1
|
Chen W, Zhan L, Jia T. Sex Differences in Hierarchical and Modular Organization of Functional Brain Networks: Insights from Hierarchical Entropy and Modularity Analysis. ENTROPY (BASEL, SWITZERLAND) 2024; 26:864. [PMID: 39451941 PMCID: PMC11507829 DOI: 10.3390/e26100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Existing studies have demonstrated significant sex differences in the neural mechanisms of daily life and neuropsychiatric disorders. The hierarchical organization of the functional brain network is a critical feature for assessing these neural mechanisms. But the sex differences in hierarchical organization have not been fully investigated. Here, we explore whether the hierarchical structure of the brain network differs between females and males using resting-state fMRI data. We measure the hierarchical entropy and the maximum modularity of each individual, and identify a significant negative correlation between the complexity of hierarchy and modularity in brain networks. At the mean level, females show higher modularity, whereas males exhibit a more complex hierarchy. At the consensus level, we use a co-classification matrix to perform a detailed investigation of the differences in the hierarchical organization between sexes and observe that the female group and the male group exhibit different interaction patterns of brain regions in the dorsal attention network (DAN) and visual network (VIN). Our findings suggest that the brains of females and males employ different network topologies to carry out brain functions. In addition, the negative correlation between hierarchy and modularity implies a need to balance the complexity in the hierarchical organization of the brain network, which sheds light on future studies of brain functions.
Collapse
Affiliation(s)
| | | | - Tao Jia
- College of Computer and Information Science, Southwest University, Chongqing 400715, China; (W.C.); (L.Z.)
| |
Collapse
|
2
|
Pramanik S, Devi M H, Chakrabarty S, Paylar B, Pradhan A, Thaker M, Ayyadhury S, Manavalan A, Olsson PE, Pramanik G, Heese K. Microglia signaling in health and disease - Implications in sex-specific brain development and plasticity. Neurosci Biobehav Rev 2024; 165:105834. [PMID: 39084583 DOI: 10.1016/j.neubiorev.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Microglia, the intrinsic neuroimmune cells residing in the central nervous system (CNS), exert a pivotal influence on brain development, homeostasis, and functionality, encompassing critical roles during both aging and pathological states. Recent advancements in comprehending brain plasticity and functions have spotlighted conspicuous variances between male and female brains, notably in neurogenesis, neuronal myelination, axon fasciculation, and synaptogenesis. Nevertheless, the precise impact of microglia on sex-specific brain cell plasticity, sculpting diverse neural network architectures and circuits, remains largely unexplored. This article seeks to unravel the present understanding of microglial involvement in brain development, plasticity, and function, with a specific emphasis on microglial signaling in brain sex polymorphism. Commencing with an overview of microglia in the CNS and their associated signaling cascades, we subsequently probe recent revelations regarding molecular signaling by microglia in sex-dependent brain developmental plasticity, functions, and diseases. Notably, C-X3-C motif chemokine receptor 1 (CX3CR1), triggering receptors expressed on myeloid cells 2 (TREM2), calcium (Ca2+), and apolipoprotein E (APOE) emerge as molecular candidates significantly contributing to sex-dependent brain development and plasticity. In conclusion, we address burgeoning inquiries surrounding microglia's pivotal role in the functional diversity of developing and aging brains, contemplating their potential implications for gender-tailored therapeutic strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Subrata Pramanik
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Harini Devi M
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Saswata Chakrabarty
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Berkay Paylar
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manisha Thaker
- Eurofins Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 17601, USA
| | - Shamini Ayyadhury
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Arulmani Manavalan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Gopal Pramanik
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133791, the Republic of Korea.
| |
Collapse
|
3
|
Vaidya N, Marquand AF, Nees F, Siehl S, Schumann G. The impact of psychosocial adversity on brain and behaviour: an overview of existing knowledge and directions for future research. Mol Psychiatry 2024; 29:3245-3267. [PMID: 38658773 PMCID: PMC11449794 DOI: 10.1038/s41380-024-02556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Environmental experiences play a critical role in shaping the structure and function of the brain. Its plasticity in response to different external stimuli has been the focus of research efforts for decades. In this review, we explore the effects of adversity on brain's structure and function and its implications for brain development, adaptation, and the emergence of mental health disorders. We are focusing on adverse events that emerge from the immediate surroundings of an individual, i.e., microenvironment. They include childhood maltreatment, peer victimisation, social isolation, affective loss, domestic conflict, and poverty. We also take into consideration exposure to environmental toxins. Converging evidence suggests that different types of adversity may share common underlying mechanisms while also exhibiting unique pathways. However, they are often studied in isolation, limiting our understanding of their combined effects and the interconnected nature of their impact. The integration of large, deep-phenotyping datasets and collaborative efforts can provide sufficient power to analyse high dimensional environmental profiles and advance the systematic mapping of neuronal mechanisms. This review provides a background for future research, highlighting the importance of understanding the cumulative impact of various adversities, through data-driven approaches and integrative multimodal analysis techniques.
Collapse
Affiliation(s)
- Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - Andre F Marquand
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Frauke Nees
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Sebastian Siehl
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
- Centre for Population Neuroscience and Stratified Medicine (PONS), Institute for Science and Technology of Brain-Inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| |
Collapse
|
4
|
Saltoun K, Yeo BTT, Paul L, Diedrichsen J, Bzdok D. Longitudinal changes in brain asymmetry track lifestyle and disease. RESEARCH SQUARE 2024:rs.3.rs-4798448. [PMID: 39149493 PMCID: PMC11326383 DOI: 10.21203/rs.3.rs-4798448/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Human beings may have evolved the largest asymmetries of brain organization in the animal kingdom. Hemispheric left-vs-right specialization is especially pronounced in our species-unique capacities. Yet, brain asymmetry features appear to be strongly shaped by non-genetic influences. We hence charted the largest longitudinal brain-imaging adult resource, yielding evidence that brain asymmetry changes continuously in a manner suggestive of neural plasticity. In the UK Biobank population cohort, we demonstrate that asymmetry changes show robust associations across 959 distinct phenotypic variables spanning 11 categories. We also find that changes in brain asymmetry over years co-occur with changes among specific lifestyle markers. Finally, we reveal relevance of brain asymmetry changes to major disease categories across thousands of medical diagnoses. Our results challenge the tacit assumption that asymmetrical neural systems are highly conserved throughout adulthood.
Collapse
Affiliation(s)
- Karin Saltoun
- The Neuro - Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre, Department of Biomedical Engineering, Faculty of Medicine, School of Computer Science, McGill University, Montreal, Canada
- Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - B T Thomas Yeo
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Lynn Paul
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jorn Diedrichsen
- Western Institute of Neuroscience, Western University, London, Ontario, Canada
| | - Danilo Bzdok
- The Neuro - Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre, Department of Biomedical Engineering, Faculty of Medicine, School of Computer Science, McGill University, Montreal, Canada
- Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| |
Collapse
|
5
|
Osayande N, Marotta J, Aggarwal S, Kopal J, Holmes A, Yip SW, Bzdok D. Diversity-aware Population Models: Quantifying Associations between Socio-Spatial Factors and Cognitive Development in the ABCD Cohort. RESEARCH SQUARE 2024:rs.3.rs-4751673. [PMID: 39149460 PMCID: PMC11326365 DOI: 10.21203/rs.3.rs-4751673/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Population-level analyses are inherently complex due to a myriad of latent confounding effects that underlie the interdisciplinary topics of research interest. Despite the mounting demand for generative population models, the limited generalizability to underrepresented groups hinders their widespread adoption in downstream applications. Interpretability and reliability are essential for clinicians and policymakers, while accuracy and precision are prioritized from an engineering standpoint. Thus, in domains such as population neuroscience, the challenge lies in determining a suitable approach to model population data effectively. Notably, the traditional strata-agnostic nature of existing methods in this field reveals a pertinent gap in quantitative techniques that directly capture major sources of population stratification. The emergence of population-scale cohorts, like the Adolescent Brain Cognitive DevelopmentSM (ABCD) Study, provides unparalleled opportunities to explore and characterize neurobehavioral and sociodemographic relationships comprehensively. We propose diversity-aware population modeling, a framework poised to standardize systematic incorporation of diverse attributes, structured with respect to intrinsic population stratification to obtain holistic insights. Here, we leverage Bayesian multilevel regression and poststratification, to elucidate inter-individual differences in the relationships between socioeconomic status (SES) and cognitive development. We constructed 14 varying-intercepts and varying-slopes models to investigate 3 cognitive phenotypes and 5 sociodemographic variables (SDV), across 17 US states and 5 race subgroups. SDVs exhibited systemic socio-spatial effects that served as fundamental drivers of variation in cognitive outcomes. Low SES was disproportionately associated with cognitive development among Black and Hispanic children, while high SES was a robust predictor of cognitive development only among White and Asian children, consistent with the minorities' diminished returns (MDRs) theory. Notably, adversity-susceptible subgroups demonstrated an expressive association with fluid cognition compared to crystallized cognition. Poststratification proved effective in correcting group attribution biases, particularly in Pennsylvania, highlighting sampling discrepancies in US states with the highest percentage of marginalized participants in the ABCD Study©. Our collective analyses underscore the inextricable link between race and geographic location within the US. We emphasize the importance of diversity-aware population models that consider the intersectional composition of society to derive precise and interpretable insights across applicable domains.
Collapse
Affiliation(s)
- Nicole Osayande
- McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada
- Mila - Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Justin Marotta
- McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada
- Mila - Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Shambhavi Aggarwal
- McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada
- Mila - Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Jakub Kopal
- McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada
- Mila - Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Avram Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Sarah W Yip
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Danilo Bzdok
- McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada
- Mila - Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada
- School of Computer Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Kissel LT, Pochareddy S, An JY, Sestan N, Sanders SJ, Wang X, Werling DM. Sex-Differential Gene Expression in Developing Human Cortex and Its Intersection With Autism Risk Pathways. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100321. [PMID: 38957312 PMCID: PMC11217612 DOI: 10.1016/j.bpsgos.2024.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 07/04/2024] Open
Abstract
Background Sex-differential biology may contribute to the consistently male-biased prevalence of autism spectrum disorder (ASD). Gene expression differences between males and females in the brain can indicate possible molecular and cellular mechanisms involved, although transcriptomic sex differences during human prenatal cortical development have been incompletely characterized, primarily due to small sample sizes. Methods We performed a meta-analysis of sex-differential expression and co-expression network analysis in 2 independent bulk RNA sequencing datasets generated from cortex of 273 prenatal donors without known neuropsychiatric disorders. To assess the intersection between neurotypical sex differences and neuropsychiatric disorder biology, we tested for enrichment of ASD-associated risk genes and expression changes, neuropsychiatric disorder risk genes, and cell type markers within identified sex-differentially expressed genes (sex-DEGs) and sex-differential co-expression modules. Results We identified 101 significant sex-DEGs, including Y-chromosome genes, genes impacted by X-chromosome inactivation, and autosomal genes. Known ASD risk genes, implicated by either common or rare variants, did not preferentially overlap with sex-DEGs. We identified 1 male-specific co-expression module enriched for immune signaling that is unique to 1 input dataset. Conclusions Sex-differential gene expression is limited in prenatal human cortex tissue, although meta-analysis of large datasets allows for the identification of sex-DEGs, including autosomal genes that encode proteins involved in neural development. Lack of sex-DEG overlap with ASD risk genes in the prenatal cortex suggests that sex-differential modulation of ASD symptoms may occur in other brain regions, at other developmental stages, or in specific cell types, or may involve mechanisms that act downstream from mutation-carrying genes.
