1
|
Miao Z, Xiong C, Wang Y, Shan T, Jiang H. Identification of immunity-related genes distinctly regulated by Manduca sexta Spӓtzle-1/2 and Escherichia coli peptidoglycan. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 168:104108. [PMID: 38552808 PMCID: PMC11443596 DOI: 10.1016/j.ibmb.2024.104108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 04/08/2024]
Abstract
The immune system of Manduca sexta has been well studied to understand molecular mechanisms of insect antimicrobial responses. While evidence supports the existence of major immune signaling pathways in this species, it is unclear how induced production of defense proteins is specifically regulated by the Toll and Imd pathways. Our previous studies suggested that diaminopimelic acid-type peptidoglycans (DAP-PG) from Gram-negative and some Gram-positive bacteria, more than Lys-type peptidoglycans (Lys-PG) from other Gram-positive bacteria, triggers both pathways through membrane-bound receptors orthologous to Drosophila Toll and PGRP-LC. In this study, we produced M. sexta proSpätzle-1 and proSpätzle-2 in Sf9 cells, identified their processing enzymes, and used prophenoloxidase activating protease-3 to activate the cytokine precursors. After Spätzle-1 and -2 were isolated from the reaction mixtures, we separately injected the purified cytokines into larval hemocoel to induce gene transcription in fat body through the Toll pathway solely. On the other hand, we treated a M. sexta cell line with E. coli DAP-PG to only induce the Imd pathway and target gene expression. RNA-Seq analysis of the fat body and cultured cells collected at 0, 6, and 24 h after treatment indicated that expression of diapausin-4, -10, -12, -13, cecropin-2, -4, -5, attacin-5, -11, and lebocin D is up-regulated predominantly via Toll signaling, whereas transcription of cecropin-6, gloverin, lysozyme-1, and gallerimycin-2 is mostly induced by DAP-PG via Imd signaling. Other antimicrobial peptides are expressed in response to both pathways. Transcripts of most Toll-specific genes (e.g., lebocin D) peaked at 6 h, contrasting the gradual increase and plateauing of drosomycin mRNA level at 24-48 h in Drosophila. We also used T (oll)-I (md) ratios to estimate relative contributions of the two pathways to transcriptional regulation of other components of the immune system. The differences in pathway specificity and time course of transcriptional regulation call for further investigations in M. sexta and other insects.
Collapse
Affiliation(s)
- Zelong Miao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Chao Xiong
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Tisheng Shan
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
2
|
Lu M, Wei D, Shang J, Li S, Song S, Luo Y, Tang G, Wang C. Suppression of Drosophila antifungal immunity by a parasite effector via blocking GNBP3 and GNBP-like 3, the dual receptors for β-glucans. Cell Rep 2024; 43:113642. [PMID: 38175756 DOI: 10.1016/j.celrep.2023.113642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/14/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024] Open
Abstract
The tactics used by animal pathogens to combat host immunity are largely unclear. Here, we report the depiction of the virulence-required effector Tge1 deployed by the entomopathogen Metarhizium robertsii to suppress Drosophila antifungal immunity. Tge1 can target both GNBP3 and GNBP-like 3 (GL3), and the latter can bind to β-glucans like GNBP3, whereas the glucan binding by both receptors can be attenuated by Tge1. As opposed to the surveillance GNBP3, GL3 is inducible in Drosophila depending on the Toll pathway via a positive feedback loop mechanism. Losses of GNBP3 and GL3 genes result in the deregulations of protease cascade, Spätzle maturation, and antimicrobial gene expressions in Drosophila upon fungal challenges. Fly survival assays confirm that GL3 plays a more essential role than GNBP3 in combating fungal infections. In addition to evidencing the gene-for-gene interactions between fungi and insects, our data advance insights into Drosophila antifungal immunity.
Collapse
Affiliation(s)
- Mengting Lu
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dongxiang Wei
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junmei Shang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shiqin Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuangxiu Song
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yujuan Luo
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Guirong Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
3
|
Kloc M, Halasa M, Kubiak JZ, Ghobrial RM. Invertebrate Immunity, Natural Transplantation Immunity, Somatic and Germ Cell Parasitism, and Transposon Defense. Int J Mol Sci 2024; 25:1072. [PMID: 38256145 PMCID: PMC10815962 DOI: 10.3390/ijms25021072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
While the vertebrate immune system consists of innate and adaptive branches, invertebrates only have innate immunity. This feature makes them an ideal model system for studying the cellular and molecular mechanisms of innate immunity sensu stricto without reciprocal interferences from adaptive immunity. Although invertebrate immunity is evolutionarily older and a precursor of vertebrate immunity, it is far from simple. Despite lacking lymphocytes and functional immunoglobulin, the invertebrate immune system has many sophisticated mechanisms and features, such as long-term immune memory, which, for decades, have been exclusively attributed to adaptive immunity. In this review, we describe the cellular and molecular aspects of invertebrate immunity, including the epigenetic foundation of innate memory, the transgenerational inheritance of immunity, genetic immunity against invading transposons, the mechanisms of self-recognition, natural transplantation, and germ/somatic cell parasitism.
Collapse
Affiliation(s)
- Malgorzata Kloc
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA; (M.H.); (R.M.G.)
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Genetics, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Marta Halasa
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA; (M.H.); (R.M.G.)
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Jacek Z. Kubiak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine-National Research Institute (WIM-PIB), Szaserow 128, 04-141 Warsaw, Poland;
- Dynamics and Mechanics of Epithelia Group, Faculty of Medicine, Institute of Genetics and Development of Rennes, University of Rennes, CNRS, UMR 6290, 35043 Rennes, France
| | - Rafik M. Ghobrial
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA; (M.H.); (R.M.G.)
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
4
|
Xie X, Wang D, Li B, Liang G, Chen X, Xing D, Zhao T, Zhou X, Li C. Aedes aegypti Beta-1,3-Glucan-Binding Protein Inhibits Dengue and ZIKA Virus Replication. Biomedicines 2024; 12:88. [PMID: 38255195 PMCID: PMC10812959 DOI: 10.3390/biomedicines12010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
GNBPB6, a beta-1,3-glucan-binding protein, was identified in the transcriptome of Aedes aegypti (A. aegypti) with dengue (DENV), Zika (ZIKV), and chikungunya viruses (CHIKV). In this study, we not only clarified that DENV2 and ZIKV regulate the changes in GNBPB6 expression but also identified the relationship of this gene with viral infections. The changes in GNBPB6 expression were quantified and showed a decrease in A. aegypti cells (Aag2 cells) at 2 dpi and 3 dpi and an increase at 4 dpi and 5 dpi (p < 0.05). A significant increase was observed only at 5 dpi after DENV2 infection. Subsequently, a GNBPB6 knockout (KO) cell line was constructed using the CRISPR/Cas9 system, and the DENV2 and ZIKV RNA copies, along with cell densities, were quantified and compared between the KO and wild type (WT) cells at different dpi. The result showed that DENV2 and ZIKV RNA copies were significantly increased in the KO cell line with no significant change in cell growth. Finally, DENV2 copies decreased after GNBPB6 was complemented in the KO. In conclusion, GNBPB6 knockout and complementation in Aag2 cells revealed that GNBPB6 can inhibit the replication of both DENV2 and ZIKV. These results contribute to subsequent research on mosquito-virus interactions.
Collapse
Affiliation(s)
- Xiaoxue Xie
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.X.); (D.W.); (B.L.); (G.L.); (X.C.); (D.X.); (T.Z.)
| | - Di Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.X.); (D.W.); (B.L.); (G.L.); (X.C.); (D.X.); (T.Z.)
| | - Bo Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.X.); (D.W.); (B.L.); (G.L.); (X.C.); (D.X.); (T.Z.)
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Guorui Liang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.X.); (D.W.); (B.L.); (G.L.); (X.C.); (D.X.); (T.Z.)
| | - Xiaoli Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.X.); (D.W.); (B.L.); (G.L.); (X.C.); (D.X.); (T.Z.)
| | - Dan Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.X.); (D.W.); (B.L.); (G.L.); (X.C.); (D.X.); (T.Z.)
| | - Teng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.X.); (D.W.); (B.L.); (G.L.); (X.C.); (D.X.); (T.Z.)
| | - Xinyu Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.X.); (D.W.); (B.L.); (G.L.); (X.C.); (D.X.); (T.Z.)
| | - Chunxiao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.X.); (D.W.); (B.L.); (G.L.); (X.C.); (D.X.); (T.Z.)
| |
Collapse
|
5
|
Liu Y, He Y, Cao J, Lu H, Zou R, Zuo Z, Li R, Zhang Y, Sun J. Correlative analysis of transcriptome and proteome in Penaeus vannamei reveals key signaling pathways are involved in IFN-like antiviral regulation mediated by interferon regulatory factor (PvIRF). Int J Biol Macromol 2023; 253:127138. [PMID: 37776923 DOI: 10.1016/j.ijbiomac.2023.127138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Interferon regulatory factors (IRFs) are crucial transcription factors that regulate interferon (IFN) induction in response to pathogen invasion. The regulatory mechanism of IRF has been well studied in vertebrates, but little has been known in arthropods. Therefore, in order to obtain new insights into the potential molecular mechanism of Peneaus vannamei IRF (PvIRF) in response to viral infection, comprehensive comparative analysis of the transcriptome and proteome profiles in shrimp infected with WSSV after knocking down PvIRF was conducted by using RNA sequencing (RNA-seq) and isobaric tags for relative and absolute quantification (iTRAQ). The sequence characterization, molecular functional evolution and 3D spatial structure of PvIRF were analyzed by using bioinformatics methods. PvIRF share the higher homology with different species in N-terminal end (containing DNA binding domain (DBD) including DNA sequence recognition sites and metal binding site) than that in C-terminal end. Within 4 IRF subfamilies of vertebrates, PvIRF had closer relationship with IRF1 subfamily. The DBD of PvIRF and C. gigas IRF1a were composed of α-helices and β-folds which was similar with the DBD structure of M. musculus IRF2. Interestingly, different from the five Tryptophan repeats highly homologous in the DBD of vertebrate IRF, the first and fifth tryptophans of PvIRF mutate to Phenylalanine and Leucine respectively, while the mutations were conserved among shrimp IRFs. RNAi knockdown of PvIRF gene by double-strand RNA could obviously promote the in vivo propagation of WSSV in shrimp and increase the mortality of WSSV-infected shrimp. It suggested that PvIRF was involved in inhibiting the replication of WSSV in shrimp. A total of 8787 transcripts and 2846 proteins were identified with significantly differential abundances in WSSV-infected shrimp after PvIRF knockdown, among which several immune-related members were identified and categorized into 10 groups according to their possible functions. Furthermore, the variation of expression profile from members of key signaling pathways involving JAK/STAT and Toll signaling pathway implied that they might participate IRF-mediated IFN-like regulation in shrimp. Correlative analyses indicated that 722 differentially expressed proteins (DEPs) shared the same expression profiles with their corresponding transcripts, including recognition-related proteins (CTLs and ITGs), chitin-binding proteins (peritrophin), and effectors (ALFs and SWD), while 401 DEPs with the opposite expression profiles across the two levels emphasized the critical role of post-transcriptional and post-translational modification. The results provide candidate signaling pathway including pivotal genes and proteins involved in the regulatory mechanism of interferon mediated by IRF on shrimp antiviral response. This is the first report in crustacean to explore the IFN-like antiviral regulation pathway mediated by IRF on the basis of transcriptome and proteomics correlative analysis, and will provide new ideas for further research on innate immune and defense mechanisms of crustacean.
