1
|
Kaufman MJ, Meloni EG. Xenon gas as a potential treatment for opioid use disorder, alcohol use disorder, and related disorders. Med Gas Res 2025; 15:234-253. [PMID: 39812023 PMCID: PMC11918480 DOI: 10.4103/mgr.medgasres-d-24-00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/26/2024] [Indexed: 01/16/2025] Open
Abstract
Xenon gas is considered to be a safe anesthetic and imaging agent. Research on its other potentially beneficial effects suggests that xenon may have broad efficacy for treating health disorders. A number of reviews on xenon applications have been published, but none have focused on substance use disorders. Accordingly, we review xenon effects and targets relevant to the treatment of substance use disorders, with a focus on opioid use disorder and alcohol use disorder. We report that xenon inhaled at subsedative concentrations inhibits conditioned memory reconsolidation and opioid withdrawal symptoms. We review work by others reporting on the antidepressant, anxiolytic, and analgesic properties of xenon, which could diminish negative affective states and pain. We discuss research supporting the possibility that xenon could prevent analgesic- or stress-induced opioid tolerance and, by so doing could reduce the risk of developing opioid use disorder. The rapid kinetics, favorable safety and side effect profiles, and multitargeting capability of xenon suggest that it could be used as an ambulatory on-demand treatment to rapidly attenuate maladaptive memory, physical and affective withdrawal symptoms, and pain drivers of substance use disorders when they occur. Xenon may also have human immunodeficiency virus and oncology applications because its effects relevant to substance use disorders could be exploited to target human immunodeficiency virus reservoirs, human immunodeficiency virus protein-induced abnormalities, and cancers. Although xenon is expensive, low concentrations exert beneficial effects, and gas separation, recovery, and recycling advancements will lower xenon costs, increasing the economic feasibility of its therapeutic use. More research is needed to better understand the remarkable repertoire of effects of xenon and its potential therapeutic applications.
Collapse
Affiliation(s)
- Marc J Kaufman
- McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | | |
Collapse
|
2
|
Burkart ME, Kurzke J, Jacobi R, Vera J, Ashcroft FM, Eilers J, Lippmann K. KATP channel mutation disrupts hippocampal network activity and nocturnal gamma shifts. Brain 2024; 147:4200-4212. [PMID: 38748482 DOI: 10.1093/brain/awae157] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/31/2024] [Accepted: 05/02/2024] [Indexed: 12/14/2024] Open
Abstract
ATP-sensitive potassium (KATP) channels couple cell metabolism to cellular electrical activity. Humans affected by severe activating mutations in KATP channels suffer from developmental delay, epilepsy and neonatal diabetes (DEND syndrome). While the aetiology of diabetes in DEND syndrome is well understood, the pathophysiology of the neurological symptoms remains unclear. We hypothesized that impaired activity of parvalbumin-positive interneurons (PV-INs) may result in seizures and cognitive problems. We found, by performing electrophysiological experiments, that expressing the DEND mutation Kir6.2-V59M selectively in mouse PV-INs reduced intrinsic gamma frequency preference and short-term depression as well as disturbed cognition-associated gamma oscillations and hippocampal sharp waves. Furthermore, the risk of seizures was increased and the day-night shift in gamma activity disrupted. Blocking KATP channels with tolbutamide partially rescued the network oscillations. The non-reversible part may, to some extent, result from observed altered PV-IN dendritic branching and PV-IN arrangement within CA1. In summary, PV-INs play a key role in DEND syndrome, and this provides a framework for establishing treatment options.
Collapse
Affiliation(s)
- Marie-Elisabeth Burkart
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Josephine Kurzke
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Robert Jacobi
- Department for Neurophysiology, Institute for Physiology, Julius-Maximilians-University Würzburg, Würzburg 97070, Germany
| | - Jorge Vera
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Frances M Ashcroft
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Jens Eilers
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Kristina Lippmann
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
3
|
Kedia S, Awal NM, Seddon J, Marder E. Sulfonylurea Receptor Pharmacology Alters the Performance of Two Central Pattern Generating Circuits in Cancer borealis. FUNCTION 2024; 5:zqae043. [PMID: 39293809 PMCID: PMC11577616 DOI: 10.1093/function/zqae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024] Open
Abstract
Neuronal activity and energy supply must maintain a fine balance for neuronal fitness. Various channels of communication between the two could impact network output in different ways. Sulfonylurea receptors (SURs) are a modification of ATP-binding cassette proteins that confer ATP-dependent gating on their associated ion channels. They are widely expressed and link metabolic states directly to neuronal activity. The role they play varies in different circuits, both enabling bursting and inhibiting activity in pathological conditions. The crab, Cancer borealis, has central pattern generators (CPGs) that fire in rhythmic bursts nearly constantly and it is unknown how energy availability influences these networks. The pyloric network of the stomatogastric ganglion and the cardiac ganglion (CG) control rhythmic contractions of the foregut and heart, respectively. Known SUR agonists and antagonists produce opposite effects in the two CPGs. Pyloric rhythm activity completely stops in the presence of a SUR agonist, and activity increases in SUR blockers. This results from a decrease in the excitability of pyloric dilator neurons, which are a part of the pacemaker kernel. The neurons of the CG, paradoxically, increase firing within bursts in SUR agonists, and bursting slows in SUR antagonists. Analyses of the agonist-affected conductance properties present biophysical effects that do not trivially match those of mammalian SUR-dependent conductances. We suggest that SUR-associated conductances allow different neurons to respond to energy states in different ways through a common mechanism.
Collapse
Affiliation(s)
- Sonal Kedia
- Biology Department and Volen Center, Brandeis University, Waltham, MA 02454, USA
| | - Naziru M Awal
- Biology Department and Volen Center, Brandeis University, Waltham, MA 02454, USA
| | - Jackie Seddon
- Biology Department and Volen Center, Brandeis University, Waltham, MA 02454, USA
| | - Eve Marder
- Biology Department and Volen Center, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
4
|
Kedia S, Awal NM, Seddon J, Marder E. Sulfonylurea receptor coupled conductances alter the performace of two central pattern generating circuits in Cancer borealis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602760. [PMID: 39026863 PMCID: PMC11257524 DOI: 10.1101/2024.07.09.602760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Neuronal activity and energy supply must maintain a fine balance for neuronal fitness. Various channels of communication between the two could impact network output in different ways. Sulfonylurea receptors (SURs) are a modification of ATP-binding cassette proteins (ABCs) that confer ATP-dependent gating on their associated ion channels. They are widely expressed and link metabolic states directly to neuronal activity. The role they play varies in different circuits, both enabling bursting and inhibiting activity in pathological conditions. The crab, Cancer borealis, has central patterns generators (CPGs) that fire in rhythmic bursts nearly constantly and it is unknown how energy availability influences these networks. The pyloric network of the stomatogastric ganglion (STG) and cardiac ganglion (GC) control rhythmic contractions of the foregut and heart respectively. Pharmacological manipulation of SURs results in opposite effects in the two CPGs. Neuronal firing completely stops in the STG when SUR-associated channels are open, and firing increases when the channels are closed. This results from a decrease in the excitability of pyloric dilator (PD) neurons, which are a part of the pacemaker kernel. The neurons of the CG, paradoxically, increase firing within bursts when SUR-associated channels are opened, and bursting slows when SUR-associated channels are closed. The channel permeability and sensitivities analyses present novel SUR-conductance biophysics, which nevertheless change activity in ways reminiscent of the predominantly studied mammalian receptor/channels. We suggest that SUR-associated conductances allow different neurons to respond to energy states in different ways through a common mechanism.
Collapse
Affiliation(s)
- Sonal Kedia
- Biology Department and Volen Center, Brandeis University, Waltham, MA 02454
| | - Naziru M Awal
- Biology Department and Volen Center, Brandeis University, Waltham, MA 02454
| | - Jackie Seddon
- Biology Department and Volen Center, Brandeis University, Waltham, MA 02454
| | - Eve Marder
- Biology Department and Volen Center, Brandeis University, Waltham, MA 02454
| |
Collapse
|
5
|
Efthymiou S, Scala M, Nagaraj V, Ochenkowska K, Komdeur FL, Liang RA, Abdel-Hamid MS, Sultan T, Barøy T, Van Ghelue M, Vona B, Maroofian R, Zafar F, Alkuraya FS, Zaki MS, Severino M, Duru KC, Tryon RC, Brauteset LV, Ansari M, Hamilton M, van Haelst MM, van Haaften G, Zara F, Houlden H, Samarut É, Nichols CG, Smeland MF, McClenaghan C. Novel loss-of-function variants expand ABCC9-related intellectual disability and myopathy syndrome. Brain 2024; 147:1822-1836. [PMID: 38217872 PMCID: PMC11068106 DOI: 10.1093/brain/awae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/22/2023] [Accepted: 12/30/2023] [Indexed: 01/15/2024] Open
Abstract
Loss-of-function mutation of ABCC9, the gene encoding the SUR2 subunit of ATP sensitive-potassium (KATP) channels, was recently associated with autosomal recessive ABCC9-related intellectual disability and myopathy syndrome (AIMS). Here we identify nine additional subjects, from seven unrelated families, harbouring different homozygous loss-of-function variants in ABCC9 and presenting with a conserved range of clinical features. All variants are predicted to result in severe truncations or in-frame deletions within SUR2, leading to the generation of non-functional SUR2-dependent KATP channels. Affected individuals show psychomotor delay and intellectual disability of variable severity, microcephaly, corpus callosum and white matter abnormalities, seizures, spasticity, short stature, muscle fatigability and weakness. Heterozygous parents do not show any conserved clinical pathology but report multiple incidences of intra-uterine fetal death, which were also observed in an eighth family included in this study. In vivo studies of abcc9 loss-of-function in zebrafish revealed an exacerbated motor response to pentylenetetrazole, a pro-convulsive drug, consistent with impaired neurodevelopment associated with an increased seizure susceptibility. Our findings define an ABCC9 loss-of-function-related phenotype, expanding the genotypic and phenotypic spectrum of AIMS and reveal novel human pathologies arising from KATP channel dysfunction.
