1
|
Huang B, Guo F, Chen J, Lu L, Gao S, Yang C, Wu H, Luo W, Pan Q. Regulation of B-cell function by miRNAs impacting Systemic lupus erythematosus progression. Gene 2025; 933:149011. [PMID: 39427831 DOI: 10.1016/j.gene.2024.149011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease marked by abnormal B-cell proliferation and increased autoantibodies. miRNAs play a crucial role in regulating B-cell dysfunction and SLE pathology. miRNAs influence DNA methylation, B-cell activation, and gene expression, contributing to SLE pathogenesis. miRNAs impact B cells through key processes like proliferation, differentiation, tolerance, and apoptosis. miRNAs also exacerbate inflammation and immune responses by modulating Interleukin 4 (IL-4), IL-6, and interferon cytokines. Autophagy, a key degradation mechanism, is also regulated by specific miRNAs that impact SLE pathology. This article explores the role of multiple miRNAs in regulating B-cell development, proliferation, survival, and immune responses, influencing SLE pathogenesis. miRNAs like miR-23a, the miR-17 ∼ 92 family, and miR-125b/miR-221 affect B-cell development by regulating transcription factors, signaling pathways, and cell cycle genes. miRNAs such as miR-181a-5p and miR-23a-5p are differentially regulated across developmental stages, emphasizing their complex regulatory roles in B-cell biology. This article synthesizes miRNA-B cell interactions to offer new strategies and directions for SLE diagnosis and treatment.
Collapse
Affiliation(s)
- Bitang Huang
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Fengbiao Guo
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jiaxuan Chen
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Lu Lu
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Shenglan Gao
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Chunlong Yang
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Han Wu
- Clinical Laboratory, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Wenying Luo
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| | - Qingjun Pan
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| |
Collapse
|
2
|
Venkatesh S, Manaz PM, Priya MH, Ambiga G, Basu S. Shedding Light on the Molecular Diversities of miRNA in Cancer- an Exquisite Mini Review. Mol Biotechnol 2024:10.1007/s12033-024-01312-5. [PMID: 39496855 DOI: 10.1007/s12033-024-01312-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/19/2024] [Indexed: 11/06/2024]
Abstract
Short non-coding ribonucleic acids are also known as "Micro ribonucleic acids (miRNAs)". The miRNAs make a contribution to the regulation of genes and mitigation of cancer cell growth in humans. miRNAs play a significant role in several BPs, namely apoptosis, cell cycle progression, and development. It is well-recognized that miRNAs are crucial for the tumors' growth and also serve as Tumor Suppressors (TSs) or oncogenes. As miRNAs also act as an effective tumor suppressor, studying the molecular diversities of the miRNAs makes way to minimize cancer progression and the corresponding death rates in the future. Therefore, miRNAs along with their Biological Processes (BPs) and molecular diversities are thoroughly researched in this paper. Consequently, miRNAs particularly target their 3' UnTranslated Region (3'-UTR) for controlling the target mRNAs' stability and protein translation. So, this study also expresses the impact of microRNA variants in various cancer cells, namely Breast cancer, Gastric or stomach cancer, ovarian cancer, and lymphocytic leukemia. Furthermore, the database named PhenomiR and commercial kits that are used in the miRNA data analysis are discussed in this article to provide extensive knowledge about the molecular diversity analysis of miRNA and their influences on cancerous cells.
Collapse
Affiliation(s)
- Surya Venkatesh
- Department of Biotechnology, Sethu Institute of Technology, Virudhunagar, India.
| | - P Mohammed Manaz
- Department of Biotechnology, Sethu Institute of Technology, Virudhunagar, India
| | - M Harish Priya
- Department of Biotechnology, Ayya Nadar Janaki Ammal College, Sivakasi, India
| | - G Ambiga
- Department of Biotechnology, Ayya Nadar Janaki Ammal College, Sivakasi, India
| | - Soumyo Basu
- Department of Microbiology, Bengal College of Pharmaceutical Sciences & Research, Durgapur, India
| |
Collapse
|
3
|
Pan Y, Chen S, Wu L, Xing C, Mao H, Liang H, Yuan Y. Animal models of membranous nephropathy: more choices and higher similarity. Front Immunol 2024; 15:1412826. [PMID: 39497816 PMCID: PMC11532550 DOI: 10.3389/fimmu.2024.1412826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/20/2024] [Indexed: 11/07/2024] Open
Abstract
Membranous nephropathy (MN) is an antibody-mediated autoimmune glomerular disease in which PLA2R1 is the main autoantibody. It has become the most common cause of adult nephrotic syndrome, and about one-third of patients can progress to end-stage kidney disease, but its pathogenesis is still unclear. Animal models can be used as suitable tools to study the pathogenesis and treatment of MN. The previous Heymann nephritis rat model and C-BSA animal model are widely used to study the pathogenesis of MN. However, the lack of target antigen expression in podocytes of model animals (especially rodents) restricts the application. In recent years, researchers constructed animal models of antigen-specific MN, such as THSD7A, PLA2R1, which more truly simulate the pathogenesis and pathological features of MN and provide more choices for the follow-up researchers. When selecting these MN models, we need to consider many aspects, including cost, difficulty of model preparation, labor force, and whether the final model can answer the research questions. This review is to comprehensively evaluate the mechanism, advantages and disadvantages and feasibility of existing animal models, and provide new reference for the pathogenesis and treatment of MN.
Collapse
Affiliation(s)
- Ying Pan
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Si Chen
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Lin Wu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Changying Xing
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Huijuan Mao
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Hongwei Liang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yanggang Yuan
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Kumar P, Kedia S, Ahuja V. Target potential of miRNAs in ulcerative colitis: what do we know? Expert Opin Ther Targets 2024:1-13. [PMID: 39307951 DOI: 10.1080/14728222.2024.2408423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION The global rise in ulcerative colitis (UC) incidence highlights the urgent need for enhanced diagnostic and therapeutic strategies. Recent advances in genome-wide association studies (GWAS) have identified genetic loci associated with UC, providing insights into the disease's molecular mechanisms, including immune modulation, mucosal defense, and epithelial barrier function. Despite these findings, many GWAS signals are located in non-coding regions and are linked to low risk, suggesting that protein-coding genes alone do not fully explain UC's pathophysiology. Emerging research emphasizes the potential of microRNAs (miRNAs) as biomarkers and therapeutic targets due to their crucial role in UC. This review explores the current understanding of miRNAs in UC, including their mechanisms of action and their potential as both biomarkers and therapeutic targets. The present review provides the latest update on their potential as a biomarker and therapeutic target. AREAS COVERED This review synthesizes an extensive literature search on miRNAs in UC, focusing on their roles in the mucosal barrier, innate and adaptive immunity, and their potential applications as biomarkers and therapeutic modalities. EXPERT OPINION While miRNAs present promising opportunities as biomarkers and novel therapeutic agents in UC, challenges in validation, specificity, delivery, and clinical application need to be addressed through rigorous, large-scale studies.
Collapse
Affiliation(s)
- Peeyush Kumar
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical sciences, New Delhi, India
| | - Saurabh Kedia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical sciences, New Delhi, India
| | - Vineet Ahuja
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical sciences, New Delhi, India
| |
Collapse
|
5
|
Iacomino N, Tarasco MC, Berni A, Ronchi J, Mantegazza R, Cavalcante P, Foti M. Non-Coding RNAs in Myasthenia Gravis: From Immune Regulation to Personalized Medicine. Cells 2024; 13:1550. [PMID: 39329732 PMCID: PMC11430632 DOI: 10.3390/cells13181550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Myasthenia gravis (MG) is an antibody-mediated autoimmune disorder characterized by altered neuromuscular transmission, which causes weakness and fatigability in the skeletal muscles. The etiology of MG is complex, being associated with multiple genetic and environmental factors. Over recent years, progress has been made in understanding the immunological alterations implicated in the disease, but the exact pathogenesis still needs to be elucidated. A pathogenic interplay between innate immunity and autoimmunity contributes to the intra-thymic MG development. Epigenetic changes are critically involved in both innate and adaptive immune response regulation. They can act as (i) pathological factors besides genetic predisposition and (ii) co-factors contributing to disease phenotypes or patient-specific disease course/outcomes. This article reviews the role of non-coding RNAs (ncRNAs) as epigenetic factors implicated in MG. Particular attention is dedicated to microRNAs (miRNAs), whose expression is altered in MG patients' thymuses and circulating blood. The long ncRNA (lncRNA) contribution to MG, although not fully characterized yet, is also discussed. By summarizing the most recent and fast-growing findings on ncRNAs in MG, we highlight the therapeutic potential of these molecules for achieving immune regulation and their value as biomarkers for the development of personalized medicine approaches to improve disease care.
Collapse
Affiliation(s)
- Nicola Iacomino
- Neurology 4-Neuroimmunology and Neuromuscolar Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Maria Cristina Tarasco
- Neurology 4-Neuroimmunology and Neuromuscolar Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Ph.D. Program in Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy
| | - Alessia Berni
- Neurology 4-Neuroimmunology and Neuromuscolar Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Jacopo Ronchi
- Ph.D. Program in Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- BicOMICs, University of Milano-Bicocca, 20900 Monza, Italy
| | - Renato Mantegazza
- Neurology 4-Neuroimmunology and Neuromuscolar Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Paola Cavalcante
- Neurology 4-Neuroimmunology and Neuromuscolar Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Maria Foti
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- BicOMICs, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
6
|
Bansal S, Itabashi Y, Guerrero-Alba A, Fleming T, Smith MA, Bremner RM, Mohanakumar T. Regulation of cardiac allograft immune responses by microRNA-155. Transpl Immunol 2024; 87:102113. [PMID: 39222773 DOI: 10.1016/j.trim.2024.102113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/14/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION A better understanding of the immune mechanisms involved in allograft rejection after transplantation is urgently needed to improve patient outcomes. As microRNA-155 (miR155) plays a critical role in inflammation, we postulated that a deficiency of miR155 will improve cardiac allograft survival and enhance tolerance induction after heart transplantation. METHODS We developed an acute rejection mouse model through heterotopic BALB/c cardiac transplantation to C57BL/6 (wild-type) and C57BL/6 miR155 knock-out (miR155KO) mice. Further, we induced tolerance in both groups through a costimulatory blockade with CTLA4-Ig (200 μg; post-transplant day 2) and MRI antibodies (250 μg; post-transplant day 0), targeting CD28/B7 and CD40/CD154 signals, respectively. Finally, we examined the effects of injecting 100 μg of small extracellular vesicles (sEVs) isolated from wild-type mice undergoing rejection into tolerant miR155KO mice. RESULTS Mean survival time (MST) of the cardiac allografts in wild-type and miR155KO mice was 7 and 15 days, respectively (p < 0.0001). Costimulatory blockade increased MST to 65 days and > 100 days in the wild-type and miR155KO recipients, respectively (p < 0.001). Injection of sEVs isolated from wild-type mice undergoing rejection into tolerant miR155KO mice decreased the allograft survival to 9 days, significantly lower than the tolerant miR155KO mice without injection of sEVs (>100 days; p < 0.0001). CONCLUSION miR155KO mice have improved cardiac allograft survival and enhanced induction of tolerance after heterotopic cardiac transplantation. Injection of sEVs from wild-type mice undergoing rejection into the miR155KO mice reversed these benefits.
