1
|
Sharma A, Srivastava R, Gnyawali SC, Bhasme P, Anthony AJ, Xuan Y, Trinidad JC, Sen CK, Clemmer DE, Roy S, Ghatak S. Mitochondrial Bioenergetics of Functional Wound Closure is Dependent on Macrophage-Keratinocyte Exosomal Crosstalk. ACS NANO 2024; 18:30405-30420. [PMID: 39453865 DOI: 10.1021/acsnano.4c07610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Tissue nanotransfection (TNT)-based fluorescent labeling of cell-specific exosomes has shown that exosomes play a central role in physiological keratinocyte-macrophage (mϕ) crosstalk at the wound-site. Here, we report that during the early phase of wound reepithelialization, macrophage-derived exosomes (Exomϕ), enriched with the outer mitochondrial membrane protein TOMM70, are localized in leading-edge keratinocytes. TOMM70 is a 70 kDa adaptor protein anchored in the mitochondrial outer membrane and plays a critical role in maintaining mitochondrial function and quality. TOMM70 selectively recognizes cytosolic chaperones by its tetratricopeptide repeat (TPR) domain and facilitates the import of preproteins lacking a positively charged mitochondrial targeted sequence. Exosomal packaging of TOMM70 in mϕ was independent of mitochondrial fission. TOMM70-enriched Exomϕ compensated for the hypoxia-induced depletion of epidermal TOMM70, thereby rescuing mitochondrial metabolism in leading-edge keratinocytes. Thus, macrophage-derived TOMM70 is responsible for the glycolytic ATP supply to power keratinocyte migration. Blockade of exosomal uptake from keratinocytes impaired wound closure with the persistence of proinflammatory mϕ in the wound microenvironment, pointing toward a bidirectional crosstalk between these two cell types. The significance of such bidirectional crosstalk was established by the observation that in patients with nonhealing diabetic foot ulcers, TOMM70 is deficient in keratinocytes of wound-edge tissues.
Collapse
Affiliation(s)
- Anu Sharma
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Rajneesh Srivastava
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Surya C Gnyawali
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Pramod Bhasme
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Adam J Anthony
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Yi Xuan
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Jonathan C Trinidad
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Chandan K Sen
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Sashwati Roy
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | | |
Collapse
|
2
|
Nixon RA, Rubinsztein DC. Mechanisms of autophagy-lysosome dysfunction in neurodegenerative diseases. Nat Rev Mol Cell Biol 2024; 25:926-946. [PMID: 39107446 DOI: 10.1038/s41580-024-00757-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/15/2024]
Abstract
Autophagy is a lysosome-based degradative process used to recycle obsolete cellular constituents and eliminate damaged organelles and aggregate-prone proteins. Their postmitotic nature and extremely polarized morphologies make neurons particularly vulnerable to disruptions caused by autophagy-lysosomal defects, especially as the brain ages. Consequently, mutations in genes regulating autophagy and lysosomal functions cause a wide range of neurodegenerative diseases. Here, we review the role of autophagy and lysosomes in neurodegenerative diseases such as Alzheimer disease, Parkinson disease and frontotemporal dementia. We also consider the strong impact of cellular ageing on lysosomes and autophagy as a tipping point for the late-age emergence of related neurodegenerative disorders. Many of these diseases have primary defects in autophagy, for example affecting autophagosome formation, and in lysosomal functions, especially pH regulation and calcium homeostasis. We have aimed to provide an integrative framework for understanding the central importance of autophagic-lysosomal function in neuronal health and disease.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| |
Collapse
|
3
|
Hazan Ben-Menachem R, Pines O, Saada A. Mitochondrial derived vesicles- Quo Vadis? FEBS J 2024; 291:4660-4669. [PMID: 38414203 DOI: 10.1111/febs.17103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/29/2024]
Abstract
Mitochondria are dynamic, intracellular organelles with a separate genome originating from prokaryotes. They perform numerous functions essential for cellular metabolism and energy production. Mitochondrial-derived vesicles (MDVs) are single or double membrane-enclosed vesicles, formed and released from the mitochondrial sub-compartments into the cytosol, in response to various triggers. MDVs interact with other organelles such as lysosomes and peroxisomes or may be incorporated and excreted via extracellular vesicles (EVs). MDVs selectively incorporate diverse protein and lipid cargoes and are involved in various functions such as mitochondrial quality control, immunomodulation, energy complementation, and compartmentalization and transport. This review aims to provide a summary of the current knowledge of MDVs biogenesis, release, cargoes, and roles.
Collapse
Affiliation(s)
- Reut Hazan Ben-Menachem
- Department of Molecular Genetics and Microbiology, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Ophry Pines
- Department of Molecular Genetics and Microbiology, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Ann Saada
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Israel
- Department of Medical Laboratory Sciences Hadassah Academic College, Jerusalem, Israel
| |
Collapse
|
4
|
Iorio R, Petricca S, Di Emidio G, Falone S, Tatone C. Mitochondrial Extracellular Vesicles (mitoEVs): Emerging mediators of cell-to-cell communication in health, aging and age-related diseases. Ageing Res Rev 2024; 101:102522. [PMID: 39369800 DOI: 10.1016/j.arr.2024.102522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/17/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
Mitochondria are metabolic and signalling hubs that integrate a plethora of interconnected processes to maintain cell homeostasis. They are also dormant mediators of inflammation and cell death, and with aging damages affecting mitochondria gradually accumulate, resulting in the manifestation of age-associated disorders. In addition to coordinate multiple intracellular functions, mitochondria mediate intercellular and inter-organ cross talk in different physiological and stress conditions. To fulfil this task, mitochondrial signalling has evolved distinct and complex conventional and unconventional routes of horizontal/vertical mitochondrial transfer. In this regard, great interest has been focused on the ability of extracellular vesicles (EVs), such as exosomes and microvesicles, to carry selected mitochondrial cargoes to target cells, in response to internal and external cues. Over the past years, the field of mitochondrial EVs (mitoEVs) has grown exponentially, revealing unexpected heterogeneity of these structures associated with an ever-expanding mitochondrial function, though the full extent of the underlying mechanisms is far from being elucidated. Therefore, emerging subsets of EVs encompass exophers, migrasomes, mitophers, mitovesicles, and mitolysosomes that can act locally or over long-distances to restore mitochondrial homeostasis and cell functionality, or to amplify disease. This review provides a comprehensive overview of our current understanding of the biology and trafficking of MitoEVs in different physiological and pathological conditions. Additionally, a specific focus on the role of mitoEVs in aging and the onset and progression of different age-related diseases is discussed.
Collapse
Affiliation(s)
- Roberto Iorio
- Dept. of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, L'Aquila 67100, Italy.
| | - Sabrina Petricca
- Dept. of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, L'Aquila 67100, Italy
| | - Giovanna Di Emidio
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, L'Aquila 67100, Italy
| | - Stefano Falone
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, L'Aquila 67100, Italy
| | - Carla Tatone
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, L'Aquila 67100, Italy
| |
Collapse
|
5
|
Forero A, Pipicelli F, Moser S, Baumann N, Grätz C, Gonzalez Pisfil M, Pfaffl MW, Pütz B, Kielkowski P, Cernilogar FM, Maccarrone G, Di Giaimo R, Cappello S. Extracellular vesicle-mediated trafficking of molecular cues during human brain development. Cell Rep 2024; 43:114755. [PMID: 39302835 DOI: 10.1016/j.celrep.2024.114755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/03/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Cellular crosstalk is an essential process influenced by numerous factors, including secreted vesicles that transfer nucleic acids, lipids, and proteins between cells. Extracellular vesicles (EVs) have been the center of many studies focusing on neurodegenerative disorders, but whether EVs display cell-type-specific features for cellular crosstalk during neurodevelopment is unknown. Here, using human-induced pluripotent stem cell-derived cerebral organoids, neural progenitors, neurons, and astrocytes, we identify heterogeneity in EV protein content and dynamics in a cell-type-specific and time-dependent manner. Our results support the trafficking of key molecules via EVs in neurodevelopment, such as the transcription factor YAP1, and their localization to differing cell compartments depending on the EV recipient cell type. This study sheds new light on the biology of EVs during human brain development.
Collapse
Affiliation(s)
- Andrea Forero
- Max Planck Institute of Psychiatry, Munich, Germany; Division of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Fabrizia Pipicelli
- Max Planck Institute of Psychiatry, Munich, Germany; International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Sylvain Moser
- Max Planck Institute of Psychiatry, Munich, Germany; International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Natalia Baumann
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Christian Grätz
- Division of Animal Physiology and Immunology, Technical University of Munich, Freising, Germany
| | - Mariano Gonzalez Pisfil
- Core Facility Bioimaging and Walter-Brendel-Centre of Experimental Medicine, Biomedical Center, Ludwig Maximilian University, Munich, Germany
| | - Michael W Pfaffl
- Division of Animal Physiology and Immunology, Technical University of Munich, Freising, Germany
| | - Benno Pütz
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Pavel Kielkowski
- Department of Chemistry, Ludwig Maximilian University, Munich, Germany
| | - Filippo M Cernilogar
- Division of Molecular Biology, Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University, Munich, Germany; Department of Science and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | | | - Rossella Di Giaimo
- Max Planck Institute of Psychiatry, Munich, Germany; Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Silvia Cappello
- Max Planck Institute of Psychiatry, Munich, Germany; Division of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany.
| |
Collapse
|
6
|
Ferrucci L, Guerra F, Bucci C, Marzetti E, Picca A. Mitochondria break free: Mitochondria-derived vesicles in aging and associated conditions. Ageing Res Rev 2024; 102:102549. [PMID: 39427885 DOI: 10.1016/j.arr.2024.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Mitophagy is the intracellular recycling system that disposes damaged/inefficient mitochondria and allows biogenesis of new organelles to ensure mitochondrial quality is optimized. Dysfunctional mitophagy has been implicated in human aging and diseases. Multiple evolutionarily selected, redundant mechanisms of mitophagy have been identified, but their specific roles in human health and their potential exploitation as therapeutic targets are unclear. Recently, the characterization of the endosomal-lysosomal system has revealed additional mechanisms of mitophagy and mitochondrial quality control that operate via the production of mitochondria-derived vesicles (MDVs). Circulating MDVs can be isolated and characterized to provide an unprecedented opportunity to study this type of mitochondrial recycling in vivo and to relate it to human physiology and pathology. Defining the role of MDVs in human physiology, pathology, and aging is hampered by the lack of standardized methods to isolate, validate, and characterize these vesicles. Hence, some basic questions about MDVs remain unanswered. While MDVs are generated directly through the extrusion of mitochondrial membranes within the cell, a set of circulating extracellular vesicles leaking from the endosomal-lysosomal system and containing mitochondrial portions have also been identified and warrant investigation. Preliminary research indicates that MDV generation serves multiple biological roles and contributes to restoring cell homeostasis. However, studies have shown that MDVs may also be involved in pathological conditions. Therefore, further research is warranted to establish when/whether MDVs are supporting disease progression and/or are extracting damaged mitochondrial components to alleviate cellular oxidative burden and restore redox homeoastasis. This information will be relevant for exploiting these vesicles for therapeutic purpose. Herein, we provide an overview of preclinical and clinical studies on MDVs in aging and associated conditions and discuss the interplay between MDVs and some of the hallmarks of aging (mitophagy, inflammation, and proteostasis). We also outline open questions on MDV research that should be prioritized by future investigations.
Collapse
Affiliation(s)
- Luigi Ferrucci
- Division of Intramural Research, National Institute on Aging, Baltimore, MD, USA.
