1
|
Philippi SM, Bp K, Raj T, Castellano JM. APOE genotype and brain amyloid are associated with changes in the plasma proteome in elderly subjects without dementia. Ann Clin Transl Neurol 2024. [PMID: 39689057 DOI: 10.1002/acn3.52250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/03/2024] [Accepted: 10/24/2024] [Indexed: 12/19/2024] Open
Abstract
OBJECTIVE Recent work has bolstered the possibility that peripheral changes may be relevant to Alzheimer's disease pathogenesis in the brain. While age-associated blood-borne proteins have been targeted to restore function to the aged brain, it remains unclear whether other dysfunctional systemic states can be exploited for similar benefits. Here, we investigate whether APOE allelic variation or presence of brain amyloid are associated with plasma proteomic changes and the molecular processes associated with these changes. METHODS Using the SOMAscan assay, we measured 1305 plasma proteins from 53 homozygous, APOE3 and APOE4 subjects without dementia. We investigated the relationship of either the APOE-ε4 allele or amyloid positivity with plasma proteome changes by linear mixed effects modeling and ontology-based pathway and module-trait correlation analyses. RESULTS APOE4 is associated with plasma protein differences linked to atherosclerosis, tyrosine kinase activity, cholesterol transport, extracellular matrix, and synaptogenesis pathways. Independent of APOE4, we found that subjects likely harboring brain amyloid exhibit plasma proteome signatures associated with AD-linked pathways, including neurovascular dysfunction. INTERPRETATION Our results indicate that APOE4 status or presence of brain amyloid are associated with plasma proteomic shifts prior to the onset of symptoms, suggesting that systemic pathways in certain risk contexts may be plausible targets for disease modification.
Collapse
Affiliation(s)
- Sarah M Philippi
- Nash Family Department of Neuroscience, Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kailash Bp
- Nash Family Department of Neuroscience, Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Towfique Raj
- Nash Family Department of Neuroscience, Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joseph M Castellano
- Nash Family Department of Neuroscience, Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
2
|
Candia J, Fantoni G, Delgado-Peraza F, Shehadeh N, Tanaka T, Moaddel R, Walker KA, Ferrucci L. Variability of 7K and 11K SomaScan Plasma Proteomics Assays. J Proteome Res 2024; 23:5531-5539. [PMID: 39473295 PMCID: PMC11629374 DOI: 10.1021/acs.jproteome.4c00667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/25/2024] [Accepted: 10/21/2024] [Indexed: 12/07/2024]
Abstract
SomaScan is an aptamer-based proteomics assay designed for the simultaneous measurement of thousands of human proteins with a broad range of endogenous concentrations. The 7K SomaScan assay has recently been expanded into the new 11K version. Following up on our previous assessment of the 7K assay, here, we expand our work on technical replicates from donors enrolled in the Baltimore Longitudinal Study of Aging. By generating SomaScan data from a second batch of technical replicates in the 7K version as well as additional intra- and interplate replicate measurements in the new 11K version using the same donor samples, this work provides useful precision benchmarks for the SomaScan user community. Beyond updating our previous technical assessment of the 7K assay with increased statistics, here, we estimate interbatch variability, assess inter- and intraplate variability in the new 11K assay, compare the observed variability between the 7K and 11K assays (leveraging the use of overlapping pairs of technical replicates), and explore the potential effects of sample storage time (ranging from 2 to 30 years) in the assays' precision.
Collapse
Affiliation(s)
- Julián Candia
- Intramural Research Program, National Institute on Aging, National Institutes of
Health, Baltimore, Maryland 21224, United States
| | - Giovanna Fantoni
- Intramural Research Program, National Institute on Aging, National Institutes of
Health, Baltimore, Maryland 21224, United States
| | - Francheska Delgado-Peraza
- Intramural Research Program, National Institute on Aging, National Institutes of
Health, Baltimore, Maryland 21224, United States
| | - Nader Shehadeh
- Intramural Research Program, National Institute on Aging, National Institutes of
Health, Baltimore, Maryland 21224, United States
| | - Toshiko Tanaka
- Intramural Research Program, National Institute on Aging, National Institutes of
Health, Baltimore, Maryland 21224, United States
| | - Ruin Moaddel
- Intramural Research Program, National Institute on Aging, National Institutes of
Health, Baltimore, Maryland 21224, United States
| | - Keenan A. Walker
- Intramural Research Program, National Institute on Aging, National Institutes of
Health, Baltimore, Maryland 21224, United States
| | - Luigi Ferrucci
- Intramural Research Program, National Institute on Aging, National Institutes of
Health, Baltimore, Maryland 21224, United States
| |
Collapse
|
3
|
Siddiqui S, Liu F, Kanthasamy AG, McGrail M. Stat3 mediates Fyn kinase-driven dopaminergic neurodegeneration and microglia activation. Dis Model Mech 2024; 17:dmm052011. [PMID: 39641161 PMCID: PMC11646115 DOI: 10.1242/dmm.052011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/17/2024] [Indexed: 12/07/2024] Open
Abstract
The Alzheimer's disease and Parkinson's disease risk locus FYN kinase is implicated in neurodegeneration and inflammatory signaling. To investigate in vivo mechanisms of Fyn-driven neurodegeneration, we built a zebrafish neural-specific Gal4:UAS model of constitutively active FynY531F signaling. Using in vivo live imaging, we demonstrated that neural FynY531F expression leads to dopaminergic neuron loss and mitochondrial aggregation in 5 day larval brain. Dopaminergic loss coincided with microglia activation and induction of tnfa, il1b and il12a inflammatory cytokine expression. Transcriptome analysis revealed Stat3 signaling as a potential Fyn target. Chemical inhibition experiments confirmed Fyn-driven dopaminergic neuron loss, and the inflammatory response was dependent upon activation of Stat3 and NF-κB pathways. Dual chemical inhibition demonstrated that Stat3 acts synergistically with NF-κB in dopaminergic neuron degeneration. These results identify Stat3 as a novel downstream effector of Fyn signaling in neurodegeneration and inflammation.
Collapse
Affiliation(s)
- Sahiba Siddiqui
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Interdepartmental Genetics and Genomics Graduate Program (IGG), Iowa State University, Ames, IA 50011, USA
| | - Fang Liu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Anumantha G. Kanthasamy
- Center for Brain Science and Neurodegenerative Diseases, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Maura McGrail
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Interdepartmental Genetics and Genomics Graduate Program (IGG), Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
4
|
Johnson CN, Lysaker CR, McCoin CS, Evans MR, Thyfault JP, Wilkins HM, Morris JK, Geiger PC. Skeletal muscle proteome differs between young APOE3 and APOE4 targeted replacement mice in a sex-dependent manner. Front Aging Neurosci 2024; 16:1486762. [PMID: 39634654 PMCID: PMC11615480 DOI: 10.3389/fnagi.2024.1486762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Apolipoprotein E4 (APOE4) is the strongest genetic risk factor for Alzheimer's disease (AD), yet it's unclear how this allele mediates risk. APOE4 carriers experience reduced mobility and faster decline in muscle strength, suggesting skeletal muscle involvement. Mitochondria are critical for muscle function and although we have reported defects in muscle mitochondrial respiration during early cognitive decline, APOE4-mediated effects on muscle mitochondria are unknown. Methods Here, we sought to determine the impact of APOE4 on skeletal muscle bioenergetics using young, male and female APOE3 (control) and APOE4 targeted replacement mice (n = 8 per genotype/sex combination). We examined the proteome, mitochondrial respiration, fiber size, and fiber-type distribution in skeletal muscle. Results We found that APOE4 alters mitochondrial pathway expression in young mouse muscle in a sex-dependent manner without affecting respiration and fiber size or composition relative to APOE3. In both sexes, the expression of mitochondrial pathways involved in electron transport, ATP synthesis, and heat production by uncoupling proteins and mitochondrial dysfunction significantly differed between APOE4 and APOE3 muscle. For pathways with predicted direction of activation, electron transport and oxidative phosphorylation were upregulated while mitochondrial dysfunction and sirtuin signaling were downregulated in female APOE4 vs. APOE3 muscle. In males, sulfur amino acid metabolism was upregulated in APOE4 vs. APOE3 muscle. Discussion This work highlights early involvement of skeletal muscle in a mouse model of APOE4-linked AD, which may contribute to AD pathogenesis or serve as a biomarker for brain health.