Collapse
Affiliation(s)
- Lee T. Kissel
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sirisha Pochareddy
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut
| | - Joon-Yong An
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul, Republic of Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut
| | - Stephan J. Sanders
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Xuran Wang
- Seaver Autism Center for Research and Treatment, New York, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Donna M. Werling
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
7
|
Oken BS, Kaplan J, Klee D, Gallegos AM. Contributions of loneliness to cognitive impairment and dementia in older adults are independent of other risk factors and Alzheimer's pathology: a narrative review. Front Hum Neurosci 2024; 18:1380002. [PMID: 38873650 PMCID: PMC11169707 DOI: 10.3389/fnhum.2024.1380002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Loneliness significantly contributes to cognitive impairment and dementia in older adults. Loneliness is a distressing feeling resulting from a perceived lack of social connection (i.e., a discrepancy between desired and actual social relationships), while social isolation is a related term that can be defined by number and type of social relationships. Importantly, loneliness is distinct from social isolation in that it is associated with a distressing self-perception. The primary focus of this narrative review is the impact of chronic loneliness on cognitive impairment and dementia among older adults. Loneliness has a significant association with many factors that are related to worse cognition, and therefore we include discussion on health, mental health, as well as the physiological effects of loneliness, neuropathology, and potential treatments. Loneliness has been shown to be related to development of dementia with a hazard ratio (HR) risk comparable to having a single APOE4 gene. The relationship of dementia to loneliness appears to be at least partially independent of other known dementia risk factors that are possibly associated with loneliness, such as depression, educational status, social isolation, and physical activity. Episodic memory is not consistently impacted by loneliness, which would be more typically impaired if the mild cognitive impairment (MCI) or dementia was due to Alzheimer's disease (AD) pathology. In addition, the several longitudinal studies that included neuropathology showed no evidence for a relationship between loneliness and AD neuropathology. Loneliness may decrease resilience, or produce greater cognitive change associated with the same level of AD neuropathology. Intervention strategies to decrease loneliness in older adults have been developed but need to consider key treatment targets beyond social isolation. Loneliness needs to be assessed in all studies of cognitive decline in elders, since it significantly contributes to the variance of cognitive function. It will be useful to better define the underlying mechanism of loneliness effects on cognition to determine if it is similar to other psychological factors related to excessive stress reactivity, such as neuroticism or even depression, which are also associated with cognitive decline. It is important from a health perspective to develop better strategies to decrease loneliness in older adults.
Collapse
Affiliation(s)
- Barry S. Oken
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Josh Kaplan
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Daniel Klee
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Autumn M. Gallegos
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
8
|
Zhang L, Ren T, He H, Huang L, Huang R, Xu Y, Zhou L, Tan H, Chen J, Wu D, Yang H, Zhang H, Yu J, Du X, Dai Y, Pu Y, Li C, Wang X, Shi S, Sahakian BJ, Luo Q, Li F. Protective factors for children with autism spectrum disorder during COVID-19-related strict lockdowns: a Shanghai autism early developmental cohort study. Psychol Med 2024; 54:1102-1112. [PMID: 37997447 DOI: 10.1017/s0033291723002908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
BACKGROUND COVID-19 lockdowns increased the risk of mental health problems, especially for children with autism spectrum disorder (ASD). However, despite its importance, little is known about the protective factors for ASD children during the lockdowns. METHODS Based on the Shanghai Autism Early Developmental Cohort, 188 ASD children with two visits before and after the strict Omicron lockdown were included; 85 children were lockdown-free, while 52 and 51 children were under the longer and the shorter durations of strict lockdown, respectively. We tested the association of the lockdown group with the clinical improvement and also the modulation effects of parent/family-related factors on this association by linear regression/mixed-effect models. Within the social brain structures, we examined the voxel-wise interaction between the grey matter volume and the identified modulation effects. RESULTS Compared with the lockdown-free group, the ASD children experienced the longer duration of strict lockdown had less clinical improvement (β = 0.49, 95% confidence interval (CI) [0.19-0.79], p = 0.001) and this difference was greatest for social cognition (2.62 [0.94-4.30], p = 0.002). We found that this association was modulated by parental agreeableness in a protective way (-0.11 [-0.17 to -0.05], p = 0.002). This protective effect was enhanced in the ASD children with larger grey matter volumes in the brain's mentalizing network, including the temporal pole, the medial superior frontal gyrus, and the superior temporal gyrus. CONCLUSIONS This longitudinal neuroimaging cohort study identified that the parental agreeableness interacting with the ASD children's social brain development reduced the negative impact on clinical symptoms during the strict lockdown.
Collapse
Affiliation(s)
- Lingli Zhang
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tai Ren
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua He
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Like Huang
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Runqi Huang
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixiang Xu
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhou
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| | - Hangyu Tan
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyu Chen
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danping Wu
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanshu Yang
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haotian Zhang
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juehua Yu
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiujuan Du
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Dai
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwei Pu
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shenxun Shi
- Psychiatry Department of Huashan Hospital, Fudan University, Shanghai, China
| | - Barbara J Sahakian
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Psychiatry and the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Qiang Luo
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Institutes of Brain Science and Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Fei Li
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Dunbar RIM. The social brain hypothesis - thirty years on. Ann Hum Biol 2024; 51:2359920. [PMID: 38994897 DOI: 10.1080/03014460.2024.2359920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/20/2024] [Indexed: 07/13/2024]
Affiliation(s)
- Robin I M Dunbar
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Gaspari L, Soyer-Gobillard MO, Kerlin S, Paris F, Sultan C. Early Female Transgender Identity after Prenatal Exposure to Diethylstilbestrol: Report from a French National Diethylstilbestrol (DES) Cohort. J Xenobiot 2024; 14:166-175. [PMID: 38249107 PMCID: PMC10801508 DOI: 10.3390/jox14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Diagnostic of transsexualism and gender incongruence are terms to describe individuals whose self-identity does not match their sex assignment at birth. A transgender woman is an individual assigned male at birth (AMAB) on the basis of the external or internal genitalia who identifies and lives as a woman. In recent decades, a significant increase in the number of transgender people has been reported. Although, its etiology is unknown, biological, anatomical, genetic, environmental and cultural factors have been suggested to contribute to gender variation. In XY animals, it has been shown that environmental endocrine disruptors, through their anti-androgenic activity, induce a female identity. In this work, we described four XY individuals who were exposed in utero to the xenoestrogen diethylstilbesterol (DES) and were part of the French HHORAGES cohort. They all reported a female transgender identity starting from childhood and adolescence. This high prevalence of male to female transgenderism (1.58%) in our cohort of 253 DES sons suggests that exposure to chemicals with xenoestrogen activity during fetal life may affect the male sex identity and behavior.
Collapse
Affiliation(s)
- Laura Gaspari
- Unité d’Endocrinologie-Gynécologie Pédiatrique, CHU Montpellier, University Montpellier, 34090 Montpellier, France; (L.G.); (F.P.)
- INSERM 1203, Développement Embryonnaire Fertilité Environnement, University of Montpellier, 34295 Montpellier, France
- CHU Montpellier, University Montpellier, Centre de Référence Maladies Rares du Développement Génital, Constitutif Sud, Hôpital Lapeyronie, 34295 Montpellier, France
| | - Marie-Odile Soyer-Gobillard
- Laboratoire Arago, Observatoire Océanologique, Sorbonne University, CNRS, 75016 Paris, France;
- Association HHORAGES-France, 66100 Perpignan, France
| | - Scott Kerlin
- DES International Information and Research Network, Livermore, CA 94551, USA;
| | - Françoise Paris
- Unité d’Endocrinologie-Gynécologie Pédiatrique, CHU Montpellier, University Montpellier, 34090 Montpellier, France; (L.G.); (F.P.)
- INSERM 1203, Développement Embryonnaire Fertilité Environnement, University of Montpellier, 34295 Montpellier, France
- CHU Montpellier, University Montpellier, Centre de Référence Maladies Rares du Développement Génital, Constitutif Sud, Hôpital Lapeyronie, 34295 Montpellier, France
| | - Charles Sultan
- Unité d’Endocrinologie-Gynécologie Pédiatrique, CHU Montpellier, University Montpellier, 34090 Montpellier, France; (L.G.); (F.P.)
| |
Collapse
|
11
|
Dunbar RIM, Shultz S. Four errors and a fallacy: pitfalls for the unwary in comparative brain analyses. Biol Rev Camb Philos Soc 2023; 98:1278-1309. [PMID: 37001905 DOI: 10.1111/brv.12953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Comparative analyses are the backbone of evolutionary analysis. However, their record in producing a consensus has not always been good. This is especially true of attempts to understand the factors responsible for the evolution of large brains, which have been embroiled in an increasingly polarised debate over the past three decades. We argue that most of these disputes arise from a number of conceptual errors and associated logical fallacies that are the result of a failure to adopt a biological systems-based approach to hypothesis-testing. We identify four principal classes of error: a failure to heed Tinbergen's Four Questions when testing biological hypotheses, misapplying Dobzhansky's Dictum when testing hypotheses of evolutionary adaptation, poorly chosen behavioural proxies for underlying hypotheses, and the use of inappropriate statistical methods. In the interests of progress, we urge a more careful and considered approach to comparative analyses, and the adoption of a broader, rather than a narrower, taxonomic perspective.
Collapse
Affiliation(s)
- Robin I M Dunbar
- Department of Experimental Psychology, Anna Watts Building, University of Oxford, Oxford, OX2 6GG, UK
| | - Susanne Shultz
- Department of Earth and Environmental Sciences, Michael Smith Building, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
12
|
Faraji J, Metz GAS. Toward reframing brain-social dynamics: current assumptions and future challenges. Front Psychiatry 2023; 14:1211442. [PMID: 37484686 PMCID: PMC10359502 DOI: 10.3389/fpsyt.2023.1211442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Evolutionary analyses suggest that the human social brain and sociality appeared together. The two fundamental tools that accelerated the concurrent emergence of the social brain and sociality include learning and plasticity. The prevailing core idea is that the primate brain and the cortex in particular became reorganised over the course of evolution to facilitate dynamic adaptation to ongoing changes in physical and social environments. Encouraged by computational or survival demands or even by instinctual drives for living in social groups, the brain eventually learned how to learn from social experience via its massive plastic capacity. A fundamental framework for modeling these orchestrated dynamic responses is that social plasticity relies upon neuroplasticity. In the present article, we first provide a glimpse into the concepts of plasticity, experience, with emphasis on social experience. We then acknowledge and integrate the current theoretical concepts to highlight five key intertwined assumptions within social neuroscience that underlie empirical approaches for explaining the brain-social dynamics. We suggest that this epistemological view provides key insights into the ontology of current conceptual frameworks driving future research to successfully deal with new challenges and possible caveats in favour of the formulation of novel assumptions. In the light of contemporary societal challenges, such as global pandemics, natural disasters, violent conflict, and other human tragedies, discovering the mechanisms of social brain plasticity will provide new approaches to support adaptive brain plasticity and social resilience.
Collapse
|
13
|
Kieckhaefer C, Schilbach L, Bzdok D. Social belonging: brain structure and function is linked to membership in sports teams, religious groups, and social clubs. Cereb Cortex 2023; 33:4405-4420. [PMID: 36161309 PMCID: PMC10110433 DOI: 10.1093/cercor/bhac351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/12/2022] Open
Abstract
Human behavior across the life span is driven by the psychological need to belong, right from kindergarten to bingo nights. Being part of social groups constitutes a backbone for communal life and confers many benefits for the physical and mental health. Capitalizing on the neuroimaging and behavioral data from ∼40,000 participants from the UK Biobank population cohort, we used structural and functional analyses to explore how social participation is reflected in the human brain. Across 3 different types of social groups, structural analyses point toward the variance in ventromedial prefrontal cortex, fusiform gyrus, and anterior cingulate cortex as structural substrates tightly linked to social participation. Functional connectivity analyses not only emphasized the importance of default mode and limbic network but also showed differences for sports teams and religious groups as compared to social clubs. Taken together, our findings establish the structural and functional integrity of the default mode network as a neural signature of social belonging.