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, Lecce, Italy
| | - Cecilia Bucci
- Department of Experimental Medicine, Università del Salento, Lecce, Italy
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy; Department of Medicine and Surgery, LUM University, Casamassima, Italy.
| |
Collapse
|
7
|
Kaplelach AK, Murchison CF, Kojima K, Mobley JA, Arrant AE. Increased levels of extracellular matrix proteins associated with extracellular vesicles from brains of aged mice. Aging Cell 2024:e14359. [PMID: 39377264 DOI: 10.1111/acel.14359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 10/09/2024] Open
Abstract
Extracellular vesicles (EVs) are secreted by all major cell types of the brain, providing a mode of intercellular communication and a pathway for disposal of cellular debris. EVs help maintain healthy brain function, but may also contribute to diseases affecting the brain. EVs might contribute to aging of the brain, as aging-related processes such as inflammation and cellular senescence may alter EV cargo, promoting further inflammation and senescence. However, the effects of aging on brain EVs and the function of EVs in the aging brain remain poorly understood. To address this question, we measured the levels and protein cargo of EVs isolated from the brains of 4-, 12-, and 22-month-old C57BL/6J mice. We detected no changes in EV levels, but observed age-dependent changes in EV proteins. EV fractions from aged (22 month old) brains contained higher levels of extracellular matrix proteins than EV fractions from young (4 month old) brains, with intermediate levels in 12-month-old brains. Specifically, EV fractions from aged mice contained elevated levels of hyaluronan and proteoglycan link proteins 1 and 2 and several chondroitin sulfate proteoglycans (CSPGs). Analysis of extracellular matrix in several brain regions of aged mice revealed increased immunolabeling for the CSPG aggrecan, but reduced labeling with Wisteria floribunda agglutinin, which binds to chondroitin sulfate side chains of CSPGs. These data are consistent with prior studies showing changes to the composition of extracellular matrix in aged brains, and indicate a novel association of EVs with changes in the extracellular matrix of the aging brain.
Collapse
Affiliation(s)
- Azariah K Kaplelach
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Charles F Murchison
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kyoko Kojima
- Institutional Research Core Program/Mass Spectrometry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - James A Mobley
- Institutional Research Core Program/Mass Spectrometry, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Andrew E Arrant
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
8
|
Ikezu T, Yang Y, Verderio C, Krämer-Albers EM. Extracellular Vesicle-Mediated Neuron-Glia Communications in the Central Nervous System. J Neurosci 2024; 44:e1170242024. [PMID: 39358029 PMCID: PMC11450539 DOI: 10.1523/jneurosci.1170-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 10/04/2024] Open
Abstract
Communication between neurons and glia significantly influences the development maturation, plasticity, and disease progressions of the nervous system. As a new signaling modality, extracellular vesicles display a diverse role for robust functional regulation of neurons through their protein and nucleic acid cargoes. This review highlights recent breakthroughs in the research of signaling mechanisms between glia and neurons mediated by extracellular vesicles that are important for neural development, axonal maintenance, synaptic functions, and disease progression in the mammalian nervous system. We will discuss the biological roles of extracellular vesicles released from neurons, astroglia, microglia, and oligodendroglia in the nervous system and their implications in neurodegenerative disorders.
Collapse
Affiliation(s)
- Tsuneya Ikezu
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida 32224
| | - Yongjie Yang
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Claudia Verderio
- Department of Biomedical Sciences, CNR Institute of Neuroscience, Università Milano-Bicocca, 20854 Vedano al Lambro (MB), Italy
| | - Eva-Maria Krämer-Albers
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, 55128 Mainz, Rhineland Palatinate, Germany
| |
Collapse
|
9
|
Libring S, Berestesky ED, Reinhart-King CA. The movement of mitochondria in breast cancer: internal motility and intercellular transfer of mitochondria. Clin Exp Metastasis 2024; 41:567-587. [PMID: 38489056 PMCID: PMC11499424 DOI: 10.1007/s10585-024-10269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/18/2024] [Indexed: 03/17/2024]
Abstract
As a major energy source for cells, mitochondria are involved in cell growth and proliferation, as well as migration, cell fate decisions, and many other aspects of cellular function. Once thought to be irreparably defective, mitochondrial function in cancer cells has found renewed interest, from suggested potential clinical biomarkers to mitochondria-targeting therapies. Here, we will focus on the effect of mitochondria movement on breast cancer progression. Mitochondria move both within the cell, such as to localize to areas of high energetic need, and between cells, where cells within the stroma have been shown to donate their mitochondria to breast cancer cells via multiple methods including tunneling nanotubes. The donation of mitochondria has been seen to increase the aggressiveness and chemoresistance of breast cancer cells, which has increased recent efforts to uncover the mechanisms of mitochondrial transfer. As metabolism and energetics are gaining attention as clinical targets, a better understanding of mitochondrial function and implications in cancer are required for developing effective, targeted therapeutics for cancer patients.
Collapse
Affiliation(s)
- Sarah Libring
- Department of Biomedical Engineering, Vanderbilt University, 440 Engineering and Science Building, 1212 25thAvenue South, Nashville, TN, 37235, USA
| | - Emily D Berestesky
- Department of Biomedical Engineering, Vanderbilt University, 440 Engineering and Science Building, 1212 25thAvenue South, Nashville, TN, 37235, USA
| | - Cynthia A Reinhart-King
- Department of Biomedical Engineering, Vanderbilt University, 440 Engineering and Science Building, 1212 25thAvenue South, Nashville, TN, 37235, USA.
| |
Collapse
|
10
|
Smadja DM. Extracellular Microvesicles vs. Mitochondria: Competing for the Top Spot in Cardiovascular Regenerative Medicine. Stem Cell Rev Rep 2024; 20:1813-1818. [PMID: 38976143 DOI: 10.1007/s12015-024-10758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Regenerative medicine aims to restore, replace, and regenerate human cells, tissues, and organs. Despite significant advancements, many cell therapy trials for cardiovascular diseases face challenges like cell survival and immune compatibility, with benefits largely stemming from paracrine effects. Two promising therapeutic tools have been recently emerged in cardiovascular diseases: extracellular vesicles (EVs) and mitochondrial transfer. Concerning EVs, the first pivotal study with EV-enriched secretome derived from cardiovascular progenitor cells has been done treating heart failure. This first in man demonstrated the safety and feasibility of repeated intravenous infusions and highlighted significant clinical improvements, including enhanced cardiac function and reduced symptoms in heart failure patients. The second study uncovered a novel mechanism of endothelial regeneration through mitochondrial transfer via tunneling nanotubes (TNTs). This research showed that mesenchymal stromal cells (MSCs) transfer mitochondria to endothelial cells, significantly enhancing their bioenergetics and vessel-forming capabilities. This mitochondrial transfer was crucial for endothelial cell engraftment and function, offering a new strategy for vascular regeneration without the need for additional cell types. Combining EV and mitochondrial strategies presents new clinical opportunities. These approaches could revolutionize regenerative medicine, offering new hope for treating cardiovascular and other degenerative diseases. Continued research and clinical trials will be crucial in optimizing these therapies, potentially leading to personalized medicine approaches that enhance patient outcomes.
Collapse
Affiliation(s)
- David M Smadja
- Université Paris Cité, INSERM, Innovative Therapies in Hemostasis, Paris, F-75006, France.
- Hematology Department, AP-HP, Georges Pompidou European Hospital, Inserm UMR-S1140, 56 rue Leblanc, Paris, F-75015, France.
| |
Collapse
|
11
|
Coly P, Chatterjee S, Mezine F, Jekmek CE, Devue C, Nipoti T, Mazlan S, Corona ML, Dingli F, Loew D, van Niel G, Loyer X, Boulanger CM. Low fluid shear stress stimulates the uptake of noxious endothelial extracellular vesicles via MCAM and PECAM-1 cell adhesion molecules. J Extracell Vesicles 2024; 13:e12414. [PMID: 39400522 PMCID: PMC11472237 DOI: 10.1002/jev2.12414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/19/2024] [Indexed: 10/15/2024] Open
Abstract
Atherosclerotic lesions mainly form in arterial areas exposed to low shear stress (LSS), where endothelial cells express a senescent and inflammatory phenotype. Conversely, areas exposed to high shear stress (HSS) are protected from plaque development. Endothelial extracellular vesicles (EVs) have been shown to regulate inflammation and senescence, and therefore play a crucial role in vascular homeostasis. Whilst previous studies have shown links between hemodynamic forces and EV release, the effects of shear stress on the release and uptake of endothelial EVs remains elusive. We aim to decipher the interplay between these processes in endothelial cells exposed to atheroprone or atheroprotective shear stress. Confluent HUVECs were exposed to LSS or HSS for 24 h. Large and small EVs were isolated from conditioned medium by centrifugation and size exclusion chromatography. They were characterised by TEM, Western blot, tunable resistive pulse sensing, flow cytometry and proteomics. Uptake experiments were performed using fluorescently-labelled EVs and differences between groups were assessed by flow cytometry and confocal microscopy. We found that levels of large and small EVs in conditioned media were fifty and five times higher in HSS than in LSS conditions, respectively. In vivo and in vitro uptake experiments revealed greater EV incorporation by cells exposed to LSS conditions. Additionally, endothelial LSS-EVs have a greater affinity for HUVECs than HSS-EVs or EVs derived from platelets, erythrocytes and leukocytes. Proteomic analysis revealed that LSS-EVs were enriched in adhesion proteins (PECAM1, MCAM), participating in EV uptake by endothelial cells. LSS-EVs also carried mitochondrial material, which may be implicated in elevating ROS levels in recipient cells. These findings suggest that shear stress influences EV biogenesis and uptake. Given the major role of EVs and shear stress in vascular health, deciphering the relation between these processes may yield innovative strategies for the early detection and treatment of endothelial dysfunction.
Collapse
Affiliation(s)
- Pierre‐Michaël Coly
- Université Paris‐Cité, PARCCINSERMParisFrance
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, INSERMParisFrance
| | | | | | | | | | | | | | - Maribel Lara Corona
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, INSERMParisFrance
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, CurieCoreTech Spectrométrie de Masse ProtéomiqueParisFrance
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, CurieCoreTech Spectrométrie de Masse ProtéomiqueParisFrance
| | - Guillaume van Niel
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, INSERMParisFrance
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte AnneParisFrance
| | | | | |
Collapse
|
12
|
Tortolici F, Di Biagio C, Lettieri-Barbato D, Aquilano K. Protocol for detecting mitochondria extracellular vesicles of brown adipose tissue in mice. STAR Protoc 2024; 5:103161. [PMID: 38943650 PMCID: PMC11261131 DOI: 10.1016/j.xpro.2024.103161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024] Open
Abstract
Brown adipose tissue (BAT) is mitochondria rich, enabling high oxidative metabolism for non-shivering thermogenesis. The release of large/small extracellular vesicles (EVs) containing mitochondria or mitochondrial fragments, termed mito-EVs, may support mitochondrial quality control or intercellular communication. We present a protocol to isolate and characterize mito-EVs. We detail steps for BAT processing, cell debris removal, differential centrifugation (dC), and mito-EV analysis by flow cytometry and immunoblotting assays. For complete details on the use and execution of this protocol, please refer to Rosina et al.1.
Collapse
Affiliation(s)
- Flavia Tortolici
- University of Rome, "Tor Vergata," Biology Department, 00133 Rome, Italy
| | - Claudia Di Biagio
- University of Rome, "Tor Vergata," Biology Department, 00133 Rome, Italy
| | | | - Katia Aquilano
- University of Rome, "Tor Vergata," Biology Department, 00133 Rome, Italy.
| |
Collapse
|
13
|
Ding F, Zhou M, Ren Y, Li Y, Xiang J, Li Y, Yu J, Hong Y, Fu Z, Li H, Pan Z, Liu B. Mitochondrial Extracellular Vesicles: A Promising Avenue for Diagnosing and Treating Lung Diseases. ACS NANO 2024; 18:25372-25404. [PMID: 39225081 DOI: 10.1021/acsnano.4c02940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Mitochondria, pivotal organelles governing cellular biosynthesis, energy metabolism, and signal transduction, maintain dynamic equilibrium through processes such as biogenesis, fusion, fission, and mitophagy. Growing evidence implicates mitochondrial dysfunction in a spectrum of respiratory diseases including acute lung injury/acute respiratory distress syndrome, bronchial asthma, pulmonary fibrosis, chronic obstructive pulmonary disease, and lung cancer. Consequently, identifying methods capable of ameliorating damaged mitochondrial function is crucial for the treatment of pulmonary diseases. Extracellular vesicles (EVs), nanosized membrane vesicles released by cells into the extracellular space, facilitate intercellular communication by transferring bioactive substances or signals between cells or organs. Recent studies have identified abundant mitochondrial components within specific subsets of EVs, termed mitochondrial extracellular vesicles (mitoEVs), whose contents and compositions vary with disease progression. Moreover, mitoEVs have demonstrated reparative mitochondrial functions in injured recipient cells. However, a comprehensive understanding of mitoEVs is currently lacking, limiting their clinical translation prospects. This Review explores the biogenesis, classification, functional mitochondrial cargo, and biological effects of mitoEVs, with a focus on their role in pulmonary diseases. Emphasis is placed on their potential as biological markers and innovative therapeutic strategies in pulmonary diseases, offering fresh insights for mechanistic studies and drug development in various pulmonary disorders.