Collapse
Affiliation(s)
- Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Marcello Scala
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16147 Genoa, Italy
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Vini Nagaraj
- Center for Advanced Biotechnology and Medicine, and Departments of Pharmacology and Medicine, Robert Wood Johnson Medical School, Rutgers the State University of New Jersey, Piscatway, NJ 08854, USA
| | - Katarzyna Ochenkowska
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), and Department of Neuroscience, Université de Montréal, Montreal H2X 0A9, Quebec, Canada
| | - Fenne L Komdeur
- Section Clinical Genetics, Department of Human Genetics and Amsterdam Reproduction and Development, Amsterdam University Medical Centers, 1105 AZ, Amsterdam, The Netherlands
| | - Robin A Liang
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, 9019 Tromsø, Norway
| | - Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Tipu Sultan
- Department of Pediatric Neurology, Children Hospital, University of Child Health Sciences, Lahore, Punjab 54000, Pakistan
| | - Tuva Barøy
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Marijke Van Ghelue
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, 9019 Tromsø, Norway
| | - Barbara Vona
- Institute of Human Genetics and Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Faisal Zafar
- Department of Paediatric Neurology, Children’s Hospital and Institute of Child Health, Multan, Punjab 60000, Pakistan
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 12713, Saudi Arabia
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | | | - Kingsley C Duru
- Center for Advanced Biotechnology and Medicine, and Departments of Pharmacology and Medicine, Robert Wood Johnson Medical School, Rutgers the State University of New Jersey, Piscatway, NJ 08854, USA
| | - Robert C Tryon
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO 63110, USA
| | - Lin Vigdis Brauteset
- Division of Habilitation for Children, Innlandet Hospital Sanderud, Hamar 2312, Norway
| | - Morad Ansari
- South East Scotland Genetic Service, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Mark Hamilton
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Mieke M van Haelst
- Section Clinical Genetics, Department of Human Genetics and Amsterdam Reproduction and Development, Amsterdam University Medical Centers, 1105 AZ, Amsterdam, The Netherlands
| | - Gijs van Haaften
- Department of Genetics, University Medical Center, Utrecht, 3584 CX, The Netherlands
| | - Federico Zara
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Éric Samarut
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), and Department of Neuroscience, Université de Montréal, Montreal H2X 0A9, Quebec, Canada
| | - Colin G Nichols
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO 63110, USA
| | - Marie F Smeland
- Department of Pediatric Rehabilitation, University Hospital of North Norway, 9019 Tromsø, Norway
- Institute of Clinical Medicine, UiT The Arctic University of Norway, 9019, Tromsø, Norway
| | - Conor McClenaghan
- Center for Advanced Biotechnology and Medicine, and Departments of Pharmacology and Medicine, Robert Wood Johnson Medical School, Rutgers the State University of New Jersey, Piscatway, NJ 08854, USA
| |
Collapse
|
6
|
Ramos‐Riera KP, Beltrán‐Parrazal L, Morgado‐Valle C, Pérez‐Severiano F, Martínez‐Gopar PE, López‐Meraz ML. Type 2 diabetes mellitus facilitates status epilepticus in adult rats: Seizure severity, neurodegeneration, and oxidative stress. Epilepsia Open 2024; 9:665-678. [PMID: 38321819 PMCID: PMC10984310 DOI: 10.1002/epi4.12905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/29/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
OBJECTIVE The goal of this research was to evaluate the effect of DM type 2 (DM2) on SE severity, neurodegeneration, and brain oxidative stress (OS) secondary to seizures. METHODS DM2 was induced in postnatal day (P) 3 male rat pups by injecting streptozocin (STZ) 100 mg/kg; control rats were injected with citrate buffer as vehicle. At P90, SE was induced by the lithium-pilocarpine administration and seizure latency, frequency, and severity were evaluated. Neurodegeneration was assessed 24 h after SE by Fluoro-Jade B (F-JB) staining, whereas OS was estimated by measuring lipid peroxidation and reactive oxygen species (ROS). RESULTS DM2 rats showed an increase in latency to the first generalized seizure and SE onset, had a higher number and a longer duration of seizures, and displayed a larger neurodegeneration in the hippocampus (CA3, CA1, dentate gyrus, and hilus), the piriform cortex, the dorsomedial nucleus of the thalamus and the cortical amygdala. Our results also show that only SE, neither DM2 nor the combination of DM2 with SE, caused the increase in ROS and brain lipid peroxidation. SIGNIFICANCE DM2 causes higher seizure severity and neurodegeneration but did not exacerbate SE-induced OS under these conditions. PLAIN LANGUAGE SUMMARY Our research performed in animal models suggests that type 2 diabetes mellitus (DM2) may be a risk factor for causing higher seizure severity and seizure-induced neuron cell death. However, even when long-term seizures promote an imbalance between brain pro-oxidants and antioxidants, DM2 does not exacerbate that disproportion.
Collapse
Affiliation(s)
| | | | | | - Francisca Pérez‐Severiano
- Laboratorio de Neurofarmacología Molecular y NanotecnologíaInstituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”CDMXMexico
| | - Pablo Eliasib Martínez‐Gopar
- Laboratorio de Neurofarmacología Molecular y NanotecnologíaInstituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”CDMXMexico
| | | |
Collapse
|
7
|
Grizzanti J, Moritz WR, Pait MC, Stanley M, Kaye SD, Carroll CM, Constantino NJ, Deitelzweig LJ, Snipes JA, Kellar D, Caesar EE, Pettit-Mee RJ, Day SM, Sens JP, Nicol NI, Dhillon J, Remedi MS, Kiraly DD, Karch CM, Nichols CG, Holtzman DM, Macauley SL. KATP channels are necessary for glucose-dependent increases in amyloid-β and Alzheimer's disease-related pathology. JCI Insight 2023; 8:e162454. [PMID: 37129980 PMCID: PMC10386887 DOI: 10.1172/jci.insight.162454] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/18/2023] [Indexed: 05/03/2023] Open
Abstract
Elevated blood glucose levels, or hyperglycemia, can increase brain excitability and amyloid-β (Aβ) release, offering a mechanistic link between type 2 diabetes and Alzheimer's disease (AD). Since the cellular mechanisms governing this relationship are poorly understood, we explored whether ATP-sensitive potassium (KATP) channels, which couple changes in energy availability with cellular excitability, play a role in AD pathogenesis. First, we demonstrate that KATP channel subunits Kir6.2/KCNJ11 and SUR1/ABCC8 were expressed on excitatory and inhibitory neurons in the human brain, and cortical expression of KCNJ11 and ABCC8 changed with AD pathology in humans and mice. Next, we explored whether eliminating neuronal KATP channel activity uncoupled the relationship between metabolism, excitability, and Aβ pathology in a potentially novel mouse model of cerebral amyloidosis and neuronal KATP channel ablation (i.e., amyloid precursor protein [APP]/PS1 Kir6.2-/- mouse). Using both acute and chronic paradigms, we demonstrate that Kir6.2-KATP channels are metabolic sensors that regulate hyperglycemia-dependent increases in interstitial fluid levels of Aβ, amyloidogenic processing of APP, and amyloid plaque formation, which may be dependent on lactate release. These studies identify a potentially new role for Kir6.2-KATP channels in AD and suggest that pharmacological manipulation of Kir6.2-KATP channels holds therapeutic promise in reducing Aβ pathology in patients with diabetes or prediabetes.
Collapse
Affiliation(s)
- John Grizzanti
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - William R. Moritz
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Morgan C. Pait
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Molly Stanley
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Biology, College of Arts and Sciences, University of Vermont, Burlington, Vermont, USA
| | - Sarah D. Kaye
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Caitlin M. Carroll
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Nicholas J. Constantino
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Lily J. Deitelzweig
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - James A. Snipes
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Derek Kellar
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Emily E. Caesar
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | | | | | | | - Noelle I. Nicol
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jasmeen Dhillon
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Maria S. Remedi
- Department of Physiology and Pharmacology and
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research
| | | | - Celeste M. Karch
- Department of Psychiatry
- Hope Center for Neurological Disorders
- Knight Alzheimer’s Disease Research Center, Department of Neurology; and
| | - Colin G. Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - David M. Holtzman
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Hope Center for Neurological Disorders
- Knight Alzheimer’s Disease Research Center, Department of Neurology; and
| | - Shannon L. Macauley
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Alzheimer’s Disease Research Center
- Center on Diabetes, Obesity and Metabolism
- Center for Precision Medicine; and
- Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
8
|
Zhao J, Liang D, Xie T, Qiang J, Sun Q, Yang L, Wang W. Nicorandil Exerts Anticonvulsant Effects in Pentylenetetrazol-Induced Seizures and Maximal-Electroshock-Induced Seizures by Downregulating Excitability in Hippocampal Pyramidal Neurons. Neurochem Res 2023:10.1007/s11064-023-03932-w. [PMID: 37076745 DOI: 10.1007/s11064-023-03932-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/21/2023]
Abstract
N-(2-hydroxyethyl) nicotinamide nitrate (nicorandil), a nitrate that activates adenosine triphosphate (ATP)-sensitive potassium (KATP) channels, is generally used in the treatment of angina and offers long-term cardioprotective effects. It has been reported that several KATP channel openers can effectively alleviate the symptoms of seizure. The purpose of this study was to investigate the improvement in seizures induced by nicorandil. In this study, seizure tests were used to evaluate the effect of different doses of nicorandil by analysing seizure incidence, including minimal clonic seizure and generalised tonic-clonic seizure. We used a maximal electroshock seizure (MES) model, a metrazol maximal seizure (MMS) model and a chronic pentylenetetrazol (PTZ)-induced seizure model to evaluate the effect of nicorandil in improving seizures. Each mouse in the MES model was given an electric shock, while those in the nicorandil group received 0.5, 1, 2, 3 and 6 mg/kg of nicorandil by intraperitoneal injection, respectively. In the MMS model, the mice in the PTZ group and the nicorandil group were injected subcutaneously with PTZ (90 mg/kg), and the mice in the nicorandil group were injected intraperitoneally with 1, 3 and 5 mg/kg nicorandil, respectively. In the chronic PTZ-induced seizure model, the mice in the PTZ group and the nicorandil group were injected intraperitoneally with PTZ (40 mg/kg), and the mice in the nicorandil group were each given 1 and 3 mg/kg of PTZ at a volume of 200 nL. Brain slices containing the hippocampus were prepared, and cell-attached recording was used to record the spontaneous firing of pyramidal neurons in the hippocampal CA1 region. Nicorandil (i.p.) significantly increased both the maximum electroconvulsive protection rate in the MES model and the seizure latency in the MMS model. Nicorandil infused directly onto the hippocampal CA1 region via an implanted cannula relieved symptoms in chronic PTZ-induced seizures. The excitability of pyramidal neurons in the hippocampal CA1 region of the mice was significantly increased after both the acute and chronic administration of PTZ. To a certain extent, nicorandil reversed the increase in both firing frequency and proportion of burst spikes caused by PTZ (P < 0.05). Our results suggest that nicorandil functions by downregulating the excitability of pyramidal neurons in the hippocampal CA1 region of mice and is a potential candidate for the treatment of seizures.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Dan Liang
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Tao Xie
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Jing Qiang
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Qian Sun
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Lan Yang
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Weiping Wang
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
9
|
Shin SS, Chattaraj R, Viaene A, Karmacharya M, Haddad S, Degani R, Sridharan A, Seghal C, Lee D, Kilbaugh TJ, Hwang M. Brain Targeted Xenon Protects Cerebral Vasculature After Traumatic Brain Injury. J Neurotrauma 2023. [PMID: 36927088 DOI: 10.1089/neu.2022.0468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Cerebrovascular dysfunction following traumatic brain injury (TBI) is a well characterized phenomenon. Given the therapeutic potential of xenon, we aimed to study its effects after localized delivery to the brain using microbubbles. We designed xenon containing microbubbles stabilized by dibehenoylphosphatidylcholine (DBPC) and polyethylene glycol (PEG) attached to saturated phospholipid (DPSE-PEG5000). Using a pig model of TBI, these microbubbles were intravenously injected, and ultrasound was used release xenon at the level of the carotid artery. Control group received perfluorobutane containing microbubbles. Diffusion tensor imaging (DTI) showed higher fractional anisotropy for pigs receiving xenon microbubbles compared to control group at 1 day after injury. Radial diffusivity analysis showed that this effect was mainly due acute edema. Pigs were sacrificed at 5 days, and the brain tissues of xenon treated animals showed reduction of perivascular inflammation and blood-brain barrier disruption. Endothelial cell culture experiment showed that glutamate reduces tight junction protein zona occludens-1 (ZO-1), but treatment with xenon microbubbles attenuates this effect. Xenon treatment protects cerebrovasculature and astroglial reactivity after TBI. Furthermore, these data support the future use of localized delivery of various therapeutic agents for brain injury using microbubbles in order to limit systemic side effects and reduce costs. .
