1
|
Lv Y, Li H. Blood diagnostic and prognostic biomarkers in amyotrophic lateral sclerosis. Neural Regen Res 2025; 20:2556-2570. [PMID: 39314138 DOI: 10.4103/nrr.nrr-d-24-00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease for which the current treatment approaches remain severely limited. The principal pathological alterations of the disease include the selective degeneration of motor neurons in the brain, brainstem, and spinal cord, as well as abnormal protein deposition in the cytoplasm of neurons and glial cells. The biological markers under extensive scrutiny are predominantly located in the cerebrospinal fluid, blood, and even urine. Among these biomarkers, neurofilament proteins and glial fibrillary acidic protein most accurately reflect the pathologic changes in the central nervous system, while creatinine and creatine kinase mainly indicate pathological alterations in the peripheral nerves and muscles. Neurofilament light chain levels serve as an indicator of neuronal axonal injury that remain stable throughout disease progression and are a promising diagnostic and prognostic biomarker with high specificity and sensitivity. However, there are challenges in using neurofilament light chain to differentiate amyotrophic lateral sclerosis from other central nervous system diseases with axonal injury. Glial fibrillary acidic protein predominantly reflects the degree of neuronal demyelination and is linked to non-motor symptoms of amyotrophic lateral sclerosis such as cognitive impairment, oxygen saturation, and the glomerular filtration rate. TAR DNA-binding protein 43, a pathological protein associated with amyotrophic lateral sclerosis, is emerging as a promising biomarker, particularly with advancements in exosome-related research. Evidence is currently lacking for the value of creatinine and creatine kinase as diagnostic markers; however, they show potential in predicting disease prognosis. Despite the vigorous progress made in the identification of amyotrophic lateral sclerosis biomarkers in recent years, the quest for definitive diagnostic and prognostic biomarkers remains a formidable challenge. This review summarizes the latest research achievements concerning blood biomarkers in amyotrophic lateral sclerosis that can provide a more direct basis for the differential diagnosis and prognostic assessment of the disease beyond a reliance on clinical manifestations and electromyography findings.
Collapse
Affiliation(s)
- Yongting Lv
- Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Hongfu Li
- Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Department of Medical Genetics and Center for Rare disease, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Nanhu Brain-Computer Interface Institute, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Horiuchi M, Watanabe S, Komine O, Takahashi E, Kaneko K, Itohara S, Shimada M, Ogi T, Yamanaka K. ALS-linked mutant TDP-43 in oligodendrocytes induces oligodendrocyte damage and exacerbates motor dysfunction in mice. Acta Neuropathol Commun 2024; 12:184. [PMID: 39605053 PMCID: PMC11603663 DOI: 10.1186/s40478-024-01893-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024] Open
Abstract
Nuclear clearance and cytoplasmic aggregation of TAR DNA-binding protein of 43 kDa (TDP-43) are pathological hallmarks of amyotrophic lateral sclerosis (ALS) and its pathogenic mechanism is mediated by both loss-of-function and gain-of-toxicity of TDP-43. However, the role of TDP-43 gain-of-toxicity in oligodendrocytes remains unclear. To investigate the impact of excess TDP-43 on oligodendrocytes, we established transgenic mice overexpressing the ALS-linked mutant TDP-43M337V in oligodendrocytes through crossbreeding with Mbp-Cre mice. Two-step crossbreeding of floxed TDP-43M337V and Mbp-Cre mice resulted in the heterozygous low-level systemic expression of TDP-43M337V with (Cre-positive) or without (Cre-negative) oligodendrocyte-specific overexpression of TDP-43M337V. Although Cre-negative mice also exhibit subtle motor dysfunction, TDP-43M337V overexpression in oligodendrocytes aggravated clasping signs and gait disturbance accompanied by myelin pallor in the corpus callosum and white matter of the lumbar spinal cord in Cre-positive mice. RNA sequencing analysis of oligodendrocyte lineage cells isolated from whole brains of 12-month-old transgenic mice revealed downregulation of myelinating oligodendrocyte marker genes and cholesterol-related genes crucial for myelination, along with marked upregulation of apoptotic pathway genes. Immunofluorescence staining showed cleaved caspase 3-positive apoptotic oligodendrocytes surrounded by activated microglia and astrocytes in aged transgenic mice. Collectively, our findings demonstrate that an excess amount of ALS-linked mutant TDP-43 expression in oligodendrocytes exacerbates motor dysfunction in mice, likely through oligodendrocyte dysfunction and neuroinflammation. Therefore, targeting oligodendrocyte protection, particularly through ameliorating TDP-43 pathology, could represent a potential therapeutic approach for ALS.
