1
|
Ji W, Osbourn A, Liu Z. Understanding metabolic diversification in plants: branchpoints in the evolution of specialized metabolism. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230359. [PMID: 39343032 PMCID: PMC11439499 DOI: 10.1098/rstb.2023.0359] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/30/2024] [Accepted: 06/19/2024] [Indexed: 10/01/2024] Open
Abstract
Plants are chemical engineers par excellence. Collectively they make a vast array of structurally diverse specialized metabolites. The raw materials for building new pathways (genes encoding biosynthetic enzymes) are commonly recruited directly or indirectly from primary metabolism. Little is known about how new metabolic pathways and networks evolve in plants, or what key nodes contribute to branches that lead to the biosynthesis of diverse chemicals. Here we review the molecular mechanisms underlying the generation of biosynthetic branchpoints. We also consider examples in which new metabolites are formed through the joining of precursor molecules arising from different biosynthetic routes, a scenario that greatly increases both the diversity and complexity of specialized metabolism. Given the emerging importance of metabolic gene clustering in helping to identify new enzymes and pathways, we further cover the significance of biosynthetic gene clusters in relation to metabolic networks and dedicated biosynthetic pathways. In conclusion, an improved understanding of the branchpoints between metabolic pathways will be key in order to be able to predict and illustrate the complex structure of metabolic networks and to better understand the plasticity of plant metabolism. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Wenjuan Ji
- Joint Center for Single Cell Biology; Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| | - Anne Osbourn
- Department of Biochemistry and Metabolism, John Innes Centre, NorwichNR4 7UH, UK
| | - Zhenhua Liu
- Joint Center for Single Cell Biology; Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| |
Collapse
|
2
|
Barkman TJ. Applications of ancestral sequence reconstruction for understanding the evolution of plant specialized metabolism. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230348. [PMID: 39343033 PMCID: PMC11439504 DOI: 10.1098/rstb.2023.0348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 10/01/2024] Open
Abstract
Studies of enzymes in modern-day plants have documented the diversity of metabolic activities retained by species today but only provide limited insight into how those properties evolved. Ancestral sequence reconstruction (ASR) is an approach that provides statistical estimates of ancient plant enzyme sequences which can then be resurrected to test hypotheses about the evolution of catalytic activities and pathway assembly. Here, I review the insights that have been obtained using ASR to study plant metabolism and highlight important methodological aspects. Overall, studies of resurrected plant enzymes show that (i) exaptation is widespread such that even low or undetectable levels of ancestral activity with a substrate can later become the apparent primary activity of descendant enzymes, (ii) intramolecular epistasis may or may not limit evolutionary paths towards catalytic or substrate preference switches, and (iii) ancient pathway flux often differs from modern-day metabolic networks. These and other insights gained from ASR would not have been possible using only modern-day sequences. Future ASR studies characterizing entire ancestral metabolic networks as well as those that link ancient structures with enzymatic properties should continue to provide novel insights into how the chemical diversity of plants evolved. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Todd J. Barkman
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI49008, USA
| |
Collapse
|
3
|
Cawood GL, Ton J. Decoding resilience: ecology, regulation, and evolution of biosynthetic gene clusters. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00241-3. [PMID: 39393973 DOI: 10.1016/j.tplants.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 10/13/2024]
Abstract
Secondary metabolism is crucial for plant survival and can generate chemistry with nutritional, therapeutic, and industrial value. Biosynthetic genes of selected secondary metabolites cluster within localised chromosomal regions. The arrangement of these biosynthetic gene clusters (BGCs) challenges the long-held model of random gene order in eukaryotes, raising questions about their regulation, ecological significance, and evolution. In this review, we address these questions by exploring the contribution of BGCs to ecologically relevant plant-biotic interactions, while also evaluating the molecular-(epi)genetic mechanisms controlling their coordinated stress- and tissue-specific expression. Based on evidence that BGCs have distinct chromatin signatures and are enriched with transposable elements (TEs), we integrate emerging hypotheses into an updated evolutionary model emphasising how stress-induced epigenetic processes have shaped BGC formation.
Collapse
Affiliation(s)
- George Lister Cawood
- Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Jurriaan Ton
- Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
4
|
Smit SJ, Whitehead C, James SR, Jeffares DC, Godden G, Peng D, Sun H, Lichman BR. Pseudomolecule-scale genome assemblies of Drepanocaryum sewerzowii and Marmoritis complanata. G3 (BETHESDA, MD.) 2024; 14:jkae172. [PMID: 39047060 DOI: 10.1093/g3journal/jkae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
The Nepetoideae, a subfamily of Lamiaceae (mint family), is rich in aromatic plants, many of which are sought after for their use as flavors and fragrances or for their medicinal properties. Here, we present genome assemblies for two species in Nepetiodeae: Drepanocaruym sewerzowii and Marmoritis complanata. Both assemblies were generated using Oxford Nanopore Q20 + reads with contigs anchored to nine pseudomolecules that resulted in 335 Mb and 305 Mb assemblies, respectively, and BUSCO scores above 95% for both the assembly and annotation. We furthermore provide a species tree for the Lamiaceae using only genome-derived gene models, complementing existing transcriptome and marker-based phylogenies.
Collapse
Affiliation(s)
- Samuel J Smit
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Caragh Whitehead
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Sally R James
- Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, UK
| | - Daniel C Jeffares
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK
| | - Grant Godden
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Deli Peng
- School of Life Science, Yunnan Normal University, Kunming 650092, Yunnan, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
5
|
Busta L, Hall D, Johnson B, Schaut M, Hanson CM, Gupta A, Gundrum M, Wang Y, A Maeda H. Mapping of specialized metabolite terms onto a plant phylogeny using text mining and large language models. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:406-419. [PMID: 38976238 DOI: 10.1111/tpj.16906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/21/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
Plants produce a staggering array of chemicals that are the basis for organismal function and important human nutrients and medicines. However, it is poorly defined how these compounds evolved and are distributed across the plant kingdom, hindering a systematic view and understanding of plant chemical diversity. Recent advances in plant genome/transcriptome sequencing have provided a well-defined molecular phylogeny of plants, on which the presence of diverse natural products can be mapped to systematically determine their phylogenetic distribution. Here, we built a proof-of-concept workflow where previously reported diverse tyrosine-derived plant natural products were mapped onto the plant tree of life. Plant chemical-species associations were mined from literature, filtered, evaluated through manual inspection of over 2500 scientific articles, and mapped onto the plant phylogeny. The resulting "phylochemical" map confirmed several highly lineage-specific compound class distributions, such as betalain pigments and Amaryllidaceae alkaloids. The map also highlighted several lineages enriched in dopamine-derived compounds, including the orders Caryophyllales, Liliales, and Fabales. Additionally, the application of large language models, using our manually curated data as a ground truth set, showed that post-mining processing can largely be automated with a low false-positive rate, critical for generating a reliable phylochemical map. Although a high false-negative rate remains a challenge, our study demonstrates that combining text mining with language model-based processing can generate broader phylochemical maps, which will serve as a valuable community resource to uncover key evolutionary events that underlie plant chemical diversity and enable system-level views of nature's millions of years of chemical experimentation.
Collapse
Affiliation(s)
- Lucas Busta
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Drew Hall
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Braidon Johnson
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Madelyn Schaut
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Caroline M Hanson
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anika Gupta
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Megan Gundrum
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yuer Wang
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Qiu S, Wang J, Pei T, Gao R, Xiang C, Chen J, Zhang C, Xiao Y, Li Q, Wu Z, He M, Wang R, Zhao Q, Xu Z, Hu J, Chen W. Functional evolution and diversification of CYP82D subfamily members have shaped flavonoid diversification in the genus Scutellaria. PLANT COMMUNICATIONS 2024:101134. [PMID: 39277789 DOI: 10.1016/j.xplc.2024.101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Flavonoids, the largest class of polyphenols, exhibit substantial structural and functional diversity, yet their evolutionary diversification and specialized functions remain largely unexplored. The genus Scutellaria is notable for its rich flavonoid diversity, particularly of 6/8-hydroxylated variants biosynthesized by the cytochrome P450 subfamily CYP82D. Our study analyzes metabolic differences between Scutellaria baicalensis and Scutellaria barbata, and the results suggest that CYP82Ds have acquired a broad range of catalytic functions over their evolution. By integrating analyses of metabolic networks and gene evolution across 22 Scutellaria species, we rapidly identified 261 flavonoids and delineated five clades of CYP82Ds associated with various catalytic functions. This approach revealed a unique catalytic mode for 6/8-hydroxylation of flavanone substrates and the first instance of 7-O-demethylation of flavonoid substrates catalyzed by a cytochrome P450. Ancestral sequence reconstruction and functional validation demonstrated that gradual neofunctionalization of CYP82Ds has driven the chemical diversity of flavonoids in the genus Scutellaria throughout its evolutionary history. These findings enhance our understanding of flavonoid diversity, reveal the intricate roles of CYP82Ds in Scutellaria species, and highlight the extensive catalytic versatility of cytochrome P450 members within plant taxa.
Collapse
Affiliation(s)
- Shi Qiu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China
| | - Jing Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tianlin Pei
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Ranran Gao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China
| | - Chunlei Xiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Junfeng Chen
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chen Zhang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Xiao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Li
- Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai 200003, China
| | - Ziding Wu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Min He
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rong Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Zhao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China.
| | - Zhichao Xu
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| | - Jiadong Hu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai 200003, China.
| | - Wansheng Chen
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai 200003, China.
| |
Collapse
|
7
|
Zhiponova M, Yordanova Z, Zaharieva A, Ivanova L, Gašić U, Mišić D, Aničić N, Skorić M, Petrović L, Rusanov K, Rusanova M, Mantovska D, Tsacheva I, Petrova D, Yocheva L, Hinkov A, Mihaylova N, Hristozkova M, Georgieva Z, Karcheva Z, Krumov N, Todorov D, Shishkova K, Vassileva V, Chaneva G, Kapchina-Toteva V. Cytokinins enhance the metabolic activity of in vitro-grown catmint (Nepeta nuda L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108884. [PMID: 38945096 DOI: 10.1016/j.plaphy.2024.108884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/29/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
The phytohormones cytokinins are essential mediators of developmental and environmental signaling, primarily during cell division and endophytic interactions, among other processes. Considering the limited understanding of the regulatory mechanisms that affect the growth and bioactivity of the medicinal plant Nepeta nuda (Lamiaceae), our study aimed to explore how cytokinins influence the plant's metabolic status. Exogenous administration of active cytokinin forms on in vitro N. nuda internodes stimulated intensive callus formation and de novo shoot regeneration, leading to a marked increase in biomass. This process involved an accumulation of oxidants, which were scavenged by peroxidases using phenolics as substrates. The callus tissue formed upon the addition of the cytokinin 6-benzylaminopurine (BAP) acted as a sink for sugars and phenolics during the allocation of nutrients between the culture medium and regenerated plants. In accordance, the cytokinin significantly enhanced the content of polar metabolites and their respective in vitro biological activities compared to untreated in vitro and wild-grown plants. The BAP-mediated accumulation of major phenolic metabolites, rosmarinic acid (RA) and caffeic acid (CA), corresponded with variations in the expression levels of genes involved in their biosynthesis. In contrast, the accumulation of iridoids and the expression of corresponding biosynthetic genes were not significantly affected. In conclusion, our study elucidated the mechanism of cytokinin action in N. nuda in vitro culture and demonstrated its potential in stimulating the production of bioactive compounds. This knowledge could serve as a basis for further investigations of the environmental impact on plant productivity.