Collapse
Affiliation(s)
- Carolin Kieckhaefer
- LVR Klinikum Düsseldorf, Department of Psychiatry and Psychotherapy, Heinrich-Heine-University Düsseldorf, Bergische Landstraße 2, 40629 Düsseldorf, Germany
| | - Leonhard Schilbach
- LVR Klinikum Düsseldorf, Department of Psychiatry and Psychotherapy, Heinrich-Heine-University Düsseldorf, Bergische Landstraße 2, 40629 Düsseldorf, Germany
- Medical Faculty, Ludwig Maximilians University, Bavariaring 19, 80336 Munich, Germany
| | - Danilo Bzdok
- McConnell Brain Imaging Centre, Faculty of Medicine and Health Sciences, Montreal Neurological Institute (MNI), McGill University, 3801 rue University, Montreal, Quebec H3A 2B4, Canada
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, 3775 rue University, Montreal, Quebec H3A 2B4, Canada
- Mila - Quebec Artificial Intelligence Institute, 6666 rue Saint-Urbain, Montreal, Quebec H2S 3H1, Canada
| |
Collapse
|
14
|
Fenske SJ, Liu J, Chen H, Diniz MA, Stephens RL, Cornea E, Gilmore JH, Gao W. Sex differences in resting state functional connectivity across the first two years of life. Dev Cogn Neurosci 2023; 60:101235. [PMID: 36966646 PMCID: PMC10066534 DOI: 10.1016/j.dcn.2023.101235] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/17/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
Sex differences in behavior have been reported from infancy through adulthood, but little is known about sex effects on functional circuitry in early infancy. Moreover, the relationship between early sex effects on the functional architecture of the brain and later behavioral performance remains to be elucidated. In this study, we used resting-state fMRI and a novel heatmap analysis to examine sex differences in functional connectivity with cross-sectional and longitudinal mixed models in a large cohort of infants (n = 319 neonates, 1-, and 2-year-olds). An adult dataset (n = 92) was also included for comparison. We investigated the relationship between sex differences in functional circuitry and later measures of language (collected in 1- and 2-year-olds) as well as indices of anxiety, executive function, and intelligence (collected in 4-year-olds). Brain areas showing the most significant sex differences were age-specific across infancy, with two temporal regions demonstrating consistent differences. Measures of functional connectivity showing sex differences in infancy were significantly associated with subsequent behavioral scores of language, executive function, and intelligence. Our findings provide insights into the effects of sex on dynamic neurodevelopmental trajectories during infancy and lay an important foundation for understanding the mechanisms underlying sex differences in health and disease.
Collapse
|
15
|
Home alone: A population neuroscience investigation of brain morphology substrates. Neuroimage 2023; 269:119936. [PMID: 36781113 DOI: 10.1016/j.neuroimage.2023.119936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023] Open
Abstract
As a social species, ready exchange with peers is a pivotal asset - our "social capital". Yet, single-person households have come to pervade metropolitan cities worldwide, with unknown consequences in the long run. Here, we systematically explore the morphological manifestations associated with singular living in ∼40,000 UK Biobank participants. The uncovered population-level signature spotlights the highly associative default mode network, in addition to findings such as in the amygdala central, cortical and corticoamygdaloid nuclei groups, as well as the hippocampal fimbria and dentate gyrus. Both positive effects, equating to greater gray matter volume associated with living alone, and negative effects, which can be interpreted as greater gray matter associations with not living alone, were found across the cortex and subcortical structures Sex-stratified analyses revealed male-specific neural substrates, including somatomotor, saliency and visual systems, while female-specific neural substrates centered on the dorsomedial prefrontal cortex. In line with our demographic profiling results, the discovered neural pattern of living alone is potentially linked to alcohol and tobacco consumption, anxiety, sleep quality as well as daily TV watching. The persistent trend for solitary living will require new answers from public-health decision makers. SIGNIFICANCE STATEMENT: Living alone has profound consequences for mental and physical health. Despite this, there has been a rapid increase in single-person households worldwide, with the long-term consequences yet unknown. In the largest study of its kind, we investigate how the objective lack of everyday social interaction, through living alone, manifests in the brain. Our population neuroscience approach uncovered a gray matter signature that converged on the 'default network', alongside targeted subcortical, sex and demographic profiling analyses. The human urge for social relationships is highlighted by the evolving COVID-19 pandemic. Better understanding of how social isolation relates to the brain will influence health and social policy decision-making of pandemic planning, as well as social interventions in light of global shifts in houseful structures.
Collapse
|
16
|
Fingelkurts AA, Fingelkurts AA. Turning Back the Clock: A Retrospective Single-Blind Study on Brain Age Change in Response to Nutraceuticals Supplementation vs. Lifestyle Modifications. Brain Sci 2023; 13:520. [PMID: 36979330 PMCID: PMC10046544 DOI: 10.3390/brainsci13030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND There is a growing consensus that chronological age (CA) is not an accurate indicator of the aging process and that biological age (BA) instead is a better measure of an individual's risk of age-related outcomes and a more accurate predictor of mortality than actual CA. In this context, BA measures the "true" age, which is an integrated result of an individual's level of damage accumulation across all levels of biological organization, along with preserved resources. The BA is plastic and depends upon epigenetics. Brain state is an important factor contributing to health- and lifespan. METHODS AND OBJECTIVE Quantitative electroencephalography (qEEG)-derived brain BA (BBA) is a suitable and promising measure of brain aging. In the present study, we aimed to show that BBA can be decelerated or even reversed in humans (N = 89) by using customized programs of nutraceutical compounds or lifestyle changes (mean duration = 13 months). RESULTS We observed that BBA was younger than CA in both groups at the end of the intervention. Furthermore, the BBA of the participants in the nutraceuticals group was 2.83 years younger at the endpoint of the intervention compared with their BBA score at the beginning of the intervention, while the BBA of the participants in the lifestyle group was only 0.02 years younger at the end of the intervention. These results were accompanied by improvements in mental-physical health comorbidities in both groups. The pre-intervention BBA score and the sex of the participants were considered confounding factors and analyzed separately. CONCLUSIONS Overall, the obtained results support the feasibility of the goal of this study and also provide the first robust evidence that halting and reversal of brain aging are possible in humans within a reasonable (practical) timeframe of approximately one year.
Collapse
|
17
|
Bölte S, Neufeld J, Marschik PB, Williams ZJ, Gallagher L, Lai MC. Sex and gender in neurodevelopmental conditions. Nat Rev Neurol 2023; 19:136-159. [PMID: 36747038 PMCID: PMC10154737 DOI: 10.1038/s41582-023-00774-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/08/2023]
Abstract
Health-related conditions often differ qualitatively or quantitatively between individuals of different birth-assigned sexes and gender identities, and/or with different gendered experiences, requiring tailored care. Studying the moderating and mediating effects of sex-related and gender-related factors on impairment, disability, wellbeing and health is of paramount importance especially for neurodivergent individuals, who are diagnosed with neurodevelopmental conditions with uneven sex/gender distributions. Researchers have become aware of the myriad influences that sex-related and gender-related variables have on the manifestations of neurodevelopmental conditions, and contemporary work has begun to investigate the mechanisms through which these effects are mediated. Here we describe topical concepts of sex and gender science, summarize current knowledge, and discuss research and clinical challenges related to autism, attention-deficit/hyperactivity disorder and other neurodevelopmental conditions. We consider sex and gender in the context of epidemiology, behavioural phenotypes, neurobiology, genetics, endocrinology and neighbouring disciplines. The available evidence supports the view that sex and gender are important contributors to the biological and behavioural variability in neurodevelopmental conditions. Methodological caveats such as frequent conflation of sex and gender constructs, inappropriate measurement of these constructs and under-representation of specific demographic groups (for example, female and gender minority individuals and people with intellectual disabilities) limit the translational potential of research so far. Future research and clinical implementation should integrate sex and gender into next-generation diagnostics, mechanistic investigations and support practices.
Collapse
Affiliation(s)
- Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
- Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, WA, Australia.
| | - Janina Neufeld
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Swedish Collegium for Advanced Study (SCAS), Uppsala, Sweden
| | - Peter B Marschik
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen and Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
- iDN - interdisciplinary Developmental Neuroscience, Division of Phoniatrics, Medical University of Graz, Graz, Austria
| | - Zachary J Williams
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Child and Youth Mental Health Collaborative at the Centre for Addiction and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Meng-Chuan Lai
- Child and Youth Mental Health Collaborative at the Centre for Addiction and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.
| |
Collapse
|
18
|
Driver C, Moore L, Mohamed A, Boyes A, Sacks DD, Mills L, McLoughlin LT, Lagopoulos J, Hermens DF. Structural connectivity and its association with social connectedness in early adolescence. Behav Brain Res 2023; 440:114259. [PMID: 36528168 DOI: 10.1016/j.bbr.2022.114259] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Adolescence is a critical period of social and neural development. Brain regions which process social information develop throughout adolescence as young people learn to navigate social environments. Studies investigating brain structural connectivity (indexed by white matter (WM) integrity), and social connectedness in adolescents have been limited until recently, with literature stemming mostly from adult samples, broad age ranges within adolescence or based on social network characteristics as opposed to social connectedness. This cross-sectional study of 12-year-olds (N = 73) explored the relationship between social connectedness (SCS) and structural connectivity in early adolescence, to gauge how this snapshot of WM development is associated with social behaviour. Whole brain voxel-wise diffusion tensor imaging was undertaken to determine correlations between SCS and fractional anisotropy (FA), radial (RD) and axial (AD) diffusivity of clusters within WM tracts. Significant negative relationships between FA and SCS scores were found in clusters within 11 WM tracts, with significant positive correlations between SCS and both RD and AD across clusters within 13 and 8 clusters, respectively. Clusters within the genu of the corpus callosum (CCgn) showed strong correlations for all three metrics, and regression models that included gender, age, and psychological distress, revealed SCS to be the only significant predictor of CCgn FA, RD and AD values. Overall, these findings suggest that those with lower social connectedness had a WM profile suggestive of reduced axonal density and/or coherence. Longitudinal research is needed to track such WM profiles during adolescent development and determine the associations with mental health and well-being outcomes.
Collapse
Affiliation(s)
- Christina Driver
- Thompson Institute, University of the Sunshine Coast, Innovation Parkway, Birtinya, QLD, Australia.
| | - Lisa Moore
- Thompson Institute, University of the Sunshine Coast, Innovation Parkway, Birtinya, QLD, Australia
| | - Abdalla Mohamed
- Thompson Institute, University of the Sunshine Coast, Innovation Parkway, Birtinya, QLD, Australia
| | - Amanda Boyes
- Thompson Institute, University of the Sunshine Coast, Innovation Parkway, Birtinya, QLD, Australia
| | - Dashiell D Sacks
- Thompson Institute, University of the Sunshine Coast, Innovation Parkway, Birtinya, QLD, Australia
| | - Lia Mills
- Thompson Institute, University of the Sunshine Coast, Innovation Parkway, Birtinya, QLD, Australia
| | - Larisa T McLoughlin
- Behaviour-Brain-Body Research Centre, University of South Australia, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Innovation Parkway, Birtinya, QLD, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Innovation Parkway, Birtinya, QLD, Australia
| |
Collapse
|
19
|
Shafighi K, Villeneuve S, Rosa Neto P, Badhwar A, Poirier J, Sharma V, Medina YI, Silveira PP, Dube L, Glahn D, Bzdok D. Social isolation is linked to classical risk factors of Alzheimer's disease-related dementias. PLoS One 2023; 18:e0280471. [PMID: 36724157 PMCID: PMC9891507 DOI: 10.1371/journal.pone.0280471] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 12/31/2022] [Indexed: 02/02/2023] Open
Abstract
Alzheimer's disease and related dementias is a major public health burden-compounding over upcoming years due to longevity. Recently, clinical evidence hinted at the experience of social isolation in expediting dementia onset. In 502,506 UK Biobank participants and 30,097 participants from the Canadian Longitudinal Study of Aging, we revisited traditional risk factors for developing dementia in the context of loneliness and lacking social support. Across these measures of subjective and objective social deprivation, we have identified strong links between individuals' social capital and various indicators of Alzheimer's disease and related dementias risk, which replicated across both population cohorts. The quality and quantity of daily social encounters had deep connections with key aetiopathological factors, which represent 1) personal habits and lifestyle factors, 2) physical health, 3) mental health, and 4) societal and external factors. Our population-scale assessment suggest that social lifestyle determinants are linked to most neurodegeneration risk factors, highlighting them as promising targets for preventive clinical action.
