synthetic. Therefore, this systematic review aimed to evaluate the use of RNA vaccines for infectious diseases from experimental, in vivo, and in vitro studies. PubMed, Web of Science, and Embase were searched for suitable studies. Additionally, further investigations, such as grey literature checks, were performed. A total of 723 articles were found, of which only 41 met the inclusion criteria. These studies demonstrated the potential of using RNA vaccines to control 19 different infectious diseases, of which COVID-19 was the most studied. Similarly, viruses comprised the largest number of reported vaccine targets, followed by protozoa and bacteria. The mRNA vaccines were the most widely used, and the intramuscular route of administration was the most reported. Regarding preclinical experimental models, mice were the most used to evaluate the impact and safety of the RNA vaccines developed. Thus, although further studies and evaluation of the subject are necessary, it is evident that RNA vaccines can be considered a promising alternative in the treatment and prophylaxis of infectious diseases.
Collapse
Affiliation(s)
- Emília de Freitas Beirigo
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Pablo Igor Ribeiro Franco
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, 74605-450, Goiania, GO, Brazil
| | - José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, 74605-450, Goiania, GO, Brazil.
| | - Rhanoica Oliveira Guerra
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Thaís Farnesi Soares de Assunção
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Isabella de Oliveira Ferrato de Sousa
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Malu Mateus Santos Obata
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Wellington Francisco Rodrigues
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Juliana Reis Machado
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, 74605-450, Goiania, GO, Brazil; Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
5
|
Zhao T, Cai Y, Jiang Y, He X, Wei Y, Yu Y, Tian X. Vaccine adjuvants: mechanisms and platforms. Signal Transduct Target Ther 2023; 8:283. [PMID: 37468460 PMCID: PMC10356842 DOI: 10.1038/s41392-023-01557-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
Adjuvants are indispensable components of vaccines. Despite being widely used in vaccines, their action mechanisms are not yet clear. With a greater understanding of the mechanisms by which the innate immune response controls the antigen-specific response, the adjuvants' action mechanisms are beginning to be elucidated. Adjuvants can be categorized as immunostimulants and delivery systems. Immunostimulants are danger signal molecules that lead to the maturation and activation of antigen-presenting cells (APCs) by targeting Toll-like receptors (TLRs) and other pattern recognition receptors (PRRs) to promote the production of antigen signals and co-stimulatory signals, which in turn enhance the adaptive immune responses. On the other hand, delivery systems are carrier materials that facilitate antigen presentation by prolonging the bioavailability of the loaded antigens, as well as targeting antigens to lymph nodes or APCs. The adjuvants' action mechanisms are systematically summarized at the beginning of this review. This is followed by an introduction of the mechanisms, properties, and progress of classical vaccine adjuvants. Furthermore, since some of the adjuvants under investigation exhibit greater immune activation potency than classical adjuvants, which could compensate for the deficiencies of classical adjuvants, a summary of the adjuvant platforms under investigation is subsequently presented. Notably, we highlight the different action mechanisms and immunological properties of these adjuvant platforms, which will provide a wide range of options for the rational design of different vaccines. On this basis, this review points out the development prospects of vaccine adjuvants and the problems that should be paid attention to in the future.
Collapse
Affiliation(s)
- Tingmei Zhao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yulong Cai
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yujie Jiang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yifan Yu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohe Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Chen X. Emerging adjuvants for intradermal vaccination. Int J Pharm 2023; 632:122559. [PMID: 36586639 PMCID: PMC9794530 DOI: 10.1016/j.ijpharm.2022.122559] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/18/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
The majority of vaccines have been delivered into the muscular tissue. Skin contains large amounts of antigen-presenting cells and has been recognized as a more immunogenic site for vaccine delivery. Intradermal delivery has been approved to improve influenza vaccine efficacy and spare influenza vaccine doses. In response to the recent monkeypox outbreak, intradermal delivery has been also approved to stretch the limited monkeypox vaccine doses to immunize more people at risk. Incorporation of vaccine adjuvants is promising to further increase intradermal vaccine efficacy and spare more vaccine doses. Yet, intradermal vaccination is associated with more significant local reactions than intramuscular vaccination. Thus, adjuvants suitable to boost intradermal vaccination need to have a good local safety without inducing overt local reactions. This review introduces currently approved adjuvants in licensed human vaccines and their relative reactogenicity for intradermal delivery and then introduces emerging chemical and physical adjuvants with a good local safety to boost intradermal vaccination. The rational to develop physical adjuvants, the types of physical adjuvants, and the unique advantages of physical adjuvants to boost intradermal vaccination are also introduced in this review.
Collapse
Affiliation(s)
- Xinyuan Chen
- Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, RI 02881, United States.
| |
Collapse
|
7
|
Choo JJY, McMillan CLD, Young PR, Muller DA. Microarray patches: scratching the surface of vaccine delivery. Expert Rev Vaccines 2023; 22:937-955. [PMID: 37846657 DOI: 10.1080/14760584.2023.2270598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Microneedles are emerging as a promising technology for vaccine delivery, with numerous advantages over traditional needle and syringe methods. Preclinical studies have demonstrated the effectiveness of MAPs in inducing robust immune responses over traditional needle and syringe methods, with extensive studies using vaccines targeted against different pathogens in various animal models. Critically, the clinical trials have demonstrated safety, immunogenicity, and patient acceptance for MAP-based vaccines against influenza, measles, rubella, and SARS-CoV-2. AREAS COVERED This review provides a comprehensive overview of the different types of microarray patches (MAPs) and analyses of their applications in preclinical and clinical vaccine delivery settings. This review also covers additional considerations for microneedle-based vaccination, including adjuvants that are compatible with MAPs, patient safety and factors for global vaccination campaigns. EXPERT OPINION MAP vaccine delivery can potentially be a game-changer for vaccine distribution and coverage in both high-income and low- and middle-income countries. For MAPs to reach this full potential, many critical hurdles must be overcome, such as large-scale production, regulatory compliance, and adoption by global health authorities. However, given the considerable strides made in recent years by MAP developers, it may be possible to see the first MAP-based vaccines in use within the next 5 years.
Collapse
Affiliation(s)
- Jovin J Y Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher L D McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - David A Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Gong X, Gao Y, Shu J, Zhang C, Zhao K. Chitosan-Based Nanomaterial as Immune Adjuvant and Delivery Carrier for Vaccines. Vaccines (Basel) 2022; 10:1906. [PMID: 36423002 PMCID: PMC9696061 DOI: 10.3390/vaccines10111906] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 08/26/2023] Open
Abstract
With the support of modern biotechnology, vaccine technology continues to iterate. The safety and efficacy of vaccines are some of the most important areas of development in the field. As a natural substance, chitosan is widely used in numerous fields-such as immune stimulation, drug delivery, wound healing, and antibacterial procedures-due to its good biocompatibility, low toxicity, biodegradability, and adhesion. Chitosan-based nanoparticles (NPs) have attracted extensive attention with respect to vaccine adjuvants and delivery systems due to their excellent properties, which can effectively enhance immune responses. Here, we list the classifications and mechanisms of action of vaccine adjuvants. At the same time, the preparation methods of chitosan, its NPs, and their mechanism of action in the delivery system are introduced. The extensive applications of chitosan and its NPs in protein vaccines and nucleic acid vaccines are also introduced. This paper reviewed the latest research progress of chitosan-based NPs in vaccine adjuvant and drug delivery systems.