Collapse
Affiliation(s)
- Miroslava Zhiponova
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Zhenya Yordanova
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Anna Zaharieva
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Lyubomira Ivanova
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia.
| | - Danijela Mišić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia.
| | - Neda Aničić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia.
| | - Marijana Skorić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia.
| | - Luka Petrović
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia.
| | - Krasimir Rusanov
- Department of Agrobiotechnology, Agrobioinstitute, Agricultural Academy, 1164, Sofia, Bulgaria.
| | - Mila Rusanova
- Department of Agrobiotechnology, Agrobioinstitute, Agricultural Academy, 1164, Sofia, Bulgaria.
| | - Desislava Mantovska
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Ivanka Tsacheva
- Department of Biochemistry, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Detelina Petrova
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Lyubomira Yocheva
- Department of Human Biology, Medical Genetics and Microbiology, Faculty of Medicine, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria.
| | - Anton Hinkov
- Laboratory of Virology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Nikolina Mihaylova
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria.
| | - Marieta Hristozkova
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Zhaneta Georgieva
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Zornitsa Karcheva
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Nikolay Krumov
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Daniel Todorov
- Laboratory of Virology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Kalina Shishkova
- Laboratory of Virology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Ganka Chaneva
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Veneta Kapchina-Toteva
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| |
Collapse
|
8
|
Brose J, Hamilton JP, Schlecht N, Zhao D, Mejía-Ponce PM, Pérez AC, Vaillancourt B, Wood JC, Edger PP, Montes-Hernandez S, de Rosas GO, Hamberger B, Jaramillo AC, Buell CR. Chromosome-scale Salvia hispanica L. (Chia) genome assembly reveals rampant Salvia interspecies introgression. THE PLANT GENOME 2024:e20494. [PMID: 39192667 DOI: 10.1002/tpg2.20494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 08/29/2024]
Abstract
Salvia hispanica L. (Chia), a member of the Lamiaceae, is an economically important crop in Mesoamerica, with health benefits associated with its seed fatty acid composition. Chia varieties are distinguished based on seed color including mixed white and black (Chia pinta) and black (Chia negra). To facilitate research on Chia and expand on comparative analyses within the Lamiaceae, we generated a chromosome-scale assembly of a Chia pinta accession and performed comparative genome analyses with a previously published Chia negra genome assembly. The Chia pinta and Chia negra genome sequences were highly similar as shown by a limited number of single nucleotide polymorphisms and extensive shared orthologous gene membership. However, there is an enrichment of terpene synthases in the Chia pinta genome relative to the Chia negra genome. We sequenced and analyzed the genomes of 20 Chia accessions with differing seed color and geographic origin revealing population structure within S. hispanica and interspecific introgressions of Salvia species. As the genus Salvia is polyphyletic, its evolutionary history remains unclear. Using large-scale synteny analysis within the Lamiaceae and orthologous group membership, we resolved the phylogeny of Salvia species. This study and its collective resources further our understanding of genomic diversity in this food crop and the extent of interspecies hybridizations in Salvia.
Collapse
Affiliation(s)
- Julia Brose
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - John P Hamilton
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia, USA
| | - Nicholas Schlecht
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Dongyan Zhao
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Paulina M Mejía-Ponce
- National Laboratory for Genomics of Biodiversity (UGA-Langebio), CINVESTAV, Irapuato, Mexico
| | - Arely Cruz Pérez
- National Laboratory for Genomics of Biodiversity (UGA-Langebio), CINVESTAV, Irapuato, Mexico
| | - Brieanne Vaillancourt
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, USA
| | - Joshua C Wood
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, Michigan, USA
| | - Salvador Montes-Hernandez
- Campo Experimental Bajío, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Celaya, México
| | | | - Björn Hamberger
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Angélica Cibrian Jaramillo
- National Laboratory for Genomics of Biodiversity (UGA-Langebio), CINVESTAV, Irapuato, Mexico
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - C Robin Buell
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia, USA
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
9
|
Kissman EN, Sosa MB, Millar DC, Koleski EJ, Thevasundaram K, Chang MCY. Expanding chemistry through in vitro and in vivo biocatalysis. Nature 2024; 631:37-48. [PMID: 38961155 DOI: 10.1038/s41586-024-07506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/01/2024] [Indexed: 07/05/2024]
Abstract
Living systems contain a vast network of metabolic reactions, providing a wealth of enzymes and cells as potential biocatalysts for chemical processes. The properties of protein and cell biocatalysts-high selectivity, the ability to control reaction sequence and operation in environmentally benign conditions-offer approaches to produce molecules at high efficiency while lowering the cost and environmental impact of industrial chemistry. Furthermore, biocatalysis offers the opportunity to generate chemical structures and functions that may be inaccessible to chemical synthesis. Here we consider developments in enzymes, biosynthetic pathways and cellular engineering that enable their use in catalysis for new chemistry and beyond.
Collapse
Affiliation(s)
- Elijah N Kissman
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Max B Sosa
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Douglas C Millar
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Edward J Koleski
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | | | - Michelle C Y Chang
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA.
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
10
|
Ye C, Li M, Gao J, Zuo Y, Xiao F, Jiang X, Cheng J, Huang L, Xu Z, Lian J. Metabolic engineering of Pichia pastoris for overproduction of cis-trans nepetalactol. Metab Eng 2024; 84:83-94. [PMID: 38897449 DOI: 10.1016/j.ymben.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/13/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Monoterpene indole alkaloids (MIAs) are a group of plant-derived natural products with high-value medicinal properties. However, their availability for clinical application is limited due to challenges in plant extraction. Microbial production has emerged as a promising strategy to meet the clinical demands for MIAs. The biosynthetic pathway of cis-trans nepetalactol, which serves as the universal iridoid scaffold for all MIAs, has been successfully identified and reconstituted. However, bottlenecks and challenges remain to construct a high-yielding platform strain for cis-trans nepetalactol production, which is vital for subsequent MIAs biosynthesis. In the present study, we focused on engineering of Pichia pastoris cell factories to enhance the production of geraniol, 8-hydroxygeraniol, and cis-trans nepetalactol. By targeting the biosynthetic pathway from acetyl-CoA to geraniol in both peroxisomes and cytoplasm, we achieved comparable geraniol titers in both compartments. Through protein engineering, we found that either G8H or CPR truncation increased the production of 8-hydroxygeraniol, with a 47.8-fold and 14.0-fold increase in the peroxisomal and cytosolic pathway strain, respectively. Furthermore, through a combination of dynamical control of ERG20, precursor and cofactor supply engineering, diploid engineering, and dual subcellular compartmentalization engineering, we achieved the highest ever reported production of cis-trans nepetalactol, with a titer of 4429.4 mg/L using fed-batch fermentation in a 5-L bioreactor. We anticipate our systematic metabolic engineering strategies to facilitate the development of P. pastoris cell factories for sustainable production of MIAs and other plant natural products.
Collapse
Affiliation(s)
- Cuifang Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mengxin Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jucan Gao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Yimeng Zuo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Feng Xiao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Xiaojing Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jintao Cheng
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
11
|
Smit SJ, Ayten S, Radzikowska BA, Hamilton JP, Langer S, Unsworth WP, Larson TR, Buell CR, Lichman BR. The genomic and enzymatic basis for iridoid biosynthesis in cat thyme (Teucrium marum). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1589-1602. [PMID: 38489316 DOI: 10.1111/tpj.16698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/30/2024] [Accepted: 02/14/2024] [Indexed: 03/17/2024]
Abstract
Iridoids are non-canonical monoterpenoids produced by both insects and plants. An example is the cat-attracting and insect-repelling volatile iridoid nepetalactone, produced by Nepeta sp. (catmint) and aphids. Recently, both nepetalactone biosynthetic pathways were elucidated, showing a remarkable convergent evolution. The iridoid, dolichodial, produced by Teucrium marum (cat thyme) and multiple insect species, has highly similar properties to nepetalactone but its biosynthetic origin remains unknown. We set out to determine the genomic, enzymatic, and evolutionary basis of iridoid biosynthesis in T. marum. First, we generated a de novo chromosome-scale genome assembly for T. marum using Oxford Nanopore Technologies long reads and proximity-by-ligation Hi-C reads. The 610.3 Mb assembly spans 15 pseudomolecules with a 32.9 Mb N50 scaffold size. This enabled identification of iridoid biosynthetic genes, whose roles were verified via activity assays. Phylogenomic analysis revealed that the evolutionary history of T. marum iridoid synthase, the iridoid scaffold-forming enzyme, is not orthologous to typical iridoid synthases but is derived from its conserved paralog. We discovered an enzymatic route from nepetalactol to diverse iridoids through the coupled activity of an iridoid oxidase cytochrome P450 and acetyltransferases, via an inferred acylated intermediate. This work provides a genomic resource for specialized metabolite research in mints and demonstration of the role of acetylation in T. marum iridoid diversity. This work will enable future biocatalytic or biosynthetic production of potent insect repellents, as well as comparative studies into iridoid biosynthesis in insects.
Collapse
Affiliation(s)
- Samuel J Smit
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Sefa Ayten
- Institute of Plant Breeding, Genetics, & Genomics, University of Georgia, Athens, Georgia, 30602, USA
| | - Barbara A Radzikowska
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - John P Hamilton
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, 30602, USA
- Department of Crop & Soil Sciences, University of Georgia, Athens, Georgia, 30602, USA
| | - Swen Langer
- Bioscience Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | | | - Tony R Larson
- Bioscience Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | - C Robin Buell
- Institute of Plant Breeding, Genetics, & Genomics, University of Georgia, Athens, Georgia, 30602, USA
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, 30602, USA
- Department of Crop & Soil Sciences, University of Georgia, Athens, Georgia, 30602, USA
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| |
Collapse
|
12
|
Ma X, Gong C, An R, Li Y, Cheng N, Chen S, Liu H, Wang S. Characterisation of the MLP genes in peach postharvest cold storage and the regulatory role of PpMLP10 in the chilling stress response. Int J Biol Macromol 2024; 266:131293. [PMID: 38565368 DOI: 10.1016/j.ijbiomac.2024.131293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
The major latex proteins/ripening-related proteins are a subfamily of the Bet v 1 protein superfamily and are commonly involved in plant development and responses to various stresses. However, the functions of MLPs in the postharvest cold storage of fruits remain uninvestigated. Herein, we identified 30 MLP genes in the peach (Prunus persica) genome that were clustered into three subgroups. Chromosomal location analysis revealed that the PpMLP genes were unevenly distributed on five of the eight peach chromosomes. Synteny analysis of the MLP genes between peach and seven other plant species (five dicotyledons and two monocotyledons) explored their evolutionary characteristics. Furthermore, the PpMLP promoters contained cis-elements for multiple hormones and stress responses. Gene expression analysis revealed that PpMLPs participated in chilling stress responses. Ectopic expression of PpMLP10 in Arabidopsis improved chilling stress tolerance by decreasing membrane damage and maintaining membrane stability. Additional research confirmed that PpWRKY2 participates in PpMLP10-mediated chilling stress by binding to its promoter. Collectively, these results suggest the role of PpMLP10 in enhancing chilling stress tolerance, which is significant for decreasing chilling injury during the postharvest cold storage of peaches.
Collapse
Affiliation(s)
- Xiaocen Ma
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chen Gong
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Ruimin An
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Yang Li
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Nini Cheng
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Siyu Chen
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Heng Liu
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China.
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China.
| |
Collapse
|
13
|
Gomes EN, Yuan B, Patel HK, Lockhart A, Wyenandt CA, Wu Q, Simon JE. Implications of the Propagation Method for the Phytochemistry of Nepeta cataria L. throughout a Growing Season. Molecules 2024; 29:2001. [PMID: 38731491 PMCID: PMC11085440 DOI: 10.3390/molecules29092001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Catnip (Nepeta cataria L.) plants produce a wide array of specialized metabolites with multiple applications for human health. The productivity of such metabolites, including nepetalactones, and natural insect repellents is influenced by the conditions under which the plants are cultivated. In this study, we assessed how field-grown catnip plants, transplanted after being propagated via either single-node stem cuttings or seeds, varied regarding their phytochemical composition throughout a growing season in two distinct environmental conditions (Pittstown and Upper Deerfield) in the state of New Jersey, United States. Iridoid terpenes were quantified in plant tissues via ultra-high-performance liquid chromatography with triple quadrupole mass spectrometry (UHPLC-QqQ-MS), and phenolic compounds (phenolic acids and flavonoids) were analyzed via UHPLC with diode-array detection (UHPLC-DAD). The highest contents of total nepetalactones in Pittstown were found at 6 weeks after transplanting (WAT) for both seedlings and cuttings (1305.4 and 1223.3 mg/100 g, respectively), while in Upper Deerfield, the highest contents for both propagules were at 11 WAT (1247.7 and 997.1 mg/100 g, respectively) for seed-propagated and stem cuttings). The highest concentration of nepetalactones was associated with floral-bud to partial-flowering stages. Because plants in Pittstown accumulated considerably more biomass than plants grown in Upper Deerfield, the difference in nepetalactone production per plant was striking, with peak productivity reaching only 598.9 mg per plant in Upper Deerfield and 1833.1 mg per plant in Pittstown. Phenolic acids accumulated in higher contents towards the end of the season in both locations, after a period of low precipitation, and flavone glycosides had similar accumulation patterns to nepetalactones. In both locations, rooted stem cuttings reached their maximum nepetalactone productivity, on average, four weeks later than seed-propagated plants, suggesting that seedlings have, overall, better agronomic performance.