Collapse
Affiliation(s)
- Mai Horiuchi
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan
- Department of Neuroscience and Pathobiology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, 466-8550, Japan
| | - Seiji Watanabe
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan
- Department of Neuroscience and Pathobiology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, 466-8550, Japan
| | - Okiru Komine
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan
- Department of Neuroscience and Pathobiology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, 466-8550, Japan
| | - Eiki Takahashi
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kumi Kaneko
- Support Unit for Bio-Material Analysis, Research Resources Division, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Shigeyoshi Itohara
- Laboratory of Behavioral Genetics, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Mayuko Shimada
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Aichi, 464-8601, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Aichi, 466-8550, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Aichi, 464-8601, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Aichi, 466-8550, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan.
- Department of Neuroscience and Pathobiology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, 466-8550, Japan.
- Institute for Glyco-Core Research (iGCORE), Nagoya University, Aichi, Japan.
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Aichi, Japan.
- Research Institute for Quantum and Chemical Innovation, Institutes of Innovation for Future Society, Nagoya University, Aichi, Japan.
| |
Collapse
|
3
|
Wan H, Qian W, Wei B, Tian K, Chen Z, Zhang J, Chen F. A bibliometric analysis of gene editing and amyotrophic lateral sclerosis (from 2004 to 2024). Front Neurosci 2024; 18:1499025. [PMID: 39659885 PMCID: PMC11629316 DOI: 10.3389/fnins.2024.1499025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
Objective To learn more about gene editing and ALS, and to provide a comprehensive view of gene editing for further treatment of amyotrophic lateral sclerosis. Methods We searched 1981 records from Web of Science core collection and Pubmed, Scopus, of which 1,292 records were obtained after exclusion. We then scientifically and metrologically analyzed these records for spatial and temporal distribution, author distribution, subject categories, subject distribution, references, and keywords using R, software CiteSpace and VOSviewer. Results Our analysis provides basic information about research in the field, suggests that the field has stabilized over the past decade, and identifies potential partners for interested researchers. Current research in this area is focused on inflammatory mechanisms, immune mechanisms, related diseases, and associated cytokines in ALS. Conclusion RNA Editing, Antisense Bligonucleotide, and Glycine Receptor are cutting-edge research topics in this field, which is undergoing rapid development. We hope that this work will provide new ideas for advancing the scientific research and clinical application of ALS.
Collapse
Affiliation(s)
- Hejia Wan
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- School of Nursing, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wenli Qian
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- School of Humanities and Social Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking, China
| | - Bingqi Wei
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- School of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Kaiyue Tian
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- School of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ziyi Chen
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- School of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiong Zhang
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Fang Chen
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
4
|
Tammara V, Doke AA, Jha SK, Das A. Deciphering the Monomeric and Dimeric Conformational Landscapes of the Full-Length TDP-43 and the Impact of the C-Terminal Domain. ACS Chem Neurosci 2024. [PMID: 39548975 DOI: 10.1021/acschemneuro.4c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2024] Open
Abstract
The aberrant aggregation of TAR DNA-binding protein 43 kDa (TDP-43) in cells leads to the pathogenesis of multiple fatal neurodegenerative diseases. Decoding the proposed initial transition between its functional dimeric and aggregation-prone monomeric states can potentially design a viable therapeutic strategy, which is presently limited by the lack of structural detail of the full-length TDP-43. To achieve a complete understanding of such a delicate phase space, we employed a multiscale simulation approach that unearths numerous crucial features, broadly summarized in two categories: (1) state-independent features that involve inherent chain collapsibility, rugged polymorphic landscape dictated by the terminal domains, high β-sheet propensity, structural integrity preserved by backbone-based intrachain hydrogen bonds and electrostatic forces, the prominence of the C-terminal domain in the intrachain cross-domain interfaces, and equal participation of hydrophobic and hydrophilic (charged and polar) residues in cross-domain interfaces; and (2) dimerization-modulated characteristics that encompass slower collapsing dynamics, restricted polymorphic landscape, the dominance of side chains in interchain hydrogen bonds, the appearance of the N-terminal domain in the dimer interface, and the prominence of hydrophilic (specifically polar) residues in interchain homo- and cross-domain interfaces. In our work, the ill-known C-terminal domain appears as the most crucial structure-dictating domain, which preferably populates a compact conformation with a high β-sheet propensity in its isolated state stabilized by intrabackbone hydrogen bonds, and these signatures are comparatively faded in its integrated form. Validation of our simulated observables by a complementary spectroscopic approach on multiple counts ensures the robustness of the computationally predicted features of the TDP-43 aggregation landscape.