Collapse
Affiliation(s)
- Xiaochen Gong
- Institute of Nanobiomaterials and Immunology, School of Pharmaceutical Sciences & School of Life Science, Taizhou University, Taizhou 318000, China
- School of Medical Technology, Qiqihar Medical University, Qiqihar 161006, China
| | - Yuan Gao
- Institute of Nanobiomaterials and Immunology, School of Pharmaceutical Sciences & School of Life Science, Taizhou University, Taizhou 318000, China
| | - Jianhong Shu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Hom-Sun Biotechnology Co., Ltd., Shaoxing 312366, China
| | - Chunjing Zhang
- School of Medical Technology, Qiqihar Medical University, Qiqihar 161006, China
| | - Kai Zhao
- Institute of Nanobiomaterials and Immunology, School of Pharmaceutical Sciences & School of Life Science, Taizhou University, Taizhou 318000, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Hom-Sun Biotechnology Co., Ltd., Shaoxing 312366, China
| |
Collapse
|
9
|
Fan J, Jin S, Gilmartin L, Toth I, Hussein WM, Stephenson RJ. Advances in Infectious Disease Vaccine Adjuvants. Vaccines (Basel) 2022; 10:1120. [PMID: 35891284 PMCID: PMC9316175 DOI: 10.3390/vaccines10071120] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Vaccines are one of the most significant medical interventions in the fight against infectious diseases. Since their discovery by Edward Jenner in 1796, vaccines have reduced the worldwide transmission to eradication levels of infectious diseases, including smallpox, diphtheria, hepatitis, malaria, and influenza. However, the complexity of developing safe and effective vaccines remains a barrier for combating many more infectious diseases. Immune stimulants (or adjuvants) are an indispensable factor in vaccine development, especially for inactivated and subunit-based vaccines due to their decreased immunogenicity compared to whole pathogen vaccines. Adjuvants are widely diverse in structure; however, their overall function in vaccine constructs is the same: to enhance and/or prolong an immunological response. The potential for adverse effects as a result of adjuvant use, though, must be acknowledged and carefully managed. Understanding the specific mechanisms of adjuvant efficacy and safety is a key prerequisite for adjuvant use in vaccination. Therefore, rigorous pre-clinical and clinical research into adjuvant development is essential. Overall, the incorporation of adjuvants allows for greater opportunities in advancing vaccine development and the importance of immune stimulants drives the emergence of novel and more effective adjuvants. This article highlights recent advances in vaccine adjuvant development and provides detailed data from pre-clinical and clinical studies specific to infectious diseases. Future perspectives into vaccine adjuvant development are also highlighted.
Collapse
Affiliation(s)
- Jingyi Fan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Shengbin Jin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Lachlan Gilmartin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| |
Collapse
|
10
|
dos-Santos JS, Firmino-Cruz L, da Fonseca-Martins AM, Oliveira-Maciel D, Perez GG, Roncaglia-Pereira VA, Dumard CH, Guedes-da-Silva FH, Santos ACV, Leandro MDS, Ferreira JRM, Guimarães-Pinto K, Conde L, Rodrigues DAS, Silva MVDM, Alvim RGF, Lima TM, Marsili FF, Abreu DPB, Ferreira Jr. OC, Mohana Borges RDS, Tanuri A, Souza TML, Rossi-Bergmann B, Vale AM, Silva JL, de Oliveira AC, Filardy AD, Gomes AMO, de Matos Guedes HL. Immunogenicity of SARS-CoV-2 Trimeric Spike Protein Associated to Poly(I:C) Plus Alum. Front Immunol 2022; 13:884760. [PMID: 35844561 PMCID: PMC9281395 DOI: 10.3389/fimmu.2022.884760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/15/2022] [Indexed: 12/20/2022] Open
Abstract
The SARS-CoV-2 pandemic has had a social and economic impact worldwide, and vaccination is an efficient strategy for diminishing those damages. New adjuvant formulations are required for the high vaccine demands, especially adjuvant formulations that induce a Th1 phenotype. Herein we assess a vaccination strategy using a combination of Alum and polyinosinic:polycytidylic acid [Poly(I:C)] adjuvants plus the SARS-CoV-2 spike protein in a prefusion trimeric conformation by an intradermal (ID) route. We found high levels of IgG anti-spike antibodies in the serum by enzyme linked immunosorbent assay (ELISA) and high neutralizing titers against SARS-CoV-2 in vitro by neutralization assay, after two or three immunizations. By evaluating the production of IgG subtypes, as expected, we found that formulations containing Poly(I:C) induced IgG2a whereas Alum did not. The combination of these two adjuvants induced high levels of both IgG1 and IgG2a. In addition, cellular immune responses of CD4+ and CD8+ T cells producing interferon-gamma were equivalent, demonstrating that the Alum + Poly(I:C) combination supported a Th1 profile. Based on the high neutralizing titers, we evaluated B cells in the germinal centers, which are specific for receptor-binding domain (RBD) and spike, and observed that more positive B cells were induced upon the Alum + Poly(I:C) combination. Moreover, these B cells produced antibodies against both RBD and non-RBD sites. We also studied the impact of this vaccination preparation [spike protein with Alum + Poly(I:C)] in the lungs of mice challenged with inactivated SARS-CoV-2 virus. We found a production of IgG, but not IgA, and a reduction in neutrophil recruitment in the bronchoalveolar lavage fluid (BALF) of mice, suggesting that our immunization scheme reduced lung inflammation. Altogether, our data suggest that Alum and Poly(I:C) together is a possible adjuvant combination for vaccines against SARS-CoV-2 by the intradermal route.
Collapse
Affiliation(s)
- Júlio Souza dos-Santos
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Luan Firmino-Cruz
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Alessandra Marcia da Fonseca-Martins
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diogo Oliveira-Maciel
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Gustavo Guadagnini Perez
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Victor A. Roncaglia-Pereira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carlos H. Dumard
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Francisca H. Guedes-da-Silva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Ana C. Vicente Santos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Monique dos Santos Leandro
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Kamila Guimarães-Pinto
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Luciana Conde
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Danielle A. S. Rodrigues
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Renata G. F. Alvim
- Cell Culture Engineering Lab., Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Tulio M. Lima
- Cell Culture Engineering Lab., Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Federico F. Marsili
- Cell Culture Engineering Lab., Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Daniel P. B. Abreu
- Cell Culture Engineering Lab., Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | | | - Amilcar Tanuri
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Thiago Moreno L. Souza
- Immunopharmacology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Bartira Rossi-Bergmann
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - André M. Vale
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Jerson Lima Silva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Andréa Cheble de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Andre M. O. Gomes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Herbert Leonel de Matos Guedes
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Interdisciplinary Medical Research Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Zhang Y, Wang R, He C, Zhang YF, Luo Z, Luo J, Chen S, Jin Y, Xie B, Liu Y. Amantadine-assembled nanostimulator enhances dimeric RBD antigen-elicited cross-neutralization against SARS-CoV-2 strains. NANO TODAY 2022; 43:101393. [PMID: 35035515 PMCID: PMC8752318 DOI: 10.1016/j.nantod.2022.101393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/15/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
There is an urgent need to develop new vaccination strategies to elevate the cross-neutralization against different SARS-CoV-2 strains. In this study, we construct the spherical amantadine-assembled nanostimulator (AAS). Amantadine as immunostimulating molecules are displayed on the outermost layer of AAS. Molecular mechanism analysis reveals that AAS can activate RIG-I-like receptor (RLR) signaling pathway to increase the expression of type I interferons in vivo. AAS-mediated activation of RLR signaling pathway further promotes the maturation and proliferation of dendritic cells (DCs) and T helper cells (Ths), finally activating B cells to produce potent antibody responses. In performance evaluation experiments, the mixture of AAS and dimeric RBD significantly enhances RBD-specific humoral responses (4-fold IgG, 3.5-fold IgG2a, 3.3-fold IgG2b, 3.8-fold IgG3 and 1.3-fold IgM), in comparison to aluminum adjuvant-assistant dimeric RBD. Importantly, AAS dramatically elevates dimeric RBD-elicited cross-neutralization against different SARS-CoV-2 strains such as Wuhan-Hu-1 (9-fold), B.1.1.7 (UK variant, 15-fold), B.1.351 (South African variant, 4-fold) and B.1.617.2 (India variant, 7-fold). Our study verifies the mechanism of AAS in activating RLR signaling pathway in host immune system and highlights the power of AAS in improving antigen-elicited cross-neutralization against different SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Ye Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650000, China
| | - Ruixin Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650000, China
| | - Chunyan He
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650000, China
| | - Yu-Fang Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650000, China
| | - Zhongrui Luo
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650000, China
| | - Jia Luo
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650000, China
| | - Sisi Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650000, China
| | - Yu Jin
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650000, China
| | - Bowen Xie
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650000, China
| | - Ye Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650000, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control and Evaluation of Vaccines and Biological Products, Kunming, Yunnan 650000, China
| |
Collapse
|
12
|
Garcia-Vello P, Di Lorenzo F, Zucchetta D, Zamyatina A, De Castro C, Molinaro A. Lipopolysaccharide lipid A: A promising molecule for new immunity-based therapies and antibiotics. Pharmacol Ther 2022; 230:107970. [PMID: 34454000 DOI: 10.1016/j.pharmthera.2021.107970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/24/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022]
Abstract
Lipopolysaccharides (LPS) are the main components of the external leaflet of the Gram-negative outer membrane and consist of three different moieties: lipid A, core oligosaccharide, and O-polysaccharide. The lipid A is a glucosamine disaccharide with different levels of acylation and phosphorylation, beside carrying, in certain cases, additional substituents on the sugar backbone. It is also the main immunostimulatory part of the LPS, as its recognition by the host immune system represents a fundamental event for detection of perilous microorganisms. Moreover, an uncontrolled immune response caused by a large amount of circulating LPS can lead to dramatic outcomes for human health, such as septic shock. The immunostimulant properties of an LPS incredibly vary depending on lipid A chemical structure, and for this reason, natural and synthetic variants of the lipid A are under study to develop new drugs that mimic or antagonise its natural effects. Here, we review past and recent findings on the lipid A as an antibiotic target and immune-therapeutic molecule, with a special attention on the crucial role of the chemical structure and its exploitation for conceiving novel strategies for treatment of several immune-related pathologies.