Collapse
Affiliation(s)
- Yichen Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Yuxin He
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Jinlai Cao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Hangjia Lu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Ruifeng Zou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Zhihan Zuo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Ran Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Yichen Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
6
|
Shan T, Wang Y, Bhattarai K, Jiang H. An evolutionarily conserved serine protease network mediates melanization and Toll activation in Drosophila. SCIENCE ADVANCES 2023; 9:eadk2756. [PMID: 38117884 PMCID: PMC10732536 DOI: 10.1126/sciadv.adk2756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/16/2023] [Indexed: 12/22/2023]
Abstract
Melanization and Toll pathway activation are essential innate immune mechanisms in insects, which result in the generation of reactive compounds and antimicrobial peptides, respectively, to kill pathogens. These two processes are mediated by phenoloxidase (PO) and Spätzle (Spz) through an extracellular network of serine proteases. While some proteases have been identified in Drosophila melanogaster in genetic studies, the exact order of proteolytic activation events remains controversial. Here, we reconstituted the serine protease framework in Drosophila by biochemical methods. This system comprises 10 proteases, i.e., ModSP, cSP48, Grass, Psh, Hayan-PA, Hayan-PB, Sp7, MP1, SPE and Ser7, which form cascade pathways that recognize microbial molecular patterns and virulence factors, and generate PO1, PO2, and Spz from their precursors. Furthermore, the serpin Necrotic negatively regulates the immune response progression by inhibiting ModSP and Grass. The biochemical approach, when combined with genetic analysis, is crucial for addressing problems that long stand in this important research field.
Collapse
Affiliation(s)
- Tisheng Shan
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Krishna Bhattarai
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | | |
Collapse
|
7
|
Wiil J, Sørensen JG, Colinet H. Exploring cross-protective effects between cold and immune stress in Drosophila melanogaster. Parasite 2023; 30:54. [PMID: 38084935 PMCID: PMC10714677 DOI: 10.1051/parasite/2023055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/12/2023] [Indexed: 12/18/2023] Open
Abstract
It is well established that environmental and biotic stressors like temperature and pathogens/parasites are essential for the life of small ectotherms. There are complex interactions between cold stress and pathogen infection in insects. Possible cross-protective mechanisms occur between both stressors, suggesting broad connectivity in insect stress responses. In this study, the functional significance of these interactions was tested, as well as the potential role of newly uncovered candidate genes, turandot. This was done using an array of factorial experiments exposing Drosophila melanogaster flies to a combination of different cold stress regimes (acute or chronic) and infections with the parasitic fungus Beauveria bassiana. Following these crossed treatments, phenotypic and molecular responses were assessed by measuring 1) induced cold tolerance, 2) immune resistance to parasitic fungus, and 3) activation of turandot genes. We found various responses in the phenotypic outcomes according to the various treatment combinations with higher susceptibility to infection following cold stress, but also significantly higher acute cold survival in flies that were infected. Regarding molecular responses, we found overexpression of turandot genes in response to most treatments, suggesting reactivity to both cold and infection. Moreover, maximum peak expressions were distinctly observed in the combined treatments (infection plus cold), indicating a marked synergistic effect of the stressors on turandot gene expression patterns. These results reflect the great complexity of cross-tolerance reactions between infection and abiotic stress, but could also shed light on the mechanisms underlying the activation of these responses.
Collapse
Affiliation(s)
- Jakob Wiil
-
Université de Rennes, CNRS, ECOBIO [(Écosystèmes, biodiversité, évolution)] – UMR 6553 263 AVE du Général Leclerc 35000 Rennes France
| | | | - Hervé Colinet
-
Université de Rennes, CNRS, ECOBIO [(Écosystèmes, biodiversité, évolution)] – UMR 6553 263 AVE du Général Leclerc 35000 Rennes France
| |
Collapse
|
8
|
Cai H, Li L, Slavik KM, Huang J, Yin T, Ai X, Hédelin L, Haas G, Xiang Z, Yang Y, Li X, Chen Y, Wei Z, Deng H, Chen D, Jiao R, Martins N, Meignin C, Kranzusch PJ, Imler JL. The virus-induced cyclic dinucleotide 2'3'-c-di-GMP mediates STING-dependent antiviral immunity in Drosophila. Immunity 2023; 56:1991-2005.e9. [PMID: 37659413 DOI: 10.1016/j.immuni.2023.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/14/2023] [Accepted: 08/08/2023] [Indexed: 09/04/2023]
Abstract
In mammals, the enzyme cGAS senses the presence of cytosolic DNA and synthesizes the cyclic dinucleotide (CDN) 2'3'-cGAMP, which triggers STING-dependent immunity. In Drosophila melanogaster, two cGAS-like receptors (cGLRs) produce 3'2'-cGAMP and 2'3'-cGAMP to activate STING. We explored CDN-mediated immunity in 14 Drosophila species covering 50 million years of evolution and found that 2'3'-cGAMP and 3'2'-cGAMP failed to control infection by Drosophila C virus in D. serrata and two other species. We discovered diverse CDNs produced in a cGLR-dependent manner in response to viral infection in D. melanogaster, including 2'3'-c-di-GMP. This CDN was a more potent STING agonist than cGAMP in D. melanogaster and it also activated a strong antiviral transcriptional response in D. serrata. Our results shed light on the evolution of cGLRs in flies and provide a basis for understanding the function and regulation of this emerging family of pattern recognition receptors in animal innate immunity.
Collapse
Affiliation(s)
- Hua Cai
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China.
| | - Lihua Li
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Kailey M Slavik
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Jingxian Huang
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Ting Yin
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Xianlong Ai
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Léna Hédelin
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Gabrielle Haas
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Zhangmin Xiang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou, China
| | - Yunyun Yang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou, China
| | - Xiaoyan Li
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yuqiang Chen
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Ziming Wei
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Huimin Deng
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Di Chen
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Renjie Jiao
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Nelson Martins
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Carine Meignin
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| | - Jean-Luc Imler
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China; Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| |
Collapse
|
9
|
Li J, Lyu B, Bi J, Shan R, Stanley D, Feng Q, Song Q. Partner of neuropeptide bursicon homodimer pburs mediates a novel antimicrobial peptide Ten3LP via Dif/Dorsal2 in Tribolium castaneum. Int J Biol Macromol 2023; 247:125840. [PMID: 37454995 DOI: 10.1016/j.ijbiomac.2023.125840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Bursicon is a cystine knot family neuropeptide, composed of two subunits, bursicon (burs) and partner of burs (pburs). The subunits can form heterodimers to regulate cuticle tanning and wing maturation and homodimers to signal different biological functions in innate immunity, midgut stem cell proliferation and energy homeostasis, and reproductive physiology in the model insects Drosophila melanogaster or Tribolium castaneum. Here, we report on the role of the pburs homodimer in signaling innate immunity in T. castaneum larvae. Through transcriptome analysis we identified a set of immune-related genes that respond to pburs RNAi. Treating larvae with recombinant-pburs protein led to up-regulation of antimicrobial peptide (AMP) genes in vivo and in vitro. The upregulation of most AMP genes was dependent on the NF-κB transcription factor Relish. Most importantly, we identified a novel AMP, Tenecin 3-like peptide (Ten3LP), regulated by pburs via NF-κB transcription factor Dorsal-related immunity factor (Dif)/Dorsal2, but not Relish. We conducted Ten3LP RNAi, synthesized recombinant Ten3LP protein for microbial inhibition assays and functionally characterized Ten3LP as an AMP specific for fungi and Gram-positive bacteria. We demonstrate that expression of Ten3LP is activated by pburs via the Toll pathway. These findings identify new molecular targets for development of potential antibiotics for treating microbial infections and perhaps for RNAi based pest management technology.
Collapse
Affiliation(s)
- Jingjing Li
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA.
| | - Bo Lyu
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA.
| | - Jingxiu Bi
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA; Institution of Quality Standard and Testing Technology for Agro-product, Shandong Academy of Agricultural Science, Jinan, Shandong 250100, China.
| | - Ruiqi Shan
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA.
| | - David Stanley
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA; Biological Control of Insect Research Laboratory, United States Department of Agriculture-Agricultural Research Station (USDA/ARS), Columbia, MO 65203, USA.
| | - Qili Feng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Qisheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
10
|
Li J, Mao Y, Yi J, Lin M, Xu H, Cheng Y, Wu H, Liu J. Induced expression modes of genes related to Toll, Imd, and JAK/STAT signaling pathway-mediated immune response in Spodoptera frugiperda infected with Beauveria bassiana. Front Physiol 2023; 14:1249662. [PMID: 37693000 PMCID: PMC10484109 DOI: 10.3389/fphys.2023.1249662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Spodoptera frugiperda is one of the most harmful pests that attack maize and other major food crops and causes huge economic loss every year in China and other countries and regions. Beauveria bassiana, a kind of entomological fungus that is highly pathogenic to pests, is harmless to the environment and human beings. However, at present, S. frugiperda has gradually developed resistance to many pesticides and microbial insecticides. In this study, transcriptome sequencing was conducted to analyze the differences in gene expression between B. bassiana-infected and -uninfected S. frugiperda. More than 160 Gb of clean data were obtained as 150-bp paired-end reads using the Illumina HiSeq™ 4000 platform, and 2,767 and 2,892 DEGs were identified in LH36vsCK36 and LH144vsCK144, respectively. In order to explore the roles of JAK/STAT, Toll, and Imd signaling pathways in antifungal immune response in S. frugiperda against B. bassiana infection, the expression patterns of those signaling pathway-related genes in B. bassiana-infected S. frugiperda were analyzed by quantitative real-time PCR. In addition, antifungal activity experiments revealed that the suppression of JAK/STAT, Toll, and Imd signaling pathways by inhibitors could inhibit the antifungal activity to a large extent and lead to increased sensitivity of S. frugiperda to B. bassiana infection, indicating that JAK/STAT, Toll, and Imd signaling pathways and their associated genes might be involved in the synthesis and secretion of antifungal substances. This study implied that JAK/STAT, Toll, and Imd signaling pathways played crucial roles in the antifungal immune response of the S. frugiperda larvae, in which the related genes of these signaling pathways could play special regulatory roles in signal transduction. This study would improve our understanding of the molecular mechanisms underlying innate immunity and provide the basis for a wide spectrum of strategies against antifungal resistance of S. frugiperda.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Han Wu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
| | - Jianbai Liu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
11
|
Prince BC, Walsh E, Torres TZB, Rückert C. Recognition of Arboviruses by the Mosquito Immune System. Biomolecules 2023; 13:1159. [PMID: 37509194 PMCID: PMC10376960 DOI: 10.3390/biom13071159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) pose a significant threat to both human and animal health worldwide. These viruses are transmitted through the bites of mosquitoes, ticks, sandflies, or biting midges to humans or animals. In humans, arbovirus infection often results in mild flu-like symptoms, but severe disease and death also occur. There are few vaccines available, so control efforts focus on the mosquito population and virus transmission control. One area of research that may enable the development of new strategies to control arbovirus transmission is the field of vector immunology. Arthropod vectors, such as mosquitoes, have coevolved with arboviruses, resulting in a balance of virus replication and vector immune responses. If this balance were disrupted, virus transmission would likely be reduced, either through reduced replication, or even through enhanced replication, resulting in mosquito mortality. The first step in mounting any immune response is to recognize the presence of an invading pathogen. Recent research advances have been made to tease apart the mechanisms of arbovirus detection by mosquitoes. Here, we summarize what is known about arbovirus recognition by the mosquito immune system, try to generate a comprehensive picture, and highlight where there are still gaps in our current understanding.
Collapse
Affiliation(s)
- Brian C Prince
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Elizabeth Walsh
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Tran Zen B Torres
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Claudia Rückert
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
12
|
Zhao L, Niu J, Feng D, Wang X, Zhang R. Immune functions of pattern recognition receptors in Lepidoptera. Front Immunol 2023; 14:1203061. [PMID: 37398667 PMCID: PMC10312389 DOI: 10.3389/fimmu.2023.1203061] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Pattern recognition receptors (PRRs), as the "sensors" in the immune response, play a prominent role in recognizing pathogen-associated molecular patterns (PAMPs) and initiating an effective defense response to pathogens in Lepidoptera. It is becoming increasingly clear that damage-associated molecular patterns (DAMPs) normally play a physiological role within cells; however, when exposed to extracellular, they may become "part-time" critical signals of the immune response. Based on research in recent years, we review herein typical PRRs of Lepidoptera, including peptidoglycan recognition protein (PGRP), gram-negative binding protein (GNBP), β-1,3-glucan recognition protein (βGRP), C-type lectin (CTL), and scavenger receptor (SR). We also outline the ways in which DAMPs participate in the immune response and the correlation between PRRs and immune escape. Taken together, these findings suggest that the role of PRRs in insect innate immunity may be much greater than expected and that it is possible to recognize a broader range of signaling molecules.