Collapse
Affiliation(s)
- Chelsea N. Johnson
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, MO, United States
- University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Fairway, KS, United States
| | - Colton R. Lysaker
- University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Fairway, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, MO, United States
| | - Colin S. McCoin
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, MO, United States
- University of Kansas Diabetes Institute, University of Kansas Medical Center, Kansas City, MO, United States
| | - Mara R. Evans
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, MO, United States
| | - John P. Thyfault
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, MO, United States
- University of Kansas Diabetes Institute, University of Kansas Medical Center, Kansas City, MO, United States
| | - Heather M. Wilkins
- University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Fairway, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, MO, United States
| | - Jill K. Morris
- University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Fairway, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, MO, United States
| | - Paige C. Geiger
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, MO, United States
- University of Kansas Diabetes Institute, University of Kansas Medical Center, Kansas City, MO, United States
| |
Collapse
|
5
|
Angelova VT, Stoyanov BP, Simeonova R. New Insights into the Development of Donepezil-Based Hybrid and Natural Molecules as Multi-Target Drug Agents for Alzheimer's Disease Treatment. Molecules 2024; 29:5314. [PMID: 39598703 PMCID: PMC11596391 DOI: 10.3390/molecules29225314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Alzheimer's disease (AD) involves a complex pathophysiology with multiple interconnected subpathologies, including protein aggregation, impaired neurotransmission, oxidative stress, and microglia-mediated neuroinflammation. Current treatments, which generally target a single subpathology, have failed to modify the disease's progression, providing only temporary symptom relief. Multi-target drugs (MTDs) address several subpathologies, including impaired aggregation of pathological proteins. In this review, we cover hybrid molecules published between 2014 and 2024. We offer an overview of the strategies employed in drug design and approaches that have led to notable improvements and reduced hepatotoxicity. Our aim is to offer insights into the potential development of new Alzheimer's disease drugs. This overview highlights the potential of multi-target drugs featuring heterocycles with N-benzylpiperidine fragments and natural compounds in improving Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Violina T. Angelova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Boris P. Stoyanov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria;
| | - Rumyana Simeonova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria;
| |
Collapse
|
6
|
Pérez-González AP, García-Kroepfly AL, Pérez-Fuentes KA, García-Reyes RI, Solis-Roldan FF, Alba-González JA, Hernández-Lemus E, de Anda-Jáuregui G. The ROSMAP project: aging and neurodegenerative diseases through omic sciences. Front Neuroinform 2024; 18:1443865. [PMID: 39351424 PMCID: PMC11439699 DOI: 10.3389/fninf.2024.1443865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
The Religious Order Study and Memory and Aging Project (ROSMAP) is an initiative that integrates two longitudinal cohort studies, which have been collecting clinicopathological and molecular data since the early 1990s. This extensive dataset includes a wide array of omic data, revealing the complex interactions between molecular levels in neurodegenerative diseases (ND) and aging. Neurodegenerative diseases (ND) are frequently associated with morbidity and cognitive decline in older adults. Omics research, in conjunction with clinical variables, is crucial for advancing our understanding of the diagnosis and treatment of neurodegenerative diseases. This summary reviews the extensive omics research-encompassing genomics, transcriptomics, proteomics, metabolomics, epigenomics, and multiomics-conducted through the ROSMAP study. It highlights the significant advancements in understanding the mechanisms underlying neurodegenerative diseases, with a particular focus on Alzheimer's disease.
Collapse
Affiliation(s)
- Alejandra P Pérez-González
- División de Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomedicas, Unidad de Posgrado Edificio B Primer Piso, Ciudad Universitaria, Mexico City, Mexico
- Facultad de Estudios Superiores Iztacala UNAM, Mexico City, Mexico
| | | | | | | | | | | | - Enrique Hernández-Lemus
- División de Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guillermo de Anda-Jáuregui
- División de Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Programa de Investigadoras e Investigadores por México Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Mexico City, Mexico
| |
Collapse
|
7
|
Barnett D, Zimmer TS, Booraem C, Palaguachi F, Meadows SM, Xiao H, Chouchani ET, Orr AG, Orr AL. Mitochondrial complex III-derived ROS amplify immunometabolic changes in astrocytes and promote dementia pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608708. [PMID: 39229090 PMCID: PMC11370371 DOI: 10.1101/2024.08.19.608708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Neurodegenerative disorders alter mitochondrial functions, including the production of reactive oxygen species (ROS). Mitochondrial complex III (CIII) generates ROS implicated in redox signaling, but its triggers, targets, and disease relevance are not clear. Using site-selective suppressors and genetic manipulations together with mitochondrial ROS imaging and multiomic profiling, we found that CIII is the dominant source of ROS production in astrocytes exposed to neuropathology-related stimuli. Astrocytic CIII-ROS production was dependent on nuclear factor-κB (NF-κB) and the mitochondrial sodium-calcium exchanger (NCLX) and caused oxidation of select cysteines within immune and metabolism-associated proteins linked to neurological disease. CIII-ROS amplified metabolomic and pathology-associated transcriptional changes in astrocytes, with STAT3 activity as a major mediator, and facilitated neuronal toxicity in a non-cell-autonomous manner. As proof-of-concept, suppression of CIII-ROS in mice decreased dementia-linked tauopathy and neuroimmune cascades and extended lifespan. Our findings establish CIII-ROS as an important immunometabolic signal transducer and tractable therapeutic target in neurodegenerative disease.
Collapse
Affiliation(s)
- Daniel Barnett
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Till S. Zimmer
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Caroline Booraem
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Fernando Palaguachi
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Samantha M. Meadows
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Edward T. Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Anna G. Orr
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Adam L. Orr
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| |
Collapse
|
8
|
Turgutalp B, Kizil C. Multi-target drugs for Alzheimer's disease. Trends Pharmacol Sci 2024; 45:628-638. [PMID: 38853102 DOI: 10.1016/j.tips.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/28/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024]
Abstract
Alzheimer's disease (AD), a leading cause of dementia, increasingly challenges our healthcare systems and society. Traditional therapies aimed at single targets have fallen short owing to the complex, multifactorial nature of AD that necessitates simultaneous targeting of various disease mechanisms for clinical success. Therefore, targeting multiple pathologies at the same time could provide a synergistic therapeutic effect. The identification of new disease targets beyond the classical hallmarks of AD offers a fertile ground for the design of new multi-target drugs (MTDs), and building on existing compounds have the potential to yield in successful disease modifying therapies. This review discusses the evolving landscape of MTDs, focusing on their potential as AD therapeutics. Analysis of past and current trials of compounds with multi-target activity underscores the capacity of MTDs to offer synergistic therapeutic effects, and the flourishing genetic understanding of AD will inform and inspire the development of MTD-based AD therapies.
Collapse
Affiliation(s)
- Bengisu Turgutalp
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, 650 West 168th Street, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, 710 West 168th Street, New York, NY 10032, USA.
| | - Caghan Kizil
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, 650 West 168th Street, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, 710 West 168th Street, New York, NY 10032, USA; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY, USA.
| |
Collapse
|
9
|
Oveisgharan S, Yu L, de Paiva Lopes K, Tasaki S, Wang Y, Menon V, Schneider JA, Seyfried NT, Bennett DA. Proteins linking APOE ɛ4 with Alzheimer's disease. Alzheimers Dement 2024; 20:4499-4511. [PMID: 38856164 PMCID: PMC11247662 DOI: 10.1002/alz.13867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/29/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION The ɛ4 allele of the apolipoprotein E gene (APOE ɛ4) is the strongest genetic risk factor for Alzheimer's disease (AD), but the mechanisms connecting APOE ɛ4 to AD are not clear. METHODS Participants (n = 596) were from two clinical-pathological studies. Tissues from dorsolateral prefrontal cortex were examined to identify 8425 proteins. Post mortem pathological assessment used immunohistochemistry to obtain amyloid beta (Aβ) load and tau tangle density. RESULTS In separate models, APOE ɛ4 was associated with 18 proteins, which were associated with Aβ and tau tangles. Examining the proteins in a single model identified Netrin-1 and secreted frizzled-related protein 1 (SFRP1) as the two proteins linking APOE ɛ4 with Aβ with the largest effect sizes and Netrin-1 and testican-3 linking APOE ɛ4 with tau tangles. DISCUSSION We identified Netrin-1, SFRP1, and testican-3 as the most promising proteins that link APOE ɛ4 with Aβ and tau tangles. HIGHLIGHTS Of 8425 proteins extracted from prefrontal cortex, 18 were related to APOE ɛ4. The 18 proteins were also related to amyloid beta (Aβ) and tau. The 18 proteins were more related to APOE ɛ4 than other AD genetic risk variants. Netrin-1 and secreted frizzled-related protein 1 were the two most promising proteins linking APOE ɛ4 with Aβ. Netrin-1 and testican-3 were two most promising proteins linking APOE ɛ4 with tau.
