1
|
Wang X, Chen L, Wei J, Zheng H, Zhou N, Xu X, Deng X, Liu T, Zou Y. The immune system in cardiovascular diseases: from basic mechanisms to therapeutic implications. Signal Transduct Target Ther 2025; 10:166. [PMID: 40404619 PMCID: PMC12098830 DOI: 10.1038/s41392-025-02220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/22/2024] [Accepted: 03/20/2025] [Indexed: 05/24/2025] Open
Abstract
Immune system plays a crucial role in the physiological and pathological regulation of the cardiovascular system. The exploration history and milestones of immune system in cardiovascular diseases (CVDs) have evolved from the initial discovery of chronic inflammation in atherosclerosis to large-scale clinical studies confirming the importance of anti-inflammatory therapy in treating CVDs. This progress has been facilitated by advancements in various technological approaches, including multi-omics analysis (single-cell sequencing, spatial transcriptome et al.) and significant improvements in immunotherapy techniques such as chimeric antigen receptor (CAR)-T cell therapy. Both innate and adaptive immunity holds a pivotal role in CVDs, involving Toll-like receptor (TLR) signaling pathway, nucleotide-binding oligomerization domain-containing proteins 1 and 2 (NOD1/2) signaling pathway, inflammasome signaling pathway, RNA and DNA sensing signaling pathway, as well as antibody-mediated and complement-dependent systems. Meanwhile, immune responses are simultaneously regulated by multi-level regulations in CVDs, including epigenetics (DNA, RNA, protein) and other key signaling pathways in CVDs, interactions among immune cells, and interactions between immune and cardiac or vascular cells. Remarkably, based on the progress in basic research on immune responses in the cardiovascular system, significant advancements have also been made in pre-clinical and clinical studies of immunotherapy. This review provides an overview of the role of immune system in the cardiovascular system, providing in-depth insights into the physiological and pathological regulation of immune responses in various CVDs, highlighting the impact of multi-level regulation of immune responses in CVDs. Finally, we also discuss pre-clinical and clinical strategies targeting the immune system and translational implications in CVDs.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Liming Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianming Wei
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Hao Zheng
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Ning Zhou
- Department of Cardiovascular Medicine, Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Deng
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China.
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Jiangsu, Nanjing, China.
- State Key Laboratory of Respiratory Disease, Joint International Research Laboratory of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
- Institutes of Advanced Medical Sciences and Huaihe Hospital, Henan University, Kaifeng, Henan, China.
| |
Collapse
|
2
|
Gialdini I, Hendrix J, Lamb DC. There is more to scanning than meets the eye: Raster Image Correlation Spectroscopy. Biochim Biophys Acta Gen Subj 2025; 1869:130818. [PMID: 40354833 DOI: 10.1016/j.bbagen.2025.130818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 05/05/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
Raster Image Correlation Spectroscopy (RICS) is a confocal image analysis method that can measure the diffusion and interactions of fluorescently labeled molecules in real time in solution and in living cells. RICS is easy to implement on commercial confocal microscopes and allows detailed investigations of complex biological systems and pathways. The method is especially robust for measurements in living cells using commonly used labels such as fluorescent proteins. Moreover, since its invention in 2005, the robustness and applicability of RICS has been significantly increased to allow, e.g., straightforward kinetic analyses, advanced image segmentation, parameter mapping, and multi-species analysis. In this review, we describe the methodological principles of RICS in a manner that is accessible to a broad readership, position RICS in relation to other fluorescence fluctuation techniques, highlight recent methodological advances and present exemplary applications of the method. With this review, we hope to facilitate the implementation of this powerful method into the everyday repertoire of confocal imaging approaches.
Collapse
Affiliation(s)
- Irene Gialdini
- Department Chemie and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute, Hasselt University, Agoralaan C (BIOMED), Hasselt, Belgium.
| | - Don C Lamb
- Department Chemie and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
3
|
Wolczyk M, Szymanski J, Trus I, Naz Z, Tame T, Bolembach A, Choudhury N, Kasztelan K, Rappsilber J, Dziembowski A, Michlewski G. 5' terminal nucleotide determines the immunogenicity of IVT RNAs. Nucleic Acids Res 2025; 53:gkae1252. [PMID: 39704128 PMCID: PMC11797061 DOI: 10.1093/nar/gkae1252] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024] Open
Abstract
In vitro transcription (IVT) is a technology of vital importance that facilitated the production of mRNA therapeutics and drove numerous breakthroughs in RNA biology. T7 polymerase-produced RNAs can begin with either 5'-triphosphate guanosine (5'-pppG) or 5'-triphosphate adenosine (5'-pppA), generating potential agonists for the RIG-I/type I interferon response. While it is established that IVT can yield highly immunogenic double-stranded RNA (dsRNA) via promoterless transcription, the specific contribution of initiating nucleosides to this process has not been previously reported. Our study shows that IVT-derived RNAs containing 5'-pppA are significantly more immunogenic compared with their 5'-pppG counterparts. We observed heightened levels of dsRNAs triggered by IVT with 5'-pppA RNA, activating the RIG-I signaling pathway in cultured cells, as well as in ex vivo and in vivo mouse models, where the IFN-β gene was substituted with the mKate2 fluorescent reporter. Elevated levels of dsRNA were found in both short and long 5'-pppA RNAs, including those of COVID-19 vaccines. These findings reveal the unexpected source of IVT RNA immunogenicity, offering valuable insights for both academic research and future medical applications of this technology.
Collapse
Affiliation(s)
- Magdalena Wolczyk
- International Institute of Molecular and Cell Biology in Warsaw, Ksiecia Trojdena 4, 02-109 Warsaw, Poland
| | - Jacek Szymanski
- International Institute of Molecular and Cell Biology in Warsaw, Ksiecia Trojdena 4, 02-109 Warsaw, Poland
| | - Ivan Trus
- International Institute of Molecular and Cell Biology in Warsaw, Ksiecia Trojdena 4, 02-109 Warsaw, Poland
| | - Zara Naz
- International Institute of Molecular and Cell Biology in Warsaw, Ksiecia Trojdena 4, 02-109 Warsaw, Poland
| | - Tola Tame
- International Institute of Molecular and Cell Biology in Warsaw, Ksiecia Trojdena 4, 02-109 Warsaw, Poland
| | - Agnieszka Bolembach
- International Institute of Molecular and Cell Biology in Warsaw, Ksiecia Trojdena 4, 02-109 Warsaw, Poland
| | - Nila Roy Choudhury
- International Institute of Molecular and Cell Biology in Warsaw, Ksiecia Trojdena 4, 02-109 Warsaw, Poland
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road South, EH4 1QY Edinburgh, UK
| | - Karolina Kasztelan
- International Institute of Molecular and Cell Biology in Warsaw, Ksiecia Trojdena 4, 02-109 Warsaw, Poland
| | - Juri Rappsilber
- Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Andrzej Dziembowski
- International Institute of Molecular and Cell Biology in Warsaw, Ksiecia Trojdena 4, 02-109 Warsaw, Poland
| | - Gracjan Michlewski
- International Institute of Molecular and Cell Biology in Warsaw, Ksiecia Trojdena 4, 02-109 Warsaw, Poland
| |
Collapse
|
4
|
Zhang J, Zhang L, Liu D, Shi H, Zhang X, Chen J, Yang X, Zeng M, Zhang J, Feng T, Zhu X, Jing Z, Ji Z, Shi D, Feng L. Helicase protein DDX11 as a novel antiviral factor promoting RIG-I-MAVS-mediated signaling pathway. mBio 2024; 15:e0202824. [PMID: 39470258 PMCID: PMC11633105 DOI: 10.1128/mbio.02028-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Type Ι interferon (IFN) production mediated by retinoic acid-inducible gene 1 (RIG-I) and mitochondrial antiviral signaling protein (MAVS) is essential for antiviral innate immune responses. Here, we report the identification of a novel co-sensor for cytosolic nucleic acids: DEAD/H-box helicase 11 (DDX11), a member of the DExD/H (Asp-Glu-x-Asp/His)-box helicase family. Knockdown or knockout of DDX11 attenuated the ability of cells to increase IFN-β, IFN-stimulated gene 56, and C-X-C motif chemokine ligand 10 in response to SeV and poly (I:C) by blocking the activation of TANK-binding kinase 1 and IFN regulatory factor 3. Nucleic acid sensing by DDX11 was independent of the stimulator of IFN genes but was dependent on RIG-I and MAVS. DDX11 regulated RIG-I-MAVS-mediated IFN signaling by specifically interacting with nucleic acid, RIG-I, and MAVS to enhance RIG-I-double-strand RNA and RIG-I-MAVS binding affinity. Overall, our results identified a critical role for DDX11 in the innate immune response and provided molecular insights into the mechanisms by which DDX11 recognized cytosolic nucleic acid and interacted with RIG-Ι and MAVS for potent IFN signaling and antiviral immunity. IMPORTANCE Innate immunity is the first and most rapid host defense against virus infection. Recognition of viral RNA by the retinoic acid-inducible gene 1 (RIG-I)-like receptors (RLRs) initiates innate antiviral immune responses. How the binding of viral RNA to and activation of the RLRs are regulated remains enigmatic. In this study, we identified DEAD/H-box helicase 11 (DDX11) as a positive regulator of the RIG-I-mitochondrial antiviral signaling protein (MAVS)-mediated signaling pathways. Mechanistically, we demonstrated that DDX11 bound to viral RNA, interacted with RIG-I, and promoted their binding to viral RNA. DDX11 also promoted the interaction between RIG-I and MAVS and activation of RIG-I-MAVS signaling. Overall, our results elucidate the role of DDX11 in RIG-I-MAVS-dependent signaling pathways and may shed light on innate immune gene regulation.