Collapse
Affiliation(s)
- Fengxia Ding
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Mi Zhou
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yinying Ren
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yan Li
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jinying Xiang
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yuehan Li
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jinyue Yu
- Childhood Nutrition Research Group, Population, Policy & Practice Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, U.K
| | - Ying Hong
- Infection, Immunity, Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, U.K
| | - Zhou Fu
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Hongbo Li
- Department of Cardiothoracic Surgery; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Zhengxia Pan
- Department of Cardiothoracic Surgery; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Bo Liu
- Department of Cardiothoracic Surgery; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
14
|
Fairweather D, Beetler DJ, McCabe EJ, Lieberman SM. Mechanisms underlying sex differences in autoimmunity. J Clin Invest 2024; 134:e180076. [PMID: 39286970 PMCID: PMC11405048 DOI: 10.1172/jci180076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Autoimmune diseases are a leading cause of disability worldwide. Most autoimmune diseases occur more often in women than men, with rheumatic autoimmune diseases being among those most highly expressed in women. Several key factors, identified mainly in animal models and cell culture experiments, are important in increasing autoimmune disease in females. These include sex hormones, immune genes including those found on the X chromosome, sex-specific epigenetic effects on genes by estrogen and the environment, and regulation of genes and messenger RNA by microRNAs found in extracellular vesicles. Evidence is also emerging that viruses as well as drugs or toxins that damage mitochondria may contribute to increased levels of autoantibodies against nuclear and mitochondrial antigens, which are common in many autoimmune diseases. The purpose of this Review is to summarize our current understanding of mechanisms that may determine sex differences in autoimmune disease.
Collapse
Affiliation(s)
- DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Jacksonville, Florida, USA
| | - Danielle J Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth J McCabe
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Scott M Lieberman
- Division of Rheumatology, Allergy, and Immunology, Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
15
|
Ore A, Angelastro JM, Giulivi C. Integrating Mitochondrial Biology into Innovative Cell Therapies for Neurodegenerative Diseases. Brain Sci 2024; 14:899. [PMID: 39335395 PMCID: PMC11429837 DOI: 10.3390/brainsci14090899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
The role of mitochondria in neurodegenerative diseases is crucial, and recent developments have highlighted its significance in cell therapy. Mitochondrial dysfunction has been implicated in various neurodegenerative disorders, including Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, and Huntington's diseases. Understanding the impact of mitochondrial biology on these conditions can provide valuable insights for developing targeted cell therapies. This mini-review refocuses on mitochondria and emphasizes the potential of therapies leveraging mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cells, stem cell-derived secretions, and extracellular vesicles. Mesenchymal stem cell-mediated mitochondria transfer is highlighted for restoring mitochondrial health in cells with dysfunctional mitochondria. Additionally, attention is paid to gene-editing techniques such as mito-CRISPR, mitoTALENs, mito-ZNFs, and DdCBEs to ensure the safety and efficacy of stem cell treatments. Challenges and future directions are also discussed, including the possible tumorigenic effects of stem cells, off-target effects, disease targeting, immune rejection, and ethical issues.
Collapse
Affiliation(s)
- Adaleiz Ore
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (A.O.); (J.M.A.)
- Department of Chemical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - James M. Angelastro
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (A.O.); (J.M.A.)
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (A.O.); (J.M.A.)
- University of California Medical Investigations of Neurodevelopmental Disorders Institute (MIND Institute), University of California Health, Sacramento, CA 95817, USA
| |
Collapse
|
16
|
Rodolfo C, Campello S. Extracellular Vesicles & Co.: scaring immune cells in the TME since ever. Front Immunol 2024; 15:1451003. [PMID: 39267748 PMCID: PMC11390669 DOI: 10.3389/fimmu.2024.1451003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
The health tissue surrounding a solid tumor, namely the tumor microenvironment (TME), is an extremely complex universe of cells, extracellular matrix, and signals of various nature, that support and protect the growth of cancer cells. The interactions taking place between cancer cells and the TME are crucial not only for tumor growth, invasion, and metastasis but they also play a key role in modulating immune system responses to cancer, and vice-versa. Indeed, tumor-infiltrating immune cells (e.g., T lymphocytes and natural killers) activity is greatly affected by signals (mostly ligands/receptors and paracrine) they receive in the TME, which frequently generate an immunosuppressive milieu. In the last years, it has become evident that soluble and receptor signaling is not the only way of communication between cells in the TME, with extracellular vesicles, such as exosomes, playing a central role. Among the different new kind of vesicles recently discovered, migrasomes look like to be of extreme interest as they are not only different from the others, but also have been reported as able to deliver a very heterogeneous kind of messages, able to profoundly affect recipient cells' behavior. Indeed, the role played by the different classes of extracellular vesicles, especially in the TME, relies on their not-directional diffusion from the originating cells, while migrasomes released from migrating cells do have a directional effect. Migrasomes biology and their involvement in cancer progression, dissemination, and resistance to therapy is still a largely obscure field, but with promising development foreseen in the next future.
Collapse
Affiliation(s)
- Carlo Rodolfo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Campello
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
17
|
Tuomivaara ST, Teo CF, Jan YN, Wiita AP, Jan LY. SLAPSHOT reveals rapid dynamics of extracellularly exposed proteome in response to calcium-activated plasma membrane phospholipid scrambling. Commun Biol 2024; 7:1060. [PMID: 39210032 PMCID: PMC11362511 DOI: 10.1038/s42003-024-06729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
To facilitate our understanding of proteome dynamics during signaling events, robust workflows affording fast time resolution without confounding factors are essential. We present Surface-exposed protein Labeling using PeroxidaSe, H2O2, and Tyramide-derivative (SLAPSHOT) to label extracellularly exposed proteins in a rapid, specific, and sensitive manner. Simple and flexible SLAPSHOT utilizes recombinant soluble APEX2 protein applied to cells, thus circumventing the engineering of tools and cells, biological perturbations, and labeling biases. We applied SLAPSHOT and quantitative proteomics to examine the TMEM16F-dependent plasma membrane remodeling in WT and TMEM16F KO cells. Time-course data ranging from 1 to 30 min of calcium stimulation revealed co-regulation of known protein families, including the integrin and ICAM families, and identified proteins known to reside in intracellular organelles as occupants of the freshly deposited extracellularly exposed membrane. Our data provide the first accounts of the immediate consequences of calcium signaling on the extracellularly exposed proteome.
Collapse
Affiliation(s)
- Sami T Tuomivaara
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences and Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, CA, USA
| | - Chin Fen Teo
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
- Department of Physiology, University of California, San Francisco, CA, USA
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
- Department of Physiology, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA.
| | - Lily Y Jan
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA.
- Department of Physiology, University of California, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.
| |
Collapse
|
18
|
Zeng B, Li Y, Khan N, Su A, Yang Y, Mi P, Jiang B, Liang Y, Duan L. Yin-Yang: two sides of extracellular vesicles in inflammatory diseases. J Nanobiotechnology 2024; 22:514. [PMID: 39192300 DOI: 10.1186/s12951-024-02779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
The concept of Yin-Yang, originating in ancient Chinese philosophy, symbolizes two opposing but complementary forces or principles found in all aspects of life. This concept can be quite fitting in the context of extracellular vehicles (EVs) and inflammatory diseases. Over the past decades, numerous studies have revealed that EVs can exhibit dual sides, acting as both pro- and anti-inflammatory agents, akin to the concept of Yin-Yang theory (i.e., two sides of a coin). This has enabled EVs to serve as potential indicators of pathogenesis or be manipulated for therapeutic purposes by influencing immune and inflammatory pathways. This review delves into the recent advances in understanding the Yin-Yang sides of EVs and their regulation in specific inflammatory diseases. We shed light on the current prospects of engineering EVs for treating inflammatory conditions. The Yin-Yang principle of EVs bestows upon them great potential as, therapeutic, and preventive agents for inflammatory diseases.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 53020, Guangxi, China
| | - Ying Li
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Nawaz Khan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Aiyuan Su
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Yicheng Yang
- Eureka Biotech Inc, Philadelphia, PA, 19104, USA
| | - Peng Mi
- Department of Radiology, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bin Jiang
- Eureka Biotech Inc, Philadelphia, PA, 19104, USA.
| | - Yujie Liang
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| | - Li Duan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
19
|
Hong WL, Huang H, Zeng X, Duan CY. Targeting mitochondrial quality control: new therapeutic strategies for major diseases. Mil Med Res 2024; 11:59. [PMID: 39164792 PMCID: PMC11337860 DOI: 10.1186/s40779-024-00556-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 07/13/2024] [Indexed: 08/22/2024] Open
Abstract
Mitochondria play a crucial role in maintaining the normal physiological state of cells. Hence, ensuring mitochondrial quality control is imperative for the prevention and treatment of numerous diseases. Previous reviews on this topic have however been inconsistencies and lack of systematic organization. Therefore, this review aims to provide a comprehensive and systematic overview of mitochondrial quality control and explore the possibility of targeting the same for the treatment of major diseases. This review systematically summarizes three fundamental characteristics of mitochondrial quality control, including mitochondrial morphology and dynamics, function and metabolism, and protein expression and regulation. It also extensively examines how imbalances in mitochondrial quality are linked to major diseases, such as ischemia-hypoxia, inflammatory disorders, viral infections, metabolic dysregulations, degenerative conditions, and tumors. Additionally, the review explores innovative approaches to target mitochondrial quality control, including using small molecule drugs that regulate critical steps in maintaining mitochondrial quality, nanomolecular materials designed for precise targeting of mitochondria, and novel cellular therapies, such as vesicle therapy and mitochondrial transplantation. This review offers a novel perspective on comprehending the shared mechanisms underlying the occurrence and progression of major diseases and provides theoretical support and practical guidance for the clinical implementation of innovative therapeutic strategies that target mitochondrial quality control for treating major diseases.