Collapse
Affiliation(s)
- Kimia Shafighi
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Canada
| | - Sylvia Villeneuve
- McConnell Brain Imaging Centre (BIC), MNI, Faculty of Medicine, McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Studies on Prevention of Alzheimer’s Disease (StoP-AD) Centre, Montreal, Quebec, Canada
| | - Pedro Rosa Neto
- Douglas Mental Health University Institute, Studies on Prevention of Alzheimer’s Disease (StoP-AD) Centre, Montreal, Quebec, Canada
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Montreal, Canada
- Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Canada
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - AmanPreet Badhwar
- Département de Pharmacologie et Physiologie & Institut de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Canada
| | - Judes Poirier
- Centre for Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health Institute, McGill University, Montreal, Canada
| | - Vaibhav Sharma
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Canada
| | - Yasser Iturria Medina
- McConnell Brain Imaging Centre (BIC), MNI, Faculty of Medicine, McGill University, Montreal, Canada
- Neurology and Neurosurgery Department, Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Canada
| | - Patricia P. Silveira
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Canada
| | - Laurette Dube
- Desautels Faculty of Management, McGill Center for the Convergence of Health and Economics, McGill University, Montreal, QC, Canada
| | - David Glahn
- Tommy Fuss Center for Neuropsychiatric Disease Research, Department of Psychiatry, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States of America
| | - Danilo Bzdok
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre (BIC), MNI, Faculty of Medicine, McGill University, Montreal, Canada
- School of Computer Science, McGill University, Montreal, Canada
- Mila—Quebec Artificial Intelligence Institute, Montreal, Canada
| |
Collapse
|
20
|
Pagani LS, Harbec MJ, Fortin G, Harandian K, Barnett TA. Early school-age family meal characteristics matter for the later development of boys and girls. DIALOGUES IN HEALTH 2022; 1:100007. [PMID: 38515878 PMCID: PMC10953959 DOI: 10.1016/j.dialog.2022.100007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 03/23/2024]
Abstract
Objective Sharing a meal together offers an innovative approach to study the family environment. How often families eat together may not capture the distinct experience for sons and daughters. Instead, studying family meal characteristics might be more enlightening. This study aims to examine the prospective associations between family meal environment quality at age 6 years and later well-being at age 12 years in 734 boys and 758 girls. Method Participants are from the Quebec Longitudinal Study of Child Development birth cohort. When children were aged 6 years, parents reported on their family meal environment experience. At age 12 years, child outcomes included parent-reported healthy lifestyle habits, teacher-reported academic achievement, and self-reported social adjustment. The relationship between early family meal environment quality and later child outcomes were analyzed using multivariate linear regressions. Results For girls, better family meal environment quality at age 6 years predicted an earlier bedtime, a lower consumption of soft drinks and sweet snacks, more classroom engagement, and fewer behavior problems at age 12 years. For boys, better family meal environment quality at age 6 years predicted an earlier bedtime and less anxiety and more prosocial behaviour at age 12 years. These significant relationships were adjusted for a multitude of child/family characteristics. Conclusion From a population-health perspective, our findings suggest that family meals represent a cost-efficient, effective protective factor that likely has long-term influences on bio-psycho-social development. Information campaigns that promote family meals as a health intervention could optimize the well-being of boys and girls.
Collapse
Affiliation(s)
- Linda S. Pagani
- School of Psycho-Education, University of Montreal, 90 Vincent d'Indy, Montreal, Quebec H2V 2S9, Canada
- School Environment Research Group, University of Montreal, 7070 Parc, Montreal, Quebec H3N 1X7, Canada
- Sainte-Justine's Pediatric Hospital Research Center, University of Montreal, 3175 Côte-Sainte-Catherine, Montreal, Quebec H3T 1C5, Canada
| | - Marie-Josée Harbec
- School of Psycho-Education, University of Montreal, 90 Vincent d'Indy, Montreal, Quebec H2V 2S9, Canada
- School Environment Research Group, University of Montreal, 7070 Parc, Montreal, Quebec H3N 1X7, Canada
- Sainte-Justine's Pediatric Hospital Research Center, University of Montreal, 3175 Côte-Sainte-Catherine, Montreal, Quebec H3T 1C5, Canada
| | - Geneviève Fortin
- School of Psycho-Education, University of Montreal, 90 Vincent d'Indy, Montreal, Quebec H2V 2S9, Canada
- School Environment Research Group, University of Montreal, 7070 Parc, Montreal, Quebec H3N 1X7, Canada
| | - Kianoush Harandian
- School of Psycho-Education, University of Montreal, 90 Vincent d'Indy, Montreal, Quebec H2V 2S9, Canada
- School Environment Research Group, University of Montreal, 7070 Parc, Montreal, Quebec H3N 1X7, Canada
| | - Tracie A. Barnett
- Sainte-Justine's Pediatric Hospital Research Center, University of Montreal, 3175 Côte-Sainte-Catherine, Montreal, Quebec H3T 1C5, Canada
- Family Medicine Department, McGill University, 5858 Côte-des-Neiges, Montreal, Quebec H3S 1Z1, Canada
| |
Collapse
|
21
|
Tao Q, Akhter-Khan SC, Ang TFA, DeCarli C, Alosco ML, Mez J, Killiany R, Devine S, Rokach A, Itchapurapu IS, Zhang X, Lunetta KL, Steffens DC, Farrer LA, Greve DN, Au R, Qiu WQ. Different loneliness types, cognitive function, and brain structure in midlife: Findings from the Framingham Heart Study. EClinicalMedicine 2022; 53:101643. [PMID: 36105871 PMCID: PMC9465265 DOI: 10.1016/j.eclinm.2022.101643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background It remains unclear whether persistent loneliness is related to brain structures that are associated with cognitive decline and development of Alzheimer's disease (AD). This study aimed to investigate the relationships between different loneliness types, cognitive functioning, and regional brain volumes. Methods Loneliness was measured longitudinally, using the item from the Center for Epidemiologic Studies Depression Scale in the Framingham Heart Study, Generation 3, with participants' average age of 46·3 ± 8·6 years. Robust regression models tested the association between different loneliness types with longitudinal neuropsychological performance (n = 2,609) and regional magnetic resonance imaging brain data (n = 1,829) (2002-2019). Results were stratified for sex, depression, and Apolipoprotein E4 (ApoE4). Findings Persistent loneliness, but not transient loneliness, was strongly associated with cognitive decline, especially memory and executive function. Persistent loneliness was negatively associated with temporal lobe volume (β = -0.18, 95%CI [-0.32, -0.04], P = 0·01). Among women, persistent loneliness was associated with smaller frontal lobe (β = -0.19, 95%CI [-0.38, -0.01], P = 0·04), temporal lobe (β = -0.20, 95%CI [-0.37, -0.03], P = 0·02), and hippocampus volumes (β = -0.23, 95%CI [-0.40, -0.06], P = 0·007), and larger lateral ventricle volume (β = 0.15, 95%CI [0.02, 0.28], P = 0·03). The higher cumulative loneliness scores across three exams, the smaller parietal, temporal, and hippocampus volumes and larger lateral ventricle were evident, especially in the presence of ApoE4. Interpretation Persistent loneliness in midlife was associated with atrophy in brain regions responsible for memory and executive dysfunction. Interventions to reduce the chronicity of loneliness may mitigate the risk of age-related cognitive decline and AD. Funding US National Institute on Aging.
Collapse
Affiliation(s)
- Qiushan Tao
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Boston University School of Medicine, USA
| | - Samia C. Akhter-Khan
- Department of Health Service & Population Research, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Ting Fang Alvin Ang
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Slone Epidemiology Center, Boston University School of Medicine, USA
| | - Charles DeCarli
- Alzheimer's Disease Center, University of California Davis Medical Center, CA, USA
| | - Michael L. Alosco
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Alzheimer's Diesease and Chronic Traumatic Encephalopathy Research Centers, Boston University, Boston, MA, USA
| | - Jesse Mez
- Framingham Heart Study, Boston University School of Medicine, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Alzheimer's Diesease and Chronic Traumatic Encephalopathy Research Centers, Boston University, Boston, MA, USA
| | - Ronald Killiany
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Sherral Devine
- Framingham Heart Study, Boston University School of Medicine, USA
- Department of Psychiatry, Boston University School of Medicine, USA
| | - Ami Rokach
- Department of Psychology, York University, Toronto, Canada
| | - Indira Swetha Itchapurapu
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Xiaoling Zhang
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Medicine, USA
| | | | - David C. Steffens
- Department of Psychiatry, University of Connecticut School of Medicine, USA
| | - Lindsay A. Farrer
- Framingham Heart Study, Boston University School of Medicine, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Medicine, USA
| | - Douglas N. Greve
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard University School of Medicine, USA
| | - Rhoda Au
- Framingham Heart Study, Boston University School of Medicine, USA
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Slone Epidemiology Center, Boston University School of Medicine, USA
| | - Wei Qiao Qiu
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Alzheimer's Diesease and Chronic Traumatic Encephalopathy Research Centers, Boston University, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, USA
| |
Collapse
|
22
|
Bzdok D, Dunbar RIM. Social isolation and the brain in the pandemic era. Nat Hum Behav 2022; 6:1333-1343. [PMID: 36258130 DOI: 10.1038/s41562-022-01453-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022]
Abstract
Intense sociality has been a catalyst for human culture and civilization, and our social relationships at a personal level play a pivotal role in our health and well-being. These relationships are, however, sensitive to the time we invest in them. To understand how and why this should be, we first outline the evolutionary background in primate sociality from which our human social world has emerged. We then review defining features of that human sociality, putting forward a framework within which one can understand the consequences of mass social isolation during the COVID-19 pandemic, including mental health deterioration, stress, sleep disturbance and substance misuse. We outline recent research on the neural basis of prolonged social isolation, highlighting especially higher-order neural circuits such as the default mode network. Our survey of studies covers the negative effects of prolonged social deprivation and the multifaceted drivers of day-to-day pandemic experiences.
Collapse
Affiliation(s)
- Danilo Bzdok
- The Neuro-Montreal Neurological Institute (MNI), McConnell Brain-Imaging Centre (BIC), Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| | - Robin I M Dunbar
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| |
Collapse
|
23
|
Hopf D, Schneider E, Aguilar-Raab C, Scheele D, Morr M, Klein T, Ditzen B, Eckstein M. Loneliness and diurnal cortisol levels during COVID-19 lockdown: the roles of living situation, relationship status and relationship quality. Sci Rep 2022; 12:15076. [PMID: 36064567 PMCID: PMC9443629 DOI: 10.1038/s41598-022-19224-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/25/2022] [Indexed: 12/05/2022] Open
Abstract
Loneliness and social isolation have become increasing concerns during COVID-19 lockdown through neuroendocrine stress-reactions, physical and mental health problems. We investigated living situation, relationship status and quality as potential moderators for trait and state loneliness and salivary cortisol levels (hormonal stress-responses) in healthy adults during the first lockdown in Germany. N = 1242 participants (mean age = 36.32, 78% female) filled out an online questionnaire on demographics, trait loneliness and relationship quality. Next, N = 247 (mean age = 32.6, 70% female) completed ecological momentary assessment (EMA), collecting twelve saliva samples on 2 days and simultaneously reporting their momentary loneliness levels. Divorced/widowed showed highest trait loneliness, followed by singles and partnerships. The latter displayed lower momentary loneliness and cortisol levels compared to singles. Relationship satisfaction significantly reduced loneliness levels in participants with a partner and those who were living apart from their partner reported loneliness levels similar to singles living alone. Living alone was associated with higher loneliness levels. Hierarchical linear models revealed a significant cross-level interaction between relationship status and momentary loneliness in predicting cortisol. The results imply that widowhood, being single, living alone and low relationship quality represent risk factors for loneliness and having a partner buffers neuroendocrine stress responses during lockdown.