Collapse
Affiliation(s)
- Jiyu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Liaoyuan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dakai Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyan Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jianfei Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaoman Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Miaomiao Zeng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jialin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tingshuai Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaoyuan Zhu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhaoyang Jing
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhaoyang Ji
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Da Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
5
|
Zhang YM, Li B, Wu WQ. Single-molecule insights into repetitive helicases. J Biol Chem 2024; 300:107894. [PMID: 39424144 PMCID: PMC11603008 DOI: 10.1016/j.jbc.2024.107894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Helicases are ubiquitous motors involved in almost all aspects of nucleic acid metabolism; therefore, revealing their unwinding behaviors and mechanisms is fundamentally and medically essential. In recent decades, single-molecule applications have revolutionized our ability to study helicases by avoiding the averaging of bulk assays and bridging the knowledge gap between dynamics and structures. This advancement has updated our understanding of the biochemical properties of helicases, such as their rate, directionality, processivity, and step size, while also uncovering unprecedented mechanistic insights. Among these, repetitive motion, a new feature of helicases, is one of the most remarkable discoveries. However, comprehensive reviews and comparisons are still lacking. Consequently, the present review aims to summarize repetitive helicases, compare the repetitive phenomena, and discuss the underlying molecular mechanisms. This review may provide a systematic understanding of repetitive helicases and help understand their cellular functions.
Collapse
Affiliation(s)
- Ya-Mei Zhang
- School of Nursing and Health, School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Kaifeng Key Laboratory Active Prevention and Nursing of Alzheimer's Disease, Henan University, Kaifeng, China
| | - Bo Li
- School of Nursing and Health, School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Kaifeng Key Laboratory Active Prevention and Nursing of Alzheimer's Disease, Henan University, Kaifeng, China
| | - Wen-Qiang Wu
- School of Nursing and Health, School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Kaifeng Key Laboratory Active Prevention and Nursing of Alzheimer's Disease, Henan University, Kaifeng, China.
| |
Collapse
|
6
|
Lee D, Kim J, Lee G. Simple methods to determine the dissociation constant, K d. Mol Cells 2024; 47:100112. [PMID: 39293742 PMCID: PMC11471161 DOI: 10.1016/j.mocell.2024.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
The determination of the dissociation constant (Kd) is pivotal in biochemistry and pharmacology for understanding binding affinities in chemical reactions, which is crucial for drug development and comprehending biological systems. Here, we introduce a single-molecule fluorescence resonance energy transfer-based method for determining Kd, alongside the conventional electrophoretic mobility shift assay method of Kd, offering insights into thermodynamic interactions between proteins and substrates. The single-molecule fluorescence resonance energy transfer approach is highlighted for its ability to accurately measure binding and dissociation kinetics through fluorescence labeling and the intrinsic nature of protein-DNA interactions, representing a significant advancement in the fields of molecular biology and pharmacology.
Collapse
Affiliation(s)
- Donghun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Juwon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Gwangrog Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| |
Collapse
|
7
|
Shimizu T. RNA recognition in toll-like receptor signaling. Curr Opin Struct Biol 2024; 88:102913. [PMID: 39168045 DOI: 10.1016/j.sbi.2024.102913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
RNA, either from invading pathogens or within the hosts, is one of the principal PAMPs (pathogen-associated molecular patterns). Toll-like receptors (TLRs) and other receptors of the innate immune system exist that detect immunostimulatory RNA including double and single stranded RNA, and then induce cytokine-mediated antiviral and proinflammatory responses. Recent years have seen remarkable progress in biochemical, immunological, and structural biological studies on TLRs, opening new avenues for TLR signaling. In this review, we highlight our current understanding of RNA- sensing TLRs and discuss the regulatory mechanisms that normally prevent inappropriate responses to self.
Collapse
Affiliation(s)
- Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
8
|
Yang K, Dong B, Asthana A, Silverman RH, Yan N. RNA helicase SKIV2L limits antiviral defense and autoinflammation elicited by the OAS-RNase L pathway. EMBO J 2024; 43:3876-3894. [PMID: 39112803 PMCID: PMC11405415 DOI: 10.1038/s44318-024-00187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 09/18/2024] Open
Abstract
The OAS-RNase L pathway is one of the oldest innate RNA sensing pathways that leads to interferon (IFN) signaling and cell death. OAS recognizes viral RNA and then activates RNase L, which subsequently cleaves both cellular and viral RNA, creating "processed RNA" as an endogenous ligand that further triggers RIG-I-like receptor signaling. However, the IFN response and antiviral activity of the OAS-RNase L pathway are weak compared to other RNA-sensing pathways. Here, we discover that the SKIV2L RNA exosome limits the antiviral capacity of the OAS-RNase L pathway. SKIV2L-deficient cells exhibit remarkably increased interferon responses to RNase L-processed RNA, resulting in heightened antiviral activity. The helicase activity of SKIV2L is indispensable for this function, acting downstream of RNase L. SKIV2L depletion increases the antiviral capacity of OAS-RNase L against RNA virus infection. Furthermore, SKIV2L loss exacerbates autoinflammation caused by human OAS1 gain-of-function mutations. Taken together, our results identify SKIV2L as a critical barrier to OAS-RNase L-mediated antiviral immunity that could be therapeutically targeted to enhance the activity of a basic antiviral pathway.
Collapse
Affiliation(s)
- Kun Yang
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Beihua Dong
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
| | - Abhishek Asthana
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
| | | | - Nan Yan
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
9
|
Hugel T. New dimensions for fluorescence-based barcoding in complex mixtures. NATURE NANOTECHNOLOGY 2024; 19:1081-1082. [PMID: 38844664 DOI: 10.1038/s41565-024-01686-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Affiliation(s)
- Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany.