Collapse
Affiliation(s)
- Erik Nunes Gomes
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
- Federal Agency for Support and Evaluation of Graduate Education (CAPES), Ministry of Education of Brazil, Brasilia 70040-020, DF, Brazil
| | - Bo Yuan
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Harna K. Patel
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Anthony Lockhart
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
- Rutgers Core Facility for Natural Products and Bioanalysis, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Christian A. Wyenandt
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
- New Jersey Agricultural Experiment Station, Rutgers Agricultural Research and Extension Center (RAREC), Department of Plant Biology, Rutgers University, Bridgeton, NJ 08302, USA
| | - Qingli Wu
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
- Rutgers Core Facility for Natural Products and Bioanalysis, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - James E. Simon
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
- Rutgers Core Facility for Natural Products and Bioanalysis, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
14
|
Ding Q, Guo N, Gao L, McKee M, Wu D, Yang J, Fan J, Weng JK, Lei X. The evolutionary origin of naturally occurring intermolecular Diels-Alderases from Morus alba. Nat Commun 2024; 15:2492. [PMID: 38509059 PMCID: PMC10954736 DOI: 10.1038/s41467-024-46845-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
Biosynthetic enzymes evolutionarily gain novel functions, thereby expanding the structural diversity of natural products to the benefit of host organisms. Diels-Alderases (DAs), functionally unique enzymes catalysing [4 + 2] cycloaddition reactions, have received considerable research interest. However, their evolutionary mechanisms remain obscure. Here, we investigate the evolutionary origins of the intermolecular DAs in the biosynthesis of Moraceae plant-derived Diels-Alder-type secondary metabolites. Our findings suggest that these DAs have evolved from an ancestor functioning as a flavin adenine dinucleotide (FAD)-dependent oxidocyclase (OC), which catalyses the oxidative cyclisation reactions of isoprenoid-substituted phenolic compounds. Through crystal structure determination, computational calculations, and site-directed mutagenesis experiments, we identified several critical substitutions, including S348L, A357L, D389E and H418R that alter the substrate-binding mode and enable the OCs to gain intermolecular DA activity during evolution. This work provides mechanistic insights into the evolutionary rationale of DAs and paves the way for mining and engineering new DAs from other protein families.
Collapse
Affiliation(s)
- Qi Ding
- School of Life Science, Tsinghua University, Beijing, 100084, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Nianxin Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Lei Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Michelle McKee
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Dongshan Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jun Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Junping Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Institute for Plant-Human Interface, Northeastern University, Boston, MA, 02120, USA
- Department of Chemistry and Chemical Biology and Department of Bioengineering, Northeastern University, Boston, MA, 02120, USA
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
- Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
| |
Collapse
|
15
|
DeMars MD, O’Connor SE. Evolution and diversification of carboxylesterase-like [4+2] cyclases in aspidosperma and iboga alkaloid biosynthesis. Proc Natl Acad Sci U S A 2024; 121:e2318586121. [PMID: 38319969 PMCID: PMC10873640 DOI: 10.1073/pnas.2318586121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
Monoterpene indole alkaloids (MIAs) are a large and diverse class of plant natural products, and their biosynthetic construction has been a subject of intensive study for many years. The enzymatic basis for the production of aspidosperma and iboga alkaloids, which are produced exclusively by members of the Apocynaceae plant family, has recently been discovered. Three carboxylesterase (CXE)-like enzymes from Catharanthus roseus and Tabernanthe iboga catalyze regio- and enantiodivergent [4+2] cycloaddition reactions to generate the aspidosperma (tabersonine synthase, TS) and iboga (coronaridine synthase, CorS; catharanthine synthase, CS) scaffolds from a common biosynthetic intermediate. Here, we use a combined phylogenetic and biochemical approach to investigate the evolution and functional diversification of these cyclase enzymes. Through ancestral sequence reconstruction, we provide evidence for initial evolution of TS from an ancestral CXE followed by emergence of CorS in two separate lineages, leading in turn to CS exclusively in the Catharanthus genus. This progression from aspidosperma to iboga alkaloid biosynthesis is consistent with the chemotaxonomic distribution of these MIAs. We subsequently generate and test a panel of chimeras based on the ancestral cyclases to probe the molecular basis for differential cyclization activity. Finally, we show through partial heterologous reconstitution of tabersonine biosynthesis using non-pathway enzymes how aspidosperma alkaloids could have first appeared as "underground metabolites" via recruitment of promiscuous enzymes from common protein families. Our results provide insight into the evolution of biosynthetic enzymes and how new secondary metabolic pathways can emerge through small but important sequence changes following co-option of preexisting enzymatic functions.
Collapse
Affiliation(s)
- Matthew D. DeMars
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena07745, Germany
| | - Sarah E. O’Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena07745, Germany
| |
Collapse
|
16
|
Martinelli L, Bihanic C, Bony A, Gros F, Conart C, Fiorucci S, Casabianca H, Schiets F, Chietera G, Boachon B, Blerot B, Baudino S, Jullien F, Saint-Marcoux D. Citronellol biosynthesis in pelargonium is a multistep pathway involving progesterone 5β-reductase and/or iridoid synthase-like enzymes. PLANT PHYSIOLOGY 2024; 194:1006-1023. [PMID: 37831417 DOI: 10.1093/plphys/kiad550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
Citronellol is a pleasant-smelling compound produced in rose (Rosa spp.) flowers and in the leaves of many aromatic plants, including pelargoniums (Pelargonium spp.). Although geraniol production has been well studied in several plants, citronellol biosynthesis has been documented only in crab-lipped spider orchid (Caladenia plicata) and its mechanism remains open to question in other species. We therefore profiled 10 pelargonium accessions using RNA sequencing and gas chromatography-MS analysis. Three enzymes from the progesterone 5β-reductase and/or iridoid synthase-like enzymes (PRISE) family were characterized in vitroand subsequently identified as citral reductases (named PhCIRs). Transgenic RNAi lines supported a role for PhCIRs in the biosynthesis of citronellol as well as in the production of mint-scented terpenes. Despite their high amino acid sequence identity, the 3 enzymes showed contrasting stereoselectivity, either producing mainly (S)-citronellal or a racemate of both (R)- and (S)-citronellal. Using site-directed mutagenesis, we identified a single amino acid substitution as being primarily responsible for the enzyme's enantioselectivity. Phylogenetic analysis of pelargonium PRISEs revealed 3 clades and 7 groups of orthologs. PRISEs from different groups exhibited differential affinities toward substrates (citral and progesterone) and cofactors (NADH/NADPH), but most were able to reduce both substrates, prompting hypotheses regarding the evolutionary history of PhCIRs. Our results demonstrate that pelargoniums evolved citronellol biosynthesis independently through a 3-step pathway involving PRISE homologs and both citral and citronellal as intermediates. In addition, these enzymes control the enantiomeric ratio of citronellol thanks to small alterations of the catalytic site.
Collapse
Affiliation(s)
- Laure Martinelli
- Laboratoire BVpam-UMR 5079, Université Jean Monnet Saint-Étienne, CNRS, Saint-Étienne 42023, France
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena 07455, Germany
| | - Camille Bihanic
- Laboratoire BVpam-UMR 5079, Université Jean Monnet Saint-Étienne, CNRS, Saint-Étienne 42023, France
| | - Aurélie Bony
- Laboratoire BVpam-UMR 5079, Université Jean Monnet Saint-Étienne, CNRS, Saint-Étienne 42023, France
| | - Florence Gros
- Laboratoire BVpam-UMR 5079, Université Jean Monnet Saint-Étienne, CNRS, Saint-Étienne 42023, France
| | - Corentin Conart
- Laboratoire BVpam-UMR 5079, Université Jean Monnet Saint-Étienne, CNRS, Saint-Étienne 42023, France
| | - Sébastien Fiorucci
- Institut de Chimie de Nice-UMR 7272, Université Côte d'Azur, CNRS, Nice 06108, France
| | - Hervé Casabianca
- Institut des Sciences Analytiques-UMR 5280, Université de Lyon, CNRS, Villeurbanne 69100, France
| | - Frédéric Schiets
- Institut des Sciences Analytiques-UMR 5280, Université de Lyon, CNRS, Villeurbanne 69100, France
| | | | - Benoît Boachon
- Laboratoire BVpam-UMR 5079, Université Jean Monnet Saint-Étienne, CNRS, Saint-Étienne 42023, France
| | | | - Sylvie Baudino
- Laboratoire BVpam-UMR 5079, Université Jean Monnet Saint-Étienne, CNRS, Saint-Étienne 42023, France
| | - Frédéric Jullien
- Laboratoire BVpam-UMR 5079, Université Jean Monnet Saint-Étienne, CNRS, Saint-Étienne 42023, France
| | - Denis Saint-Marcoux
- Laboratoire BVpam-UMR 5079, Université Jean Monnet Saint-Étienne, CNRS, Saint-Étienne 42023, France
| |
Collapse
|
17
|
Bradshaw AJ, Ramírez-Cruz V, Awan AR, Furci G, Guzmán-Dávalos L, Dentinger BTM. Phylogenomics of the psychoactive mushroom genus Psilocybe and evolution of the psilocybin biosynthetic gene cluster. Proc Natl Acad Sci U S A 2024; 121:e2311245121. [PMID: 38194448 PMCID: PMC10801892 DOI: 10.1073/pnas.2311245121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/28/2023] [Indexed: 01/11/2024] Open
Abstract
Psychoactive mushrooms in the genus Psilocybe have immense cultural value and have been used for centuries in Mesoamerica. Despite the recent surge of interest in these mushrooms due to the psychotherapeutic potential of their natural alkaloid psilocybin, their phylogeny and taxonomy remain substantially incomplete. Moreover, the recent elucidation of the psilocybin biosynthetic gene cluster is known for only five of ~165 species of Psilocybe, four of which belong to only one of two major clades. We set out to improve the phylogeny of Psilocybe using shotgun sequencing of fungarium specimens, from which we obtained 71 metagenomes including from 23 types, and conducting phylogenomic analysis of 2,983 single-copy gene families to generate a fully supported phylogeny. Molecular clock analysis suggests the stem lineage of Psilocybe arose ~67 mya and diversified ~56 mya. We also show that psilocybin biosynthesis first arose in Psilocybe, with 4 to 5 possible horizontal transfers to other mushrooms between 40 and 9 mya. Moreover, predicted orthologs of the psilocybin biosynthetic genes revealed two distinct gene orders within the biosynthetic gene cluster that corresponds to a deep split within the genus, possibly a signature of two independent acquisitions of the cluster within Psilocybe.
Collapse
Affiliation(s)
- Alexander J. Bradshaw
- School of Biological Sciences, University of Utah, Salt Lake City, UT84112
- Natural History Museum of Utah, Collections and Research, University of Utah, Salt Lake City, UT84108
| | - Virginia Ramírez-Cruz
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Departamento de Botánica y Zoología, Universidad de Guadalajara, Zapopan45147, Mexico
| | - Ali R. Awan
- Genomics Innovation Unit, Guy’s and St.Thomas’ NHS Foundation Trust, St Thomas’ Hospital, LondonSE1 7EH, United Kingdom
| | | | - Laura Guzmán-Dávalos
- Departamento de Botánica y Zoología, Universidad de Guadalajara, Zapopan45147, Mexico
| | - Bryn T. M. Dentinger
- School of Biological Sciences, University of Utah, Salt Lake City, UT84112
- Natural History Museum of Utah, Collections and Research, University of Utah, Salt Lake City, UT84108
| |
Collapse
|
18
|
Longsaward R, Viboonjun U. Genome-wide identification of rubber tree pathogenesis-related 10 (PR-10) proteins with biological relevance to plant defense. Sci Rep 2024; 14:1072. [PMID: 38212354 PMCID: PMC10784482 DOI: 10.1038/s41598-024-51312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024] Open
Abstract
Pathogenesis-related 10 (PR-10) is a group of small intracellular proteins that is one of 17 subclasses of pathogenesis-related proteins in plants. The PR-10 proteins have been studied extensively and are well-recognized for their contribution to host defense against phytopathogens in several plant species. Interestingly, the accumulation of PR-10 proteins in the rubber tree, one of the most economically important crops worldwide, after being infected by pathogenic organisms has only recently been reported. In this study, the homologous proteins of the PR-10 family were systemically identified from the recently available rubber tree genomes in the NCBI database. The sequence compositions, structural characteristics, protein physical properties, and phylogenetic relationships of identified PR-10 proteins in rubber trees support their classification into subgroups, which mainly consist of Pru ar 1-like major allergens and major latex-like (MLP) proteins. The rubber tree PR10-encoding genes were majorly clustered on chromosome 15. The potential roles of rubber tree PR-10 proteins are discussed based on previous reports. The homologous proteins in the PR-10 family were identified in the recent genomes of rubber trees and were shown to be crucial in host responses to biotic challenges. The genome-wide identification conducted here will accelerate the future study of rubber tree PR-10 proteins. A better understanding of these defense-related proteins may contribute to alternative ways of developing rubber tree clones with desirable traits in the future.