Collapse
Affiliation(s)
- Vaishnavi Tammara
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhilasha A Doke
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Atanu Das
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Yang C, Leifer C, Lammerding J, Hu F. Regulation of TAR DNA binding protein 43 (TDP-43) homeostasis by cytosolic DNA accumulation. J Biol Chem 2024; 300:107999. [PMID: 39551138 DOI: 10.1016/j.jbc.2024.107999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is a DNA/RNA binding protein predominantly localized in the nucleus under physiological conditions. TDP-43 proteinopathy, characterized by cytoplasmic aggregation and nuclear loss, is associated with many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Thus it is crucial to understand the molecular mechanism regulating TDP-43 homeostasis. Here, we show that the uptake of oligodeoxynucleotides (ODNs) from the extracellular space induces reversible TDP-43 cytoplasmic puncta formation in both neurons and glia. ODNs facilitate the liquid-liquid phase separation of TDP-43 in vitro. Importantly, persistent accumulation of DNA in the cytoplasm leads to nuclear depletion of TDP-43 and enhanced production of a short isoform of TDP-43 (sTDP-43). In addition, in response to ODN uptake, the nuclear import receptor karyopherin subunit β1 (KPNB1) is sequestered in the cytosolic TDP-43 puncta. ALS-linked Q331K mutation decreases the dynamics of cytoplasmic TDP-43 puncta and increases the levels of sTDP-43. Moreover, the TDP-43 cytoplasmic puncta are induced by DNA damage and by impaired nuclear envelope integrity due to Lamin A/C deficiency. In summary, our data support that abnormal DNA accumulation in the cytoplasm may be one of the key mechanisms leading to TDP-43 proteinopathy and provides novel insights into molecular mechanisms of ALS caused by TDP-43 mutations.
Collapse
Affiliation(s)
- Cha Yang
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
| | - Cynthia Leifer
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Jan Lammerding
- Department of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Ithaca, New York, USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
6
|
Doke AA, Jha SK. Identification of a Hidden, Highly Aggregation-Prone Intermediate of Full-Length TDP-43 That Triggers its Misfolding and Amyloid Aggregation. Biochemistry 2024. [PMID: 39530145 DOI: 10.1021/acs.biochem.4c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In cells, TDP-43 is a crucial protein that can form harmful amyloid aggregates linked to fatal and incurable human neurodegenerative disorders. Normally, TDP-43 exists in a smaller soluble native state that prevents aggregation. However, aging and stress can destabilize this native state, leading to the formation of disease-causing amyloid aggregates via the formation of partially unfolded, high-energy intermediates with a greater tendency to aggregate. These intermediates are crucial in the early stages of amyloid formation and are challenging to study due to their low stability. Understanding the structure of these early aggregation-prone states of TDP-43 is essential for designing effective treatments for TDP-43 proteinopathies. Targeting these initial intermediates could be more effective than focusing on fully formed amyloid aggregates. By disrupting the aggregation process at this early stage, we may be able to prevent the progression of diseases related to TDP-43 aggregation. Hence, we decided to uncover the hidden, high-energy intermediates in equilibrium with the native states of TDP-43 by modulating the thermodynamic stability of the soluble native dimer (N form) and monomeric molten globular state (MG form) of full-length TDP-43. The thermodynamic modulation performed in the current study successfully revealed the highly aggregation-prone intermediate of full-length TDP-43, i.e., PUF. Moreover, we observed that along with high aggregation propensity, the aggregation kinetics and mechanisms of PUF differ from previously identified intermediates of full-length TDP-43 (the MG and I forms). The information regarding the initial aggregation-prone state of full-length TDP-43 could lead to therapies for amyloid diseases by halting early protein aggregation.
Collapse
Affiliation(s)
- Abhilasha A Doke
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Liang H, Zhou X, Zhang J, Xu W, Liu Y, Wang X, Hu Y, Xu R, Li X. The therapeutic potential of Apigenin in amyotrophic lateral sclerosis through ALDH1A2/Nrf2/ARE signaling. Mol Med 2024; 30:206. [PMID: 39521994 PMCID: PMC11550557 DOI: 10.1186/s10020-024-00977-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by motor neuron loss leading to muscle weakness and atrophy. Apigenin (APG), known for its antioxidant properties, holds potential as a therapeutic compound in ALS. METHODS We used the Tg(SOD1*G93A)1Gur/J transgenic mouse model of ALS to investigate the therapeutic effects of APG. Key measured included motor function via the ALSTDI score, molecular markers of oxidative stress (OS) and apoptosis in spinal cord tissues. Techniques used included pathological, Western blotting, flow cytometry, and qRT-PCR to assess the effect of ALDH1A2. RESULTS APG treatment attenuated weight loss and improved motor function scores in ALS mice compared to untreated ALS models. Molecular analyses revealed a significant upregulation of ALDH1A2 in APG-treated groups, along with a reduction in markers of OS and apoptosis. In vitro studies in NSC34 cells further confirmed the protective effects of APG against SOD1*G93A mutation-induced cytotoxicity. In addition, suppression of ALDH1A2 by shRNA exacerbated disease markers that were ameliorated by APG treatment. CONCLUSIONS Our results suggest that APG attenuates the progression of ALS pathology by regulating OS and apoptosis through ALDH1A2. These results support further investigation of APG as a potential therapeutic agent for the treatment of ALS.