Collapse
Affiliation(s)
- Pilar Garcia-Vello
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy.
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Daniele Zucchetta
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Alla Zamyatina
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cristina De Castro
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy.
| |
Collapse
|
13
|
Tatovic D, McAteer MA, Barry J, Barrientos A, Rodríguez Terradillos K, Perera I, Kochba E, Levin Y, Dul M, Coulman SA, Birchall JC, von Ruhland C, Howell A, Stenson R, Alhadj Ali M, Luzio SD, Dunseath G, Cheung WY, Holland G, May K, Ingram JR, Chowdhury MMU, Wong FS, Casas R, Dayan C, Ludvigsson J. Safety of the use of Gold Nanoparticles conjugated with proinsulin peptide and administered by hollow microneedles as an immunotherapy in Type 1 diabetes. IMMUNOTHERAPY ADVANCES 2022; 2:ltac002. [PMID: 35919496 PMCID: PMC9327128 DOI: 10.1093/immadv/ltac002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Antigen-specific immunotherapy is an immunomodulatory strategy for autoimmune diseases, such as type 1 diabetes, in which patients are treated with autoantigens to promote immune tolerance, stop autoimmune β-cell destruction and prevent permanent dependence on exogenous insulin. In this study, human proinsulin peptide C19-A3 (known for its positive safety profile) was conjugated to ultrasmall gold nanoparticles (GNPs), an attractive drug delivery platform due to the potential anti-inflammatory properties of gold. We hypothesised that microneedle intradermal delivery of C19-A3 GNP may improve peptide pharmacokinetics and induce tolerogenic immunomodulation and proceeded to evaluate its safety and feasibility in a first-in-human trial. Allowing for the limitation of the small number of participants, intradermal administration of C19-A3 GNP appears safe and well tolerated in participants with type 1 diabetes. The associated prolonged skin retention of C19-A3 GNP after intradermal administration offers a number of possibilities to enhance its tolerogenic potential, which should be explored in future studies
Collapse
Affiliation(s)
- D Tatovic
- Diabetes Research Group, Cardiff University School of Medicine, Cardiff, UK
| | | | - J Barry
- Midatech Pharma PLC, Cardiff, UK
| | | | | | - I Perera
- Midatech Pharma PLC, Cardiff, UK
| | - E Kochba
- NanoPass Technologies Ltd., Nes Ziona, Israel
| | - Y Levin
- NanoPass Technologies Ltd., Nes Ziona, Israel
| | - M Dul
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, UK
| | - S A Coulman
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, UK
| | - J C Birchall
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, UK
| | - C von Ruhland
- Central Biotechnology Services, Cardiff University, Cardiff, UK
| | - A Howell
- Diabetes Research Group, Cardiff University School of Medicine, Cardiff, UK
| | - R Stenson
- Diabetes Research Group, Cardiff University School of Medicine, Cardiff, UK
| | - M Alhadj Ali
- Diabetes Research Group, Cardiff University School of Medicine, Cardiff, UK
| | - S D Luzio
- Swansea Trials Unit, Swansea University Medical School, UK
| | - G Dunseath
- Swansea Trials Unit, Swansea University Medical School, UK
| | - W Y Cheung
- Diabetes Research Unit Cymru, Institute for Life Sciences, Swansea University, Swansea, UK
| | - G Holland
- Swansea Trials Unit, Swansea University Medical School, UK
| | - K May
- Department of Cellular Pathology, University Hospital of Wales, Cardiff, UK
| | - J R Ingram
- Division of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - M M U Chowdhury
- Welsh Institute of Dermatology, University Hospital of Wales, Cardiff, UK
| | - F S Wong
- Diabetes Research Group, Cardiff University School of Medicine, Cardiff, UK
| | - R Casas
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - C Dayan
- Diabetes Research Group, Cardiff University School of Medicine, Cardiff, UK
| | - J Ludvigsson
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences and Crown Princess Victoria Children´s Hospital, Linköping University, Linköping, Sweden
| |
Collapse
|
14
|
Firdaus FZ, Skwarczynski M, Toth I. Developments in Vaccine Adjuvants. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:145-178. [PMID: 34918245 DOI: 10.1007/978-1-0716-1892-9_8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vaccines, including subunit, recombinant, and conjugate vaccines, require the use of an immunostimulator/adjuvant for maximum efficacy. Adjuvants not only enhance the strength and longevity of immune responses but may also influence the type of response. In this chapter, we review the adjuvants that are available for use in human vaccines, such as alum, MF59, AS03, and AS01. We extensively discuss their composition, characteristics, mechanism of action, and effects on the immune system. Additionally, we summarize recent trends in adjuvant discovery, providing a brief overview of saponins, TLRs agonists, polysaccharides, nanoparticles, cytokines, and mucosal adjuvants.
Collapse
Affiliation(s)
- Farrhana Ziana Firdaus
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,Institute of Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
15
|
Kim Y, Hong K, Kim H, Nam J. Influenza vaccines: Past, present, and future. Rev Med Virol 2022; 32:e2243. [PMID: 33949021 PMCID: PMC8209895 DOI: 10.1002/rmv.2243] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/08/2023]
Abstract
Globally, infection by seasonal influenza viruses causes 3-5 million cases of severe illness and 290,000-650,000 respiratory deaths each year. Various influenza vaccines, including inactivated split- and subunit-type, recombinant and live attenuated vaccines, have been developed since the 1930s when it was discovered that influenza viruses could be cultivated in embryonated eggs. However, the protection rate offered by these vaccines is rather low, especially in very young children and the elderly. In this review, we describe the history of influenza vaccine development, the immune responses induced by the vaccines and the adjuvants applied. Further, we suggest future directions for improving the effectiveness of influenza vaccines in all age groups. This includes the development of an influenza vaccine that induces a balanced T helper cell type 1 and type 2 immune responses based on the understanding of the immune system, and the development of a broad-spectrum influenza vaccine that can increase effectiveness despite antigen shifts and drifts, which are characteristics of the influenza virus. A brighter future can be envisaged if the development of an adjuvant that is safe and effective is realized.