Collapse
Affiliation(s)
- Rawit Longsaward
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Unchera Viboonjun
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
19
|
Dror MJ, Misa J, Yee DA, Chu AM, Yu RK, Chan BB, Aoyama LS, Chaparala AP, O'Connor SE, Tang Y. Engineered biosynthesis of plant heteroyohimbine and corynantheine alkaloids in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2024; 51:kuad047. [PMID: 38140980 PMCID: PMC10995622 DOI: 10.1093/jimb/kuad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/21/2023] [Indexed: 12/24/2023]
Abstract
Monoterpene indole alkaloids (MIAs) are a class of natural products comprised of thousands of structurally unique bioactive compounds with significant therapeutic values. Due to difficulties associated with isolation from native plant species and organic synthesis of these structurally complex molecules, microbial production of MIAs using engineered hosts are highly desired. In this work, we report the engineering of fully integrated Saccharomyces cerevisiae strains that allow de novo access to strictosidine, the universal precursor to thousands of MIAs at 30-40 mg/L. The optimization efforts were based on a previously reported yeast strain that is engineered to produce high titers of the monoterpene precursor geraniol through compartmentalization of mevalonate pathway in the mitochondria. Our approaches here included the use of CRISPR-dCas9 interference to identify mitochondria diphosphate transporters that negatively impact the titer of the monoterpene, followed by genetic inactivation; the overexpression of transcriptional regulators that increase cellular respiration and mitochondria biogenesis. Strain construction included the strategic integration of genes encoding both MIA biosynthetic and accessory enzymes into the genome under a variety of constitutive and inducible promoters. Following successful de novo production of strictosidine, complex alkaloids belonging to heteroyohimbine and corynantheine families were reconstituted in the host with introduction of additional downstream enzymes. We demonstrate that the serpentine/alstonine pair can be produced at ∼5 mg/L titer, while corynantheidine, the precursor to mitragynine can be produced at ∼1 mg/L titer. Feeding of halogenated tryptamine led to the biosynthesis of analogs of alkaloids in both families. Collectively, our yeast strain represents an excellent starting point to further engineer biosynthetic bottlenecks in this pathway and to access additional MIAs and analogs through microbial fermentation. ONE SENTENCE SUMMARY An Saccharomyces cerevisiae-based microbial platform was developed for the biosynthesis of monoterpene indole alkaloids, including the universal precursor strictosidine and further modified heteroyohimbine and corynantheidine alkaloids.
Collapse
Affiliation(s)
- Moriel J Dror
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joshua Misa
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Danielle A Yee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Angela M Chu
- Stanford Genome Technology Center, Stanford University, Stanford, CA 94305, USA
| | - Rachel K Yu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bradley B Chan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lauren S Aoyama
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anjali P Chaparala
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
20
|
Aničić N, Matekalo D, Skorić M, Gašić U, Nestorović Živković J, Dmitrović S, Božunović J, Milutinović M, Petrović L, Dimitrijević M, Anđelković B, Mišić D. Functional iridoid synthases from iridoid producing and non-producing Nepeta species (subfam. Nepetoidae, fam. Lamiaceae). FRONTIERS IN PLANT SCIENCE 2024; 14:1211453. [PMID: 38235204 PMCID: PMC10792066 DOI: 10.3389/fpls.2023.1211453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Iridoids, a class of atypical monoterpenes, exhibit exceptional diversity within the Nepeta genus (subfam. Nepetoidae, fam. Lamiaceae).The majority of these plants produce iridoids of the unique stereochemistry, with nepetalactones (NLs) predominating; however, a few Nepeta species lack these compounds. By comparatively analyzing metabolomics, transcriptomics, gene co-expression, and phylogenetic data of the iridoid-producing N. rtanjensis Diklić & Milojević and iridoid-lacking N. nervosa Royle & Bentham, we presumed that one of the factors responsible for the absence of these compounds in N. nervosa is iridoid synthase (ISY). Two orthologues of ISY were mined from leaves transcriptome of N. rtanjensis (NrPRISE1 and NrPRISE2), while in N. nervosa only one (NnPRISE) was identified, and it was phylogenetically closer to the representatives of the Family 1 isoforms, designated as P5βRs. Organ-specific and MeJA-elicited profiling of iridoid content and co-expression analysis of IBG candidates, highlighted NrPRISE2 and NnPRISE as promising candidates for ISY orthologues, and their function was confirmed using in vitro assays with recombinant proteins, after heterologous expression of recombinant proteins in E. coli and their His-tag affinity purification. NrPRISE2 demonstrated ISY activity both in vitro and likely in planta, which was supported by the 3D modeling and molecular docking analysis, thus reclassification of NrPRISE2 to NrISY is accordingly recommended. NnPRISE also displays in vitro ISY-like activity, while its role under in vivo conditions was not here unambiguously confirmed. Most probably under in vivo conditions the NnPRISE lacks substrates to act upon, as a result of the loss of function of some of the upstream enzymes of the iridoid pathway. Our ongoing work is conducted towards re-establishing the biosynthesis of iridoids in N. nervosa.
Collapse
Affiliation(s)
- Neda Aničić
- Institute for Biological Research “Siniša Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dragana Matekalo
- Institute for Biological Research “Siniša Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marijana Skorić
- Institute for Biological Research “Siniša Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Uroš Gašić
- Institute for Biological Research “Siniša Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jasmina Nestorović Živković
- Institute for Biological Research “Siniša Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Slavica Dmitrović
- Institute for Biological Research “Siniša Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Božunović
- Institute for Biological Research “Siniša Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Milutinović
- Institute for Biological Research “Siniša Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Luka Petrović
- Institute for Biological Research “Siniša Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milena Dimitrijević
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | | | - Danijela Mišić
- Institute for Biological Research “Siniša Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
21
|
Li P, Yan MX, Liu P, Yang DJ, He ZK, Gao Y, Jiang Y, Kong Y, Zhong X, Wu S, Yang J, Wang HX, Huang YB, Wang L, Chen XY, Hu YH, Zhao Q, Xu P. Multiomics analyses of two Leonurus species illuminate leonurine biosynthesis and its evolution. MOLECULAR PLANT 2024; 17:158-177. [PMID: 37950440 DOI: 10.1016/j.molp.2023.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
The Lamiaceae family is renowned for its terpenoid-based medicinal components, but Leonurus, which has traditional medicinal uses, stands out for its alkaloid-rich composition. Leonurine, the principal active compound found in Leonurus, has demonstrated promising effects in reducing blood lipids and treating strokes. However, the biosynthetic pathway of leonurine remains largely unexplored. Here, we present the chromosome-level genome sequence assemblies of Leonurus japonicus, known for its high leonurine production, and Leonurus sibiricus, characterized by very limited leonurine production. By integrating genomics, RNA sequencing, metabolomics, and enzyme activity assay data, we constructed the leonurine biosynthesis pathway and identified the arginine decarboxylase (ADC), uridine diphosphate glucosyltransferase (UGT), and serine carboxypeptidase-like (SCPL) acyltransferase enzymes that catalyze key reactions in this pathway. Further analyses revealed that the UGT-SCPL gene cluster evolved by gene duplication in the ancestor of Leonurus and neofunctionalization of SCPL in L. japonicus, which contributed to the accumulation of leonurine specifically in L. japonicus. Collectively, our comprehensive study illuminates leonurine biosynthesis and its evolution in Leonurus.
Collapse
Affiliation(s)
- Peng Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Meng-Xiao Yan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Pan Liu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Dan-Jie Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China; College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ze-Kun He
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Gao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Yan Jiang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Yu Kong
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Xin Zhong
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Sheng Wu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Xia Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan-Bo Huang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Le Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xiao-Ya Chen
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yong-Hong Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Qing Zhao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ping Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
22
|
Obara K, Uenoyama R, Obata Y, Miyazaki M. Development of the gas chromatography/mass spectrometry-based aroma designer capable of modifying volatile chemical compositions in complex odors. Chem Senses 2024; 49:bjae007. [PMID: 38386845 DOI: 10.1093/chemse/bjae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Indexed: 02/24/2024] Open
Abstract
Many volatile organic compounds (VOCs) are used to produce various commercial products with aromas mimicking natural products. The VOCs responsible for aromas have been identified from many natural products. The current major strategy is to analyze chemical compositions and aroma qualities of individual VOCs using gas chromatography/mass spectrometry (GC/MS) and GC-olfactometry. However, such analyses cannot determine whether candidate VOCs contribute to the characteristic aroma in mixtures of many VOCs. In this study, we developed a GC/MS-based VOC collection/omission system that can modify the VOC compositions of samples easily and rapidly. The system is composed of GC/MS with a switching unit that can change gas flow routes between MS and a VOC collection device. We first applied this system to prepare gas samples for omission tests, and the aroma qualities of VOC mixtures with and without some VOCs were evaluated by panelists. If aroma qualities were different between the 2 samples, the omitted VOCs were likely key odorants. By collecting VOCs in a gas bag attached to the collection device and transferring some VOCs to MS, specific VOCs could be omitted easily from the VOC mixture. The system could prepare omission samples without chemical identification, preparation of each VOC, and laborious techniques for mixing VOCs, thus overcoming the limitations of previous methods of sample preparation. Finally, the system was used to prepare artificial aromas by replacing VOC compositions between different samples for screening of key odorants. In conclusion, the system developed here can improve aroma research by identifying key odorants from natural products.
Collapse
Affiliation(s)
- Kaname Obara
- Division of Agriculture, Graduate School of Arts and Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Reiko Uenoyama
- Department of Bioresources Science, The United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Yutaro Obata
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Masao Miyazaki
- Division of Agriculture, Graduate School of Arts and Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
- Department of Bioresources Science, The United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
23
|
Buell CR, Dardick C, Parrott W, Schmitz RJ, Shih PM, Tsai CJ, Urbanowicz B. Engineering custom morpho- and chemotypes of Populus for sustainable production of biofuels, bioproducts, and biomaterials. FRONTIERS IN PLANT SCIENCE 2023; 14:1288826. [PMID: 37965014 PMCID: PMC10642751 DOI: 10.3389/fpls.2023.1288826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023]
Abstract
Humans have been modifying plant traits for thousands of years, first through selection (i.e., domestication) then modern breeding, and in the last 30 years, through biotechnology. These modifications have resulted in increased yield, more efficient agronomic practices, and enhanced quality traits. Precision knowledge of gene regulation and function through high-resolution single-cell omics technologies, coupled with the ability to engineer plant genomes at the DNA sequence, chromatin accessibility, and gene expression levels, can enable engineering of complex and complementary traits at the biosystem level. Populus spp., the primary genetic model system for woody perennials, are among the fastest growing trees in temperate zones and are important for both carbon sequestration and global carbon cycling. Ample genomic and transcriptomic resources for poplar are available including emerging single-cell omics datasets. To expand use of poplar outside of valorization of woody biomass, chassis with novel morphotypes in which stem branching and tree height are modified can be fabricated thereby leading to trees with altered leaf to wood ratios. These morphotypes can then be engineered into customized chemotypes that produce high value biofuels, bioproducts, and biomaterials not only in specific organs but also in a cell-type-specific manner. For example, the recent discovery of triterpene production in poplar leaf trichomes can be exploited using cell-type specific regulatory sequences to synthesize high value terpenes such as the jet fuel precursor bisabolene specifically in the trichomes. By spatially and temporally controlling expression, not only can pools of abundant precursors be exploited but engineered molecules can be sequestered in discrete cell structures in the leaf. The structural diversity of the hemicellulose xylan is a barrier to fully utilizing lignocellulose in biomaterial production and by leveraging cell-type-specific omics data, cell wall composition can be modified in a tailored and targeted specific manner to generate poplar wood with novel chemical features that are amenable for processing or advanced manufacturing. Precision engineering poplar as a multi-purpose sustainable feedstock highlights how genome engineering can be used to re-imagine a crop species.