Collapse
Affiliation(s)
- Sandhya Bansal
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States of America
| | - Yoshihiro Itabashi
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States of America
| | - Alexa Guerrero-Alba
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States of America
| | - Timothy Fleming
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States of America
| | - Michael A Smith
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States of America
| | - Ross M Bremner
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States of America
| | - T Mohanakumar
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States of America.
| |
Collapse
|
7
|
Saadh MJ, Muhammad FA, Singh A, Mustafa MA, Al Zuhairi RAH, Ghildiyal P, Hashim G, Alsaikhan F, Khalilollah S, Akhavan-Sigari R. MicroRNAs Modulating Neuroinflammation in Parkinson's disease. Inflammation 2024:10.1007/s10753-024-02125-z. [PMID: 39162871 DOI: 10.1007/s10753-024-02125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Parkinson's disease (PD) is one of the most frequent age-associated neurodegenerative disorder. Presence of α-synuclein-containing aggregates in the substantia nigra pars compacta (SNpc) and loss of dopaminergic (DA) neurons are among the characteristic of PD. One of the hallmarks of PD pathophysiology is chronic neuroinflammation. Activation of glial cells and elevated levels of pro-inflammatory factors are confirmed as frequent features of the PD brain. Chronic secretion of pro-inflammatory cytokines by activated astrocytes and microglia exacerbates DA neuron degeneration in the SNpc. MicroRNAs (miRNAs) are among endogenous non-coding small RNA with the ability to perform post-transcriptional regulation in target genes. In that regard, the capability of miRNAs for modulating inflammatory signaling is the center of attention in many investigations. MiRNAs could enhance or limit inflammatory signaling, exacerbating or ameliorating the pathological consequences of extreme neuroinflammation. This review summarizes the importance of inflammation in the pathophysiology of PD. Besides, we discuss the role of miRNAs in promoting or protecting neural cell injury in the PD model by controlling the inflammatory pathway. Modifying the neuroinflammation by miRNAs could be considered a primary therapeutic strategy for PD.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Anamika Singh
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Mohammed Ahmed Mustafa
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur,, Jamshedpur,, India, Jharkhand, 831001
| | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ghassan Hashim
- Department of Nursing, Al-Zahrawi University College, Karbala, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warszawa, Poland
| |
Collapse
|
8
|
Wang C, Song X, Shen J, Xie Y, Ju H, Liu Y. Recent Advances in DNA-Based Nanoprobes for In vivo MiRNA Imaging. Chemistry 2024:e202402566. [PMID: 39145432 DOI: 10.1002/chem.202402566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/16/2024]
Abstract
As a post transcriptional regulator of gene expression, microRNAs (miRNA) is closely related to many major human diseases, especially cancer. Therefore, its precise detection is very important for disease diagnosis and treatment. With the advancement of fluorescent dye and imaging technology, the focus has shifted from in vitro miRNA detection to in vivo miRNA imaging. This concept review summarizes signal amplification strategies including DNAzyme catalytic reaction, hybrid chain reaction (HCR), catalytic hairpin assembly (CHA) to enhance detection signal of lowly expressed miRNAs; external stimuli of ultraviolet (UV) light or near-infrared region (NIR) light, and internal stimuli such as adenosine triphosphate (ATP), glutathione (GSH), protease and cell membrane protein to prevent nonspecific activation for the avoidance of false positive signal; and the development of fluorescent probes with emission in NIR for in vivo miRNA imaging; as well as rare earth nanoparticle based the second near-infrared window (NIR-II) nanoprobes with excellent tissue penetration and depth for in vivo miRNA imaging. The concept review also indicated current challenges for in vivo miRNA imaging including the dynamic monitoring of miRNA expression change and simultaneous in vivo imaging of multiple miRNAs.
Collapse
Affiliation(s)
- Caixia Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xuefang Song
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jieyu Shen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yuxin Xie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
9
|
An YP, Yuan R, Wang SS, Yang SQ, Zhang Q. Knockdown of miR-155 alleviates skin damage in rats with chronic spontaneous urticaria by modulating the JAK/STAT signaling pathway. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2024; 20:38. [PMID: 38951930 PMCID: PMC11218296 DOI: 10.1186/s13223-024-00902-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/12/2024] [Indexed: 07/03/2024]
Abstract
OBJECTIVE The aim of this study was to investigate the role and mechanisms of miR-155 in chronic spontaneous urticaria (CSU). METHODS The expression level of miR-155 in the skin tissues of patients with CSU and experimental rats were detected by RT-qPCR, followed by the measurement of the histamine release rate in the serum through the histamine release test. Besides, hematoxylin & eosin staining was used to observe the pathological changes of the skin tissues; Corresponding detection kits and flow cytometry to measure the changes of immunoglobulins, inflammatory cytokines and T cell subsets in the serum of rats in each group; and western blot to check the expression level of proteins related to JAK/STAT signaling pathway in the skin tissues. RESULTS Knockdown of miR-155 reduced the number and duration of pruritus, alleviated the skin damage, and decreased the number of eosinophils in CSU rats. Moreover, knockdown of miR-155 elevated the serum levels of IgG and IgM, decreased the levels of IgA and inflammatory cytokines, and reduced the proportion of CD4 + and CD4 + CD25 + T cells, as well as the CD4+/CD8 + ratio in CSU rats. However, Tyr705 intervention could reverse the effects of knockdown of miR-155 on CSU model rats. Furthermore, we found that knockdown of miR-155 significantly reduced the protein expression of IRF-9, as well as the P-JAK2/JAK2 and P-STAT3/STAT3 ratios in the skin tissues of CSU rats. CONCLUSION Knockdown of miR-155 can alleviate skin damage and inflammatory responses and relieve autoimmunity in CSU rats by inhibiting the JAK/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yue-Peng An
- Department of Dermatology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, No. 26 Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Rui Yuan
- Department of Dermatology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, No. 26 Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Shan-Shan Wang
- Department of Dermatology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, No. 26 Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Su-Qing Yang
- Department of Dermatology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, No. 26 Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Qing Zhang
- Department of Dermatology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, No. 26 Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
10
|
Soffritti I, D’Accolti M, Bini F, Mazziga E, Di Luca D, Maccari C, Arcangeletti MC, Caselli E. Virus-Induced MicroRNA Modulation and Systemic Sclerosis Disease. Biomedicines 2024; 12:1360. [PMID: 38927567 PMCID: PMC11202132 DOI: 10.3390/biomedicines12061360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
MicroRNAs (miRNAs) are short noncoding RNA sequences that regulate gene expression at the post-transcriptional level. They are involved in the regulation of multiple pathways, related to both physiological and pathological conditions, including autoimmune diseases, such as Systemic Sclerosis (SSc). Specifically, SSc is recognized as a complex and multifactorial disease, characterized by vascular abnormalities, immune dysfunction, and progressive fibrosis, affecting skin and internal organs. Among predisposing environmental triggers, evidence supports the roles of oxidative stress, chemical agents, and viral infections, mostly related to those sustained by beta-herpesviruses such as HCMV and HHV-6. Dysregulated levels of miRNA expression have been found in SSc patients compared to healthy controls, at both the intra- and extracellular levels, providing a sort of miRNA signature of the SSc disease. Notably, HCMV/HHV-6 viral infections were shown to modulate the miRNA profile, often superposing that observed in SSc, potentially promoting pathological pathways associated with SSc development. This review summarizes the main data regarding miRNA alterations in SSc disease, highlighting their potential as prognostic or diagnostic markers for SSc disease, and the impact of the putative SSc etiological agents on miRNA modulation.
Collapse
Affiliation(s)
- Irene Soffritti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (M.D.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Maria D’Accolti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (M.D.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Francesca Bini
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (M.D.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Eleonora Mazziga
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (M.D.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Dario Di Luca
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Clara Maccari
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (C.M.); (M.-C.A.)
| | - Maria-Cristina Arcangeletti
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (C.M.); (M.-C.A.)
| | - Elisabetta Caselli
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (M.D.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| |
Collapse
|
11
|
Yu H, Tang J, Dong L, Tang M, Arif A, Zhang T, Zhang G, Xie K, Zhao Z, Dai G. Transcriptome analysis reveals that gga-miR-2954 inhibits the inflammatory response against Eimeria tenella infection. Int J Biol Macromol 2024; 269:131807. [PMID: 38670189 DOI: 10.1016/j.ijbiomac.2024.131807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/29/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024]
Abstract
Coccidiosis is an important parasitic protozoan disease in poultry farming, causing huge economic losses in the global poultry industry every year. MicroRNAs (miRNAs) are a class of RNA macromolecules that play important roles in the immune response to pathogens. However, the expression profiles and functions of miRNAs during Eimeria tenella (E. tenella) infection in chickens remain mostly uncharacterized. In this study, high-throughput sequencing of cecal tissues of control (JC), resistant (JR), and susceptible (JS) chickens led to the identification of 35 differentially expressed miRNAs among the three groups. Functional enrichment analysis showed that the differentially expressed miRNAs were mainly associated with the TGF-beta, NF-kB, and Jak-STAT signaling pathways. Notably, gga-miR-2954 was found to be significantly upregulated after coccidial infection. Functional analysis showed that gga-miR-2954 inhibited the production of the inflammatory cytokines IL-6, IL-1β, TNF-α, and IL-8 in sporozoite-stimulated DF-1 cells. Mechanistically, we found that gga-miR-2954 targeted the RORC gene and that RORC promoted the inflammatory response in sporozoite-stimulated DF-1 cells. In conclusion, our study was the first to identify differentially expressed miRNAs in chicken cecal tissue during E. tenella infection and found that gga-miR-2954 regulates the host immune response to coccidial infection in chickens by targeting the RORC gene.
Collapse
Affiliation(s)
- Hailiang Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jianqiang Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Liyue Dong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Meihui Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - AreeJ Arif
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhenhua Zhao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
| |
Collapse
|
12
|
Aboulela A, Taha M, Ghazal A, Baess A, Elsheredy A. Alternations in miR-155 and miR-200 serum levels can serve as biomarkers for COVID-19 in the post-mass vaccination era. Mol Biol Rep 2024; 51:689. [PMID: 38796651 DOI: 10.1007/s11033-024-09630-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/09/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Mass vaccination and natural immunity reduced the severity of COVID-19 cases. SARS-CoV-2 ongoing genome variations imply the use of confirmatory serologic biomarkers besides PCR for reliable diagnosis. MicroRNA molecules are intrinsic components of the innate immune system. The expression of miR155-5p and miR200c-3p was previously correlated with SARS-CoV-2 pathogenesis. This case-control study was conducted during the third peak of the COVID-19 pandemic in Egypt and aimed to calculate the accuracy of miR155-5p and miR200c-3p as biomarkers for COVID-19. METHODS AND RESULTS Thirty out of 400 COVID-19 patients at a main University hospital in Alexandria were included in the study along with 20 age-matched healthy controls. Plasma samples were collected for total and differential CBC. Relative quantitation of miR155-5p and miR200c-3p expression from WBCs was done by RT-qPCR. The expression of miR155-5p and miR200c-3p was positively correlated and was significantly downregulated in COVID-19 patients compared to the healthy control group (p ˂ 0.005). Both miR155-5p and miR200c-3p were of 76% and 74% accuracy as diagnostic biomarkers of COVID-19, respectively. Regarding the differentiation between mild and moderate cases, their accuracy was 80% and 70%, respectively. CONCLUSIONS miR155-5p and miR200c-3p expression can be used to confirm the diagnosis of COVID-19 and discriminate between mild and moderate cases, with a moderate degree of accuracy.
Collapse
Affiliation(s)
- Aliaa Aboulela
- Medical Research Institute, Microbiology Department, Alexandria University, Alexandria, Egypt
| | - Mona Taha
- Medical Research Institute, Microbiology Department, Alexandria University, Alexandria, Egypt
| | - Abeer Ghazal
- Medical Research Institute, Microbiology Department, Alexandria University, Alexandria, Egypt
| | - Ayman Baess
- Faculty of Medicine, Chest Diseases Department, Alexandria University, Alexandria, Egypt
| | - Amel Elsheredy
- Medical Research Institute, Microbiology Department, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
13
|
Eshraghi R, Rafiei M, Hadian Jazi Z, Shafie D, Raisi A, Mirzaei H. MicroRNA-155 and exosomal microRNA-155: Small pieces in the cardiovascular diseases puzzle. Pathol Res Pract 2024; 257:155274. [PMID: 38626659 DOI: 10.1016/j.prp.2024.155274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/18/2024]
Abstract
MicroRNAs (miRs, miRNAs) are known to have a part in various human illnesses, such as those related to the heart. One particular miRNA, miR-155, has been extensively studied and has been found to be involved in hematopoietic lineage differentiation, immunity, viral infections, inflammation, as well as vascular remodeling. These processes have all been connected to cardiovascular diseases, including heart failure, diabetic heart disease, coronary artery disease, and abdominal aortic aneurysm. The impacts of miR-155 depend on the type of cell it is acting on and the specific target genes involved, resulting in different mechanisms of disease. Although, the exact part of miR-155 in cardiovascular illnesses is yet not fully comprehended, as some studies have shown it to promote the development of atherosclerosis while others have shown it to prevent it. As a result, to comprehend the underlying processes of miR-155 in cardiovascular disorders, further thorough study is required. It has been discovered that exosomes that could be absorbed by adjacent or distant cells, control post-transcriptional regulation of gene expression by focusing on mRNA. Exosomal miRNAs have been found to have a range of functions, including participating in inflammatory reactions, cell movement, growth, death, autophagy, as well as epithelial-mesenchymal transition. An increasing amount of research indicates that exosomal miRNAs are important for cardiovascular health and have a major role in the development of a number of cardiovascular disorders, including pulmonary hypertension, atherosclerosis, acute coronary syndrome, heart failure, and myocardial ischemia-reperfusion injury. Herein the role of miR-155 and its exosomal form in heart diseases are summarized.
Collapse
Affiliation(s)
- Reza Eshraghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Moein Rafiei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Hadian Jazi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Davood Shafie
- Cardiology/Heart Failure and Transplantation, Heart Failure Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arash Raisi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
14
|
Carpenter S, O'Neill LAJ. From periphery to center stage: 50 years of advancements in innate immunity. Cell 2024; 187:2030-2051. [PMID: 38670064 PMCID: PMC11060700 DOI: 10.1016/j.cell.2024.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/24/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Over the past 50 years in the field of immunology, something of a Copernican revolution has happened. For a long time, immunologists were mainly concerned with what is termed adaptive immunity, which involves the exquisitely specific activities of lymphocytes. But the other arm of immunity, so-called "innate immunity," had been neglected. To celebrate Cell's 50th anniversary, we have put together a review of the processes and components of innate immunity and trace the seminal contributions leading to the modern state of this field. Innate immunity has joined adaptive immunity in the center of interest for all those who study the body's defenses, as well as homeostasis and pathology. We are now entering the era where therapeutic targeting of innate immune receptors and downstream signals hold substantial promise for infectious and inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Susan Carpenter
- University of California Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA.