Collapse
Affiliation(s)
- Yun‐Hee Kim
- Department of Medical and Biological SciencesThe Catholic University of KoreaBucheonRepublic of Korea
- Department of R&DSK BioscienceBundang‐guRepublic of Korea
| | - Kee‐Jong Hong
- UIC FoundationKonkuk UniversitySeoulRepublic of Korea
| | - Hun Kim
- Department of R&DSK BioscienceBundang‐guRepublic of Korea
| | - Jae‐Hwan Nam
- Department of Medical and Biological SciencesThe Catholic University of KoreaBucheonRepublic of Korea
| |
Collapse
|
16
|
Chung YH, Church D, Koellhoffer EC, Osota E, Shukla S, Rybicki EP, Pokorski JK, Steinmetz NF. Integrating plant molecular farming and materials research for next-generation vaccines. NATURE REVIEWS. MATERIALS 2021; 7:372-388. [PMID: 34900343 DOI: 10.1038/s41578-021-00399-395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 05/28/2023]
Abstract
Biologics - medications derived from a biological source - are increasingly used as pharmaceuticals, for example, as vaccines. Biologics are usually produced in bacterial, mammalian or insect cells. Alternatively, plant molecular farming, that is, the manufacture of biologics in plant cells, transgenic plants and algae, offers a cheaper and easily adaptable strategy for the production of biologics, in particular, in low-resource settings. In this Review, we discuss current vaccination challenges, such as cold chain requirements, and highlight how plant molecular farming in combination with advanced materials can be applied to address these challenges. The production of plant viruses and virus-based nanotechnologies in plants enables low-cost and regional fabrication of thermostable vaccines. We also highlight key new vaccine delivery technologies, including microneedle patches and material platforms for intranasal and oral delivery. Finally, we provide an outlook of future possibilities for plant molecular farming of next-generation vaccines and biologics.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California, San Diego, La Jolla, CA USA
| | - Derek Church
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
| | - Edward C Koellhoffer
- Department of Radiology, University of California, San Diego Health, La Jolla, CA USA
| | - Elizabeth Osota
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
- Biomedical Science Program, University of California, San Diego, La Jolla, CA USA
| | - Sourabh Shukla
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
| | - Edward P Rybicki
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Jonathan K Pokorski
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA USA
- Center for Nano-Immuno Engineering, University of California, San Diego, La Jolla, CA USA
| | - Nicole F Steinmetz
- Department of Bioengineering, University of California, San Diego, La Jolla, CA USA
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
- Department of Radiology, University of California, San Diego Health, La Jolla, CA USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA USA
- Center for Nano-Immuno Engineering, University of California, San Diego, La Jolla, CA USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA USA
| |
Collapse
|
17
|
Chung YH, Church D, Koellhoffer EC, Osota E, Shukla S, Rybicki EP, Pokorski JK, Steinmetz NF. Integrating plant molecular farming and materials research for next-generation vaccines. NATURE REVIEWS. MATERIALS 2021; 7:372-388. [PMID: 34900343 PMCID: PMC8647509 DOI: 10.1038/s41578-021-00399-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 05/04/2023]
Abstract
Biologics - medications derived from a biological source - are increasingly used as pharmaceuticals, for example, as vaccines. Biologics are usually produced in bacterial, mammalian or insect cells. Alternatively, plant molecular farming, that is, the manufacture of biologics in plant cells, transgenic plants and algae, offers a cheaper and easily adaptable strategy for the production of biologics, in particular, in low-resource settings. In this Review, we discuss current vaccination challenges, such as cold chain requirements, and highlight how plant molecular farming in combination with advanced materials can be applied to address these challenges. The production of plant viruses and virus-based nanotechnologies in plants enables low-cost and regional fabrication of thermostable vaccines. We also highlight key new vaccine delivery technologies, including microneedle patches and material platforms for intranasal and oral delivery. Finally, we provide an outlook of future possibilities for plant molecular farming of next-generation vaccines and biologics.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California, San Diego, La Jolla, CA USA
| | - Derek Church
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
| | - Edward C. Koellhoffer
- Department of Radiology, University of California, San Diego Health, La Jolla, CA USA
| | - Elizabeth Osota
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
- Biomedical Science Program, University of California, San Diego, La Jolla, CA USA
| | - Sourabh Shukla
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
| | - Edward P. Rybicki
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Jonathan K. Pokorski
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA USA
- Center for Nano-Immuno Engineering, University of California, San Diego, La Jolla, CA USA
| | - Nicole F. Steinmetz
- Department of Bioengineering, University of California, San Diego, La Jolla, CA USA
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
- Department of Radiology, University of California, San Diego Health, La Jolla, CA USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA USA
- Center for Nano-Immuno Engineering, University of California, San Diego, La Jolla, CA USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA USA
| |
Collapse
|
18
|
Microneedle-Mediated Vaccination: Innovation and Translation. Adv Drug Deliv Rev 2021; 179:113919. [PMID: 34375682 DOI: 10.1016/j.addr.2021.113919] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022]
Abstract
Vaccine administration by subcutaneous or intramuscular injection is the most commonly prescribed route for inoculation, however, it is often associated with some deficiencies such as low compliance, high professionalism, and risk of infection. Therefore, the application of microneedles for vaccine delivery has gained widespread interests in the past few years due to its high compliance, minimal invasiveness, and convenience. This review focuses on recent advances in the development and application of microneedles for vaccination based on different delivery strategies, and introduces the current status of microneedle-mediated vaccination in clinical translation. The prospects for its application including opportunities and challenges are further discussed.
Collapse
|
19
|
O'Neill CL, Shrimali PC, Clapacs ZE, Files MA, Rudra JS. Peptide-based supramolecular vaccine systems. Acta Biomater 2021; 133:153-167. [PMID: 34010691 PMCID: PMC8497425 DOI: 10.1016/j.actbio.2021.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022]
Abstract
Currently approved replication-competent and inactivated vaccines are limited by excessive reactogenicity and poor safety profiles, while subunit vaccines are often insufficiently immunogenic without co-administering exogenous adjuvants. Self-assembling peptide-, peptidomimetic-, and protein-based biomaterials offer a means to overcome these challenges through their inherent modularity, multivalency, and biocompatibility. As these scaffolds are biologically derived and present antigenic arrays reminiscent of natural viruses, they are prone to immune recognition and are uniquely capable of functioning as self-adjuvanting vaccine delivery vehicles that improve humoral and cellular responses. Beyond this intrinsic immunological advantage, the wide range of available amino acids allows for facile de novo design or straightforward modifications to existing sequences. This has permitted the development of vaccines and immunotherapies tailored to specific disease models, as well as generalizable platforms that have been successfully applied to prevent or treat numerous infectious and non-infectious diseases. In this review, we briefly introduce the immune system, discuss the structural determinants of coiled coils, β-sheets, peptide amphiphiles, and protein subunit nanoparticles, and highlight the utility of these materials using notable examples of their innate and adaptive immunomodulatory capacity. STATEMENT OF SIGNIFICANCE: Subunit vaccines have recently gained considerable attention due to their favorable safety profiles relative to traditional whole-cell vaccines; however, their reduced efficacy requires co-administration of reactogenic adjuvants to boost immune responses. This has led to collaborative efforts between engineers and immunologists to develop nanomaterial-based vaccination platforms that can elicit protection without deleterious side effects. Self-assembling peptidic biomaterials are a particularly attractive approach to this problem, as their structure and function can be controlled through primary sequence design and their capacity for multivalent presentation of antigens grants them intrinsic self-adjuvanticity. This review introduces the various architectures adopted by self-assembling peptides and discusses their application as modulators of innate and adaptive immunity.
Collapse
Affiliation(s)
- Conor L O'Neill
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| | - Paresh C Shrimali
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| | - Zoe E Clapacs
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| | - Megan A Files
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, United States.
| | - Jai S Rudra
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| |
Collapse
|
20
|
Zhang R, Hung IFN. Approaches in broadening the neutralizing antibody response of the influenza vaccine. Expert Rev Vaccines 2021; 20:1539-1547. [PMID: 34549677 DOI: 10.1080/14760584.2021.1984887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Influenza vaccine is the mainstay for influenza prevention and elicits immune response and antigen-specific neutralizing antibodies against influenza virus. However, antigenic drift and shift can confer influenza virus to escape from the immune response induced by vaccine, and then reduce the vaccine effectiveness. AREAS COVERED To improve effect and neutralizing antibody response of vaccine for heterologous influenza virus, a literature review of preclinical and clinical studies published before August 2021 and searched in PubMed, which evaluated vaccine effectiveness improved by adjuvants and administration route. EXPERT OPINION The review showed that adjuvant, including imiquimod, GLA, MF59, and AS03, can improve the effectiveness of influenza vaccines by regulating immune system. Subjects receiving influenza vaccine combined with these adjuvants showed enhanced antibody response against homologous and heterologous virus strains compared to those vaccinated without adjuvant. This review also discussed the role of intradermal vaccination. In contrast to intramuscular vaccination, intradermal vaccination elicited a robust and prolonged antibody response against vaccine strains and drifted virus than intramuscular vaccination.