Collapse
Affiliation(s)
- Shahram Oveisgharan
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Lei Yu
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Katia de Paiva Lopes
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Shinya Tasaki
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Yanling Wang
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Vilas Menon
- Center for Translational and Computational NeuroimmunologyDepartment of Neurology & Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Julie A. Schneider
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
- Department of PathologyRush University Medical CenterChicagoIllinoisUSA
| | - Nicholas T. Seyfried
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
- Department of BiochemistryEmory UniversityAtlantaGeorgiaUSA
| | - David A. Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
10
|
Li C, Wang L, Xie W, Chen E, Chen Y, Li H, Can D, Lei A, Wang Y, Zhang J. TGR5 deficiency in excitatory neurons ameliorates Alzheimer's pathology by regulating APP processing. SCIENCE ADVANCES 2024; 10:eado1855. [PMID: 38941459 PMCID: PMC11212731 DOI: 10.1126/sciadv.ado1855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/23/2024] [Indexed: 06/30/2024]
Abstract
Bile acids (BAs) metabolism has a significant impact on the pathogenesis of Alzheimer's disease (AD). We found that deoxycholic acid (DCA) increased in brains of AD mice at an early stage. The enhanced production of DCA induces the up-regulation of the bile acid receptor Takeda G protein-coupled receptor (TGR5), which is also specifically increased in neurons of AD mouse brains at an early stage. The accumulation of exogenous DCA impairs cognitive function in wild-type mice, but not in TGR5 knockout mice. This suggests that TGR5 is the primary receptor mediating these effects of DCA. Furthermore, excitatory neuron-specific knockout of TGR5 ameliorates Aβ pathology and cognition impairments in AD mice. The underlying mechanism linking TGR5 and AD pathology relies on the downstream effectors of TGR5 and the APP production, which is succinctly concluded as a "p-STAT3-APH1-γ-secretase" signaling pathway. Our studies identified the critical role of TGR5 in the pathological development of AD.
Collapse
Affiliation(s)
- Chenli Li
- Institute of Neuroscience, Department of Anesthesiology, First Affiliated Hospital, College of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Liangjie Wang
- Institute of Neuroscience, Department of Anesthesiology, First Affiliated Hospital, College of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Wenting Xie
- Institute of Neuroscience, Department of Anesthesiology, First Affiliated Hospital, College of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Erqu Chen
- Institute of Neuroscience, Department of Anesthesiology, First Affiliated Hospital, College of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Yanbing Chen
- Institute of Neuroscience, Department of Anesthesiology, First Affiliated Hospital, College of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Huifang Li
- Institute of Neuroscience, Department of Anesthesiology, First Affiliated Hospital, College of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Dan Can
- Institute of Neuroscience, Department of Anesthesiology, First Affiliated Hospital, College of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Aiyu Lei
- Institute of Neuroscience, Department of Anesthesiology, First Affiliated Hospital, College of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Yue Wang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Jie Zhang
- Institute of Neuroscience, Department of Anesthesiology, First Affiliated Hospital, College of Medicine, Xiamen University, Xiamen, Fujian 361005, China
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
- Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, 350122, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
11
|
Peng J, Zaman M, Yang S, Huang Y, Yarbro J, Wang Z, Liu D, Soliman H, Hemphill A, Harvey S, Pruett-Miller S, Stewart V, Tanwar A, Kalathur R, Grace C, Turk M, Chittori S, Jiao Y, Wu Z, High A, Wang X, Serrano G, Beach T, Yu G, Yang Y, Chen PC. Midkine Attenuates Aβ Fibril Assembly and AmyloidPlaque Formation. RESEARCH SQUARE 2024:rs.3.rs-4361125. [PMID: 38883748 PMCID: PMC11177971 DOI: 10.21203/rs.3.rs-4361125/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Proteomic profiling of Alzheimer's disease (AD) brains has identified numerous understudied proteins, including midkine (MDK), that are highly upregulated and correlated with Aβ since the early disease stage, but their roles in disease progression are not fully understood. Here we present that MDK attenuates Aβ assembly and influences amyloid formation in the 5xFAD amyloidosis mouse model. MDK protein mitigates fibril formation of both Aβ40 and Aβ42 peptides in Thioflavin T fluorescence assay, circular dichroism, negative stain electron microscopy, and NMR analysis. Knockout of Mdkgene in 5xFAD increases amyloid formation and microglial activation. Further comprehensive mass spectrometry-based profiling of whole proteome and aggregated proteome in these mouse models indicates significant accumulation of Aβ and Aβ-correlated proteins, along with microglial components. Thus, our structural and mouse model studies reveal a protective role of MDK in counteracting amyloid pathology in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | - Shu Yang
- St Jude Children's Research Hospital
| | - Ya Huang
- St Jude Children's Research Hospital
| | | | - Zhen Wang
- St Jude Children's Research Hospital
| | | | | | | | | | | | | | | | | | | | | | | | - Yun Jiao
- St Jude Children's Research Hospital
| | | | | | | | | | | | - Gang Yu
- University of Texas Southwestern Medical Center
| | | | | |
Collapse
|
12
|
Thierry M, Ponce J, Martà-Ariza M, Askenazi M, Faustin A, Leitner D, Pires G, Kanshin E, Drummond E, Ueberheide B, Wisniewski T. The influence of APOE ε4 on the pTau interactome in sporadic Alzheimer's disease. Acta Neuropathol 2024; 147:91. [PMID: 38772917 PMCID: PMC11108952 DOI: 10.1007/s00401-024-02744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/12/2024] [Accepted: 05/12/2024] [Indexed: 05/23/2024]
Abstract
APOEε4 is the major genetic risk factor for sporadic Alzheimer's disease (AD). Although APOEε4 is known to promote Aβ pathology, recent data also support an effect of APOE polymorphism on phosphorylated Tau (pTau) pathology. To elucidate these potential effects, the pTau interactome was analyzed across APOE genotypes in the frontal cortex of 10 advanced AD cases (n = 5 APOEε3/ε3 and n = 5 APOEε4/ε4), using a combination of anti-pTau pS396/pS404 (PHF1) immunoprecipitation (IP) and mass spectrometry (MS). This proteomic approach was complemented by an analysis of anti-pTau PHF1 and anti-Aβ 4G8 immunohistochemistry, performed in the frontal cortex of 21 advanced AD cases (n = 11 APOEε3/ε3 and n = 10 APOEε4/ε4). Our dataset includes 1130 and 1330 proteins enriched in IPPHF1 samples from APOEε3/ε3 and APOEε4/ε4 groups (fold change ≥ 1.50, IPPHF1 vs IPIgG ctrl). We identified 80 and 68 proteins as probable pTau interactors in APOEε3/ε3 and APOEε4/ε4 groups, respectively (SAINT score ≥ 0.80; false discovery rate (FDR) ≤ 5%). A total of 47/80 proteins were identified as more likely to interact with pTau in APOEε3/ε3 vs APOEε4/ε4 cases. Functional enrichment analyses showed that they were significantly associated with the nucleoplasm compartment and involved in RNA processing. In contrast, 35/68 proteins were identified as more likely to interact with pTau in APOEε4/ε4 vs APOEε3/ε3 cases. They were significantly associated with the synaptic compartment and involved in cellular transport. A characterization of Tau pathology in the frontal cortex showed a higher density of plaque-associated neuritic crowns, made of dystrophic axons and synapses, in APOEε4 carriers. Cerebral amyloid angiopathy was more frequent and severe in APOEε4/ε4 cases. Our study supports an influence of APOE genotype on pTau-subcellular location in AD. These results suggest a facilitation of pTau progression to Aβ-affected brain regions in APOEε4 carriers, paving the way to the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Manon Thierry
- Department of Neurology, Center for Cognitive Neurology, Grossman School of Medicine, New York University, Science Building, Rm 1023J, 435 East 30th Street, New York, NY, USA.