Collapse
Affiliation(s)
- C. Robin Buell
- Center for Applied Genetic Technologies, Institute of Plant Breeding, Genetics, and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
| | - Christopher Dardick
- Agricultural Research Service, U.S. Department of Agriculture, Kearneysville, WV, United States
| | - Wayne Parrott
- Center for Applied Genetic Technologies, Institute of Plant Breeding, Genetics, and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
| | - Robert J. Schmitz
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Patrick M. Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, United States
| | - Chung-Jui Tsai
- Department of Genetics, University of Georgia, Athens, GA, United States
- Department of Plant Biology, University of Georgia, Athens, GA, United States
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States
| | - Breeanna Urbanowicz
- Center for Complex Carbohydrate Research, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
24
|
Tadić V, Božović M, Sapienza F, Astolfi R, Mladenović M, Zaka MC, Del Bove F, Borzacchi F, Fraschetti C, Rossi C, Vertuani S, Baldisserotto A, Manfredini S, Ragno R. Chemical Composition and Anti- Candida Activity of Mentha suaveolens Ehrh. Essential Oils Obtained by Different Distillation Processes. Molecules 2023; 28:6934. [PMID: 37836777 PMCID: PMC10574099 DOI: 10.3390/molecules28196934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
A comparative study on essential oils extracted from Mentha suaveolens Ehrh. from Italy is reported. Two extraction procedures were investigated: hydrodistillation and steam distillation, carried out as a continuous and fractionated procedure. Fresh and dried plant material from two harvests was used. The hydrodistillation method yielded a higher amount of essential oil. The dried plant was significantly richer in essential oil per kg of starting plant material. Gas chromatography-mass spectrometry analysis of 112 samples showed that the essential oils belong to the piperitenone oxide-rich chemotype. In addition, piperitenone, p-cymen-8-ol, and limonene were among the most abundant compounds in the different samples. A higher amount of piperitenone oxide was obtained by hydrodistillation, while steam distillation gave a higher percentage of piperitenone and limonene. The essential oils were characterized for their anti-Candida albicans activity; higher potency was observed for the samples rich in piperitenone oxide, with MIC values ranging from 0.39 to 0.78 mg·mL-1 (0.039% and 0.078% p/v). The results of this work provide a deep insight into the methodology of essential oil extraction and the associated chemical variability of M. suaveolens Ehrh. Some of the essential oils are potent against C. albicans and could be considered for potential use in therapy.
Collapse
Affiliation(s)
- Vanja Tadić
- Institute of Medicinal Plants Research Dr. Josif Pančić, Tadeuša Koščuška 1, 11000 Belgrade, Serbia;
| | - Mijat Božović
- Faculty of Natural Science and Mathematics, University of Montenegro, Džordža Vašingtona bb, 81000 Podgorica, Montenegro;
| | - Filippo Sapienza
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.S.); (R.A.)
| | - Roberta Astolfi
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.S.); (R.A.)
| | - Milan Mladenović
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia;
| | - Maria Cristina Zaka
- Department of Drug Chemistry and Technology, Bachelor Course in Applied Pharmaceutical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.C.Z.); (F.D.B.)
| | - Fabiana Del Bove
- Department of Drug Chemistry and Technology, Bachelor Course in Applied Pharmaceutical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.C.Z.); (F.D.B.)
| | | | - Caterina Fraschetti
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Caterina Rossi
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (C.R.); (S.V.); (A.B.)
| | - Silvia Vertuani
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (C.R.); (S.V.); (A.B.)
| | - Anna Baldisserotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (C.R.); (S.V.); (A.B.)
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (C.R.); (S.V.); (A.B.)
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.S.); (R.A.)
| |
Collapse
|
25
|
Shelake RM, Jadhav AM, Bhosale PB, Kim JY. Unlocking secrets of nature's chemists: Potential of CRISPR/Cas-based tools in plant metabolic engineering for customized nutraceutical and medicinal profiles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108070. [PMID: 37816270 DOI: 10.1016/j.plaphy.2023.108070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Plant species have evolved diverse metabolic pathways to effectively respond to internal and external signals throughout their life cycle, allowing adaptation to their sessile and phototropic nature. These pathways selectively activate specific metabolic processes, producing plant secondary metabolites (PSMs) governed by genetic and environmental factors. Humans have utilized PSM-enriched plant sources for millennia in medicine and nutraceuticals. Recent technological advances have significantly contributed to discovering metabolic pathways and related genes involved in the biosynthesis of specific PSM in different food crops and medicinal plants. Consequently, there is a growing demand for plant materials rich in nutrients and bioactive compounds, marketed as "superfoods". To meet the industrial demand for superfoods and therapeutic PSMs, modern methods such as system biology, omics, synthetic biology, and genome editing (GE) play a crucial role in identifying the molecular players, limiting steps, and regulatory circuitry involved in PSM production. Among these methods, clustered regularly interspaced short palindromic repeats-CRISPR associated protein (CRISPR/Cas) is the most widely used system for plant GE due to its simple design, flexibility, precision, and multiplexing capabilities. Utilizing the CRISPR-based toolbox for metabolic engineering (ME) offers an ideal solution for developing plants with tailored preventive (nutraceuticals) and curative (therapeutic) metabolic profiles in an ecofriendly way. This review discusses recent advances in understanding the multifactorial regulation of metabolic pathways, the application of CRISPR-based tools for plant ME, and the potential research areas for enhancing plant metabolic profiles.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Amol Maruti Jadhav
- Research Institute of Green Energy Convergence Technology (RIGET), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea; Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea; Nulla Bio Inc, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
26
|
Hu J, Qiu S, Wang F, Li Q, Xiang CL, Di P, Wu Z, Jiang R, Li J, Zeng Z, Wang J, Wang X, Zhang Y, Fang S, Qiao Y, Ding J, Jiang Y, Xu Z, Chen J, Chen W. Functional divergence of CYP76AKs shapes the chemodiversity of abietane-type diterpenoids in genus Salvia. Nat Commun 2023; 14:4696. [PMID: 37542034 PMCID: PMC10403556 DOI: 10.1038/s41467-023-40401-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
The genus Salvia L. (Lamiaceae) comprises myriad distinct medicinal herbs, with terpenoids as one of their major active chemical groups. Abietane-type diterpenoids (ATDs), such as tanshinones and carnosic acids, are specific to Salvia and exhibit taxonomic chemical diversity among lineages. To elucidate how ATD chemical diversity evolved, we carried out large-scale metabolic and phylogenetic analyses of 71 Salvia species, combined with enzyme function, ancestral sequence and chemical trait reconstruction, and comparative genomics experiments. This integrated approach showed that the lineage-wide ATD diversities in Salvia were induced by differences in the oxidation of the terpenoid skeleton at C-20, which was caused by the functional divergence of the cytochrome P450 subfamily CYP76AK. These findings present a unique pattern of chemical diversity in plants that was shaped by the loss of enzyme activity and associated catalytic pathways.
Collapse
Affiliation(s)
- Jiadong Hu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai, 200003, China
| | - Shi Qiu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Feiyan Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qing Li
- Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai, 200003, China
| | - Chun-Lei Xiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Peng Di
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Ziding Wu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rui Jiang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jinxing Li
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhen Zeng
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xingxing Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuchen Zhang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shiyuan Fang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuqi Qiao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jie Ding
- Urban Horticulture Research and Extension Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yun Jiang
- Urban Horticulture Research and Extension Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Zhichao Xu
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Junfeng Chen
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wansheng Chen
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai, 200003, China.
| |
Collapse
|
27
|
Salim V, Jarecki SA, Vick M, Miller R. Advances in Metabolic Engineering of Plant Monoterpene Indole Alkaloids. BIOLOGY 2023; 12:1056. [PMID: 37626942 PMCID: PMC10452178 DOI: 10.3390/biology12081056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Monoterpene indole alkaloids (MIAs) encompass a diverse family of over 3000 plant natural products with a wide range of medical applications. Further utilizations of these compounds, however, are hampered due to low levels of abundance in their natural sources, causing difficult isolation and complex multi-steps in uneconomical chemical syntheses. Metabolic engineering of MIA biosynthesis in heterologous hosts is attractive, particularly for increasing the yield of natural products of interest and expanding their chemical diversity. Here, we review recent advances and strategies which have been adopted to engineer microbial and plant systems for the purpose of generating MIAs and discuss the current issues and future developments of manufacturing MIAs by synthetic biology approaches.
Collapse
Affiliation(s)
- Vonny Salim
- Department of Biological Sciences, Louisiana State University Shreveport, Shreveport, LA 71115, USA; (S.-A.J.); (M.V.)
| | - Sara-Alexis Jarecki
- Department of Biological Sciences, Louisiana State University Shreveport, Shreveport, LA 71115, USA; (S.-A.J.); (M.V.)
| | - Marshall Vick
- Department of Biological Sciences, Louisiana State University Shreveport, Shreveport, LA 71115, USA; (S.-A.J.); (M.V.)
| | - Ryan Miller
- School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA;
| |
Collapse
|
28
|
Lawas LMF, Kamileen MO, Buell CR, O'Connor SE, Leisner CP. Transcriptome-based identification and functional characterization of iridoid synthase involved in monotropein biosynthesis in blueberry. PLANT DIRECT 2023; 7:e512. [PMID: 37440931 PMCID: PMC10333835 DOI: 10.1002/pld3.512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 05/08/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Blueberries (Vaccinium spp.) are well known for their nutritional quality, and recent work has shown that Vaccinium spp. also produce iridoids, which are specialized metabolites with potent health-promoting benefits. The iridoid glycoside monotropein, which has anti-inflammatory and antinociceptive activities, has been detected in several wild blueberry species but in only a few cultivated highbush blueberry cultivars. How monotropein is produced in blueberry and the genes involved in its biosynthesis remain to be elucidated. Using a monotropein-positive (M+) and monotropein-negative (M-) cultivar of blueberry, we employed transcriptomics and comparative genomics to identify candidate genes in the blueberry iridoid biosynthetic pathway. Orthology analysis was completed using de novo transcript assemblies for both the M+ and M- blueberry cultivars along with the known iridoid-producing plant species Catharanthus roseus to identify putative genes involved in key steps in the early iridoid biosynthetic pathway. From the identified orthologs, we functionally characterized iridoid synthase (ISY), a key enzyme involved in formation of the iridoid scaffold, from both the M+ and M- cultivars. Detection of nepetalactol suggests that ISY from both the M+ and M- cultivars produce functional enzymes that catalyze the formation of iridoids. Transcript accumulation of the putative ISY gene did not correlate with monotropein production, suggesting other genes in the monotropein biosynthetic pathway may be more directly responsible for differential accumulation of the metabolite in blueberry. Mutual rank analysis revealed that ISY is co-expressed with UDP-glucuronosyltransferase, which encodes an enzyme downstream of the ISY step. Results from this study contribute new knowledge in our understanding of iridoid biosynthesis in blueberry and could lead to development of new cultivars with increased human health benefits.
Collapse
Affiliation(s)
| | - Mohamed O. Kamileen
- Department of Natural Product BiosynthesisMax Planck Institute for Chemical EcologyJenaGermany
| | - C. Robin Buell
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
- Department of Crop and Soil SciencesInstitute of Plant Breeding, Genetics, & Genomics, University of GeorgiaAthensGeorgiaUSA
| | - Sarah E. O'Connor
- Department of Natural Product BiosynthesisMax Planck Institute for Chemical EcologyJenaGermany
| | - Courtney P. Leisner
- Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
- School of Plant and Environmental SciencesVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
29
|
Lanier ER, Andersen TB, Hamberger B. Plant terpene specialized metabolism: complex networks or simple linear pathways? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1178-1201. [PMID: 36891828 PMCID: PMC11166267 DOI: 10.1111/tpj.16177] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 05/31/2023]
Abstract
From the perspectives of pathway evolution, discovery and engineering of plant specialized metabolism, the nature of the biosynthetic routes represents a critical aspect. Classical models depict biosynthesis typically from an end-point angle and as linear, for example, connecting central and specialized metabolism. As the number of functionally elucidated routes increased, the enzymatic foundation of complex plant chemistries became increasingly well understood. The perception of linear pathway models has been severely challenged. With a focus on plant terpenoid specialized metabolism, we review here illustrative examples supporting that plants have evolved complex networks driving chemical diversification. The completion of several diterpene, sesquiterpene and monoterpene routes shows complex formation of scaffolds and their subsequent functionalization. These networks show that branch points, including multiple sub-routes, mean that metabolic grids are the rule rather than the exception. This concept presents significant implications for biotechnological production.