- Cluster of Excellence livMatS @ FIT-Freiburg, Freiburg, Germany.
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
10
|
Huh H, Shen J, Ajjugal Y, Ramachandran A, Patel SS, Lee SH. Sequence-specific dynamic DNA bending explains mitochondrial TFAM's dual role in DNA packaging and transcription initiation. Nat Commun 2024; 15:5446. [PMID: 38937458 PMCID: PMC11211510 DOI: 10.1038/s41467-024-49728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
Mitochondrial transcription factor A (TFAM) employs DNA bending to package mitochondrial DNA (mtDNA) into nucleoids and recruit mitochondrial RNA polymerase (POLRMT) at specific promoter sites, light strand promoter (LSP) and heavy strand promoter (HSP). Herein, we characterize the conformational dynamics of TFAM on promoter and non-promoter sequences using single-molecule fluorescence resonance energy transfer (smFRET) and single-molecule protein-induced fluorescence enhancement (smPIFE) methods. The DNA-TFAM complexes dynamically transition between partially and fully bent DNA conformational states. The bending/unbending transition rates and bending stability are DNA sequence-dependent-LSP forms the most stable fully bent complex and the non-specific sequence the least, which correlates with the lifetimes and affinities of TFAM with these DNA sequences. By quantifying the dynamic nature of the DNA-TFAM complexes, our study provides insights into how TFAM acts as a multifunctional protein through the DNA bending states to achieve sequence specificity and fidelity in mitochondrial transcription while performing mtDNA packaging.
Collapse
Affiliation(s)
- Hyun Huh
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jiayu Shen
- Graduate School of Biomedical Sciences, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Yogeeshwar Ajjugal
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Aparna Ramachandran
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.
| | - Sang-Hyuk Lee
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, 08854, USA.
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
11
|
Solotchi M, Patel SS. Proofreading mechanisms of the innate immune receptor RIG-I: distinguishing self and viral RNA. Biochem Soc Trans 2024; 52:1131-1148. [PMID: 38884803 PMCID: PMC11346460 DOI: 10.1042/bst20230724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
The RIG-I-like receptors (RLRs), comprising retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and laboratory of genetics and physiology 2 (LGP2), are pattern recognition receptors belonging to the DExD/H-box RNA helicase family of proteins. RLRs detect viral RNAs in the cytoplasm and respond by initiating a robust antiviral response that up-regulates interferon and cytokine production. RIG-I and MDA5 complement each other by recognizing different RNA features, and LGP2 regulates their activation. RIG-I's multilayered RNA recognition and proofreading mechanisms ensure accurate viral RNA detection while averting harmful responses to host RNAs. RIG-I's C-terminal domain targets 5'-triphosphate double-stranded RNA (dsRNA) blunt ends, while an intrinsic gating mechanism prevents the helicase domains from non-specifically engaging with host RNAs. The ATPase and RNA translocation activity of RIG-I adds another layer of selectivity by minimizing the lifetime of RIG-I on non-specific RNAs, preventing off-target activation. The versatility of RIG-I's ATPase function also amplifies downstream signaling by enhancing the signaling domain (CARDs) exposure on 5'-triphosphate dsRNA and promoting oligomerization. In this review, we offer an in-depth understanding of the mechanisms RIG-I uses to facilitate viral RNA sensing and regulate downstream activation of the immune system.
Collapse
Affiliation(s)
- Mihai Solotchi
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, U.S.A
- Graduate School of Biomedical Sciences, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, U.S.A
| | - Smita S. Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, U.S.A
| |
Collapse
|
12
|
Woo Y, Ma M, Okawa M, Saito T. Hepatocyte Intrinsic Innate Antiviral Immunity against Hepatitis Delta Virus Infection: The Voices of Bona Fide Human Hepatocytes. Viruses 2024; 16:740. [PMID: 38793622 PMCID: PMC11126147 DOI: 10.3390/v16050740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/24/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
The pathogenesis of viral infection is attributed to two folds: intrinsic cell death pathway activation due to the viral cytopathic effect, and immune-mediated extrinsic cellular injuries. The immune system, encompassing both innate and adaptive immunity, therefore acts as a double-edged sword in viral infection. Insufficient potency permits pathogens to establish lifelong persistent infection and its consequences, while excessive activation leads to organ damage beyond its mission to control viral pathogens. The innate immune response serves as the front line of defense against viral infection, which is triggered through the recognition of viral products, referred to as pathogen-associated molecular patterns (PAMPs), by host cell pattern recognition receptors (PRRs). The PRRs-PAMPs interaction results in the induction of interferon-stimulated genes (ISGs) in infected cells, as well as the secretion of interferons (IFNs), to establish a tissue-wide antiviral state in an autocrine and paracrine manner. Cumulative evidence suggests significant variability in the expression patterns of PRRs, the induction potency of ISGs and IFNs, and the IFN response across different cell types and species. Hence, in our understanding of viral hepatitis pathogenesis, insights gained through hepatoma cell lines or murine-based experimental systems are uncertain in precisely recapitulating the innate antiviral response of genuine human hepatocytes. Accordingly, this review article aims to extract and summarize evidence made possible with bona fide human hepatocytes-based study tools, along with their clinical relevance and implications, as well as to identify the remaining gaps in knowledge for future investigations.
Collapse
Affiliation(s)
- Yein Woo
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Muyuan Ma
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Masashi Okawa
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- R&D Department, PhoenixBio USA Corporation, New York, NY 10006, USA
| | - Takeshi Saito
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Research Center for Liver Diseases, Los Angeles, CA 90033, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
13
|
Yoneyama M, Kato H, Fujita T. Physiological functions of RIG-I-like receptors. Immunity 2024; 57:731-751. [PMID: 38599168 DOI: 10.1016/j.immuni.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
RIG-I-like receptors (RLRs) are crucial for pathogen detection and triggering immune responses and have immense physiological importance. In this review, we first summarize the interferon system and innate immunity, which constitute primary and secondary responses. Next, the molecular structure of RLRs and the mechanism of sensing non-self RNA are described. Usually, self RNA is refractory to the RLR; however, there are underlying host mechanisms that prevent immune reactions. Studies have revealed that the regulatory mechanisms of RLRs involve covalent molecular modifications, association with regulatory factors, and subcellular localization. Viruses have evolved to acquire antagonistic RLR functions to escape the host immune reactions. Finally, the pathologies caused by the malfunction of RLR signaling are described.
Collapse
Affiliation(s)
- Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan; Division of Pandemic and Post-disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Takashi Fujita
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany; Laboratory of Regulatory Information, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
14
|
Avila-Bonilla RG, Martínez-Montero JP. Crosstalk between vault RNAs and innate immunity. Mol Biol Rep 2024; 51:387. [PMID: 38443657 PMCID: PMC10914904 DOI: 10.1007/s11033-024-09305-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024]
Abstract
PURPOSE Vault (vt) RNAs are noncoding (nc) RNAs transcribed by RNA polymerase III (RNA Pol III) with 5'-triphosphate (5'-PPP) termini that play significant roles and are recognized by innate immune sensors, including retinoic acid-inducible protein 1 (RIG-I). In addition, vtRNAs adopt secondary structures that can be targets of interferon-inducible protein kinase R (PKR) and the oligoadenylate synthetase (OAS)/RNase L system, both of which are important for activating antiviral defenses. However, changes in the expression of vtRNAs have been associated with pathological processes that activate proinflammatory pathways, which influence cellular events such as differentiation, aging, autophagy, apoptosis, and drug resistance in cancer cells. RESULTS In this review, we summarized the biology of vtRNAs and focused on their interactions with the innate immune system. These findings provide insights into the diverse roles of vtRNAs and their correlation with various cellular processes to improve our understanding of their biological functions.