| | - Jackeline Ponce
- Department of Biochemistry and Molecular Pharmacology, Proteomics Laboratory, Grossman School of Medicine, New York University, New York, NY, USA
| | - Mitchell Martà-Ariza
- Department of Neurology, Center for Cognitive Neurology, Grossman School of Medicine, New York University, Science Building, Rm 1023J, 435 East 30th Street, New York, NY, USA
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Arline Faustin
- Department of Neurology, Center for Cognitive Neurology, Grossman School of Medicine, New York University, Science Building, Rm 1023J, 435 East 30th Street, New York, NY, USA
| | - Dominique Leitner
- Department of Neurology, Center for Cognitive Neurology, Grossman School of Medicine, New York University, Science Building, Rm 1023J, 435 East 30th Street, New York, NY, USA
- Department of Neurology, Comprehensive Epilepsy Center, Grossman School of Medicine, New York University, New York, NY, USA
| | - Geoffrey Pires
- Department of Neurology, Center for Cognitive Neurology, Grossman School of Medicine, New York University, Science Building, Rm 1023J, 435 East 30th Street, New York, NY, USA
| | - Evgeny Kanshin
- Department of Biochemistry and Molecular Pharmacology, Proteomics Laboratory, Grossman School of Medicine, New York University, New York, NY, USA
| | - Eleanor Drummond
- Brain and Mind Centre, School of Medical Science, University of Sydney, Sydney, Australia
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, Proteomics Laboratory, Grossman School of Medicine, New York University, New York, NY, USA
| | - Thomas Wisniewski
- Department of Neurology, Center for Cognitive Neurology, Grossman School of Medicine, New York University, Science Building, Rm 1023J, 435 East 30th Street, New York, NY, USA.
- Departments of Pathology and Psychiatry, Grossman School of Medicine, New York University, Science Building, Rm 1017, 435 East 30 Street, New York, NY, 10016, USA.
| |
Collapse
|
13
|
Varma VR, An Y, Kac PR, Bilgel M, Moghekar A, Loeffler T, Amschl D, Troncoso J, Blennow K, Zetterberg H, Ashton NJ, Resnick SM, Thambisetty M. Longitudinal progression of blood biomarkers reveals a key role of astrocyte reactivity in preclinical Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.25.24301779. [PMID: 38343809 PMCID: PMC10854357 DOI: 10.1101/2024.01.25.24301779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Defining the progression of blood biomarkers of Alzheimer's disease (AD) is essential for targeting treatments in patients most likely to benefit from early intervention. We delineated the temporal ordering of blood biomarkers a decade prior to the onset of AD symptoms in participants in the Baltimore Longitudinal Study of Aging. We show that increased astrocyte reactivity, assessed by elevated glial fibrillary acidic protein (GFAP) levels is an early event in the progression of blood biomarker changes in preclinical AD. In AD-converters who are initially cognitively unimpaired (N=158, 377 serial plasma samples), higher plasma GFAP levels are observed as early as 10-years prior to the onset of cognitive impairment due to incident AD compared to individuals who remain cognitively unimpaired (CU, N=160, 379 serial plasma samples). Plasma GFAP levels in AD-converters remain elevated 5-years prior to and coincident with the onset of cognitive impairment due to AD. In participants with neuropathologically confirmed AD, plasma GFAP levels are elevated relative to cognitively normal individuals and intermediate in those who remain cognitively unimpaired despite significant AD pathology (asymptomatic AD). Higher plasma GFAP levels at death are associated with greater severity of both neuritic plaques and neurofibrillary tangles. In the 5XFAD transgenic model of AD, we observed greater GFAP levels in the cortex and hippocampus of transgenic mice relative to wild-type prior to the development of cognitive impairment. Reactive astrocytosis, an established biological response to neuronal injury, may be an early initiator of AD pathogenesis and a promising therapeutic target.
Collapse
Affiliation(s)
- V R Varma
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, United States of America
| | - Y An
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - P R Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - M Bilgel
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - A Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - T Loeffler
- Scantox Neuro GmbH, Parkring 12, 8074, Grambach, Austria
| | - D Amschl
- Scantox Neuro GmbH, Parkring 12, 8074, Grambach, Austria
| | - J Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - K Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - H Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - N J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- King's College London, Institute of Psychiatry, Psychology and Neuroscience Maurice Wohl Institute Clinical Neuroscience Institute London UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation London UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - S M Resnick
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - M Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, United States of America
| |
Collapse
|
14
|
Roberts JA, Basu-Roy S, Shin J, Varma VR, Williamson A, Blackshear C, Griswold ME, Candia J, Elango P, Karikkineth AC, Tanaka T, Ferrucci L, Thambisetty M. Serum Proteomic Signatures of Common Health Outcomes among Older Adults. Gerontology 2024; 70:269-278. [PMID: 38219723 DOI: 10.1159/000534753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 10/09/2023] [Indexed: 01/16/2024] Open
Abstract
INTRODUCTION In aging populations, the coexistence of multiple health comorbidities represents a significant challenge for clinicians and researchers. Leveraging advances in omics techniques to characterize these health conditions may provide insight into disease pathogenesis as well as reveal biomarkers for monitoring, prognostication, and diagnosis. Researchers have previously established the utility of big data approaches with respect to comprehensive health outcome measurements in younger populations, identifying protein markers that may provide significant health information with a single blood sample. METHODS Here, we employed a similar approach in two cohorts of older adults, the Baltimore Longitudinal Study of Aging (mean age = 76.12 years) and InCHIANTI Study (mean age = 66.05 years), examining the relationship between levels of serum proteins and 5 key health outcomes: kidney function, fasting glucose, physical activity, lean body mass, and percent body fat. RESULTS Correlations between proteins and health outcomes were primarily shared across both older adult cohorts. We further identified that most proteins associated with health outcomes in the older adult cohorts were not associated with the same outcomes in a prior study of a younger population. A subset of proteins, adiponectin, MIC-1, and NCAM-120, were associated with at least three health outcomes in both older adult cohorts but not in the previously published younger cohort, suggesting that they may represent plausible markers of general health in older adult populations. CONCLUSION Taken together, these findings suggest that comprehensive protein health markers have utility in aging populations and are distinct from those identified in younger adults, indicating unique mechanisms of disease with aging.
Collapse
Affiliation(s)
- Jackson A Roberts
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA,
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA,
| | - Sayantani Basu-Roy
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Jong Shin
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Vijay R Varma
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Andrew Williamson
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Chad Blackshear
- University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | - Julián Candia
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Palchamy Elango
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Ajoy C Karikkineth
- Clinical Research Core, National Institute on Aging, National Institutes of Health Intramural Research Program, Baltimore, Maryland, USA
| | - Toshiko Tanaka
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Roberts JA, Varma VR, Jones A, Thambisetty M. Drug Repurposing for Effective Alzheimer's Disease Medicines: Existing Methods and Novel Pharmacoepidemiological Approaches. J Alzheimers Dis 2024; 101:S299-S315. [PMID: 39422962 DOI: 10.3233/jad-240680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Drug repurposing is a methodology used to identify new clinical indications for existing drugs developed for other indications and has been successfully applied in the treatment of numerous conditions. Alzheimer's disease (AD) may be particularly well-suited to the application of drug repurposing methods given the absence of effective therapies and abundance of multi-omic data that has been generated in AD patients recently that may facilitate discovery of candidate AD drugs. A recent focus of drug repurposing has been in the application of pharmacoepidemiologic approaches to drug evaluation. Here, real-world clinical datasets with large numbers of patients are leveraged to establish observational efficacy of candidate drugs for further evaluation in disease models and clinical trials. In this review, we provide a selected overview of methods for drug repurposing, including signature matching, network analysis, molecular docking, phenotypic screening, semantic network, and pharmacoepidemiological analyses. Numerous methods have also been applied specifically to AD with the aim of nominating novel drug candidates for evaluation. These approaches, however, are prone to numerous limitations and potential biases that we have sought to address in the Drug Repurposing for Effective Alzheimer's Medicines (DREAM) study, a multi-step framework for selection and validation of potential drug candidates that has demonstrated the promise of STAT3 inhibitors and re-evaluated evidence for other drug candidates, such as phosphodiesterase inhibitors. Taken together, drug repurposing holds significant promise for development of novel AD therapeutics, particularly as the pace of data generation and development of analytical methods continue to accelerate.