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
15
|
Ahmadi H, Soltani-Zangbar MS, Yousefi M, Baradaran B, Bromand S, Aghebati-Maleki L, Szekeres-Bartho J. The evaluation of PD-1 and Tim-3 expression besides their related miRNAs in PBMCs of women with recurrent pregnancy loss. Immunol Lett 2024; 266:106837. [PMID: 38266686 DOI: 10.1016/j.imlet.2024.106837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/07/2024] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
Recurrent pregnancy loss (RPL) is a multifactorial disorder, associated with immunologic abnormalities. During pregnancy, the maternal immune system uses different tolerance mechanisms to deal with a semi-allogenic fetus. The expression of immune checkpoints and their related miRNAs in immune cells can ensure pregnancy at the feto-maternal interface by modulating immune responses. This study aims to evaluate the expression of the immune checkpoint molecules PD-1 and Tim-3 on circulating T cells by flow cytometry, that of mir-138 and mir-155 in PBMCs by Real-time PCR, and the concentrations of TGF-β and IP-10 in the sera of women suffering from RPL as well as of gestational age-matched healthy pregnant women by ELISA. The percentage of PD-1 or Tim-3 expressing CD8+ T cells was significantly lower in RPL patients compared to the controls, while there was no significant difference in Tim-3 expression of CD4+ T cells between the two groups. The mRNA of both the PD-1 and Tim-3 genes were downregulated in PBMCs of RPL patients compared to controls, however, the difference was not statistically significant for Tim-3. The concentration of TGF-β was significantly lower and that of IP-10 was significantly higher in the sera of RPL patients than in those of the controls. The relative expression of mir-138 and miR-155 were significantly lower, in PBMCs of RPL patients than in those of healthy pregnant women. These data confirm that by affecting cytokine production, immune checkpoints, and microRNAs play a role in establishing the appropriate local immune environment for successful pregnancy. The wider analysis of immune checkpoints may also yield new biomarkers for the diagnosis and prevention of RPL.
Collapse
Affiliation(s)
- Hamid Ahmadi
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pécs University, Pécs, Hungary
| | | | - Mehdi Yousefi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saro Bromand
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Julia Szekeres-Bartho
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pécs University, Pécs, Hungary; János Szentágothai Research Centre, Pecs University, Pecs, Hungary; Endocrine Studies, Centre of Excellence, Pecs University, Pecs, Hungary; MTA - PTE Human Reproduction Research Group, Pecs, Hungary; National Laboratory of Human Reproduction, Pécs, Hungary.
| |
Collapse
|
16
|
Akkaya-Ulum YZ, Sen B, Akbaba TH, Balci-Peynircioglu B. InflammamiRs in focus: Delivery strategies and therapeutic approaches. FASEB J 2024; 38:e23528. [PMID: 38441434 DOI: 10.1096/fj.202302028r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/22/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
microRNAs (miRNAs) are small non-protein-coding RNAs which are essential regulators of host genome expression at the post-transcriptional level. There is evidence of dysregulated miRNA expression patterns in a wide variety of diseases, such as autoimmune and inflammatory conditions. These miRNAs have been termed "inflammamiRs." When working with miRNAs, the method followed, the approach to treat or diagnosis, and the selected biological material are very crucial. Demonstration of the role of miRNAs in particular disease phenotypes facilitates their evaluation as potential and effective therapeutic tools. A growing number of reports suggest the significant utility of miRNAs and other small RNA drugs in clinical medicine. Most miRNAs seem promising therapeutic options, but some features associated with miRNA therapy like off-target effect, effective dosage, or differential delivery methods, mainly caused by the short target's sequence, make miRNA therapies challenging. In this review, we aim to discuss some of the inflammamiRs in diseases associated with inflammatory pathways and the challenge of identifying the most potent therapeutic candidates and provide a perspective on achieving safe and targeted delivery of miRNA therapeutics. We also discuss the status of inflammamiRs in clinical trials.
Collapse
Affiliation(s)
- Yeliz Z Akkaya-Ulum
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Basak Sen
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Tayfun Hilmi Akbaba
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
17
|
Khan EA, Greve M, Russell I, Ciesielski TM, Lundregan S, Jensen H, Rønning B, Bones AM, Asimakopoulos AG, Waugh CA, Jaspers VLB. Lead exposure is related to higher infection rate with the gapeworm in Norwegian house sparrows (Passer domesticus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123443. [PMID: 38278400 DOI: 10.1016/j.envpol.2024.123443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Anthropogenic pollution is identified as an important threat to bird and other wildlife populations. Many metals and toxic elements, along with poly- and perfluoroalkyl substances (PFASs) are known to induce immunomodulation and have previously been linked to increased pathogen prevalence and infectious disease severity. In this study, the house sparrow (Passer domesticus) was investigated at the coast of Helgeland in northern Norway. This population is commonly infected with the parasitic nematode "gapeworm" (Syngamus trachea), with a prevalence of 40-60 % during summer months. Gapeworm induces severe respiratory disease in birds and has been previously demonstrated to decrease survival and reproductive success in wild house sparrows. The aim of this study was to investigate whether a higher exposure to pollution with PFASs, metals and other elements influences gapeworm infection in wild house sparrows. We conducted PFASs and elemental analysis on whole blood from 52 house sparrows from Helgeland, including analyses of highly toxic metals such as lead (Pb), mercury (Hg) and arsenic (As). In addition, we studied gapeworm infection load by counting the parasite eggs in faeces from each individual. We also studied the expression of microRNA 155 (miR155) as a key regulator in the immune system. Elevated blood concentrations of Pb were found to be associated with an increased prevalence of gapeworm infection in the house sparrow. The expression of miR155 in the plasma of the house sparrow was only weakly associated with Pb. In contrast, we found relatively low PFASs concentrations in the house sparrow blood (∑ PFASs 0.00048-354 μg/L) and PFASs were not associated to miR155 nor infection rate. The current study highlights the potential threat posed by Pb as an immunotoxic pollutant in small songbirds.
Collapse
Affiliation(s)
- Essa A Khan
- Department of Biology, Norwegian University of Science and Technology, Norway.
| | - Melissa Greve
- Department of Biology, Norwegian University of Science and Technology, Norway
| | - Isabelle Russell
- Department of Biology, Norwegian University of Science and Technology, Norway
| | - Tomasz M Ciesielski
- Department of Biology, Norwegian University of Science and Technology, Norway
| | - Sarah Lundregan
- Department of Biology, Norwegian University of Science and Technology, Norway
| | - Henrik Jensen
- Department of Biology, Norwegian University of Science and Technology, Norway
| | - Bernt Rønning
- Department of Teacher Education, Norwegian University of Science and Technology, Norway
| | - Atle M Bones
- Department of Biology, Norwegian University of Science and Technology, Norway
| | | | | | - Veerle L B Jaspers
- Department of Biology, Norwegian University of Science and Technology, Norway
| |
Collapse
|
18
|
Vaswani CM, Simone J, Pavelick JL, Wu X, Tan GW, Ektesabi AM, Gupta S, Tsoporis JN, Dos Santos CC. Tiny Guides, Big Impact: Focus on the Opportunities and Challenges of miR-Based Treatments for ARDS. Int J Mol Sci 2024; 25:2812. [PMID: 38474059 DOI: 10.3390/ijms25052812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) is characterized by lung inflammation and increased membrane permeability, which represents the leading cause of mortality in ICUs. Mechanical ventilation strategies are at the forefront of supportive approaches for ARDS. Recently, an increasing understanding of RNA biology, function, and regulation, as well as the success of RNA vaccines, has spurred enthusiasm for the emergence of novel RNA-based therapeutics. The most common types of RNA seen in development are silencing (si)RNAs, antisense oligonucleotide therapy (ASO), and messenger (m)RNAs that collectively account for 80% of the RNA therapeutics pipeline. These three RNA platforms are the most mature, with approved products and demonstrated commercial success. Most recently, miRNAs have emerged as pivotal regulators of gene expression. Their dysregulation in various clinical conditions offers insights into ARDS pathogenesis and offers the innovative possibility of using microRNAs as targeted therapy. This review synthesizes the current state of the literature to contextualize the therapeutic potential of miRNA modulation. It considers the potential for miR-based therapeutics as a nuanced approach that incorporates the complexity of ARDS pathophysiology and the multifaceted nature of miRNA interactions.
Collapse
Affiliation(s)
- Chirag M Vaswani
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Julia Simone
- Department of Medicine, McMaster University, Hamilton, ON L8V 5C2, Canada
| | - Jacqueline L Pavelick
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xiao Wu
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Greaton W Tan
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Amin M Ektesabi
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sahil Gupta
- Faculty of Medicine, School of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - James N Tsoporis
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Claudia C Dos Santos
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Interdepartmental Division of Critical Care, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
19
|
Neidemire-Colley L, Khanal S, Braunreiter KM, Gao Y, Kumar R, Snyder KJ, Weber MA, Surana S, Toirov O, Karunasiri M, Duszynski ME, Chi M, Malik P, Kalyan S, Chan WK, Naeimi Kararoudi M, Choe HK, Garzon R, Ranganathan P. CRISPR/Cas9 deletion of MIR155HG in human T cells reduces incidence and severity of acute GVHD in a xenogeneic model. Blood Adv 2024; 8:947-958. [PMID: 38181781 PMCID: PMC10877121 DOI: 10.1182/bloodadvances.2023010570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
ABSTRACT Acute graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic cell transplantation (allo-HCT). Using preclinical mouse models of disease, previous work in our laboratory has linked microRNA-155 (miR-155) to the development of acute GVHD. Transplantation of donor T cells from miR-155 host gene (MIR155HG) knockout mice prevented acute GVHD in multiple murine models of disease while maintaining critical graft-versus-leukemia (GVL) response, necessary for relapse prevention. In this study, we used clustered, regularly interspaced, short palindromic repeats (CRISPR)/Cas9 genome editing to delete miR-155 in primary T cells (MIR155HGΔexon3) from human donors, resulting in stable and sustained reduction in expression of miR-155. Using the xenogeneic model of acute GVHD, we show that NOD/SCID/IL2rγnull (NSG) mice receiving MIR155HGΔexon3 human T cells provide protection from lethal acute GVHD compared with mice that received human T cells with intact miR-155. MIR155HGΔexon3 human T cells persist in the recipients displaying decreased proliferation potential, reduced pathogenic T helper-1 cell population, and infiltration into GVHD target organs, such as the liver and skin. Importantly, MIR155HGΔexon3 human T cells retain GVL response significantly improving survival in an in vivo model of xeno-GVL. Altogether, we show that CRISPR/Cas9-mediated deletion of MIR155HG in primary human donor T cells is an innovative approach to generate allogeneic donor T cells that provide protection from lethal GVHD while maintaining robust antileukemic response.
Collapse
Affiliation(s)
- Lotus Neidemire-Colley
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Biological Sciences Graduate Program, The Ohio State University, Columbus, OH
| | - Shrijan Khanal
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH
| | - Kara M. Braunreiter
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Yandi Gao
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Rathan Kumar
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Biological Sciences Graduate Program, The Ohio State University, Columbus, OH
| | - Katiri J. Snyder
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Biological Sciences Graduate Program, The Ohio State University, Columbus, OH
| | - Margot A. Weber
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Simran Surana
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Olimjon Toirov
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Malith Karunasiri
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Molly E. Duszynski
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Mengna Chi
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Sonu Kalyan
- Department of Pathology, New York University Langone Health, Long Island, NY
| | - Wing K. Chan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Meisam Naeimi Kararoudi
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Hannah K. Choe
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Ramiro Garzon
- Division of Hematology and Hematological Malignancies, Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| | - Parvathi Ranganathan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| |
Collapse
|
20
|
Zhao L, Peng J, Zhuang L, Yan Z, Liao F, Wang Y, Shao S, Wang W. MiR-155 promotes compensatory lung growth by inhibiting JARID2 activation of CD34+ endothelial progenitor cells. PLoS One 2024; 19:e0296671. [PMID: 38394221 PMCID: PMC10890733 DOI: 10.1371/journal.pone.0296671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/13/2023] [Indexed: 02/25/2024] Open
Abstract
Bone marrow-derived CD34-positive (CD34+) endothelial progenitor cells (EPCs) has unique functions in the mechanism of compensatory lung growth (CLG). The content of this study is mainly to describe the effect of microRNA (miR)-155 in the mechanisms of EPCs and CLG. Our study found that transfection of miR-155 mimic could promote EPC proliferation, migration and tube formation, while transfection of miR-155 inhibitor had the opposite effect. It was also found that transfection of pc-JARID2 inhibited EPC proliferation, migration and tube formation, while transfection of si-JARID2 had the opposite effect. miR-155 can target and negatively regulate JARID2 expression. Overexpression of JARID2 weakened the promoting effects of miR-155 mimic on EPC proliferation, migration, and tubular formation, while silencing JARID2 weakened the inhibitory effects of miR-155 inhibitors on EPC proliferation, migration, and tubular formation. Transplantation of EPCs transfected with miR-155 mimic into the left lung model effectively increased lung volume, total alveolar number, diaphragm surface area, and lung endothelial cell number, while transplantation of EPCs co-transfected with miR-155 mimic and pc-JARID2 reversed this phenomenon. Overall, we found that miR-155 activates CD34+ EPC by targeting negative regulation of JARID2 and promotes CLG.