Collapse
Affiliation(s)
- Rodolfo Gamaliel Avila-Bonilla
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Genética y Biología Molecular, Av. IPN 2508, 07360, Mexico City, Mexico.
| | | |
Collapse
|
15
|
Singh R, Wu Y, Herrero Del Valle A, Leigh KE, Mong S, Cheng MTK, Ferguson BJ, Modis Y. Contrasting functions of ATP hydrolysis by MDA5 and LGP2 in viral RNA sensing. J Biol Chem 2024; 300:105711. [PMID: 38309507 PMCID: PMC10909783 DOI: 10.1016/j.jbc.2024.105711] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024] Open
Abstract
Cytosolic long dsRNA, among the most potent proinflammatory signals, is recognized by melanoma differentiation-associated protein 5 (MDA5). MDA5 binds dsRNA cooperatively forming helical filaments. ATP hydrolysis by MDA5 fulfills a proofreading function by promoting dissociation of shorter endogenous dsRNs from MDA5 while allowing longer viral dsRNAs to remain bound leading to activation of interferon-β responses. Here, we show that adjacent MDA5 subunits in MDA5-dsRNA filaments hydrolyze ATP cooperatively, inducing cooperative filament disassembly. Consecutive rounds of ATP hydrolysis amplify the filament footprint, displacing tightly bound proteins from dsRNA. Our electron microscopy and biochemical assays show that LGP2 binds to dsRNA at internal binding sites through noncooperative ATP hydrolysis. Unlike MDA5, LGP2 has low nucleic acid selectivity and can hydrolyze GTP and CTP as well as ATP. Binding of LGP2 to dsRNA promotes nucleation of MDA5 filament assembly resulting in shorter filaments. Molecular modeling identifies an internally bound MDA5-LGP2-RNA complex, with the LGP2 C-terminal tail forming the key contacts with MDA5. These contacts are specifically required for NTP-dependent internal RNA binding. We conclude that NTPase-dependent binding of LGP2 to internal dsRNA sites complements NTPase-independent binding to dsRNA ends, via distinct binding modes, to increase the number and signaling output of MDA5-dsRNA complexes.
Collapse
Affiliation(s)
- Rahul Singh
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, UK
| | - Yuan Wu
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Alba Herrero Del Valle
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kendra E Leigh
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Sai Mong
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Mark T K Cheng
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Brian J Ferguson
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Yorgo Modis
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
16
|
Aufgebauer CJ, Bland KM, Horner SM. Modifying the antiviral innate immune response by selective writing, erasing, and reading of m 6A on viral and cellular RNA. Cell Chem Biol 2024; 31:100-109. [PMID: 38176419 PMCID: PMC10872403 DOI: 10.1016/j.chembiol.2023.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024]
Abstract
Viral infection and the antiviral innate immune response are regulated by the RNA modification m6A. m6A directs nearly all aspects of RNA metabolism by recruiting RNA-binding proteins that mediate the fate of m6A-containing RNA. m6A controls the antiviral innate immune response in diverse ways, including shielding viral RNA from detection by antiviral sensors and influencing the expression of cellular mRNAs encoding antiviral signaling proteins, cytokines, and effector proteins. While m6A and the m6A machinery are important for the antiviral response, the precise mechanisms that determine how the m6A machinery selects specific viral or cellular RNA molecules for modification during infection are not fully understood. In this review, we highlight recent findings that shed light on how viral infection redirects the m6A machinery during the antiviral response. A better understanding of m6A targeting during viral infection could lead to new immunomodulatory and therapeutic strategies against viral infection.
Collapse
Affiliation(s)
- Caroline J Aufgebauer
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katherine M Bland
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
17
|
Lee KY, Craig C, Patel SS. Unraveling blunt-end RNA binding and ATPase-driven translocation activities of the RIG-I family helicase LGP2. Nucleic Acids Res 2024; 52:355-369. [PMID: 38015453 PMCID: PMC10783506 DOI: 10.1093/nar/gkad1106] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023] Open
Abstract
The RIG-I family helicases, comprising RIG-I, MDA5 and LGP2, are cytoplasmic RNA sensors that trigger an antiviral immune response by specifically recognizing foreign RNAs. While LGP2 lacks the signaling domain necessary for immune activation, it plays a vital role in regulating the RIG-I/MDA5 signaling pathway. In this study, we investigate the mechanisms underlying this regulation by examining the oligomeric state, RNA binding specificity, and translocation activity of human LGP2 and the impact of ATPase activity. We show that LGP2, like RIG-I, prefers binding blunt-ended double-stranded (ds) RNAs over internal dsRNA regions or RNA overhangs and associates with blunt-ends faster than with overhangs. Unlike RIG-I, a 5'-triphosphate (5'ppp), Cap0, or Cap1 RNA-end does not influence LGP2's RNA binding affinity. LGP2 hydrolyzes ATP in the presence of RNA but at a 5-10 fold slower rate than RIG-I. Nevertheless, LGP2 uses its ATPase activity to translocate and displace biotin-streptavidin interactions. This activity is significantly hindered by a methylated RNA patch, particularly on the 3'-strand, suggesting a 3'-strand tracking mechanism like RIG-I. The preference of LGP2 for blunt-end RNA binding, its insensitivity to Cap0/Cap1 modification, and its translocation/protein displacement ability have substantial implications for how LGP2 regulates the RNA sensing process by MDA5/RIG-I.
Collapse
Affiliation(s)
- Kuan-Ying Lee
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
- Graduate School of Biomedical Sciences at the Robert Wood Johnson Medical School of Rutgers University, 08854, USA
| | - Candice Craig
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
- Graduate School of Biomedical Sciences at the Robert Wood Johnson Medical School of Rutgers University, 08854, USA
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|
18
|
Williams J, Bonner J, Kibler K, Jacobs BL. Type I Interferon: Monkeypox/Mpox Viruses Achilles Heel? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:125-137. [PMID: 38801575 DOI: 10.1007/978-3-031-57165-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poxviruses are notorious for having acquired/evolved numerous genes to counteract host innate immunity. Chordopoxviruses have acquired/evolved at least three different inhibitors of host necroptotic death: E3, which blocks ZBP1-dependent necroptotic cell death, and vIRD and vMLKL that inhibit necroptosis downstream of initial cell death signaling. While this suggests the importance of the necroptotic cell death pathway in inhibiting chordopoxvirus replication, several chordopoxviruses have lost one or more of these inhibitory functions. Monkeypox/mpox virus (MPXV) has lost a portion of the N-terminus of its E3 homologue. The N-terminus of the vaccinia virus E3 homologue serves to inhibit activation of the interferon-inducible antiviral protein, ZBP1. This likely makes MPXV unique among the orthopoxviruses in being sensitive to interferon (IFN) treatment in many mammals, including humans, which encode a complete necroptotic cell death pathway. Thus, IFN sensitivity may be the Achille's Heel for viruses like MPXV that cannot fully inhibit IFN-inducible, ZBP1-dependent antiviral pathways.
Collapse
Affiliation(s)
- Jacqueline Williams
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, USA
- ASU-Banner Center for Neurodegenerative Diseases, Arizona State University, Tempe, USA
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, USA
| | - James Bonner
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, USA
- ASU-Banner Center for Neurodegenerative Diseases, Arizona State University, Tempe, USA
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, USA
- School of Life Sciences, Arizona State University, Tempe, USA
| | - Karen Kibler
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, USA
- ASU-Banner Center for Neurodegenerative Diseases, Arizona State University, Tempe, USA
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, USA
| | - Bertram L Jacobs
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, USA.
- ASU-Banner Center for Neurodegenerative Diseases, Arizona State University, Tempe, USA.
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, USA.