Collapse
Affiliation(s)
- Samuel S Shin
- University of Pennsylvania Perelman School of Medicine, 14640, Department of Neurology, 3 West Gates Bldg, 3400 Spruce St, Philadelphia, Pennsylvania, United States, 19104;
| | - Rajarshi Chattaraj
- University of Pennsylvania, 6572, Philadelphia, Pennsylvania, United States;
| | - Angela Viaene
- University of Pennsylvania Perelman School of Medicine, 14640, Pathology, Philadelphia, Pennsylvania, United States;
| | - Mrigendra Karmacharya
- The Children's Hospital of Philadelphia, 6567, Philadelphia, Pennsylvania, United States;
| | - Sophie Haddad
- The Children's Hospital of Philadelphia, 6567, Department of Radiology, 3401 Civic Center Blvd, Philadelphia, Pennsylvania, United States, 19104;
| | - Rinat Degani
- The Children's Hospital of Philadelphia, 6567, Philadelphia, Pennsylvania, United States;
| | - Anush Sridharan
- The Children's Hospital of Philadelphia, 6567, Department of Radiology, 3401 Civic Center Blvd, Philadelphia, Pennsylvania, United States, 19104;
| | - Chandra Seghal
- University of Pennsylvania, 6572, Philadelphia, Pennsylvania, United States;
| | - Daeyeon Lee
- University of Pennsylvania, 6572, Philadelphia, Pennsylvania, United States;
| | - Todd J Kilbaugh
- The Children's Hospital of Philadelphia, 6567, Department of Anesthesiology and Critical Care Medicine, Philadelphia, Pennsylvania, United States;
| | - Misun Hwang
- The Children's Hospital of Philadelphia, 6567, Department of Radiology, 3401 Civic Center Blvd, Philadelphia, Philadelphia, Pennsylvania, United States, 19104;
| |
Collapse
|
10
|
Involvement of Potassium Channel Signalling in Migraine Pathophysiology. Pharmaceuticals (Basel) 2023; 16:ph16030438. [PMID: 36986537 PMCID: PMC10057509 DOI: 10.3390/ph16030438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Migraine is a primary headache disorder ranked as the leading cause of years lived with disability among individuals younger than 50 years. The aetiology of migraine is complex and might involve several molecules of different signalling pathways. Emerging evidence implicates potassium channels, predominantly ATP-sensitive potassium (KATP) channels and large (big) calcium-sensitive potassium (BKCa) channels in migraine attack initiation. Basic neuroscience revealed that stimulation of potassium channels activated and sensitized trigeminovascular neurons. Clinical trials showed that administration of potassium channel openers caused headache and migraine attack associated with dilation of cephalic arteries. The present review highlights the molecular structure and physiological function of KATP and BKCa channels, presents recent insights into the role of potassium channels in migraine pathophysiology, and discusses possible complementary effects and interdependence of potassium channels in migraine attack initiation.
Collapse
|
11
|
Dyhring T, Jansen-Olesen I, Christophersen P, Olesen J. Pharmacological Profiling of K ATP Channel Modulators: An Outlook for New Treatment Opportunities for Migraine. Pharmaceuticals (Basel) 2023; 16:225. [PMID: 37259373 PMCID: PMC9966414 DOI: 10.3390/ph16020225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 12/23/2023] Open
Abstract
Migraine is a highly disabling pain disorder with huge socioeconomic and personal costs. It is genetically heterogenous leading to variability in response to current treatments and frequent lack of response. Thus, new treatment strategies are needed. A combination of preclinical and clinical data indicate that ATP-sensitive potassium (KATP) channel inhibitors could be novel and highly effective drugs in the treatment of migraine. The subtype Kir6.1/SUR2B is of particular interest and inhibitors specific for this cranio-vascular KATP channel subtype may qualify as future migraine drugs. Historically, different technologies and methods have been undertaken to characterize KATP channel modulators and, therefore, a head-to-head comparison of potency and selectivity between the different KATP subtypes is difficult to assess. Here, we characterize available KATP channel activators and inhibitors in fluorescence-based thallium-flux assays using HEK293 cells stably expressing human Kir6.1/SUR2B, Kir6.2/SUR1, and Kir6.2/SUR2A KATP channels. Among the openers tested, levcromakalim, Y-26763, pinacidil, P-1075, ZM226600, ZD0947, and A-278637 showed preference for the KATP channel subtype Kir6.1/SUR2B, whereas BMS-191095, NN414, and VU0071306 demonstrated preferred activation of the Kir6.2/SUR1 subtype. In the group of KATP channel blockers, only Rosiglitazone and PNU-37783A showed selective inhibition of the Kir6.1/SUR2B subtype. PNU-37783A was stopped in clinical development and Rosiglitazone has a low potency for the vascular KATP channel subtype. Therefore, development of novel selective KATP channel blockers, having a benign side effect profile, are needed to clinically prove inhibition of Kir6.1/SUR2B as an effective migraine treatment.
Collapse
Affiliation(s)
| | - Inger Jansen-Olesen
- Danish Headache Center, Department of Neurology, University of Copenhagen, 2600 Glostrup, Denmark
| | | | - Jes Olesen
- Danish Headache Center, Department of Neurology, University of Copenhagen, 2600 Glostrup, Denmark
| |
Collapse
|
12
|
Ramos-Riera KP, Pérez-Severiano F, López-Meraz ML. Oxidative stress: a common imbalance in diabetes and epilepsy. Metab Brain Dis 2023; 38:767-782. [PMID: 36598703 DOI: 10.1007/s11011-022-01154-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
The brain requires a large amount of energy. Its function can be altered when energy demand exceeds supply or during metabolic disturbances such as diabetes mellitus. Diabetes, a chronic disease with a high incidence worldwide, is characterized by high glucose levels (hyperglycemia); however, hypoglycemic states may also occur due to insulin treatment or poor control of the disease. These alterations in glucose levels affect the brain and could cause epileptic seizures and status epilepticus. In addition, it is known that oxidative stress states emerge as diabetes progresses, contributing to the development of diseases secondary to diabetes, including retinopathy, nephropathy, cardiovascular alterations, and alterations in the central nervous system, such as epileptic seizures. Seizures are a complex of transient signs and symptoms resulting from abnormal, simultaneous, and excessive activity of a population of neurons, and they can be both a cause and a consequence of oxidative stress. This review aims to outline studies linking diabetes mellitus and seizures to oxidative stress, a condition that may be relevant to the development of severe seizures in diabetes mellitus patients.
Collapse
Affiliation(s)
- Karen Paola Ramos-Riera
- Doctorado de Investigaciones Cerebrales, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Dr. Luis Castelazo Ayala s/n, Industrial Animas, 91190, Xalapa, Veracruz, México
| | - Francisca Pérez-Severiano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suarez," Insurgentes Sur 3877, 14269, La Fama, CDMX, México
| | - María Leonor López-Meraz
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Dr. Luis Castelazo Ayala s/n, Industrial Animas, 91190, Xalapa, Veracruz, México.
| |
Collapse
|
13
|
Chegodaev D, Gusev V, Lvova O, Pavlova P. Possible role of ketone bodies in the generation of burst suppression electroencephalographic pattern. Front Neurosci 2022; 16:1021035. [PMID: 36590288 PMCID: PMC9800049 DOI: 10.3389/fnins.2022.1021035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
|
14
|
Kumar A, Kumari S, Singh D. Insights into the Cellular Interactions and Molecular Mechanisms of Ketogenic Diet for Comprehensive Management of Epilepsy. Curr Neuropharmacol 2022; 20:2034-2049. [PMID: 35450526 PMCID: PMC9886834 DOI: 10.2174/1570159x20666220420130109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/27/2022] [Accepted: 03/25/2022] [Indexed: 11/22/2022] Open
Abstract
A high-fat diet with appropriate protein and low carbohydrate content, widely known as the ketogenic diet (KD), is considered as an effective non-pharmacotherapeutic treatment option for certain types of epilepsies. Several preclinical and clinical studies have been carried out to elucidate its mechanism of antiepileptic action. Ketone bodies produced after KD's breakdown interact with cellular excito-inhibitory processes and inhibit abnormal neuronal firing. The generated ketone bodies decrease glutamate release by inhibiting the vesicular glutamate transporter 1 and alter the transmembrane potential by hyperpolarization. Apart from their effect on the well-known pathogenic mechanisms of epilepsy, some recent studies have shown the interaction of KD metabolites with novel neuronal targets, particularly adenosine receptors, adenosine triphosphate-sensitive potassium channel, mammalian target of rapamycin, histone deacetylase, hydroxycarboxylic acid receptors, and the NLR family pyrin domain containing 3 inflammasomes to suppress seizures. The role of KD in augmenting gut microbiota as a potential mechanism for epileptic seizure suppression has been established. Furthermore, some recent findings also support the beneficial effect of KD against epilepsy- associated comorbidities. Despite several advantages of the KD in epilepsy management, its use is also associated with a wide range of side effects. Hypoglycemia, excessive ketosis, acidosis, renal stones, cardiomyopathies, and other metabolic disturbances are the primary adverse effects observed with the use of KD. However, in some recent studies, modified KD has been tested with lesser side effects and better tolerability. The present review discusses the molecular mechanism of KD and its role in managing epilepsy and its associated comorbidities.
Collapse
Affiliation(s)
- Amit Kumar
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Savita Kumari
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India,Address correspondence to this author at the Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India; Tel: +91-9417923132; E-mails: ;
| |
Collapse
|
15
|
Lv J, Xiao X, Bi M, Tang T, Kong D, Diao M, Jiao Q, Chen X, Yan C, Du X, Jiang H. ATP-sensitive potassium channels: A double-edged sword in neurodegenerative diseases. Ageing Res Rev 2022; 80:101676. [PMID: 35724860 DOI: 10.1016/j.arr.2022.101676] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/15/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
ATP-sensitive potassium channels (KATP channels), a group of vital channels that link the electrical activity of the cell membrane with cell metabolism, were discovered on the ventricular myocytes of guinea pigs by Noma using the patch-clamp technique in 1983. Subsequently, KATP channels have been found to be expressed in pancreatic β cells, cardiomyocytes, skeletal muscle cells, and nerve cells in the substantia nigra (SN), hippocampus, cortex, and basal ganglia. KATP channel openers (KCOs) diazoxide, nicorandil, minoxidil, and the KATP channel inhibitor glibenclamide have been shown to have anti-hypertensive, anti-myocardial ischemia, and insulin-releasing regulatory effects. Increasing evidence has suggested that KATP channels also play roles in Alzheimer's disease (AD), Parkinson's disease (PD), vascular dementia (VD), Huntington's disease (HD) and other neurodegenerative diseases. KCOs and KATP channel inhibitors protect neurons from injury by regulating neuronal excitability and neurotransmitter release, inhibiting abnormal protein aggregation and Ca2+ overload, reducing reactive oxygen species (ROS) production and microglia activation. However, KATP channels have dual effects in some cases. In this review, we focus on the roles of KATP channels and their related openers and inhibitors in neurodegenerative diseases. This will enable us to precisely take advantage of the KATP channels and provide new ideas for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jirong Lv
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xue Xiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Tingting Tang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Deao Kong
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Meining Diao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Chunling Yan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China.
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China.
| |
Collapse
|
16
|
Wagner AS, Semmlack S, Frei A, Rüegg S, Marsch S, Sutter R. Seizures and risks for recurrence in critically ill patients: an observational cohort study. J Neurol 2022; 269:4185-4194. [PMID: 35235003 PMCID: PMC9293863 DOI: 10.1007/s00415-022-11038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 11/29/2022]
Abstract
Background To assess the frequency and clinical characteristics of seizures in adult critically ill patients, to identify predictors of recurrent seizures not transforming into status epilepticus and to characterize their effects on course and outcome.
Methods ICU patients at a Swiss academic medical center with seizures not transforming into status epilepticus from 2015 to 2020 were included. Recurrent seizures and associated clinical characteristics were primary, death, and return to premorbid neurologic function were secondary outcomes.
Results Two hundred of 26,370 patients (0.8%) with a median age of 65 years had seizures during ICU stay. Seizure semiology was described in 82% (49% generalized; 33% focal) with impaired consciousness during seizures in 80% and motor symptoms in 62%. Recurrent seizures were reported in 71% (36% on EEG) and associated with longer mechanical ventilation (p = 0.031), higher consultation rate by neurologists (p < 0.001), and increased use of EEG (p < 0.001) when compared to single seizures. The use of EEG was not associated with secondary outcomes. Acidosis at seizure onset and prior emergency operations were associated with decreased odds for seizure recurrence (OR 0.43; 95% CI 0.20–0.94 and OR 0.48; 95% CI 0.24–0.97). Epilepsy had increased odds for seizure recurrence (OR 3.56; 95% CI 1.14–11.16).