Collapse
Affiliation(s)
- Huiting Liang
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Rare Disease Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health Commission, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xinhui Zhou
- Department of Neurosurgery, First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jie Zhang
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Rare Disease Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health Commission, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Wenyuan Xu
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Rare Disease Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health Commission, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yi Liu
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Rare Disease Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health Commission, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xinxin Wang
- Department of Neurology, Jiangxi Provincial People's Hospital, Nanchang, 330006, China
| | - Yushu Hu
- Department of Neurology, Jiangxi Provincial People's Hospital, Nanchang, 330006, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Nanchang, 330006, China.
| | - Xiaobing Li
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
- Rare Disease Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health Commission, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
8
|
Luthi-Carter R, Cappelli S, Le Roux-Bourdieu M, Tentillier N, Quinn JP, Petrozziello T, Gopalakrishnan L, Sethi P, Choudhary H, Bartolini G, Gebara E, Stuani C, Font L, An J, Ortega V, Sage J, Kosa E, Trombetta BA, Simeone R, Seredenina T, Afroz T, Berry JD, Arnold SE, Carlyle BC, Adolfsson O, Sadri-Vakili G, Buratti E, Bowser R, Agbas A. Location and function of TDP-43 in platelets, alterations in neurodegenerative diseases and arising considerations for current plasma biobank protocols. Sci Rep 2024; 14:21837. [PMID: 39294194 PMCID: PMC11410945 DOI: 10.1038/s41598-024-70822-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 08/21/2024] [Indexed: 09/20/2024] Open
Abstract
The TAR DNA Binding Protein 43 (TDP-43) has been implicated in the pathogenesis of human neurodegenerative diseases and exhibits hallmark neuropathology in amyotrophic lateral sclerosis (ALS). Here, we explore its tractability as a plasma biomarker of disease and describe its localization and possible functions in the cytosol of platelets. Novel TDP-43 immunoassays were developed on three different technical platforms and qualified for specificity, signal-to-noise ratio, detection range, variation, spike recovery and dilution linearity in human plasma samples. Surprisingly, implementation of these assays demonstrated that biobank-archived plasma samples yielded considerable heterogeneity in TDP-43 levels. Importantly, subsequent investigation attributed these differences to variable platelet recovery. Fractionations of fresh blood revealed that ≥ 95% of the TDP-43 in platelet-containing plasma was compartmentalized within the platelet cytosol. We reasoned that this highly concentrated source of TDP-43 comprised an interesting substrate for biochemical analyses. Additional characterization of platelets revealed the presence of the disease-associated phosphoserine 409/410 TDP-43 proteoform and many neuron- and astrocyte-expressed TDP-43 mRNA targets. Considering these striking similarities, we propose that TDP-43 may serve analogous functional roles in platelets and synapses, and that the study of platelet TDP-43 might provide a window into disease-related TDP-43 dyshomeostasis in the central nervous system.
Collapse
Affiliation(s)
- Ruth Luthi-Carter
- AC Immune, SA (ACIU), EPFL Innovation Park Building B, 1015, Lausanne, Switzerland.
| | - Sara Cappelli
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | | | - Noemie Tentillier
- AC Immune, SA (ACIU), EPFL Innovation Park Building B, 1015, Lausanne, Switzerland
| | - James P Quinn
- Massachusetts General Hospital Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
- Massachusetts Alzheimer's Disease Research Center (ADRC), 114 16th Street, Charlestown, MA, 02129, USA
- MassGeneral Institute for Neurodegenerative Disease, 114 16th Street, Charlestown, MA, 02129, USA
- Eisai US, 35 Cambridgepark Drive, Cambridge, MA, 02140, USA
| | - Tiziana Petrozziello
- Sean M. Healey and AMG Center for ALS at MassGeneral, Massachusetts General Hospital, 165 Cambridge Street, Boston, MA, 02114, USA
| | - Lathika Gopalakrishnan
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W. Thomas Road, Phoenix, AZ, 85013, USA
| | - Purva Sethi
- Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Himanshi Choudhary
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | - Giorgia Bartolini
- AC Immune, SA (ACIU), EPFL Innovation Park Building B, 1015, Lausanne, Switzerland
| | - Elias Gebara
- AC Immune, SA (ACIU), EPFL Innovation Park Building B, 1015, Lausanne, Switzerland
| | - Cristiana Stuani
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | - Laure Font
- AC Immune, SA (ACIU), EPFL Innovation Park Building B, 1015, Lausanne, Switzerland
| | - Jiyan An
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W. Thomas Road, Phoenix, AZ, 85013, USA
| | - Vanessa Ortega