Collapse
Affiliation(s)
| | | | - Björn Hamberger
- Department of Biochemistry and Molecular Biology, Michigan State University, Molecular Plant Sciences Building, 1066 Bogue Street, East Lansing, Michigan, 48824, USA
| |
Collapse
|
30
|
Wang YJ, Tain T, Yu JY, Li J, Xu B, Chen J, D’Auria J, Huang JP, Huang SX. Genomic and structural basis for evolution of tropane alkaloid biosynthesis. Proc Natl Acad Sci U S A 2023; 120:e2302448120. [PMID: 37068250 PMCID: PMC10151470 DOI: 10.1073/pnas.2302448120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/23/2023] [Indexed: 04/19/2023] Open
Abstract
The tropane alkaloids (TAs) cocaine and hyoscyamine have been used medicinally for thousands of years. To understand the evolutionary origins and trajectories of serial biosynthetic enzymes of TAs and especially the characteristic tropane skeletons, we generated the chromosome-level genome assemblies of cocaine-producing Erythroxylum novogranatense (Erythroxylaceae, rosids clade) and hyoscyamine-producing Anisodus acutangulus (Solanaceae, asterids clade). Comparative genomic and phylogenetic analysis suggested that the lack of spermidine synthase/N-methyltransferase (EnSPMT1) in ancestral asterids species contributed to the divergence of polyamine (spermidine or putrescine) methylation in cocaine and hyoscyamine biosynthesis. Molecular docking analysis and key site mutation experiments suggested that ecgonone synthases CYP81AN15 and CYP82M3 adopt different active-site architectures to biosynthesize the same product ecgonone from the same substrate in Erythroxylaceae and Solanaceae. Further synteny analysis showed different evolutionary origins and trajectories of CYP81AN15 and CYP82M3, particularly the emergence of CYP81AN15 through the neofunctionalization of ancient tandem duplication genes. The combination of structural biology and comparative genomic analysis revealed that ecgonone methyltransferase, which is responsible for the biosynthesis of characteristic 2-substituted carboxymethyl group in cocaine, evolved from the tandem copies of salicylic acid methyltransferase by the mutations of critical E216 and S153 residues. Overall, we provided strong evidence for the independent origins of serial TA biosynthetic enzymes on the genomic and structural level, underlying the chemotypic convergence of TAs in phylogenetically distant species.
Collapse
Affiliation(s)
- Yong-Jiang Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming650201, China
| | - Tian Tain
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming650201, China
- University of the Chinese Academy of Sciences, Beijing100049, China
| | - Jia-Yi Yu
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming650201, China
- University of the Chinese Academy of Sciences, Beijing100049, China
| | - Jie Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming650201, China
- University of the Chinese Academy of Sciences, Beijing100049, China
| | - Bingyan Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming650201, China
- University of the Chinese Academy of Sciences, Beijing100049, China
| | - Jianghua Chen
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming650223, China
| | - John C. D’Auria
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research Ortsteil Gatersleben, SeelandD-06466, Germany
| | - Jian-Ping Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming650201, China
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming650201, China
| |
Collapse
|
31
|
Liu C, Smit SJ, Dang J, Zhou P, Godden GT, Jiang Z, Liu W, Liu L, Lin W, Duan J, Wu Q, Lichman BR. A chromosome-level genome assembly reveals that a bipartite gene cluster formed via an inverted duplication controls monoterpenoid biosynthesis in Schizonepeta tenuifolia. MOLECULAR PLANT 2023; 16:533-548. [PMID: 36609143 DOI: 10.1016/j.molp.2023.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 06/09/2023]
Abstract
Biosynthetic gene clusters (BGCs) are regions of a genome where genes involved in a biosynthetic pathway are in proximity. The origin and evolution of plant BGCs as well as their role in specialized metabolism remain largely unclear. In this study, we have assembled a chromosome-scale genome of Japanese catnip (Schizonepeta tenuifolia) and discovered a BGC that contains multiple copies of genes involved in four adjacent steps in the biosynthesis of p-menthane monoterpenoids. This BGC has an unprecedented bipartite structure, with mirrored biosynthetic regions separated by 260 kilobases. This bipartite BGC includes identical copies of a gene encoding an old yellow enzyme, a type of flavin-dependent reductase. In vitro assays and virus-induced gene silencing revealed that this gene encodes the missing isopiperitenone reductase. This enzyme evolved from a completely different enzyme family to isopiperitenone reductase from closely related Mentha spp., indicating convergent evolution of this pathway step. Phylogenomic analysis revealed that this bipartite BGC has emerged uniquely in the S. tenuifolia lineage and through insertion of pathway genes into a region rich in monoterpene synthases. The cluster gained its bipartite structure via an inverted duplication. The discovered bipartite BGC for p-menthane biosynthesis in S. tenuifolia has similarities to the recently described duplicated p-menthane biosynthesis gene pairs in the Mentha longifolia genome, providing an example of the convergent evolution of gene order. This work expands our understanding of plant BGCs with respect to both form and evolution, and highlights the power of BGCs for gene discovery in plant biosynthetic pathways.
Collapse
Affiliation(s)
- Chanchan Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Samuel J Smit
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Jingjie Dang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peina Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Grant T Godden
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Zheng Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wukun Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Licheng Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Lin
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China; Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinao Duan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
32
|
Sun Y, Shao J, Liu H, Wang H, Wang G, Li J, Mao Y, Chen Z, Ma K, Xu L, Wang Y. A chromosome-level genome assembly reveals that tandem-duplicated CYP706V oxidase genes control oridonin biosynthesis in the shoot apex of Isodon rubescens. MOLECULAR PLANT 2023; 16:517-532. [PMID: 36518072 DOI: 10.1016/j.molp.2022.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/17/2022] [Accepted: 12/08/2022] [Indexed: 06/09/2023]
Abstract
The ent-kaurenoids (e.g., oridonin and enmein) from the Isodon genus (Lamiaceae) are one class of diterpenoids with rich structural diversity and intriguing pharmaceutical activity. In contrast to the well-established gibberellin pathway, oxidative modifications diversifying the ent-kaurene skeleton in Isodon have remained undetermined for half a century. Here we report a chromosome-level genome assembly of I. rubescens, a well-recognized oridonin producer long favored by Asian people as a traditional herb with antitumor effects. The shoot apex was confirmed to be the actual region actively producing ent-kaurene diterpenoids. Through comparative genomics and phylogenetic analyses, we discovered a cluster of tandem-duplicated CYP706V oxygenase-encoding genes located on an ancient genomic block widely distributed in eudicots, whereas almost exclusively emerged in Isodon plants. In the shoot apex, IrCYP706V2 and IrCYP706V7 oxidized the ent-kaurene core in the initial stage of oridonin biosynthesis. Loss of CYP706Vs in other Lamiaceae plants offered an explanation for the specific kaurenoid production in Isodon plants. Moreover, we found that the Isodon genomes encode multiple diterpenoid synthases that are potentially involved in generating diterpenoid diversity. These findings provided new insights into the evolution of the lineage-specific diterpenoid pathway and laid a foundation for improving production of bioactive ent-kaurene-type diterpenoids by molecular breeding and synthetic biology approaches.
Collapse
Affiliation(s)
- Yuwei Sun
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jie Shao
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Haili Liu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hua Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guangyi Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jianhua Li
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yaping Mao
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhuo Chen
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Ke Ma
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yong Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
33
|
Li H, Wu S, Lin R, Xiao Y, Malaco Morotti AL, Wang Y, Galilee M, Qin H, Huang T, Zhao Y, Zhou X, Yang J, Zhao Q, Kanellis AK, Martin C, Tatsis EC. The genomes of medicinal skullcaps reveal the polyphyletic origins of clerodane diterpene biosynthesis in the family Lamiaceae. MOLECULAR PLANT 2023; 16:549-570. [PMID: 36639870 DOI: 10.1016/j.molp.2023.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/21/2022] [Accepted: 01/09/2023] [Indexed: 06/09/2023]
Abstract
The presence of anticancer clerodane diterpenoids is a chemotaxonomic marker for the traditional Chinese medicinal plant Scutellaria barbata, although the molecular mechanisms behind clerodane biosynthesis are unknown. Here, we report a high-quality assembly of the 414.98 Mb genome of S. barbata into 13 pseudochromosomes. Using phylogenomic and biochemical data, we mapped the plastidial metabolism of kaurene (gibberellins), abietane, and clerodane diterpenes in three species of the family Lamiaceae (Scutellaria barbata, Scutellaria baicalensis, and Salvia splendens), facilitating the identification of genes involved in the biosynthesis of the clerodanes, kolavenol, and isokolavenol. We show that clerodane biosynthesis evolved through recruitment and neofunctionalization of genes from gibberellin and abietane metabolism. Despite the assumed monophyletic origin of clerodane biosynthesis, which is widespread in species of the Lamiaceae, our data show distinct evolutionary lineages and suggest polyphyletic origins of clerodane biosynthesis in the family Lamiaceae. Our study not only provides significant insights into the evolution of clerodane biosynthetic pathways in the mint family, Lamiaceae, but also will facilitate the production of anticancer clerodanes through future metabolic engineering efforts.
Collapse
Affiliation(s)
- Haixiu Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Song Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruoxi Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yiren Xiao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ana Luisa Malaco Morotti
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ya Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meytal Galilee
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Haowen Qin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tao Huang
- Novogene Bioinformatics Institute, Beijing, China
| | - Yong Zhao
- Novogene Bioinformatics Institute, Beijing, China
| | - Xun Zhou
- Novogene Bioinformatics Institute, Beijing, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai 201602, China
| | - Qing Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai 201602, China
| | - Angelos K Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Lab. of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | | | - Evangelos C Tatsis
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CEPAMS - CAS-JIC Centre of Excellence for Plant and Microbial Sciences, Shanghai 200032, China.
| |
Collapse
|
34
|
Bryson AE, Lanier ER, Lau KH, Hamilton JP, Vaillancourt B, Mathieu D, Yocca AE, Miller GP, Edger PP, Buell CR, Hamberger B. Uncovering a miltiradiene biosynthetic gene cluster in the Lamiaceae reveals a dynamic evolutionary trajectory. Nat Commun 2023; 14:343. [PMID: 36670101 PMCID: PMC9860074 DOI: 10.1038/s41467-023-35845-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
The spatial organization of genes within plant genomes can drive evolution of specialized metabolic pathways. Terpenoids are important specialized metabolites in plants with diverse adaptive functions that enable environmental interactions. Here, we report the genome assemblies of Prunella vulgaris, Plectranthus barbatus, and Leonotis leonurus. We investigate the origin and subsequent evolution of a diterpenoid biosynthetic gene cluster (BGC) together with other seven species within the Lamiaceae (mint) family. Based on core genes found in the BGCs of all species examined across the Lamiaceae, we predict a simplified version of this cluster evolved in an early Lamiaceae ancestor. The current composition of the extant BGCs highlights the dynamic nature of its evolution. We elucidate the terpene backbones generated by the Callicarpa americana BGC enzymes, including miltiradiene and the terpene (+)-kaurene, and show oxidization activities of BGC cytochrome P450s. Our work reveals the fluid nature of BGC assembly and the importance of genome structure in contributing to the origin of metabolites.
Collapse
Affiliation(s)
- Abigail E Bryson
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA
| | - Emily R Lanier
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA
| | - Kin H Lau
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - John P Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Brieanne Vaillancourt
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Davis Mathieu
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA
| | - Alan E Yocca
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Garret P Miller
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Björn Hamberger
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
35
|
Abstract
Plants, animals, and microbes produce a plethora of natural products that are important for defense and communication. Most of these compounds show a phylogenetically restricted occurrence, but, in rare instances, the same natural product is biosynthesized by organisms in two different kingdoms. The monoterpene-derived iridoids, for example, have been found in more than 50 plant families but are also observed in several insect orders. The discovery of the aphid iridoid pathway, one of the longest and most chemically complex insect-derived natural product biosynthetic pathways reported to date, highlights the mechanisms underlying the convergent evolution of metabolic enzymes in insects and plants, including the recruitment of different enzyme classes to catalyze the same chemical processes. Iridoid monoterpenes, widely distributed in plants and insects, have many ecological functions. While the biosynthesis of iridoids has been extensively studied in plants, little is known about how insects synthesize these natural products. Here, we elucidated the biosynthesis of the iridoids cis-trans-nepetalactol and cis-trans-nepetalactone in the pea aphid Acyrthosiphon pisum (Harris), where they act as sex pheromones. The exclusive production of iridoids in hind legs of sexual female aphids allowed us to identify iridoid genes by searching for genes specifically expressed in this tissue. Biochemical characterization of candidate enzymes revealed that the iridoid pathway in aphids proceeds through the same sequence of intermediates as described for plants. The six identified aphid enzymes are unrelated to their counterparts in plants, conclusively demonstrating an independent evolution of the entire iridoid pathway in plants and insects. In contrast to the plant pathway, at least three of the aphid iridoid enzymes are likely membrane bound. We demonstrated that a lipid environment facilitates the cyclization of a reactive enol intermediate to the iridoid cyclopentanoid-pyran scaffold in vitro, suggesting that membranes are an essential component of the aphid iridoid pathway. Altogether, our discovery of this complex insect metabolic pathway establishes the genetic and biochemical basis for the formation of iridoid sex pheromones in aphids, and this discovery also serves as a foundation for understanding the convergent evolution of complex metabolic pathways between kingdoms.