Conclusions Seizures in ICU patients are infrequent, but mostly recurrent, and associated with higher resource utilization. Whenever seizures are observed, clinicians should be vigilant about the increased risk of seizures recurrence and the need for antiseizure treatment must be carefully discussed. While known epilepsy seems to promote recurrent seizures, our results suggest that both acidosis and previous emergency surgery seem to have protective/antiseizure effects. Trial registration Clinicaltrials.gov (No. NCT03860467).
Collapse
Affiliation(s)
- Anna S Wagner
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Saskia Semmlack
- Department of Anesthesiology, University Hospital Basel, Basel, Switzerland
| | - Anja Frei
- Department of Intensive Care, University Hospital Basel, 4031, Basel, Switzerland
| | - Stephan Rüegg
- Department of Neurology, University Hospital Basel, Basel, Switzerland.,Medical Faculty, University of Basel, Basel, Switzerland
| | - Stephan Marsch
- Department of Intensive Care, University Hospital Basel, 4031, Basel, Switzerland.,Medical Faculty, University of Basel, Basel, Switzerland
| | - Raoul Sutter
- Department of Neurology, University Hospital Basel, Basel, Switzerland. .,Department of Intensive Care, University Hospital Basel, 4031, Basel, Switzerland. .,Medical Faculty, University of Basel, Basel, Switzerland.
| |
Collapse
|
17
|
Peddawad D. Epileptic manifestations, pathophysiology, and imaging characteristics of non-ketotic hyperglycaemia: a review of the literature and a report of two cases with irreversible cortical vision loss. J Int Med Res 2022; 50:3000605221081429. [PMID: 35301892 PMCID: PMC8943323 DOI: 10.1177/03000605221081429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this review is to create more awareness regarding the epileptic manifestations of non-ketotic hyperglycaemia, which are not widely recognised, and to assist understanding of the pathophysiology involved. Given that type II diabetes is one of the common causes of morbidity worldwide, it is important to appreciate the various neurological manifestations of non-ketotic hyperglycaemia.Here, I present two cases and review the existing literature. Both patients developed irreversible vision loss, which is a novel finding because only transient visual defects have previously been reported. The review includes a detailed discussion of the pathophysiology and characteristic magnetic resonance imaging (MRI) findings of patients with defects in cerebral lobar regions, which were associated with a variety of clinical manifestations. These manifestations can be ascribed to epileptic phenomena involving various parts of the cerebrum.Hyperglycaemia can lead to the irreversible loss of vision. Early diagnosis and treatment on the basis of the clinical features and characteristic MRI findings are important to avoid an epilepsia partialis continua-like state and irreversible visual impairment.
Collapse
|
18
|
Nakai-Shimoda H, Himeno T, Okawa T, Miura-Yura E, Sasajima S, Kato M, Yamada Y, Morishita Y, Tsunekawa S, Kato Y, Seino Y, Inoue R, Kondo M, Seino S, Naruse K, Kato K, Mizukami H, Nakamura J, Kamiya H. Kir6.2-deficient mice develop somatosensory dysfunction and axonal loss in the peripheral nerves. iScience 2022; 25:103609. [PMID: 35005553 PMCID: PMC8719014 DOI: 10.1016/j.isci.2021.103609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/27/2021] [Accepted: 12/08/2021] [Indexed: 10/26/2022] Open
Abstract
Glucose-responsive ATP-sensitive potassium channels (KATP) are expressed in a variety of tissues including nervous systems. The depolarization of the membrane potential induced by glucose may lead to hyperexcitability of neurons and induce excitotoxicity. However, the roles of KATP in the peripheral nervous system (PNS) are poorly understood. Here, we determine the roles of KATP in the PNS using KATP-deficient (Kir6.2-deficient) mice. We demonstrate that neurite outgrowth of dorsal root ganglion (DRG) neurons was reduced by channel closers sulfonylureas. However, a channel opener diazoxide elongated the neurite. KATP subunits were expressed in mouse DRG, and expression of certain subunits including Kir6.2 was increased in diabetic mice. In Kir6.2-deficient mice, the current perception threshold, thermal perception threshold, and sensory nerve conduction velocity were impaired. Electron microscopy revealed a reduction of unmyelinated and small myelinated fibers in the sural nerves. In conclusion, KATP may contribute to the development of peripheral neuropathy.
Collapse
Affiliation(s)
- Hiromi Nakai-Shimoda
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Tatsuhito Himeno
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan.,Department of Innovative Diabetes Therapy, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Tetsuji Okawa
- Department of Endocrinology, Gifu Prefectural Tajimi Hospital, Tajimi 507-8522, Japan
| | - Emiri Miura-Yura
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Sachiko Sasajima
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Makoto Kato
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Yuichiro Yamada
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Yoshiaki Morishita
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Shin Tsunekawa
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Yoshiro Kato
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Yusuke Seino
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Rieko Inoue
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Masaki Kondo
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan
| | - Keiko Naruse
- Department of Internal Medicine, Aichi Gakuin University School of Dentistry, Nagoya 464-0821, Japan
| | - Koichi Kato
- Department of Medicine, Aichi Gakuin University School of Pharmacy, Nagoya 464-8650, Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Jiro Nakamura
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan.,Department of Innovative Diabetes Therapy, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Hideki Kamiya
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| |
Collapse
|
19
|
Poff AM, Moss S, Soliven M, D'Agostino DP. Ketone Supplementation: Meeting the Needs of the Brain in an Energy Crisis. Front Nutr 2022; 8:783659. [PMID: 35004814 PMCID: PMC8734638 DOI: 10.3389/fnut.2021.783659] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022] Open
Abstract
Diverse neurological disorders are associated with a deficit in brain energy metabolism, often characterized by acute or chronic glucose hypometabolism. Ketones serve as the brain's only significant alternative fuel and can even become the primary fuel in conditions of limited glucose availability. Thus, dietary supplementation with exogenous ketones represents a promising novel therapeutic strategy to help meet the energetic needs of the brain in an energy crisis. Preliminary evidence suggests ketosis induced by exogenous ketones may attenuate damage or improve cognitive and motor performance in neurological conditions such as seizure disorders, mild cognitive impairment, Alzheimer's disease, and neurotrauma.
Collapse
Affiliation(s)
- Angela M Poff
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Sara Moss
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Maricel Soliven
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
20
|
Fischer-Holzhausen S, Yamamoto K, Fjeldstad MP, Maleckar MM. Probing the Putative Role of K ATP Channels and Biological Variability in a Mathematical Model of Chondrocyte Electrophysiology. Bioelectricity 2021. [DOI: 10.1089/bioe.2021.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Kei Yamamoto
- Department of Mathematics, University of Oslo, Oslo, Norway
- Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | | | - Mary M. Maleckar
- Computational Physiology, Simula Research Laboratory, Oslo, Norway
| |
Collapse
|
21
|
Zhang M, Cui Y, Cheng Y, Wang Q, Sun H. The neuroprotective effect and possible therapeutic application of xenon in neurological diseases. J Neurosci Res 2021; 99:3274-3283. [PMID: 34716615 DOI: 10.1002/jnr.24958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 07/19/2021] [Accepted: 08/20/2021] [Indexed: 11/09/2022]
Abstract
Xenon is an inert gas with stable chemical properties which is used as an anesthetic. Recent in vitro and in vivo findings indicate that xenon also elicits an excellent neuroprotective effect in subanesthetic concentrations. The mechanisms underlying this primarily involve the attenuation of excitotoxicity and the inhibition of N-methyl-d-aspartic acid (NMDA) receptors and NMDA receptor-related effects, such as antioxidative effects, reduced activation of microglia, and Ca2+ -dependent mechanisms, as well as the interaction with certain ion channels and glial cells. Based on this strong neuroprotective role, a large number of experimental and clinical studies have confirmed the significant therapeutic effect of xenon in the treatment of neurological diseases. This review summarizes the reported neuroprotective mechanisms of xenon and discusses its possible therapeutic application in the treatment of various neurological diseases.
Collapse
Affiliation(s)
- Mengdi Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Yaru Cui
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| |
Collapse
|
22
|
Akyuz E, Koklu B, Uner A, Angelopoulou E, Paudel YN. Envisioning the role of inwardly rectifying potassium (Kir) channel in epilepsy. J Neurosci Res 2021; 100:413-443. [PMID: 34713909 DOI: 10.1002/jnr.24985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 01/29/2023]
Abstract
Epilepsy is a devastating neurological disorder characterized by recurrent seizures attributed to the disruption of the dynamic excitatory and inhibitory balance in the brain. Epilepsy has emerged as a global health concern affecting about 70 million people worldwide. Despite recent advances in pre-clinical and clinical research, its etiopathogenesis remains obscure, and there are still no treatment strategies modifying disease progression. Although the precise molecular mechanisms underlying epileptogenesis have not been clarified yet, the role of ion channels as regulators of cellular excitability has increasingly gained attention. In this regard, emerging evidence highlights the potential implication of inwardly rectifying potassium (Kir) channels in epileptogenesis. Kir channels consist of seven different subfamilies (Kir1-Kir7), and they are highly expressed in both neuronal and glial cells in the central nervous system. These channels control the cell volume and excitability. In this review, we discuss preclinical and clinical evidence on the role of the several subfamilies of Kir channels in epileptogenesis, aiming to shed more light on the pathogenesis of this disorder and pave the way for future novel therapeutic approaches.
Collapse
Affiliation(s)
- Enes Akyuz
- Faculty of International Medicine, Department of Biophysics, University of Health Sciences, Istanbul, Turkey
| | - Betul Koklu
- Faculty of Medicine, Namık Kemal University, Tekirdağ, Turkey
| | - Arda Uner
- Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
23
|
Jin J, Li M, Li J, Li B, Duan L, Yang F, Gu N. Xenon Nanobubbles for the Image-Guided Preemptive Treatment of Acute Ischemic Stroke via Neuroprotection and Microcirculatory Restoration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43880-43891. [PMID: 34493044 DOI: 10.1021/acsami.1c06014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Early lesion site diagnosis and neuroprotection are crucial to the theranostics of acute ischemic stroke. Xenon (Xe), as a nontoxic gaseous neuroprotectant, holds great promise for ischemic stroke therapy. In this study, Xe-encapsulated lipid nanobubbles (Xe-NBs) have been prepared for the real-time ultrasound image-guided preemptive treatment of the early stroke. The lipids are self-assembled at the interface of free Xe bubbles, and the mean diameter of Xe-NBs is 225 ± 11 nm with a Xe content of 73 ± 2 μL/mL. The in vitro results show that Xe-NBs can protect oxygen/glucose-deprived PC12 cells against apoptosis and oxidative stress. Based on the ischemic stroke mice model, the biodistribution, timely ultrasound imaging, and the therapeutic effects of Xe-NBs for stroke lesions were investigated in vivo. The accumulation of Xe-NBs to the ischemic lesion endows ultrasound contrast imaging with the lesion area. The cerebral blood flow measurement indicates that the administration of Xe-NBs can improve microcirculatory restoration, resulting in reduced acute microvascular injury in the lesion area. Furthermore, local delivery of therapeutic Xe can significantly reduce the volume of cerebral infarction and restore the neurological function with reduced neuron injury against apoptosis. Therefore, Xe-NBs provide a novel nanosystem for the safe and rapid theranostics of acute ischemic stroke, which is promising to translate into the clinical management of stroke.
Collapse
Affiliation(s)
- Juan Jin
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, P. R. China
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Mei Li
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, P. R. China
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Jing Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Bin Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Lei Duan
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Ning Gu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, P. R. China
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
24
|
Foutz T, Wong M. Brain Stimulation Treatments in Epilepsy: Basic Mechanisms and Clinical Advances. Biomed J 2021; 45:27-37. [PMID: 34482013 PMCID: PMC9133258 DOI: 10.1016/j.bj.2021.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/28/2022] Open
Abstract
Drug-resistant epilepsy, characterized by ongoing seizures despite appropriate trials of anti-seizure medications, affects approximately one-third of people with epilepsy. Brain stimulation has recently become available as an alternative treatment option to reduce symptomatic seizures in short and long-term follow-up studies. Several questions remain on how to optimally develop patient-specific treatments and manage therapy over the long term. This review aims to discuss the clinical use and mechanisms of action of Responsive Neural Stimulation and Deep Brain Stimulation in the treatment of epilepsy and highlight recent advances that may both improve outcomes and present new challenges. Finally, a rational approach to device selection is presented based on current mechanistic understanding, clinical evidence, and device features.