Collapse
Affiliation(s)
- Ruiqi Zhang
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| |
Collapse
|
21
|
Singhatiraj E, Pongpirul K, Jongkaewwattana A, Hirankarn N. Intradermal ChAdOx1 Vaccine Following Two CoronaVac Shots: A Case Report. Vaccines (Basel) 2021; 9:990. [PMID: 34579227 PMCID: PMC8472992 DOI: 10.3390/vaccines9090990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Inactivated SARS-CoV-2 vaccines are used in many countries with uncertain immunogenicity. Intradermal ChAdOx1 has been proposed as a resource-efficient heterologous third booster shot. A 52-year-old healthy male healthcare professional had received two intramuscular CoronaVac shots on 21 April and 23 May 2021, and volunteered to take a 0.1 mL ChAdOx1 vaccine intradermally on 29 June 2021, with minimal local reactions. The declining IgG levels against spike protein from the two CoronaVac shots increased to higher than 10,000 AU/mL two weeks after the intradermal ChAdOx1. Moreover, the neutralizing antibody increased from 66.77% to almost 100%. A ratio of 6.6:9.7 of IgA:IgG was observed. The 50% pseudovirus neutralization titer (PVNT50) against lentiviral pseudovirus bearing a codon-optimized spike gene (wild type, alpha, beta, and delta) were 1812.42, 822.99, 1025.42, 1347.13, respectively. The SARS-CoV-2-specific T cells to spike protein-peptide pools (532-788 SFU/106 PBMCs) were detected. In conclusion, the antibody and cellular responses to the intradermal ChAdOx1, as a third booster dose in a healthy volunteer who received two intramuscular CoronaVac shots, revealed a dramatic increase in the total antibodies, including IgG, IgA, as well as T cell responses against spike protein. The immune response from intradermal ChAdOx1 should be further investigated in a larger population.
Collapse
Affiliation(s)
- Ekachai Singhatiraj
- Department of Medicine, Bumrungrad International Hospital, Bangkok 10110, Thailand;
| | - Krit Pongpirul
- Department of Medicine, Bumrungrad International Hospital, Bangkok 10110, Thailand;
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Anan Jongkaewwattana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand;
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
22
|
Chen Y, Alba M, Tieu T, Tong Z, Minhas RS, Rudd D, Voelcker NH, Cifuentes-Rius A, Elnathan R. Engineering Micro–Nanomaterials for Biomedical Translation. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Maria Alba
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Terence Tieu
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton VIC 3168 Australia
| | - Ziqiu Tong
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Rajpreet Singh Minhas
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - David Rudd
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
- Department of Materials Science and Engineering Monash University 22 Alliance Lane Clayton VIC 3168 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton VIC 3168 Australia
- INM-Leibniz Institute for New Materials Campus D2 2 Saarbrücken 66123 Germany
| | - Anna Cifuentes-Rius
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
- Department of Materials Science and Engineering Monash University 22 Alliance Lane Clayton VIC 3168 Australia
| |
Collapse
|
23
|
Abhyankar MM, Orr MT, Kinsey R, Sivananthan S, Nafziger AJ, Oakland DN, Young MK, Farr L, Uddin MJ, Leslie JL, Burgess SL, Liang H, De Lima I, Larson E, Guderian JA, Lin S, Kahn A, Ghosh P, Reed S, Tomai MA, Pedersen K, Petri WA, Fox CB. Optimizing a Multi-Component Intranasal Entamoeba Histolytica Vaccine Formulation Using a Design of Experiments Strategy. Front Immunol 2021; 12:683157. [PMID: 34248966 PMCID: PMC8268010 DOI: 10.3389/fimmu.2021.683157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/07/2021] [Indexed: 11/24/2022] Open
Abstract
Amebiasis is a neglected tropical disease caused by Entamoeba histolytica. Although the disease burden varies geographically, amebiasis is estimated to account for some 55,000 deaths and millions of infections globally per year. Children and travelers are among the groups with the greatest risk of infection. There are currently no licensed vaccines for prevention of amebiasis, although key immune correlates for protection have been proposed from observational studies in humans. We previously described the development of a liposomal adjuvant formulation containing two synthetic TLR ligands (GLA and 3M-052) that enhanced antigen-specific fecal IgA, serum IgG2a, a mixed IFNγ and IL-17A cytokine profile from splenocytes, and protective efficacy following intranasal administration with the LecA antigen. By applying a statistical design of experiments (DOE) and desirability function approach, we now describe the optimization of the dose of each vaccine formulation component (LecA, GLA, 3M-052, and liposome) as well as the excipient composition (acyl chain length and saturation; PEGylated lipid:phospholipid ratio; and presence of antioxidant, tonicity, or viscosity agents) to maximize desired immunogenicity characteristics while maintaining physicochemical stability. This DOE/desirability index approach led to the identification of a lead candidate composition that demonstrated immune response durability and protective efficacy in the mouse model, as well as an assessment of the impact of each active vaccine formulation component on protection. Thus, we demonstrate that both GLA and 3M-052 are required for statistically significant protective efficacy. We also show that immunogenicity and efficacy results differ in female vs male mice, and the differences appear to be at least partly associated with adjuvant formulation composition.
Collapse
Affiliation(s)
- Mayuresh M Abhyankar
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Mark T Orr
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Robert Kinsey
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States
| | - Sandra Sivananthan
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States
| | - Andrew J Nafziger
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - David N Oakland
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Mary K Young
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Laura Farr
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Md Jashim Uddin
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Jhansi L Leslie
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Stacey L Burgess
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Hong Liang
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States
| | - Ines De Lima
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States
| | - Elise Larson
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States
| | - Jeffrey A Guderian
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States
| | - Susan Lin
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States
| | - Aaron Kahn
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States
| | - Prakash Ghosh
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States
| | - Sierra Reed
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States
| | - Mark A Tomai
- 3M Corporate Research Materials Laboratory, 3M Center, St Paul, MN, United States
| | | | - William A Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Christopher B Fox
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
24
|
Korkmaz E, Balmert SC, Sumpter TL, Carey CD, Erdos G, Falo LD. Microarray patches enable the development of skin-targeted vaccines against COVID-19. Adv Drug Deliv Rev 2021; 171:164-186. [PMID: 33539853 PMCID: PMC8060128 DOI: 10.1016/j.addr.2021.01.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic is a serious threat to global health and the global economy. The ongoing race to develop a safe and efficacious vaccine to prevent infection by SARS-CoV-2, the causative agent for COVID-19, highlights the importance of vaccination to combat infectious pathogens. The highly accessible cutaneous microenvironment is an ideal target for vaccination since the skin harbors a high density of antigen-presenting cells and immune accessory cells with broad innate immune functions. Microarray patches (MAPs) are an attractive intracutaneous biocargo delivery system that enables safe, reproducible, and controlled administration of vaccine components (antigens, with or without adjuvants) to defined skin microenvironments. This review describes the structure of the SARS-CoV-2 virus and relevant antigenic targets for vaccination, summarizes key concepts of skin immunobiology in the context of prophylactic immunization, and presents an overview of MAP-mediated cutaneous vaccine delivery. Concluding remarks on MAP-based skin immunization are provided to contribute to the rational development of safe and effective MAP-delivered vaccines against emerging infectious diseases, including COVID-19.