Collapse
Affiliation(s)
- Lin Zhao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Jinlan Niu
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Disong Feng
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xialu Wang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China
| | - Rong Zhang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
13
|
Nakano S, Kashio S, Nishimura K, Takeishi A, Kosakamoto H, Obata F, Kuranaga E, Chihara T, Yamauchi Y, Isobe T, Miura M. Damage sensing mediated by serine proteases Hayan and Persephone for Toll pathway activation in apoptosis-deficient flies. PLoS Genet 2023; 19:e1010761. [PMID: 37319131 DOI: 10.1371/journal.pgen.1010761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
The mechanisms by which the innate immune system senses damage have been extensively explored in multicellular organisms. In Drosophila, various types of tissue damage, including epidermal injury, tumor formation, cell competition, and apoptosis deficiency, induce sterile activation of the Toll pathway, a process that requires the use of extracellular serine protease (SP) cascades. Upon infection, the SP Spätzle (Spz)-processing enzyme (SPE) cleaves and activates the Toll ligand Spz downstream of two paralogous SPs, Hayan and Persephone (Psh). However, upon tissue damage, it is not fully understood which SPs establish Spz activation cascades nor what damage-associated molecules can activate SPs. In this study, using newly generated uncleavable spz mutant flies, we revealed that Spz cleavage is required for the sterile activation of the Toll pathway, which is induced by apoptosis-deficient damage of wing epidermal cells in adult Drosophila. Proteomic analysis of hemolymph, followed by experiments with Drosophila Schneider 2 (S2) cells, revealed that among hemolymph SPs, both SPE and Melanization Protease 1 (MP1) have high capacities to cleave Spz. Additionally, in S2 cells, MP1 acts downstream of Hayan and Psh in a similar manner to SPE. Using genetic analysis, we found that the upstream SPs Hayan and Psh contributes to the sterile activation of the Toll pathway. While SPE/MP1 double mutants show more impairment of Toll activation upon infection than SPE single mutants, Toll activation is not eliminated in these apoptosis-deficient flies. This suggests that Hayan and Psh sense necrotic damage, inducing Spz cleavage by SPs other than SPE and MP1. Furthermore, hydrogen peroxide, a representative damage-associated molecule, activates the Psh-Spz cascade in S2 cells overexpressing Psh. Considering that reactive oxygen species (ROS) were detected in apoptosis-deficient wings, our findings highlight the importance of ROS as signaling molecules that induce the activation of SPs such as Psh in response to damage.
Collapse
Affiliation(s)
- Shotaro Nakano
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Soshiro Kashio
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kei Nishimura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Asuka Takeishi
- Neural Circuit of Multisensory Integration RIKEN Hakubi Research Team, RIKEN Center for Brain Science, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Hina Kosakamoto
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Fumiaki Obata
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Erina Kuranaga
- Laboratory of Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takahiro Chihara
- Program of Biomedical Science and Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima Japan
| | - Yoshio Yamauchi
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Cai H, Li L, Slavik K, Huang J, Yin T, Hédelin L, Xiang Z, Yang Y, Li X, Chen Y, Wei Z, Deng H, Chen D, Jiao R, Martins N, Meignin C, Kranzusch P, Imler JL. A novel virus-induced cyclic dinucleotide, 2'3'-c-di-GMP, mediates STING-dependent antiviral immunity in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539652. [PMID: 37214844 PMCID: PMC10197528 DOI: 10.1101/2023.05.08.539652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In mammals, the enzyme cGAS senses the presence of cytosolic DNA and synthesizes the cyclic dinucleotide (CDN) 2'3'-cGAMP. This CDN binds to and activates the protein STING to trigger immunity. We recently discovered in the model organism Drosophila melanogaster two cGAS-like receptors (cGLRs) that activate STING-dependent antiviral immunity and can produce 3'2'-cGAMP, in addition to 2'3'-cGAMP. Here we explore CDN-mediated immunity in 14 different Drosophila species covering 50 million years of evolution and report that 2'3'-cGAMP and 3'2'-cGAMP fail to control infection by Drosophila C virus in D. serrata, D. sechellia and D. mojavensis . Using an accurate and sensitive mass spectrometry method, we discover an unexpected diversity of CDNs produced in a cGLR-dependent manner in response to viral infection in D. melanogaster , including a novel CDN, 2'3'-c-di-GMP. We show that 2'3'-c-di-GMP is the most potent STING agonist identified so far in D. melanogaster and that this molecule also activates a strong antiviral transcriptional response in D. serrata . Our results shed light on the evolution of cGLRs in flies and provide a basis for the understanding of the function and regulation of this emerging family of PRRs in animal innate immunity.
Collapse
|
15
|
Bland ML. Regulating metabolism to shape immune function: Lessons from Drosophila. Semin Cell Dev Biol 2023; 138:128-141. [PMID: 35440411 PMCID: PMC10617008 DOI: 10.1016/j.semcdb.2022.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/21/2022] [Accepted: 04/03/2022] [Indexed: 12/14/2022]
Abstract
Infection with pathogenic microbes is a severe threat that hosts manage by activating the innate immune response. In Drosophila melanogaster, the Toll and Imd signaling pathways are activated by pathogen-associated molecular patterns to initiate cellular and humoral immune processes that neutralize and kill invaders. The Toll and Imd signaling pathways operate in organs such as fat body and gut that control host nutrient metabolism, and infections or genetic activation of Toll and Imd signaling also induce wide-ranging changes in host lipid, carbohydrate and protein metabolism. Metabolic regulation by immune signaling can confer resistance to or tolerance of infection, but it can also lead to pathology and susceptibility to infection. These immunometabolic phenotypes are described in this review, as are changes in endocrine signaling and gene regulation that mediate survival during infection. Future work in the field is anticipated to determine key variables such as sex, dietary nutrients, life stage, and pathogen characteristics that modify immunometabolic phenotypes and, importantly, to uncover the mechanisms used by the immune system to regulate metabolism.
Collapse
Affiliation(s)
- Michelle L Bland
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, United States.
| |
Collapse
|
16
|
Meng Q, Xu Y, Li Y, Wang Y. Novel studies on Drosophila melanogaster model reveal the roles of JNK-Jak/STAT axis and intestinal microbiota in insulin resistance. J Drug Target 2023; 31:261-268. [PMID: 36343203 DOI: 10.1080/1061186x.2022.2144869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The JNK pathway play a critical role in insulin resistance induced by a long-term high-sugar diet. However, the roles of up- and downstream molecules of the JNK pathway in insulin resistance are less known in vertebrates and invertebrates. As a classical organism in biological research, Drosophila melanogaster (D. melanogaster) has been widely applied to the studies of mechanism of insulin resistance. Based on previous studies, we found a novel predictive mechanism of the formation of insulin resistance in D. melanogaster. We found that JNK activated by high-sugar diet and dysregulated intestinal microbiota could mediate inflammation, and then the activated JNK released Upd3, which in turn stimulated Jak/STAT pathway to release ImpL2. ImpL2 can compete with Drosophila insulin-like peptides (Dilps) for binding with the insulin receptor and inhibit the activation of insulin pathway. In this study, we reviewed novel studies on the insulin signalling pathway based on the D. melanogaster model. The findings support our hypothesis. We, therefore, described how a long-term high-sugar diet disrupts intestinal microbiota to induce inflammation and the disruption of JNK-Jak/STAT axis. This description may offer some new clues to the formation of insulin resistance.
Collapse
Affiliation(s)
- Qinghao Meng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yidong Xu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Ying Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
17
|
Analysis of the Toll and Spaetzle Genes Involved in Toll Pathway-Dependent Antimicrobial Gene Induction in the Red Flour Beetle, Tribolium castaneum (Coleoptera; Tenebrionidae). Int J Mol Sci 2023; 24:ijms24021523. [PMID: 36675034 PMCID: PMC9861120 DOI: 10.3390/ijms24021523] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
Insects rely only on their innate immune system to protect themselves from pathogens. Antimicrobial peptide (AMP) production is the main immune reaction in insects. In Drosophila melanogaster, the reaction is regulated mainly by the Toll and immune deficiency (IMD) pathways. Spaetzle proteins, activated by immune signals from upstream components, bind to Toll proteins, thus, activating the Toll pathway, which in turn, induces AMP genes. Previous studies have shown the difference in immune systems related to Toll and IMD pathways between D. melanogaster and Tribolium castaneum. In T. castaneum, nine Toll and seven spaetzle (spz) genes were identified. To extend our understanding of AMP production by T. castaneum, we conducted functional assays of Toll and spaetzle genes related to Toll-pathway-dependent AMP gene expression in T. castaneum under challenge with bacteria or budding yeast. The results revealed that Toll3 and Toll4 double-knockdown and spz7 knockdown strongly and moderately reduced the Toll-pathway-dependent expression of AMP genes, respectively. Moreover, Toll3 and Toll4 double-knockdown pupae more rapidly succumbed to entomopathogenic bacteria than the control pupae, but spz7 knockdown pupae did not. The results suggest that Toll3 and Toll4 play a large role in Toll-pathway-dependent immune reactions, whereas spz7 plays a small part.
Collapse
|
18
|
Mei X, Peng P, Li C, Qiao P, He E, Qiu Z, Xia D, Zhao Q, Shen D. Peptidoglycan recognition protein 6 (PGRP6) from Asian corn borer, Ostrinia furnacalis (Guenée) serve as a pattern recognition receptor in innate immune response. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21955. [PMID: 35927931 DOI: 10.1002/arch.21955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/06/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) recognize invading microbes via detecting peptidoglycans from microbial cell walls. PGRPs are highly conserved from insects to vertebrates and all play roles during the immune defensive response. Ten putative PGRPs have been identified through transcriptome analysis in the Asian corn borer, Ostrinia furnacalis (Guenée). Whereas, the biochemical functions of most of them have not yet been elucidated. In this study, we found PGRP6 messenger RNA exhibited extremely high expression levels in the midgut, and its transcript level increased dramatically upon bacterial infection. Moreover, the enzyme-linked immunosorbent assay indicated recombinant PGRP6 exhibited a strong binding affinity to peptidoglycans from Micrococcus luteus and Bacillus subtilis, which could agglutinate M. luteus and yeast Pichia pastoris. Additionally, we demonstrated that PGRP6 was involved in the pathway of antimicrobial peptides synthesis, but could not enhance encapsulation and melanization of hemocytes. Overall, our results indicated that O. furnacalis PGRP6 serves as a pattern recognition receptor and detects peptidoglycans from microbes to initiate the immune response.
Collapse
Affiliation(s)
- Xianghan Mei
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Peilin Peng
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Chun Li
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Peitong Qiao
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Enxi He
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Zhiyong Qiu
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Dingguo Xia
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Qiaoling Zhao
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Dongxu Shen
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
19
|
Petronio Petronio G, Pietrangelo L, Cutuli MA, Magnifico I, Venditti N, Guarnieri A, Abate GA, Yewhalaw D, Davinelli S, Di Marco R. Emerging Evidence on Tenebrio molitor Immunity: A Focus on Gene Expression Involved in Microbial Infection for Host-Pathogen Interaction Studies. Microorganisms 2022; 10:1983. [PMID: 36296259 PMCID: PMC9611967 DOI: 10.3390/microorganisms10101983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 08/13/2023] Open
Abstract
In recent years, the scientific community's interest in T. molitor as an insect model to investigate immunity and host-pathogen interactions has considerably increased. The reasons for this growing interest could be explained by the peculiar features of this beetle, which offers various advantages compared to other invertebrates models commonly used in laboratory studies. Thus, this review aimed at providing a broad view of the T. molitor immune system in light of the new scientific evidence on the developmental/tissue-specific gene expression studies related to microbial infection. In addition to the well-known cellular component and humoral response process, several studies investigating the factors associated with T. molitor immune response or deepening of those already known have been reported. However, various aspects remain still less understood, namely the possible crosstalk between the immune deficiency protein and Toll pathways and the role exerted by T. molitor apolipoprotein III in the expression of the antimicrobial peptides. Therefore, further research is required for T. molitor to be recommended as an alternative insect model for pathogen-host interaction and immunity studies.