Collapse
Affiliation(s)
- Dora Hopf
- Institute of Medical Psychology, Heidelberg University Hospital, Heidelberg, Germany.
- Ruprecht-Karls University Heidelberg, Heidelberg, Germany.
| | - Ekaterina Schneider
- Institute of Medical Psychology, Heidelberg University Hospital, Heidelberg, Germany
- Ruprecht-Karls University Heidelberg, Heidelberg, Germany
| | - Corina Aguilar-Raab
- Institute of Medical Psychology, Heidelberg University Hospital, Heidelberg, Germany
- Ruprecht-Karls University Heidelberg, Heidelberg, Germany
| | - Dirk Scheele
- Department of Social Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Mitjan Morr
- Section Medical Psychology, Department of Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Thomas Klein
- Ruprecht-Karls University Heidelberg, Heidelberg, Germany
| | - Beate Ditzen
- Institute of Medical Psychology, Heidelberg University Hospital, Heidelberg, Germany.
- Ruprecht-Karls University Heidelberg, Heidelberg, Germany.
| | - Monika Eckstein
- Institute of Medical Psychology, Heidelberg University Hospital, Heidelberg, Germany.
- Ruprecht-Karls University Heidelberg, Heidelberg, Germany.
| |
Collapse
|
24
|
Malik N, Bzdok D. From YouTube to the brain: Transfer learning can improve brain-imaging predictions with deep learning. Neural Netw 2022; 153:325-338. [PMID: 35777174 DOI: 10.1016/j.neunet.2022.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 04/20/2022] [Accepted: 06/09/2022] [Indexed: 12/01/2022]
Abstract
Deep learning has recently achieved best-in-class performance in several fields, including biomedical domains such as X-ray images. Yet, data scarcity poses a strict limit on training successful deep learning systems in many, if not most, biomedical applications, including those involving brain images. In this study, we translate state-of-the-art transfer learning techniques for single-subject prediction of simpler (sex and age) and more complex phenotypes (number of people in household, household income, fluid intelligence and smoking behavior). We fine-tuned 2D and 3D ResNet-18 convolutional neural networks for target phenotype predictions from brain images of ∼40,000 UK Biobank participants, after pretraining on YouTube videos from the Kinetics dataset and natural images from the ImageNet dataset. Transfer learning was effective on several phenotypes, especially sex and age classification. Additionally, transfer learning in particular outperformed deep learning models trained from scratch especially on smaller sample sizes. The out-of-sample performance using transfer learning from previously learned knowledge based on real-world images and videos could unlock the potential in many areas of imaging neuroscience where deep learning solutions are currently infeasible.
Collapse
Affiliation(s)
- Nahiyan Malik
- School of Computer Science, McGill University, Montreal, QC, Canada; Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada.
| | - Danilo Bzdok
- School of Computer Science, McGill University, Montreal, QC, Canada; Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada; Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
25
|
Suryoputri N, Kiesow H, Bzdok D. Population variation in social brain morphology: Links to socioeconomic status and health disparity. Soc Neurosci 2022; 17:305-327. [PMID: 35658811 DOI: 10.1080/17470919.2022.2083230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Health disparity across layers of society involves reasons beyond the healthcare system. Socioeconomic status (SES) shapes people's daily interaction with their social environment and is known to impact various health outcomes. Using generative probabilistic modeling, we investigate health satisfaction and complementary indicators of socioeconomic lifestyle in the human social brain. In a population cohort of ~10,000 UK Biobank participants, our first analysis probed the relationship between health status and subjective social standing (i.e., financial satisfaction). We identified volume effects in participants unhappy with their health in regions of the higher associative cortex, especially the dorsomedial prefrontal cortex (dmPFC) and bilateral temporo-parietal junction (TPJ). Specifically, participants in poor subjective health showed deviations in dmPFC and TPJ volume as a function of financial satisfaction. The second analysis on health status and objective social standing (i.e., household income) revealed volume deviations in regions of the limbic system for individuals feeling unhealthy. In particular, low-SES participants dissatisfied with their health showed deviations in volume distributions in the amygdala and hippocampus bilaterally. Thus, our population-level evidence speaks to the possibility that health status and socioeconomic position have characteristic imprints in social brain differentiation.
Collapse
Affiliation(s)
- Nathania Suryoputri
- Department of Medical Engineering and Technomathematics, FH Aachen University of Applied Sciences, Jülich, Germany
| | - Hannah Kiesow
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Danilo Bzdok
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montréal, QC, Canada.,Mila - Quebec Artificial Intelligence Institute, Montreal, Québec, Canada.,McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), McGill University, Montréal, Québec, Canada
| |
Collapse
|
26
|
Morr M, Noell J, Sassin D, Daniels J, Philipsen A, Becker B, Stoffel‐Wagner B, Hurlemann R, Scheele D. Lonely in the Dark: Trauma Memory and Sex-Specific Dysregulation of Amygdala Reactivity to Fear Signals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105336. [PMID: 35343102 PMCID: PMC9131432 DOI: 10.1002/advs.202105336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Loneliness exacerbates psychological distress and increases the risk of psychopathology after trauma exposure. However, it is still unclear whether a lack of social connectedness affects trauma-related intrusions and the neural processing of fear signals. Moreover, it is uncertain, whether loneliness plays a different role in women and men. A prestratification strategy is used and n = 47 (n = 20 women) healthy lonely individuals and n = 35 controls (n = 18 women) are recruited. Participants are exposed to an experimental trauma and evoked intrusive thoughts in daily life are monitored for three consecutive days. Functional magnetic resonance imaging is used to assess neural habituation to fearful faces and fear learning (conditioning and extinction) prior to trauma exposure. The results reveal a significant interaction between loneliness and sex such that loneliness is associated with more intrusions in men, but not in women. A similar pattern emerges at the neural level, with both reduced amygdala habituation to repeated fearful faces and amygdala hyperreactivity during the conditioning of fear signals in lonely men. The findings indicate that loneliness may confer vulnerability to intrusive memories after trauma exposure in healthy men and that this phenotype relates to altered limbic processing of fear signals.
Collapse
Affiliation(s)
- Mitjan Morr
- Research Section Medical PsychologyDepartment of Psychiatry and PsychotherapyUniversity Hospital BonnBonn53127Germany
| | - Jeanine Noell
- Research Section Medical PsychologyDepartment of Psychiatry and PsychotherapyUniversity Hospital BonnBonn53127Germany
| | - Daphne Sassin
- Research Section Medical PsychologyDepartment of Psychiatry and PsychotherapyUniversity Hospital BonnBonn53127Germany
| | - Jule Daniels
- Research Section Medical PsychologyDepartment of Psychiatry and PsychotherapyUniversity Hospital BonnBonn53127Germany
| | - Alexandra Philipsen
- Department of Psychiatry and PsychotherapyUniversity Hospital BonnBonn53127Germany
| | - Benjamin Becker
- Clinical Hospital of Chengdu Brain Science InstituteSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Birgit Stoffel‐Wagner
- Institute of Clinical Chemistry and Clinical PharmacologyUniversity Hospital BonnBonn53127Germany
| | - René Hurlemann
- Department of PsychiatrySchool of Medicine and Health SciencesUniversity of OldenburgOldenburg26129Germany
- Research Center Neurosensory ScienceUniversity of OldenburgOldenburg26129Germany
| | - Dirk Scheele
- Research Section Medical PsychologyDepartment of Psychiatry and PsychotherapyUniversity Hospital BonnBonn53127Germany
- Department of PsychiatrySchool of Medicine and Health SciencesUniversity of OldenburgOldenburg26129Germany
| |
Collapse
|
27
|
Linking interindividual variability in brain structure to behaviour. Nat Rev Neurosci 2022; 23:307-318. [PMID: 35365814 DOI: 10.1038/s41583-022-00584-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 12/15/2022]
Abstract
What are the brain structural correlates of interindividual differences in behaviour? More than a decade ago, advances in structural MRI opened promising new avenues to address this question. The initial wave of research then progressively led to substantial conceptual and methodological shifts, and a replication crisis unveiled the limitations of traditional approaches, which involved searching for associations between local measurements of neuroanatomy and behavioural variables in small samples of healthy individuals. Given these methodological issues and growing scepticism regarding the idea of one-to-one mapping of psychological constructs to brain regions, new perspectives emerged. These not only embrace the multivariate nature of brain structure-behaviour relationships and promote generalizability but also embrace the representation of the relationships between brain structure and behavioural data by latent dimensions of interindividual variability. Here, we examine the past and present of the study of brain structure-behaviour associations in healthy populations and address current challenges and open questions for future investigations.
Collapse
|
28
|
Affective Neuroscience of Loneliness: Potential Mechanisms underlying the Association between Perceived Social Isolation, Health, and Well-Being. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2022; 7:e220011. [PMID: 36778655 PMCID: PMC9910279 DOI: 10.20900/jpbs.20220011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Loneliness, or the subjective feeling of social isolation, is an important social determinant of health. Loneliness is associated with poor physical health, including higher rates of cardiovascular disease and dementia, faster cognitive decline, and increased risk of mortality, as well as disruptions in mental health, including higher levels of depression, anxiety, and negative affect. Theoretical accounts suggest loneliness is a complex cognitive and emotional state characterized by increased levels of inflammation and affective disruptions. This review examines affective neuroscience research on social isolation in animals and loneliness in humans to better understand the relationship between perceptions of social isolation and the brain. Loneliness associated increases in inflammation and neural changes consistent with increased sensitivity to social threat and disrupted emotion regulation suggest interventions targeting maladaptive social cognitions may be especially effective. Work in animal models suggests the neural changes associated with social isolation may be reversible. Therefore, ameliorating loneliness may be an actionable social determinant of health target. However, more research is needed to understand how loneliness impacts healthy aging, explore the role of inflammation as a potential mechanism in humans, and determine the best time to deliver interventions to improve physical health, mental health, and well-being across a diverse array of populations.