Collapse
|
36
|
Palmer L, Chuang L, Siegmund M, Kunert M, Yamamoto K, Sonawane P, O'Connor SE. In vivo characterization of key iridoid biosynthesis pathway genes in catnip (Nepeta cataria). PLANTA 2022; 256:99. [PMID: 36222913 PMCID: PMC9556426 DOI: 10.1007/s00425-022-04012-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Using virus-induced gene silencing, we demonstrated that the enzymes GES, ISY, and MLPL are responsible for nepetalactone biosynthesis in Nepeta cataria. Nepetalactone is the main iridoid that is found in the Nepeta genus and is well-known for its psychoactive effect on house cats. Moreover, there is a burgeoning interest into the effect of nepetalactone on insects. Although the enzymes for nepetalactone biosynthesis have been biochemically assayed in vitro, validation of the role that these enzymes have in planta has not been demonstrated. Virus-induced gene silencing (VIGS) is a silencing method that relies on transient transformation and is an approach that has been particularly successful when applied to a variety of non-model plants. Here, we use a recently designed visual-marker dependent VIGS system to demonstrate that the nepetalactone biosynthetic enzymes GES, ISY, and MLPL impact nepetalactone biosynthesis in Nepeta cataria.
Collapse
Affiliation(s)
- Lira Palmer
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07743, Jena, Germany
| | - Ling Chuang
- Institute of Botany, Leibniz University Hannover, 30167, Hannover, Germany
| | - Marlen Siegmund
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07743, Jena, Germany
| | - Maritta Kunert
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07743, Jena, Germany
| | - Kotaro Yamamoto
- School of Science, Association of International Arts and Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Prashant Sonawane
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07743, Jena, Germany
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07743, Jena, Germany.
| |
Collapse
|
37
|
Dudley QM, Jo S, Guerrero DAS, Chhetry M, Smedley MA, Harwood WA, Sherden NH, O'Connor SE, Caputi L, Patron NJ. Reconstitution of monoterpene indole alkaloid biosynthesis in genome engineered Nicotiana benthamiana. Commun Biol 2022; 5:949. [PMID: 36088516 PMCID: PMC9464250 DOI: 10.1038/s42003-022-03904-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/25/2022] [Indexed: 12/17/2022] Open
Abstract
Monoterpene indole alkaloids (MIAs) are a diverse class of plant natural products that include a number of medicinally important compounds. We set out to reconstitute the pathway for strictosidine, a key intermediate of all MIAs, from central metabolism in Nicotiana benthamiana. A disadvantage of this host is that its rich background metabolism results in the derivatization of some heterologously produced molecules. Here we use transcriptomic analysis to identify glycosyltransferases that are upregulated in response to biosynthetic intermediates and produce plant lines with targeted mutations in the genes encoding them. Expression of the early MIA pathway in these lines produces a more favorable product profile. Strictosidine biosynthesis was successfully reconstituted, with the best yields obtained by the co-expression of 14 enzymes, of which a major latex protein-like enzyme (MLPL) from Nepeta (catmint) is critical for improving flux through the iridoid pathway. The removal of endogenous glycosyltransferases does not impact the yields of strictosidine, highlighting that the metabolic flux of the pathway enzymes to a stable biosynthetic intermediate minimizes the need to engineer the endogenous metabolism of the host. The production of strictosidine in planta expands the range of MIA products amenable to biological synthesis.
Collapse
Affiliation(s)
- Quentin M Dudley
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk, NR4 7UZ, UK
| | - Seohyun Jo
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk, NR4 7UZ, UK
| | - Delia Ayled Serna Guerrero
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Monika Chhetry
- John Innes Centre, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Mark A Smedley
- John Innes Centre, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Wendy A Harwood
- John Innes Centre, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Nathaniel H Sherden
- John Innes Centre, Norwich Research Park, Norwich, NR4 7TJ, UK
- Octagon Therapeutics Ltd, 700 Main Street, North Cambridge, MA, 02139, USA
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Lorenzo Caputi
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany.
| | - Nicola J Patron
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk, NR4 7UZ, UK.
| |
Collapse
|
38
|
A microbial supply chain for production of the anti-cancer drug vinblastine. Nature 2022; 609:341-347. [PMID: 36045295 PMCID: PMC9452304 DOI: 10.1038/s41586-022-05157-3] [Citation(s) in RCA: 171] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/27/2022] [Indexed: 12/05/2022]
Abstract
Monoterpene indole alkaloids (MIAs) are a diverse family of complex plant secondary metabolites with many medicinal properties, including the essential anti-cancer therapeutics vinblastine and vincristine1. As MIAs are difficult to chemically synthesize, the world’s supply chain for vinblastine relies on low-yielding extraction and purification of the precursors vindoline and catharanthine from the plant Catharanthus roseus, which is then followed by simple in vitro chemical coupling and reduction to form vinblastine at an industrial scale2,3. Here, we demonstrate the de novo microbial biosynthesis of vindoline and catharanthine using a highly engineered yeast, and in vitro chemical coupling to vinblastine. The study showcases a very long biosynthetic pathway refactored into a microbial cell factory, including 30 enzymatic steps beyond the yeast native metabolites geranyl pyrophosphate and tryptophan to catharanthine and vindoline. In total, 56 genetic edits were performed, including expression of 34 heterologous genes from plants, as well as deletions, knock-downs and overexpression of ten yeast genes to improve precursor supplies towards de novo production of catharanthine and vindoline, from which semisynthesis to vinblastine occurs. As the vinblastine pathway is one of the longest MIA biosynthetic pathways, this study positions yeast as a scalable platform to produce more than 3,000 natural MIAs and a virtually infinite number of new-to-nature analogues. De novo microbial biosynthesis of vindoline and catharanthine using a highly engineered yeast and in vitro chemical coupling to vinblastine is carried out, positioning yeast as a scalable platform to produce many monoterpene indole alkaloids.
Collapse
|
39
|
Vukić MD, Vuković NL, Mladenović M, Tomašević N, Matić S, Stanić S, Sapienza F, Ragno R, Božović M, Kačániová M. Chemical Composition of Various Nepeta cataria Plant Organs' Methanol Extracts Associated with In Vivo Hepatoprotective and Antigenotoxic Features as well as Molecular Modeling Investigations. PLANTS (BASEL, SWITZERLAND) 2022; 11:2114. [PMID: 36015417 PMCID: PMC9415533 DOI: 10.3390/plants11162114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022]
Abstract
This report summarizes the chemical composition analysis of Nepeta cataria L. flower, leaf, and stem methanol extracts (FME, LME, SME, respectively) as well as their hepatoprotective and antigenotoxic features in vivo and in silico. Herein, Wistar rat liver intoxication with CCl4 resulted in the generation of trichloromethyl and trichloromethylperoxy radicals, causing lipid peroxidation within the hepatocyte membranes (viz. hepatotoxicity), as well as the subsequent formation of aberrant rDNA adducts and consequent double-strand break (namely genotoxicity). Examined FME, LME, and SME administered orally to Wistar rats before the injection of CCl4 exerted the most notable pharmacological properties in the concentrations of 200, 100, and 50 mg/kg of body weight, respectively. Thus, the extracts' hepatoprotective features were determined by monitoring the catalytic activities of enzymes and the concentrations of reactive oxidative species, modulating the liver redox status. Furthermore, the necrosis of hepatocytes was assessed by means of catalytic activities of liver toxicity markers. The extracts' antigenotoxic features were quantified using the comet assay. Distinct pharmacological property features may be attributed to quercitrin (8406.31 μg/g), chlorogenic acid (1647.32 μg/g), and quinic acid (536.11 μg/g), found within the FME, rosmarinic acid (1056.14 μg/g), and chlorogenic acid (648.52 μg/g), occurring within the LME, and chlorogenic acid (1408.43 μg/g), the most abundant in SME. Hence, the plant's secondary metabolites were individually administered similar to extracts, upon which their pharmacology in vivo was elucidated in silico by means of the structure-based studies within rat catalase, as a redox marker, and rat topoisomerase IIα, an enzyme catalyzing the rat DNA double-strand break. Conclusively, the examined N. cataria extracts in specified concentrations could be used in clinical therapy for the prevention of toxin-induced liver diseases.
Collapse
Affiliation(s)
- Milena D. Vukić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Nenad L. Vuković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Milan Mladenović
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Nevena Tomašević
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Sanja Matić
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Snežana Stanić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Filippo Sapienza
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Mijat Božović
- Faculty of Science and Mathematics, University of Montenegro, Džordža Vašingtona bb, 81000 Podgorica, Montenegro
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Bioenergy, Food Technology and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza St., 35601 Rzeszow, Poland
| |
Collapse
|
40
|
Abstract
Thousands of natural products are derived from the fused cyclopentane-pyran molecular scaffold nepetalactol. These natural products are used in an enormous range of applications that span the agricultural and medical industries. For example, nepetalactone, the oxidized derivative of nepetalactol, is known for its cat attractant properties as well as potential as an insect repellent. Most of these naturally occurring nepetalactol-derived compounds arise from only two out of the eight possible stereoisomers, 7S-cis-trans and 7R-cis-cis nepetalactols. Here we use a combination of naturally occurring and engineered enzymes to produce seven of the eight possible nepetalactol or nepetalactone stereoisomers. These enzymes open the possibilities for biocatalytic production of a broader range of iridoids, providing a versatile system for the diversification of this important natural product scaffold. Iridoid compounds are an important class of natural products. Here, the authors report on the discovery and engineering of nepetalactol-related short chain reductases and their application for the biosynthesis of nepetalactol or nepetalactone stereoisomers, as a versatile system for the production of the iridoid natural product scaffold.
Collapse
|
41
|
Drummond CP, Renner T. Genomic insights into the evolution of plant chemical defense. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102254. [PMID: 35777286 DOI: 10.1016/j.pbi.2022.102254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/22/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Plant trait evolution can be impacted by common mechanisms of genome evolution, including whole-genome and small-scale duplication, rearrangement, and selective pressures. With the increasing accessibility of genome sequencing for non-model species, comparative studies of trait evolution among closely related or divergent lineages have supported investigations into plant chemical defense. Plant defensive compounds include major chemical classes, such as terpenoids, alkaloids, and phenolics, and are used in primary and secondary plant functions. These include the promotion of plant health, facilitation of pollination, defense against pathogens, and responses to a rapidly changing climate. We discuss mechanisms of genome evolution and use examples from recent studies to impress a stronger understanding of the link between genotype and phenotype as it relates to the evolution of plant chemical defense. We conclude with considerations for how to leverage genomics, transcriptomics, metabolomics, and functional assays for studying the emergence and evolution of chemical defense systems.
Collapse
Affiliation(s)
- Chloe P Drummond
- The Pennsylvania State University, Department of Entomology, 501 ASI Building University Park, PA 16802, USA.
| | - Tanya Renner
- The Pennsylvania State University, Department of Entomology, 501 ASI Building University Park, PA 16802, USA
| |
Collapse
|
42
|
Smit SJ, Lichman BR. Plant biosynthetic gene clusters in the context of metabolic evolution. Nat Prod Rep 2022; 39:1465-1482. [PMID: 35441651 PMCID: PMC9298681 DOI: 10.1039/d2np00005a] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 12/17/2022]
Abstract
Covering: up to 2022Plants produce a wide range of structurally and biosynthetically diverse natural products to interact with their environment. These specialised metabolites typically evolve in limited taxonomic groups presumably in response to specific selective pressures. With the increasing availability of sequencing data, it has become apparent that in many cases the genes encoding biosynthetic enzymes for specialised metabolic pathways are not randomly distributed on the genome. Instead they are physically linked in structures such as arrays, pairs and clusters. The exact function of these clusters is debated. In this review we take a broad view of gene arrangement in plant specialised metabolism, examining types of structures and variation. We discuss the evolution of biosynthetic gene clusters in the wider context of metabolism, populations and epigenetics. Finally, we synthesise our observations to propose a new hypothesis for biosynthetic gene cluster formation in plants.
Collapse
Affiliation(s)
- Samuel J Smit
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK.
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK.
| |
Collapse
|
43
|
Schenck CA, Busta L. Using interdisciplinary, phylogeny-guided approaches to understand the evolution of plant metabolism. PLANT MOLECULAR BIOLOGY 2022; 109:355-367. [PMID: 34816350 DOI: 10.1007/s11103-021-01220-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
To cope with relentless environmental pressures, plants produce an arsenal of structurally diverse chemicals, often called specialized metabolites. These lineage-specific compounds are derived from the simple building blocks made by ubiquitous core metabolic pathways. Although the structures of many specialized metabolites are known, the underlying metabolic pathways and the evolutionary events that have shaped the plant chemical diversity landscape are only beginning to be understood. However, with the advent of multi-omics data sets and the relative ease of studying pathways in previously intractable non-model species, plant specialized metabolic pathways are now being systematically identified. These large datasets also provide a foundation for comparative, phylogeny-guided studies of plant metabolism. Comparisons of metabolic traits and features like chemical abundances, enzyme activities, or gene sequences from phylogenetically diverse plants provide insights into how metabolic pathways evolved. This review highlights the power of studying evolution through the lens of comparative biochemistry, particularly how placing metabolism into a phylogenetic context can help a researcher identify the metabolic innovations enabling the evolution of structurally diverse plant metabolites.