Collapse
Affiliation(s)
- Li Zhao
- Department of Anesthesiology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China
| | - Jing Peng
- Department of Anesthesiology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China
| | - Li Zhuang
- Department of Palliative Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China
| | - Zhiling Yan
- Department of Gynaecologic Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China
| | - Fei Liao
- Department of Anesthesiology, The 6th Affiliated Hospital of Kunming Medical University (The People’s Hospital of Yuxi City), Yuxi, 653100, Yunnan, China
| | - Yifan Wang
- Department of Anesthesiology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China
| | - Shihao Shao
- Department of Anesthesiology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China
| | - Weiwei Wang
- Department of Thoracic Surgery Ⅱ, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China
| |
Collapse
|
21
|
Chatterjee B, Sarkar M, Bose S, Alam MT, Chaudhary AA, Dixit AK, Tripathi PP, Srivastava AK. MicroRNAs: Key modulators of inflammation-associated diseases. Semin Cell Dev Biol 2024; 154:364-373. [PMID: 36670037 DOI: 10.1016/j.semcdb.2023.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/06/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
Inflammation is a multifaceted biological and pathophysiological response to injuries, infections, toxins, and inflammatory mechanisms that plays a central role in the progression of various diseases. MicroRNAs (miRNAs) are tiny, 19-25 nucleotides long, non-coding RNAs that regulate gene expression via post-transcriptional repression. In this review, we highlight the recent findings related to the significant roles of miRNAs in regulating various inflammatory cascades and immunological processes in the context of many lifestyle-related diseases such as diabetes, cardiovascular diseases, cancer, etc. We also converse on how miRNAs can have a dual impact on inflammatory responses, suggesting that regulation of their functions for therapeutic purposes may be disease-specific.
Collapse
Affiliation(s)
- Bilash Chatterjee
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mrinmoy Sarkar
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India
| | - Subhankar Bose
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Md Tanjim Alam
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSUI), Riyadh, Saudi Arabia
| | | | - Prem Prakash Tripathi
- Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit Kumar Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
22
|
Dos Santos Valsecchi VA, Betoni FR, Ward LS, Cunha LL. Clinical and molecular impact of concurrent thyroid autoimmune disease and thyroid cancer: From the bench to bedside. Rev Endocr Metab Disord 2024; 25:5-17. [PMID: 37889392 DOI: 10.1007/s11154-023-09846-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
The recent incorporation of immune checkpoint inhibitors targeting the PD-1 (programmed cell death receptor 1) and CTLA-4 (cytotoxic T lymphocyte antigen 4) pathways into the therapeutic armamentarium of cancer has increased the need to understand the correlation between the immune system, autoimmunity, and malignant neoplasms. Both autoimmune thyroid diseases and thyroid cancer are common clinical conditions. The molecular pathology of autoimmune thyroid diseases is characterized by the important impact of the PD-1/PD-L1 axis, an important inhibitory pathway involved in the regulation of T-cell responses. Insufficient inhibitory pathways may prone the thyroid tissue to a self-destructive immune response that leads to hypothyroidism. On the other hand, the PD-1/PD-L1 axis and other co-inhibitory pathways are the cornerstones of the immune escape mechanisms in thyroid cancer, which is a mechanism through which the immune response fails to recognize and eradicate thyroid tumor cells. This common mechanism raises the idea that thyroid autoimmunity and thyroid cancer may be opposite sides of the same coin, meaning that both conditions share similar molecular signatures. When associated with thyroid autoimmunity, thyroid cancer may have a less aggressive presentation, even though the molecular explanation of this clinical consequence is unclear. More studies are warranted to elucidate the molecular link between thyroid autoimmune disease and thyroid cancer. The prognostic impact that thyroid autoimmune disease, especially chronic lymphocytic thyroiditis, may exert on thyroid cancer raises important insights that can help physicians to better individualize the management of patients with thyroid cancer.
Collapse
Affiliation(s)
- Victor Alexandre Dos Santos Valsecchi
- Laboratory of Molecular and Translational Endocrinology, Division of Endocrinology, Federal University of São Paulo, São Paulo, Brazil
- Division of Emergency Medicine and Evidence-Based Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Felipe Rodrigues Betoni
- Laboratory of Molecular and Translational Endocrinology, Division of Endocrinology, Federal University of São Paulo, São Paulo, Brazil
- Division of Emergency Medicine and Evidence-Based Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Laura Sterian Ward
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences, State University of Campinas (Unicamp), Campinas, Brazil
| | - Lucas Leite Cunha
- Laboratory of Molecular and Translational Endocrinology, Division of Endocrinology, Federal University of São Paulo, São Paulo, Brazil.
- Division of Emergency Medicine and Evidence-Based Medicine, Federal University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
23
|
Yang X, Wang J, Chang CY, Zhou F, Liu J, Xu H, Ibrahim M, Gomez M, Guo GL, Liu H, Zong WX, Wondisford FE, Su X, White E, Feng Z, Hu W. Leukemia inhibitory factor suppresses hepatic de novo lipogenesis and induces cachexia in mice. Nat Commun 2024; 15:627. [PMID: 38245529 PMCID: PMC10799847 DOI: 10.1038/s41467-024-44924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Cancer cachexia is a systemic metabolic syndrome characterized by involuntary weight loss, and muscle and adipose tissue wasting. Mechanisms underlying cachexia remain poorly understood. Leukemia inhibitory factor (LIF), a multi-functional cytokine, has been suggested as a cachexia-inducing factor. In a transgenic mouse model with conditional LIF expression, systemic elevation of LIF induces cachexia. LIF overexpression decreases de novo lipogenesis and disrupts lipid homeostasis in the liver. Liver-specific LIF receptor knockout attenuates LIF-induced cachexia, suggesting that LIF-induced functional changes in the liver contribute to cachexia. Mechanistically, LIF overexpression activates STAT3 to downregulate PPARα, a master regulator of lipid metabolism, leading to the downregulation of a group of PPARα target genes involved in lipogenesis and decreased lipogenesis in the liver. Activating PPARα by fenofibrate, a PPARα agonist, restores lipid homeostasis in the liver and inhibits LIF-induced cachexia. These results provide valuable insights into cachexia, which may help develop strategies to treat cancer cachexia.
Collapse
Affiliation(s)
- Xue Yang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Jianming Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Chun-Yuan Chang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Fan Zhou
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Huiting Xu
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Maria Ibrahim
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Maria Gomez
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ, USA
- Department of Veterans Affairs New Jersey Health Care System, East Orange, NJ, USA
| | - Hao Liu
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
- Biostatistics Shared Resource, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Wei-Xing Zong
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Fredric E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Xiaoyang Su
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Metabolomics Core Facility, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
24
|
Kumar M, Sahoo GC, Das VNR, Singh K, Pandey K. A Review of miRNA Regulation in Japanese Encephalitis (JEV) Virus Infection. Curr Pharm Biotechnol 2024; 25:521-533. [PMID: 37888811 DOI: 10.2174/0113892010241606231003102047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 10/28/2023]
Abstract
Japanese encephalitis (JE) is a mosquito-borne disease that causes neuronal damage and inflammation of microglia, and in severe cases, it can be fatal. JE infection can resist cellular immune responses and survive in host cells. Japanese encephalitis virus (JEV) infects macrophages and peripheral blood lymphocytes. In addition to regulating biological signaling pathways, microRNAs in cells also influence virus-host interactions. Under certain circumstances, viruses can change microRNA production. These changes affect the replication and spread of the virus. Host miRNAs can contain viral pathogenicity by downregulating the antiviral immune response pathways. Simultaneous profiling of miRNA and messenger RNA (mRNA) could help us detect pathogenic factors, and dual RNA detection is possible. This work highlights important miRNAs involved in human JE infection. In this study, we have shown the important miRNAs that play significant roles in JEV infection. We found that during JEV infection, miRNA-155, miRNA-29b, miRNA-15b, miRNA-146a, miRNA-125b-5p, miRNA-30la, miRNA-19b-3p, and miRNA-124, cause upregulation of human genes whereas miRNA-432, miRNA-370, miRNA- 33a-5p, and miRNA-466d-3p are responsible for downregulation of human genes respectively. Further, these miRNAs are also responsible for the inflammatory effects. Although several other miRNAs critical to the JEV life cycle are yet unknown, there is currently no evidence for the role of miRNAs in persistence.
Collapse
Affiliation(s)
- Maneesh Kumar
- Department of Virology, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, Bihar, India
| | - Ganesh Chandra Sahoo
- Department of Virology, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, Bihar, India
| | - Vidya Nand Rabi Das
- Department of Clinical Medicine, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, Bihar, India
| | - Kamal Singh
- Department of Virology, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, Bihar, India
| | - Krishna Pandey
- Department of Clinical Medicine, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, Bihar, India
| |
Collapse
|
25
|
Tang KD, Amenábar JM, Schussel JL, Torres-Pereira CC, Bonfim C, Dimitrova N, Hartel G, Punyadeera C. Profiling salivary miRNA expression levels in Fanconi anemia patients - a pilot study. Odontology 2024; 112:299-308. [PMID: 37458838 PMCID: PMC10776736 DOI: 10.1007/s10266-023-00834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/25/2023] [Indexed: 01/10/2024]
Abstract
The overarching goal of this study is to predict the risk of developing oral squamous cell carcinoma (OSCC) in Fanconi anemia (FA) patients. We have compared the microRNA (miRNA, miR) expression levels in saliva samples from FA patients (n = 50) who are at a low-moderate and/or high risk of developing OSCC to saliva samples from healthy controls (n = 16). The miRNA expression levels in saliva samples were quantified using qPCR. We observed that miR-744, miR-150-5P, and miR-146B-5P had the best discriminatory capacity between FA patients and controls, with an area under the curve (AUC) of 94.0%, 92.9% and 85.3%, respectively. Our data suggest that miR-1, miR-146B-5P, miR-150-5P, miR-155-5P, and miR-744 could be used as panel to predict the risk of developing OSCC in FA patients, with a 89.3% sensitivity and a 68.2% specificity (AUC = 81.5%). Our preliminary data support the notion that the expression levels of salivary miRNAs have the potential to predict the risk of developing OSCC in FA patients and in the future may reduce deaths associated with OSCC.
Collapse
Affiliation(s)
- Kai Dun Tang
- Faculty of Health, School of Biomedical Sciences, Centre for Biomedical Technology, Queensland University of Technology, Saliva & Liquid Biopsy Translational Laboratory and Translational Research Institute, Griffith University, 46 Don Yong Road, Nathan, Brisbane, QLD, Australia
| | - José M Amenábar
- Faculty of Health, School of Biomedical Sciences, Centre for Biomedical Technology, Queensland University of Technology, Saliva & Liquid Biopsy Translational Laboratory and Translational Research Institute, Griffith University, 46 Don Yong Road, Nathan, Brisbane, QLD, Australia
- Stomatology Department, Universidade Federal Do Paraná, Curitiba, Brazil
| | - Juliana L Schussel
- Stomatology Department, Universidade Federal Do Paraná, Curitiba, Brazil
| | | | - Carmem Bonfim
- Bone Marrow Transpantation Unit, Hospital de Clínicas, Universidade Federal Do Paraná, Curitiba, Brazil
| | | | - Gunter Hartel
- Statistics Unit, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Chamindie Punyadeera
- Faculty of Health, School of Biomedical Sciences, Centre for Biomedical Technology, Queensland University of Technology, Saliva & Liquid Biopsy Translational Laboratory and Translational Research Institute, Griffith University, 46 Don Yong Road, Nathan, Brisbane, QLD, Australia.
| |
Collapse
|
26
|
Hortal AM, Villanueva A, Arellano I, Prieto C, Mendoza P, Bustelo XR, Alarcón B. Mice Overexpressing Wild-Type RRAS2 Are a Novel Model for Preclinical Testing of Anti-Chronic Lymphocytic Leukemia Therapies. Cancers (Basel) 2023; 15:5817. [PMID: 38136362 PMCID: PMC10742337 DOI: 10.3390/cancers15245817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) is the most common type of leukemia in the Western world. Mutation in different genes, such as TP53 and ATM, and deletions at specific chromosomic regions, among which are 11q or 17p, have been described to be associated to worse disease prognosis. Recent research from our group has demonstrated that, contrary to what is the usual cancer development process through missense mutations, B-CLL is driven by the overexpression of the small GTPase RRAS2 in its wild-type form without activating mutations. Some mouse models of this disease have been developed to date and are commonly used in B-CLL research, but they present different disadvantages such as the long waiting period until the leukemia fully develops, the need to do cell engraftment or, in some cases, the fact that the model does not recapitulate the alterations found in human patients. We have recently described Rosa26-RRAS2fl/flxmb1-Cre as a new mouse model of B-CLL with a full penetrance of the disease. In this work, we have validated this mouse model as a novel tool for the development of new therapies for B-CLL, by testing two of the most broadly applied targeted agents: ibrutinib and venetoclax. This also opens the door to new targeted agents against R-RAS2 itself, an approach not yet explored in the clinic.