Collapse
|
29
|
Dubé L, Silveira PP, Nielsen DE, Moore S, Paquet C, Cisneros-Franco JM, Kemp G, Knauper B, Ma Y, Khan M, Bartlett-Esquilant G, Evans AC, Fellows LK, Armony JL, Spreng RN, Nie JY, Brown ST, Northoff G, Bzdok D. From Precision Medicine to Precision Convergence for Multilevel Resilience-The Aging Brain and Its Social Isolation. Front Public Health 2022; 10:720117. [PMID: 35865245 PMCID: PMC9294141 DOI: 10.3389/fpubh.2022.720117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Laurette Dubé
- Desautels Faculty of Management, McGill Center for the Convergence of Health and Economics, McGill University, Montreal, QC, Canada
| | - Patricia P Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Daiva E Nielsen
- Faculty of Agricultural and Environmental Sciences, School of Human Nutrition, McGill University, Montreal, QC, Canada
| | - Spencer Moore
- Health Promotion, Education, and Behavior, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Catherine Paquet
- Faculté des Sciences de l'Administration, Université Laval, Quebec City, QC, Canada
| | - J Miguel Cisneros-Franco
- Desautels Faculty of Management, McGill Center for the Convergence of Health and Economics, McGill University, Montreal, QC, Canada
| | - Gina Kemp
- Desautels Faculty of Management, McGill Center for the Convergence of Health and Economics, McGill University, Montreal, QC, Canada.,Centre for Research in Neuroscience, The Research Institute of McGill University Health Center, Montreal, QC, Canada
| | - Bärbel Knauper
- Department of Psychology, Faculty of Arts, McGill University, Montreal, QC, Canada
| | - Yu Ma
- Desautels Faculty of Management, McGill Center for the Convergence of Health and Economics, McGill University, Montreal, QC, Canada
| | - Mehmood Khan
- Life Biosciences Chief Executive Officer (CEO), Boston, MA, United States.,Council on Competitiveness (Chairman of the Board), Washington, DC, United States
| | | | - Alan C Evans
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Laboratory of Brain and Cognition, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Lesley K Fellows
- Laboratory of Brain and Cognition, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Chronic Mental Illness Service, Montreal Neurological Institute, Montreal, QC, Canada
| | - Jorge L Armony
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Douglas Mental Health University Institute, Montreal, QC, Canada
| | - R Nathan Spreng
- Laboratory of Brain and Cognition, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Douglas Mental Health University Institute, Montreal, QC, Canada.,Departments of Psychiatry and Psychology, McGill University, Montreal, QC, Canada.,McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
| | - Jian-Yun Nie
- Department of Computer Science and Operations Research, University of Montreal, Montreal, QC, Canada
| | - Shawn T Brown
- Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Georg Northoff
- Chronic Mental Illness Service, Montreal Neurological Institute, Montreal, QC, Canada.,Faculty of Medicine, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Danilo Bzdok
- Department of Biomedical Engineering, Faculty of Medicine, McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada.,Mila-Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| |
Collapse
|
30
|
Kernbach JM, Ort J, Hakvoort K, Clusmann H, Delev D, Neuloh G. Dimensionality Reduction: Foundations and Applications in Clinical Neuroscience. ACTA NEUROCHIRURGICA. SUPPLEMENT 2021; 134:59-63. [PMID: 34862528 DOI: 10.1007/978-3-030-85292-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Advancements in population neuroscience are spurred by the availability of large scale, open datasets, such as the Human Connectome Project or recently introduced UK Biobank. With the increasing data availability, analyses of brain imaging data employ more and more sophisticated machine learning algorithms. However, all machine learning algorithms must balance generalization and complexity. As the detail of neuroimaging data leads to high-dimensional data spaces, model complexity and hence the chance of overfitting increases. Different methodological approaches can be applied to alleviate the problems that arise in high-dimensional settings by reducing the original information into meaningful and concise features. One popular approach is dimensionality reduction, which allows to summarize high-dimensional data into low-dimensional representations while retaining relevant trends and patterns. In this paper, principal component analysis (PCA) is discussed as widely used dimensionality reduction method based on current examples of population-based neuroimaging analyses.
Collapse
Affiliation(s)
- Julius M Kernbach
- Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), RWTH Aachen University Hospital, Aachen, Germany. .,Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Jonas Ort
- Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), RWTH Aachen University Hospital, Aachen, Germany.,Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Karlijn Hakvoort
- Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), RWTH Aachen University Hospital, Aachen, Germany.,Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Hans Clusmann
- Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Daniel Delev
- Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), RWTH Aachen University Hospital, Aachen, Germany.,Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Georg Neuloh
- Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
31
|
Lieberz J, Shamay‐Tsoory SG, Saporta N, Esser T, Kuskova E, Stoffel‐Wagner B, Hurlemann R, Scheele D. Loneliness and the Social Brain: How Perceived Social Isolation Impairs Human Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102076. [PMID: 34541813 PMCID: PMC8564426 DOI: 10.1002/advs.202102076] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/30/2021] [Indexed: 06/07/2023]
Abstract
Loneliness is a painful condition associated with increased risk for premature mortality. The formation of new, positive social relationships can alleviate feelings of loneliness, but requires rapid trustworthiness decisions during initial encounters and it is still unclear how loneliness hinders interpersonal trust. Here, a multimodal approach including behavioral, psychophysiological, hormonal, and neuroimaging measurements is used to probe a trust-based mechanism underlying impaired social interactions in loneliness. Pre-stratified healthy individuals with high loneliness scores (n = 42 out of a screened sample of 3678 adults) show reduced oxytocinergic and affective responsiveness to a positive conversation, report less interpersonal trust, and prefer larger social distances compared to controls (n = 40). Moreover, lonely individuals are rated as less trustworthy compared to controls and identified by the blinded confederate better than chance. During initial trust decisions, lonely individuals exhibit attenuated limbic and striatal activation and blunted functional connectivity between the anterior insula and occipitoparietal regions, which correlates with the diminished affective responsiveness to the positive social interaction. This neural response pattern is not mediated by loneliness-associated psychological symptoms. Thus, the results indicate compromised integration of trust-related information as a shared neurobiological component in loneliness, yielding a reciprocally reinforced trust bias in social dyads.
Collapse
Affiliation(s)
- Jana Lieberz
- Division of Medical PsychologyDepartment of Psychiatry and PsychotherapyUniversity Hospital Bonn53105BonnGermany
| | | | - Nira Saporta
- Department of PsychologyUniversity of HaifaHaifa3498838Israel
| | - Timo Esser
- Division of Medical PsychologyDepartment of Psychiatry and PsychotherapyUniversity Hospital Bonn53105BonnGermany
| | - Ekaterina Kuskova
- Division of Medical PsychologyDepartment of Psychiatry and PsychotherapyUniversity Hospital Bonn53105BonnGermany
| | - Birgit Stoffel‐Wagner
- Institute of Clinical Chemistry and Clinical PharmacologyUniversity of Bonn53105BonnGermany
| | - René Hurlemann
- Department of PsychiatrySchool of Medicine and Health SciencesUniversity of Oldenburg26129OldenburgGermany
- Research Center Neurosensory ScienceUniversity of Oldenburg26129OldenburgGermany
| | - Dirk Scheele
- Division of Medical PsychologyDepartment of Psychiatry and PsychotherapyUniversity Hospital Bonn53105BonnGermany
- Department of PsychiatrySchool of Medicine and Health SciencesUniversity of Oldenburg26129OldenburgGermany
| |
Collapse
|
32
|
Dunbar RIM, Shultz S. The Infertility Trap: The Fertility Costs of Group-Living in Mammalian Social Evolution. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.634664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mammal social groups vary considerably in size from single individuals to very large herds. In some taxa, these groups are extremely stable, with at least some individuals being members of the same group throughout their lives; in other taxa, groups are unstable, with membership changing by the day. We argue that this variability in grouping patterns reflects a tradeoff between group size as a solution to environmental demands and the costs created by stress-induced infertility (creating an infertility trap). These costs are so steep that, all else equal, they will limit group size in mammals to ∼15 individuals. A species will only be able to live in larger groups if it evolves strategies that mitigate these costs. We suggest that mammals have opted for one of two solutions. One option (fission-fusion herding) is low cost but high risk; the other (bonded social groups) is risk-averse, but costly in terms of cognitive requirements.
Collapse
|
33
|
Lam JA, Murray ER, Yu KE, Ramsey M, Nguyen TT, Mishra J, Martis B, Thomas ML, Lee EE. Neurobiology of loneliness: a systematic review. Neuropsychopharmacology 2021; 46:1873-1887. [PMID: 34230607 PMCID: PMC8258736 DOI: 10.1038/s41386-021-01058-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/12/2021] [Accepted: 06/04/2021] [Indexed: 02/05/2023]
Abstract
Loneliness is associated with increased morbidity and mortality. Deeper understanding of neurobiological mechanisms underlying loneliness is needed to identify potential intervention targets. We did not find any systematic review of neurobiology of loneliness. Using MEDLINE and PsycINFO online databases, we conducted a search for peer-reviewed publications examining loneliness and neurobiology. We identified 41 studies (n = 16,771 participants) that had employed various methods including computer tomography (CT), structural magnetic resonance imaging (MRI), functional MRI (fMRI), electroencephalography (EEG), diffusion tensor imaging (DTI), single-photon emission computed tomography (SPECT), positron emission tomography (PET), and post-mortem brain tissue RNA analysis or pathological analysis. Our synthesis of the published findings shows abnormal structure (gray matter volume or white matter integrity) and/or activity (response to pleasant versus stressful images in social versus nonsocial contexts) in the prefrontal cortex (especially medial and dorsolateral), insula (particularly anterior), amygdala, hippocampus, and posterior superior temporal cortex. The findings related to ventral striatum and cerebellum were mixed. fMRI studies reported links between loneliness and differential activation of attentional networks, visual networks, and default mode network. Loneliness was also related to biological markers associated with Alzheimer's disease (e.g., amyloid and tau burden). Although the published investigations have limitations, this review suggests relationships of loneliness with altered structure and function in specific brain regions and networks. We found a notable overlap in the regions involved in loneliness and compassion, the two personality traits that are inversely correlated in previous studies. We have offered recommendations for future research studies of neurobiology of loneliness.
Collapse
Affiliation(s)
- Jeffrey A. Lam
- grid.40263.330000 0004 1936 9094Warren Alpert Medical School of Brown University, Providence, RI USA
| | - Emily R. Murray
- grid.266100.30000 0001 2107 4242Division of Biological Sciences, University of California San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Sam and Rose Stein Institute for Research on Aging, University of California San Diego, La Jolla, CA USA
| | - Kasey E. Yu
- grid.266100.30000 0001 2107 4242Sam and Rose Stein Institute for Research on Aging, University of California San Diego, La Jolla, CA USA
| | - Marina Ramsey
- grid.266100.30000 0001 2107 4242Sam and Rose Stein Institute for Research on Aging, University of California San Diego, La Jolla, CA USA
| | - Tanya T. Nguyen
- grid.266100.30000 0001 2107 4242Sam and Rose Stein Institute for Research on Aging, University of California San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA ,grid.410371.00000 0004 0419 2708Veterans Affairs San Diego Healthcare System, San Diego, CA USA
| | - Jyoti Mishra
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Brian Martis
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA ,grid.410371.00000 0004 0419 2708Veterans Affairs San Diego Healthcare System, San Diego, CA USA
| | - Michael L. Thomas
- grid.47894.360000 0004 1936 8083Department of Psychology, Colorado State University, Fort Collins, CO USA
| | - Ellen E. Lee
- grid.266100.30000 0001 2107 4242Sam and Rose Stein Institute for Research on Aging, University of California San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA ,grid.410371.00000 0004 0419 2708Veterans Affairs San Diego Healthcare System, San Diego, CA USA
| |
Collapse
|
34
|
Kiesow H, Uddin LQ, Bernhardt BC, Kable J, Bzdok D. Dissecting the midlife crisis: disentangling social, personality and demographic determinants in social brain anatomy. Commun Biol 2021; 4:728. [PMID: 34140617 PMCID: PMC8211729 DOI: 10.1038/s42003-021-02206-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022] Open
Abstract
In any stage of life, humans crave connection with other people. In midlife, transitions in social networks can relate to new leadership roles at work or becoming a caregiver for aging parents. Previous neuroimaging studies have pinpointed the medial prefrontal cortex (mPFC) to undergo structural remodelling during midlife. Social behavior, personality predisposition, and demographic profile all have intimate links to the mPFC according in largely disconnected literatures. Here, we explicitly estimated their unique associations with brain structure using a fully Bayesian framework. We weighed against each other a rich collection of 40 UK Biobank traits with their interindividual variation in social brain morphology in ~10,000 middle-aged participants. Household size and daily routines showed several of the largest effects in explaining variation in social brain regions. We also revealed male-biased effects in the dorsal mPFC and amygdala for job income, and a female-biased effect in the ventral mPFC for health satisfaction. Hannah Kiesow et al. combine 40 behavioral indicators and neuroimaging data from the UK Biobank to investigate how the transitions in midlife in the domains of social, personality, and demographic determinants impact brain anatomy. Through Bayesian analyses, the authors were able to disentangle which specific traits, relative to other considered candidate traits, contributed the most to explaining differences in social brain volume.