- School of Life Sciences, Arizona State University, Tempe, USA.
| |
Collapse
|
19
|
Yashavarddhan MH, Bohra D, Rana R, Tuli HS, Ranjan V, Rana DS, Ganguly NK. Comprehensive overview of 2022 human monkeypox outbreak and its pathology, prevention, and treatment: A strategy for disease control. Microbiol Res 2023; 277:127504. [PMID: 37812873 DOI: 10.1016/j.micres.2023.127504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
The 2022 Monkeypox virus, an evolved DNA strain originating in Africa, exhibits heightened human-to-human transmissibility and potential animal transmission. Its host remains unidentified. While its initial slow transmission rate restrained global impact, 2022 saw a surge in cases, causing widespread concern in over 103 countries by September. This virus's distinctive human-to-human transmission marks a crucial shift, demanding a prompt revaluation of containment strategies. However, the host source for this shift requires urgent research attention. Regrettably, no universal preventive or curative methods have emerged for this evolved virus. Repurposed from smallpox vaccines, only some vaccinations offer a partial defense. Solely one therapeutic drug is available. The article's essence is to provide a comprehensive grasp of the virus's epidemiology, morphology, immune invasion mechanisms, and existing preventive and treatment measures. This knowledge equips researchers to devise strategies against its spread and potential public health implications.
Collapse
Affiliation(s)
- M H Yashavarddhan
- Department of Biotechnology & Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Deepika Bohra
- Department of Biotechnology & Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Rashmi Rana
- Department of Biotechnology & Research, Sir Ganga Ram Hospital, New Delhi 110060, India.
| | | | - Vivek Ranjan
- Department of Blood Transfusion Medicine, Sir Ganga Ram Hospital, New Delhi 110060, India
| | | | - Nirmal Kumar Ganguly
- Department of Biotechnology & Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| |
Collapse
|
20
|
Han M, Perkins MH, Novaes LS, Xu T, Chang H. Advances in transposable elements: from mechanisms to applications in mammalian genomics. Front Genet 2023; 14:1290146. [PMID: 38098473 PMCID: PMC10719622 DOI: 10.3389/fgene.2023.1290146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
It has been 70 years since Barbara McClintock discovered transposable elements (TE), and the mechanistic studies and functional applications of transposable elements have been at the forefront of life science research. As an essential part of the genome, TEs have been discovered in most species of prokaryotes and eukaryotes, and the relative proportion of the total genetic sequence they comprise gradually increases with the expansion of the genome. In humans, TEs account for about 40% of the genome and are deeply involved in gene regulation, chromosome structure maintenance, inflammatory response, and the etiology of genetic and non-genetic diseases. In-depth functional studies of TEs in mammalian cells and the human body have led to a greater understanding of these fundamental biological processes. At the same time, as a potent mutagen and efficient genome editing tool, TEs have been transformed into biological tools critical for developing new techniques. By controlling the random insertion of TEs into the genome to change the phenotype in cells and model organisms, critical proteins of many diseases have been systematically identified. Exploiting the TE's highly efficient in vitro insertion activity has driven the development of cutting-edge sequencing technologies. Recently, a new technology combining CRISPR with TEs was reported, which provides a novel targeted insertion system to both academia and industry. We suggest that interrogating biological processes that generally depend on the actions of TEs with TEs-derived genetic tools is a very efficient strategy. For example, excessive activation of TEs is an essential factor in the occurrence of cancer in humans. As potent mutagens, TEs have also been used to unravel the key regulatory elements and mechanisms of carcinogenesis. Through this review, we aim to effectively combine the traditional views of TEs with recent research progress, systematically link the mechanistic discoveries of TEs with the technological developments of TE-based tools, and provide a comprehensive approach and understanding for researchers in different fields.
Collapse
Affiliation(s)
- Mei Han
- Guangzhou National Laboratory, Guangzhou, China
| | - Matthew H. Perkins
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Leonardo Santana Novaes
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tao Xu
- Guangzhou National Laboratory, Guangzhou, China
| | - Hao Chang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
21
|
Fazel M, Grussmayer KS, Ferdman B, Radenovic A, Shechtman Y, Enderlein J, Pressé S. Fluorescence Microscopy: a statistics-optics perspective. ARXIV 2023:arXiv:2304.01456v3. [PMID: 37064525 PMCID: PMC10104198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Fundamental properties of light unavoidably impose features on images collected using fluorescence microscopes. Modeling these features is ever more important in quantitatively interpreting microscopy images collected at scales on par or smaller than light's wavelength. Here we review the optics responsible for generating fluorescent images, fluorophore properties, microscopy modalities leveraging properties of both light and fluorophores, in addition to the necessarily probabilistic modeling tools imposed by the stochastic nature of light and measurement.
Collapse
Affiliation(s)
- Mohamadreza Fazel
- Department of Physics, Arizona State University, Tempe, Arizona, USA
- Center for Biological Physics, Arizona State University, Tempe, Arizona, USA
| | - Kristin S Grussmayer
- Department of Bionanoscience, Faculty of Applied Science and Kavli Institute for Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Boris Ferdman
- Russel Berrie Nanotechnology Institute and Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Yoav Shechtman
- Russel Berrie Nanotechnology Institute and Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jörg Enderlein
- III. Institute of Physics - Biophysics, Georg August University, Göttingen, Germany
| | - Steve Pressé
- Department of Physics, Arizona State University, Tempe, Arizona, USA
- Center for Biological Physics, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
22
|
Ploetz E, Ambrose B, Barth A, Börner R, Erichson F, Kapanidis AN, Kim HD, Levitus M, Lohman TM, Mazumder A, Rueda DS, Steffen FD, Cordes T, Magennis SW, Lerner E. A new twist on PIFE: photoisomerisation-related fluorescence enhancement. Methods Appl Fluoresc 2023; 12:012001. [PMID: 37726007 PMCID: PMC10570931 DOI: 10.1088/2050-6120/acfb58] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/24/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
PIFE was first used as an acronym for protein-induced fluorescence enhancement, which refers to the increase in fluorescence observed upon the interaction of a fluorophore, such as a cyanine, with a protein. This fluorescence enhancement is due to changes in the rate ofcis/transphotoisomerisation. It is clear now that this mechanism is generally applicable to interactions with any biomolecule. In this review, we propose that PIFE is thereby renamed according to its fundamental working principle as photoisomerisation-related fluorescence enhancement, keeping the PIFE acronym intact. We discuss the photochemistry of cyanine fluorophores, the mechanism of PIFE, its advantages and limitations, and recent approaches to turning PIFE into a quantitative assay. We provide an overview of its current applications to different biomolecules and discuss potential future uses, including the study of protein-protein interactions, protein-ligand interactions and conformational changes in biomolecules.