Collapse
Affiliation(s)
- Thomas Foutz
- Department of Neurology, Washington University in St. Louis, USA.
| | - Michael Wong
- Department of Neurology, Washington University in St. Louis, USA.
| |
Collapse
|
25
|
Liu D, Ahmet I, Griess B, Tweedie D, Greig NH, Mattson MP. Age-related impairment of cerebral blood flow response to K ATP channel opener in Alzheimer's disease mice with presenilin-1 mutation. J Cereb Blood Flow Metab 2021; 41:1579-1591. [PMID: 33203296 PMCID: PMC8221766 DOI: 10.1177/0271678x20964233] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Local cerebral blood flow (CBF) responses to neuronal activity are essential for cognition and impaired CBF responses occur in Alzheimer's disease (AD). In this study, regional CBF (rCBF) responses to the KATP channel opener diazoxide were investigated in 3xTgAD, WT and mutant Presenilin 1(PS1M146V) mice from three age groups using Laser-Doppler flowmetry. The rCBF response was reduced early in young 3xTgAD mice and almost absent in old 3xTgAD mice, up to 30%-40% reduction with altered CBF velocity and mean arterial pressure versus WT mice. The impaired rCBF response in 3xTgAD mice was associated with progression of AD pathology, characterized by deposition of intracellular and vascular amyloid-β (Aβ) oligomers, senile plaques and tau pathology. The nitric oxide synthase (NOS) inhibitor Nω-nitro-L-arginine abolished rCBF response to diazoxide suggesting NO was involved in the mediation of vasorelaxation. Levels of phosphor-eNOS (Ser1177) diminished in 3xTgAD brains with age, while the rCBF response to the NO donor sodium nitroprusside remained. In PS1M146V mice, the rCBF response to dizoxide reduced and high molecular weight Abeta oligomers were increased indicating PS1M146V contributed to the dysregulation of rCBF response in AD mice. Our study revealed an Aβ oligomer-associated compromise of cerebrovascular function in rCBF response to diazoxide in AD mice with PS1M146V mutation.
Collapse
Affiliation(s)
- Dong Liu
- Drug Design & Development Section, Translational Gerontology Branch, National Institute on Aging Intramural Research Program, Baltimore, MD, USA.,Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | - Ismayil Ahmet
- Laboratory of Cardiovascular Science, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | - Brandon Griess
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Akyuz E, Doganyigit Z, Paudel YN, Koklu B, Kaymak E, Villa C, Arulsamy A, Shaikh MF, Devinsky O. Immunoreactivity of Muscarinic Acetylcholine M2 and Serotonin 5-HT2B Receptors, Norepinephrine Transporter and Kir Channels in a Model of Epilepsy. Life (Basel) 2021; 11:life11040276. [PMID: 33810231 PMCID: PMC8066555 DOI: 10.3390/life11040276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 11/23/2022] Open
Abstract
Epilepsy is characterized by an imbalance in neurotransmitter activity; an increased excitatory to an inhibitory activity. Acetylcholine (ACh), serotonin, and norepinephrine (NE) may modulate neural activity via several mechanisms, mainly through its receptors/transporter activity and alterations in the extracellular potassium (K+) concentration via K+ ion channels. Seizures may disrupt the regulation of inwardly rectifying K+ (Kir) channels and alter the receptor/transporter activity. However, there are limited data present on the immunoreactivity pattern of these neurotransmitter receptors/transporters and K+ channels in chronic models of epilepsy, which therefore was the aim of this study. Changes in the immunoreactivity of epileptogenesis-related neurotransmitter receptors/transporters (M2, 5-HT2B, and NE transporter) as well as Kir channels (Kir3.1 and Kir6.2) were determined in the cortex, hippocampus and medulla of adult Wistar rats by utilizing a Pentylenetetrazol (PTZ)-kindling chronic epilepsy model. Increased immunoreactivity of the NE transporter, M2, and 5-HT2B receptors was witnessed in the cortex and medulla. While the immunoreactivity of the 5-HT2B receptor was found increased in the cortex and medulla, it was decreased in the hippocampus, with no changes observed in the M2 receptor in this region. Kir3.1 and Kir6.2 staining showed increase immunoreactivity in the cerebral cortex, but channel contrasting findings in the hippocampus and medulla. Our results suggest that seizure kindling may result in significant changes in the neurotransmitter system which may contribute or propagate to future epileptogenesis, brain damage and potentially towards sudden unexpected death in epilepsy (SUDEP). Further studies on the pathogenic role of these changes in neurotransmitter receptors/transporters and K+ channel immunoreactivity may identify newer possible targets to treat seizures or prevent epilepsy-related comorbidities.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, Faculty of International Medicine, University of Health Sciences, Istanbul 34668, Turkey
- Correspondence: (E.A.); (O.D.); Tel.: +90-535-7629979 (E.A.); +1-646-558-0803 (O.D.)
| | - Zuleyha Doganyigit
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey; (Z.D.); (E.K.)
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (Y.N.P.); (A.A.); (M.F.S.)
| | - Betul Koklu
- Faculty of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey;
| | - Emin Kaymak
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey; (Z.D.); (E.K.)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Alina Arulsamy
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (Y.N.P.); (A.A.); (M.F.S.)
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (Y.N.P.); (A.A.); (M.F.S.)
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, Department of Neurology, NYU Langone School of Medicine, New York, NY 10010, USA
- Correspondence: (E.A.); (O.D.); Tel.: +90-535-7629979 (E.A.); +1-646-558-0803 (O.D.)
| |
Collapse
|
27
|
de Melo IS, Dos Santos YMO, Pacheco ALD, Costa MA, de Oliveira Silva V, Freitas-Santos J, de Melo Bastos Cavalcante C, Silva-Filho RC, Leite ACR, Gitaí DGL, Duzzioni M, Sabino-Silva R, Borbely AU, de Castro OW. Role of Modulation of Hippocampal Glucose Following Pilocarpine-Induced Status Epilepticus. Mol Neurobiol 2021; 58:1217-1236. [PMID: 33123979 DOI: 10.1007/s12035-020-02173-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
Status epilepticus (SE) is defined as continuous and self-sustaining seizures, which trigger hippocampal neurodegeneration, mitochondrial dysfunction, oxidative stress, and energy failure. During SE, the neurons become overexcited, increasing energy consumption. Glucose uptake is increased via the sodium glucose cotransporter 1 (SGLT1) in the hippocampus under epileptic conditions. In addition, modulation of glucose can prevent neuronal damage caused by SE. Here, we evaluated the effect of increased glucose availability in behavior of limbic seizures, memory dysfunction, neurodegeneration process, neuronal activity, and SGLT1 expression. Vehicle (VEH, saline 0.9%, 1 μL) or glucose (GLU; 1, 2 or 3 mM, 1 μL) were administered into hippocampus of male Wistar rats (Rattus norvegicus) before or after pilocarpine to induce SE. Behavioral analysis of seizures was performed for 90 min during SE. The memory and learning processes were analyzed by the inhibitory avoidance test. After 24 h of SE, neurodegeneration process, neuronal activity, and SGLT1 expression were evaluated in hippocampal and extrahippocampal regions. Modulation of hippocampal glucose did not protect memory dysfunction followed by SE. Our results showed that the administration of glucose after pilocarpine reduced the severity of seizures, as well as the number of limbic seizures. Similarly, glucose after SE reduced cell death and neuronal activity in hippocampus, subiculum, thalamus, amygdala, and cortical areas. Finally, glucose infusion elevated the SGLT1 expression in hippocampus. Taken together our data suggest that possibly the administration of intrahippocampal glucose protects brain in the earlier stage of epileptogenic processes via an important support of SGLT1.
Collapse
Affiliation(s)
- Igor Santana de Melo
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | | | - Amanda Larissa Dias Pacheco
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Maisa Araújo Costa
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Vanessa de Oliveira Silva
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Jucilene Freitas-Santos
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | | | - Reginaldo Correia Silva-Filho
- Bioenergetics Laboratory, Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Ana Catarina Rezende Leite
- Bioenergetics Laboratory, Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Daniel Góes Leite Gitaí
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Marcelo Duzzioni
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Robinson Sabino-Silva
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia, MG, Brazil
| | - Alexandre Urban Borbely
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Olagide Wagner de Castro
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil.
| |
Collapse
|
28
|
Singh S, Singh TG, Rehni AK. An Insight into Molecular Mechanisms and Novel Therapeutic Approaches in Epileptogenesis. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:750-779. [PMID: 32914725 DOI: 10.2174/1871527319666200910153827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
Epilepsy is the second most common neurological disease with abnormal neural activity involving the activation of various intracellular signalling transduction mechanisms. The molecular and system biology mechanisms responsible for epileptogenesis are not well defined or understood. Neuroinflammation, neurodegeneration and Epigenetic modification elicit epileptogenesis. The excessive neuronal activities in the brain are associated with neurochemical changes underlying the deleterious consequences of excitotoxicity. The prolonged repetitive excessive neuronal activities extended to brain tissue injury by the activation of microglia regulating abnormal neuroglia remodelling and monocyte infiltration in response to brain lesions inducing axonal sprouting contributing to neurodegeneration. The alteration of various downstream transduction pathways resulted in intracellular stress responses associating endoplasmic reticulum, mitochondrial and lysosomal dysfunction, activation of nucleases, proteases mediated neuronal death. The recently novel pharmacological agents modulate various receptors like mTOR, COX-2, TRK, JAK-STAT, epigenetic modulators and neurosteroids are used for attenuation of epileptogenesis. Whereas the various molecular changes like the mutation of the cell surface, nuclear receptor and ion channels focusing on repetitive episodic seizures have been explored by preclinical and clinical studies. Despite effective pharmacotherapy for epilepsy, the inadequate understanding of precise mechanisms, drug resistance and therapeutic failure are the current fundamental problems in epilepsy. Therefore, the novel pharmacological approaches evaluated for efficacy on experimental models of epilepsy need to be identified and validated. In addition, we need to understand the downstream signalling pathways of new targets for the treatment of epilepsy. This review emphasizes on the current state of novel molecular targets as therapeutic approaches and future directions for the management of epileptogenesis. Novel pharmacological approaches and clinical exploration are essential to make new frontiers in curing epilepsy.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Ashish Kumar Rehni
- Cerebral Vascular Disease Research Laboratories, Department of Neurology and Neuroscience Program, University of Miami School of Medicine, Miami, Florida 33101, United States
| |
Collapse
|
29
|
Van Dusen RA, Shuster-Hyman H, Robertson RM. Inhibition of ATP-sensitive potassium channels exacerbates anoxic coma in Locusta migratoria. J Neurophysiol 2020; 124:1754-1765. [DOI: 10.1152/jn.00379.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We demonstrate the involvement of ATP-sensitive K+ (KATP) channels during recovery from spreading depolarization (SD) induced via anoxic coma in locusts. KATP inhibition using glybenclamide impaired ion homeostasis across the blood-brain barrier, resulting in a longer time to recovery of transperineurial potential following SD. Comparison with ouabain indicates that the effects of glybenclamide are not mediated by the Na+/K+-ATPase but are a result of KATP channel inhibition.