Collapse
Affiliation(s)
- Hannah Kiesow
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
| | - Joseph Kable
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Danilo Bzdok
- Department of Biomedical Engineering, McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montréal, QC, Canada. .,Mila - Quebec Artificial Intelligence Institute, Montréal, QC, Canada.
| |
Collapse
|
35
|
Schurz M, Uddin LQ, Kanske P, Lamm C, Sallet J, Bernhardt BC, Mars RB, Bzdok D. Variability in Brain Structure and Function Reflects Lack of Peer Support. Cereb Cortex 2021; 31:4612-4627. [PMID: 33982758 PMCID: PMC8408465 DOI: 10.1093/cercor/bhab109] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/02/2021] [Accepted: 03/24/2021] [Indexed: 01/10/2023] Open
Abstract
Humans are a highly social species. Complex interactions for mutual support range from helping neighbors to building social welfare institutions. During times of distress or crisis, sharing life experiences within one's social circle is critical for well-being. By translating pattern-learning algorithms to the UK Biobank imaging-genetics cohort (n = ~40 000 participants), we have delineated manifestations of regular social support in multimodal whole-brain measurements. In structural brain variation, we identified characteristic volumetric signatures in the salience and limbic networks for high- versus low-social support individuals. In patterns derived from functional coupling, we also located interindividual differences in social support in action-perception circuits related to binding sensory cues and initiating behavioral responses. In line with our demographic profiling analysis, the uncovered neural substrates have potential implications for loneliness, substance misuse, and resilience to stress.
Collapse
Affiliation(s)
- Matthias Schurz
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, The Netherlands
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK
- Institute of Psychology, University of Innsbruck, 6020 Innsbruck, Austria
- Address correspondence to Matthias Schurz, PhD, Donders Institute for Brain, Cognition, & Behaviour, Radboud University, Montessorilaan 3, B.0305, 6525 HR Nijmegen, Netherlands. and Danilo Bzdok, MD, PhD, Montreal Neurological Institute, 3801 rue University, Bureau #872D, Montréal (Québec) H3A 2B4, Canada.
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, Florida 33124, USA
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Philipp Kanske
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, 01187 Dresden, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
| | - Jérôme Sallet
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK
- University of Lyon, Univ Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Rogier B Mars
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, The Netherlands
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Danilo Bzdok
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec H3A 2B4, Canada
- Department of Biomedical Engineering, Faculty of Medicine, School of Computer Science, McGill University, Montreal, Quebec H3A 2B4, Canada
- Mila-Quebec Artificial Intelligence Institute, Montreal, Quebec H2S 3H1, Canada
- Address correspondence to Matthias Schurz, PhD, Donders Institute for Brain, Cognition, & Behaviour, Radboud University, Montessorilaan 3, B.0305, 6525 HR Nijmegen, Netherlands. and Danilo Bzdok, MD, PhD, Montreal Neurological Institute, 3801 rue University, Bureau #872D, Montréal (Québec) H3A 2B4, Canada.
| |
Collapse
|
36
|
Rippon G, Eliot L, Genon S, Joel D. How hype and hyperbole distort the neuroscience of sex differences. PLoS Biol 2021; 19:e3001253. [PMID: 33970901 PMCID: PMC8136838 DOI: 10.1371/journal.pbio.3001253] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/20/2021] [Indexed: 11/19/2022] Open
Abstract
Mind your language! This Perspective article points out that the source of misreporting in the field of sex/gender differences can often be found in the unjustified overstatements used by researchers themselves in reporting their findings; caution is needed when addressing differences between human beings, and hype and hyperbole should be avoided.
Collapse
Affiliation(s)
- Gina Rippon
- Aston Brain Centre, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
- * E-mail:
| | - Lise Eliot
- Stanson Toshok Center for Brain Function and Repair, Chicago Medical School, Rosalind Franklin University of Medicine & Science, North Chicago, Illinois, United States of America
| | - Sarah Genon
- Institute for Neuroscience and Medicine, Brain & Behavior (INM-7), Research Center Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Daphna Joel
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
37
|
Dunbar RIM, Shultz S. Social complexity and the fractal structure of group size in primate social evolution. Biol Rev Camb Philos Soc 2021; 96:1889-1906. [PMID: 33945202 DOI: 10.1111/brv.12730] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/17/2021] [Indexed: 12/25/2022]
Abstract
Compared to most other mammals and birds, anthropoid primates have unusually complex societies characterised by bonded social groups. Among primates, this effect is encapsulated in the social brain hypothesis: the robust correlation between various indices of social complexity (social group size, grooming clique size, tactical behaviour, coalition formation) and brain size. Hitherto, this has always been interpreted as a simple, unitary relationship. Using data for five different indices of brain volume from four independent brain databases, we show that the distribution of group size plotted against brain size is best described as a set of four distinct, very narrowly defined grades which are unrelated to phylogeny. The allocation of genera to these grades is highly consistent across the different data sets and brain indices. We show that these grades correspond to the progressive evolution of bonded social groups. In addition, we show, for those species that live in multilevel social systems, that the typical sizes of the different grouping levels in each case coincide with different grades. This suggests that the grades correspond to demographic attractors that are especially stable. Using five different cognitive indices, we show that the grades correlate with increasing social cognitive skills, suggesting that the cognitive demands of managing group cohesion increase progressively across grades. We argue that the grades themselves represent glass ceilings on animals' capacity to maintain social and spatial coherence during foraging and that, in order to evolve more highly bonded groups, species have to be able to invest in costly forms of cognition.
Collapse
Affiliation(s)
- Robin I M Dunbar
- Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, Oxford, OX2 1GG, UK
| | - Susanne Shultz
- Department of Earth and Environmental Sciences, Michael Smith Building, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
38
|
Proverbio AM. Sexual Dimorphism in Hemispheric Processing of Faces in Humans: A Meta-Analysis of 817 Cases. Soc Cogn Affect Neurosci 2021; 16:1023-1035. [PMID: 33835164 PMCID: PMC8483282 DOI: 10.1093/scan/nsab043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/06/2021] [Accepted: 04/08/2021] [Indexed: 11/23/2022] Open
Abstract
A well-established neuroimaging literature predicts a right-sided asymmetry in the activation of face-devoted areas such as the fusiform gyrus (FG) and its resulting M/N170 response during face processing. However, the face-related response sometimes appears to be bihemispheric. A few studies have argued that bilaterality depended on the sex composition of the sample. To shed light on this matter, two meta-analyses were conducted starting from a large initial database of 250 ERP (Event-related potentials)/MEG (Magnetoencephalography) peer-reviewed scientific articles. Paper coverage was from 1985 to 2020. Thirty-four articles met the inclusion criteria of a sufficiently large and balanced sample size with strictly right-handed and healthy participants aged 18–35 years and N170 measurements in response to neutral front view faces at left and right occipito/temporal sites. The data of 817 male (n = 414) and female (n = 403) healthy adults were subjected to repeated-measures analyses of variance. The results of statistical analyses from the data of 17 independent studies (from Asia, Europe and America) seem to robustly indicate the presence of a sex difference in the way the two cerebral hemispheres process facial information in humans, with a marked right-sided asymmetry of the bioelectrical activity in males and a bilateral or left-sided activity in females.
Collapse
Affiliation(s)
- Alice Mado Proverbio
- Neuro-Mi Center for Neuroscience, Department of Psychology, University of Milano-Bicocca, 20162 Milan, Italy
| |
Collapse
|
39
|
Coto ZN, Traniello JFA. Brain Size, Metabolism, and Social Evolution. Front Physiol 2021; 12:612865. [PMID: 33708134 PMCID: PMC7940180 DOI: 10.3389/fphys.2021.612865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/01/2021] [Indexed: 12/24/2022] Open
Affiliation(s)
- Zach N Coto
- Department of Biology, Boston University, Boston, MA, United States
| | - James F A Traniello
- Department of Biology, Boston University, Boston, MA, United States.,Graduate Program in Neuroscience, Boston University, Boston, MA, United States
| |
Collapse
|
40
|
Proverbio AM. Sex differences in the social brain and in social cognition. J Neurosci Res 2021; 101:730-738. [PMID: 33608982 DOI: 10.1002/jnr.24787] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 11/11/2022]
Abstract
Many studies have reported sex differences in empathy and social skills. In this review, several lines of empirical evidences about sex differences in functions and anatomy of social brain are discussed. The most relevant differences involve face processing, facial expression recognition, response to baby schema, the ability to see faces in things, the processing of social interactions, the response to the others' pain, interest in social information, processing of gestures and actions, biological motion, erotic, and affective stimuli. Sex differences in oxytocin-based parental response are also reported. In conclusion, the female and male brains show several neuro-functional differences in various aspects of social cognition, and especially in emotional coding, face processing, and response to baby schema. An interpretation of this sexual dimorphism is provided in the view of evolutionary psychobiology.
Collapse
Affiliation(s)
- Alice Mado Proverbio
- Milan Center for Neuroscience, Department of Psychology, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
41
|
Deep learning identifies partially overlapping subnetworks in the human social brain. Commun Biol 2021; 4:65. [PMID: 33446815 PMCID: PMC7809473 DOI: 10.1038/s42003-020-01559-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/03/2020] [Indexed: 12/23/2022] Open
Abstract
Complex social interplay is a defining property of the human species. In social neuroscience, many experiments have sought to first define and then locate ‘perspective taking’, ‘empathy’, and other psychological concepts to specific brain circuits. Seldom, bottom-up studies were conducted to first identify explanatory patterns of brain variation, which are then related to psychological concepts; perhaps due to a lack of large population datasets. In this spirit, we performed a systematic de-construction of social brain morphology into its elementary building blocks, involving ~10,000 UK Biobank participants. We explored coherent representations of structural co-variation at population scale within a recent social brain atlas, by translating autoencoder neural networks from deep learning. The learned subnetworks revealed essential patterns of structural relationships between social brain regions, with the nucleus accumbens, medial prefrontal cortex, and temporoparietal junction embedded at the core. Some of the uncovered subnetworks contributed to predicting examined social traits in general, while other subnetworks helped predict specific facets of social functioning, such as the experience of social isolation. As a consequence of our population-level evidence, spatially overlapping subsystems of the social brain probably relate to interindividual differences in everyday social life. Kiesow et al. use deep learning to identify partially overlapping subnetworks in the human social brain at the population level. They also demonstrate that the learned subnetwork representations can be used to predict social traits.
Collapse
|
42
|
Bittner N, Jockwitz C, Franke K, Gaser C, Moebus S, Bayen UJ, Amunts K, Caspers S. When your brain looks older than expected: combined lifestyle risk and BrainAGE. Brain Struct Funct 2021; 226:621-645. [PMID: 33423086 PMCID: PMC7981332 DOI: 10.1007/s00429-020-02184-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/24/2020] [Indexed: 12/25/2022]
Abstract
Lifestyle may be one source of unexplained variance in the great interindividual variability of the brain in age-related structural differences. While physical and social activity may protect against structural decline, other lifestyle behaviors may be accelerating factors. We examined whether riskier lifestyle correlates with accelerated brain aging using the BrainAGE score in 622 older adults from the 1000BRAINS cohort. Lifestyle was measured using a combined lifestyle risk score, composed of risk (smoking, alcohol intake) and protective variables (social integration and physical activity). We estimated individual BrainAGE from T1-weighted MRI data indicating accelerated brain atrophy by higher values. Then, the effect of combined lifestyle risk and individual lifestyle variables was regressed against BrainAGE. One unit increase in combined lifestyle risk predicted 5.04 months of additional BrainAGE. This prediction was driven by smoking (0.6 additional months of BrainAGE per pack-year) and physical activity (0.55 less months in BrainAGE per metabolic equivalent). Stratification by sex revealed a stronger association between physical activity and BrainAGE in males than females. Overall, our observations may be helpful with regard to lifestyle-related tailored prevention measures that slow changes in brain structure in older adults.