Collapse
Affiliation(s)
- Jackson A Roberts
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Neurology, Massachusetts General Brigham, Boston, MA, USA
| | - Vijay R Varma
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Attila Jones
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
16
|
Llaurador-Coll M, Rios S, García-Gavilán JF, Babio N, Vilella E, Salas-Salvadó J. Plasma levels of neurology-related proteins are associated with cognitive performance in an older population with overweight/obesity and metabolic syndrome. GeroScience 2023; 45:2457-2470. [PMID: 36964401 PMCID: PMC10651568 DOI: 10.1007/s11357-023-00764-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/17/2023] [Indexed: 03/26/2023] Open
Abstract
Cognitive impairment is present in a broad spectrum of medical conditions and in aging. Here, we aimed to identify plasma proteins related to cognitive function in a sample of older adults with overweight/obesity and metabolic syndrome. A total of 129 subjects (mean age 64.7 years; 36% females) were grouped according to low (l-GCF, N=65) or high (h-GCF, N=64) global cognitive function and matched according to education, sex, age, and body mass index. Cognitive performance was assessed using neuropsychological tests. Plasma levels of 92 neurology-related proteins were assessed using a proximity extension assay. An elastic net regression analysis was used to identify proteins more associated with cognitive performance. Additionally, the protein expression levels were compared between the two groups by means of a t-test with false discovery rate correction. Pearson correlations were used to assess associations between the protein levels and scores from the neurocognitive tests. Six proteins (alpha-2-MRAP, HAGH, Siglec-9, MDGA1, IL12, and EDA2R) were identified as potential contributors to cognitive performance, remaining significantly increased in l-GCF compared to h-GCF participants after correction for multiple testing. Negative correlations (r= -0.23 to -0.18, i.e., lower protein levels, higher cognitive function) were found between global cognitive function and Siglec-9, NMNAT1, HAGH, LXN, gal-8, alpha-2-MRAP, IL12, PDGF-R-alpha, NAAA, EDA2R, CLEC1B, and LAT. Mini-mental state examination z scores showed the strongest correlations with protein levels, specifically negative correlations with CLEC1b, LXN, LAT, PLXNB3, NMNAT1, gal-8, HAGH, NAAA, CTSS, EZR, KYNU, MANF (r=-0.38 to -0.26) and a positive correlation with ADAM23 (r= 0.26). In summary, we identified several plasma proteins that were significantly associated with cognitive performance in older adults with obesity and metabolic syndrome, although further research is needed to replicate the results in larger samples and to include a predictive perspective.
Collapse
Affiliation(s)
- Martí Llaurador-Coll
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Reus, Spain
- Hospital Universitari Institut Pere Mata, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili-CERCA, Reus, Spain
| | - Santiago Rios
- Institut d'Investigació Sanitària Pere Virgili-CERCA, Reus, Spain
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesus F García-Gavilán
- Institut d'Investigació Sanitària Pere Virgili-CERCA, Reus, Spain
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Nancy Babio
- Institut d'Investigació Sanitària Pere Virgili-CERCA, Reus, Spain
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Elisabet Vilella
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Reus, Spain.
- Hospital Universitari Institut Pere Mata, Reus, Spain.
- Institut d'Investigació Sanitària Pere Virgili-CERCA, Reus, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain.
| | - Jordi Salas-Salvadó
- Institut d'Investigació Sanitària Pere Virgili-CERCA, Reus, Spain.
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
17
|
Zaman M, Fu Y, Chen PC, Sun H, Yang S, Wu Z, Wang Z, Poudel S, Serrano GE, Beach TG, Li L, Wang X, Peng J. Dissecting Detergent-Insoluble Proteome in Alzheimer's Disease by TMTc-Corrected Quantitative Mass Spectrometry. Mol Cell Proteomics 2023; 22:100608. [PMID: 37356496 PMCID: PMC10392608 DOI: 10.1016/j.mcpro.2023.100608] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023] Open
Abstract
Protein aggregation of amyloid-β peptides and tau are pathological hallmarks of Alzheimer's disease (AD), which are often resistant to detergent extraction and thus enriched in the insoluble proteome. However, additional proteins that coaccumulate in the detergent-insoluble AD brain proteome remain understudied. Here, we comprehensively characterized key proteins and pathways in the detergent-insoluble proteome from human AD brain samples using differential extraction, tandem mass tag (TMT) labeling, and two-dimensional LC-tandem mass spectrometry. To improve quantification accuracy of the TMT method, we developed a complement TMT-based strategy to correct for ratio compression. Through the meta-analysis of two independent detergent-insoluble AD proteome datasets (8914 and 8917 proteins), we identified 190 differentially expressed proteins in AD compared with control brains, highlighting the pathways of amyloid cascade, RNA splicing, endocytosis/exocytosis, protein degradation, and synaptic activity. To differentiate the truly detergent-insoluble proteins from copurified background during protein extraction, we analyzed the fold of enrichment for each protein by comparing the detergent-insoluble proteome with the whole proteome from the same AD samples. Among the 190 differentially expressed proteins, 84 (51%) proteins of the upregulated proteins (n = 165) were enriched in the insoluble proteome, whereas all downregulated proteins (n = 25) were not enriched, indicating that they were copurified components. The vast majority of these enriched 84 proteins harbor low-complexity regions in their sequences, including amyloid-β, Tau, TARDBP/TAR DNA-binding protein 43, SNRNP70/U1-70K, MDK, PTN, NTN1, NTN3, and SMOC1. Moreover, many of the enriched proteins in AD were validated in the detergent-insoluble proteome by five steps of differential extraction, proteomic analysis, or immunoblotting. Our study reveals a resource list of proteins and pathways that are exclusively present in the detergent-insoluble proteome, providing novel molecular insights to the formation of protein pathology in AD.
Collapse
Affiliation(s)
- Masihuz Zaman
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yingxue Fu
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, Tennessee, USA; Center for Proteomics and Metabolomics, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ping-Chung Chen
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Huan Sun
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shu Yang
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Zhiping Wu
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Zhen Wang
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Suresh Poudel
- Center for Proteomics and Metabolomics, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Geidy E Serrano
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Ling Li
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | - Xusheng Wang
- Center for Proteomics and Metabolomics, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
| | - Junmin Peng
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, Tennessee, USA; Center for Proteomics and Metabolomics, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
18
|
Roberts JA, Varma VR, Candia J, Tanaka T, Ferrucci L, Bennett DA, Thambisetty M. Unbiased proteomics and multivariable regularized regression techniques identify SMOC1, NOG, APCS, and NTN1 in an Alzheimer's disease brain proteomic signature. NPJ AGING 2023; 9:18. [PMID: 37414805 PMCID: PMC10326005 DOI: 10.1038/s41514-023-00112-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/18/2023] [Indexed: 07/08/2023]
Abstract
Advancements in omics methodologies have generated a wealth of high-dimensional Alzheimer's disease (AD) datasets, creating significant opportunities and challenges for data interpretation. In this study, we utilized multivariable regularized regression techniques to identify a reduced set of proteins that could discriminate between AD and cognitively normal (CN) brain samples. Utilizing eNetXplorer, an R package that tests the accuracy and significance of a family of elastic net generalized linear models, we identified 4 proteins (SMOC1, NOG, APCS, NTN1) that accurately discriminated between AD (n = 31) and CN (n = 22) middle frontal gyrus (MFG) tissue samples from Religious Orders Study participants with 83 percent accuracy. We then validated this signature in MFG samples from Baltimore Longitudinal Study of Aging participants using leave-one-out logistic regression cross-validation, finding that the signature again accurately discriminated AD (n = 31) and CN (n = 19) participants with a receiver operating characteristic curve area under the curve of 0.863. These proteins were strongly correlated with the burden of neurofibrillary tangle and amyloid pathology in both study cohorts. We additionally tested whether these proteins differed between AD and CN inferior temporal gyrus (ITG) samples and blood serum samples at the time of AD diagnosis in ROS and BLSA, finding that the proteins differed between AD and CN ITG samples but not in blood serum samples. The identified proteins may provide mechanistic insights into the pathophysiology of AD, and the methods utilized in this study may serve as the basis for further work with additional high-dimensional datasets in AD.