Collapse
|
30
|
α-Helical protein absorption at post-traumatic epileptic foci monitored by Fourier transform infrared mapping. J Biosci 2020. [DOI: 10.1007/s12038-020-00028-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
L-Glucose: Another Path to Cancer Cells. Cancers (Basel) 2020; 12:cancers12040850. [PMID: 32244695 PMCID: PMC7225996 DOI: 10.3390/cancers12040850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 01/31/2023] Open
Abstract
Cancerous tumors comprise cells showing metabolic heterogeneity. Among numerous efforts to understand this property, little attention has been paid to the possibility that cancer cells take up and utilize otherwise unusable substrates as fuel. Here we discuss this issue by focusing on l-glucose, the mirror image isomer of naturally occurring d-glucose; l-glucose is an unmetabolizable sugar except in some bacteria. By combining relatively small fluorophores with l-glucose, we generated fluorescence-emitting l-glucose tracers (fLGs). To our surprise, 2-NBDLG, one of these fLGs, which we thought to be merely a control substrate for the fluorescent d-glucose tracer 2-NBDG, was specifically taken up into tumor cell aggregates (spheroids) that exhibited nuclear heterogeneity, a major cytological feature of malignancy in cancer diagnosis. Changes in mitochondrial activity were also associated with the spheroids taking up fLG. To better understand these phenomena, we review here the Warburg effect as well as key studies regarding glucose uptake. We also discuss tumor heterogeneity involving aberrant uptake of glucose and mitochondrial changes based on the data obtained by fLG. We then consider the use of fLGs as novel markers for visualization and characterization of malignant tumor cells.
Collapse
|
32
|
Watanabe S, Usui-Kawanishi F, Karasawa T, Kimura H, Kamata R, Komada T, Inoue Y, Mise N, Kasahara T, Takahashi M. Glucose regulates hypoxia-induced NLRP3 inflammasome activation in macrophages. J Cell Physiol 2020; 235:7554-7566. [PMID: 32115713 DOI: 10.1002/jcp.29659] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 02/13/2020] [Indexed: 12/20/2022]
Abstract
Although the intimate linkage between hypoxia and inflammation is well known, the mechanism underlying this linkage has not been fully understood. Nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome is an intracellular multiprotein complex that regulates interleukin-1β (IL-1β) secretion and pyroptosis, and is implicated in the pathogenesis of sterile inflammatory diseases. Here, we investigated the regulatory mechanism of NLRP3 inflammasome activation in response to hypoxia in macrophages. Severe hypoxia (0.1% O2 ) induced the processing of pro-IL-1β, pro-caspase-1, and gasdermin D, as well as the release of IL-1β and lactate dehydrogenase in lipopolysaccharide (LPS)-primed murine macrophages, indicating that hypoxia induces NLRP3 inflammasome-driven inflammation and pyroptosis. NLRP3 deficiency and a specific caspase-1 blockade inhibited hypoxia-induced IL-1β release. Hypoxia-induced IL-1β release and cell death were augmented under glucose deprivation, and an addition of glucose in the media negatively regulated hypoxia-induced IL-1β release. Under hypoxia and glucose deprivation, hypoxia-induced glycolysis was not driven and subsequently, the intracellular adenosine triphosphates (ATPs) were depleted. Atomic absorption spectrometry analysis showed a reduction of intracellular K+ concentrations, indicating the K+ efflux occurring under hypoxia and glucose deprivation. Furthermore, hypoxia and glucose deprivation-induced IL-1β release was significantly prevented by inhibition of K+ efflux and KATP channel blockers. In vivo experiments further revealed that IL-1β production was increased in LPS-primed mice exposed to hypoxia (9.5% O2 ), which was prevented by a deficiency of NLRP3, an apoptosis-associated speck-like protein containing a caspase recruitment domain, and caspase-1. Our results demonstrate that NLRP3 inflammasome can sense intracellular energy crisis as a danger signal induced by hypoxia and glucose deprivation, and provide new insights into the mechanism underlying hypoxia-induced inflammation.
Collapse
Affiliation(s)
- Sachiko Watanabe
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Fumitake Usui-Kawanishi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.,Department of Pharmaceutical Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hiroaki Kimura
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Ryo Kamata
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Takanori Komada
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yoshiyuki Inoue
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Nathan Mise
- Department of Environmental and Preventive Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Tadashi Kasahara
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
33
|
Stress Hyperglycemia as Predictive Factor of Recurrence in Children with Febrile Seizures. Brain Sci 2020; 10:brainsci10030131. [PMID: 32120784 PMCID: PMC7139396 DOI: 10.3390/brainsci10030131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/25/2020] [Indexed: 01/04/2023] Open
Abstract
Stress hyperglycemia and hyperlactatemia are commonly referred to as markers of stress severity and poor outcome in children with severe acute illness or febrile seizures. Our prospective study aimed to explore the risk factors for stress hyperglycemia and the predictive value of stress hyperglycemia for febrile seizure recurrence. We evaluated as risk factors for blood glucose level, serum lactate, acid–base status, and the clinical parameters relevant to the severity of the infectious context or to febrile seizure event: fever degree, fever duration, seizure type and aspect, seizure duration, and recurrence. Among 166 febrile seizures events in 128 children, the prevalence of stress hyperglycemia (blood glucose >140 mg/dl) was 16.9%. The comparison of the stress versus non-stress hyperglycemia groups revealed lower pH (median (interquartile range): 7.46 (7.37, 7.53) vs. 7.48 (7.42, 7.53), p = 0.049), higher lactate levels (30.50 mg/dl (15, 36) vs. 19.50 mg/dl (15, 27), p = 0.000), slightly lower HCO3 (20.15 (20.20, 21.45) vs. 21.35 (20, 22.40), p = 0.020) in the stress hyperglycemia group. Multiple logistic regression analysis showed that prolonged febrile seizures (>15 min), recurrent febrile seizure (>1 seizure), focal seizure type, body temperature ≥39.5 °C and higher lactate values were significantly associated with stress hyperglycemia. These findings suggest a particular acute stress reaction in febrile seizures, with stress hyperglycemia playing an important role, particularly in patients with a recurrent seizure pattern. A more complex future approach linking pathogenic mechanisms and genetic traits would be advised and could provide further clues regarding recurrence pattern and individualized treatment.
Collapse
|
34
|
Al-Karagholi MAM, Ghanizada H, Hansen JM, Aghazadeh S, Skovgaard LT, Olesen J, Ashina M. Extracranial activation of ATP-sensitive potassium channels induces vasodilation without nociceptive effects. Cephalalgia 2019; 39:1789-1797. [DOI: 10.1177/0333102419888490] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction Levcromakalim opens ATP-sensitive potassium channels (KATP channel) and induces head pain in healthy volunteers and migraine headache in migraine patients, but no pain in other parts of the body. KATP channels are expressed in C- and Aδ-fibers, and these channels might directly activate nociceptors and thereby evoke pain in humans. Methods To assess the local effect of KATP channel opening in trigeminal and extra-trigeminal regions, we performed a crossover, double-blind, placebo-controlled study in healthy volunteers. Participants received intradermal and intramuscular injections of levcromakalim and placebo in the forehead and the forearms. Results Intradermal and intramuscular injections of levcromakalim did not evoke more pain compared to placebo in the forehead ( p > 0.05) and the forearms ( p > 0.05). Intradermal injection of levcromakalim caused more flare ( p < 0.001 ), skin temperature increase ( p < 0.001), and skin blood flow increase ( p < 0.001) compared to placebo in the forehead and the forearms. Conclusion These findings suggest that it is unlikely that levcromakalim induces head pain by direct activation of peripheral neurons.
Collapse
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Hashmat Ghanizada
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Jakob Møller Hansen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Sameera Aghazadeh
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Lene Theil Skovgaard
- Department of Biostatistics, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
- Glostrup Research Park, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
35
|
Mohammadi F, Shakiba S, Mehrzadi S, Afshari K, Rahimnia AH, Dehpour AR. Anticonvulsant effect of melatonin through ATP‐sensitive channels in mice. Fundam Clin Pharmacol 2019; 34:148-155. [DOI: 10.1111/fcp.12490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/07/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Fatemeh Mohammadi
- Brain and Spinal Cord Injury Research Center Neuroscience Institute Tehran University of Medical Sciences Tehran Iran
| | - Saeed Shakiba
- Brain and Spinal Cord Injury Research Center Neuroscience Institute Tehran University of Medical Sciences Tehran Iran
- Experimental Medicine Research Center Tehran University of Medical Sciences Tehran Iran
- Department of Pharmacology School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center Iran University of Medical Sciences Shahid Hemmat Highway Tehran 1449614535 Iran
| | - Khashayar Afshari
- Brain and Spinal Cord Injury Research Center Neuroscience Institute Tehran University of Medical Sciences Tehran Iran
- Experimental Medicine Research Center Tehran University of Medical Sciences Tehran Iran
- Department of Pharmacology School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Amir Hossein Rahimnia
- Brain and Spinal Cord Injury Research Center Neuroscience Institute Tehran University of Medical Sciences Tehran Iran
- Experimental Medicine Research Center Tehran University of Medical Sciences Tehran Iran
- Department of Pharmacology School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Ahmad Reza Dehpour
- Brain and Spinal Cord Injury Research Center Neuroscience Institute Tehran University of Medical Sciences Tehran Iran
- Experimental Medicine Research Center Tehran University of Medical Sciences Tehran Iran
- Department of Pharmacology School of Medicine Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
36
|
Barzegar M, Afghan M, Tarmahi V, Behtari M, Rahimi Khamaneh S, Raeisi S. Ketogenic diet: overview, types, and possible anti-seizure mechanisms. Nutr Neurosci 2019; 24:307-316. [PMID: 31241011 DOI: 10.1080/1028415x.2019.1627769] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ketogenic diet (KD) has been used for a long time as a therapeutic approach for drug-resistant epilepsy. It is a high-fat, low-carbohydrate, and adequate protein diet. There are various types of KD with some differences in their compositions that mainly include classic KD, medium-chain triglyceride diet, modified Atkins diet, and low glycemic index treatment. The anti-seizure mechanisms of KDs have not yet completely understood but, some possible mechanisms can be theorized. The aim of the present study was to review the various types of KD and explain the probable biochemical mechanisms involved in its anti-seizure property.
Collapse
Affiliation(s)
- Mohammad Barzegar
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Afghan
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Tarmahi
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Meysam Behtari
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sina Raeisi
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Milanese C, Payán-Gómez C, Mastroberardino PG. Cysteine oxidation and redox signaling in dopaminergic neurons physiology and in Parkinson’s disease. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Singh BL, Chen L, Cai H, Shi H, Wang Y, Yu C, Chen X, Han X, Cai X. Activation of adenosine A2a receptor accelerates and A2a receptor antagonist reduces intermittent hypoxia induced PC12 cell injury via PKC-KATP pathway. Brain Res Bull 2019; 150:118-126. [PMID: 31129168 DOI: 10.1016/j.brainresbull.2019.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/19/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
Obstructive sleep apnea hypopnea syndrome (OSAHS) is associated with multiple system diseases. Neurocognitive dysfunction resulting from central nervous system complications has been reported, especially in children with OSAHS. Chronic intermittent hypoxia is accepted to be the major pathophysiological mechanism of OSAHS. Adenosine plays an important role in cellular function via interactions with its receptors. A2a receptor has been recognized as a factor involved in neuroprotection. However, the role of adenosine A2a receptor in intermittent hypoxia induced cellular injury is not completely understood. In this study, we aim to investigate the underlying mechanisms of A2a receptor mediated cellular damage caused by intermittent hypoxia in PC12 cells. We found that activated A2a receptor by CGS21680 decreased cellular viability, increased PKC as well as ATP-sensitive potassium channel (KATP) subunits expression Kir6.2 and SUR1. Inhibition of A2a receptor by SCH58261 increased cellular viability, suppressed PKC and SUR1 expression level, ultimately showing a protective role in PC12 cells. Moreover, we observed that CHE, which is an antagonist of PKC, downregulated Kir6.2 and SUR1 expression and increased cellular viability. Additionally, we found that A2a receptor activation induced cell injury was associated with increased Cleaved-Caspase 3 expression, which can be decreased by inhibition of A2a receptor or PKC. In conclusion, our findings indicate that A2a receptor induced KATP expression by PKC activation and plays a role in accelerating PC12 cells injury induced by intermittent hypoxia exposure via A2a-PKC-KATP signal pathway mediated apoptosis.