Collapse
Affiliation(s)
- Giulio Petronio Petronio
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Laura Pietrangelo
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Marco Alfio Cutuli
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Irene Magnifico
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Noemi Venditti
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Antonio Guarnieri
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Getnet Atinafu Abate
- Department of Biology, College of Natural Sciences, Debre Markos University, Debre Markos P.O. Box 269, Ethiopia
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma P.O. Box 307, Ethiopia
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma P.O. Box 378, Ethiopia
| | - Sergio Davinelli
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| |
Collapse
|
20
|
Amparyup P, Sungkaew S, Charoensapsri W, Chumtong P, Yocawibun P, Tapaneeyaworawong P, Wongpanya R, Imjongjirak C. RNA-seq transcriptome analysis and identification of the theromacin antimicrobial peptide of the copepod Apocyclops royi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104464. [PMID: 35691054 DOI: 10.1016/j.dci.2022.104464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Copepods, including Apocyclops royi, are small aquatic crustaceans and one of the important foods for fish and shellfish larvae. However, studies of the host-pathogen interactions and understanding of infectious disease in copepods are still very limited, yet they are likely to be a significant factor in the sustainable development of copepod aquaculture. In the present study, we performed de novo RNA sequence analysis of A. royi-TH (a Thai isolate of A. royi), which yielded 4.80 Gb bases of clean data and a total of 29,786 unigenes. Annotation was then performed by comparison against seven functional databases, yielding 17,617 (NR: 59.15%), 2,969 (NT: 9.97%), 15,023 (SwissProt: 50.44%), 14,543 (KOG: 48.82%), 15,077 (KEGG: 50.62%), 6,763(GO: 22.71%), and 15,841 (InterPro: 53.18%) unigenes. In comparison to the components of the shrimp Toll pathway, LGBP, Spätzle, Toll receptors, MyD88, Pelle, TRAF6, Dorsal, and Cactus homologs were successfully identified in A. royi-TH. Additionally, a novel antimicrobial peptide (Theromacin-like) was characterized in A. royi (ArTM-like). The ArTM-like ORF was 279 bp and predicted to encode for 92 amino acid residues, with a mature peptide of 75 amino acids and a molecular mass of 8.56 kDa. The genomic organization of the ArTM-like gene consisted of three exons and two introns. Expression analysis indicated that ArTM-like mRNA was abundantly expressed in copepodid and adult stages as an immune responsive gene after infection with the pathogenic Vibrio parahaemolyticus-(AHPND)-causing strain. Altogether, the knowledge obtained in this study will provide a basis for future functional studies of the molecular mechanisms in copepod immunity that may eventually be applied for disease prevention in copepod aquaculture.
Collapse
Affiliation(s)
- Piti Amparyup
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand.
| | - Supakarn Sungkaew
- Department of Food Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Walaiporn Charoensapsri
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Parichat Chumtong
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Patchari Yocawibun
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Paveena Tapaneeyaworawong
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Ratree Wongpanya
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Road, Bangkok, 10900, Thailand
| | - Chanprapa Imjongjirak
- Department of Food Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand.
| |
Collapse
|
21
|
Gauthier AE, Rotjan RD, Kagan JC. Lipopolysaccharide detection by the innate immune system may be an uncommon defence strategy used in nature. Open Biol 2022; 12:220146. [PMID: 36196535 PMCID: PMC9533005 DOI: 10.1098/rsob.220146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/09/2022] [Indexed: 11/12/2022] Open
Abstract
Since the publication of the Janeway's Pattern Recognition hypothesis in 1989, study of pathogen-associated molecular patterns (PAMPs) and their immuno-stimulatory activities has accelerated. Most studies in this area have been conducted in model organisms, which leaves many open questions about the universality of PAMP biology across living systems. Mammals have evolved multiple proteins that operate as receptors for the PAMP lipopolysaccharide (LPS) from Gram-negative bacteria, but LPS is not immuno-stimulatory in all eukaryotes. In this review, we examine the history of LPS as a PAMP in mammals, recent data on LPS structure and its ability to activate mammalian innate immune receptors, and how these activities compare across commonly studied eukaryotes. We discuss why LPS may have evolved to be immuno-stimulatory in some eukaryotes but not others and propose two hypotheses about the evolution of PAMP structure based on the ecology and environmental context of the organism in question. Understanding PAMP structures and stimulatory mechanisms across multi-cellular life will provide insights into the evolutionary origins of innate immunity and may lead to the discovery of new PAMP variations of scientific and therapeutic interest.
Collapse
Affiliation(s)
- Anna E. Gauthier
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
- Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Randi D. Rotjan
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Jonathan C. Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
- Harvard Medical School, and Boston Children's Hospital, Division of Immunology, Division of Gastroenterology, USA
| |
Collapse
|
22
|
Ogienko AA, Omelina ES, Bylino OV, Batin MA, Georgiev PG, Pindyurin AV. Drosophila as a Model Organism to Study Basic Mechanisms of Longevity. Int J Mol Sci 2022; 23:11244. [PMID: 36232546 PMCID: PMC9569508 DOI: 10.3390/ijms231911244] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The spatio-temporal regulation of gene expression determines the fate and function of various cells and tissues and, as a consequence, the correct development and functioning of complex organisms. Certain mechanisms of gene activity regulation provide adequate cell responses to changes in environmental factors. Aside from gene expression disorders that lead to various pathologies, alterations of expression of particular genes were shown to significantly decrease or increase the lifespan in a wide range of organisms from yeast to human. Drosophila fruit fly is an ideal model system to explore mechanisms of longevity and aging due to low cost, easy handling and maintenance, large number of progeny per adult, short life cycle and lifespan, relatively low number of paralogous genes, high evolutionary conservation of epigenetic mechanisms and signalling pathways, and availability of a wide range of tools to modulate gene expression in vivo. Here, we focus on the organization of the evolutionarily conserved signaling pathways whose components significantly influence the aging process and on the interconnections of these pathways with gene expression regulation.
Collapse
Affiliation(s)
- Anna A. Ogienko
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| | - Evgeniya S. Omelina
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
- Laboratory of Biotechnology, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia
| | - Oleg V. Bylino
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, 119334 Moscow, Russia
| | - Mikhail A. Batin
- Open Longevity, 15260 Ventura Blvd., Sherman Oaks, Los Angeles, CA 91403, USA
| | - Pavel G. Georgiev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, 119334 Moscow, Russia
| | - Alexey V. Pindyurin
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
23
|
Wang M, Wang Y, Chang M, Wang X, Shi Z, Raikhel AS, Zou Z. Ecdysone signaling mediates the trade-off between immunity and reproduction via suppression of amyloids in the mosquito Aedes aegypti. PLoS Pathog 2022; 18:e1010837. [PMID: 36137163 PMCID: PMC9531809 DOI: 10.1371/journal.ppat.1010837] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/04/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
The balance between immunity and reproduction is essential for many key physiological functions. We report that to maintain an optimal fertility, 20-hydroxyecdysone (20E) and the ecdysone receptor (EcR) downregulate the immune deficiency (IMD) pathway during the post blood meal phase (PBM) of the Aedes aegypti reproductive cycle. RNA interference-mediated depletion of EcR elicited an increased expression of the IMD pathway components, and these mosquitoes were more resistant to infection by Gram-negative bacteria. Moreover, 20E and EcR recruit Pirk-like, the mosquito ortholog of Drosophila melanogaster Pirk. CRISPR-Cas9 knockout of Pirk-like has shown that it represses the IMD pathway by interfering with IMD-mediated formation of amyloid aggregates. 20E and EcR disruption of the amyloid formation is pivotal for maintaining normal yolk protein production and fertility. Additionally, 20E and its receptor EcR directly induce Pirk-like to interfere with cRHIM-mediated formation of amyloid. Our study highlights the vital role of 20E in governing the trade-off between immunity and reproduction. Pirk-like might be a potential target for new methods to control mosquito reproduction and pathogen transmission.
Collapse
Affiliation(s)
- Mao Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yanhong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Mengmeng Chang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xueli Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Zuokun Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Alexander S. Raikhel
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, California, United States of America
- * E-mail: (ASR); (ZZ)
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
- * E-mail: (ASR); (ZZ)
| |
Collapse
|
24
|
Yu S, Luo F, Xu Y, Zhang Y, Jin LH. Drosophila Innate Immunity Involves Multiple Signaling Pathways and Coordinated Communication Between Different Tissues. Front Immunol 2022; 13:905370. [PMID: 35911716 PMCID: PMC9336466 DOI: 10.3389/fimmu.2022.905370] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
The innate immune response provides the first line of defense against invading pathogens, and immune disorders cause a variety of diseases. The fruit fly Drosophila melanogaster employs multiple innate immune reactions to resist infection. First, epithelial tissues function as physical barriers to prevent pathogen invasion. In addition, macrophage-like plasmatocytes eliminate intruders through phagocytosis, and lamellocytes encapsulate large particles, such as wasp eggs, that cannot be phagocytosed. Regarding humoral immune responses, the fat body, equivalent to the mammalian liver, secretes antimicrobial peptides into hemolymph, killing bacteria and fungi. Drosophila has been shown to be a powerful in vivo model for studying the mechanism of innate immunity and host-pathogen interactions because Drosophila and higher organisms share conserved signaling pathways and factors. Moreover, the ease with which Drosophila genetic and physiological characteristics can be manipulated prevents interference by adaptive immunity. In this review, we discuss the signaling pathways activated in Drosophila innate immunity, namely, the Toll, Imd, JNK, JAK/STAT pathways, and other factors, as well as relevant regulatory networks. We also review the mechanisms by which different tissues, including hemocytes, the fat body, the lymph gland, muscles, the gut and the brain coordinate innate immune responses. Furthermore, the latest studies in this field are outlined in this review. In summary, understanding the mechanism underlying innate immunity orchestration in Drosophila will help us better study human innate immunity-related diseases.
Collapse
|
25
|
Jang HA, Kojour MAM, Patnaik BB, Han YS, Jo YH. Current Status of Immune Deficiency Pathway in Tenebrio molitor Innate Immunity. Front Immunol 2022; 13:906192. [PMID: 35860244 PMCID: PMC9292131 DOI: 10.3389/fimmu.2022.906192] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Yellow mealworm (Tenebrio molitor) is a highly beneficial beetle that serves as an excellent source of edible protein as well as a practical study model. Therefore, studying its immune system is important. Like in other insects, the innate immune response effected through antimicrobial peptides production provides the most critical defense armory in T. molitor. Immune deficiency (Imd) signaling is one of the major pathways involved in the humoral innate immune response in this beetle. However, the nature of the molecules involved in the signaling cascade of the Imd pathway, from recognition to the production of final effectors, and their mechanism of action are yet to be elucidated in T. molitor model. In this review, we present a general overview of the current literature available on the Imd signaling pathway and its identified interaction partners in T. molitor.
Collapse
Affiliation(s)
- Ho Am Jang
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Maryam Ali Mohammadie Kojour
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Bharat Bhusan Patnaik
- Post Graduate (PG) Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore, India
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, South Korea
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Yong Hun Jo
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
- *Correspondence: Yong Hun Jo,
| |
Collapse
|
26
|
Abstract
Inflammatory response in Drosophila to sterile (axenic) injury in embryos and adults has received some attention in recent years, and most concentrate on the events at the injury site. Here we focus on the effect sterile injury has on the hematopoietic organ, the lymph gland, and the circulating blood cells in the larva, the developmental stage at which major events of hematopoiesis are evident. In mammals, injury activates Toll-like receptor/NF-κB signaling in macrophages, which then express and secrete secondary, proinflammatory cytokines. In Drosophila larvae, distal puncture injury of the body wall epidermis causes a rapid activation of Toll and Jun kinase (JNK) signaling throughout the hematopoietic system and the differentiation of a unique blood cell type, the lamellocyte. Furthermore, we find that Toll and JNK signaling are coupled in their activation. Secondary to this Toll/JNK response, a cytokine, Upd3, is induced as a Toll pathway transcriptional target, which then promotes JAK/STAT signaling within the blood cells. Toll and JAK/STAT signaling are required for the emergence of the injury-induced lamellocytes. This is akin to the derivation of specialized macrophages in mammalian systems. Upstream, at the injury site, a Duox- and peroxide-dependent signal causes the activation of the proteases Grass and SPE, needed for the activation of the Toll-ligand Spz, but microbial sensors or the proteases most closely associated with them during septic injury are not involved in the axenic inflammatory response.