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W. Thomas Road, Phoenix, AZ, 85013, USA
| | - Jessica Sage
- Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
- Boehringer Ingelheim Vetmedica, St Joseph, MO, 64503, USA
| | - Edina Kosa
- Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Bianca A Trombetta
- Massachusetts General Hospital Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
- Massachusetts Alzheimer's Disease Research Center (ADRC), 114 16th Street, Charlestown, MA, 02129, USA
| | - Roberto Simeone
- Dipartimento di Medicina Trasfusionale Giuliano-Isontina, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), Trieste, Italy
| | - Tamara Seredenina
- AC Immune, SA (ACIU), EPFL Innovation Park Building B, 1015, Lausanne, Switzerland
| | - Tariq Afroz
- AC Immune, SA (ACIU), EPFL Innovation Park Building B, 1015, Lausanne, Switzerland
| | - James D Berry
- Massachusetts General Hospital Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
- Sean M. Healey and AMG Center for ALS at MassGeneral, Massachusetts General Hospital, 165 Cambridge Street, Boston, MA, 02114, USA
- Neurological Clinical Research Institute, 165 Cambridge Street, Boston, MA, 02114, USA
| | - Steven E Arnold
- Massachusetts General Hospital Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
- Massachusetts Alzheimer's Disease Research Center (ADRC), 114 16th Street, Charlestown, MA, 02129, USA
- MassGeneral Institute for Neurodegenerative Disease, 114 16th Street, Charlestown, MA, 02129, USA
- Sean M. Healey and AMG Center for ALS at MassGeneral, Massachusetts General Hospital, 165 Cambridge Street, Boston, MA, 02114, USA
| | - Becky C Carlyle
- Massachusetts General Hospital Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
- Massachusetts Alzheimer's Disease Research Center (ADRC), 114 16th Street, Charlestown, MA, 02129, USA
- Department of Physiology, Anatomy and Genetics and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX13QU, UK
| | - Oskar Adolfsson
- AC Immune, SA (ACIU), EPFL Innovation Park Building B, 1015, Lausanne, Switzerland
| | - Ghazaleh Sadri-Vakili
- Massachusetts General Hospital Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
- MassGeneral Institute for Neurodegenerative Disease, 114 16th Street, Charlestown, MA, 02129, USA
- Sean M. Healey and AMG Center for ALS at MassGeneral, Massachusetts General Hospital, 165 Cambridge Street, Boston, MA, 02114, USA
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | - Robert Bowser
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W. Thomas Road, Phoenix, AZ, 85013, USA
| | - Abdulbaki Agbas
- Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| |
Collapse
|
9
|
Wasielewska JM, Chaves JCS, Cabral-da-Silva MC, Pecoraro M, Viljoen SJ, Nguyen TH, Bella VL, Oikari LE, Ooi L, White AR. A patient-derived amyotrophic lateral sclerosis blood-brain barrier model for focused ultrasound-mediated anti-TDP-43 antibody delivery. Fluids Barriers CNS 2024; 21:65. [PMID: 39138578 PMCID: PMC11323367 DOI: 10.1186/s12987-024-00565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disorder with minimally effective treatment options. An important hurdle in ALS drug development is the non-invasive therapeutic access to the motor cortex currently limited by the presence of the blood-brain barrier (BBB). Focused ultrasound and microbubble (FUS+ MB) treatment is an emerging technology that was successfully used in ALS patients to temporarily open the cortical BBB. However, FUS+ MB-mediated drug delivery across ALS patients' BBB has not yet been reported. Similarly, the effects of FUS+ MB on human ALS BBB cells remain unexplored. METHODS Here we established the first FUS+ MB-compatible, fully-human ALS patient-cell-derived BBB model based on induced brain endothelial-like cells (iBECs) to study anti-TDP-43 antibody delivery and FUS+ MB bioeffects in vitro. RESULTS Generated ALS iBECs recapitulated disease-specific hallmarks of BBB pathology, including reduced BBB integrity and permeability, and TDP-43 proteinopathy. The results also identified differences between sporadic ALS and familial (C9orf72 expansion carrying) ALS iBECs reflecting patient heterogeneity associated with disease subgroups. Studies in these models revealed successful ALS iBEC monolayer opening in vitro with no adverse cellular effects of FUS+ MB as reflected by lactate dehydrogenase (LDH) release viability assay and the lack of visible monolayer damage or morphology change in FUS+ MB treated cells. This was accompanied by the molecular bioeffects of FUS+ MB in ALS iBECs including changes in expression of tight and adherens junction markers, and drug transporter and inflammatory mediators, with sporadic and C9orf72 ALS iBECs generating transient specific responses. Additionally, we demonstrated an effective increase in the delivery of anti-TDP-43 antibody with FUS+ MB in C9orf72 (2.7-fold) and sporadic (1.9-fold) ALS iBECs providing the first proof-of-concept evidence that FUS+ MB can be used to enhance the permeability of large molecule therapeutics across the BBB in a human ALS in vitro model. CONCLUSIONS Together, this study describes the first characterisation of cellular and molecular responses of ALS iBECs to FUS+ MB and provides a fully-human platform for FUS+ MB-mediated drug delivery screening on an ALS BBB in vitro model.