Collapse
Affiliation(s)
- Alejandro M. Hortal
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.V.); (I.A.); (C.P.); (P.M.)
| | - Ana Villanueva
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.V.); (I.A.); (C.P.); (P.M.)
| | - Irene Arellano
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.V.); (I.A.); (C.P.); (P.M.)
| | - Cristina Prieto
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.V.); (I.A.); (C.P.); (P.M.)
| | - Pilar Mendoza
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.V.); (I.A.); (C.P.); (P.M.)
| | - Xosé R. Bustelo
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer and Centro de Investigación Biomédica en Red de Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain;
| | - Balbino Alarcón
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.V.); (I.A.); (C.P.); (P.M.)
| |
Collapse
|
27
|
Dziechciowska I, Dąbrowska M, Mizielska A, Pyra N, Lisiak N, Kopczyński P, Jankowska-Wajda M, Rubiś B. miRNA Expression Profiling in Human Breast Cancer Diagnostics and Therapy. Curr Issues Mol Biol 2023; 45:9500-9525. [PMID: 38132441 PMCID: PMC10742292 DOI: 10.3390/cimb45120595] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Breast cancer is one of the most commonly diagnosed cancer types worldwide. Regarding molecular characteristics and classification, it is a heterogeneous disease, which makes it more challenging to diagnose. As is commonly known, early detection plays a pivotal role in decreasing mortality and providing a better prognosis for all patients. Different treatment strategies can be adjusted based on tumor progression and molecular characteristics, including personalized therapies. However, dealing with resistance to drugs and recurrence is a challenge. The therapeutic options are limited and can still lead to poor clinical outcomes. This review aims to shed light on the current perspective on the role of miRNAs in breast cancer diagnostics, characteristics, and prognosis. We discuss the potential role of selected non-coding RNAs most commonly associated with breast cancer. These include miR-21, miR-106a, miR-155, miR-141, let-7c, miR-335, miR-126, miR-199a, miR-101, and miR-9, which are perceived as potential biomarkers in breast cancer prognosis, diagnostics, and treatment response monitoring. As miRNAs differ in expression levels in different types of cancer, they may provide novel cancer therapy strategies. However, some limitations regarding dynamic alterations, tissue-specific profiles, and detection methods must also be raised.
Collapse
Affiliation(s)
- Iga Dziechciowska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Małgorzata Dąbrowska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Anna Mizielska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Natalia Pyra
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Przemysław Kopczyński
- Centre for Orthodontic Mini-Implants, Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, Bukowska 70 Str., 60-812 Poznan, Poland
| | - Magdalena Jankowska-Wajda
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8 Str., 61-614 Poznan, Poland;
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| |
Collapse
|
28
|
Kim TJ, Kim YG, Jung W, Jang S, Ko HG, Park CH, Byun JS, Kim DY. Non-Coding RNAs as Potential Targets for Diagnosis and Treatment of Oral Lichen Planus: A Narrative Review. Biomolecules 2023; 13:1646. [PMID: 38002328 PMCID: PMC10669845 DOI: 10.3390/biom13111646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Oral lichen planus (OLP) is a chronic inflammatory disease that is characterized by the infiltration of T cells into the oral mucosa, causing the apoptosis of basal keratinocytes. OLP is a multifactorial disease of unknown etiology and is not solely caused by the malfunction of a single key gene but rather by various intracellular and extracellular factors. Non-coding RNAs play a critical role in immunological homeostasis and inflammatory response and are found in all cell types and bodily fluids, and their expression is closely regulated to preserve normal physiologies. The dysregulation of non-coding RNAs may be highly implicated in the onset and progression of diverse inflammatory disorders, including OLP. This narrative review summarizes the role of non-coding RNAs in molecular and cellular changes in the oral epithelium during OLP pathogenesis.
Collapse
Affiliation(s)
- Tae-Jun Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Yu Gyung Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Won Jung
- Department of Oral Medicine, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sungil Jang
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hyoung-Gon Ko
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Chan Ho Park
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Jin-Seok Byun
- Department of Oral Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| |
Collapse
|
29
|
Tomas NM, Schnarre A, Dehde S, Lucas R, Hermans-Borgmeyer I, Kretz O, Koellner SMS, Wiech T, Koch-Nolte F, Seifert L, Huber TB, Zahner G. Introduction of a novel chimeric active immunization mouse model of PLA2R1-associated membranous nephropathy. Kidney Int 2023; 104:916-928. [PMID: 37598854 DOI: 10.1016/j.kint.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/22/2023]
Abstract
The phospholipase A2 receptor 1 (PLA2R1) is the major target antigen in patients with membranous nephropathy (MN), an antibody-mediated autoimmune glomerular disease. Investigation of MN pathogenesis has been hampered by the lack of reliable animal models. Here, we overcome this issue by generating a transgenic mouse line expressing a chimeric PLA2R1 (chPLA2R1) consisting of three human PLA2R1 domains (cysteine-rich, fibronectin type-II and CTLD1) and seven murine PLA2R1 domains (CTLD2-8) specifically in podocytes. Mice expressing the chPLA2R1 were healthy at birth and showed no major glomerular alterations when compared to mice with a wild-type PLA2R1 status. Upon active immunization with human PLA2R1 (hPLA2R1), chPLA2R1-positive mice developed anti-hPLA2R1 antibodies, a nephrotic syndrome, and all major histological features of MN, including granular deposition of mouse IgG and complement components in immunofluorescence and subepithelial electron-dense deposits and podocyte foot process effacement in electron microscopy. In order to investigate the role of the complement system in this model, we further crossed chPLA2R1-positive mice with mice lacking the central complement component C3 (C3-/- mice). Upon immunization with hPLA2R1, chPLA2R1-positive C3-/- mice had substantially less severe albuminuria and nephrotic syndrome when compared to chPLA2R1-positive mice with a wild-type C3 status. In conclusion, we introduce a novel active immunization model of PLA2R1-associated MN and demonstrate a pathogenic role of the complement system in this model.
Collapse
Affiliation(s)
- Nicola M Tomas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Annabel Schnarre
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Silke Dehde
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renke Lucas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Center of Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah M S Koellner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, Nephropathology Section, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Larissa Seifert
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunther Zahner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
30
|
Nakagawa R, Llorian M, Varsani-Brown S, Chakravarty P, Camarillo JM, Barry D, George R, Blackledge NP, Duddy G, Kelleher NL, Klose RJ, Turner M, Calado DP. Epi-microRNA mediated metabolic reprogramming ensures affinity maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551250. [PMID: 37609190 PMCID: PMC10441342 DOI: 10.1101/2023.07.31.551250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
To increase antibody affinity against pathogens, positively selected GC-B cells initiate cell division in the light zone (LZ) of germinal centres (GCs). Among those, higher-affinity clones migrate to the dark zone (DZ) and vigorously proliferate by relying on oxidative phosphorylation (OXPHOS). However, it remains unknown how positively selected GC-B cells adapt their metabolism for cell division in the glycolysis-dominant, cell cycle arrest-inducing, hypoxic LZ microenvironment. Here, we show that microRNA (miR)-155 mediates metabolic reprogramming during positive selection to protect high-affinity clones. Transcriptome examination and mass spectrometry analysis revealed that miR-155 regulates H3K36me2 levels by directly repressing hypoxia-induced histone lysine demethylase, Kdm2a. This is indispensable for enhancing OXPHOS through optimizing the expression of vital nuclear mitochondrial genes under hypoxia. The miR-155-Kdm2a interaction is crucial to prevent excessive production of reactive oxygen species and apoptosis. Thus, miR-155-mediated epigenetic regulation promotes mitochondrial fitness in high-affinity clones, ensuring their expansion and consequently affinity maturation.
Collapse
|
31
|
Tsuchiya Y, Seki T, Kobayashi K, Komazawa-Sakon S, Shichino S, Nishina T, Fukuhara K, Ikejima K, Nagai H, Igarashi Y, Ueha S, Oikawa A, Tsurusaki S, Yamazaki S, Nishiyama C, Mikami T, Yagita H, Okumura K, Kido T, Miyajima A, Matsushima K, Imasaka M, Araki K, Imamura T, Ohmuraya M, Tanaka M, Nakano H. Fibroblast growth factor 18 stimulates the proliferation of hepatic stellate cells, thereby inducing liver fibrosis. Nat Commun 2023; 14:6304. [PMID: 37813881 PMCID: PMC10562492 DOI: 10.1038/s41467-023-42058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
Liver fibrosis results from chronic liver injury triggered by factors such as viral infection, excess alcohol intake, and lipid accumulation. However, the mechanisms underlying liver fibrosis are not fully understood. Here, we demonstrate that the expression of fibroblast growth factor 18 (Fgf18) is elevated in mouse livers following the induction of chronic liver fibrosis models. Deletion of Fgf18 in hepatocytes attenuates liver fibrosis; conversely, overexpression of Fgf18 promotes liver fibrosis. Single-cell RNA sequencing reveals that overexpression of Fgf18 in hepatocytes results in an increase in the number of Lrat+ hepatic stellate cells (HSCs), thereby inducing fibrosis. Mechanistically, FGF18 stimulates the proliferation of HSCs by inducing the expression of Ccnd1. Moreover, the expression of FGF18 is correlated with the expression of profibrotic genes, such as COL1A1 and ACTA2, in human liver biopsy samples. Thus, FGF18 promotes liver fibrosis and could serve as a therapeutic target to treat liver fibrosis.
Collapse
Affiliation(s)
- Yuichi Tsuchiya
- Department of Biochemistry, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba, 274-8510, Japan
| | - Takao Seki
- Department of Biochemistry, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Kenta Kobayashi
- Department of Biochemistry, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Sachiko Komazawa-Sakon
- Department of Biochemistry, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba, 278-0022, Japan
| | - Takashi Nishina
- Department of Biochemistry, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Kyoko Fukuhara
- Department of Gastroenterology, Faculty of Medicine and Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Kenichi Ikejima
- Department of Gastroenterology, Faculty of Medicine and Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Hidenari Nagai
- Department of Gastroenterology, Toho University Omori Medical Center, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Yoshinori Igarashi
- Department of Gastroenterology, Toho University Omori Medical Center, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba, 278-0022, Japan
| | - Akira Oikawa
- Laboratory of Quality Analysis and Assessment, Graduate School of Agriculture, Kyoto University, Gokasyo, Uji-shi, Kyoto, 611-0011, Japan
| | - Shinya Tsurusaki
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Tokyo, Japan
- Laboratory of Stem Cell Regulation, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Tokyo, Japan
| | - Soh Yamazaki
- Department of Biochemistry, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Tetuo Mikami
- Department of Pathology, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Hideo Yagita
- Department of Immunology, Faculty of Medicine and Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Ko Okumura
- Atopy Research Center, Faculty of Medicine and Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Taketomo Kido
- Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Atsushi Miyajima
- Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba, 278-0022, Japan
| | - Mai Imasaka
- Department of Genetics, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya-shi, Hyogo, 663-8501, Japan
| | - Kimi Araki
- Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Toru Imamura
- Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba-shi, Ibaraki, 305-8560, Japan
| | - Masaki Ohmuraya
- Department of Genetics, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya-shi, Hyogo, 663-8501, Japan
| | - Minoru Tanaka
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Tokyo, Japan
- Laboratory of Stem Cell Regulation, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Tokyo, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan.
| |
Collapse
|
32
|
Moutabian H, Radi UK, Saleman AY, Adil M, Zabibah RS, Chaitanya MNL, Saadh MJ, Jawad MJ, Hazrati E, Bagheri H, Pal RS, Akhavan-Sigari R. MicroRNA-155 and cancer metastasis: Regulation of invasion, migration, and epithelial-to-mesenchymal transition. Pathol Res Pract 2023; 250:154789. [PMID: 37741138 DOI: 10.1016/j.prp.2023.154789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/25/2023]
Abstract
Among the leading causes of death globally has been cancer. Nearly 90% of all cancer-related fatalities are attributed to metastasis, which is the growing of additional malignant growths out of the original cancer origin. Therefore, a significant clinical need for a deeper comprehension of metastasis exists. Beginning investigations are being made on the function of microRNAs (miRNAs) in the metastatic process. Tiny non-coding RNAs called miRNAs have a crucial part in controlling the spread of cancer. Some miRNAs regulate migration, invasion, colonization, cancer stem cells' properties, the epithelial-mesenchymal transition (EMT), and the microenvironment, among other processes, to either promote or prevent metastasis. One of the most well-conserved and versatile miRNAs, miR-155 is primarily distinguished by overexpression in a variety of illnesses, including malignant tumors. It has been discovered that altered miR-155 expression is connected to a number of physiological and pathological processes, including metastasis. As a result, miR-155-mediated signaling pathways were identified as possible cancer molecular therapy targets. The current research on miR-155, which is important in controlling cancer cells' invasion, and metastasis as well as migration, will be summarized in the current work. The crucial significance of the lncRNA/circRNA-miR-155-mRNA network as a crucial regulator of carcinogenesis and a player in the regulation of signaling pathways or related genes implicated in cancer metastasis will be covered in the final section. These might provide light on the creation of fresh treatment plans for controlling cancer metastasis.