Collapse
Affiliation(s)
- Brett Lyndall Singh
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China; The Second School Of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Liya Chen
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China; The Second School Of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Huilin Cai
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China; The Second School Of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Hua Shi
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China; The Second School Of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Yueyuan Wang
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China; The Second School Of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Chenyi Yu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China
| | - Xu Chen
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China
| | - Xinru Han
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China; The Second School Of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xiaohong Cai
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China; The Second School Of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
39
|
Yamada K. Aberrant Uptake of a Fluorescent L-Glucose Analogue (fLG) into Tumor Cells Expressing Malignant Phenotypes. Biol Pharm Bull 2019; 41:1508-1516. [PMID: 30270319 DOI: 10.1248/bpb.b18-00089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucose, one of the most fundamental sugar elements, has either D- or L-conformation. Of these, most cells preferentially take up D-glucose as an essential energy/carbon source. Such stereoselective uptake of glucose has been explored by fluorophore-bearing D- and L-glucose analogues. 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG), the most widely used fluorescent D-glucose analogue, was abundantly taken up into living Escherichia coli cells, whereas no detectable uptake was obtained for 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-L-glucose (2-NBDLG), the antipode of 2-NBDG developed as a fluorescent L-glucose analogue (fLG). Interestingly, we found three-dimensionally accumulating tumor cell aggregates taking up 2-NBDLG when they expressed nuclear heterogeneity, one of the major cytological criteria for cells suspected of high-grade malignancy in clinical diagnosis. 2-NBDLG uptake was not detected in aggregates consisting of homogeneous cells and was specifically abolished by phloretin, a broad-spectrum inhibitor against transporters/channels. Preliminary studies have suggested that a combined use of 2-NBDLG, which emits green fluorescence, with 13-[4-[(2-deoxy-D-glucopyranose-2-yl)aminosulfonyl]-2-sulfonatophenyl]-4,5-trimethylene-7,8-trimethylene-1,2,3,4,6,9,10,11-octahydro-4-aza-6-oxa-8-azoniapentacene (2-TRLG), a membrane-impermeable fLG bearing a large red fluorophore, is effective for discriminating malignant tumor from benign cells both in living biopsy specimens endoscopically dissected from patients with early-stage gastric cancer and in ascites fluid of patients with gynecological cancers. Confocal endomicroscopic imaging of a carcinogen-induced cancer in bile duct of hamsters indicated that the fLG uptake pattern well correlated with pathological diagnosis for carcinoma. Safety tests according to Good Laboratory Practice regulations have been successfully completed so far. fLGs are unique fluorescent glucose analogues for identifying and characterizing living cancer cells based on derangements in their transport function.
Collapse
Affiliation(s)
- Katsuya Yamada
- Department of Physiology, Hirosaki University Graduate School of Medicine
| |
Collapse
|
40
|
Gerzanich V, Stokum JA, Ivanova S, Woo SK, Tsymbalyuk O, Sharma A, Akkentli F, Imran Z, Aarabi B, Sahuquillo J, Simard JM. Sulfonylurea Receptor 1, Transient Receptor Potential Cation Channel Subfamily M Member 4, and KIR6.2:Role in Hemorrhagic Progression of Contusion. J Neurotrauma 2018; 36:1060-1079. [PMID: 30160201 PMCID: PMC6446209 DOI: 10.1089/neu.2018.5986] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In severe traumatic brain injury (TBI), contusions often are worsened by contusion expansion or hemorrhagic progression of contusion (HPC), which may double the original contusion volume and worsen outcome. In humans and rodents with contusion-TBI, sulfonylurea receptor 1 (SUR1) is upregulated in microvessels and astrocytes, and in rodent models, blockade of SUR1 with glibenclamide reduces HPC. SUR1 does not function by itself, but must co-assemble with either KIR6.2 or transient receptor potential cation channel subfamily M member 4 (TRPM4) to form KATP (SUR1-KIR6.2) or SUR1-TRPM4 channels, with the two having opposite effects on membrane potential. Both KIR6.2 and TRPM4 are reportedly upregulated in TBI, especially in astrocytes, but the identity and function of SUR1-regulated channels post-TBI is unknown. Here, we analyzed human and rat brain tissues after contusion-TBI to characterize SUR1, TRPM4, and KIR6.2 expression, and in the rat model, to examine the effects on HPC of inhibiting expression of the three subunits using intravenous antisense oligodeoxynucleotides (AS-ODN). Glial fibrillary acidic protein (GFAP) immunoreactivity was used to operationally define core versus penumbral tissues. In humans and rats, GFAP-negative core tissues contained microvessels that expressed SUR1 and TRPM4, whereas GFAP-positive penumbral tissues contained astrocytes that expressed all three subunits. Förster resonance energy transfer imaging demonstrated SUR1-TRPM4 heteromers in endothelium, and SUR1-TRPM4 and SUR1-KIR6.2 heteromers in astrocytes. In rats, glibenclamide as well as AS-ODN targeting SUR1 and TRPM4, but not KIR6.2, reduced HPC at 24 h post-TBI. Our findings demonstrate upregulation of SUR1-TRPM4 and KATP after contusion-TBI, identify SUR1-TRPM4 as the primary molecular mechanism that accounts for HPC, and indicate that SUR1-TRPM4 is a crucial target of glibenclamide.
Collapse
Affiliation(s)
- Volodymyr Gerzanich
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jesse A Stokum
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Svetlana Ivanova
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Seung Kyoon Woo
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Orest Tsymbalyuk
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Amit Sharma
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Fatih Akkentli
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ziyan Imran
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Bizhan Aarabi
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Juan Sahuquillo
- 2 Neurotraumatology and Neurosurgery Research Unit, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain.,3 Department of Neurosurgery, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J Marc Simard
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland.,4 Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.,5 Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
41
|
Zhao CS, Li H, Wang Z, Chen G. Potential application value of xenon in stroke treatment. Med Gas Res 2018; 8:116-120. [PMID: 30319767 PMCID: PMC6178644 DOI: 10.4103/2045-9912.241077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 11/04/2022] Open
Abstract
Stroke is an acute disease with extremely high mortality and disability, including ischemic stroke and hemorrhagic stroke. Currently only limited drugs and treatments have been shown to have neuroprotective effects in stroke. As a medical gas, xenon has been proven to have neuroprotective effect in considerable amount of previous study. Its unique properties are different from other neuroprotective agents, making it is promising to play a special therapeutic role in stroke, either alone or in combination with other treatments. In this article, we aim to review the role of xenon in the treatment of stroke, and summarize the mechanism of using xenon to produce therapeutic effects after stroke according to the existing research. Moreover, we intend to explore and demonstrate the feasibility and safety of xenon for clinical treatment of stroke. Despite the disadvantages of difficulty in obtaining and being expensive, as long as the use of reasonable methods, xenon can play an important role in the treatment of stroke.
Collapse
Affiliation(s)
- Chong-Shun Zhao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Hao Li
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
42
|
Tinker A, Aziz Q, Li Y, Specterman M. ATP‐Sensitive Potassium Channels and Their Physiological and Pathophysiological Roles. Compr Physiol 2018; 8:1463-1511. [DOI: 10.1002/cphy.c170048] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Zhang Q, Li C, Zhang T, Ge Y, Han X, Sun S, Ding J, Lu M, Hu G. Deletion of Kir6.2/SUR1 potassium channels rescues diminishing of DA neurons via decreasing iron accumulation in PD. Mol Cell Neurosci 2018; 92:164-176. [PMID: 30171894 DOI: 10.1016/j.mcn.2018.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/16/2018] [Accepted: 08/25/2018] [Indexed: 11/25/2022] Open
Abstract
ATP-sensitive potassium (K-ATP) channels express in the central nervous system extensively which coupling cell metabolism and cellular electrical activity. K-ATP channels in mature substantia nigra (SN) dopaminergic (DA) neurons are composed of inwardly rectifying potassium channel (Kir) subunit 6.2 and sulfonylurea receptor 1 (SUR1). Our previous study revealed that regulating K-ATP channel exerts the protective effect on DA neurons in a mouse model of Parkinson's disease (PD). However, the detailed mechanism underlying the role of Kir6.2/K-ATP remains unclear. In the present study, we found the deletion of Kir6.2 dramatically alleviated PD-like motor dysfunction of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) PD model. We further found that Kir6.2 knockout selectively restored the reduction of both DA neuronal number and dopamine transmitter level in the nigrostriatal of MPTP-treated PD mice. To gain some understanding on the molecular basis of this effect, we focused on the regulation of Kir6.2 deletion on iron metabolism which is tightly associated with DA neuron damage. We found that Kir6.2 knockout suppressed the excessive iron accumulation in MPTP-treated mouse midbrain and inhibited the upregulation of ferritin light chain (FTL), which is a main intracellular iron storage protein. We probed further and found out that the deletion of Kir6.2 inhibited the excessive production of FTL via IRP-IRE regulatory system, and thereby protecting SN DA neurons against MPTP challenge. Our findings suggest that Kir6.2 plays a crucial role in the pathogenesis of PD and regulating Kir6.2/K-ATP channel may be a promising strategy for PD treatment.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Chengwu Li
- Department of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Ting Zhang
- Department of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Yaping Ge
- Department of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Xiaojuan Han
- Department of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Sifan Sun
- First Clinic Medical School, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Jianhua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China.
| | - Gang Hu
- Department of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China; Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
44
|
Abstract
West syndrome (WS) is an early life epileptic encephalopathy associated with infantile spasms, interictal electroencephalography (EEG) abnormalities including high amplitude, disorganized background with multifocal epileptic spikes (hypsarrhythmia), and often neurodevelopmental impairments. Approximately 64% of the patients have structural, metabolic, genetic, or infectious etiologies and, in the rest, the etiology is unknown. Here we review the contribution of etiologies due to various metabolic disorders in the pathology of WS. These may include metabolic errors in organic molecules involved in amino acid and glucose metabolism, fatty acid oxidation, metal metabolism, pyridoxine deficiency or dependency, or acidurias in organelles such as mitochondria and lysosomes. We discuss the biochemical, clinical, and EEG features of these disorders as well as the evidence of how they may be implicated in the pathogenesis and treatment of WS. The early recognition of these etiologies in some cases may permit early interventions that may improve the course of the disease.
Collapse
Affiliation(s)
- Seda Salar
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| | - Solomon L. Moshé
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Dominick P. Purpura Department of NeuroscienceMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Department of PediatricsMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| | - Aristea S. Galanopoulou
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Dominick P. Purpura Department of NeuroscienceMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| |
Collapse
|
45
|
Trezza A, Cicaloni V, Porciatti P, Langella A, Fusi F, Saponara S, Spiga O. From in silico to in vitro: a trip to reveal flavonoid binding on the Rattus norvegicus Kir6.1 ATP-sensitive inward rectifier potassium channel. PeerJ 2018; 6:e4680. [PMID: 29736333 PMCID: PMC5936070 DOI: 10.7717/peerj.4680] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 04/09/2018] [Indexed: 12/18/2022] Open
Abstract
Background ATP-sensitive inward rectifier potassium channels (Kir), are a potassium channel family involved in many physiological processes. KATP dysfunctions are observed in several diseases such as hypoglycaemia, hyperinsulinemia, Prinzmetal angina–like symptoms, cardiovascular diseases. Methods A broader view of the KATP mechanism is needed in order to operate on their regulation, and in this work we clarify the structure of the Rattus norvegicus ATP-sensitive inward rectifier potassium channel 8 (Kir6.1), which has been obtained through a homology modelling procedure. Due to the medical use of flavonoids, a considerable increase in studies on their influence on human health has recently been observed, therefore our aim is to study, through computational methods, the three-dimensional (3D) conformation together with mechanism of action of Kir6.1 with three flavonoids. Results Computational analysis by performing molecular dynamics (MD) and docking simulation on rat 3D modelled structure have been completed, in its closed and open conformation state and in complex with Quercetin, 5-Hydroxyflavone and Rutin flavonoids. Our study showed that only Quercetin and 5-Hydroxyflavone were responsible for a significant down-regulation of the Kir6.1 activity, stabilising it in a closed conformation. This hypothesis was supported by in vitro experiments demonstrating that Quercetin and 5-Hydroxyflavone were capable to inhibit KATP currents of rat tail main artery myocytes recorded by the patch-clamp technique. Conclusion Combined methodological approaches, such as molecular modelling, docking and MD simulations of Kir6.1 channel, used to elucidate flavonoids intrinsic mechanism of action, are introduced, revealing a new potential druggable protein site.