Collapse
|
27
|
Ali Mohammadie Kojour M, Edosa TT, Jang HA, Keshavarz M, Jo YH, Han YS. Critical Roles of Spätzle5 in Antimicrobial Peptide Production Against Escherichia coli in Tenebrio molitor Malpighian Tubules. Front Immunol 2022; 12:760475. [PMID: 34975850 PMCID: PMC8717915 DOI: 10.3389/fimmu.2021.760475] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
The dimeric cytokine ligand Spätzle (Spz) is responsible for Toll pathway activation and antimicrobial peptide (AMP) production upon pathogen challenge in Tenebrio molitor. Here, we indicated that TmSpz5 has a functional role in response to bacterial infections. We showed that the highest expression of TmSpz5 is induced by Candida albicans. However, TmSpz5 knockdown reduced larval survival against Escherichia coli and Staphylococcus aureus. To evaluate the molecular mechanism underlying the observed survival differences, the role of TmSpz5 in AMP production was examined by RNA interference and microbial injection. T. molitor AMPs that are active against Gram-negative and -positive bacteria, including Tmtenecins, Tmattacins, Tmcoleoptericins, Tmtaumatin-like-proteins, and Tmcecropin-2, were significantly downregulated by TmSpz-5 RNAi in the Malpighian tubules (MTs) following a challenge with E. coli and S. aureus. However, upon infection with C. albicans the mRNA levels of most AMPs in the dsTmSpz5-injected group were similar to those in the control groups. Likewise, the expression of the transcription factors NF-κB, TmDorX2, and TmRelish were noticeably suppressed in the MTs of TmSpz5-silenced larvae. Moreover, E. coli-infected TmSpz5 knockdown larvae showed decreased antimicrobial activity in the MTs and hindgut compared with the control group. These results demonstrate that TmSpz5 has a defined role in T. molitor innate immunity by regulating AMP expression in MTs in response to E. coli.
Collapse
Affiliation(s)
- Maryam Ali Mohammadie Kojour
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Tariku Tesfaye Edosa
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea.,Ethiopian Institute of Agricultural Research, Ambo Agricultural Research Center, Ambo, Ethiopia
| | - Ho Am Jang
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Maryam Keshavarz
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea.,Department of Evolutionary Biology, Institute of Biology, Free University of Berlin, Berlin, Germany
| | - Yong Hun Jo
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
28
|
Sensing microbial infections in the Drosophila melanogaster genetic model organism. Immunogenetics 2022; 74:35-62. [DOI: 10.1007/s00251-021-01239-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/20/2021] [Indexed: 12/17/2022]
|
29
|
Liu B, Wang H, Jiang Z, Qin W, Zhou C, Huang X, Huang Y, Ren Q. Identification of four Spätzle genes (MnSpz1, MnSpz2, MnSpz2-isoform, and MnSpz3) and their roles in the innate immunity of Macrobrachium nipponense. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104254. [PMID: 34478777 DOI: 10.1016/j.dci.2021.104254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Spätzle, an extracellular ligand of the Toll receptor, is involved in the innate immunity of crustaceans. In this study, four Spätzle genes were cloned from Macrobrachium nipponense and designed as MnSpz1, MnSpz2, MnSpz2-isoform, and MnSpz3. The coding region of the four Spätzle genes all contained one intron and two exons, and they were predicted to be produced by gene duplication based on sequence similarities and phylogenetic tree. The predicted MnSpz1, MnSpz2, and MnSpz3 proteins all contained a signal peptide and a Spätzle domain. No signal peptide but a Spätzle domain existed in MnSpz2-isoform because of frameshift mutation caused by 50 bp nucleotide deletion compared with MnSpz2. Quantitative real-time polymerase chain reaction (RT-qPCR) analysis showed that MnSpz1, MnSpz2, and MnSpz3 were expressed in all the detected tissues of M. nipponense, and MnSpz2 was found to be the major isoform in the heart, gills, stomach, and intestine. After stimulation by Vibrio parahaemolyticus, Staphylococcus aureus, or White spot syndrome virus (WSSV), the expression levels of MnSpz1, MnSpz2, and MnSpz3 changed. Given the high similarities among MnSpz1-3, RNA interference (RNAi) using dsRNA of MnSpz1 inhibited the expression of the three Spätzle genes (MnSpz1, MnSpz2 and MnSpz3). Silencing of MnSpz1-3 down-regulated the expression levels of nine antimicrobial peptide (AMP) genes in M. nipponense. After Knockdown of MnSpzs, the number of V. parahaemolyticus, S. aureus and WSSV copies in M. nipponense increased significantly in vivo. Our results suggest that Spätzles are involved in the innate immunity of M. nipponense. The expansion of MnSpz genes through gene duplication is beneficial to enhance the innate immune defense ability of M. nipponense.
Collapse
Affiliation(s)
- Beixiang Liu
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Hongyu Wang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Zuosheng Jiang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Wei Qin
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Chengxiang Zhou
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, People's Republic of China.
| | - Qian Ren
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
30
|
Abstract
Toll-like receptors were discovered as proteins playing a crucial role in the dorsoventral patterning during embryonic development in the Drosophila melanogaster (D. melanogaster) almost 40 years ago. Subsequently, further research also showed a role of the Toll protein or Toll receptor in the recognition of Gram-positive bacterial and fungal pathogens infecting D. melanogaster. In 1997, the human homolog was reported and the receptor was named the Toll-like receptor 4 (TLR4) that recognizes lipopolysaccharide (LPS) of the Gram-negative bacteria as a pathogen-associated molecular pattern (PAMP). Identification of TLR4 in humans filled the long existing gap in the field of infection and immunity, addressing the mystery surrounding the recognition of foreign pathogens/microbes by the immune system. It is now known that mammals (mice and humans) express 13 different TLRs that are expressed on the outer cell membrane or intracellularly, and which recognize different PAMPs or microbe-associated molecular patterns (MAMPs) and death/damage-associated molecular patterns (DAMPs) to initiate the protective immune response. However, their dysregulation generates profound and prolonged pro-inflammatory immune responses responsible for different inflammatory and immune-mediated diseases. This chapter provides an overview of TLRs in the control of the immune response, their association with different diseases, including TLR single nucleotide polymorphisms (SNPs), interactions with microRNAs (miRs), use in drug development and vaccine design, and expansion in neurosciences to include pain, addiction, metabolism, reproduction, and wound healing.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - James E Barrett
- Drexel University College of Medicine, Philadelphia, PA, USA.
- Department of Neural Sciences, Centre for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Kanoh H, Iwashita S, Kuraishi T, Goto A, Fuse N, Ueno H, Nimura M, Oyama T, Tang C, Watanabe R, Hori A, Momiuchi Y, Ishikawa H, Suzuki H, Nabe K, Takagaki T, Fukuzaki M, Tong LL, Yamada S, Oshima Y, Aigaki T, Dow JAT, Davies SA, Kurata S. cGMP signaling pathway that modulates NF-κB activation in innate immune responses. iScience 2021; 24:103473. [PMID: 34988396 PMCID: PMC8710550 DOI: 10.1016/j.isci.2021.103473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/09/2021] [Accepted: 11/12/2021] [Indexed: 12/26/2022] Open
Abstract
The nuclear factor-kappa B (NF-κB) pathway is an evolutionarily conserved signaling pathway that plays a central role in immune responses and inflammation. Here, we show that Drosophila NF-κB signaling is activated via a pathway in parallel with the Toll receptor by receptor-type guanylate cyclase, Gyc76C. Gyc76C produces cyclic guanosine monophosphate (cGMP) and modulates NF-κB signaling through the downstream Tollreceptor components dMyd88, Pelle, Tube, and Dif/Dorsal (NF-κB). The cGMP signaling pathway comprises a membrane-localized cGMP-dependent protein kinase (cGK) called DG2 and protein phosphatase 2A (PP2A) and is crucial for host survival against Gram-positive bacterial infections in Drosophila. A membrane-bound cGK, PRKG2, also modulates NF-κB activation via PP2A in human cells, indicating that modulation of NF-κB activation in innate immunity by the cGMP signaling pathway is evolutionarily conserved. Drosophila NF-κB signaling is activated by Gyc76C in parallel with the Toll receptor Gyc76C modulates NF-κB signaling through downstream Toll receptor components In Drosophila, the pathway comprises a cGMP-dependent protein kinase (cGK) and PP2A In human cells, a membrane-bound cGK, PRKG2, also modulates NF-κB signaling via PP2A
Collapse
Affiliation(s)
- Hirotaka Kanoh
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Shinzo Iwashita
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Takayuki Kuraishi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.,PRESTO, Japan Science and Technology Agency, Tokyo, Japan
| | - Akira Goto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Naoyuki Fuse
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Haruna Ueno
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Mariko Nimura
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Tomohito Oyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Chang Tang
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Ryo Watanabe
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Aki Hori
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yoshiki Momiuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hiroki Ishikawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hiroaki Suzuki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Kumiko Nabe
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Takeshi Takagaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masataka Fukuzaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Li-Li Tong
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Sinya Yamada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yoshiteru Oshima
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Toshiro Aigaki
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Shireen-Anne Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Shoichiro Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
32
|
Winkler B, Funke D, Benmimoun B, Spéder P, Rey S, Logan MA, Klämbt C. Brain inflammation triggers macrophage invasion across the blood-brain barrier in Drosophila during pupal stages. SCIENCE ADVANCES 2021; 7:eabh0050. [PMID: 34705495 PMCID: PMC8550232 DOI: 10.1126/sciadv.abh0050] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The nervous system is shielded from circulating immune cells by the blood-brain barrier (BBB). During infections and autoimmune diseases, macrophages can enter the brain where they participate in pathogen elimination but can also cause tissue damage. Here, we establish a Drosophila model to study macrophage invasion into the inflamed brain. We show that the immune deficiency (Imd) pathway, but not the Toll pathway, is responsible for attraction and invasion of hemolymph-borne macrophages across the BBB during pupal stages. Macrophage recruitment is mediated by glial, but not neuronal, induction of the Imd pathway through expression of Pvf2. Within the brain, macrophages can phagocytose synaptic material and reduce locomotor abilities and longevity. Similarly, we show that central nervous system infection by group B Streptococcus elicits macrophage recruitment in an Imd-dependent manner. This suggests that evolutionarily conserved inflammatory responses require a delicate balance between beneficial and detrimental activities.
Collapse
Affiliation(s)
- Bente Winkler
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
| | - Dominik Funke
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
| | - Billel Benmimoun
- Brain Plasticity in response to the Environment, Institut Pasteur, UMR3738 CNRS, 75015 Paris, France
| | - Pauline Spéder
- Brain Plasticity in response to the Environment, Institut Pasteur, UMR3738 CNRS, 75015 Paris, France
| | - Simone Rey
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
| | - Mary A. Logan
- Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR 97239, USA
| | - Christian Klämbt
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
- Corresponding author.
| |
Collapse
|
33
|
Ge Q, Cao W, Zhu F, Yuan Y, Chen L, Xu J, Li J, Chen H, Ma S, Sun L, Pan H, Taha RH, Yao Q, Chen K. Genomics and proteomics combined analysis revealed the toxicity response of silkworm Bombyx mori to the environmental pathogen Bacillus cereus ZJ-4. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112467. [PMID: 34217115 DOI: 10.1016/j.ecoenv.2021.112467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Bacterial contamination has caused a major public health problem worldwide. Bacillus cereus is a conditional environmental pathogenic bacteria that can cause food poisoning. Whether environmental pathogens can cause widespread transmission in the insect kingdom is unclear. In this study, a Bacillus cereus ZJ-4 was isolated from the hospital environment of Zhenjiang City, Jiangsu Province, China. It was fatal by injection into the silkworm hemolymph. To investigated the potential toxic factors of ZJ-4 and clarified the toxicity response mechanism of silkworm by the ZJ-4 infection. Then, the whole genome of ZJ-4 was sequenced, and the immune mechanism of silkworm fat body to ZJ-4 pathogen was studied by HE pathological section and proteomics. Bacterial genome sequencing indicated that ZJ-4 had 352 drug resistance genes and 6 virulence genes. After 36 h of subcutaneous puncture with ZJ-4 suspension, the pathological changes were obviously found in HE pathological sections of fat body tissue. Comparative proteomic results indicated that differentially expressed proteins are mainly involved in stress reactions, biological regulation, and innate immunity. The qRT-PCR analysis showed that the expressions of β-GRP, Spaetzle, MyD88, Tube and Dorsal genes in Toll pathway were up-regulated, while Pell and Cactus genes were down-regulated; in the antimicrobial peptide pathway, Glv2, Lzm, Mor, and Leb3 genes were up-regulated, while attacin1 and defensin genes were down-regulated; Sod gene was up-regulated, while Cat gene was down-regulated in the antioxidant pathway; Ldh, Sdh, and Mdh genes were down-regulated in glucose metabolism pathway. These results indicated that ZJ-4 can damage the innate immune pathway of silkworm, and also affect the normal immune function of fat body cells.