Collapse
Affiliation(s)
- Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Stephen C Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tina L Sumpter
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
25
|
Baldwin SL, Reese VA, Larsen SE, Beebe E, Guderian J, Orr MT, Fox CB, Reed SG, Coler RN. Prophylactic efficacy against Mycobacterium tuberculosis using ID93 and lipid-based adjuvant formulations in the mouse model. PLoS One 2021; 16:e0247990. [PMID: 33705411 PMCID: PMC7951850 DOI: 10.1371/journal.pone.0247990] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/17/2021] [Indexed: 11/19/2022] Open
Abstract
An estimated 10 million people developed tuberculosis (TB) disease in 2019 which underscores the need for a vaccine that prevents disease and reduces transmission. The aim of our current studies is to characterize and test a prophylactic tuberculosis vaccine comprised of ID93, a polyprotein fusion antigen, and a liposomal formulation [including a synthetic TLR4 agonist (glucopyranosyl lipid adjuvant, GLA) and QS-21] in a preclinical mouse model of TB disease. Comparisons of the ID93+GLA-LSQ vaccines are also made to the highly characterized ID93+GLA-SE oil-in-water emulsion adjuvant, which are also included these studies. The recent success of vaccine candidate M72 combined with adjuvant AS01E (GlaxoSmithKline Biologicals) in reducing progression to active disease is promising and has renewed excitement for experimental vaccines currently in the TB vaccine pipeline. The AS01E adjuvant contains monophosphoryl lipid A (MPL) and QS-21 (a saponin) in a liposomal formulation. While AS01E has demonstrated potent adjuvant activity as a component of both approved and experimental vaccines, developing alternatives to this adjuvant system will become important to fill the high demand envisioned for future vaccine needs. Furthermore, replacement sources of potent adjuvants will help to supply the demand of a TB vaccine [almost one-quarter of the world's population are estimated to have latent Mycobacterium tuberculosis (Mtb) according to the WHO 2019 global TB report], addressing (a) cost of goods, (b) supply of goods, and (c) improved efficacy of subunit vaccines against Mtb. We show that both ID93+GLA-SE (containing an emulsion adjuvant) and ID93+GLA-LSQ (containing a liposomal adjuvant) induce ID93-specific TH1 cellular immunity including CD4+CD44+ T cells expressing IFNγ, TNF, and IL-2 (using flow cytometry and intracellular cytokine staining) and vaccine-specific IgG2 antibody responses (using an ELISA). In addition, both ID93+GLA-SE and ID93+GLA-LSQ effectively decrease the bacterial load within the lungs of mice infected with Mtb. Formulations based on this liposomal adjuvant formulation may provide an alternative to AS01 adjuvant systems.
Collapse
Affiliation(s)
- Susan L. Baldwin
- Seattle Children’s Research Institute, Seattle, WA, United States of America
- * E-mail:
| | - Valerie A. Reese
- Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Sasha E. Larsen
- Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Elyse Beebe
- Infectious Disease Research Institute, Seattle, WA, United States of America
| | - Jeff Guderian
- Infectious Disease Research Institute, Seattle, WA, United States of America
| | - Mark T. Orr
- Infectious Disease Research Institute, Seattle, WA, United States of America
| | - Christopher B. Fox
- Infectious Disease Research Institute, Seattle, WA, United States of America
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| | - Steven G. Reed
- Infectious Disease Research Institute, Seattle, WA, United States of America
| | - Rhea N. Coler
- Seattle Children’s Research Institute, Seattle, WA, United States of America
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
26
|
Korkmaz E, Balmert SC, Carey CD, Erdos G, Falo LD. Emerging skin-targeted drug delivery strategies to engineer immunity: A focus on infectious diseases. Expert Opin Drug Deliv 2021; 18:151-167. [PMID: 32924651 PMCID: PMC9355143 DOI: 10.1080/17425247.2021.1823964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Infectious pathogens are global disrupters. Progress in biomedical science and technology has expanded the public health arsenal against infectious diseases. Specifically, vaccination has reduced the burden of infectious pathogens. Engineering systemic immunity by harnessing the cutaneous immune network has been particularly attractive since the skin is an easily accessible immune-responsive organ. Recent advances in skin-targeted drug delivery strategies have enabled safe, patient-friendly, and controlled deployment of vaccines to cutaneous microenvironments for inducing long-lived pathogen-specific immunity to mitigate infectious diseases, including COVID-19. AREAS COVERED This review briefly discusses the basics of cutaneous immunomodulation and provides a concise overview of emerging skin-targeted drug delivery systems that enable safe, minimally invasive, and effective intracutaneous administration of vaccines for engineering systemic immune responses to combat infectious diseases. EXPERT OPINION In-situ engineering of the cutaneous microenvironment using emerging skin-targeted vaccine delivery systems offers remarkable potential to develop diverse immunization strategies against pathogens. Mechanistic studies with standard correlates of vaccine efficacy will be important to compare innovative intracutaneous drug delivery strategies to each other and to existing clinical approaches. Cost-benefit analyses will be necessary for developing effective commercialization strategies. Significant involvement of industry and/or government will be imperative for successfully bringing novel skin-targeted vaccine delivery methods to market for their widespread use.
Collapse
Affiliation(s)
- Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen C. Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Louis D. Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA,UPMC Hillman Cancer Center, Pittsburgh, PA, USA,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA,The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
27
|
Li Z, Zhao Y, Li Y, Chen X. Adjuvantation of Influenza Vaccines to Induce Cross-Protective Immunity. Vaccines (Basel) 2021; 9:75. [PMID: 33494477 PMCID: PMC7911902 DOI: 10.3390/vaccines9020075] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Influenza poses a huge threat to global public health. Influenza vaccines are the most effective and cost-effective means to control influenza. Current influenza vaccines mainly induce neutralizing antibodies against highly variable globular head of hemagglutinin and lack cross-protection. Vaccine adjuvants have been approved to enhance seasonal influenza vaccine efficacy in the elderly and spare influenza vaccine doses. Clinical studies found that MF59 and AS03-adjuvanted influenza vaccines could induce cross-protective immunity against non-vaccine viral strains. In addition to MF59 and AS03 adjuvants, experimental adjuvants, such as Toll-like receptor agonists, saponin-based adjuvants, cholera toxin and heat-labile enterotoxin-based mucosal adjuvants, and physical adjuvants, are also able to broaden influenza vaccine-induced immune responses against non-vaccine strains. This review focuses on introducing the various types of adjuvants capable of assisting current influenza vaccines to induce cross-protective immunity in preclinical and clinical studies. Mechanisms of licensed MF59 and AS03 adjuvants to induce cross-protective immunity are also introduced. Vaccine adjuvants hold a great promise to adjuvant influenza vaccines to induce cross-protective immunity.
Collapse
Affiliation(s)
| | | | | | - Xinyuan Chen
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, RI 02881, USA; (Z.L.); (Y.Z.); (Y.L.)
| |
Collapse
|
28
|
Garcia-Vello P, Speciale I, Chiodo F, Molinaro A, De Castro C. Carbohydrate-based adjuvants. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 35-36:57-68. [PMID: 33388128 DOI: 10.1016/j.ddtec.2020.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/28/2020] [Accepted: 09/25/2020] [Indexed: 06/12/2023]
Abstract
Carbohydrate adjuvants are safe and biocompatible compounds usable as sustained delivery systems and stimulants of ongoing humoral and cellular immune responses, being especially suitable for the development of vaccines against intracellular pathogens where alum is useless. The development of new adjuvants is difficult and expensive, however, in the last two years, seven new carbohydrate-based adjuvants have been patented, also there are twelve ongoing clinical trials of vaccines that contain carbohydrate-based adjuvants, as well as numerous publications on their mechanism of action and safety. More research is necessary to improve the existent adjuvants and develop innovative ones.