Collapse
Affiliation(s)
- Alfonso Trezza
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Vittoria Cicaloni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy.,Toscana Life Sciences Foundation, Siena, Italy
| | - Piera Porciatti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Andrea Langella
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Fabio Fusi
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Simona Saponara
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
46
|
Possible involvement of monoamine neurons in the emotional abnormality in Kir6.2-deficient mice. Physiol Behav 2018; 188:251-261. [PMID: 29432787 DOI: 10.1016/j.physbeh.2018.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 11/24/2022]
Abstract
ATP-sensitive potassium (KATP) channels consist of two structurally different subunits: a pore-forming subunit of the Kir6.0-family (Kir6.1 or Kir6.2) and a regulatory sulfonylurea receptor subunit (SUR1, SUR2A or SUR2B). Although Kir6.2 is widely distributed in the brain, the mechanisms that underlie the impact of Kir6.2 on emotional behavior are not yet fully understood. To clarify the role of Kir6.2 in emotional behavior, in the present study, we investigated the behavioral characteristics of Kir6.2-knockout (Kir6.2-/-) mice. Kir6.2-/- mice showed impaired general behavior in a locomotor activity test and open field test. In addition, anxiety-like behavior was observed in the open field test, elevated plus-maze test and light-dark test. In particular, excessive anxiety-like behavior was observed in female Kir6.2-/- mice. Moreover, we investigated whether Kir6.2 is expressed on monoamine neurons in the brain. Immunohistochemical studies showed that Kir6.2 was co-localized with tryptophan hydroxylase (TPH), a marker of serotonergic neurons, in dorsal raphe nuclei. Kir6.2 was also co-localized with tyrosine hydroxylase (TH), a marker of dopaminergic/noradrenergic neurons, in the ventral tegmental area and locus coeruleus. Next, we checked the protein levels of TH and TPH in the midbrain. Interestingly, TPH expression was significantly elevated in female Kir6.2-/- mice. These results suggest that Kir6.2 in monoamine neurons, especially serotonergic neurons, could play a key role in emotional behavior.
Collapse
|
47
|
Nedergaard S, Andreasen M. Opposing effects of 2-deoxy-d-glucose on interictal- and ictal-like activity when K+ currents and GABAA receptors are blocked in rat hippocampus in vitro. J Neurophysiol 2018; 119:1912-1923. [DOI: 10.1152/jn.00732.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ketogenic diet (KD), a high-fat, carbohydrate-restricted diet, is used as an alternative treatment for drug-resistant epileptic patients. Evidence suggests that compromised glucose metabolism has a significant role in the anticonvulsant action of the KD; however, it is unclear what part of the glucose metabolism that is important. The present study investigates how selective alterations in glycolysis and oxidative phosphorylation influence epileptiform activity induced by blocking K+ currents and GABAA and NMDA receptors in the hippocampal slice preparation. Blocking glycolysis with the glucose derivative 2-deoxy-d-glucose (2-DG; 10 mM) gave a fast reduction of the frequency of interictal discharge (IED) consistent with findings in other in vitro models. However, this was followed by the induction of seizure-like discharges in area CA1 and CA3. Substituting glucose with sucrose (glucopenia) had effects similar to those of 2-DG, whereas substitution with l-lactate or pyruvate reduced the IED but had a less proconvulsant effect. Blockade of ATP-sensitive K+ channels, glycine or adenosine 1 receptors, or depletion of the endogenous anticonvulsant compound glutathione did not prevent the actions of 2-DG. Baclofen (2 μM) reproduced the effect of 2-DG on IED activity. The proconvulsant effect of 2-DG could be reproduced by blocking the oxidative phosphorylation with the complex I toxin rotenone (4 μM). The data suggest that inhibition of IED, induced by 2-DG and glucopenia, is a direct consequence of impairment of glycolysis, likely exerted via a decreased recurrent excitatory synaptic transmission in area CA3. The accompanying proconvulsant effect is caused by an excitatory mechanism, depending on impairment of oxidative phosphorylation. NEW & NOTEWORTHY This study reveals two opposing effects of 2-deoxy-d-glucose (2-DG) and glucopenia on in vitro epileptiform discharge observed during combined blockade of K+ currents and GABAA receptors. Interictal-like activity is inhibited by a mechanism that selectively depends on impairment of glycolysis and that results from a decrease in the strength of excitatory recurrent synaptic transmission in area CA3. In contrast, 2-DG and glucopenia facilitate ictal-like activity by an excitatory mechanism, depending on impairment of mitochondrial oxidative phosphorylation.
Collapse
|
48
|
Vidal-Taboada JM, Pugliese M, Salvadó M, Gámez J, Mahy N, Rodríguez MJ. K ATP Channel Expression and Genetic Polymorphisms Associated with Progression and Survival in Amyotrophic Lateral Sclerosis. Mol Neurobiol 2018; 55:7962-7972. [PMID: 29492846 DOI: 10.1007/s12035-018-0970-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/16/2018] [Indexed: 02/06/2023]
Abstract
The ATP-sensitive potassium (KATP) channel directly regulates the microglia-mediated inflammatory response following CNS injury. To determine the putative role of the KATP channel in amyotrophic lateral sclerosis (ALS) pathology, we investigated whether ALS induces changes in KATP channel expression in the spinal cord and motor cortex. We also characterized new functional variants of human ABCC8, ABCC9, KCNJ8, and KCNJ11 genes encoding for the KATP channel and analyzed their association with ALS risk, rate of progression, and survival in a Spanish ALS cohort. The expression of ABCC8 and KCNJ8 genes was enhanced in the spinal cord of ALS samples, and KCNJ11 increased in motor cortex of ALS samples, as determined by real-time polymerase chain reaction. We then sequenced the exons and regulatory regions of KATP channel genes from a subset of 28 ALS patients and identified 50 new genetic variants. For the case-control association analysis, we genotyped five selected polymorphisms with predicted functional relevance in 185 Spanish ALS (134 spinal ALS and 51 bulbar ALS) patients and 493 controls. We found that bulbar ALS patients presenting the G/G genotype of the rs4148646 variant of ABCC8 and the T/T genotype of the rs5219 variant of KCNJ11 survived longer than other ALS patients presenting other genotypes. Also, the C/C genotype of the rs4148642 variant of ABCC8 and the T/C genotype of the rs148416760 variant of ABCC9 modified the progression rate in spinal ALS patients. Our results suggest that the KATP channel plays a role in the pathophysiological mechanisms of ALS.
Collapse
Affiliation(s)
- José M Vidal-Taboada
- Department of Biomedical Sciences, Institut de Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat de Barcelona, Barcelona, Spain
| | - Marco Pugliese
- Department of Biomedical Sciences, Institut de Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat de Barcelona, Barcelona, Spain
| | - Maria Salvadó
- ALS Unit, Department of Neurology, Hospital Universitari Vall d'Hebron - VHIR, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Gámez
- ALS Unit, Department of Neurology, Hospital Universitari Vall d'Hebron - VHIR, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nicole Mahy
- Department of Biomedical Sciences, Institut de Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat de Barcelona, Barcelona, Spain
| | - Manuel J Rodríguez
- Department of Biomedical Sciences, Institut de Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat de Barcelona, Barcelona, Spain. .,Unitat de Bioquímica i Biologia Molecular, Department of Biomedicina, Facultat de Medicina, UB, c/ Casanova 143, E-08036, Barcelona, Spain.
| |
Collapse
|
49
|
Salgado-Puga K, Rodríguez-Colorado J, Prado-Alcalá RA, Peña-Ortega F. Subclinical Doses of ATP-Sensitive Potassium Channel Modulators Prevent Alterations in Memory and Synaptic Plasticity Induced by Amyloid-β. J Alzheimers Dis 2018; 57:205-226. [PMID: 28222502 DOI: 10.3233/jad-160543] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In addition to coupling cell metabolism and excitability, ATP-sensitive potassium channels (KATP) are involved in neural function and plasticity. Moreover, alterations in KATP activity and expression have been observed in Alzheimer's disease (AD) and during amyloid-β (Aβ)-induced pathology. Thus, we tested whether KATP modulators can influence Aβ-induced deleterious effects on memory, hippocampal network function, and plasticity. We found that treating animals with subclinical doses (those that did not change glycemia) of a KATP blocker (Tolbutamide) or a KATP opener (Diazoxide) differentially restrained Aβ-induced memory deficit, hippocampal network activity inhibition, and long-term synaptic plasticity unbalance (i.e., inhibition of LTP and promotion of LTD). We found that the protective effect of Tolbutamide against Aβ-induced memory deficit was strong and correlated with the reestablishment of synaptic plasticity balance, whereas Diazoxide treatment produced a mild protection against Aβ-induced memory deficit, which was not related to a complete reestablishment of synaptic plasticity balance. Interestingly, treatment with both KATP modulators renders the hippocampus resistant to Aβ-induced inhibition of hippocampal network activity. These findings indicate that KATP are involved in Aβ-induced pathology and they heighten the potential role of KATP modulation as a plausible therapeutic strategy against AD.
Collapse
Affiliation(s)
- Karla Salgado-Puga
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO, México
| | - Javier Rodríguez-Colorado
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO, México
| | - Roberto A Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO, México
| |
Collapse
|
50
|
Mei HF, Poonit N, Zhang YC, Ye CY, Cai HL, Yu CY, Zhou YH, Wu BB, Cai J, Cai XH. Activating adenosine A1 receptor accelerates PC12 cell injury via ADORA1/PKC/KATP pathway after intermittent hypoxia exposure. Mol Cell Biochem 2018; 446:161-170. [PMID: 29380238 DOI: 10.1007/s11010-018-3283-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 01/18/2018] [Indexed: 12/19/2022]
Abstract
Obstructive sleep apnea hypopnea syndrome (OSAHS) is associated with the neurocognitive deficits as a result of the neuronal cell injury. Previous studies have shown that adenosine A1 receptor (ADORA1) played an important role against hypoxia exposure, such as controlling the metabolic recovery in rat hippocampal slices and increasing the resistance in the combined effects of hypoxia and hypercapnia. However, little is known about whether ADORA1 takes part in the course of neuronal cell injury after intermittent hypoxia exposure which was the main pathological characteristic of OSAHS. The present study is performed to explore the underlying mechanism of neuronal cell injury which was induced by intermittent hypoxia exposure in PC12 cells. In our research, we find that the stimulation of the ADORA1 by CCPA accelerated the injury of PC12 cells as well as upregulated the expression of PKC, inwardly rectifying potassium channel 6.2(Kir6.2) and sulfonylurea receptor 1(SUR1) while inhibition of the ADORA1 by DPCPX alleviated the injury of PC12 cells as well as downregulated the expression of PKC, Kir6.2, and SUR1. Moreover, inhibition of the PKC by CHE, also mitigated the injury of PC12 cells, suppressed the Kir6.2 and SUR1 expressions induced by PKC. Taken together, our findings indicate that ADORA1 accelerated PC12 cells injury after intermittent hypoxia exposure via ADORA1/PKC/KATP signaling pathway.
Collapse
Affiliation(s)
- Hong-Fang Mei
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China.,Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Neha Poonit
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yi-Chun Zhang
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Chu-Yuan Ye
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hui-Lin Cai
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Chen-Yi Yu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yong-Hai Zhou
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bei-Bei Wu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jun Cai
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China. .,Department of Pediatrics, Children's Hospital Research Institute, The University of Louisville, Louisville, KY, USA.
| | - Xiao-Hong Cai
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|