Collapse
Affiliation(s)
- Hossein Moutabian
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
| | - Usama Kadem Radi
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Mv N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan; Applied Science Research Center. Applied Science Private University, Amman, Jordan
| | | | - Ebrahi Hazrati
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Hamed Bagheri
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rashmi Saxena Pal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
33
|
Hasiuk M, Dölz M, Marone R, Jeker LT. Leveraging microRNAs for cellular therapy. Immunol Lett 2023; 262:27-35. [PMID: 37660892 DOI: 10.1016/j.imlet.2023.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Owing to Karl Landsteiner's discovery of blood groups, blood transfusions became safe cellular therapies in the early 1900s. Since then, cellular therapy made great advances from transfusions with unmodified cells to today's commercially available chimeric antigen receptor (CAR) T cells requiring complex manufacturing. Modern cellular therapy products can be improved using basic knowledge of cell biology and molecular genetics. Emerging genome engineering tools are becoming ever more versatile and precise and thus catalyze rapid progress towards programmable therapeutic cells that compute input and respond with defined output. Despite a large body of literature describing important functions of non-coding RNAs including microRNAs (miRNAs), the vast majority of cell engineering efforts focuses on proteins. However, miRNAs form an important layer of posttranscriptional regulation of gene expression. Here, we highlight examples of how miRNAs can successfully be incorporated into engineered cellular therapies.
Collapse
Affiliation(s)
- Marko Hasiuk
- Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland; Transplantation Immunology & Nephrology, Basel University Hospital, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Marianne Dölz
- Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland; Transplantation Immunology & Nephrology, Basel University Hospital, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Romina Marone
- Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland; Transplantation Immunology & Nephrology, Basel University Hospital, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Lukas T Jeker
- Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland; Transplantation Immunology & Nephrology, Basel University Hospital, Petersgraben 4, CH-4031 Basel, Switzerland.
| |
Collapse
|
34
|
Diggins NL, Hancock MH. Viral miRNA regulation of host gene expression. Semin Cell Dev Biol 2023; 146:2-19. [PMID: 36463091 PMCID: PMC10101914 DOI: 10.1016/j.semcdb.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Viruses have evolved a multitude of mechanisms to combat barriers to productive infection in the host cell. Virally-encoded miRNAs are one such means to regulate host gene expression in ways that benefit the virus lifecycle. miRNAs are small non-coding RNAs that regulate protein expression but do not trigger the adaptive immune response, making them powerful tools encoded by viruses to regulate cellular processes. Diverse viruses encode for miRNAs but little sequence homology exists between miRNAs of different viral species. Despite this, common cellular pathways are targeted for regulation, including apoptosis, immune evasion, cell growth and differentiation. Herein we will highlight the viruses that encode miRNAs and provide mechanistic insight into how viral miRNAs aid in lytic and latent infection by targeting common cellular processes. We also highlight how viral miRNAs can mimic host cell miRNAs as well as how viral miRNAs have evolved to regulate host miRNA expression. These studies dispel the myth that viral miRNAs are subtle regulators of gene expression, and highlight the critical importance of viral miRNAs to the virus lifecycle.
Collapse
Affiliation(s)
- Nicole L Diggins
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA
| | - Meaghan H Hancock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
35
|
Xie J, Du Y, Liu D, Wu J, Yang K, He X, Zhao J, Hong P, Liao K, Zhang H, Hong Y, Teijaro JR, Kang SG, Xiao C, Liu WH. The miR-17∼92 miRNAs promote plasma cell differentiation by suppressing SOCS3-mediated NIK degradation. Cell Rep 2023; 42:112968. [PMID: 37578862 DOI: 10.1016/j.celrep.2023.112968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 06/26/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023] Open
Abstract
The miR-17∼92 family microRNAs (miRNAs) play a key role in germinal center (GC) reaction through promoting T follicular helper (TFH) cell differentiation. It remains unclear whether they also have intrinsic functions in B cell differentiation and function. Here we show that mice with B cell-specific deletion of the miR-17∼92 family exhibit impaired GC reaction, plasma cell differentiation, and antibody production in response to protein antigen immunization and chronic viral infection. Employing CRISPR-mediated functional screening, we identify Socs3 as a key functional target of miR-17∼92 in regulating plasma cell differentiation. Mechanistically, SOCS3, whose expression is elevated in miR-17∼92 family-deficient B cells, interacts with NIK and promotes its ubiquitination and degradation, thereby impairing NF-κB signaling and plasma cell differentiation. This moderate increase in SOCS3 expression has little effect on IL-21-STAT3 signaling. Our study demonstrates differential sensitivity of two key signaling pathways to alterations in the protein level of an miRNA target gene.
Collapse
Affiliation(s)
- Jun Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Ying Du
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Dewang Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Kang Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaoyu He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiayi Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Peicheng Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Kunyu Liao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huanrong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yazhen Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - John R Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Seung Goo Kang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; Division of Biomedical Convergence/Institute of Bioscience and Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Changchun Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
36
|
Mulik S, Berber E, Sehrawat S, Rouse BT. Controlling viral inflammatory lesions by rebalancing immune response patterns. Front Immunol 2023; 14:1257192. [PMID: 37671156 PMCID: PMC10475736 DOI: 10.3389/fimmu.2023.1257192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
In this review, we discuss a variety of immune modulating approaches that could be used to counteract tissue-damaging viral immunoinflammatory lesions which typify many chronic viral infections. We make the point that in several viral infections the lesions can be largely the result of one or more aspects of the host response mediating the cell and tissue damage rather than the virus itself being directly responsible. However, within the reactive inflammatory lesions along with the pro-inflammatory participants there are also other aspects of the host response that may be acting to constrain the activity of the damaging components and are contributing to resolution. This scenario should provide the prospect of rebalancing the contributions of different host responses and hence diminish or even fully control the virus-induced lesions. We identify several aspects of the host reactions that influence the pattern of immune responsiveness and describe approaches that have been used successfully, mainly in model systems, to modulate the activity of damaging participants and which has led to lesion control. We emphasize examples where such therapies are, or could be, translated for practical use in the clinic to control inflammatory lesions caused by viral infections.
Collapse
Affiliation(s)
- Sachin Mulik
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Engin Berber
- Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Sharvan Sehrawat
- Indian Institute of Science Education and Research, Department of Biological Sciences, Mohali, Punjab, India
| | - Barry Tyrrell Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
37
|
Bechara R, Vagner S, Mariette X. Post-transcriptional checkpoints in autoimmunity. Nat Rev Rheumatol 2023; 19:486-502. [PMID: 37311941 DOI: 10.1038/s41584-023-00980-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/15/2023]
Abstract
Post-transcriptional regulation is a fundamental process in gene expression that has a role in diverse cellular processes, including immune responses. A core concept underlying post-transcriptional regulation is that protein abundance is not solely determined by transcript abundance. Indeed, transcription and translation are not directly coupled, and intervening steps occur between these processes, including the regulation of mRNA stability, localization and alternative splicing, which can impact protein abundance. These steps are controlled by various post-transcription factors such as RNA-binding proteins and non-coding RNAs, including microRNAs, and aberrant post-transcriptional regulation has been implicated in various pathological conditions. Indeed, studies on the pathogenesis of autoimmune and inflammatory diseases have identified various post-transcription factors as important regulators of immune cell-mediated and target effector cell-mediated pathological conditions. This Review summarizes current knowledge regarding the roles of post-transcriptional checkpoints in autoimmunity, as evidenced by studies in both haematopoietic and non-haematopoietic cells, and discusses the relevance of these findings for developing new anti-inflammatory therapies.
Collapse
Affiliation(s)
- Rami Bechara
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Le Kremlin Bicêtre, France.
| | - Stephan Vagner
- Institut Curie, CNRS UMR3348, INSERM U1278, PSL Research University, Université Paris-Saclay, Orsay, France
| | - Xavier Mariette
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Le Kremlin Bicêtre, France
- Assistance Publique - Hôpitaux de Paris, Hôpital Bicêtre, Department of Rheumatology, Le Kremlin Bicêtre, France
| |
Collapse
|
38
|
Saadi MI, Nikandish M, Ghahramani Z, Valandani FM, Ahmadyan M, Hosseini F, Rahimian Z, Jalali H, Tavasolian F, Abdolyousefi EN, Kheradmand N, Ramzi M. miR-155 and miR-92 levels in ALL, post-transplant aGVHD, and CMV: possible new treatment options. J Egypt Natl Canc Inst 2023; 35:18. [PMID: 37332027 DOI: 10.1186/s43046-023-00174-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/22/2023] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) is a malignancy that leads to altered blast cell proliferation, survival, and maturation and eventually to the lethal accumulation of leukemic cells. Recently, dysregulated expression of various micro-RNAs (miRNAs) has been reported in hematologic malignancies, especially ALL. Cytomegalovirus infection can induce ALL in otherwise healthy individuals, so a more detailed evaluation of its role in ALL-endemic areas like Iran is required. METHODS In this cross-sectional study, 70 newly diagnosed adults with ALL were recruited. The expression level of microRNA-155(miR-155) and microRNA-92(miR-92) was evaluated by real-time SYBR Green PCR. The correlations between the miRNAs mentioned above and the severity of disease, CMV infection, and acute graft vs. host disease after hematopoietic stem cell transplantation (HSCT) were assessed. B cell and T cell ALL distinction in the level of miRNAs was provided. RESULTS After the statistical analysis, our results indicated a marked increase in the expression of miR-155 and miR-92 in ALL patients vs. healthy controls (*P = 0.002-*P = 0.03, respectively). Also, it was shown that the expression of miR-155 and miR-92 was higher in T cell ALL compared to B cell ALL (P = 0.01-P = 0.004, respectively), CMV seropositivity, and aGVHD. CONCLUSION Our study suggests that the plasma signature of microRNA expression may act as a powerful marker for diagnosis and prognosis, providing knowledge outside cytogenetics. Elevation of miR-155 in plasma can be a beneficial therapeutic target for ALL patients, with consideration of higher plasma levels of miR-92 and miR-155 in CMV + and post-HSCT aGVHD patients.
Collapse
Affiliation(s)
- Mahdiyar Iravani Saadi
- Hematology Research Center, Shiraz University of Medical Sciences, Mohammad Rasul Allah Research Tower, Opposite the Education School, Khalili Ave, Shiraz, Fars, Iran
| | - Mohsen Nikandish
- Hematology, Oncology and Bone Marrow Transplantation Department, Shiraz University of Medical Sciences, Namazi Sq., Zand St., Shiraz, Iran
| | - Zahra Ghahramani
- Hematology Research Center, Shiraz University of Medical Sciences, Mohammad Rasul Allah Research Tower, Opposite the Education School, Khalili Ave, Shiraz, Fars, Iran
| | - Fatemeh Mardani Valandani
- Hematology Research Center, Shiraz University of Medical Sciences, Mohammad Rasul Allah Research Tower, Opposite the Education School, Khalili Ave, Shiraz, Fars, Iran
| | - Maryam Ahmadyan
- Hematology Research Center, Shiraz University of Medical Sciences, Mohammad Rasul Allah Research Tower, Opposite the Education School, Khalili Ave, Shiraz, Fars, Iran
| | - Fakhroddin Hosseini
- Hematology, Oncology and Bone Marrow Transplantation Department, Shiraz University of Medical Sciences, Namazi Sq., Zand St., Shiraz, Iran
| | - Zahra Rahimian
- Hematology Research Center, Shiraz University of Medical Sciences, Mohammad Rasul Allah Research Tower, Opposite the Education School, Khalili Ave, Shiraz, Fars, Iran
| | - Heeva Jalali
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Pasdaran Blvd, Sanandaj, Kurdistan, Iran
| | - Fataneh Tavasolian
- Hematology Research Center, Shiraz University of Medical Sciences, Mohammad Rasul Allah Research Tower, Opposite the Education School, Khalili Ave, Shiraz, Fars, Iran
| | - Ehsan Nabi Abdolyousefi
- Hematology Research Center, Shiraz University of Medical Sciences, Mohammad Rasul Allah Research Tower, Opposite the Education School, Khalili Ave, Shiraz, Fars, Iran
| | - Nadiya Kheradmand
- Hematology Research Center, Shiraz University of Medical Sciences, Mohammad Rasul Allah Research Tower, Opposite the Education School, Khalili Ave, Shiraz, Fars, Iran.
| | - Mani Ramzi
- Hematology Research Center, Shiraz University of Medical Sciences, Mohammad Rasul Allah Research Tower, Opposite the Education School, Khalili Ave, Shiraz, Fars, Iran.