Collapse
Affiliation(s)
- Evelyn Ploetz
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Benjamin Ambrose
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0HS, United Kingdom
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, W12 0HS, United Kingdom
| | - Anders Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Richard Börner
- Laserinstitut Hochschule Mittweida, Mittweida University of Applied Sciences, Mittweida, Germany
| | - Felix Erichson
- Laserinstitut Hochschule Mittweida, Mittweida University of Applied Sciences, Mittweida, Germany
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Department of Physics, University of Oxford, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, United Kingdom
| | - Harold D Kim
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332, United States of America
| | - Marcia Levitus
- School of Molecular Sciences, Arizona State University, 551 E. University Drive, Tempe, AZ,85287, United States of America
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States of America
| | - Abhishek Mazumder
- CSIR-Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| | - David S Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0HS, United Kingdom
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, W12 0HS, United Kingdom
| | - Fabio D Steffen
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Großhadernerstr. 2-4, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Steven W Magennis
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, United Kingdom
| | - Eitan Lerner
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, Edmond J. Safra Campus, Hebrew University of Jerusalem; Jerusalem 9190401, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem; Jerusalem 9190401, Israel
| |
Collapse
|
23
|
Liao TW, Huang L, Wilson TJ, Ganser LR, Lilley DMJ, Ha T. Linking folding dynamics and function of SAM/SAH riboswitches at the single molecule level. Nucleic Acids Res 2023; 51:8957-8969. [PMID: 37522343 PMCID: PMC10516623 DOI: 10.1093/nar/gkad633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
Riboswitches are regulatory elements found in bacterial mRNAs that control downstream gene expression through ligand-induced conformational changes. Here, we used single-molecule FRET to map the conformational landscape of the translational SAM/SAH riboswitch and probe how co-transcriptional ligand-induced conformational changes affect its translation regulation function. Riboswitch folding is highly heterogeneous, suggesting a rugged conformational landscape that allows for sampling of the ligand-bound conformation even in the absence of ligand. The addition of ligand shifts the landscape, favoring the ligand-bound conformation. Mutation studies identified a key structural element, the pseudoknot helix, that is crucial for determining ligand-free conformations and their ligand responsiveness. We also investigated ribosomal binding site accessibility under two scenarios: pre-folding and co-transcriptional folding. The regulatory function of the SAM/SAH riboswitch involves kinetically favoring ligand binding, but co-transcriptional folding reduces this preference with a less compact initial conformation that exposes the Shine-Dalgarno sequence and takes min to redistribute to more compact conformations of the pre-folded riboswitch. Such slow equilibration decreases the effective ligand affinity. Overall, our study provides a deeper understanding of the complex folding process and how the riboswitch adapts its folding pattern in response to ligand, modulates ribosome accessibility and the role of co-transcriptional folding in these processes.
Collapse
Affiliation(s)
- Ting-Wei Liao
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Timothy J Wilson
- Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Laura R Ganser
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - David M J Lilley
- Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Taekjip Ha
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Baltimore, MD, USA
| |
Collapse
|
24
|
Ploetz E, Ambrose B, Barth A, Börner R, Erichson F, Kapanidis AN, Kim HD, Levitus M, Lohman TM, Mazumder A, Rueda DS, Steffen FD, Cordes T, Magennis SW, Lerner E. A new twist on PIFE: photoisomerisation-related fluorescence enhancement. ARXIV 2023:arXiv:2302.12455v2. [PMID: 36866225 PMCID: PMC9980184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
PIFE was first used as an acronym for protein-induced fluorescence enhancement, which refers to the increase in fluorescence observed upon the interaction of a fluorophore, such as a cyanine, with a protein. This fluorescence enhancement is due to changes in the rate of cis/trans photoisomerisation. It is clear now that this mechanism is generally applicable to interactions with any biomolecule and, in this review, we propose that PIFE is thereby renamed according to its fundamental working principle as photoisomerisation-related fluorescence enhancement, keeping the PIFE acronym intact. We discuss the photochemistry of cyanine fluorophores, the mechanism of PIFE, its advantages and limitations, and recent approaches to turn PIFE into a quantitative assay. We provide an overview of its current applications to different biomolecules and discuss potential future uses, including the study of protein-protein interactions, protein-ligand interactions and conformational changes in biomolecules.
Collapse
Affiliation(s)
- Evelyn Ploetz
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Benjamin Ambrose
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0HS, UK, Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, W12 0HS, UK
| | - Anders Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Richard Börner
- Laserinstitut Hochschule Mittweida, Mittweida University of Applied Sciences, Mittweida, Germany
| | - Felix Erichson
- Laserinstitut Hochschule Mittweida, Mittweida University of Applied Sciences, Mittweida, Germany
| | - Achillefs N. Kapanidis
- Kavli Institute for Nanoscience Discovery, Department of Biological Physics, The University of Oxford, UK
| | - Harold D. Kim
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332, USA
| | - Marcia Levitus
- School of Molecular Sciences, Arizona State University, 551 E. University Drive, Tempe, AZ, 85287, USA
| | - Timothy M. Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Abhishek Mazumder
- Kavli Institute for Nanoscience Discovery, Department of Biological Physics, The University of Oxford, UK
| | - David S. Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0HS, UK, Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, W12 0HS, UK
| | - Fabio D. Steffen
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr, 2-4, 82152 Planegg-Martinsried, Germany
| | - Steven W. Magennis
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, UK
| | - Eitan Lerner
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, Edmond J. Safra Campus, Hebrew University of Jerusalem; Jerusalem 9190401, Israel, Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem; Jerusalem 9190401, Israel
| |
Collapse
|
25
|
Zheng J, Shi W, Yang Z, Chen J, Qi A, Yang Y, Deng Y, Yang D, Song N, Song B, Luo D. RIG-I-like receptors: Molecular mechanism of activation and signaling. Adv Immunol 2023; 158:1-74. [PMID: 37453753 DOI: 10.1016/bs.ai.2023.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
During RNA viral infection, RIG-I-like receptors (RLRs) recognize the intracellular pathogenic RNA species derived from viral replication and activate antiviral innate immune response by stimulating type 1 interferon expression. Three RLR members, namely, RIG-I, MDA5, and LGP2 are homologous and belong to a subgroup of superfamily 2 Helicase/ATPase that is preferably activated by double-stranded RNA. RLRs are significantly different in gene architecture, RNA ligand preference, activation, and molecular functions. As switchable macromolecular sensors, RLRs' activities are tightly regulated by RNA ligands, ATP, posttranslational modifications, and cellular cofactors. We provide a comprehensive review of the structure and function of the RLRs and summarize the molecular understanding of sensing and signaling events during the RLR activation process. The key roles RLR signaling play in both anti-infection and immune disease conditions highlight the therapeutic potential in targeting this important molecular pathway.
Collapse
Affiliation(s)
- Jie Zheng
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Wenjia Shi
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ziqun Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jin Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ao Qi
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yulin Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ying Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dongyuan Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ning Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bin Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
26
|
Im JH, Duic I, Yoshimura SH, Onomoto K, Yoneyama M, Kato H, Fujita T. Mechanisms of length-dependent recognition of viral double-stranded RNA by RIG-I. Sci Rep 2023; 13:6318. [PMID: 37072508 PMCID: PMC10113236 DOI: 10.1038/s41598-023-33208-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) is the most front-line cytoplasmic viral RNA sensor and induces antiviral immune responses. RIG-I recognizes short double-stranded (dsRNA) (< 500 bp), but not long dsRNA (> 500 bp) to trigger antiviral signaling. Since RIG-I is capable of binding with dsRNA irrespective of size, length-dependent RIG-I signaling remains elusive. Here, we demonstrated that RIG-I bound to long dsRNA with slow kinetics. Remarkably, RIG-I/short dsRNA complex efficiently dissociated in an ATP hydrolysis-dependent manner, whereas RIG-I/long dsRNA was stable and did not dissociate. Our study suggests that the dissociation of RIG-I from RIG-I/dsRNA complex could be a step for efficient antiviral signaling. Dissociated RIG-I exhibited homo-oligomerization, acquiring ability to physically associate with MAVS, and biological activity upon introduction into living cells. We herein discuss common and unique mechanisms of viral dsRNA recognition by RIG-I and MDA5.
Collapse
Affiliation(s)
- Jung Hyun Im
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
- Laboratory of Regulatory Information, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8397, Japan
| | - Ivana Duic
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
- R&D Department, xFOREST Therapeutics Co., Ltd., Kyoto, 602-0841, Japan
| | - Shige H Yoshimura
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Koji Onomoto
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan
| | - Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, 260-0856, Japan
| | - Hiroki Kato
- Institute for Cardiovascular Immunology, University Hospital Bonn, Bonn, 53127, Germany
| | - Takashi Fujita
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
- Laboratory of Regulatory Information, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8397, Japan.