Collapse
Affiliation(s)
- Pilar Garcia-Vello
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples (NA), Italy.
| | - Immacolata Speciale
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples (NA), Italy
| | - Fabrizio Chiodo
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples (NA), Italy
| | - Cristina De Castro
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, 80055 Portici (NA), Italy.
| |
Collapse
|
29
|
Verpalen ECJM, Brouwer AJ, Boons GJ. Synthesis of monophosphoryl lipid A using 2-naphtylmethyl ethers as permanent protecting groups. Carbohydr Res 2020; 498:108152. [PMID: 33032087 DOI: 10.1016/j.carres.2020.108152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 11/18/2022]
Abstract
Lipid A, which is a conserved component of lipopolysaccharides of gram-negative bacteria, has attracted considerable interest for the development of immuno-adjuvants. Most approaches for lipid A synthesis rely on the use of benzyl ethers as permanent protecting groups. Due to the amphiphilic character of lipid A, these compounds aggregate during the hydrogenation step to remove benzyl ethers, resulting in a sluggish reaction and by-product formation. To address this problem, we have developed a synthetic approach based on the use of 2-naphtylmethyl ether (Nap) ethers as permanent protecting group for hydroxyls. At the end of a synthetic sequence, multiple of these protecting groups can readily be removed by oxidation with 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ). Di-allyl N,N-diisopropylphosphoramidite was employed to install the phosphate ester and the resulting allyl esters were cleaved using palladium tetrakistriphenylphosphine. The synthetic strategy allows late stage introduction of different fatty acids at the amines of the target compound, which is facilitated by Troc and Fmoc as orthogonal amino-protecting groups.
Collapse
Affiliation(s)
- Enrico C J M Verpalen
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, the Netherlands
| | - Arwin J Brouwer
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, the Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, the Netherlands; Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
30
|
Preclinical optimization of an enterotoxigenic Escherichia coli adjuvanted subunit vaccine using response surface design of experiments. NPJ Vaccines 2020; 5:83. [PMID: 32983577 PMCID: PMC7486917 DOI: 10.1038/s41541-020-00228-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
Enterotoxigenic E. coli (ETEC) is a leading cause of moderate-to-severe diarrhoea. ETEC colonizes the intestine through fimbrial tip adhesin colonization factors and produces heat-stable and/or heat-labile (LT) toxins, stimulating fluid and electrolyte release leading to watery diarrhoea. We reported that a vaccine containing recombinant colonization factor antigen (CfaEB) targeting fimbrial tip adhesin of the colonization factor antigen I (CFA/I) and an attenuated LT toxoid (dmLT) elicited mucosal and systemic immune responses against both targets. Additionally, the toll-like receptor 4 ligand second-generation lipid adjuvant (TLR4-SLA) induced a potent mucosal response, dependent on adjuvant formulation. However, a combination of vaccine components at their respective individual optimal doses may not achieve the optimal immune profile. We studied a subunit ETEC vaccine prototype in mice using a response surface design of experiments (DoE), consisting of 64 vaccine dose-combinations of CfaEB, dmLT and SLA in four formulations (aqueous, aluminium oxyhydroxide, squalene-in-water stable nanoemulsion [SE] or liposomes containing the saponin Quillaja saponaria-21 [LSQ]). Nine readouts focusing on antibody functionality and plasma cell response were selected to profile the immune response of parenterally administered ETEC vaccine prototype. The data were integrated in a model to identify the optimal dosage of each vaccine component and best formulation. Compared to maximal doses used in mouse models (10 µg CfaEB, 1 µg dmLT and 5 µg SLA), a reduction in the vaccine components up to 37%, 60% and 88% for CfaEB, dmLT and SLA, respectively, maintained or even maximized immune responses, with SE and LSQ the best formulations. The DoE approach can help determine the best vaccine composition with a limited number of experiments and may accelerate development of multi-antigen/component ETEC vaccines.
Collapse
|
31
|
VaxiPatch™, a novel vaccination system comprised of subunit antigens, adjuvants and microneedle skin delivery: An application to influenza B/Colorado/06/2017. Vaccine 2020; 38:6839-6848. [PMID: 32741668 DOI: 10.1016/j.vaccine.2020.07.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/12/2020] [Accepted: 07/18/2020] [Indexed: 02/07/2023]
Abstract
This work introduces VaxiPatch, a novel vaccination system comprised of subunit glycoprotein vaccine antigens, adjuvants and dermal delivery. For this study, rHA of influenza virus B/Colorado/06/2017 was incorporated into synthetic virosomes, and adjuvant liposomes were formed with QS-21 from Saponaria quillaja, with or without the synthetic TLR4 agonist 3D - (6-acyl) PHAD. These components were concentrated and co-formulated into trehalose with dye. Dermal delivery was achieved using an economical 37-point stainless steel microneedle array, designed for automated fill/finish by microfluidic dispensers used for mass production of immunodiagnostics. Vaccine and adjuvant are deposited to form a sugar glass in a pocket on the side of each of the tips, allowing skin penetration to be performed directly by the rigid steel structure. In this study, Sprague Dawley rats (n = 6 per group) were vaccinated by VaxiPatches containing 0.3 µg of rHA, 0.5 µg QS-21 and 0.2 µg 3D - (6-acyl) PHAD and dye, resulting in antigen-specific IgG titers 100-fold higher than 4.5 µg of FluBlok (p = 0.001) delivered intramuscularly. Similarly, hemagglutination inhibition titers in these animals were 14-fold higher than FluBlok controls (p = 0.01). Non-adjuvanted VaxiPatches were also compared with rHA virosomes injected intramuscularly. Accelerated shelf life studies further suggest that formulated virosomal antigens retain activity for at least two months at 60° C. Further, co-formulation of a dye could provide a visible verification of delivery based on the temporary pattern on the skin. A room-temperature-stable vaccination kit such as VaxiPatch has the potential to increase vaccine use and compliance globally.
Collapse
|
32
|
Scaria PV, Chen BB, Rowe CG, Alani N, Muratova OV, Barnafo EK, Lambert LE, Zaidi IU, Lees A, Rausch KM, Narum DL, Duffy PE. Comparison of carrier proteins to conjugate malaria transmission blocking vaccine antigens, Pfs25 and Pfs230. Vaccine 2020; 38:5480-5489. [PMID: 32600913 PMCID: PMC11127250 DOI: 10.1016/j.vaccine.2020.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022]
Abstract
Malaria transmission blocking vaccines (TBV) target the sexual stage of the parasite and have been pursued as a stand-alone vaccine or for combination with pre-erythrocytic or blood stage vaccines. Our efforts to develop TBV focus primarily on two antigens, Pfs25 and Pfs230. Chemical conjugation of these poorly immunogenic antigens to carrier proteins enhances their immunogenicity, and conjugates of these antigens to Exoprotein A (EPA) are currently under evaluation in clinical trials. Nonetheless, more potent carriers may augment the immunogenicity of these antigens for a more efficacious vaccine; here, we evaluate a series of proteins to identify such a carrier. Pfs25 and Pfs230 were chemically conjugated to 4 different carriers [tetanus toxoid (TT), a recombinant fragment of tetanus toxin heavy chain (rTThc), recombinant CRM197 produced in Pseudomonas fluorescens (CRM197) or in E. coli (EcoCRM®)] and compared to EPA conjugates in mouse immunogenicity studies. Conjugates of each antigen formulated in Alhydrogel® elicited similar antibody titers but showed differences in functional activity. At a 0.5 µg dose, Pfs230 conjugated to TT, CRM197 and EcoCRM® showed significantly higher functional activity compared to EPA. When formulated with the more potent adjuvant GLA-LSQ, all 4 alternate conjugates induced higher antibody titers as well as increased functional activity compared to the EPA conjugate. IgG subclass analysis of Pfs230 conjugates showed no carrier-dependent differences in the IgG profile. While Alhydrogel® formulations induced a Th2 dominant immune response, GLA-LSQ formulations induced a mixed Th1/Th2 response.