- Hematology, Oncology and Bone Marrow Transplantation Department, Shiraz University of Medical Sciences, Namazi Sq., Zand St., Shiraz, Iran.
| |
Collapse
|
39
|
Chimenti C, Magnocavallo M, Vetta G, Alfarano M, Manguso G, Ajmone F, Ballatore F, Costantino J, Ciaramella P, Severino P, Miraldi F, Lavalle C, Vizza CD. The Role of MicroRNA in the Myocarditis: a Small Actor for a Great Role. Curr Cardiol Rep 2023:10.1007/s11886-023-01888-5. [PMID: 37269474 DOI: 10.1007/s11886-023-01888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE OF REVIEW Myocarditis is an inflammation of the myocardium secondary to a variety of agents such as infectious pathogens, toxins, drugs, and autoimmune disorders. In our review, we provide an overview of miRNA biogenesis and their role in the etiology and pathogenesis of myocarditis, evaluating future directions for myocarditis management. RECENT FINDINGS Advances in genetic manipulation techniques allowed to demonstrate the important role of RNA fragments, especially microRNAs (miRNAs), in cardiovascular pathogenesis. miRNAs are small non-coding RNA molecules that regulate the post-transcriptional gene expression. Advances in molecular techniques allowed to identify miRNA's role in pathogenesis of myocarditis. miRNAs are related to viral infection, inflammation, fibrosis, and apoptosis of cardiomyocytes, making them not only promising diagnostic markers but also prognostics and therapeutic targets in myocarditis. Of course, further real-world studies will be needed to assess the diagnostic accuracy and applicability of miRNA in the myocarditis diagnosis.
Collapse
Affiliation(s)
- Cristina Chimenti
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy.
| | - Michele Magnocavallo
- Cardiology Division, Arrhythmology Unit, S. Giovanni Calibita Hospital, Isola Tiberina, Rome, Italy
| | - Giampaolo Vetta
- Department of Clinical and Experimental Medicine, Cardiology Unit, University of Messina, Mesina, Italy
| | - Maria Alfarano
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Giulia Manguso
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Francesco Ajmone
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Federico Ballatore
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Jacopo Costantino
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Piera Ciaramella
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Paolo Severino
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Fabio Miraldi
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Carlo Lavalle
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Carmine Dario Vizza
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| |
Collapse
|
40
|
Brancaccio R, Murdaca G, Casella R, Loverre T, Bonzano L, Nettis E, Gangemi S. miRNAs' Cross-Involvement in Skin Allergies: A New Horizon for the Pathogenesis, Diagnosis and Therapy of Atopic Dermatitis, Allergic Contact Dermatitis and Chronic Spontaneous Urticaria. Biomedicines 2023; 11:1266. [PMID: 37238937 PMCID: PMC10216116 DOI: 10.3390/biomedicines11051266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/29/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Skin inflammation is a common underlying feature of atopic dermatitis, allergic contact dermatitis and chronic spontaneous urticaria. The pathogenetic mechanisms have not been fully elucidated. The purpose of this study was to examine whether miRNA, by regulating inflammatory mechanisms through the modulation of innate and adaptive immune responses, could play a major role in the pathogenesis of these skin conditions. We conducted a narrative review using the Pubmed and Embase scientific databases and search engines to find the most relevant miRNAs related to the pathophysiology, severity and prognosis of skin conditions. The studies show that miRNAs are involved in the pathogenesis and regulation of atopic dermatitis and can reveal an atopic predisposition or indicate disease severity. In chronic spontaneous urticaria, different miRNAs which are over-expressed during urticaria exacerbations not only play a role in the possible response to therapy or remission, but also serve as a marker of chronic autoimmune urticaria and indicate associations with other autoimmune diseases. In allergic contact dermatitis, miRNAs are upregulated in inflammatory lesions and expressed during the sensitization phase of allergic response. Several miRNAs have been identified as potential biomarkers of these chronic skin conditions, but they are also possible therapeutic targets.
Collapse
Affiliation(s)
- Raffaele Brancaccio
- Dermatology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio nell’Emilia, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy
- Department of Internal Medicine, Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Rossella Casella
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70124 Bari, Italy
| | - Teresa Loverre
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70124 Bari, Italy
| | - Laura Bonzano
- Dermatology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio nell’Emilia, Italy
| | - Eustachio Nettis
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70124 Bari, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Division of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
41
|
Arman K, Dalloul Z, Bozgeyik E. Emerging role of microRNAs and long non-coding RNAs in COVID-19 with implications to therapeutics. Gene 2023; 861:147232. [PMID: 36736508 PMCID: PMC9892334 DOI: 10.1016/j.gene.2023.147232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection which is commonly known as COVID-19 (COronaVIrus Disease 2019) has creeped into the human population taking tolls of life and causing tremendous economic crisis. It is indeed crucial to gain knowledge about their characteristics and interactions with human host cells. It has been shown that the majority of our genome consists of non-coding RNAs. Non-coding RNAs including micro RNAs (miRNAs) and long non-coding RNAs (lncRNAs) display significant roles in regulating gene expression in almost all cancers and viral diseases. It is intriguing that miRNAs and lncRNAs remarkably regulate the function and expression of major immune components of SARS-CoV-2. MiRNAs act via RNA interference mechanism in which they bind to the complementary sequences of the viral RNA strand, inducing the formation of silencing complex that eventually degrades or inhibits the viral RNA and viral protein expression. LncRNAs have been extensively shown to regulate gene expression in cytokine storm and thus emerges as a critical target for COVID-19 treatment. These lncRNAs also act as competing endogenous RNAs (ceRNAs) by sponging miRNAs and thus affecting the expression of downstream targets during SARS-CoV-2 infection. In this review, we extensively discuss the role of miRNAs and lncRNAs, describe their mechanism of action and their different interacting human targets cells during SARS-CoV-2 infection. Finally, we discuss possible ways how an interference with their molecular function could be exploited for new therapies against SARS-CoV-2.
Collapse
Affiliation(s)
- Kaifee Arman
- Institut de recherches cliniques de Montréal, Montréal, QC H2W 1R7, Canada.
| | - Zeinab Dalloul
- Institut de recherches cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | - Esra Bozgeyik
- Department of Medical Services and Techniques, Vocational School of Health Services, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
42
|
Varela-Martínez E, Bilbao-Arribas M, Abendaño N, Asín J, Pérez M, Luján L, Jugo BM. Identification and characterization of miRNAs in spleens of sheep subjected to repetitive vaccination. Sci Rep 2023; 13:6239. [PMID: 37069162 PMCID: PMC10107569 DOI: 10.1038/s41598-023-32603-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/30/2023] [Indexed: 04/19/2023] Open
Abstract
Accumulative evidence has shown that short non-coding RNAs such as miRNAs can regulate the innate and adaptive immune responses. Aluminium hydroxide is a commonly used adjuvant in human and veterinary vaccines. Despite its extended use, its mechanism of action is not fully understood and very few in vivo studies have been done to enhance understanding at the molecular level. In this work, we took advantage of a previous long-term experiment in which lambs were exposed to three different treatments by parallel subcutaneous inoculations with aluminium-containing commercial vaccines, an equivalent dose of aluminium or mock injections. Spleen samples were used for miRNA-seq. A total of 46 and 16 miRNAs were found differentially expressed when animals inoculated with commercial vaccines or the adjuvant alone were compared with control animals, respectively. Some miRNAs previously related to macrophage polarization were found dysregulated exclusively by the commercial vaccine treatment but not in the aluminium inoculated animals. The dysregulated miRNAs in vaccine group let-7b-5p, miR-29a-3p, miR-27a and miR-101-3p are candidates for further research, since they may play key roles in the immune response induced by aluminium adjuvants added to vaccines. Finally, protein-protein interaction network analysis points towards leucocyte transendothelial migration as a specific mechanism in animals receiving adjuvant only.
Collapse
Affiliation(s)
- Endika Varela-Martínez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena auzoa, 48940, Leioa, Spain
| | - Martin Bilbao-Arribas
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena auzoa, 48940, Leioa, Spain
| | - Naiara Abendaño
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena auzoa, 48940, Leioa, Spain
| | - Javier Asín
- Department of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - Marta Pérez
- Department of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - Lluís Luján
- Department of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - Begoña M Jugo
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena auzoa, 48940, Leioa, Spain.
| |
Collapse
|
43
|
Reichelt J, Sachs W, Frömbling S, Fehlert J, Studencka-Turski M, Betz A, Loreth D, Blume L, Witt S, Pohl S, Brand J, Czesla M, Knop J, Florea BI, Zielinski S, Sachs M, Hoxha E, Hermans-Borgmeyer I, Zahner G, Wiech T, Krüger E, Meyer-Schwesinger C. Non-functional ubiquitin C-terminal hydrolase L1 drives podocyte injury through impairing proteasomes in autoimmune glomerulonephritis. Nat Commun 2023; 14:2114. [PMID: 37055432 PMCID: PMC10102022 DOI: 10.1038/s41467-023-37836-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
Little is known about the mechanistic significance of the ubiquitin proteasome system (UPS) in a kidney autoimmune environment. In membranous nephropathy (MN), autoantibodies target podocytes of the glomerular filter resulting in proteinuria. Converging biochemical, structural, mouse pathomechanistic, and clinical information we report that the deubiquitinase Ubiquitin C-terminal hydrolase L1 (UCH-L1) is induced by oxidative stress in podocytes and is directly involved in proteasome substrate accumulation. Mechanistically, this toxic gain-of-function is mediated by non-functional UCH-L1, which interacts with and thereby impairs proteasomes. In experimental MN, UCH-L1 becomes non-functional and MN patients with poor outcome exhibit autoantibodies with preferential reactivity to non-functional UCH-L1. Podocyte-specific deletion of UCH-L1 protects from experimental MN, whereas overexpression of non-functional UCH-L1 impairs podocyte proteostasis and drives injury in mice. In conclusion, the UPS is pathomechanistically linked to podocyte disease by aberrant proteasomal interactions of non-functional UCH-L1.
Collapse
Affiliation(s)
- Julia Reichelt
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wiebke Sachs
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Frömbling
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Fehlert
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Studencka-Turski
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Hamburg, Germany
| | - Anna Betz
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Desiree Loreth
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Blume
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Witt
- Protein production Core Facility, Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Sandra Pohl
- Skeletal Pathobiochemistry, Department of Osteology and Biomechanics, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Brand
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maire Czesla
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Knop
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bogdan I Florea
- Bio-organic synthesis group, Leiden University, Leiden, The Netherlands
| | - Stephanie Zielinski
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlies Sachs
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elion Hoxha
- III Medical Clinic and Polyclinic, Nephrology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Transgenic Animal Service Group, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunther Zahner
- III Medical Clinic and Polyclinic, Nephrology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Institute of Pathology, Nephropathology Section, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Hamburg, Germany
| | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
44
|
Li D, Zhan Y, Wang N, Tang F, Lee CJ, Bayshtok G, Moore AR, Wong EW, Pachai MR, Xie Y, Sher J, Zhao JL, Khudoynazarova M, Gopalan A, Chan J, Khurana E, Shepherd P, Navone NM, Chi P, Chen Y. ETV4 mediates dosage-dependent prostate tumor initiation and cooperates with p53 loss to generate prostate cancer. SCIENCE ADVANCES 2023; 9:eadc9446. [PMID: 37018402 PMCID: PMC10075989 DOI: 10.1126/sciadv.adc9446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/07/2023] [Indexed: 05/20/2023]
Abstract
The mechanisms underlying ETS-driven prostate cancer initiation and progression remain poorly understood due to a lack of model systems that recapitulate this phenotype. We generated a genetically engineered mouse with prostate-specific expression of the ETS factor, ETV4, at lower and higher protein dosage through mutation of its degron. Lower-level expression of ETV4 caused mild luminal cell expansion without histologic abnormalities, and higher-level expression of stabilized ETV4 caused prostatic intraepithelial neoplasia (mPIN) with 100% penetrance within 1 week. Tumor progression was limited by p53-mediated senescence and Trp53 deletion cooperated with stabilized ETV4. The neoplastic cells expressed differentiation markers such as Nkx3.1 recapitulating luminal gene expression features of untreated human prostate cancer. Single-cell and bulk RNA sequencing showed that stabilized ETV4 induced a previously unidentified luminal-derived expression cluster with signatures of cell cycle, senescence, and epithelial-to-mesenchymal transition. These data suggest that ETS overexpression alone, at sufficient dosage, can initiate prostate neoplasia.