Collapse
Affiliation(s)
- Wei-Long Hong
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - He Huang
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xue Zeng
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Chen-Yang Duan
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
20
|
Li J, Wang T, Hou X, Li Y, Zhang J, Bai W, Qian H, Sun Z. Extracellular vesicles: opening up a new perspective for the diagnosis and treatment of mitochondrial dysfunction. J Nanobiotechnology 2024; 22:487. [PMID: 39143493 PMCID: PMC11323404 DOI: 10.1186/s12951-024-02750-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Mitochondria are crucial organelles responsible for energy generation in eukaryotic cells. Oxidative stress, calcium disorders, and mitochondrial DNA abnormalities can all cause mitochondrial dysfunction. It is now well documented that mitochondrial dysfunction significantly contributes to the pathogenesis of numerous illnesses. Hence, it is vital to investigate innovative treatment methods targeting mitochondrial dysfunction. Extracellular vesicles (EVs) are cell-derived nanovesicles that serve as intercellular messengers and are classified into small EVs (sEVs, < 200 nm) and large EVs (lEVs, > 200 nm) based on their sizes. It is worth noting that certain subtypes of EVs are rich in mitochondrial components (even structurally intact mitochondria) and possess the ability to transfer them or other contents including proteins and nucleic acids to recipient cells to modulate their mitochondrial function. Specifically, EVs can modulate target cell mitochondrial homeostasis as well as mitochondria-controlled apoptosis and ROS generation by delivering relevant substances. In addition, the artificial modification of EVs as delivery carriers for therapeutic goods targeting mitochondria is also a current research hotspot. In this article, we will focus on the ability of EVs to modulate the mitochondrial function of target cells, aiming to offer novel perspectives on therapeutic approaches for diverse conditions linked to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jiali Li
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Tangrong Wang
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaomei Hou
- The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450000, China
| | - Yu Li
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jiaxin Zhang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wenhuan Bai
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Zixuan Sun
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
21
|
Kim Y, D'Acunzo P, Levy E. Biogenesis and secretion of mitovesicles, small extracellular vesicles of mitochondrial origin at the crossroads between brain health and disease. CURRENT OPINION IN PHYSIOLOGY 2024; 40:100765. [PMID: 39219665 PMCID: PMC11364255 DOI: 10.1016/j.cophys.2024.100765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In the brain, mitochondrial components are released into the extracellular space via several mechanisms, including a recently identified type of extracellular vesicles called mitovesicles. While vesiculation of neuronal mitochondria yields various intracellular types of vesicles, with either a single or a double membrane, mitovesicles secreted into the extracellular space are a unique subtype of these mitochondria-derived vesicles, with a double membrane and a specific set of mitochondrial DNA, RNA, proteins, and lipids. Based on the most relevant literature describing mitochondrial vesiculation and mitochondrial exocytosis, we propose a model for their secretion when the amphisome, a hybrid endosome-autophagosome organelle, fuses with the plasma membrane, releasing mitovesicles and exosomes into the extracellular space. In aging and neurodegenerative disorders, mitochondrial dysfunction, in association with endolysosomal abnormalities, alter mitovesicle number and content, with downstream effect on brain health.
Collapse
Affiliation(s)
- Yohan Kim
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Pasquale D'Acunzo
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Efrat Levy
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Biochemistry & Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
22
|
He D, Cui B, Lv H, Lu S, Zhu Y, Cheng Y, Dang L, Zhang H. Blood-Derived Extracellular Vesicles as a Promising Liquid Biopsy Diagnostic Tool for Early Cancer Detection. Biomolecules 2024; 14:847. [PMID: 39062561 PMCID: PMC11275243 DOI: 10.3390/biom14070847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer poses a significant public health challenge worldwide, and timely screening has the potential to mitigate cancer progression and reduce mortality rates. Currently, early identification of most tumors relies on imaging techniques and tissue biopsies. However, the use of low-cost, highly sensitive, non-invasive detection methods for early cancer screening has become more attractive. Extracellular Vesicles (EVs) released by all living cells contain distinctive biological components, such as nucleic acids, proteins, and lipids. These vesicles play crucial roles in the tumor microenvironment and intercellular communication during tumor progression, rendering liquid biopsy a particularly suitable method for diagnosis. Nevertheless, challenges related to purification methods and validation of efficacy currently hinder its widespread clinical implementation. These limitations underscore the importance of refining isolation techniques and conducting comprehensive investigations on EVs. This study seeks to evaluate the potential of liquid biopsy utilizing blood-derived EVs as a practical, cost-effective, and secure approach for early cancer detection.
Collapse
Affiliation(s)
- Dan He
- Laboratory of Animal Center, Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (D.H.); (S.L.); (Y.Z.)
| | - Bozhou Cui
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China;
| | - Hongkai Lv
- Department of Clinical Medicine of Second Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (H.L.); (Y.C.)
| | - Shuxian Lu
- Laboratory of Animal Center, Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (D.H.); (S.L.); (Y.Z.)
| | - Yuan Zhu
- Laboratory of Animal Center, Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (D.H.); (S.L.); (Y.Z.)
| | - Yuqiang Cheng
- Department of Clinical Medicine of Second Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (H.L.); (Y.C.)
| | - Lin Dang
- Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Hong Zhang
- Laboratory of Animal Center, Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (D.H.); (S.L.); (Y.Z.)
| |
Collapse
|
23
|
Husna N, Aiba T, Fujita SI, Saito Y, Shiba D, Kudo T, Takahashi S, Furukawa S, Muratani M. Release of CD36-associated cell-free mitochondrial DNA and RNA as a hallmark of space environment response. Nat Commun 2024; 15:4814. [PMID: 38862469 PMCID: PMC11166646 DOI: 10.1038/s41467-023-41995-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/20/2023] [Indexed: 06/13/2024] Open
Abstract
A detailed understanding of how spaceflight affects human health is essential for long-term space exploration. Liquid biopsies allow for minimally-invasive multi-omics assessments that can resolve the molecular heterogeneity of internal tissues. Here, we report initial results from the JAXA Cell-Free Epigenome Study, a liquid biopsy study with six astronauts who resided on the International Space Station (ISS) for more than 120 days. Analysis of plasma cell-free RNA (cfRNA) collected before, during, and after spaceflight confirms previously reported mitochondrial dysregulation in space. Screening with 361 cell surface marker antibodies identifies a mitochondrial DNA-enriched fraction associated with the scavenger receptor CD36. RNA-sequencing of the CD36 fraction reveals tissue-enriched RNA species, suggesting the plasma mitochondrial components originated from various tissues. We compare our plasma cfRNA data to mouse plasma cfRNA data from a previous JAXA mission, which had used on-board artificial gravity, and discover a link between microgravity and the observed mitochondrial responses.
Collapse
Affiliation(s)
- Nailil Husna
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Program in Humanics, University of Tsukuba, Ibaraki, 305-8573, Japan
| | - Tatsuya Aiba
- Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Shin-Ichiro Fujita
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Neurobiology, Northwestern University, Evanston, IL, 60201, USA
| | - Yoshika Saito
- Faculty of Medicine, Kyoto University, Kyoto, 606-8303, Japan
| | - Dai Shiba
- Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Takashi Kudo
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Satoru Takahashi
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Satoshi Furukawa
- Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
24
|
Suwakulsiri W, Xu R, Rai A, Shafiq A, Chen M, Greening DW, Simpson RJ. Comparative proteomic analysis of three major extracellular vesicle classes secreted from human primary and metastatic colorectal cancer cells: Exosomes, microparticles, and shed midbody remnants. Proteomics 2024; 24:e2300057. [PMID: 37507836 DOI: 10.1002/pmic.202300057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
Cell-derived extracellular vesicles (EVs) are evolutionary-conserved secretory organelles that, based on their molecular composition, are important intercellular signaling regulators. At least three classes of circulating EVs are known based on mechanism of biogenesis: exosomes (sEVs/Exos), microparticles (lEVs/MPs), and shed midbody remnants (lEVs/sMB-Rs). sEVs/Exos are of endosomal pathway origin, microparticles (lEVs/MPs) from plasma membrane blebbing and shed midbody remnants (lEVs/sMB-Rs) arise from symmetric cytokinetic abscission. Here, we isolate sEVs/Exos, lEVs/MPs, and lEVs/sMB-Rs secreted from human isogenic primary (SW480) and metastatic (SW620) colorectal cancer (CRC) cell lines in milligram quantities for label-free MS/MS-based proteomic profiling. Purified EVs revealed selective composition packaging of exosomal protein markers in SW480/SW620-sEVs/Exos, metabolic enzymes in SW480/SW620-lEVs/MPs, while centralspindlin complex proteins, nucleoproteins, splicing factors, RNA granule proteins, translation-initiation factors, and mitochondrial proteins selectively traffic to SW480/SW620- lEVs/sMB-Rs. Collectively, we identify 39 human cancer-associated genes in EVs; 17 associated with SW480-EVs, 22 with SW620-EVs. We highlight oncogenic receptors/transporters selectively enriched in sEVs/Exos (EGFR/FAS in SW480-sEVs/Exos and MET, TGFBR2, ABCB1 in SW620-sEVs/Exos). Interestingly, MDK, STAT1, and TGM2 are selectively enriched in SW480-lEVs/sMB-Rs, and ADAM15 to SW620-lEVs/sMB-Rs. Our study reveals sEVs/Exos, lEVs/MPs, and lEVs/sMB-Rs have distinct protein signatures that open potential diagnostic avenues of distinct types of EVs for clinical utility.
Collapse
Affiliation(s)
- Wittaya Suwakulsiri
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science (LIMS), School of Agriculture, Biomedicine and Environment (SABE), La Trobe University, Melbourne, Victoria, Australia
- Department of Psychiatry, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, Victoria, Australia
| | - Rong Xu
- Nanobiotechnology Laboratory, Centre Clinical, Australia Centre for Blood Diseases, School, Monash University, Melbourne, Victoria, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Adnan Shafiq
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science (LIMS), School of Agriculture, Biomedicine and Environment (SABE), La Trobe University, Melbourne, Victoria, Australia
| | - Maoshan Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Richard J Simpson
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science (LIMS), School of Agriculture, Biomedicine and Environment (SABE), La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
25
|
Abyadeh M, Mirshahvaladi S, Kashani SA, Paulo JA, Amirkhani A, Mehryab F, Seydi H, Moradpour N, Jodeiryjabarzade S, Mirzaei M, Gupta V, Shekari F, Salekdeh GH. Proteomic profiling of mesenchymal stem cell-derived extracellular vesicles: Impact of isolation methods on protein cargo. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e159. [PMID: 38947171 PMCID: PMC11212298 DOI: 10.1002/jex2.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/01/2024] [Accepted: 05/15/2024] [Indexed: 07/02/2024]
Abstract
Extracellular vesicles (EVs) are nanosized vesicles with a lipid bilayer that are secreted by cells and play a critical role in cell-to-cell communication. Despite the promising reports regarding their diagnostic and therapeutic potential, the utilization of EVs in the clinical setting is limited due to insufficient information about their cargo and a lack of standardization in isolation and analysis methods. Considering protein cargos in EVs as key contributors to their therapeutic potency, we conducted a tandem mass tag (TMT) quantitative proteomics analysis of three subpopulations of mesenchymal stem cell (MSC)-derived EVs obtained through three different isolation techniques: ultracentrifugation (UC), high-speed centrifugation (HS), and ultracentrifugation on sucrose cushion (SU). Subsequently, we checked EV marker expression, size distribution, and morphological characterization, followed by bioinformatic analysis. The bioinformatic analysis of the proteome results revealed that these subpopulations exhibit distinct molecular and functional characteristics. The choice of isolation method impacts the proteome of isolated EVs by isolating different subpopulations of EVs. Specifically, EVs isolated through the high-speed centrifugation (HS) method exhibited a higher abundance of ribosomal and mitochondrial proteins. Functional apoptosis assays comparing isolated mitochondria with EVs isolated through different methods revealed that HS-EVs, but not other EVs, induced early apoptosis in cancer cells. On the other hand, EVs isolated using the sucrose cushion (SU) and ultracentrifugation (UC) methods demonstrated a higher abundance of proteins primarily involved in the immune response, cell-cell interactions and extracellular matrix interactions. Our analyses unveil notable disparities in proteins and associated biological functions among EV subpopulations, underscoring the importance of meticulously selecting isolation methods and resultant EV subpopulations based on the intended application.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Shahab Mirshahvaladi
- Macquarie Medical School, School of MedicineHealth and Human Sciences, Macquarie UniversitySydneyNew South WalesAustralia
| | - Sara Assar Kashani
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Joao A. Paulo
- Department of Cell BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Ardeshir Amirkhani
- Australian Proteome Analysis FacilityMacquarie UniversitySydneyNew South WalesAustralia
| | - Fatemeh Mehryab
- Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Homeyra Seydi
- Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of BiologyUniversity of Science and CultureTehranIran
| | | | | | - Mehdi Mirzaei
- Macquarie Medical School, School of MedicineHealth and Human Sciences, Macquarie UniversitySydneyNew South WalesAustralia
| | - Vivek Gupta
- Macquarie Medical School, School of MedicineHealth and Human Sciences, Macquarie UniversitySydneyNew South WalesAustralia
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | | |
Collapse
|
26
|
Yavuz B, Mutlu EC, Ahmed Z, Ben-Nissan B, Stamboulis A. Applications of Stem Cell-Derived Extracellular Vesicles in Nerve Regeneration. Int J Mol Sci 2024; 25:5863. [PMID: 38892052 PMCID: PMC11172915 DOI: 10.3390/ijms25115863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles, and other lipid vesicles derived from cells, play a pivotal role in intercellular communication by transferring information between cells. EVs secreted by progenitor and stem cells have been associated with the therapeutic effects observed in cell-based therapies, and they also contribute to tissue regeneration following injury, such as in orthopaedic surgery cases. This review explores the involvement of EVs in nerve regeneration, their potential as drug carriers, and their significance in stem cell research and cell-free therapies. It underscores the importance of bioengineers comprehending and manipulating EV activity to optimize the efficacy of tissue engineering and regenerative therapies.