Collapse
Affiliation(s)
- Puthupparampil V Scaria
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Beth B Chen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christopher G Rowe
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nada Alani
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Olga V Muratova
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Emma K Barnafo
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lynn E Lambert
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Irfan U Zaidi
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Kelly M Rausch
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
33
|
Smith TRF, Patel A, Ramos S, Elwood D, Zhu X, Yan J, Gary EN, Walker SN, Schultheis K, Purwar M, Xu Z, Walters J, Bhojnagarwala P, Yang M, Chokkalingam N, Pezzoli P, Parzych E, Reuschel EL, Doan A, Tursi N, Vasquez M, Choi J, Tello-Ruiz E, Maricic I, Bah MA, Wu Y, Amante D, Park DH, Dia Y, Ali AR, Zaidi FI, Generotti A, Kim KY, Herring TA, Reeder S, Andrade VM, Buttigieg K, Zhao G, Wu JM, Li D, Bao L, Liu J, Deng W, Qin C, Brown AS, Khoshnejad M, Wang N, Chu J, Wrapp D, McLellan JS, Muthumani K, Wang B, Carroll MW, Kim JJ, Boyer J, Kulp DW, Humeau LMPF, Weiner DB, Broderick KE. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun 2020; 11:2601. [PMID: 32433465 PMCID: PMC7239918 DOI: 10.1038/s41467-020-16505-0] [Citation(s) in RCA: 426] [Impact Index Per Article: 85.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/08/2020] [Indexed: 01/07/2023] Open
Abstract
The coronavirus family member, SARS-CoV-2 has been identified as the causal agent for the pandemic viral pneumonia disease, COVID-19. At this time, no vaccine is available to control further dissemination of the disease. We have previously engineered a synthetic DNA vaccine targeting the MERS coronavirus Spike (S) protein, the major surface antigen of coronaviruses, which is currently in clinical study. Here we build on this prior experience to generate a synthetic DNA-based vaccine candidate targeting SARS-CoV-2 S protein. The engineered construct, INO-4800, results in robust expression of the S protein in vitro. Following immunization of mice and guinea pigs with INO-4800 we measure antigen-specific T cell responses, functional antibodies which neutralize the SARS-CoV-2 infection and block Spike protein binding to the ACE2 receptor, and biodistribution of SARS-CoV-2 targeting antibodies to the lungs. This preliminary dataset identifies INO-4800 as a potential COVID-19 vaccine candidate, supporting further translational study.
Collapse
Affiliation(s)
- Trevor R. F. Smith
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Ami Patel
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Stephanie Ramos
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Dustin Elwood
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Xizhou Zhu
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Jian Yan
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Ebony N. Gary
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Susanne N. Walker
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Katherine Schultheis
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Mansi Purwar
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Ziyang Xu
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Jewell Walters
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Pratik Bhojnagarwala
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Maria Yang
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Neethu Chokkalingam
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Patrick Pezzoli
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Elizabeth Parzych
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Emma L. Reuschel
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Arthur Doan
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Nicholas Tursi
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Miguel Vasquez
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Jihae Choi
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Edgar Tello-Ruiz
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Igor Maricic
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Mamadou A. Bah
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Yuanhan Wu
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Dinah Amante
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Daniel H. Park
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Yaya Dia
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Ali Raza Ali
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Faraz I. Zaidi
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Alison Generotti
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Kevin Y. Kim
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Timothy A. Herring
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Sophia Reeder
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Viviane M. Andrade
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Karen Buttigieg
- 0000 0004 5909 016Xgrid.271308.fNational Infection Service, Public Health England, Porton Down, Wiltshire, UK
| | - Gan Zhao
- Advaccine (Suzhou) Biopharmaceuticals Co., Ltd, Suzhou, China
| | - Jiun-Ming Wu
- Advaccine (Suzhou) Biopharmaceuticals Co., Ltd, Suzhou, China
| | - Dan Li
- 0000 0001 0125 2443grid.8547.eKey Laboratory of Medical Molecular Virology of MOH and MOE and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Linlin Bao
- 0000 0001 0125 2443grid.8547.eKey Laboratory of Medical Molecular Virology of MOH and MOE and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiangning Liu
- 0000 0001 0125 2443grid.8547.eKey Laboratory of Medical Molecular Virology of MOH and MOE and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Deng
- 0000 0001 0125 2443grid.8547.eKey Laboratory of Medical Molecular Virology of MOH and MOE and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chuan Qin
- 0000 0001 0125 2443grid.8547.eKey Laboratory of Medical Molecular Virology of MOH and MOE and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ami Shah Brown
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Makan Khoshnejad
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Nianshuang Wang
- 0000 0004 1936 9924grid.89336.37Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Jacqueline Chu
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Daniel Wrapp
- 0000 0004 1936 9924grid.89336.37Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Jason S. McLellan
- 0000 0004 1936 9924grid.89336.37Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Kar Muthumani
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Bin Wang
- 0000 0001 0125 2443grid.8547.eKey Laboratory of Medical Molecular Virology of MOH and MOE and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Miles W. Carroll
- 0000 0004 5909 016Xgrid.271308.fNational Infection Service, Public Health England, Porton Down, Wiltshire, UK
| | - J. Joseph Kim
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Jean Boyer
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Daniel W. Kulp
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Laurent M. P. F. Humeau
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - David B. Weiner
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Kate E. Broderick
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| |
Collapse
|
34
|
Evaluation of the reactogenicity, adjuvanticity and antigenicity of LT(R192G) and LT(R192G/L211A) by intradermal immunization in mice. PLoS One 2019; 14:e0224073. [PMID: 31682624 PMCID: PMC6827915 DOI: 10.1371/journal.pone.0224073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023] Open
Abstract
The development of an effective subunit vaccine is frequently complicated by the difficulty of eliciting protective immune responses, often requiring the co-administration of an adjuvant. Heat-labile toxin (LT), an enterotoxin expressed by enterotoxigenic E. coli (ETEC) with an AB5 structure similar to cholera toxin, is a strong adjuvant. While the mucosa represents the natural route of exposure to LT and related toxins, the clinical utility of LT and similar adjuvants given by mucosal routes has been limited by toxicity, as well as the association between intranasal delivery of LT and Bell's palsy. Single and double amino acid mutants of LT, LT(R192G)/mLT and LT(R192G/L211A)/dmLT respectively, have been proposed as alternatives to reduce the toxicity associated with the holotoxin. In the present study, we compared mLT and dmLT given via a non-mucosal route (i.e. intradermally) to investigate their adjuvanticity when co-administrated with an enterotoxigenic E. coli vaccine candidate, CfaEB. Antigenicity (i.e. ability to elicit response against LT) and reactogenicity at the injection site were also evaluated. BALB/c mice were immunized by the intradermal route with CfaEB plus increasing doses of either mLT or dmLT (0.01 to 2.5 μg). Both adjuvants induced dose-dependent skin reactogenicity, with dmLT being less reactogenic than mLT. Both adjuvants significantly boosted the anti-CfaE IgG and functional hemagglutination inhibiting (HAI) antibody responses, compared to the antigen alone. In addition to inducing anti-LT responses, even at the lowest dose tested (0.01 μg), the adjuvants also prompted in vitro cytokine responses (IFN-γ, IL-4, IL-5, IL-10 and IL-17) that followed different patterns, depending on the protein used for stimulation (CfaE or LTB) and/or the dose used for immunization. The two LT mutants evaluated here, mLT and dmLT, are potent adjuvants for intradermal immunization and should be further investigated for the intradermal delivery of subunit ETEC vaccines.
Collapse
|
35
|
Hart PH, Norval M. Are there differences in immune responses following delivery of vaccines through acutely or chronically sun-exposed compared with sun-unexposed skin? Immunology 2019; 159:133-141. [PMID: 31593303 DOI: 10.1111/imm.13128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022] Open
Abstract
The majority of human vaccines are administered above the deltoid muscle of the arm, a site that is chronically sun-exposed in many people. It is known that exposure of the skin to the UV wavelengths in sunlight stimulates systemic immunosuppression, an outcome that is associated with reduced immunity to microbial infections in animal models. Here we consider whether immunization of humans through a UV-irradiated skin site will lead to a less effective immune response compared with immunization through an unexposed site. Studies showing that the efficacy of vaccination can be reduced when surrogates of increased levels of sun exposure, such as latitude of residence and season of the year, are considered. Results from a limited number of intervention experiments in humans demonstrate a similar pattern. To provide an explanation for these findings, changes in the number and functional potential of immune cells in chronically sun-exposed compared with unexposed skin are outlined. UV radiation-induced changes to skin cells are also relevant when considering skin sites for administration of immune-tolerizing peptides. The review provides the basis for further research into the effects of acute and chronic UV radiation exposure on skin cells in the context of vaccination.
Collapse
Affiliation(s)
- Prue H Hart
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Mary Norval
- University of Edinburgh Medical School, Edinburgh, Scotland
| |
Collapse
|