- Institute for Cardiovascular Immunology, University Hospital Bonn, Bonn, 53127, Germany.
| |
Collapse
|
27
|
Nassour J, Aguiar LG, Correia A, Schmidt TT, Mainz L, Przetocka S, Haggblom C, Tadepalle N, Williams A, Shokhirev MN, Akincilar SC, Tergaonkar V, Shadel GS, Karlseder J. Telomere-to-mitochondria signalling by ZBP1 mediates replicative crisis. Nature 2023; 614:767-773. [PMID: 36755096 PMCID: PMC9946831 DOI: 10.1038/s41586-023-05710-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/05/2023] [Indexed: 02/10/2023]
Abstract
Cancers arise through the accumulation of genetic and epigenetic alterations that enable cells to evade telomere-based proliferative barriers and achieve immortality. One such barrier is replicative crisis-an autophagy-dependent program that eliminates checkpoint-deficient cells with unstable telomeres and other cancer-relevant chromosomal aberrations1,2. However, little is known about the molecular events that regulate the onset of this important tumour-suppressive barrier. Here we identified the innate immune sensor Z-DNA binding protein 1 (ZBP1) as a regulator of the crisis program. A crisis-associated isoform of ZBP1 is induced by the cGAS-STING DNA-sensing pathway, but reaches full activation only when associated with telomeric-repeat-containing RNA (TERRA) transcripts that are synthesized from dysfunctional telomeres. TERRA-bound ZBP1 oligomerizes into filaments on the outer mitochondrial membrane of a subset of mitochondria, where it activates the innate immune adapter protein mitochondrial antiviral-signalling protein (MAVS). We propose that these oligomerization properties of ZBP1 serve as a signal amplification mechanism, where few TERRA-ZBP1 interactions are sufficient to launch a detrimental MAVS-dependent interferon response. Our study reveals a mechanism for telomere-mediated tumour suppression, whereby dysfunctional telomeres activate innate immune responses through mitochondrial TERRA-ZBP1 complexes to eliminate cells destined for neoplastic transformation.
Collapse
Affiliation(s)
- Joe Nassour
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Adriana Correia
- The Salk Institute for Biological Studies, La Jolla, CA, USA
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa (FCUL), Lisbon, Portugal
| | | | - Laura Mainz
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sara Przetocka
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Candy Haggblom
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - April Williams
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Semih C Akincilar
- A*STAR Division of Cancer Genetics, Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore
- Therapeutics Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore
| | - Vinay Tergaonkar
- A*STAR Division of Cancer Genetics, Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore
- Therapeutics Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Gerald S Shadel
- The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Jan Karlseder
- The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
28
|
Okafor I, Ha T. Single Molecule FRET Analysis of CRISPR Cas9 Single Guide RNA Folding Dynamics. J Phys Chem B 2022; 127:45-51. [PMID: 36563314 PMCID: PMC9841515 DOI: 10.1021/acs.jpcb.2c05428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CRISPR Cas9 is an RNA guided endonuclease that is part of a bacterial adaptive immune system. Single guide RNA (sgRNA) can be designed to target genomic DNA, making Cas9 a programmable DNA binding/cutting enzyme and allowing applications such as epigenome editing, controlling transcription, and targeted DNA insertion. Some of the main hurdles against an even wider adoption are off-target effects and variability in Cas9 editing outcomes. Most studies that aim to understand the mechanisms that underlie these two areas have focused on Cas9 DNA binding, DNA unwinding, and target cleavage. The assembly of Cas9 RNA ribonucleoprotein complex (RNP) precedes all these steps and includes sgRNA folding and Cas9 binding to sgRNA. We know from the crystal structure of the Cas9 RNP what the final sgRNA conformation is. However, the assembly dynamics has not been studied in detail and a better understanding of RNP assembly could lead to better-designed sgRNAs and better editing outcomes. To study this process, we developed a single molecule FRET assay to monitor the conformation of the sgRNA and the binding of Cas9 to sgRNA. We labeled the sgRNA with a donor fluorophore and an acceptor fluorophore such that when the sgRNA folds, there are changes in FRET efficiency. We measured sgRNA folding dynamics under different ion conditions, under various methods of folding (refolding vs vectorial), and with or without Cas9. sgRNA that closely mimics the sgRNA construct used for high resolution structural analysis of the Cas9-gRNA complex showed two main FRET states without Cas9, and Cas9 addition shifted the distribution toward the higher FRET state attributed to the properly assembled complex. Even in the absence of Cas9, folding the sgRNA vectorially using a superhelicase-dependent release of the sgRNA in the direction of transcription resulted in almost exclusively high FRET state. An addition of Cas9 during vectorial folding greatly reduced a slow-folding fraction. Our studies shed light on the heterogeneous folding dynamics of sgRNA and the impact of co-transcriptional folding and Cas9 binding in sgRNA folding. Further studies of sequence dependence may inform rational design of sgRNAs for optimal function.
Collapse
Affiliation(s)
- Ikenna
C. Okafor
- Department
of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Taekjip Ha
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States,Department
of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States,Department
of Biomedical Engineering, Johns Hopkins
University, Baltimore, Maryland 21218, United States,Howard
Hughes Medical Institute, Baltimore, Maryland 21205, United States,
| |
Collapse
|
29
|
Li H, Guo Y, Qi W, Liao M. N 6-methyladenosine modification of viral RNA and its role during the recognition process of RIG-I-like receptors. Front Immunol 2022; 13:1031200. [PMID: 36582239 PMCID: PMC9792670 DOI: 10.3389/fimmu.2022.1031200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant RNA chemical modification in eukaryotes and is also found in the RNAs of many viruses. In recent years, m6A RNA modification has been reported to have a role not only in the replication of numerous viruses but also in the innate immune escape process. In this review, we describe the viruses that contain m6A in their genomes or messenger RNAs (mRNAs), and summarize the effects of m6A on the replication of different viruses. We also discuss how m6A modification helps viral RNAs escape recognition by exogenous RNA sensors, such as retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), during viral invasion. Overall, the goal of our review is to summarize how m6A regulates viral replication and facilitates innate immune escape. Furthermore, we elaborate on the potential of m6A as a novel antiviral target.