Collapse
Affiliation(s)
- Qi Ge
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Weiping Cao
- The Fourth People's Hospital of Zhenjiang, Zhenjiang, Jiangsu 212001, PR China
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Yi Yuan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Jia Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Jun Li
- Instrumental Analysis and Testing Center, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Han Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Shangshang Ma
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Lindan Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Huiwen Pan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; Zhenjiang First People's Hospital, Zhenjiang, Jiangsu 212002, PR China
| | - Rehab Hosny Taha
- Plant Protection Research Institute, Agricultural Research Center, Egypt
| | - Qin Yao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
34
|
Ullastres A, Merenciano M, González J. Regulatory regions in natural transposable element insertions drive interindividual differences in response to immune challenges in Drosophila. Genome Biol 2021; 22:265. [PMID: 34521452 PMCID: PMC8439047 DOI: 10.1186/s13059-021-02471-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
Background Variation in gene expression underlies interindividual variability in relevant traits including immune response. However, the genetic variation responsible for these gene expression changes remains largely unknown. Among the non-coding variants that could be relevant, transposable element insertions are promising candidates as they have been shown to be a rich and diverse source of cis-regulatory elements. Results In this work, we use a population genetics approach to identify transposable element insertions likely to increase the tolerance of Drosophila melanogaster to bacterial infection by affecting the expression of immune-related genes. We identify 12 insertions associated with allele-specific expression changes in immune-related genes. We experimentally validate three of these insertions including one likely to be acting as a silencer, one as an enhancer, and one with a dual role as enhancer and promoter. The direction in the change of gene expression associated with the presence of several of these insertions is consistent with an increased survival to infection. Indeed, for one of the insertions, we show that this is the case by analyzing both natural populations and CRISPR/Cas9 mutants in which the insertion is deleted from its native genomic context. Conclusions We show that transposable elements contribute to gene expression variation in response to infection in D. melanogaster and that this variation is likely to affect their survival capacity. Because the role of transposable elements as regulatory elements is not restricted to Drosophila, transposable elements are likely to play a role in immune response in other organisms as well. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-021-02471-3.
Collapse
Affiliation(s)
- Anna Ullastres
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Miriam Merenciano
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
35
|
Bombyx mori β-1,3-Glucan Recognition Protein 4 ( BmβGRP4) Could Inhibit the Proliferation of B. mori Nucleopolyhedrovirus through Promoting Apoptosis. INSECTS 2021; 12:insects12080743. [PMID: 34442307 PMCID: PMC8396850 DOI: 10.3390/insects12080743] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023]
Abstract
β-1,3-glucan recognition proteins (βGRPs) as pattern recognition receptors (PRRs) play an important role in recognizing various pathogens and trigger complicated signaling pathways in insects. In this study, we identified a Bombyx mori β-1,3-glucan recognition protein gene named BmβGRP4, which showed differential expression, from a previous transcriptome database. The full-length cDNA sequence was 1244 bp, containing an open reading frame (ORF) of 1128 bp encoding 375 amino acids. BmβGRP4 was strongly expressed in the larval stages and highly expressed in the midgut of B. mori larvae in particular. After BmNPV infection, the expression of BmβGRP4 was reduced significantly in the midgut. Furthermore, a significant increase in the copy number of BmNPV was observed after the knockdown of BmβGRP4 in 5th instar larvae, while the overexpression of BmβGRP4 suppressed the proliferation of BmNPV in BmN cells. Subsequently, the expression analysis of several apoptosis-related genes and observation of the apoptosis morphology demonstrated that overexpression of BmβGRP4 facilitated apoptosis induced by BmNPV in BmN cells. Moreover, BmβGRP4 positively regulated the phosphatase and tensin homolog gene (BmPTEN), while expression of the inhibitor of apoptosis gene (BmIAP) was negatively regulated by BmβGRP4. Hence, we hypothesize that BmNPV infection might suppress BmPTEN and facilitate BmIAP to inhibit cell apoptosis by downregulating the expression of BmβGRP4 to escape host antiviral defense. Taken together, these results show that BmβGRP4 may play a role in B. mori response to BmNPV infection and lay a foundation for studying its functions.
Collapse
|
36
|
An apocrine mechanism delivers a fully immunocompetent exocrine secretion. Sci Rep 2021; 11:15915. [PMID: 34354130 PMCID: PMC8342421 DOI: 10.1038/s41598-021-95309-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/08/2021] [Indexed: 11/09/2022] Open
Abstract
Apocrine secretion is a recently discovered widespread non-canonical and non-vesicular secretory mechanism whose regulation and purpose is only partly defined. Here, we demonstrate that apocrine secretion in the prepupal salivary glands (SGs) of Drosophila provides the sole source of immune-competent and defense-response proteins to the exuvial fluid that lies between the metamorphosing pupae and its pupal case. Genetic ablation of its delivery from the prepupal SGs to the exuvial fluid decreases the survival of pupae to microbial challenges, and the isolated apocrine secretion has strong antimicrobial effects in "agar-plate" tests. Thus, apocrine secretion provides an essential first line of defense against exogenously born infection and represents a highly specialized cellular mechanism for delivering components of innate immunity at the interface between an organism and its external environment.
Collapse
|
37
|
Ji J, Zhou L, Xu Z, Ma L, Lu Z. Two atypical gram-negative bacteria-binding proteins are involved in the antibacterial response in the pea aphid (Acyrthosiphon pisum). INSECT MOLECULAR BIOLOGY 2021; 30:427-435. [PMID: 33928689 DOI: 10.1111/imb.12708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/26/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
The activation of immune pathways is triggered by the recognition of pathogens by pattern recognition receptors (PRRs). Gram-negative bacteria-binding proteins (GNBPs)/β-1,3-glucan recognition proteins (βGRPs) are a conserved family of PRRs in insects. Two GNBPs are predicted in the genome database of pea aphids; however, little is known about their functions in the aphid immune system. Here, we show that pea aphid GNBPs possess domain architectures and sequence features distinct from those of typical GNBPs/βGRPs and that their expression is induced by bacterial infection. Knockdown of their expression by dsRNA resulted in lower phenoloxidase activity, higher bacterial loads and higher mortality in aphids after infection. Our data suggest that these two atypical GNBPs are involved in the antibacterial response in the pea aphid, likely acting as PRRs in the prophenoloxidase pathway.
Collapse
Affiliation(s)
- J Ji
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - L Zhou
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Z Xu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - L Ma
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Z Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| |
Collapse
|
38
|
Prakash P, Roychowdhury-Sinha A, Goto A. Verloren negatively regulates the expression of IMD pathway dependent antimicrobial peptides in Drosophila. Sci Rep 2021; 11:15549. [PMID: 34330981 PMCID: PMC8324896 DOI: 10.1038/s41598-021-94973-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/16/2021] [Indexed: 11/08/2022] Open
Abstract
Drosophila immune deficiency (IMD) pathway is similar to the human tumor necrosis factor receptor (TNFR) signaling pathway and is preferentially activated by Gram-negative bacterial infection. Recent studies highlighted the importance of IMD pathway regulation as it is tightly controlled by numbers of negative regulators at multiple levels. Here, we report a new negative regulator of the IMD pathway, Verloren (Velo). Silencing of Velo led to constitutive expression of the IMD pathway dependent antimicrobial peptides (AMPs), and Escherichia coli stimulation further enhanced the AMP expression. Epistatic analysis indicated that Velo knock-down mediated AMP upregulation is dependent on the canonical members of the IMD pathway. The immune fluorescent study using overexpression constructs revealed that Velo resides both in the nucleus and cytoplasm, but the majority (~ 75%) is localized in the nucleus. We also observed from in vivo analysis that Velo knock-down flies exhibit significant upregulation of the AMP expression and reduced bacterial load. Survival experiments showed that Velo knock-down flies have a short lifespan and are susceptible to the infection of pathogenic Gram-negative bacteria, P. aeruginosa. Taken together, these data suggest that Velo is an additional new negative regulator of the IMD pathway, possibly acting in both the nucleus and cytoplasm.
Collapse
Affiliation(s)
- Pragya Prakash
- INSERM, Université de Strasbourg, CNRS, Insect Models of Innate Immunity (M3I; UPR9022), 67084, Strasbourg, France
| | | | - Akira Goto
- INSERM, Université de Strasbourg, CNRS, Insect Models of Innate Immunity (M3I; UPR9022), 67084, Strasbourg, France.
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
39
|
Ozakman Y, Eleftherianos I. Nematode infection and antinematode immunity in Drosophila. Trends Parasitol 2021; 37:1002-1013. [PMID: 34154933 DOI: 10.1016/j.pt.2021.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
The entomopathogenic nematodes Heterorhabditis and Steinernema form mutualistic complexes with Gram-negative bacteria. These insect parasites have emerged as excellent research tools for studying nematode pathogenicity and elucidating the features that allow them to persist and multiply within the host. A better understanding of the molecular mechanisms of nematode infection and host antinematode processes will lead to the development of novel means for parasitic nematode control. Recent work has demonstrated the power of using the Drosophila infection model to identify novel parasitic nematode infection factors and elucidate the genetic and functional bases of host antinematode defense. Here, we aim to highlight the recent advances and address their contribution to the development of novel means for parasitic nematode control.
Collapse
Affiliation(s)
- Yaprak Ozakman
- Infection and Innate Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA.
| |
Collapse
|
40
|
Kim JC, Lee MR, Kim S, Park SE, Lee SJ, Shin TY, Kim WJ, Kim J. Transcriptome Analysis of the Japanese Pine Sawyer Beetle, Monochamus alternatus, Infected with the Entomopathogenic Fungus Metarhizium anisopliae JEF-197. J Fungi (Basel) 2021; 7:jof7050373. [PMID: 34068801 PMCID: PMC8151162 DOI: 10.3390/jof7050373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/16/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
The Japanese pine sawyer (JPS) beetle, Monochamus alternatus Hope (Coleoptera: Cerambycidae), damages pine trees and transmits the pine wilt nematode, Bursaphelenchus xylophilus Nickle. Chemical agents have been used to control JPS beetle, but due to various issues, efforts are being made to replace these chemical agents with entomopathogenic fungi. We investigated the expression of immune-related genes in JPS beetle in response to infection with JEF-197, a Metarhizium anisopliae isolate, using RNA-seq. RNA samples were obtained from JEF-197, JPS adults treated with JEF-197, and non-treated JPS adults on the 8th day after fungal treatment, and RNA-seq was performed using Illumina sequencing. JPS beetle transcriptome was assembled de novo and differentially expressed gene (DEG) analysis was performed. There were 719 and 1953 up- and downregulated unigenes upon JEF-197 infection, respectively. Upregulated contigs included genes involved in RNA transport, ribosome biogenesis in eukaryotes, spliceosome-related genes, and genes involved in immune-related signaling pathways such as the Toll and Imd pathways. Forty-two fungal DEGs related to energy and protein metabolism were upregulated, and genes involved in the stress response were also upregulated in the infected JPS beetles. Together, our results indicate that infection of JPS beetles by JEF-197 induces the expression of immune-related genes.