Collapse
Affiliation(s)
- Craig A Schenck
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| | - Lucas Busta
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, USA
| |
Collapse
|
44
|
Hu J, Wang F, Liang F, Wu Z, Jiang R, Li J, Chen J, Qiu S, Wang J, Zhang Y, Li Q, Chen W. Identification of Abietane-Type Diterpenoids and Phenolic Acids Biosynthesis Genes in Salvia apiana Jepson Through Full-Length Transcriptomic and Metabolomic Profiling. FRONTIERS IN PLANT SCIENCE 2022; 13:919025. [PMID: 35755672 PMCID: PMC9213684 DOI: 10.3389/fpls.2022.919025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Salvia apiana (S. apiana) Jepson is a medicinal plant that is frequently used by the Chumash Indians in southern California as a diaphoretic, calmative, diuretic, or antimicrobial agent. Abietane-type diterpenoids (ATDs) and phenolic acids (PAs) are the main bioactive ingredients in S. apiana. However, few studies have looked into the biosynthesis of ATDs and PAs in S. apiana. In this study, using metabolic profiling focused on the ATDs and PAs in the roots and leaves of S. apiana, we found a distinctive metabolic feature with all-around accumulation of ATDs, but absence of salvianolic acid B. To identify the candidate genes involved in these biosynthesis pathways, full-length transcriptome was performed by PacBio single-molecule real-time (SMRT) sequencing. A total of 50 and 40 unigenes were predicted to be involved in ATDs and PAs biosynthesis, respectively. Further transcriptional profile using Illumina HiSeq sequencing showed that the transcriptional variations of these pathways were consistent with the accumulation patterns of corresponding metabolites. A plant kingdom-wide phylogenetic analysis of cytochromes (CYPs) identified two CYP76AK and two CYP76AH subfamily genes that might contribute for the specific ATDs biosynthesis in S. apiana. We also noticed that the clade VII laccase gene family was significantly expanded in Salvia miltiorrhiza compared with that of S. apiana, indicating their involvements in the formation of salvianolic acid B. In conclusion, our results will enable the further understanding of ATDs and PAs biosynthesis in S. apiana and Salvia genus.
Collapse
Affiliation(s)
- Jiadong Hu
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feiyan Wang
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fengying Liang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ziding Wu
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Jiang
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinxing Li
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junfeng Chen
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shi Qiu
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Wang
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuchen Zhang
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Li
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wansheng Chen
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
45
|
Brassart PL, Thomas OP, Courdavault V, Papon N. Towards a Better Understanding of Toxin Biosynthesis in Seaweeds. Chembiochem 2022; 23:e202200223. [PMID: 35666802 DOI: 10.1002/cbic.202200223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/02/2022] [Indexed: 11/06/2022]
Abstract
Harmful algal blooms (HABs) represent both ecological and public health hazards in the marine environment. Indeed, some algae can produce metabolites that have negative effects on marine ecosystems and mammals. Kainoid derivatives such as kainic acid (KA) and domoic acid (DA) are considered some of the most toxic metabolites of marine origin biosynthesized by a limited number of micro- and macroalgae. While recent works have provided the first insights into the biosynthetic route of KA in red algae and DA in diatoms, the DA biosynthetic pathway has remained uncharacterized for red algae. In a recent work, the research groups of Chekan and Moore have not only elucidated the biosynthetic pathway of DA in the red alga Chondria armata but also shed light on its complex evolution among marine species. We discuss here the importance of pursuing active research in this area to gain insights into secondary biosynthetic pathways in marine organisms for diagnostic and metabolic engineering perspectives.
Collapse
Affiliation(s)
| | - Olivier P Thomas
- School of the Biological and Chemical Sciences, Ryan Institute, National University of Ireland Galway, H91TK33, Galway, Republic of Ireland
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, 49000, Angers, France
| |
Collapse
|
46
|
Fujita K, Chitose N, Chujo M, Komura S, Sonoda C, Yoshida M, Inui H. Genome-wide identification and characterization of major latex-like protein genes responsible for crop contamination in Cucurbita pepo. Mol Biol Rep 2022; 49:7773-7782. [PMID: 35648252 DOI: 10.1007/s11033-022-07602-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Zucchini plants (Cucurbita pepo) accumulate persistent organic pollutants (POPs) at high concentrations in their aerial parts, and major latex-like proteins (MLPs) play crucial roles in their accumulation. MLPs bind to POPs in root cells, MLP-POP complexes are then translocated into xylem vessels, and POPs are transported to the aerial parts. We previously identified three CpMLP genes (MLP-PG1, MLP-GR1, and MLP-GR3) as transporting factors for POPs; however, other studies have shown that the genomes of several plant species contain more than 10 MLP genes, thus, further MLP genes responsible for POP accumulation may have been overlooked. METHODS AND RESULTS Here, we investigated the number of CpMLP genes by performing a hidden Markov model search against the C. pepo genome database and characterized their effects on POP accumulation by performing the expression analysis in the organs and in silico structural analysis. The C. pepo genome contained 21 CpMLP genes, and several CpMLP genes, including MLP-PG1 and MLP-GR3, were highly expressed in roots. 3D structural prediction showed that all examined CpMLPs contained a cavity with a hydrophobic region, which facilitated binding to POPs. CONCLUSIONS The present study provides insights regarding CpMLP genes responsible for POP accumulation.
Collapse
Affiliation(s)
- Kentaro Fujita
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Natsumi Chitose
- Faculty of Agriculture, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Maho Chujo
- Faculty of Agriculture, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Shoya Komura
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Chihiro Sonoda
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Minami Yoshida
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Hideyuki Inui
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan. .,Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| |
Collapse
|
47
|
Islam AKMM, Suttiyut T, Anwar MP, Juraimi AS, Kato-Noguchi H. Allelopathic Properties of Lamiaceae Species: Prospects and Challenges to Use in Agriculture. PLANTS 2022; 11:plants11111478. [PMID: 35684250 PMCID: PMC9182988 DOI: 10.3390/plants11111478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
Herbicide resistance due to the increasing reliance on herbicides is a near-term challenge for the world’s agriculture. This has led to a desire to develop new herbicides with a novel mode of action, to address resistance in weed species. Lamiaceae, a large dicotyledonous plant family, is very well known for the multitudinous pharmacological and toxicological properties of its member species. Moreover, many species of this family are significant for their allelopathic activity in natural and laboratory settings. Thus, plants in Lamiaceae have the potential to be sources of alternative herbicides. However, gaps in our knowledge need to be addressed prior to adopting these allelopathic activities in agriculture. Therefore, we review the existing state of knowledge about the Lamiaceae family, the reported allelopathic properties of plant extracts, and their isolated allelochemicals under laboratory, greenhouse, and field conditions. In addition, we offer a perspective on existing challenges and future opportunities for adopting the allelopathic properties of Lamiaceae plant species for green agriculture.
Collapse
Affiliation(s)
- A. K. M. Mominul Islam
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
- Correspondence: ; Tel.: +880-1718-512082
| | - Thiti Suttiyut
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Dr, West Lafayette, IN 47907, USA;
- Purdue Center of Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Md. Parvez Anwar
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Abdul Shukor Juraimi
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Japan;
| |
Collapse
|
48
|
Petrova D, Gašić U, Yocheva L, Hinkov A, Yordanova Z, Chaneva G, Mantovska D, Paunov M, Ivanova L, Rogova M, Shishkova K, Todorov D, Tosheva A, Kapchina-Toteva V, Vassileva V, Atanassov A, Mišić D, Bonchev G, Zhiponova M. Catmint ( Nepeta nuda L.) Phylogenetics and Metabolic Responses in Variable Growth Conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:866777. [PMID: 35651766 PMCID: PMC9150856 DOI: 10.3389/fpls.2022.866777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Nepeta nuda (catmint; Lamiaceae) is a perennial medicinal plant with a wide geographic distribution in Europe and Asia. This study first characterized the taxonomic position of N. nuda using DNA barcoding technology. Since medicinal plants are rich in secondary metabolites contributing to their adaptive immune response, we explored the N. nuda metabolic adjustment operating under variable environments. Through comparative analysis of wild-grown and in vitro cultivated plants, we assessed the change in phenolic and iridoid compounds, and the associated immune activities. The wild-grown plants from different Bulgarian locations contained variable amounts of phenolic compounds manifested by a general increase in flowers, as compared to leaves, while a strong reduction was observed in the in vitro plants. A similar trend was noted for the antioxidant and anti-herpesvirus activity of the extracts. The antimicrobial potential, however, was very similar, regardless the growth conditions. Analysis of the N. nuda extracts led to identification of 63 compounds including phenolic acids and derivatives, flavonoids, and iridoids. Quantification of the content of 21 target compounds indicated their general reduction in the extracts from in vitro plants, and only the ferulic acid (FA) was specifically increased. Cultivation of in vitro plants under different light quality and intensity indicated that these variable light conditions altered the content of bioactive compounds, such as aesculin, FA, rosmarinic acid, cirsimaritin, naringenin, rutin, isoquercetin, epideoxyloganic acid, chlorogenic acid. Thus, this study generated novel information on the regulation of N. nuda productivity using light and other cultivation conditions, which could be exploited for biotechnological purposes.
Collapse
Affiliation(s)
- Detelina Petrova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Lyubomira Yocheva
- Department of Biology, Medical Genetics and Microbiology, Faculty of Medicine, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Anton Hinkov
- Laboratory of Virology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Zhenya Yordanova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Ganka Chaneva
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Desislava Mantovska
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Momchil Paunov
- Department of Biophysics and Radiobiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Lyubomira Ivanova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Mariya Rogova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Kalina Shishkova
- Laboratory of Virology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Daniel Todorov
- Laboratory of Virology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Anita Tosheva
- Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Veneta Kapchina-Toteva
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Danijela Mišić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Georgi Bonchev
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Miroslava Zhiponova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| |
Collapse
|
49
|
Misa J, Billingsley JM, Niwa K, Yu RK, Tang Y. Engineered Production of Strictosidine and Analogues in Yeast. ACS Synth Biol 2022; 11:1639-1649. [PMID: 35294193 PMCID: PMC9171786 DOI: 10.1021/acssynbio.2c00037] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Monoterpene indole alkaloids (MIAs) are an expansive class of plant natural products, many of which have been named on the World Health Organization's List of Essential Medicines. Low production from native plant hosts necessitates a more reliable source of these drugs to meet global demand. Here, we report the development of a yeast-based platform for high-titer production of the universal MIA precursor, strictosidine. Our fed-batch platform produces ∼50 mg/L strictosidine, starting from the commodity chemicals geraniol and tryptamine. The microbially produced strictosidine was purified to homogeneity and characterized by NMR. Additionally, our approach enables the production of halogenated strictosidine analogues through the feeding of modified tryptamines. The MIA platform strain enables rapid access to strictosidine for reconstitution and production of downstream MIA natural products.
Collapse
Affiliation(s)
- Joshua Misa
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - John M. Billingsley
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kanji Niwa
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Rachel K. Yu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
50
|
Sims C, Birkett MA, Withall DM. Enantiomeric Discrimination in Insects: The Role of OBPs and ORs. INSECTS 2022; 13:368. [PMID: 35447810 PMCID: PMC9030700 DOI: 10.3390/insects13040368] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023]
Abstract
Olfaction is a complex recognition process that is critical for chemical communication in insects. Though some insect species are capable of discrimination between compounds that are structurally similar, little is understood about how this high level of discrimination arises. Some insects rely on discriminating between enantiomers of a compound, demonstrating an ability for highly selective recognition. The role of two major peripheral olfactory proteins in insect olfaction, i.e., odorant-binding proteins (OBPs) and odorant receptors (ORs) has been extensively studied. OBPs and ORs have variable discrimination capabilities, with some found to display highly specialized binding capability, whilst others exhibit promiscuous binding activity. A deeper understanding of how odorant-protein interactions induce a response in an insect relies on further analysis such as structural studies. In this review, we explore the potential role of OBPs and ORs in highly specific recognition, specifically enantiomeric discrimination. We summarize the state of research into OBP and OR function and focus on reported examples in the literature of clear enantiomeric discrimination by these proteins.
Collapse
Affiliation(s)
- Cassie Sims
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK; (C.S.); (M.A.B.)
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Michael A. Birkett
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK; (C.S.); (M.A.B.)
| | - David M. Withall
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK; (C.S.); (M.A.B.)
| |
Collapse
|