Collapse
Affiliation(s)
- Joanna M Wasielewska
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, St. Lucia, QLD, Australia
| | - Juliana C S Chaves
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Mauricio Castro Cabral-da-Silva
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute (MCRI), Parkville, VIC, Australia
| | - Martina Pecoraro
- ALS Clinical Research Centre and Laboratory of Neurochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo, Palermo, Italy
| | - Stephani J Viljoen
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Science, University of Queensland, St. Lucia, QLD, Australia
| | - Tam Hong Nguyen
- Flow Cytometry and Imaging Facility, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Vincenzo La Bella
- ALS Clinical Research Centre and Laboratory of Neurochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo, Palermo, Italy
| | - Lotta E Oikari
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Lezanne Ooi
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW, Australia
| | - Anthony R White
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.
- School of Biomedical Science, University of Queensland, St. Lucia, QLD, Australia.
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
10
|
Huang WP, Ellis BCS, Hodgson RE, Sanchez Avila A, Kumar V, Rayment J, Moll T, Shelkovnikova TA. Stress-induced TDP-43 nuclear condensation causes splicing loss of function and STMN2 depletion. Cell Rep 2024; 43:114421. [PMID: 38941189 DOI: 10.1016/j.celrep.2024.114421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/04/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024] Open
Abstract
TDP-43 protein is dysregulated in several neurodegenerative diseases, which often have a multifactorial nature and may have extrinsic stressors as a "second hit." TDP-43 undergoes reversible nuclear condensation in stressed cells including neurons. Here, we demonstrate that stress-inducible nuclear TDP-43 condensates are RNA-depleted, non-liquid assemblies distinct from the known nuclear bodies. Their formation requires TDP-43 oligomerization and ATP and is inhibited by RNA. Using a confocal nanoscanning assay, we find that amyotrophic lateral sclerosis (ALS)-linked mutations alter stress-induced TDP-43 condensation by changing its affinity to liquid-like ribonucleoprotein assemblies. Stress-induced nuclear condensation transiently inactivates TDP-43, leading to loss of interaction with its protein binding partners and loss of function in splicing. Splicing changes are especially prominent and persisting for STMN2 RNA, and STMN2 protein becomes rapidly depleted early during stress. Our results point to early pathological changes to TDP-43 in the nucleus and support therapeutic modulation of stress response in ALS.
Collapse
Affiliation(s)
- Wan-Ping Huang
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Brittany C S Ellis
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Rachel E Hodgson
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Anna Sanchez Avila
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Vedanth Kumar
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Jessica Rayment
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Tobias Moll
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Tatyana A Shelkovnikova
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK.
| |
Collapse
|
11
|
Doke AA, Jha SK. Electrostatics Choreographs the Aggregation Dynamics of Full-Length TDP-43 via a Monomeric Amyloid Precursor. Biochemistry 2024; 63:1553-1568. [PMID: 38820318 DOI: 10.1021/acs.biochem.4c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
TDP-43 is a ubiquitously expressed, multidomain functional protein that is distinctively known to form aggregates in many fatal neurodegenerative disorders. However, the information for arresting TDP-43 aggregation is missing due to a lack of understanding of the molecular mechanism of the aggregation and structural properties of TDP-43. TDP-43 is inherently prone to aggregation and has minimal protein solubility. Multiple studies have been performed on the smaller parts of TDP-43 or the full-length protein attached to a large solubilization tag. However, the presence of co-solutes or solubilization tags is observed to interfere with the molecular properties and aggregation mechanism of full-length TDP-43. Notably, this study populated and characterized the native, dimeric state of TDP-43 without the interference of co-solutes or protein modifications. We observed that the electrostatics of the local environment is capable of the partial unfolding and monomerization of the native dimeric state of TDP-43 into an amyloidogenic molten globule. By employing the tools of thermodynamics and kinetics, we reveal the structural characteristics and temporal order of the early intermediates and transition states during the transition of the molten globule to β-rich, amyloid-like aggregates of TDP-43, which is governed by the electrostatics of the environment. The current advanced understanding of the nature of native and early aggregation-prone intermediates, early steps, and the influence of electrostatics in TDP-43 aggregation is essential for drug design.