Collapse
Affiliation(s)
- Jong-Cheol Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (J.-C.K.); (M.-R.L.); (S.K.); (S.-E.P.); (T.-Y.S.)
| | - Mi-Rong Lee
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (J.-C.K.); (M.-R.L.); (S.K.); (S.-E.P.); (T.-Y.S.)
| | - Sihyeon Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (J.-C.K.); (M.-R.L.); (S.K.); (S.-E.P.); (T.-Y.S.)
| | - So-Eun Park
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (J.-C.K.); (M.-R.L.); (S.K.); (S.-E.P.); (T.-Y.S.)
| | - Se-Jin Lee
- Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Korea;
| | - Tae-Young Shin
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (J.-C.K.); (M.-R.L.); (S.K.); (S.-E.P.); (T.-Y.S.)
| | - Woo-Jin Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (J.-C.K.); (M.-R.L.); (S.K.); (S.-E.P.); (T.-Y.S.)
- Correspondence: (W.-J.K.); (J.K.); Tel.: +82-63-270-2525 (J.K.)
| | - Jaesu Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (J.-C.K.); (M.-R.L.); (S.K.); (S.-E.P.); (T.-Y.S.)
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54596, Korea
- Correspondence: (W.-J.K.); (J.K.); Tel.: +82-63-270-2525 (J.K.)
| |
Collapse
|
41
|
Huang Y, Ren Q. Innate immune responses against viral pathogens in Macrobrachium. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103966. [PMID: 33338519 DOI: 10.1016/j.dci.2020.103966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/27/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Some members of genus Macrobrachium are important economically prawns and valuable objects for studying the innate immune defense mechanism of crustaceans. Studies have focused on immune responses against bacterial and fungal infections and have expanded to include antiviral immunity over the past two decades. Similar to all living organisms, prawns are exposed to viruses, including white spot syndrome virus, Macrobrachium rosenbergii nodavirus, and Decapod iridescent virus 1 and develop effective defense mechanisms. Here, we review current understanding of the antiviral host defense in two species of Macrobrachium. The main antiviral defense of Macrobrachium is the activation of intracellular signaling cascades, leading to the activation of cellular responses (apoptosis) and humoral responses (immune-related signaling pathways, antimicrobial and antiviral peptides, lectins, and prophenoloxidase-activating system).
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Qian Ren
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
42
|
Woolley VC, Teakle GR, Prince G, de Moor CH, Chandler D. Cordycepin, a metabolite of Cordyceps militaris, reduces immune-related gene expression in insects. J Invertebr Pathol 2020; 177:107480. [PMID: 33022282 PMCID: PMC7768946 DOI: 10.1016/j.jip.2020.107480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 01/09/2023]
Abstract
High doses of cordycepin are lethal to G. mellonella. Cordycepin interacts with EPF to increase the rate of G. mellonella mortality. Cordycepin reduces immune-related gene expression in G. mellonella and S2r+ cells.
Hypocrealean entomopathogenic fungi (EPF) (Sordariomycetes, Ascomycota) are natural regulators of insect populations in terrestrial environments. Their obligately-killing life-cycle means that there is likely to be strong selection pressure for traits that allow them to evade the effects of the host immune system. In this study, we quantified the effects of cordycepin (3′-deoxyadenosine), a secondary metabolite produced by Cordyceps militaris (Hypocreales, Cordycipitaceae), on insect susceptibility to EPF infection and on insect immune gene expression. Application of the immune stimulant curdlan (20 µg ml−1, linear beta-1,3-glucan, a constituent of fungal cell walls) to Drosophila melanogaster S2r+ cells resulted in a significant increase in the expression of the immune effector gene metchnikowin compared to a DMSO-only control, but there was no significant increase when curdlan was co-applied with 25 µg ml−1 cordycepin dissolved in DMSO. Injection of cordycepin into larvae of Galleria mellonella (Lepidoptera: Pyralidae) resulted in dose-dependent mortality (LC50 of cordycepin = 2.1 mg per insect 6 days after treatment). Incubating conidia of C. militaris and Beauveria bassiana (Hypocreales, Cordycipitaceae; an EPF that does not synthesize cordycepin) with 3.0 mg ml−1 cordycepin had no effect on the numbers of conidia germinating in vitro. Co-injection of G. mellonella with a low concentration of cordycepin (3.0 mg ml−1) plus 10 or 100 conidia per insect of C. militaris or B. bassiana caused a significant decrease in insect median survival time compared to injection with the EPF on their own. Analysis of predicted vs. observed mortalities indicated a synergistic interaction between cordycepin and the EPF. The injection of C. militaris and B. bassiana into G. mellonella resulted in increased expression of the insect immune effector genes lysozyme, IMPI and gallerimycin at 72 h post injection, but this did not occur when the EPF were co-injected with 3.0 mg ml−1 cordycepin. In addition, we observed increased expression of IMPI and lysozyme at 48 h after injection with C. militaris, B. bassiana and sham injection (indicating a wounding response), but this was also prevented by application of cordycepin. These results suggest that cordycepin has potential to act as a suppressor of the immune response during fungal infection of insect hosts.
Collapse
Affiliation(s)
- Victoria C Woolley
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK.
| | - Graham R Teakle
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| | - Gillian Prince
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| | - Cornelia H de Moor
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - David Chandler
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| |
Collapse
|
43
|
Hou HX, Guo MY, Geng J, Wei XQ, Huang DW, Xiao JH. Genome-Wide Analysis of Peptidoglycan Recognition Protein Genes in Fig Wasps (Hymenoptera, Chalcidoidea). INSECTS 2020; 11:insects11090597. [PMID: 32899607 PMCID: PMC7565001 DOI: 10.3390/insects11090597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 11/20/2022]
Abstract
Simple Summary Insects live in a complex and diverse environment, threatened by a variety of microorganisms, and the innate immunity of which plays an important role in defending the invasion of pathogens. From an evolutionary perspective, different living environments and lifestyles drive the different evolutionary patterns of immune systems of insects. Fig wasps are closely associated with the fig syconia, divided into pollinators and non-pollinators according to whether they pollinate the figs. The pollinators are all herbivorous, and fulfil their development within the fig syconia, presenting different lifestyles and diets to non-pollinators, which lead to the chances of exposure to the pathogens varying greatly. The recognition of pathogens is the first step in innate immunity. Therefore, we focused on the different evolutionary patterns of peptidoglycan recognition protein genes between pollinators and non-pollinators, and found that the number of peptidoglycan recognition protein genes was significantly smaller than that of non-pollinators, and the initiation of Toll pathway of pollinators was simpler than that of non-pollinators. All the results suggested a streamlined innate immune recognition system of pollinators, and this information will provide more insights into the adaptive evolution of innate immunity in insects of host specificity. Abstract The innate immunity is the most important defense against pathogen of insects, and the peptidoglycan recognition proteins (PGRPs) play an important role in the processes of immune recognition and initiation of Toll, IMD and other signal pathways. In fig wasps, pollinators and non-pollinators present different evolutionary histories and lifestyles, even though both are closely associated with fig syconia, which may indicate their different patterns in the evolution of PGRPs. By manual annotation, we got all the PGRP genes of 12 fig wasp species, containing seven pollinators and five non-pollinators, and investigated their putative different evolutionary patterns. We found that the number of PGRP genes in pollinators was significantly lower than in non-pollinators, and the number of catalytic PGRP presented a declining trend in pollinators. More importantly, PGRP-SA is associated with initiating the Toll pathway, as well as gram-negative bacteria-binding proteins (GNBPs), which were completely lost in pollinators, which led us to speculate that the initiation of Toll pathway was simpler in pollinators than in non-pollinators. We concluded that fig pollinators owned a more streamlined innate immune recognition system than non-pollinators. Our results provide molecular evidence for the adaptive evolution of innate immunity in insects of host specificity.
Collapse
Affiliation(s)
- Hong-Xia Hou
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.-X.H.); (M.-Y.G.); (J.G.); (X.-Q.W.)
| | - Meng-Yuan Guo
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.-X.H.); (M.-Y.G.); (J.G.); (X.-Q.W.)
| | - Jin Geng
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.-X.H.); (M.-Y.G.); (J.G.); (X.-Q.W.)
| | - Xian-Qin Wei
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.-X.H.); (M.-Y.G.); (J.G.); (X.-Q.W.)
| | - Da-Wei Huang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.-X.H.); (M.-Y.G.); (J.G.); (X.-Q.W.)
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (D.-W.H.); (J.-H.X.); Tel.: +86-139-1025-6670 (D.-W.H.); +86-185-2245-2108 (J.-H.X.)
| | - Jin-Hua Xiao
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.-X.H.); (M.-Y.G.); (J.G.); (X.-Q.W.)
- Correspondence: (D.-W.H.); (J.-H.X.); Tel.: +86-139-1025-6670 (D.-W.H.); +86-185-2245-2108 (J.-H.X.)
| |
Collapse
|
44
|
A Toll-Spätzle Pathway in the Immune Response of Bombyx mori. INSECTS 2020; 11:insects11090586. [PMID: 32882853 PMCID: PMC7564906 DOI: 10.3390/insects11090586] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/12/2023]
Abstract
The Toll-Spätzle pathway is a crucial defense mechanism in insect innate immunity, it plays an important role in fighting against pathogens through the regulation of antimicrobial peptide gene expression. Although Toll and Spätzle (Spz) genes have been identified in Bombyx mori, little is known regarding the specific Spz and Toll genes members involved in innate immunity. There is also limited direct evidence of the interaction between Spz and Toll. In this study, the dual-luciferase reporter assay results showed that BmToll11 and BmToll9-1 could activate both drosomycin and diptericin promoters in S2 cells. Furthermore, BmToll11, BmToll9-1, and five BmSpzs genes were found to be significantly upregulated in B. mori infected by Escherichia coli and Staphylococcus aureus. Additionally, the yeast two-hybrid assay results confirmed that BmSpz2, but not other BmSpzs, could interact with both BmToll11 and BmToll9-1. These findings suggest that the activated BmSpz2 can bind with BmToll11 and BmToll9-1 to induce the expression of AMPs after the silkworm is infected by pathogens.
Collapse
|
45
|
Edosa TT, Jo YH, Keshavarz M, Kim IS, Han YS. Biosurfactants Induce Antimicrobial Peptide Production through the Activation of TmSpatzles in Tenebrio molitor. Int J Mol Sci 2020; 21:ijms21176090. [PMID: 32847078 PMCID: PMC7504391 DOI: 10.3390/ijms21176090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Biosurfactant immunomodulatory activities in mammals, nematodes, and plants have been investigated. However, the immune activation property of biosurfactants in insects has not been reported. Therefore, here, we studied the defense response triggered by lipopeptides (fengycin and iturin A), glycolipids (rhamnolipid), and cyclic polypeptides (bacitracin) in the coleopteran insect, mealworm Tenebrio molitor. The in vitro antimicrobial activities against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and fungi (Candida albicans) were assessed by mixing these pathogens with the hemolymph of biosurfactant-immune-activated larvae. E. coli growth was remarkably inhibited by this hemolymph. The antimicrobial peptide (AMP) induction results also revealed that all biosurfactants tested induced several AMPs, exclusively in hemocytes. The survivability analysis of T. molitor larvae challenged by E. coli (106 CFU/µL) at 24 h post biosurfactant-immune activation showed that fengycin, iturin A, and rhamnopid significantly increased survivability against E. coli. Biosurfactant-induced TmSpatzles activation was also monitored, and the results showed that TmSpz3 and TmSpz-like were upregulated in the hemocytes of iturin A-injected larvae, while TmSpz4 and TmSpz6 were upregulated in the fat bodies of the fengycin-, iturin A-, and rhamnolipid-injected larvae. Overall, these results suggest that lipopeptide and glycolipid biosurfactants induce the expression of AMPs in T. molitor via the activation of spätzle genes, thereby increasing the survivability of T. molitor against E. coli.
Collapse
Affiliation(s)
- Tariku Tesfaye Edosa
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (T.T.E.); (Y.H.J.); (M.K.)