Collapse
Affiliation(s)
- Nora Bittner
- Institute for Anatomy I, Medical Faculty, Heinrich-Heine University Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
| | - Christiane Jockwitz
- Institute for Anatomy I, Medical Faculty, Heinrich-Heine University Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
| | - Katja Franke
- Structural Brain Mapping Group, University Hospital Jena, 07743, Jena, Germany
| | - Christian Gaser
- Structural Brain Mapping Group, University Hospital Jena, 07743, Jena, Germany
| | - Susanne Moebus
- Institute of Urban Public Health, University of Duisburg-Essen, 45122, Essen, Germany
| | - Ute J Bayen
- Mathematical and Cognitive Psychology, Institute for Experimental Psychology, Heinrich-Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany.,Cecile and Oskar Vogt Institute for Brain Research, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Düsseldorf, Germany.,JARA-BRAIN, Juelich-Aachen Research Alliance, 52425, Jülich, Germany
| | - Svenja Caspers
- Institute for Anatomy I, Medical Faculty, Heinrich-Heine University Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany. .,Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany. .,JARA-BRAIN, Juelich-Aachen Research Alliance, 52425, Jülich, Germany.
| |
Collapse
|
43
|
Spreng RN, Dimas E, Mwilambwe-Tshilobo L, Dagher A, Koellinger P, Nave G, Ong A, Kernbach JM, Wiecki TV, Ge T, Li Y, Holmes AJ, Yeo BTT, Turner GR, Dunbar RIM, Bzdok D. The default network of the human brain is associated with perceived social isolation. Nat Commun 2020; 11:6393. [PMID: 33319780 PMCID: PMC7738683 DOI: 10.1038/s41467-020-20039-w] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/14/2020] [Indexed: 01/01/2023] Open
Abstract
Humans survive and thrive through social exchange. Yet, social dependency also comes at a cost. Perceived social isolation, or loneliness, affects physical and mental health, cognitive performance, overall life expectancy, and increases vulnerability to Alzheimer's disease-related dementias. Despite severe consequences on behavior and health, the neural basis of loneliness remains elusive. Using the UK Biobank population imaging-genetics cohort (n = ~40,000, aged 40-69 years when recruited, mean age = 54.9), we test for signatures of loneliness in grey matter morphology, intrinsic functional coupling, and fiber tract microstructure. The loneliness-linked neurobiological profiles converge on a collection of brain regions known as the 'default network'. This higher associative network shows more consistent loneliness associations in grey matter volume than other cortical brain networks. Lonely individuals display stronger functional communication in the default network, and greater microstructural integrity of its fornix pathway. The findings fit with the possibility that the up-regulation of these neural circuits supports mentalizing, reminiscence and imagination to fill the social void.
Collapse
Affiliation(s)
- R Nathan Spreng
- Laboratory of Brain and Cognition, Montreal Neurological Institute, Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada.
- Departments of Psychiatry and Psychology, McGill University, Montreal, QC, Canada.
- Douglas Mental Health University Institute, Verdun, QC, HRH 1R3, Canada.
- McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada.
| | - Emile Dimas
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Laetitia Mwilambwe-Tshilobo
- Laboratory of Brain and Cognition, Montreal Neurological Institute, Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Alain Dagher
- McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada
| | - Philipp Koellinger
- School of Business and Economics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gideon Nave
- Marketing Department, the Wharton School, University of Pennsylvania, Pennsylvania, PA, USA
| | - Anthony Ong
- Department of Human Development, Cornell University, Ithaca, NY, USA
- Division of Geriatrics and Palliative Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Julius M Kernbach
- Department of Neurosurgery, Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), RWTH Aachen University Hospital, Aachen, Germany
| | | | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02138, USA
| | - Yue Li
- School of Computer Science, McGill University, Montreal, QC, Canada
| | - Avram J Holmes
- Departments of Psychology and Psychiatry, Yale University, New Haven, CA, 06520, USA
| | - B T Thomas Yeo
- Department of Electrical & Computer Engineering, Centre for Sleep & Cognition, Clinical Imaging Research Centre, N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Gary R Turner
- Department of Psychology, York University, Toronto, ON, Canada
| | - Robin I M Dunbar
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Danilo Bzdok
- McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada.
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada.
- School of Computer Science, McGill University, Montreal, QC, Canada.
- Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada.
| |
Collapse
|
44
|
Acién P, Acién M. Disorders of Sex Development: Classification, Review, and Impact on Fertility. J Clin Med 2020; 9:jcm9113555. [PMID: 33158283 PMCID: PMC7694247 DOI: 10.3390/jcm9113555] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, the elements included in both sex determination and sex differentiation are briefly analyzed, exposing the pathophysiological and clinical classification of disorders or anomalies of sex development. Anomalies in sex determination without sex ambiguity include gonadal dysgenesis, polysomies, male XX, and Klinefelter syndrome (dysgenesis and polysomies with a female phenotype; and sex reversal and Klinefelter with a male phenotype). Other infertility situations could also be included here as minor degrees of dysgenesis. Anomalies in sex determination with sex ambiguity should (usually) include testicular dysgenesis and ovotesticular disorders. Among the anomalies in sex differentiation, we include: (1) males with androgen deficiency (MAD) that correspond to those individuals whose karyotype and gonads are male (XY and testes), but the phenotype can be female due to different hormonal abnormalities. (2) females with androgen excess (FAE); these patients have ovaries and a 46,XX karyotype, but present varying degrees of external genital virilization as a result of an enzyme abnormality that affects adrenal steroid biosynthesis and leads to congenital adrenal hyperplasia; less frequently, this can be caused by iatrogenia or tumors. (3) Kallman syndrome. All of these anomalies are reviewed and analyzed herein, as well as related fertility problems.
Collapse
Affiliation(s)
- Pedro Acién
- Department of Gynecology, Miguel Hernández University, San Juan Campus, 03550 San Juan, Alicante, Spain;
- Correspondence: ; Tel.: +34-670-097-518, +34-965-919-385; Fax: +34-965-919-550
| | - Maribel Acién
- Department of Gynecology, Miguel Hernández University, San Juan Campus, 03550 San Juan, Alicante, Spain;
- Obstetrics and Gynecology, San Juan University Hospital, San Juan Campus, 03550 San Juan, Alicante, Spain
| |
Collapse
|
45
|
Crawford B, Muhlert N, MacDonald G, Lawrence AD. Brain structure correlates of expected social threat and reward. Sci Rep 2020; 10:18010. [PMID: 33093488 PMCID: PMC7582181 DOI: 10.1038/s41598-020-74334-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022] Open
Abstract
Prospection (mentally simulating future events) generates emotionally-charged mental images that guide social decision-making. Positive and negative social expectancies-imagining new social interactions to be rewarding versus threatening-are core components of social approach and avoidance motivation, respectively. Interindividual differences in such positive and negative future-related cognitions may be underpinned by distinct neuroanatomical substrates. Here, we asked 100 healthy adults to vividly imagine themselves in a novel self-relevant event that was ambiguous with regards to possible social acceptance or rejection. During this task we measured participants' expectancies for social reward (anticipated feelings of social connection) or threat (anticipated feelings of rejection). On a separate day they underwent structural MRI; voxel-based morphometry was used to explore the relation between social reward and threat expectancies and regional grey matter volumes (rGMV). Increased rGMV in key default-network regions involved in prospection, socio-emotional cognition, and subjective valuation, including ventromedial prefrontal cortex, correlated with both higher social reward and lower social threat expectancies. In contrast, social threat expectancies uniquely correlated with rGMV of regions involved in social attention (posterior superior temporal sulcus, pSTS) and interoception (somatosensory cortex). These findings provide novel insight into the neurobiology of future-oriented cognitive-affective processes critical to adaptive social functioning.
Collapse
Affiliation(s)
- Bonni Crawford
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK.
| | - Nils Muhlert
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Geoff MacDonald
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Andrew D Lawrence
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| |
Collapse
|
46
|
Bzdok D, Dunbar RIM. The Neurobiology of Social Distance. Trends Cogn Sci 2020; 24:717-733. [PMID: 32561254 PMCID: PMC7266757 DOI: 10.1016/j.tics.2020.05.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022]
Abstract
Never before have we experienced social isolation on such a massive scale as we have in response to coronavirus disease 2019 (COVID-19). However, we know that the social environment has a dramatic impact on our sense of life satisfaction and well-being. In times of distress, crisis, or disaster, human resilience depends on the richness and strength of social connections, as well as on active engagement in groups and communities. Over recent years, evidence emerging from various disciplines has made it abundantly clear: perceived social isolation (i.e., loneliness) may be the most potent threat to survival and longevity. We highlight the benefits of social bonds, the choreographies of bond creation and maintenance, as well as the neurocognitive basis of social isolation and its deep consequences for mental and physical health.
Collapse
Affiliation(s)
- Danilo Bzdok
- Department of Biomedical Engineering, McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Canada; Quebec Artificial Intelligence Institute (Mila), Montreal, Canada.
| | - Robin I M Dunbar
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| |
Collapse
|
47
|
Dohmatob E, Dumas G, Bzdok D. Dark control: The default mode network as a reinforcement learning agent. Hum Brain Mapp 2020; 41:3318-3341. [PMID: 32500968 PMCID: PMC7375062 DOI: 10.1002/hbm.25019] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/22/2020] [Accepted: 04/12/2020] [Indexed: 12/11/2022] Open
Abstract
The default mode network (DMN) is believed to subserve the baseline mental activity in humans. Its higher energy consumption compared to other brain networks and its intimate coupling with conscious awareness are both pointing to an unknown overarching function. Many research streams speak in favor of an evolutionarily adaptive role in envisioning experience to anticipate the future. In the present work, we propose a process model that tries to explain how the DMN may implement continuous evaluation and prediction of the environment to guide behavior. The main purpose of DMN activity, we argue, may be described by Markov decision processes that optimize action policies via value estimates through vicarious trial and error. Our formal perspective on DMN function naturally accommodates as special cases previous interpretations based on (a) predictive coding, (b) semantic associations, and (c) a sentinel role. Moreover, this process model for the neural optimization of complex behavior in the DMN offers parsimonious explanations for recent experimental findings in animals and humans.
Collapse
Affiliation(s)
- Elvis Dohmatob
- Criteo AI LabParisFrance
- INRIA, Parietal TeamSaclayFrance
- Neurospin, CEAGif‐sur‐YvetteFrance
| | - Guillaume Dumas
- Institut Pasteur, Human Genetics and Cognitive Functions UnitParisFrance
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut PasteurParisFrance
- University Paris Diderot, Sorbonne Paris CitéParisFrance
- Centre de Bioinformatique, Biostatistique et Biologie IntégrativeParisFrance
| | - Danilo Bzdok
- Department of Biomedical Engineering, McConnell Brain Imaging Centre, Montreal Neurological Institute, Faculty of Medicine, School of Computer ScienceMcGill UniversityMontrealCanada
- Mila—Quebec Artificial Intelligence InstituteMontrealCanada
| |
Collapse
|
48
|
Dunbar RIM. Structure and function in human and primate social networks: implications for diffusion, network stability and health. Proc Math Phys Eng Sci 2020; 476:20200446. [PMID: 32922160 PMCID: PMC7482201 DOI: 10.1098/rspa.2020.0446] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
The human social world is orders of magnitude smaller than our highly urbanized world might lead us to suppose. In addition, human social networks have a very distinct fractal structure similar to that observed in other primates. In part, this reflects a cognitive constraint, and in part a time constraint, on the capacity for interaction. Structured networks of this kind have a significant effect on the rates of transmission of both disease and information. Because the cognitive mechanism underpinning network structure is based on trust, internal and external threats that undermine trust or constrain interaction inevitably result in the fragmentation and restructuring of networks. In contexts where network sizes are smaller, this is likely to have significant impacts on psychological and physical health risks.
Collapse
Affiliation(s)
- R. I. M. Dunbar
- Department of Experimental Psychology, University of Oxford, New Radcliffe Building, Radcliffe Observatory Quarter, Oxford OX1 6GG, UK
| |
Collapse
|