Collapse
Affiliation(s)
- Dan Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yu Zhan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Naitao Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fanying Tang
- Sandra and Edward Meyer Cancer Center and Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Cindy J. Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriella Bayshtok
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Amanda R. Moore
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elissa W. P. Wong
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mohini R. Pachai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yuanyuan Xie
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jessica Sher
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jimmy L. Zhao
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Makhzuna Khudoynazarova
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anuradha Gopalan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joseph Chan
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ekta Khurana
- Sandra and Edward Meyer Cancer Center and Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10021, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Peter Shepherd
- Genitourinary Medical Oncology, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Nora M. Navone
- Genitourinary Medical Oncology, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
45
|
Melnik BC, Stadler R, Weiskirchen R, Leitzmann C, Schmitz G. Potential Pathogenic Impact of Cow’s Milk Consumption and Bovine Milk-Derived Exosomal MicroRNAs in Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2023; 24:ijms24076102. [PMID: 37047075 PMCID: PMC10094152 DOI: 10.3390/ijms24076102] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Epidemiological evidence supports an association between cow’s milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant’s BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow’s milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal “proliferation-dominated” B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain.
Collapse
|
46
|
Larrayoz M, Garcia-Barchino MJ, Celay J, Etxebeste A, Jimenez M, Perez C, Ordoñez R, Cobaleda C, Botta C, Fresquet V, Roa S, Goicoechea I, Maia C, Lasaga M, Chesi M, Bergsagel PL, Larrayoz MJ, Calasanz MJ, Campos-Sanchez E, Martinez-Cano J, Panizo C, Rodriguez-Otero P, Vicent S, Roncador G, Gonzalez P, Takahashi S, Katz SG, Walensky LD, Ruppert SM, Lasater EA, Amann M, Lozano T, Llopiz D, Sarobe P, Lasarte JJ, Planell N, Gomez-Cabrero D, Kudryashova O, Kurilovich A, Revuelta MV, Cerchietti L, Agirre X, San Miguel J, Paiva B, Prosper F, Martinez-Climent JA. Preclinical models for prediction of immunotherapy outcomes and immune evasion mechanisms in genetically heterogeneous multiple myeloma. Nat Med 2023; 29:632-645. [PMID: 36928817 PMCID: PMC10033443 DOI: 10.1038/s41591-022-02178-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 12/09/2022] [Indexed: 03/17/2023]
Abstract
The historical lack of preclinical models reflecting the genetic heterogeneity of multiple myeloma (MM) hampers the advance of therapeutic discoveries. To circumvent this limitation, we screened mice engineered to carry eight MM lesions (NF-κB, KRAS, MYC, TP53, BCL2, cyclin D1, MMSET/NSD2 and c-MAF) combinatorially activated in B lymphocytes following T cell-driven immunization. Fifteen genetically diverse models developed bone marrow (BM) tumors fulfilling MM pathogenesis. Integrative analyses of ∼500 mice and ∼1,000 patients revealed a common MAPK-MYC genetic pathway that accelerated time to progression from precursor states across genetically heterogeneous MM. MYC-dependent time to progression conditioned immune evasion mechanisms that remodeled the BM microenvironment differently. Rapid MYC-driven progressors exhibited a high number of activated/exhausted CD8+ T cells with reduced immunosuppressive regulatory T (Treg) cells, while late MYC acquisition in slow progressors was associated with lower CD8+ T cell infiltration and more abundant Treg cells. Single-cell transcriptomics and functional assays defined a high ratio of CD8+ T cells versus Treg cells as a predictor of response to immune checkpoint blockade (ICB). In clinical series, high CD8+ T/Treg cell ratios underlie early progression in untreated smoldering MM, and correlated with early relapse in newly diagnosed patients with MM under Len/Dex therapy. In ICB-refractory MM models, increasing CD8+ T cell cytotoxicity or depleting Treg cells reversed immunotherapy resistance and yielded prolonged MM control. Our experimental models enable the correlation of MM genetic and immunological traits with preclinical therapy responses, which may inform the next-generation immunotherapy trials.
Collapse
Affiliation(s)
- Marta Larrayoz
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Maria J Garcia-Barchino
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Jon Celay
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Amaia Etxebeste
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Maddalen Jimenez
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Cristina Perez
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Raquel Ordoñez
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Cesar Cobaleda
- Immune System Development and Function Unit, Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas/Universidad Autonoma, Madrid, Spain
| | - Cirino Botta
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Vicente Fresquet
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Sergio Roa
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Ibai Goicoechea
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Catarina Maia
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Miren Lasaga
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Marta Chesi
- Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - P Leif Bergsagel
- Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Maria J Larrayoz
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Maria J Calasanz
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Elena Campos-Sanchez
- Immune System Development and Function Unit, Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas/Universidad Autonoma, Madrid, Spain
| | - Jorge Martinez-Cano
- Immune System Development and Function Unit, Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas/Universidad Autonoma, Madrid, Spain
| | - Carlos Panizo
- Department of Hematology, Clinica Universidad de Navarra, CCUN, IDISNA, CIBERONC, Pamplona, Spain
| | - Paula Rodriguez-Otero
- Department of Hematology, Clinica Universidad de Navarra, CCUN, IDISNA, CIBERONC, Pamplona, Spain
| | - Silvestre Vicent
- Program in Solid Tumors, Center for Applied Medical Research CIMA, University of Navarra, IDISNA, CIBERONC, Pamplona, Spain
| | - Giovanna Roncador
- Monoclonal Antibodies Unit, Biotechnology Program, Spanish National Cancer Research Centre CNIO, Madrid, Spain
| | - Patricia Gonzalez
- Monoclonal Antibodies Unit, Biotechnology Program, Spanish National Cancer Research Centre CNIO, Madrid, Spain
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Samuel G Katz
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Loren D Walensky
- Department of Pediatric Oncology and Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Shannon M Ruppert
- Oncology Biomarker Development, Genentech, South San Francisco, CA, USA
| | - Elisabeth A Lasater
- Department of Translational Oncology, Genentech, South San Francisco, CA, USA
| | - Maria Amann
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Schlieren, Switzerland
| | - Teresa Lozano
- Program of Immunology and Immunotherapy, Center for Applied Medical Research CIMA, University of Navarra, IDISNA, CIBEREHD, Pamplona, Spain
| | - Diana Llopiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research CIMA, University of Navarra, IDISNA, CIBEREHD, Pamplona, Spain
| | - Pablo Sarobe
- Program of Immunology and Immunotherapy, Center for Applied Medical Research CIMA, University of Navarra, IDISNA, CIBEREHD, Pamplona, Spain
| | - Juan J Lasarte
- Program of Immunology and Immunotherapy, Center for Applied Medical Research CIMA, University of Navarra, IDISNA, CIBEREHD, Pamplona, Spain
| | - Nuria Planell
- Translational Bioinformatics Unit, Navarra-Biomed, Public University of Navarra, IDISNA, Pamplona, Spain
| | - David Gomez-Cabrero
- Translational Bioinformatics Unit, Navarra-Biomed, Public University of Navarra, IDISNA, Pamplona, Spain
- Biological and Environmental Sciences & Engineering Division, King Abdullah University of Science & Technology, Thuwal, Kingdom of Saudi Arabia
| | | | | | - Maria V Revuelta
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Leandro Cerchietti
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Xabier Agirre
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Jesus San Miguel
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
- Department of Hematology, Clinica Universidad de Navarra, CCUN, IDISNA, CIBERONC, Pamplona, Spain
| | - Bruno Paiva
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
- Department of Hematology, Clinica Universidad de Navarra, CCUN, IDISNA, CIBERONC, Pamplona, Spain
| | - Felipe Prosper
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
- Department of Hematology, Clinica Universidad de Navarra, CCUN, IDISNA, CIBERONC, Pamplona, Spain
| | - Jose A Martinez-Climent
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain.
| |
Collapse
|
47
|
Rastegar-Moghaddam SH, Ebrahimzadeh-Bideskan A, Shahba S, Malvandi AM, Mohammadipour A. Roles of the miR-155 in Neuroinflammation and Neurological Disorders: A Potent Biological and Therapeutic Target. Cell Mol Neurobiol 2023; 43:455-467. [PMID: 35107690 DOI: 10.1007/s10571-022-01200-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/23/2022] [Indexed: 12/19/2022]
Abstract
Neuroinflammation plays a crucial role in the development and progression of neurological disorders. MicroRNA-155 (miR-155), a miR is known to play in inflammatory responses, is associated with susceptibility to inflammatory neurological disorders and neurodegeneration, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis as well as epilepsy, stroke, and brain malignancies. MiR-155 damages the central nervous system (CNS) by enhancing the expression of pro-inflammatory cytokines, like IL-1β, IL-6, TNF-α, and IRF3. It also disturbs the blood-brain barrier by decreasing junctional complex molecules such as claudin-1, annexin-2, syntenin-1, and dedicator of cytokinesis 1 (DOCK-1), a hallmark of many neurological disorders. This review discusses the molecular pathways which involve miR-155 as a critical component in the progression of neurological disorders, representing miR-155 as a viable therapeutic target.
Collapse
Affiliation(s)
- Seyed Hamidreza Rastegar-Moghaddam
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, PO Box 91779-48564, Mashhad, Iran.,Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, PO Box 91779-48564, Mashhad, Iran.,Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Shahba
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amir Mohammad Malvandi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi, 4, 20161, Milan, Italy.
| | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, PO Box 91779-48564, Mashhad, Iran.
| |
Collapse
|
48
|
Crosstalk of Transcriptional Regulators of Adaptive Immune System and microRNAs: An Insight into Differentiation and Development. Cells 2023; 12:cells12040635. [PMID: 36831302 PMCID: PMC9953855 DOI: 10.3390/cells12040635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
MicroRNAs (miRNAs), as small regulatory RNA molecules, are involved in gene expression at the post-transcriptional level. Hence, miRNAs contribute to gene regulation of various steps of different cell subsets' differentiation, maturation, and activation. The adaptive immune system arm, which exhibits the most specific immune responses, is also modulated by miRNAs. The generation and maturation of various T-cell subsets concomitant with B-cells is under precise regulation of miRNAs which function directly on the hallmark genes of each cell subset or indirectly through regulation of signaling pathway mediators and/or transcription factors involved in this maturation journey. In this review, we first discussed the origination process of common lymphocyte progenitors from hematopoietic stem cells, which further differentiate into various T-cell subsets under strict regulation of miRNAs and transcription factors. Subsequently, the differentiation of B-cells from common lymphocyte progenitors in bone marrow and periphery were discussed in association with a network of miRNAs and transcription factors.
Collapse
|
49
|
Qin X, Zhang B, Sun X, Zhang M, Xiao D, Lin S, Liu Z, Cui W, Lin Y. Tetrahedral-Framework Nucleic Acid Loaded with MicroRNA-155 Enhances Immunocompetence in Cyclophosphamide-Induced Immunosuppressed Mice by Modulating Dendritic Cells and Macrophages. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7793-7803. [PMID: 36745737 DOI: 10.1021/acsami.2c20657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nanomaterials are often used as immunomodulators because they can be tailored by a controllable process. In this work, a complex based on a tetrahedral framework nucleic acid delivery system and MicroRNA-155, known as T-155, is synthesized for the modulation of immunosuppression. In vivo, T-155 ameliorated spleen and thymus damage and hematopoiesis suppression in cyclophosphamide-induced immunosuppressed mice by promoting T-cell proliferation to resist oxidative stress. In vitro, T-155 induced immature dendritic cells (DCs) to differentiate into mature DCs by the ERK1/2 pathway and converted M0 macrophages (Mφ) into the M1 type by the NF-κB pathway to enhance the surveillance capabilities of antigen-presenting cells. The experimental results suggest that T-155 has therapeutic potential as an immunomodulator for immunosuppression.
Collapse
Affiliation(s)
- Xin Qin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Bowen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Xiaoqin Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Weitong Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
50
|
Lowe MM, Cohen JN, Moss MI, Clancy S, Adler J, Yates A, Naik HB, Pauli M, Taylor I, McKay A, Harris H, Kim E, Hansen SL, Rosenblum MD, Moreau JM. Tertiary Lymphoid Structures Sustain Cutaneous B cell Activity in Hidradenitis Suppurativa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528504. [PMID: 36824918 PMCID: PMC9949072 DOI: 10.1101/2023.02.14.528504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Background Hidradenitis suppurativa (HS) skin lesions are highly inflammatory and characterized by a large immune infiltrate. While B cells and plasma cells comprise a major component of this immune milieu the biology and contribution of these cells in HS pathogenesis is unclear. Objective We aimed to investigate the dynamics and microenvironmental interactions of B cells within cutaneous HS lesions. Methods We combined histological analysis, single-cell RNA-sequencing (scRNAseq), and spatial transcriptomic profiling of HS lesions to define the tissue microenvironment relative to B cell activity within this disease. Results Our findings identify tertiary lymphoid structures (TLS) within HS lesions and describe organized interactions between T cells, B cells, antigen presenting cells and skin stroma. We find evidence that B cells within HS TLS actively undergo maturation, including participation in germinal center reactions and class switch recombination. Moreover, skin stroma and accumulating T cells are primed to support the formation of TLS and facilitate B cell recruitment during HS. Conclusion Our data definitively demonstrate the presence of TLS in lesional HS skin and point to ongoing cutaneous B cell maturation through class switch recombination and affinity maturation during disease progression in this inflamed non-lymphoid tissue.
Collapse
|