- Ethiopian Institute of Agricultural Research, Ambo Agricultural Research Center, Ambo 37, Ethiopia
| | - Yong Hun Jo
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (T.T.E.); (Y.H.J.); (M.K.)
| | - Maryam Keshavarz
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (T.T.E.); (Y.H.J.); (M.K.)
| | - In Seon Kim
- Department of Agricultural Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea;
| | - Yeon Soo Han
- Ethiopian Institute of Agricultural Research, Ambo Agricultural Research Center, Ambo 37, Ethiopia
- Correspondence: ; Tel.: +82-62-530-2072
| |
Collapse
|
46
|
Valanne S, Järvelä-Stölting M, Harjula SKE, Myllymäki H, Salminen TS, Rämet M. Osa-Containing Brahma Complex Regulates Innate Immunity and the Expression of Metabolic Genes in Drosophila. THE JOURNAL OF IMMUNOLOGY 2020; 204:2143-2155. [PMID: 32198143 DOI: 10.4049/jimmunol.1900571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 02/12/2020] [Indexed: 01/20/2023]
Abstract
Negative regulation of innate immunity is essential to avoid autoinflammation. In Drosophila melanogaster, NF-κB signaling-mediated immune responses are negatively regulated at multiple levels. Using a Drosophila RNA interference in vitro screen, we identified a set of genes inhibiting immune activation. Four of these genes encode members of the chromatin remodeling Osa-containing Brahma (BAP) complex. Silencing additional two genes of the BAP complex was shown to have the same phenotype, confirming its role in immune regulation in vitro. In vivo, the knockdown of osa and brahma was shown to enhance the expression of the Toll pathway-mediated antimicrobial peptides when the flies were challenged with Gram-positive bacteria Micrococcus luteus In this setting, osa knockdown had a particularly strong effect on immune effectors that are predominantly activated by the Imd pathway. Accordingly, Drosophila NF-κB Relish expression was increased by osa silencing. These transcriptional changes were associated with enhanced survival from M. luteus + E. faecalis infection. Besides regulating the expression of immune effector genes, osa RNA interference decreased the expression of a large group of genes involved in metabolism, particularly proteolysis. Of note, the expression of the recently characterized, immune-inducible gene Induced by Infection (IBIN) was diminished in osa knockdown flies. Although IBIN has been shown to modulate metabolism upon infection, the expression of selected Osa-regulated metabolism genes was not rescued by overexpressing IBIN. We conclude that the BAP complex regulates expression of genes involved in metabolism at least partially independent or downstream of IBIN Moreover, Osa affects the NF-κB-mediated immune response by regulating Drosophila NF-κB factor Relish expression.
Collapse
Affiliation(s)
- Susanna Valanne
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, 33014 Tampere University, Tampere, Finland
| | - Mirva Järvelä-Stölting
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, 33014 Tampere University, Tampere, Finland
| | - Sanna-Kaisa E Harjula
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, 33014 Tampere University, Tampere, Finland
| | - Henna Myllymäki
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, 33014 Tampere University, Tampere, Finland
| | - Tiina S Salminen
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, 33014 Tampere University, Tampere, Finland.,Laboratory of Mito-Immuno-Metabolism, Faculty of Medicine and Health Technology, 33014 Tampere University, Tampere, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, 33014 Tampere University, Tampere, Finland; .,PEDEGO Research Unit, Faculty of Medicine, 90014 University of Oulu, Oulu, Finland.,Medical Research Center Oulu, 90014 University of Oulu, Oulu, Finland; and.,Department of Children and Adolescents, Oulu University Hospital, 90014 University of Oulu, Oulu, Finland
| |
Collapse
|
47
|
Nonaka S, Salim E, Kamiya K, Hori A, Nainu F, Asri RM, Masyita A, Nishiuchi T, Takeuchi S, Kodera N, Kuraishi T. Molecular and Functional Analysis of Pore-Forming Toxin Monalysin From Entomopathogenic Bacterium Pseudomonas entomophila. Front Immunol 2020; 11:520. [PMID: 32292407 PMCID: PMC7118224 DOI: 10.3389/fimmu.2020.00520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/06/2020] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas entomophila is a highly pathogenic bacterium that infects insects. It is also used as a suitable model pathogen to analyze Drosophila's innate immunity. P. entomophila's virulence is largely derived from Monalysin, a β-barrel pore-forming toxin that damages Drosophila tissues, inducing necrotic cell death. Here we report the first and efficient purification of endogenous Monalysin and its characterization. Monalysin is successfully purified as a pro-form, and trypsin treatment results in a cleaved mature form of purified Monalysin which kills Drosophila cell lines and adult flies. Electrophysiological measurement of Monalysin in a lipid membrane with an on-chip device confirms that Monalysin forms a pore, in a cleavage-dependent manner. This analysis also provides a pore-size estimate of Monalysin using current amplitude for a single pore and suggests lipid preferences for the insertion. Atomic Force Microscope (AFM) analysis displays its structure in a solution and shows that active-Monalysin is stable and composed of an 8-mer complex; this observation is consistent with mass spectrometry data. AFM analysis also shows the 8-mer structure of active-Monalysin in a lipid bilayer, and real-time imaging demonstrates the moment at which Monalysin is inserted into the lipid membrane. These results collectively suggest that endogenous Monalysin is indeed a pore-forming toxin composed of a rigid structure before pore formation in the lipid membrane. The endogenous Monalysin characterized in this study could be a desirable tool for analyzing host defense mechanisms against entomopathogenic bacteria producing damage-inducing toxins.
Collapse
Affiliation(s)
- Saori Nonaka
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Emil Salim
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.,Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Koki Kamiya
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan.,Graduate School of Science and Technology, Gunma University, Maebashi, Japan
| | - Aki Hori
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Firzan Nainu
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.,Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Rangga Meidianto Asri
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.,Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Ayu Masyita
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.,Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Takumi Nishiuchi
- Institute for Gene Research, Kanazawa University, Kanazawa, Japan
| | - Shoji Takeuchi
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan.,Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Takayuki Kuraishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
48
|
TmPGRP-SA regulates Antimicrobial Response to Bacteria and Fungi in the Fat Body and Gut of Tenebrio molitor. Int J Mol Sci 2020; 21:ijms21062113. [PMID: 32204438 PMCID: PMC7139795 DOI: 10.3390/ijms21062113] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial immune response is mediated by a signal-transducing sensor, peptidoglycan recognition protein-SA (PGRP-SA), that can recognize non-self molecules. Although several studies have focused on the involvement of Drosophila PGRP-SA in antimicrobial peptide (AMP) expression in response to infections, studies on its role in Tenebrio molitor are lacking. Here, we present a functional analysis of T. molitor PGRP-SA (TmPGRP-SA). In the absence of microbes, TmPGRP-SA was highly expressed in the late-larval fat body, followed by hemocytes, and gut. Interestingly, following Escherichia coli, Staphylococcus aureus, and Candida albicans infections, the mRNA level of TmPGRP-SA was significantly upregulated in both the fat body and gut. TmPGRP-SA silencing had a significant effect on the mortality rates for all the microbes tested. Moreover, TmPGRP-SA is required for regulating the expression of eight AMP genes namely TmTenecin-1, -2, and -4; TmDefensin-1 and -2; TmColeoptericin-1; and TmAttacin-1b and -2 in the fat body in response to E. coli and S. aureus infections. TmPGRP-SA is essential for the transcription of TmTenecin-2, -4; TmDefensin-2; TmColeoptericin-1, -2; and TmAttacin-1a, -1b, and -2 in the gut upon E. coli and C. albicans infections. However, TmPGRP-SA does not regulate AMP expression in the hemocytes. Additionally, TmDorsal isoform X2, a downstream Toll transcription factor, was downregulated in TmPGRP-SA-silenced larval fat body following E. coli and S. aureus challenges, and in the gut following E. coli and C. albicans challenges.
Collapse
|
49
|
TmSpz4 Plays an Important Role in Regulating the Production of Antimicrobial Peptides in Response to Escherichia coli and Candida albicans Infections. Int J Mol Sci 2020; 21:ijms21051878. [PMID: 32182940 PMCID: PMC7084639 DOI: 10.3390/ijms21051878] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/19/2020] [Accepted: 03/07/2020] [Indexed: 12/20/2022] Open
Abstract
Spätzle family proteins activate the Toll pathway and induce antimicrobial peptide (AMP) production against microbial infections. However, the functional importance of Tmspätzle4 (TmSpz4) in the immune response of Tenebrio molitor has not been reported. Therefore, here, we have identified and functionally characterized the role of TmSpz4 against bacterial and fungal infections. We showed that TmSpz4 expression was significantly induced in hemocytes at 6 h post-injection with Escherichia coli, Staphylococcus aureus, and Candida albicans. TmSpz4 knock-down significantly reduced larval survival against E. coli and C. albicans. To understand the reason for the survivability difference, the role of TmSpz4 in AMP production was examined in TmSpz4-silenced larvae following microbe injection. The AMPs that are active against Gram-negative bacteria, including TmTenecin-2, TmTenecin-4, TmAttacin-1a, TmDefensin-2, and TmCecropin-2, were significantly downregulated in response to E. coli in TmSpz4-silenced larvae. Similarly, the expression of TmTenecin-1, TmTenecin-3, TmThaumatin-like protein-1 and -2, TmDefensin-1, TmDefensin-2, and TmCecropin-2 were downregulated in response to C. albicans in TmSpz4-silenced larvae. In addition, the transcription factor NF-κB (TmDorX1 and TmDorX2) expression was significantly suppression in TmSpz4-silenced larvae. In conclusion, these results suggest that TmSpz4 plays a key role in regulating immune responses of T. molitor against to E. coli and C. albicans.
Collapse
|
50
|
Edosa TT, Jo YH, Keshavarz M, Bae YM, Kim DH, Lee YS, Han YS. TmSpz6 Is Essential for Regulating the Immune Response to Escherichia Coli and Staphylococcus Aureus Infection in Tenebrio Molitor. INSECTS 2020; 11:insects11020105. [PMID: 32033290 PMCID: PMC7074004 DOI: 10.3390/insects11020105] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/20/2022]
Abstract
Spätzle is an extracellular protein that activates the Toll receptor during embryogenesis and immune responses in Drosophila. However, the functions of the spätzle proteins in the innate immune response against bacteria or fungi in T. molitor are not well understood. Therefore, in this study, the open reading frame (ORF) of TmSpz6 was identified and its function in the response to bacterial and fungal infections in T. molitor was investigated using RNAi. The highest expression of TmSpz6 was in prepupae, and 3- and 6-day-old pupae, while remarkable expression was also observed in other stages. The tissue-specific expression analysis showed that TmSpz6 expression was highest in the hemocytes of larvae. TmSpz6 expression was highly induced when challenged with Escherichia coli, Staphylococcus aureus, or Candida albicans at 6 h post-injection; however, TmSpz6-silenced larvae were significantly more susceptible to only E. coli and S. aureus infection. The antimicrobial peptides (AMPs) gene expression analysis results show that TmSpz6 mainly positively regulated the expression of TmTencin-2 and -3 in response to E. coli and S. aureus infection. Collectively, these results suggest that TmSpz6 plays an important role in regulating AMP expression and increases the survival of T. molitor against E. coli and S. aureus.
Collapse
Affiliation(s)
- Tariku Tesfaye Edosa
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (T.T.E.); (Y.H.J.); (M.K.); (Y.M.B.); (D.H.K.)
- Ethiopian Institute of Agricultural Research, Ambo Agricultural Research Center, Ambo 37, Ethiopia
| | - Yong Hun Jo
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (T.T.E.); (Y.H.J.); (M.K.); (Y.M.B.); (D.H.K.)
| | - Maryam Keshavarz
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (T.T.E.); (Y.H.J.); (M.K.); (Y.M.B.); (D.H.K.)
| | - Young Min Bae
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (T.T.E.); (Y.H.J.); (M.K.); (Y.M.B.); (D.H.K.)
| | - Dong Hyun Kim
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (T.T.E.); (Y.H.J.); (M.K.); (Y.M.B.); (D.H.K.)
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, Asan 31538, Korea;
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (T.T.E.); (Y.H.J.); (M.K.); (Y.M.B.); (D.H.K.)
- Correspondence: ; Tel.: +82-62-530-2072
| |
Collapse
|