Collapse
Affiliation(s)
- Jackson A Roberts
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
| | - Vijay R Varma
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Julián Candia
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Toshiko Tanaka
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
19
|
Andrés-Benito P, Íñigo-Marco I, Brullas M, Carmona M, del Rio JA, Fernández-Irigoyen J, Santamaría E, Povedano M, Ferrer I. Proteostatic modulation in brain aging without associated Alzheimer's disease-and age-related neuropathological changes. Aging (Albany NY) 2023; 15:3295-3330. [PMID: 37179123 PMCID: PMC10449282 DOI: 10.18632/aging.204698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
AIMS (Phospho)proteomics of old-aged subjects without cognitive or behavioral symptoms, and without AD-neuropathological changes and lacking any other neurodegenerative alteration will increase understanding about the physiological state of human brain aging without associate neurological deficits and neuropathological lesions. METHODS (Phospho)proteomics using conventional label-free- and SWATH-MS (Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry) has been assessed in the frontal cortex (FC) of individuals without NFTs, senile plaques (SPs) and age-related co-morbidities classified by age (years) in four groups; group 1 (young, 30-44); group 2 (middle-aged: MA, 45-52); group 3 (early-elderly, 64-70); and group 4 (late-elderly, 75-85). RESULTS Protein levels and deregulated protein phosphorylation linked to similar biological terms/functions, but involving different individual proteins, are found in FC with age. The modified expression occurs in cytoskeleton proteins, membranes, synapses, vesicles, myelin, membrane transport and ion channels, DNA and RNA metabolism, ubiquitin-proteasome-system (UPS), kinases and phosphatases, fatty acid metabolism, and mitochondria. Dysregulated phosphoproteins are associated with the cytoskeleton, including microfilaments, actin-binding proteins, intermediate filaments of neurons and glial cells, and microtubules; membrane proteins, synapses, and dense core vesicles; kinases and phosphatases; proteins linked to DNA and RNA; members of the UPS; GTPase regulation; inflammation; and lipid metabolism. Noteworthy, protein levels of large clusters of hierarchically-related protein expression levels are stable until 70. However, protein levels of components of cell membranes, vesicles and synapses, RNA modulation, and cellular structures (including tau and tubulin filaments) are markedly altered from the age of 75. Similarly, marked modifications occur in the larger phosphoprotein clusters involving cytoskeleton and neuronal structures, membrane stabilization, and kinase regulation in the late elderly. CONCLUSIONS Present findings may increase understanding of human brain proteostasis modifications in the elderly in the subpopulation of individuals not having AD neuropathological change and any other neurodegenerative change in any telencephalon region.
Collapse
Affiliation(s)
- Pol Andrés-Benito
- Neurologic Diseases and Neurogenetics Group - Bellvitge Institute for Biomedical Research (IDIBE LL), L’Hospitalet de Llobregat, Barcelona 08907, Spain
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, L’Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Ignacio Íñigo-Marco
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), diSNA, Pamplona 31008, Spain
| | - Marta Brullas
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, L’Hospitalet de Llobregat, Barcelona 08907, Spain
- Neuropathology Group, Institute of Biomedical Research, IDIBELL, L’Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Margarita Carmona
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, L’Hospitalet de Llobregat, Barcelona 08907, Spain
- Neuropathology Group, Institute of Biomedical Research, IDIBELL, L’Hospitalet de Llobregat, Barcelona 08907, Spain
| | - José Antonio del Rio
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, L’Hospitalet de Llobregat, Barcelona 08907, Spain
- Molecular and Cellular Neurobiotechnology Group, Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Science Park Barcelona (PCB), Barcelona 08028, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08007, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), diSNA, Pamplona 31008, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), diSNA, Pamplona 31008, Spain
| | - Mónica Povedano
- Neurologic Diseases and Neurogenetics Group - Bellvitge Institute for Biomedical Research (IDIBE LL), L’Hospitalet de Llobregat, Barcelona 08907, Spain
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, L’Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Isidro Ferrer
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, L’Hospitalet de Llobregat, Barcelona 08907, Spain
- Neuropathology Group, Institute of Biomedical Research, IDIBELL, L’Hospitalet de Llobregat, Barcelona 08907, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, L’Hospitalet de Llobregat, Barcelona 08907, Spain
| |
Collapse
|
20
|
Liu X, Liu Y, Liu Q. Fluorescent Sensing Platforms for Detecting and Imaging the Biomarkers of Alzheimer's Disease. BIOSENSORS 2023; 13:bios13050515. [PMID: 37232876 DOI: 10.3390/bios13050515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disease with clinical symptoms of memory loss and cognitive impairment. Currently, no effective drug or therapeutic method is available for curing this disease. The major strategy used is to identify and block AD at its initial stage. Thus, early diagnosis is very important for intervention of the disease and assessment of drug efficacy. The gold standards of clinical diagnosis include the measurement of AD biomarkers in cerebrospinal fluid and positron emission tomography imaging of the brain for amyloid-β (Aβ) deposits. However, these methods are difficult to apply to the general screening of a large aging population because of their high cost, radioactivity and inaccessibility. Comparatively, blood sample detection is less invasive and more accessible for the diagnosis of AD. Hence, a variety of assays based on fluorescence analysis, surface-enhanced Raman scattering, electrochemistry, etc., were developed for the detection of AD biomarkers in blood. These methods play significant roles in recognizing asymptomatic AD and predicting the course of the disease. In a clinical setting, the combination of blood biomarker detection with brain imaging may enhance the accuracy of early diagnosis. Fluorescence-sensing techniques can be used not only to detect the levels of biomarkers in blood but also to image biomarkers in the brain in real time due to their low toxicity, high sensitivity and good biocompatibility. In this review, we summarize the newly developed fluorescent sensing platforms and their application in detecting and imaging biomarkers of AD, such as Aβ and tau in the last five years, and discuss their prospects for clinical applications.
Collapse
Affiliation(s)
- Xingyun Liu
- Department of Chemistry, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yibiao Liu
- Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Qiong Liu
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
21
|
Hydroxychloroquine lowers Alzheimer's disease and related dementias risk and rescues molecular phenotypes related to Alzheimer's disease. Mol Psychiatry 2023; 28:1312-1326. [PMID: 36577843 PMCID: PMC10005941 DOI: 10.1038/s41380-022-01912-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/29/2022]
Abstract
We recently nominated cytokine signaling through the Janus-kinase-signal transducer and activator of transcription (JAK/STAT) pathway as a potential AD drug target. As hydroxychloroquine (HCQ) has recently been shown to inactivate STAT3, we hypothesized that it may impact AD pathogenesis and risk. Among 109,124 rheumatoid arthritis patients from routine clinical care, HCQ initiation was associated with a lower risk of incident AD compared to methotrexate initiation across 4 alternative analyses schemes addressing specific types of biases including informative censoring, reverse causality, and outcome misclassification (hazard ratio [95% confidence interval] of 0.92 [0.83-1.00], 0.87 [0.81-0.93], 0.84 [0.76-0.93], and 0.87 [0.75-1.01]). We additionally show that HCQ exerts dose-dependent effects on late long-term potentiation (LTP) and rescues impaired hippocampal synaptic plasticity prior to significant accumulation of amyloid plaques and neurodegeneration in APP/PS1 mice. Additionally, HCQ treatment enhances microglial clearance of Aβ1-42, lowers neuroinflammation, and reduces tau phosphorylation in cell culture-based phenotypic assays. Finally, we show that HCQ inactivates STAT3 in microglia, neurons, and astrocytes suggesting a plausible mechanism associated with its observed effects on AD pathogenesis. HCQ, a relatively safe and inexpensive drug in current use may be a promising disease-modifying AD treatment. This hypothesis merits testing through adequately powered clinical trials in at-risk individuals during preclinical stages of disease progression.
Collapse
|
22
|
Zhao T, Liu C, Liu L, Wang X, Liu C. Aging-accelerated differential production and aggregation of STAT3 protein in neuronal cells and neural stem cells in the male mouse spinal cord. Biogerontology 2023; 24:137-148. [PMID: 36550376 DOI: 10.1007/s10522-022-10004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Aging-affected cellular compositions of the spinal cord are diverse and region specific. Age leads to the accumulation of abnormal protein aggregates and dysregulation of proteostasis. Dysregulated proteostasis and protein aggregates result from dysfunction of the ubiquitin-proteasome system (UPS) and autophagy. Understanding the molecular mechanisms of spinal cord aging is essential and important for scientists to discover new therapies for rejuvenation. We found age-related increases in STAT3 and decreases in Tuj1 in aging mouse spinal cords, which was characterized by increased expression of P16. Coaggregation of lysine-48 and lysine-63 ubiquitin with STAT3 was revealed in aging mouse spinal cords. STAT3-ubiquitin aggregates formed via lysine-48 and lysine-63 linkages were increased significantly in the aging spinal cords but not in central canal ependymal cells or neural stem cells in the spinal cord. These results highlight the increase in STAT3 and its region-specific aggregation and ubiquitin-conjugation during spinal cord aging.