Collapse
Affiliation(s)
- Burcak Yavuz
- Vocational School of Health Services, Altinbas University, 34147 Istanbul, Turkey;
| | - Esra Cansever Mutlu
- Biomaterials Research Group, School of Metallurgy and Materials, College of Engineering and Physical Science, University of Birmingham, Birmingham B15 2TT, UK;
| | - Zubair Ahmed
- Neuroscience & Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston B15 2TT, UK
| | - Besim Ben-Nissan
- Translational Biomaterials and Medicine Group, School of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia;
| | - Artemis Stamboulis
- Biomaterials Research Group, School of Metallurgy and Materials, College of Engineering and Physical Science, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
27
|
Iorio R, Petricca S, Mattei V, Delle Monache S. Horizontal mitochondrial transfer as a novel bioenergetic tool for mesenchymal stromal/stem cells: molecular mechanisms and therapeutic potential in a variety of diseases. J Transl Med 2024; 22:491. [PMID: 38790026 PMCID: PMC11127344 DOI: 10.1186/s12967-024-05047-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/29/2024] [Indexed: 05/26/2024] Open
Abstract
Intercellular mitochondrial transfer (MT) is a newly discovered form of cell-to-cell signalling involving the active incorporation of healthy mitochondria into stressed/injured recipient cells, contributing to the restoration of bioenergetic profile and cell viability, reduction of inflammatory processes and normalisation of calcium dynamics. Recent evidence has shown that MT can occur through multiple cellular structures and mechanisms: tunneling nanotubes (TNTs), via gap junctions (GJs), mediated by extracellular vesicles (EVs) and other mechanisms (cell fusion, mitochondrial extrusion and migrasome-mediated mitocytosis) and in different contexts, such as under physiological (tissue homeostasis and stemness maintenance) and pathological conditions (hypoxia, inflammation and cancer). As Mesenchimal Stromal/ Stem Cells (MSC)-mediated MT has emerged as a critical regulatory and restorative mechanism for cell and tissue regeneration and damage repair in recent years, its potential in stem cell therapy has received increasing attention. In particular, the potential therapeutic role of MSCs has been reported in several articles, suggesting that MSCs can enhance tissue repair after injury via MT and membrane vesicle release. For these reasons, in this review, we will discuss the different mechanisms of MSCs-mediated MT and therapeutic effects on different diseases such as neuronal, ischaemic, vascular and pulmonary diseases. Therefore, understanding the molecular and cellular mechanisms of MT and demonstrating its efficacy could be an important milestone that lays the foundation for future clinical trials.
Collapse
Affiliation(s)
- Roberto Iorio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Sabrina Petricca
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Vincenzo Mattei
- Dipartimento di Scienze della Vita, Della Salute e delle Professioni Sanitarie, Link Campus University, Via del Casale di San Pio V 44, 00165, Rome, Italy.
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy.
| |
Collapse
|
28
|
Abyadeh M, Kaya A. Application of Multiomics Approach to Investigate the Therapeutic Potentials of Stem Cell-derived Extracellular Vesicle Subpopulations for Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593647. [PMID: 38798317 PMCID: PMC11118424 DOI: 10.1101/2024.05.10.593647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Alzheimer's disease (AD) presents a complex interplay of molecular alterations, yet understanding its pathogenesis remains a challenge. In this study, we delved into the intricate landscape of proteome and transcriptome changes in AD brains compared to healthy controls, examining 788 brain samples revealing common alterations at both protein and mRNA levels. Moreover, our analysis revealed distinct protein-level changes in aberrant energy metabolism pathways in AD brains that were not evident at the mRNA level. This suggests that the changes in protein expression could provide a deeper molecular representation of AD pathogenesis. Subsequently, using a comparative proteomic approach, we explored the therapeutic potential of mesenchymal stem cell-derived extracellular vehicles (EVs), isolated through various methods, in mitigating AD-associated changes at the protein level. Our analysis revealed a particular EV-subtype that can be utilized for compensating dysregulated mitochondrial proteostasis in the AD brain. By using network biology approaches, we further revealed the potential regulators of key therapeutic proteins. Overall, our study illuminates the significance of proteome alterations in AD pathogenesis and identifies the therapeutic promise of a specific EV subpopulation with reduced pro-inflammatory protein cargo and enriched proteins to target mitochondrial proteostasis.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, 23284, USA
| |
Collapse
|
29
|
Latella R, Calzoni E, Urbanelli L, Cerrotti G, Porcellati S, Emiliani C, Buratta S, Tancini B. Isolation of Extracellular Vesicles from Agri-Food Wastes: A Novel Perspective in the Valorization of Agri-Food Wastes and By-Products. Foods 2024; 13:1492. [PMID: 38790792 PMCID: PMC11120153 DOI: 10.3390/foods13101492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Agri-food wastes generated by industrial food processing are valorized through the extraction of biomolecules to obtain value-added products useful for various industrial applications. In the present review, we describe the valuable by-products and bioactive molecules that can be obtained from agricultural wastes and propose extracellular vesicles (EVs) as innovative nutraceutical and therapeutic compounds that could be derived from agriculture residues. To support this idea, we described the general features and roles of EVs and focused on plant-derived extracellular vesicles (PDEVs) that are considered natural carriers of bioactive molecules and are involved in intercellular communication between diverse kingdoms of life. Consistently, PDEVs exert beneficial effects (anti-inflammatory, anti-tumor, and immune-modulatory) on mammalian cells. Although this research field is currently in its infancy, in the near future, the isolation of EVs and their use as nutraceutical tools could represent a new and innovative way to valorize waste from the agri-food industry in an ecofriendly way.
Collapse
Affiliation(s)
- Raffaella Latella
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (R.L.); (E.C.); (L.U.); (G.C.); (S.P.); (C.E.); (B.T.)
| | - Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (R.L.); (E.C.); (L.U.); (G.C.); (S.P.); (C.E.); (B.T.)
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (R.L.); (E.C.); (L.U.); (G.C.); (S.P.); (C.E.); (B.T.)
| | - Giada Cerrotti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (R.L.); (E.C.); (L.U.); (G.C.); (S.P.); (C.E.); (B.T.)
| | - Serena Porcellati
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (R.L.); (E.C.); (L.U.); (G.C.); (S.P.); (C.E.); (B.T.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (R.L.); (E.C.); (L.U.); (G.C.); (S.P.); (C.E.); (B.T.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (R.L.); (E.C.); (L.U.); (G.C.); (S.P.); (C.E.); (B.T.)
| | - Brunella Tancini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (R.L.); (E.C.); (L.U.); (G.C.); (S.P.); (C.E.); (B.T.)
| |
Collapse
|
30
|
Guo Y, Che R, Wang P, Zhang A. Mitochondrial dysfunction in the pathophysiology of renal diseases. Am J Physiol Renal Physiol 2024; 326:F768-F779. [PMID: 38450435 DOI: 10.1152/ajprenal.00189.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024] Open
Abstract
Mitochondria are essential organelles in the human body, serving as the metabolic factory of the whole organism. When mitochondria are dysfunctional, it can affect all organs of the body. The kidney is rich in mitochondria, and its function is closely related to the development of kidney diseases. Studying the relationship between mitochondria and kidney disease progression is of great interest. In the past decade, scientists have made inspiring progress in investigating the role of mitochondria in the pathophysiology of renal diseases. This article discusses various mechanisms for maintaining mitochondrial quality, including mitochondrial energetics, mitochondrial biogenesis, mitochondrial dynamics, mitochondrial DNA repair, mitochondrial proteolysis and the unfolded protein response, mitochondrial autophagy, mitochondria-derived vesicles, and mitocytosis. The article also highlights the cross talk between mitochondria and other organelles, with a focus on kidney diseases. Finally, the article concludes with an overview of mitochondria-related clinical research.
Collapse
Affiliation(s)
- Yuxian Guo
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Ruochen Che
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Peipei Wang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
31
|
Peng KY, Liemisa B, Pasato J, D'Acunzo P, Pawlik M, Heguy A, Penikalapati SC, Labuza A, Pidikiti H, Alldred MJ, Ginsberg SD, Levy E, Mathews PM. Apolipoprotein E2 Expression Alters Endosomal Pathways in a Mouse Model With Increased Brain Exosome Levels During Aging. Traffic 2024; 25:e12937. [PMID: 38777335 PMCID: PMC11141728 DOI: 10.1111/tra.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
The polymorphic APOE gene is the greatest genetic determinant of sporadic Alzheimer's disease risk: the APOE4 allele increases risk, while the APOE2 allele is neuroprotective compared with the risk-neutral APOE3 allele. The neuronal endosomal system is inherently vulnerable during aging, and APOE4 exacerbates this vulnerability by driving an enlargement of early endosomes and reducing exosome release in the brain of humans and mice. We hypothesized that the protective effects of APOE2 are, in part, mediated through the endosomal pathway. Messenger RNA analyses showed that APOE2 leads to an enrichment of endosomal pathways in the brain when compared with both APOE3 and APOE4. Moreover, we show age-dependent alterations in the recruitment of key endosomal regulatory proteins to vesicle compartments when comparing APOE2 to APOE3. In contrast to the early endosome enlargement previously shown in Alzheimer's disease and APOE4 models, we detected similar morphology and abundance of early endosomes and retromer-associated vesicles within cortical neurons of aged APOE2 targeted-replacement mice compared with APOE3. Additionally, we observed increased brain extracellular levels of endosome-derived exosomes in APOE2 compared with APOE3 mice during aging, consistent with enhanced endosomal cargo clearance by exosomes to the extracellular space. Our findings thus demonstrate that APOE2 enhances an endosomal clearance pathway, which has been shown to be impaired by APOE4 and which may be protective due to APOE2 expression during brain aging.
Collapse
Affiliation(s)
- Katherine Y Peng
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA
| | - Braison Liemisa
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA
| | - Jonathan Pasato
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA
| | - Pasquale D'Acunzo
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA
| | - Monika Pawlik
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA
| | - Adriana Heguy
- Genome Technology Center, New York University Grossman School of Medicine, New York, New York, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, New York, USA
| | - Sai C Penikalapati
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA
| | - Amanda Labuza
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA
| | - Harshitha Pidikiti
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA
| | - Melissa J Alldred
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA
| | - Stephen D Ginsberg
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, USA
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Efrat Levy
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, USA
- Department of Biochemistry & Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
| | - Paul M Mathews
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
32
|
Shahi S, Kang T, Fonseka P. Extracellular Vesicles in Pathophysiology: A Prudent Target That Requires Careful Consideration. Cells 2024; 13:754. [PMID: 38727289 PMCID: PMC11083420 DOI: 10.3390/cells13090754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound particles released by cells to perform multitudes of biological functions. Owing to their significant implications in diseases, the pathophysiological role of EVs continues to be extensively studied, leading research to neglect the need to explore their role in normal physiology. Despite this, many identified physiological functions of EVs, including, but not limited to, tissue repair, early development and aging, are attributed to their modulatory role in various signaling pathways via intercellular communication. EVs are widely perceived as a potential therapeutic strategy for better prognosis, primarily through utilization as a mode of delivery vehicle. Moreover, disease-associated EVs serve as candidates for the targeted inhibition by pharmacological or genetic means. However, these attempts are often accompanied by major challenges, such as off-target effects, which may result in adverse phenotypes. This renders the clinical efficacy of EVs elusive, indicating that further understanding of the specific role of EVs in physiology may enhance their utility. This review highlights the essential role of EVs in maintaining cellular homeostasis under different physiological settings, and also discusses the various aspects that may potentially hinder the robust utility of EV-based therapeutics.