Collapse
Affiliation(s)
- Abhilasha A Doke
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
López-Carbonero JI, García-Toledo I, Fernández-Hernández L, Bascuñana P, Gil-Moreno MJ, Matías-Guiu JA, Corrochano S. In vivo diagnosis of TDP-43 proteinopathies: in search of biomarkers of clinical use. Transl Neurodegener 2024; 13:29. [PMID: 38831349 PMCID: PMC11149336 DOI: 10.1186/s40035-024-00419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
TDP-43 proteinopathies are a heterogeneous group of neurodegenerative disorders that share the presence of aberrant, misfolded and mislocalized deposits of the protein TDP-43, as in the case of amyotrophic lateral sclerosis and some, but not all, pathological variants of frontotemporal dementia. In recent years, many other diseases have been reported to have primary or secondary TDP-43 proteinopathy, such as Alzheimer's disease, Huntington's disease or the recently described limbic-predominant age-related TDP-43 encephalopathy, highlighting the need for new and accurate methods for the early detection of TDP-43 proteinopathy to help on the stratification of patients with overlapping clinical diagnosis. Currently, TDP-43 proteinopathy remains a post-mortem pathologic diagnosis. Although the main aim is to determine the pathologic TDP-43 proteinopathy in the central nervous system (CNS), the ubiquitous expression of TDP-43 in biofluids and cells outside the CNS facilitates the use of other accessible target tissues that might reflect the potential TDP-43 alterations in the brain. In this review, we describe the main developments in the early detection of TDP-43 proteinopathies, and their potential implications on diagnosis and future treatments.
Collapse
Affiliation(s)
- Juan I López-Carbonero
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - Irene García-Toledo
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - Laura Fernández-Hernández
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - Pablo Bascuñana
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - María J Gil-Moreno
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - Jordi A Matías-Guiu
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - Silvia Corrochano
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain.
| |
Collapse
|
13
|
Scherer NM, Maurel C, Graus M, McAlary L, Richter G, Radford RW, Hogan A, Don E, Lee A, Yerbury J, Francois M, Chung R, Morsch M. RNA-binding properties orchestrate TDP-43 homeostasis through condensate formation in vivo. Nucleic Acids Res 2024; 52:5301-5319. [PMID: 38381071 PMCID: PMC11109982 DOI: 10.1093/nar/gkae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/12/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Insoluble cytoplasmic aggregate formation of the RNA-binding protein TDP-43 is a major hallmark of neurodegenerative diseases including Amyotrophic Lateral Sclerosis. TDP-43 localizes predominantly in the nucleus, arranging itself into dynamic condensates through liquid-liquid phase separation (LLPS). Mutations and post-translational modifications can alter the condensation properties of TDP-43, contributing to the transition of liquid-like biomolecular condensates into solid-like aggregates. However, to date it has been a challenge to study the dynamics of this process in vivo. We demonstrate through live imaging that human TDP-43 undergoes nuclear condensation in spinal motor neurons in a living animal. RNA-binding deficiencies as well as post-translational modifications can lead to aberrant condensation and altered TDP-43 compartmentalization. Single-molecule tracking revealed an altered mobility profile for RNA-binding deficient TDP-43. Overall, these results provide a critically needed in vivo characterization of TDP-43 condensation, demonstrate phase separation as an important regulatory mechanism of TDP-43 accessibility, and identify a molecular mechanism of how functional TDP-43 can be regulated.
Collapse
Affiliation(s)
- Natalie M Scherer
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, MND Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Cindy Maurel
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, MND Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Matthew S Graus
- The David Richmond Laboratory for Cardio-Vascular Development: gene regulation and editing, Centenary Institute, The University of Sydney, School of Medical Sciences, Sydney, NSW 2006, Australia
- Genome Imaging Centre, Centenary Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Luke McAlary
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Grant Richter
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, MND Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Rowan A W Radford
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, MND Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Alison Hogan
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, MND Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Emily K Don
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, MND Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Albert Lee
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, MND Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Justin Yerbury
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Mathias Francois
- The David Richmond Laboratory for Cardio-Vascular Development: gene regulation and editing, Centenary Institute, The University of Sydney, School of Medical Sciences, Sydney, NSW 2006, Australia
- Genome Imaging Centre, Centenary Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Roger S Chung
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, MND Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Marco Morsch
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, MND Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
14
|
Cheng F, Chapman T, Zhang S, Morsch M, Chung R, Lee A, Rayner SL. Understanding age-related pathologic changes in TDP-43 functions and the consequence on RNA splicing and signalling in health and disease. Ageing Res Rev 2024; 96:102246. [PMID: 38401571 DOI: 10.1016/j.arr.2024.102246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
TAR DNA binding protein-43 (TDP-43) is a key component in RNA splicing which plays a crucial role in the aging process. In neurodegenerative diseases such as amyotrophic lateral sclerosis, frontotemporal dementia and limbic-predominant age-related TDP-43 encephalopathy, TDP-43 can be mutated, mislocalised out of the nucleus of neurons and glial cells and form cytoplasmic inclusions. These TDP-43 alterations can lead to its RNA splicing dysregulation and contribute to mis-splicing of various types of RNA, such as mRNA, microRNA, and circular RNA. These changes can result in the generation of an altered transcriptome and proteome within cells, ultimately changing the diversity and quantity of gene products. In this review, we summarise the findings of novel atypical RNAs resulting from TDP-43 dysfunction and their potential as biomarkers or targets for therapeutic development.