Collapse
Affiliation(s)
- Tianyi Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Institute of Stem Cell and Tissue Engineering, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chang Liu
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Lihua Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xinmeng Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Institute of Stem Cell and Tissue Engineering, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chao Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Institute of Stem Cell and Tissue Engineering, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
23
|
Lardelli M. An Alternative View of Familial Alzheimer's Disease Genetics. J Alzheimers Dis 2023; 96:13-39. [PMID: 37718800 DOI: 10.3233/jad-230313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Probabilistic and parsimony-based arguments regarding available genetics data are used to propose that Hardy and Higgin's amyloid cascade hypothesis is valid but is commonly interpreted too narrowly to support, incorrectly, the primacy of the amyloid-β peptide (Aβ) in driving Alzheimer's disease pathogenesis. Instead, increased activity of the βCTF (C99) fragment of AβPP is the critical pathogenic determinant altered by mutations in the APP gene. This model is consistent with the regulation of APP mRNA translation via its 5' iron responsive element. Similar arguments support that the pathological effects of familial Alzheimer's disease mutations in the genes PSEN1 and PSEN2 are not exerted directly via changes in AβPP cleavage to produce different ratios of Aβ length. Rather, these mutations likely act through effects on presenilin holoprotein conformation and function, and possibly the formation and stability of multimers of presenilin holoprotein and/or of the γ-secretase complex. All fAD mutations in APP, PSEN1, and PSEN2 likely find unity of pathological mechanism in their actions on endolysosomal acidification and mitochondrial function, with detrimental effects on iron homeostasis and promotion of "pseudo-hypoxia" being of central importance. Aβ production is enhanced and distorted by oxidative stress and accumulates due to decreased lysosomal function. It may act as a disease-associated molecular pattern enhancing oxidative stress-driven neuroinflammation during the cognitive phase of the disease.
Collapse
Affiliation(s)
- Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
24
|
Mi L, Fan M, Liu T, Wu D, Wang Y, Li F, Cai Y, Qiu Z, Liu D, Cao L. Ginsenoside Rd protects transgenic Caenorhabditis elegans from β-amyloid toxicity by activating oxidative resistant. Front Pharmacol 2022; 13:1074397. [PMID: 36588689 PMCID: PMC9797510 DOI: 10.3389/fphar.2022.1074397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is a serious public health issue but few drugs are currently available for the disease, and these only target the symptoms. It is well established that oxidative stress plays a crucial role in AD, and there is compelling evidence linking oxidative stress to β-amyloid (Aβ). An exciting source of potential new AD therapeutic medication possibilities is medicinal plants. Ginsenoside Rd (GS-Rd) is one of the main bioactive substances in ginseng extracts. In our study, we used a network pharmacology analysis to identify overlapping GS-Rd (therapeutic) and AD (disease)-relevant protein targets, gene ontology (GO) and bio-process annotation, and the KEGG pathway analysis data predicted that GS-Rd impacts multiple targets and pathways, such as the MAPK signal pathway and the JAT-STAT3 signaling pathway. We then assessed the role of GS-Rd in C. elegans and found that GS-Rd prolongs lifespan, improves resistance to heat stress, delays physical paralysis and increases oxidative stress responses. Overall, these results suggest that GS-Rd protects against the toxicity of Aβ. The RNA-seq analysis revealed that GS-Rd achieves its effects by regulating gene expressions like daf-16 and skn-1, as well as by participating in many AD-related pathways like the MAPK signaling pathway. In addition, in CL4176 worms, GS-Rd decreased reactive oxygen species (ROS) levels and increased SOD activity. Additional research with transgenic worms showed that GS-Rd aided in the movement of DAF-16 from the cytoplasm to the nucleus. Taken together, the results indicate that GS-Rd significantly reduces Aβ aggregation by targeting the MAPK signal pathway, induces nuclear translocation of DAF-16 to activate downstream signaling pathways and increases resistance to oxidative stress in C. elegans to protect against Aβ-induced toxicity.
Collapse
Affiliation(s)
- Lihan Mi
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Meiling Fan
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Tianjia Liu
- Scientific Research Department, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Donglu Wu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China,School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
| | - Yang Wang
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Fuqiang Li
- School of Life Sciences, Jilin University, Changchun, China
| | - Yong Cai
- School of Life Sciences, Jilin University, Changchun, China
| | - Zhidong Qiu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China,*Correspondence: Lingling Cao, ; Da Liu, ; Zhidong Qiu,
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China,*Correspondence: Lingling Cao, ; Da Liu, ; Zhidong Qiu,
| | - Lingling Cao
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China,School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Lingling Cao, ; Da Liu, ; Zhidong Qiu,
| |
Collapse
|
25
|
Yu H, Li M, Pan Q, Liu Y, Zhang Y, He T, Yang H, Xiao Y, Weng Y, Gao Y, Ke D, Chai G, Wang J. Integrated analyses of brain and platelet omics reveal their common altered and driven molecules in Alzheimer's disease. MedComm (Beijing) 2022; 3:e180. [PMID: 36254251 PMCID: PMC9560744 DOI: 10.1002/mco2.180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/08/2022] Open
Abstract
Platelets may serve as a perfect peripheral source for exploring diagnostic biomarkers for Alzheimer's disease (AD); however, the molecular linkage between platelet and the brain is missing. To find the common altered and driving molecules in both brain and the platelet, we performed an integrated analysis of our platelet omics and brain omics reported in the literature, and analyzed their correlations with AD-specific pathology and cognitive impairment. By integrating the gene and protein expression profiles from 269 AD patients, we deduced 239 differentially expressed proteins (DEPs) appeared in both brain and the platelet, and 70.3% of them had consistent changes. Further analysis demonstrated that the altered brain and peripheral regulations were pinpointed into 10 imbalanced pathways. We also found that 117 DEPs, including ADAM10, were closely associated to the AD-specific β-amyloid and tau pathologies; and the changes of IDH3B and RTN1 had a potential diagnostic value for cognitive impairment analyzed by machine learning. Finally, we identified that HMOX2 and SERPINA3 could serve as driving molecules in neurodegeneration, and they were increased and decreased in AD patients, respectively. Together, this integrated brain and platelet omics provides a valuable resource for establishing efficient peripheral diagnostic biomarkers and potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Haitao Yu
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Mengzhu Li
- Department of NeurosurgeryWuhan Central Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qihang Pan
- Department of NeurosurgeryWuhan Central Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yanchao Liu
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yao Zhang
- Department of EndocrinologyLiyuan HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ting He
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Huisheng Yang
- Institute of Acupuncture and MoxibustionChina Academy of Chinese Medical SciencesBeijingChina
| | - Yue Xiao
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ying Weng
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yang Gao
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dan Ke
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Gaoshang Chai
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Jian‐Zhi Wang
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| |
Collapse
|
26
|
Desai RJ, Mahesri M, Lee SB, Varma VR, Loeffler T, Schilcher I, Gerhard T, Segal JB, Ritchey ME, Horton DB, Kim SC, Schneeweiss S, Thambisetty M. No association between initiation of phosphodiesterase-5 inhibitors and risk of incident Alzheimer's disease and related dementia: results from the Drug Repurposing for Effective Alzheimer's Medicines study. Brain Commun 2022; 4:fcac247. [PMID: 36330433 PMCID: PMC9598543 DOI: 10.1093/braincomms/fcac247] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/11/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
We evaluated the hypothesis that phosphodiesterase-5 inhibitors, including sildenafil and tadalafil, may be associated with reduced incidence of Alzheimer's disease and related dementia using a patient-level cohort study of Medicare claims and cell culture-based phenotypic assays. We compared incidence of Alzheimer's disease and related dementia after phosphodiesterase-5 inhibitor initiation versus endothelin receptor antagonist initiation among patients with pulmonary hypertension after controlling for 76 confounding variables through propensity score matching. Across four separate analytic approaches designed to address specific types of biases including informative censoring, reverse causality, and outcome misclassification, we observed no evidence for a reduced risk of Alzheimer's disease and related dementia with phosphodiesterase-5 inhibitors;hazard ratio (95% confidence interval): 0.99 (0.69-1.43), 1.00 (0.71-1.42), 0.67 (0.43-1.06), and 1.15 (0.57-2.34). We also did not observe evidence that sildenafil ameliorated molecular abnormalities relevant to Alzheimer's disease in most cell culture-based phenotypic assays. These results do not provide support to the hypothesis that phosphodiesterase-5 inhibitors are promising repurposing candidates for Alzheimer's disease and related dementia.