Collapse
Affiliation(s)
| | | | - Pamali Fonseka
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; (S.S.); (T.K.)
| |
Collapse
|
33
|
D'Acunzo P, Argyrousi EK, Ungania JM, Kim Y, DeRosa S, Pawlik M, Goulbourne CN, Arancio O, Levy E. Mitovesicles secreted into the extracellular space of brains with mitochondrial dysfunction impair synaptic plasticity. Mol Neurodegener 2024; 19:34. [PMID: 38616258 PMCID: PMC11017499 DOI: 10.1186/s13024-024-00721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/18/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Hypometabolism tied to mitochondrial dysfunction occurs in the aging brain and in neurodegenerative disorders, including in Alzheimer's disease, in Down syndrome, and in mouse models of these conditions. We have previously shown that mitovesicles, small extracellular vesicles (EVs) of mitochondrial origin, are altered in content and abundance in multiple brain conditions characterized by mitochondrial dysfunction. However, given their recent discovery, it is yet to be explored what mitovesicles regulate and modify, both under physiological conditions and in the diseased brain. In this study, we investigated the effects of mitovesicles on synaptic function, and the molecular players involved. METHODS Hippocampal slices from wild-type mice were perfused with the three known types of EVs, mitovesicles, microvesicles, or exosomes, isolated from the brain of a mouse model of Down syndrome or of a diploid control and long-term potentiation (LTP) recorded. The role of the monoamine oxidases type B (MAO-B) and type A (MAO-A) in mitovesicle-driven LTP impairments was addressed by treatment of mitovesicles with the irreversible MAO inhibitors pargyline and clorgiline prior to perfusion of the hippocampal slices. RESULTS Mitovesicles from the brain of the Down syndrome model reduced LTP within minutes of mitovesicle addition. Mitovesicles isolated from control brains did not trigger electrophysiological effects, nor did other types of brain EVs (microvesicles and exosomes) from any genotype tested. Depleting mitovesicles of their MAO-B, but not MAO-A, activity eliminated their ability to alter LTP. CONCLUSIONS Mitovesicle impairment of LTP is a previously undescribed paracrine-like mechanism by which EVs modulate synaptic activity, demonstrating that mitovesicles are active participants in the propagation of cellular and functional homeostatic changes in the context of neurodegenerative disorders.
Collapse
Affiliation(s)
- Pasquale D'Acunzo
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, 10962, Orangeburg, NY, USA
- Department of Psychiatry, New York University Grossman School of Medicine, 10016, New York, NY, USA
| | - Elentina K Argyrousi
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 10027, New York, NY, USA
- Department of Medicine, Columbia University, 10027, New York, NY, USA
| | - Jonathan M Ungania
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, 10962, Orangeburg, NY, USA
| | - Yohan Kim
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, 10962, Orangeburg, NY, USA
- Department of Psychiatry, New York University Grossman School of Medicine, 10016, New York, NY, USA
| | - Steven DeRosa
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, 10962, Orangeburg, NY, USA
| | - Monika Pawlik
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, 10962, Orangeburg, NY, USA
| | - Chris N Goulbourne
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, 10962, Orangeburg, NY, USA
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 10027, New York, NY, USA
- Department of Medicine, Columbia University, 10027, New York, NY, USA
| | - Efrat Levy
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, 10962, Orangeburg, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, 10016, New York, NY, USA.
- Department of Biochemistry & Molecular Pharmacology, New York University Grossman School of Medicine, 10027, New York, NY, USA.
- NYU Neuroscience Institute, New York University Grossman School of Medicine, 10016, New York, NY, USA.
| |
Collapse
|
34
|
Bailly C, Degand C, Laine W, Sauzeau V, Kluza J. Implication of Rac1 GTPase in molecular and cellular mitochondrial functions. Life Sci 2024; 342:122510. [PMID: 38387701 DOI: 10.1016/j.lfs.2024.122510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Rac1 is a member of the Rho GTPase family which plays major roles in cell mobility, polarity and migration, as a fundamental regulator of actin cytoskeleton. Signal transduction by Rac1 occurs through interaction with multiple effector proteins, and its activity is regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). The small protein is mainly anchored to the inner side of the plasma membrane but it can be found in endocellular compartments, notably endosomes and cell nuclei. The protein localizes also into mitochondria where it contributes to the regulation of mitochondrial dynamics, including both mitobiogenesis and mitophagy, in addition to signaling processes via different protein partners, such as the proapoptotic protein Bcl-2 and chaperone sigma-1 receptor (σ-1R). The mitochondrial form of Rac1 (mtRac1) has been understudied thus far, but it is as essential as the nuclear or plasma membrane forms, via its implication in regulation of oxidative stress and DNA damages. Rac1 is subject to diverse post-translational modifications, notably to a geranylgeranylation which contributes importantly to its mitochondrial import and its anchorage to mitochondrial membranes. In addition, Rac1 contributes to the mitochondrial translocation of other proteins, such as p53. The mitochondrial localization and functions of Rac1 are discussed here, notably in the context of human diseases such as cancers. Inhibitors of Rac1 have been identified (NSC-23766, EHT-1864) and some are being developed for the treatment of cancer (MBQ-167) or central nervous system diseases (JK-50561). Their effects on mtRac1 warrant further investigations. An overview of mtRac1 is provided here.
Collapse
Affiliation(s)
- Christian Bailly
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; University of Lille, Faculty of Pharmacy, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), 3 rue du Professeur Laguesse, 59000 Lille, France; OncoWitan, Consulting Scientific Office, Lille (Wasquehal) 59290, France.
| | - Claire Degand
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| | - William Laine
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Vincent Sauzeau
- Université de Nantes, CHU Nantes, CNRS, INSERM, Institut du thorax, Nantes, France
| | - Jérôme Kluza
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| |
Collapse
|
35
|
Di Florio DN, Beetler DJ, McCabe EJ, Sin J, Ikezu T, Fairweather D. Mitochondrial extracellular vesicles, autoimmunity and myocarditis. Front Immunol 2024; 15:1374796. [PMID: 38550582 PMCID: PMC10972887 DOI: 10.3389/fimmu.2024.1374796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/28/2024] [Indexed: 04/02/2024] Open
Abstract
For many decades viral infections have been suspected as 'triggers' of autoimmune disease, but mechanisms for how this could occur have been difficult to establish. Recent studies have shown that viral infections that are commonly associated with viral myocarditis and other autoimmune diseases such as coxsackievirus B3 (CVB3) and SARS-CoV-2 target mitochondria and are released from cells in mitochondrial vesicles that are able to activate the innate immune response. Studies have shown that Toll-like receptor (TLR)4 and the inflammasome pathway are activated by mitochondrial components. Autoreactivity against cardiac myosin and heart-specific immune responses that occur after infection with viruses where the heart is not the primary site of infection (e.g., CVB3, SARS-CoV-2) may occur because the heart has the highest density of mitochondria in the body. Evidence exists for autoantibodies against mitochondrial antigens in patients with myocarditis and dilated cardiomyopathy. Defects in tolerance mechanisms like autoimmune regulator gene (AIRE) may further increase the likelihood of autoreactivity against mitochondrial antigens leading to autoimmune disease. The focus of this review is to summarize current literature regarding the role of viral infection in the production of extracellular vesicles containing mitochondria and virus and the development of myocarditis.
Collapse
Affiliation(s)
- Damian N. Di Florio
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Danielle J. Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Elizabeth J. McCabe
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Jon Sin
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Tsuneya Ikezu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Jacksonville, FL, United States
- Department of Medicine, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
36
|
Ebrahim T, Ebrahim AS, Kandouz M. Diversity of Intercellular Communication Modes: A Cancer Biology Perspective. Cells 2024; 13:495. [PMID: 38534339 DOI: 10.3390/cells13060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell-cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play.
Collapse
Affiliation(s)
- Thanzeela Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
37
|
Onkar A, Khan F, Goenka A, Rajendran RL, Dmello C, Hong CM, Mubin N, Gangadaran P, Ahn BC. Smart Nanoscale Extracellular Vesicles in the Brain: Unveiling their Biology, Diagnostic Potential, and Therapeutic Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6709-6742. [PMID: 38315446 DOI: 10.1021/acsami.3c16839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Information exchange is essential for the brain, where it communicates the physiological and pathological signals to the periphery and vice versa. Extracellular vesicles (EVs) are a heterogeneous group of membrane-bound cellular informants actively transferring informative calls to and from the brain via lipids, proteins, and nucleic acid cargos. In recent years, EVs have also been widely used to understand brain function, given their "cell-like" properties. On the one hand, the presence of neuron and astrocyte-derived EVs in biological fluids have been exploited as biomarkers to understand the mechanisms and progression of multiple neurological disorders; on the other, EVs have been used in designing targeted therapies due to their potential to cross the blood-brain-barrier (BBB). Despite the expanding literature on EVs in the context of central nervous system (CNS) physiology and related disorders, a comprehensive compilation of the existing knowledge still needs to be made available. In the current review, we provide a detailed insight into the multifaceted role of brain-derived extracellular vesicles (BDEVs) in the intricate regulation of brain physiology. Our focus extends to the significance of these EVs in a spectrum of disorders, including brain tumors, neurodegenerative conditions, neuropsychiatric diseases, autoimmune disorders, and others. Throughout the review, parallels are drawn for using EVs as biomarkers for various disorders, evaluating their utility in early detection and monitoring. Additionally, we discuss the promising prospects of utilizing EVs in targeted therapy while acknowledging the existing limitations and challenges associated with their applications in clinical scenarios. A foundational comprehension of the current state-of-the-art in EV research is essential for informing the design of future studies.
Collapse
Affiliation(s)
- Akanksha Onkar
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Fatima Khan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Anshika Goenka
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Crismita Dmello
- Department of Neurological Surgery and Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Nida Mubin
- Department of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
38
|
Poole B, Oshins R, Huo Z, Aranyos A, West J, Duarte S, Clark VC, Beduschi T, Zarrinpar A, Brantly M, Khodayari N. Sirtuin3 promotes the degradation of hepatic Z alpha-1 antitrypsin through lipophagy. Hepatol Commun 2024; 8:e0370. [PMID: 38285890 PMCID: PMC10830086 DOI: 10.1097/hc9.0000000000000370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/01/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Alpha-1 antitrypsin deficiency (AATD) is a genetic disease caused by misfolding and accumulation of mutant alpha-1 antitrypsin (ZAAT) in the endoplasmic reticulum of hepatocytes. Hepatic ZAAT aggregates acquire a toxic gain-of-function that impacts the endoplasmic reticulum which is theorized to cause liver disease in individuals with AATD who present asymptomatic until late-stage cirrhosis. Currently, there is no treatment for AATD-mediated liver disease except liver transplantation. In our study of mitochondrial RNA, we identified that Sirtuin3 (SIRT3) plays a role in the hepatic phenotype of AATD. METHODS Utilizing RNA and protein analysis in an in vitro AATD model, we investigated the role of SIRT3 in the pathophysiology of AATD-mediated liver disease while also characterizing our novel, transgenic AATD mouse model. RESULTS We show lower expression of SIRT3 in ZAAT-expressing hepatocytes. In contrast, the overexpression of SIRT3 increases hepatic ZAAT degradation. ZAAT degradation mediated by SIRT3 appeared independent of proteasomal degradation and regular autophagy pathways. We observed that ZAAT-expressing hepatocytes have aberrant accumulation of lipid droplets, with ZAAT polymers localizing on the lipid droplet surface in a direct interaction with Perilipin2, which coats intracellular lipid droplets. SIRT3 overexpression also induced the degradation of lipid droplets in ZAAT-expressing hepatocytes. We observed that SIRT3 overexpression induces lipophagy by enhancing the interaction of Perilipin2 with HSC70. ZAAT polymers then degrade as a consequence of the mobilization of lipids through this process. CONCLUSIONS In this context, SIRT3 activation may eliminate the hepatic toxic gain-of-function associated with the polymerization of ZAAT, providing a rationale for a potential novel therapeutic approach to the treatment of AATD-mediated liver disease.