Collapse
Affiliation(s)
- Flora Cheng
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia.
| | - Tyler Chapman
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Selina Zhang
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Marco Morsch
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Roger Chung
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Albert Lee
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Stephanie L Rayner
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia.
| |
Collapse
|
15
|
Eisen A, Vucic S, Mitsumoto H. History of ALS and the competing theories on pathogenesis: IFCN handbook chapter. Clin Neurophysiol Pract 2023; 9:1-12. [PMID: 38213309 PMCID: PMC10776891 DOI: 10.1016/j.cnp.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder of the human motor system, first described in the 19th Century. The etiology of ALS appears to be multifactorial, with a complex interaction of genetic, epigenetic, and environmental factors underlying the onset of disease. Importantly, there are no known naturally occurring animal models, and transgenic mouse models fail to faithfully reproduce ALS as it manifests in patients. Debate as to the site of onset of ALS remain, with three competing theories proposed, including (i) the dying-forward hypothesis, whereby motor neuron degeneration is mediated by hyperexcitable corticomotoneurons via an anterograde transsynaptic excitotoxic mechanism, (ii) dying-back hypothesis, proposing the ALS begins in the peripheral nervous system with a toxic factor(s) retrogradely transported into the central nervous system and mediating upper motor neuron dysfunction, and (iii) independent hypothesis, suggesting that upper and lower motor neuron degenerated independently. Transcranial magnetic stimulation studies, along with pathological and genetic findings have supported the dying forward hypothesis theory, although the science is yet to be settled. The review provides a historical overview of ALS, discusses phenotypes and likely pathogenic mechanisms.
Collapse
Affiliation(s)
- Andrew Eisen
- Division of Neurology, Department of Medicine, University of British Columbia, Canada
| | - Steve Vucic
- Director Brain and Nerve Research Center, Clinical School, University of Sydney, Australia
| | - Hiroshi Mitsumoto
- Wesley J. Howe Professor of Neurology, Columbia University, The Neurological Institute of New York, and New York-Presbyterian Hospital/Columbia University Medical Center, United States
| |
Collapse
|
16
|
Poller W, Sahoo S, Hajjar R, Landmesser U, Krichevsky AM. Exploration of the Noncoding Genome for Human-Specific Therapeutic Targets-Recent Insights at Molecular and Cellular Level. Cells 2023; 12:2660. [PMID: 37998395 PMCID: PMC10670380 DOI: 10.3390/cells12222660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
While it is well known that 98-99% of the human genome does not encode proteins, but are nevertheless transcriptionally active and give rise to a broad spectrum of noncoding RNAs [ncRNAs] with complex regulatory and structural functions, specific functions have so far been assigned to only a tiny fraction of all known transcripts. On the other hand, the striking observation of an overwhelmingly growing fraction of ncRNAs, in contrast to an only modest increase in the number of protein-coding genes, during evolution from simple organisms to humans, strongly suggests critical but so far essentially unexplored roles of the noncoding genome for human health and disease pathogenesis. Research into the vast realm of the noncoding genome during the past decades thus lead to a profoundly enhanced appreciation of the multi-level complexity of the human genome. Here, we address a few of the many huge remaining knowledge gaps and consider some newly emerging questions and concepts of research. We attempt to provide an up-to-date assessment of recent insights obtained by molecular and cell biological methods, and by the application of systems biology approaches. Specifically, we discuss current data regarding two topics of high current interest: (1) By which mechanisms could evolutionary recent ncRNAs with critical regulatory functions in a broad spectrum of cell types (neural, immune, cardiovascular) constitute novel therapeutic targets in human diseases? (2) Since noncoding genome evolution is causally linked to brain evolution, and given the profound interactions between brain and immune system, could human-specific brain-expressed ncRNAs play a direct or indirect (immune-mediated) role in human diseases? Synergistic with remarkable recent progress regarding delivery, efficacy, and safety of nucleic acid-based therapies, the ongoing large-scale exploration of the noncoding genome for human-specific therapeutic targets is encouraging to proceed with the development and clinical evaluation of novel therapeutic pathways suggested by these research fields.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department for Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum Charité (DHZC), Charité-Universitätsmedizin Berlin, 12200 Berlin, Germany;
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, 10785 Berlin, Germany
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA;
| | - Roger Hajjar
- Gene & Cell Therapy Institute, Mass General Brigham, 65 Landsdowne St, Suite 143, Cambridge, MA 02139, USA;
| | - Ulf Landmesser
- Department for Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum Charité (DHZC), Charité-Universitätsmedizin Berlin, 12200 Berlin, Germany;
- German Center for Cardiovascular Research (DZHK), Site Berlin, 10785 Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Anna M. Krichevsky
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
17
|
Wood H. New mechanistic insights into TDP-43 pathology. Nat Rev Neurol 2023; 19:574. [PMID: 37608120 DOI: 10.1038/s41582-023-00870-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
|