Collapse
Affiliation(s)
- Rishi J Desai
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Mufaddal Mahesri
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Su Been Lee
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Vijay R Varma
- Clinical & Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA
| | - Tina Loeffler
- QPS Austria GmbH, Parkring 12, 8074 Grambach, Austria
| | | | - Tobias Gerhard
- Rutgers Center for Pharmacoepidemiology and Treatment Science, New Brunswick, NJ 08901, USA
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Jodi B Segal
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mary E Ritchey
- Rutgers Center for Pharmacoepidemiology and Treatment Science, New Brunswick, NJ 08901, USA
| | - Daniel B Horton
- Rutgers Center for Pharmacoepidemiology and Treatment Science, New Brunswick, NJ 08901, USA
- Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08901, USA
| | - Seoyoung C Kim
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital & Harvard Medical School, Boston, MA 02115, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sebastian Schneeweiss
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Madhav Thambisetty
- Clinical & Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA
| |
Collapse
|
27
|
Biomarker Genes Discovery of Alzheimer’s Disease by Multi-Omics-Based Gene Regulatory Network Construction of Microglia. Brain Sci 2022; 12:brainsci12091196. [PMID: 36138932 PMCID: PMC9496783 DOI: 10.3390/brainsci12091196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/15/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Microglia, the major immune cells in the brain, mediate neuroinflammation, increased oxidative stress, and impaired neurotransmission in Alzheimer’s disease (AD), in which most AD risk genes are highly expressed. In microglia, due to the limitations of current single-omics data analysis, risk genes, the regulatory mechanisms, the mechanisms of action of immune responses and the exploration of drug targets for AD immunotherapy are still unclear. Therefore, we proposed a method to integrate multi-omics data based on the construction of gene regulatory networks (GRN), by combining weighted gene co-expression network analysis (WGCNA) with single-cell regulatory network inference and clustering (SCENIC). This enables snRNA-seq data and bulkRNA-seq data to obtain data on the deeper intermolecular regulatory relationships, related genes, and the molecular mechanisms of immune-cell action. In our approach, not only were central transcription factors (TF) STAT3, CEBPB, SPI1, and regulatory mechanisms identified more accurately than with single-omics but also immunotherapy targeting central TFs to drugs was found to be significantly different between patients. Thus, in addition to providing new insights into the potential regulatory mechanisms and pathogenic genes of AD microglia, this approach can assist clinicians in making the most rational treatment plans for patients with different risks; it also has significant implications for identifying AD immunotherapy targets and targeting microglia-associated immune drugs.
Collapse
|
28
|
Thrush KL, Bennett DA, Gaiteri C, Horvath S, van Dyck CH, Higgins-Chen AT, Levine ME. Aging the brain: multi-region methylation principal component based clock in the context of Alzheimer's disease. Aging (Albany NY) 2022; 14:5641-5668. [PMID: 35907208 PMCID: PMC9365556 DOI: 10.18632/aging.204196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/05/2022] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) risk increases exponentially with age and is associated with multiple molecular hallmarks of aging, one of which is epigenetic alterations. Epigenetic age predictors based on 5' cytosine methylation (DNAm), or epigenetic clocks, have previously suggested that epigenetic age acceleration may occur in AD brain tissue. Epigenetic clocks are promising tools for the quantification of biological aging, yet we hypothesize that investigation of brain aging in AD will be assisted by the development of brain-specific epigenetic clocks. Therefore, we generated a novel age predictor termed PCBrainAge that was trained solely in cortical samples. This predictor utilizes a combination of principal components analysis and regularized regression, which reduces technical noise and greatly improves test-retest reliability. To characterize the scope of PCBrainAge's utility, we generated DNAm data from multiple brain regions in a sample from the Religious Orders Study and Rush Memory and Aging Project. PCBrainAge captures meaningful heterogeneity of aging: Its acceleration demonstrates stronger associations with clinical AD dementia, pathologic AD, and APOE ε4 carrier status compared to extant epigenetic age predictors. It further does so across multiple cortical and subcortical regions. Overall, PCBrainAge's increased reliability and specificity makes it a particularly promising tool for investigating heterogeneity in brain aging, as well as epigenetic alterations underlying AD risk and resilience.
Collapse
Affiliation(s)
- Kyra L. Thrush
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Christopher Gaiteri
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
- Department of Biostatistics, Fielding School of Public Health, UCLA, Los Angeles, CA 90095, USA
| | - Christopher H. van Dyck
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Alzheimer’s Disease Research Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Albert T. Higgins-Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Morgan E. Levine
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06519, USA
- Altos Labs, San Diego Institute of Science, San Diego, CA 92114, USA
| |
Collapse
|
29
|
Brewer KD, Shi SM, Wyss-Coray T. Unraveling protein dynamics to understand the brain - the next molecular frontier. Mol Neurodegener 2022; 17:45. [PMID: 35717317 PMCID: PMC9206758 DOI: 10.1186/s13024-022-00546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
The technological revolution to measure global gene expression at the single-cell level is currently transforming our knowledge of the brain and neurological diseases, leading from a basic understanding of genetic regulators and risk factors to one of more complex gene interactions and biological pathways. Looking ahead, our next challenge will be the reliable measurement and understanding of proteins. We describe in this review how to apply new, powerful methods of protein labeling, tracking, and detection. Recent developments of these methods now enable researchers to uncover protein mechanisms in vivo that may previously have only been hypothesized. These methods are also useful for discovering new biology because how proteins regulate systemic interactions is not well understood in most cases, such as how they travel through the bloodstream to distal targets or cross the blood–brain barrier. Genetic sequencing of DNA and RNA have enabled many great discoveries in the past 20 years, and now, the protein methods described here are creating a more complete picture of how cells to whole organisms function. It is likely that these developments will generate another transformation in biomedical research and our understanding of the brain and will ultimately allow for patient-specific medicine on a protein level.
Collapse
Affiliation(s)
- Kyle D Brewer
- ChEM-H, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Sophia M Shi
- ChEM-H, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.,Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Tony Wyss-Coray
- ChEM-H, Stanford University, Stanford, CA, USA. .,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA. .,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA. .,Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA.
| |
Collapse
|
30
|
Williams T, Ruiz AJ, Ruiz AM, Vo Q, Tsering W, Xu G, McFarland K, Giasson BI, Sullivan P, Borchelt DR, Chakrabarty P. Impact of APOE genotype on prion-type propagation of tauopathy. Acta Neuropathol Commun 2022; 10:57. [PMID: 35440098 PMCID: PMC9019935 DOI: 10.1186/s40478-022-01359-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/01/2022] [Indexed: 11/10/2022] Open
Abstract
Apolipoprotein (APOE) is a major risk factor of Alzheimer's disease (AD), with the E2, E3 and E4 isoforms differentially regulating the burden of AD-associated neuropathologies, such as amyloid β and tau. In AD, pathological tau is thought to spread along neuroanatomic connections following a prion-like mechanism. To provide insights into whether APOE isoforms differentially regulate the prion properties of tau and determine trans-synaptic transmission of tauopathy, we have generated human P301S mutant tau transgenic mice (PS19) that carry human APOE (APOE2, APOE3 or APOE4) or mouse Apoe allele. Mice received intrahippocamal injections of preformed aggregates of K18-tau at young ages, which were analyzed 5 months post-inoculation. Compared to the parental PS19 mice with mouse Apoe alleles, PS19 mice expressing human APOE alleles generally responded to K18-tau seeding with more intense AT8 immunoreactive phosphorylated tau athology. APOE3 homozygous mice accumulated higher levels of AT8-reactive ptau and microgliosis relative to APOE2 or APOE4 homozygotes (E3 > E4~2). PS19 mice that were heterozygous for APOE3 showed similar results, albeit to a lesser degree. In the timeframe of our investigation, we did not observe significant induction of argentophilic or MC1-reactive neurofibrillary tau tangle in PS19 mice homozygous for human APOE. To our knowledge, this is the first comprehensive study in rodent models that provides neuropathological insights into the dose-dependent effect of APOE isoforms on phosphorylated tau pathology induced by recombinant tau prions.
Collapse
|