Collapse
Affiliation(s)
- Brittney Poole
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Regina Oshins
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health, University of Florida, Gainesville, Florida, USA
| | - Alek Aranyos
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Jesse West
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Sergio Duarte
- Department of Surgery, Division of Transplantation and Hepatobiliary Surgery, University of Florida, Gainesville, Florida, USA
| | - Virginia C. Clark
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, Florida, USA
| | - Thiago Beduschi
- Department of Surgery, Division of Transplantation and Hepatobiliary Surgery, University of Florida, Gainesville, Florida, USA
| | - Ali Zarrinpar
- Department of Surgery, Division of Transplantation and Hepatobiliary Surgery, University of Florida, Gainesville, Florida, USA
| | - Mark Brantly
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Nazli Khodayari
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
39
|
Suh J, Lee YS. Mitochondria as secretory organelles and therapeutic cargos. Exp Mol Med 2024; 56:66-85. [PMID: 38172601 PMCID: PMC10834547 DOI: 10.1038/s12276-023-01141-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 01/05/2024] Open
Abstract
Mitochondria have been primarily considered intracellular organelles that are responsible for generating energy for cell survival. However, accumulating evidence suggests that mitochondria are secreted into the extracellular space under physiological and pathological conditions, and these secreted mitochondria play diverse roles by regulating metabolism, the immune response, or the differentiation/maturation in target cells. Furthermore, increasing amount of research shows the therapeutic effects of local or systemic administration of mitochondria in various disease models. These findings have led to growing interest in exploring mitochondria as potential therapeutic agents. Here, we discuss the emerging roles of mitochondria as extracellularly secreted organelles to shed light on their functions beyond energy production. Additionally, we provide information on therapeutic outcomes of mitochondrial transplantation in animal models of diseases and an update on ongoing clinical trials, underscoring the potential of using mitochondria as a novel therapeutic intervention.
Collapse
Affiliation(s)
- Joonho Suh
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Yun-Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
40
|
Zhao Q, Liu Z, Song P, Yuan Z, Zou MH. Mitochondria-derived Vesicle Packaging as a Novel Therapeutic Mechanism in Pulmonary Hypertension. Am J Respir Cell Mol Biol 2024; 70:39-49. [PMID: 37713305 PMCID: PMC10768832 DOI: 10.1165/rcmb.2023-0010oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 09/14/2023] [Indexed: 09/17/2023] Open
Abstract
Increasing evidence suggests that mitochondrial dysfunction in pulmonary endothelial cells (ECs) plays a causative role in the initiation and progression of pulmonary hypertension (PH); how mitochondria become dysfunctional in PH remains elusive. Mitochondria-derived vesicles (MDVs) are small subcellular vesicles that excise from mitochondria. Whether MDV deregulation causes mitochondrial dysfunction in PH is unknown. The aim of this study was to determine MDV regulation in ECs and to elucidate how MDV deregulation in ECs leads to PH. MDV formation and mitochondrial morphology/dynamics were examined in ECs of EC-specific liver kinase B1 (LKB1) knockout mice (LKB1ec-/-), in monocrotaline-induced PH rats, and in lungs of patients with PH. Pulmonary ECs of patients with PH and hypoxia-treated pulmonary ECs exhibited increased mitochondrial fragmentation and disorganized mitochondrial ultrastructure characterized by electron lucent-swelling matrix compartments and concentric layering of the cristae network, together with defective MDV shedding. MDVs actively regulated mitochondrial membrane dynamics and mitochondrial ultrastructure via removing mitofission-related cargoes. The shedding of MDVs from parental mitochondria required LKB1-mediated mitochondrial recruitment of Rab9 GTPase. LKB1ec-/- mice spontaneously developed PH with decreased mitochondrial pools of Rab9 GTPase, defective MDV shedding, and disequilibrium of the mitochondrial fusion-fission cycle in pulmonary ECs. Aerosol intratracheal delivery of adeno-associated virus LKB1 reversed PH, together with improved MDV shedding and mitochondrial function in rats in vivo. We conclude that LKB1 regulates MDV shedding and mitochondrial dynamics in pulmonary ECs by enhancing mitochondrial recruitment of Rab9 GTPase. Defects of LKB1-mediated MDV shedding from parental mitochondria instigate EC dysfunction and PH.
Collapse
Affiliation(s)
- Qiang Zhao
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia; and
- Department of Cardiology, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, Shaanxi, China
| | - Zhixue Liu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia; and
| | - Ping Song
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia; and
| | - Zuyi Yuan
- Department of Cardiology, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, Shaanxi, China
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia; and
| |
Collapse
|
41
|
Kmita H, Pinna G, Lushchak VI. Potential oxidative stress related targets of mitochondria-focused therapy of PTSD. Front Physiol 2023; 14:1266575. [PMID: 38028782 PMCID: PMC10679466 DOI: 10.3389/fphys.2023.1266575] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) remains a highly prevalent, under-diagnosed, and under-treated psychiatric disorder that often deteriorates over time, and is highly comorbid with major depressive disorder, suicidality, and substance use disorder. Several biomarkers have been proposed but have yet to be implemented into clinical practice. Treatments, including selective serotonin reuptake inhibitors, are efficacious in only a small number of patients, which underscores the need to develop novel, efficient treatments. Mitochondrial dysfunction resulting from chronic oxidative stress has been linked with both altered neurotransmitter signaling and the inflammatory response. Hereinafter, we discuss mechanisms by which mitochondrial dysfunction may contribute to the development of PTSD symptoms, and how these may even increase PTSD susceptibility. We also highlight possible therapeutic targets to reduce oxidative stress to prevent or treat PTSD symptoms.
Collapse
Affiliation(s)
- Hanna Kmita
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Graziano Pinna
- Psychiatric Institute (SPHPI), Chicago, IL, United States
- UI Center on Depression and Resilience (UICDR), Chicago, IL, United States
- Center for Alcohol Research in Epigenetics (CARE), Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Volodymyr I. Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
42
|
Affiliation(s)
- Snigdha Tiash
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Jonathan Robert Brestoff
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - Clair Crewe
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
43
|
Wang J, Wen Y, Zhao W, Zhang Y, Lin F, Ouyang C, Wang H, Yao L, Ma H, Zhuo Y, Huang H, Shi X, Feng L, Lin D, Jiang B, Li Q. Hepatic conversion of acetyl-CoA to acetate plays crucial roles in energy stress. eLife 2023; 12:RP87419. [PMID: 37902629 PMCID: PMC10615369 DOI: 10.7554/elife.87419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023] Open
Abstract
Accumulating evidence indicates that acetate is increased under energy stress conditions such as those that occur in diabetes mellitus and prolonged starvation. However, how and where acetate is produced and the nature of its biological significance are largely unknown. We observed overproduction of acetate to concentrations comparable to those of ketone bodies in patients and mice with diabetes or starvation. Mechanistically, ACOT12 and ACOT8 are dramatically upregulated in the liver to convert free fatty acid-derived acetyl-CoA to acetate and CoA. This conversion not only provides a large amount of acetate, which preferentially fuels the brain rather than muscle, but also recycles CoA, which is required for sustained fatty acid oxidation and ketogenesis. We suggest that acetate is an emerging novel 'ketone body' that may be used as a parameter to evaluate the progression of energy stress.
Collapse
Affiliation(s)
- Jinyang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yaxin Wen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Wentao Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Furong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Cong Ouyang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Huihui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Lizheng Yao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Huanhuan Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yue Zhuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Huiying Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiulin Shi
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Province Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Liubin Feng
- High-Field NMR Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Donghai Lin
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Bin Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Qinxi Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
44
|
Zhang X, Wang J, Zhang J, Tan Y, Li Y, Peng Z. Exosomes Highlight Future Directions in the Treatment of Acute Kidney Injury. Int J Mol Sci 2023; 24:15568. [PMID: 37958550 PMCID: PMC10650293 DOI: 10.3390/ijms242115568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Acute kidney injury (AKI) is a severe health problem associated with high morbidity and mortality rates. It currently lacks specific therapeutic strategies. This review focuses on the mechanisms underlying the actions of exosomes derived from different cell sources, including red blood cells, macrophages, monocytes, mesenchymal stem cells, and renal tubular cells, in AKI. We also investigate the effects of various exosome contents (such as miRNA, lncRNA, circRNA, mRNA, and proteins) in promoting renal tubular cell regeneration and angiogenesis, regulating autophagy, suppressing inflammatory responses and oxidative stress, and preventing fibrosis to facilitate AKI repair. Moreover, we highlight the interactions between macrophages and renal tubular cells through exosomes, which contribute to the progression of AKI. Additionally, exosomes and their contents show promise as potential biomarkers for diagnosing AKI. The engineering of exosomes has improved their clinical potential by enhancing isolation and enrichment, target delivery to injured renal tissues, and incorporating small molecular modifications for clinical use. However, further research is needed to better understand the specific mechanisms underlying exosome actions, their delivery pathways to renal tubular cells, and the application of multi-omics research in studying AKI.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Jing Wang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Jing Zhang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Yuwei Tan
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
- Department of Critical Care Medicine, Center of Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
45
|
Huang Y, Arab T, Russell AE, Mallick ER, Nagaraj R, Gizzie E, Redding‐Ochoa J, Troncoso JC, Pletnikova O, Turchinovich A, Routenberg DA, Witwer KW. Toward a human brain extracellular vesicle atlas: Characteristics of extracellular vesicles from different brain regions, including small RNA and protein profiles. INTERDISCIPLINARY MEDICINE 2023; 1:e20230016. [PMID: 38089920 PMCID: PMC10712435 DOI: 10.1002/inmd.20230016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 12/20/2023]
Abstract
Extracellular vesicles (EVs) are released from different cell types in the central nervous system (CNS) and play roles in regulating physiological and pathological functions. Although brain-derived EVs (bdEVs) have been successfully collected from brain tissue, there is not yet a "bdEV Atlas" of EVs from different brain regions. To address this gap, we separated EVs from eight anatomical brain regions of a single individual and subsequently characterized them by count, size, morphology, and protein and RNA content. The greatest particle yield was from cerebellum, while the fewest particles were recovered from the orbitofrontal, postcentral gyrus, and thalamus regions. EV surface phenotyping indicated that CD81 and CD9 were more abundant than CD63 in all regions. Cell-enriched surface markers varied between brain regions. For example, putative neuronal markers NCAM, CD271, and NRCAM were more abundant in medulla, cerebellum, and occipital regions, respectively. These findings, while restricted to tissues from a single individual, suggest that additional studies are warranted to provide more insight into the links between EV heterogeneity and function in the CNS.
Collapse
Affiliation(s)
- Yiyao Huang
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Tanina Arab
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Ashley E. Russell
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of BiologySchool of SciencePenn State ErieThe Behrend CollegeEriePennsylvaniaUSA
| | - Emily R. Mallick
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | - Evan Gizzie
- Meso Scale DiagnosticsLLCRockvilleMarylandUSA
| | - Javier Redding‐Ochoa
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Juan C. Troncoso
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Olga Pletnikova
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Pathology and Anatomical SciencesJacobs School of Medicine and Biomedical SciencesUniversity at BuffaloBuffaloNew YorkUSA
| | - Andrey Turchinovich
- Division of Cancer Genome ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Biolabs GmbHHeidelbergGermany
| | | | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
46
|
Picca A, Guerra F, Calvani R, Coelho-Júnior HJ, Landi F, Bucci C, Marzetti E. Mitochondrial-Derived Vesicles: The Good, the Bad, and the Ugly. Int J Mol Sci 2023; 24:13835. [PMID: 37762138 PMCID: PMC10531235 DOI: 10.3390/ijms241813835] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Mitophagy is crucial for maintaining mitochondrial quality. However, its assessment in vivo is challenging. The endosomal-lysosomal system is a more accessible pathway through which subtypes of extracellular vesicles (EVs), which also contain mitochondrial constituents, are released for disposal. The inclusion of mitochondrial components into EVs occurs in the setting of mild mitochondrial damage and during impairment of lysosomal function. By releasing mitochondrial-derived vesicles (MDVs), cells limit the unload of mitochondrial damage-associated molecular patterns with proinflammatory activity. Both positive and negative effects of EVs on recipient cells have been described. Whether this is due to the production of EVs other than those containing mitochondria, such as MDVs, holding specific biological functions is currently unknown. Evidence on the existence of different MDV subtypes has been produced. However, their characterization is not always pursued, which would be relevant to exploring the dynamics of mitochondrial quality control in health and disease. Furthermore, MDV classification may be instrumental in understanding their biological roles and promoting their implementation as biomarkers in clinical studies.
Collapse
Affiliation(s)
- Anna Picca
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy;
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (F.L.); (E.M.)
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (C.B.)
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (F.L.); (E.M.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Hélio José Coelho-Júnior
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (F.L.); (E.M.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (C.B.)
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (F.L.); (E.M.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
47
|
Lozano N, Samblas MG, Calabuig E, Giménez Martí MJ, Gómez Ruiz MD, Arce JMS, Sequera-Arquelladas S, Moreno JMM, Trelis M, Osuna A. Use of sera cell free DNA (cfDNA) and exovesicle-DNA for the molecular diagnosis of chronic Chagas disease. PLoS One 2023; 18:e0282814. [PMID: 37682970 PMCID: PMC10490946 DOI: 10.1371/journal.pone.0282814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/15/2023] [Indexed: 09/10/2023] Open
Abstract
Chagas disease, a neglected tropical disease, is now considered a worldwide health concern as a result of migratory movements from Central and South America to other regions that were considered free of the disease, and where the epidemiological risk is limited to transplacental transmission or blood or organ donations from infected persons. Parasite detection in chronically ill patients is restricted to serological tests that only determine infection by previous infection and not the presence of the parasite, especially in patients undergoing treatment evaluation or in newborns. We have evaluated the use of nucleic acids from both circulating exovesicles and cell-free DNA (cfDNA) from 50 samples twice randomly selected from a total of 448 serum samples from immunologically diagnosed patients in whom the presence of the parasite was confirmed by nested PCR on amplicons resulting from amplification with kinetoplastid DNA-specific primers 121F-122R. Six samples were randomly selected to quantify the limit of detection by qPCR in serum exovesicles. When the nucleic acids thus purified were assayed as a template and amplified with kinetoplastid DNA and nuclear satellite DNA primers, a 100% positivity rate was obtained for all positive samples assayed with kDNA-specific primers and 96% when SAT primers were used. However, isolation of cfDNA for Trypanosoma cruzi and amplification with SAT also showed 100% positivity. The results demonstrate that serum exovesicles contain DNA of mitochondrial and nuclear origin, which can be considered a mixed population of exovesicles of parasitic origin. The results obtained with serum samples prove that both cfDNA and Exovesicle DNA can be used to confirm parasitaemia in chronically ill patients or in samples where it is necessary to demonstrate the active presence of the parasite. The results confirm for the first time the existence of exovesicles of mitochondrial origin of the parasite in the serum of those affected by Chagas disease.
Collapse
Affiliation(s)
- Noelia Lozano
- Area of Parasitology, Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain
- Servicio de Microbiología y Parasitología Clínica, Hospital Universitario y Politécnico La Fe-IIS La Fe, Valencia, Spain
| | - Mercedes Gomez Samblas
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Campus de Fuentenueva, Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Eva Calabuig
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario y Politécnico La Fe-IIS La Fe, Valencia, Spain
| | - María José Giménez Martí
- Servicio de Microbiología y Parasitología Clínica, Hospital Universitario y Politécnico La Fe-IIS La Fe, Valencia, Spain
| | - Maria Dolores Gómez Ruiz
- Servicio de Microbiología y Parasitología Clínica, Hospital Universitario y Politécnico La Fe-IIS La Fe, Valencia, Spain
| | - José Miguel Sahuquillo Arce
- Servicio de Microbiología y Parasitología Clínica, Hospital Universitario y Politécnico La Fe-IIS La Fe, Valencia, Spain
| | | | - José Miguel Molina Moreno
- Servicio de Microbiología y Parasitología Clínica, Hospital Universitario y Politécnico La Fe-IIS La Fe, Valencia, Spain
| | - M. Trelis
- Area of Parasitology, Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, University of Valencia-Health Research Institute La Fe, Valencia, Spain
| | - Antonio Osuna
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Campus de Fuentenueva, Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| |
Collapse
|
48
|
van de Wakker SI, Meijers FM, Sluijter JPG, Vader P. Extracellular Vesicle Heterogeneity and Its Impact for Regenerative Medicine Applications. Pharmacol Rev 2023; 75:1043-1061. [PMID: 37280097 DOI: 10.1124/pharmrev.123.000841] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-enclosed particles that are involved in physiologic and pathologic processes. EVs are increasingly being studied for therapeutic applications in the field of regenerative medicine. Therapeutic application of stem cell-derived EVs has shown great potential to stimulate tissue repair. However, the exact mechanisms through which they induce this effect have not been fully clarified. This may to a large extent be attributed to a lack of knowledge on EV heterogeneity. Recent studies suggest that EVs represent a heterogeneous population of vesicles with distinct functions. The heterogeneity of EVs can be attributed to differences in their biogenesis, and as such, they can be classified into distinct populations that can then be further subcategorized into various subpopulations. A better understanding of EV heterogeneity is crucial for elucidating their mechanisms of action in tissue regeneration. This review provides an overview of the latest insights on EV heterogeneity related to tissue repair, including the different characteristics that contribute to such heterogeneity and the functional differences among EV subtypes. It also sheds light on the challenges that hinder clinical translation of EVs. Additionally, innovative EV isolation techniques for studying EV heterogeneity are discussed. Improved knowledge of active EV subtypes would promote the development of tailored EV therapies and aid researchers in the translation of EV-based therapeutics to the clinic. SIGNIFICANCE STATEMENT: Within this review we discuss the differences in regenerative properties of extracellular vesicle (EV) subpopulations and implications of EV heterogeneity for development of EV-based therapeutics. We aim to provide new insights into which aspects are leading to heterogeneity in EV preparations and stress the importance of EV heterogeneity studies for clinical applications.
Collapse
Affiliation(s)
- Simonides Immanuel van de Wakker
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| | - Fleur Michelle Meijers
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| | - Joost Petrus Gerardus Sluijter
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| | - Pieter Vader
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| |
Collapse
|
49
|
Asao T, Tobias GC, Lucotti S, Jones DR, Matei I, Lyden D. Extracellular vesicles and particles as mediators of long-range communication in cancer: connecting biological function to clinical applications. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:461-485. [PMID: 38707985 PMCID: PMC11067132 DOI: 10.20517/evcna.2023.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Over the past decade, extracellular vesicles and particles (EVPs) have emerged as critical mediators of intercellular communication, participating in numerous physiological and pathological processes. In the context of cancer, EVPs exert local effects, such as increased invasiveness, motility, and reprogramming of tumor stroma, as well as systemic effects, including pre-metastatic niche formation, determining organotropism, promoting metastasis and altering the homeostasis of various organs and systems, such as the liver, muscle, and circulatory system. This review provides an overview of the critical advances in EVP research during the past decade, highlighting the heterogeneity of EVPs, their roles in intercellular communication, cancer progression, and metastasis. Moreover, the clinical potential of systemic EVPs as useful cancer biomarkers and therapeutic agents is explored. Last but not least, the progress in EVP analysis technologies that have facilitated these discoveries is discussed, which may further propel EVP research in the future.
Collapse
Affiliation(s)
- Tetsuhiko Asao
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell & Developmental Biology, Drukier Institute for Children’s Health and Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo 163-8001, Japan
| | - Gabriel Cardial Tobias
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell & Developmental Biology, Drukier Institute for Children’s Health and Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Serena Lucotti
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell & Developmental Biology, Drukier Institute for Children’s Health and Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - David R. Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Irina Matei
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell & Developmental Biology, Drukier Institute for Children’s Health and Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell & Developmental Biology, Drukier Institute for Children’s Health and Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
50
|
Zayakin P, Sadovska L, Eglītis K, Romanchikova N, Radoviča-Spalviņa I, Endzeliņš E, Liepniece-Karele I, Eglītis J, Linē A. Extracellular Vesicles-A Source of RNA Biomarkers for the Detection of Breast Cancer in Liquid Biopsies. Cancers (Basel) 2023; 15:4329. [PMID: 37686605 PMCID: PMC10487078 DOI: 10.3390/cancers15174329] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Over the past decade, extracellular vesicles (EVs) have emerged as a promising source of cancer-derived RNAs for liquid biopsies. However, blood contains a pool of heterogeneous EVs released by a variety of cell types, making the identification of cancer RNA biomarkers challenging. Here, we performed deep sequencing of plasma EV RNA cargo in 32 patients with locally advanced breast cancer (BC) at diagnosis and 7 days after breast surgery and in 30 cancer-free healthy controls (HCs). To identify BC-derived RNA biomarkers, we searched for RNAs that had higher levels in BC EVs at the time of diagnosis compared with HCs and decreased after surgery. Data analysis showed that the fractions of miRNAs, snRNAs, snoRNAs, and tRFs were increased, but the fraction of lncRNAs was decreased in BC EVs as compared to HCs. BC-derived biomarker candidates were identified across various RNA biotypes. Considered individually, they had very high specificity but moderate sensitivity for the detection of BC, whereas a biomarker model composed of eight RNAs: SNORD3H, SNORD1C, SNORA74D, miR-224-5p, piR-32949, lnc-IFT-122-2, lnc-C9orf50-4, and lnc-FAM122C-3 was able to distinguish BC from HC EVs with an AUC of 0.902 (95% CI = 0.872-0.931, p = 3.4 × 10-9) in leave-one-out cross-validation. Furthermore, a number of RNA biomarkers were correlated with the ER and HER2 expression and additional biomarker models were created to predict hormone receptor and HER2 status. Overall, this study demonstrated that the RNA composition of plasma EVs is altered in BC patients and that they contain cancer-derived RNA biomarkers that can be used for BC detection and monitoring using liquid biopsies.
Collapse
Affiliation(s)
- Pawel Zayakin
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k-1, LV-1067 Riga, Latvia; (P.Z.); (L.S.); (N.R.); (E.E.)
| | - Lilite Sadovska
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k-1, LV-1067 Riga, Latvia; (P.Z.); (L.S.); (N.R.); (E.E.)
| | - Kristaps Eglītis
- Latvian Oncology Center, Riga Eastern Clinical University Hospital, LV-1038 Riga, Latvia; (K.E.)
| | - Nadezhda Romanchikova
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k-1, LV-1067 Riga, Latvia; (P.Z.); (L.S.); (N.R.); (E.E.)
| | | | - Edgars Endzeliņš
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k-1, LV-1067 Riga, Latvia; (P.Z.); (L.S.); (N.R.); (E.E.)
| | | | - Jānis Eglītis
- Latvian Oncology Center, Riga Eastern Clinical University Hospital, LV-1038 Riga, Latvia; (K.E.)
| | - Aija Linē
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k-1, LV-1067 Riga, Latvia; (P.Z.); (L.S.); (N.R.); (E.E.)
| |
Collapse
|