Collapse
Affiliation(s)
- Huanan Li
- National Avian Influenza Para-Reference Laboratory (Guangzhou), South China Agricultural University, Guangzhou, China,Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China,National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, China,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yang Guo
- National Avian Influenza Para-Reference Laboratory (Guangzhou), South China Agricultural University, Guangzhou, China,Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China,National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, China,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Wenbao Qi
- National Avian Influenza Para-Reference Laboratory (Guangzhou), South China Agricultural University, Guangzhou, China,Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China,National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, China,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,*Correspondence: Wenbao Qi, ; Ming Liao,
| | - Ming Liao
- National Avian Influenza Para-Reference Laboratory (Guangzhou), South China Agricultural University, Guangzhou, China,Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China,National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, China,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Academy of Agricultural Sciences, Guangzhou, China,*Correspondence: Wenbao Qi, ; Ming Liao,
| |
Collapse
|
30
|
Wang W, Pyle AM. The RIG-I receptor adopts two different conformations for distinguishing host from viral RNA ligands. Mol Cell 2022; 82:4131-4144.e6. [DOI: 10.1016/j.molcel.2022.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/09/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
|
31
|
Du J, Dartawan R, Rice W, Gao F, Zhou JH, Sheng J. Fluorescent Platforms for RNA Chemical Biology Research. Genes (Basel) 2022; 13:1348. [PMID: 36011259 PMCID: PMC9407474 DOI: 10.3390/genes13081348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/03/2022] Open
Abstract
Efficient detection and observation of dynamic RNA changes remain a tremendous challenge. However, the continuous development of fluorescence applications in recent years enhances the efficacy of RNA imaging. Here we summarize some of these developments from different aspects. For example, single-molecule fluorescence in situ hybridization (smFISH) can detect low abundance RNA at the subcellular level. A relatively new aptamer, Mango, is widely applied to label and track RNA activities in living cells. Molecular beacons (MBs) are valid for quantifying both endogenous and exogenous mRNA and microRNA (miRNA). Covalent binding enzyme labeling fluorescent group with RNA of interest (ROI) partially overcomes the RNA length limitation associated with oligonucleotide synthesis. Forced intercalation (FIT) probes are resistant to nuclease degradation upon binding to target RNA and are used to visualize mRNA and messenger ribonucleoprotein (mRNP) activities. We also summarize the importance of some fluorescence spectroscopic techniques in exploring the function and movement of RNA. Single-molecule fluorescence resonance energy transfer (smFRET) has been employed to investigate the dynamic changes of biomolecules by covalently linking biotin to RNA, and a focus on dye selection increases FRET efficiency. Furthermore, the applications of fluorescence assays in drug discovery and drug delivery have been discussed. Fluorescence imaging can also combine with RNA nanotechnology to target tumors. The invention of novel antibacterial drugs targeting non-coding RNAs (ncRNAs) is also possible with steady-state fluorescence-monitored ligand-binding assay and the T-box riboswitch fluorescence anisotropy assay. More recently, COVID-19 tests using fluorescent clustered regularly interspaced short palindromic repeat (CRISPR) technology have been demonstrated to be efficient and clinically useful. In summary, fluorescence assays have significant applications in both fundamental and clinical research and will facilitate the process of RNA-targeted new drug discovery, therefore deserving further development and updating.
Collapse
Affiliation(s)
| | | | | | | | | | - Jia Sheng
- Department of Chemistry, The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (J.D.); (R.D.); (W.R.); (F.G.); (J.H.Z.)
| |
Collapse
|
32
|
Wang H, Yin J, Gu X, Shao W, Jia Z, Chen H, Xia W. Immune Regulator Retinoic Acid-Inducible Gene I (RIG-I) in the Pathogenesis of Cardiovascular Disease. Front Immunol 2022; 13:893204. [PMID: 35693778 PMCID: PMC9178270 DOI: 10.3389/fimmu.2022.893204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) is a cytosolic pattern recognition receptor that contains two CARD domains, an RNA helicase domain, and a C-terminal domain. RIG-I initiates antiviral innate immunity by recognizing exogenous viral RNAs/DNAs. However, some studies have reported that RIG-I activation leads to damage in various organs and tissues in diverse circumstances. Recent studies have shown that RIG-I is involved in cancer, lupus nephritis, immunoglobulin A nephropathy, Crohn's disease, and atherosclerosis. These reports indicate that RIG-I not only participates in antiviral signaling pathways but also exerts an influence on non-viral infectious diseases. RIG-I is widely expressed in immune and non-immune cells including smooth muscle cells, endothelial cells, and cardiomyocytes. A succinct overview of RIG-I and its signaling pathways, with respect to the cardiovascular system, will aid in the development of novel therapeutics for cardiovascular diseases. In this review, we summarize the structure, activation, signaling pathways, and role of RIG-I in cardiovascular diseases.
Collapse
Affiliation(s)
- Hao Wang
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Yin
- Department of Cardiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyan Gu
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Wenhui Shao
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Hongbing Chen
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Xia
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
33
|
Mechanisms involved in controlling RNA virus-induced intestinal inflammation. Cell Mol Life Sci 2022; 79:313. [PMID: 35604464 PMCID: PMC9125963 DOI: 10.1007/s00018-022-04332-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/10/2022] [Accepted: 04/27/2022] [Indexed: 12/24/2022]
Abstract
Gastroenteritis is inflammation of the lining of stomach and intestines and causes significant morbidity and mortality worldwide. Many viruses, especially RNA viruses are the most common cause of enteritis. Innate immunity is the first line of host defense against enteric RNA viruses and virus-induced intestinal inflammation. The first layer of defense against enteric RNA viruses in the intestinal tract is intestinal epithelial cells (IECs), dendritic cells and macrophages under the intestinal epithelium. These innate immune cells express pathogen-recognition receptors (PRRs) for recognizing enteric RNA viruses through sensing viral pathogen-associated molecular patterns (PAMPs). As a result of this recognition type I interferon (IFN), type III IFN and inflammasome activation occurs, which function cooperatively to clear infection and reduce viral-induced intestinal inflammation. In this review, we summarize recent findings about mechanisms involved in enteric RNA virus-induced intestinal inflammation. We will provide an overview of the enteric RNA viruses, their RNA sensing mechanisms by host PRRs, and signaling pathways triggered by host PRRs, which shape the intestinal immune response to maintain intestinal homeostasis.
Collapse
|
34
|
Schweibenz BD, Devarkar SC, Solotchi M, Craig C, Zheng J, Pascal BD, Gokhale S, Xie P, Griffin PR, Patel SS. The intrinsically disordered CARDs-Helicase linker in RIG-I is a molecular gate for RNA proofreading. EMBO J 2022; 41:e109782. [PMID: 35437807 PMCID: PMC9108607 DOI: 10.15252/embj.2021109782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 01/22/2023] Open
Abstract
The innate immune receptor RIG-I provides a first line of defense against viral infections. Viral RNAs are recognized by RIG-I's C-terminal domain (CTD), but the RNA must engage the helicase domain to release the signaling CARD (Caspase Activation and Recruitment Domain) domains from their autoinhibitory CARD2:Hel2i interactions. Because the helicase itself lacks RNA specificity, mechanisms to proofread RNAs entering the helicase domain must exist. Although such mechanisms would be crucial in preventing aberrant immune responses by non-specific RNAs, they remain largely uncharacterized to date. This study reveals a previously unknown proofreading mechanism through which RIG-I ensures that the helicase engages RNAs explicitly recognized by the CTD. A crucial part of this mechanism involves the intrinsically disordered CARDs-Helicase Linker (CHL), which connects the CARDs to the helicase subdomain Hel1. CHL uses its negatively charged regions to antagonize incoming RNAs electrostatically. In addition to this RNA gating function, CHL is essential for stabilization of the CARD2:Hel2i interface. Overall, we uncover that the CHL and CARD2:Hel2i interface work together to establish a tunable gating mechanism that allows CTD-chosen RNAs to bind the helicase domain, while at the same time blocking non-specific RNAs. These findings also indicate that CHL could represent a novel target for RIG-I-based therapeutics.
Collapse
Affiliation(s)
- Brandon D Schweibenz
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.,Graduate Program in Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Swapnil C Devarkar
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.,Graduate Program in Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Mihai Solotchi
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.,Cell and Development Biology, Rutgers University, Piscataway, NJ, USA
| | - Candice Craig
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.,Graduate Program in Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Jie Zheng
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Bruce D Pascal
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA.,Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, USA
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA.,Department of Integrative Structural and Computational Biology, Jupiter, FL, USA
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
35
|
Venus S, Jankowsky E. Measuring the impact of cofactors on RNA helicase activities. Methods 2022; 204:376-385. [PMID: 35429628 PMCID: PMC9306305 DOI: 10.1016/j.ymeth.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 12/25/2022] Open
Abstract
RNA helicases are the largest class of enzymes in eukaryotic RNA metabolism. In cells, protein cofactors regulate RNA helicase functions and impact biochemical helicase activities. Understanding how cofactors affect enzymatic activities of RNA helicases is thus critical for delineating physical roles and regulation of RNA helicases in cells. Here, we discuss approaches and conceptual considerations for the design of experiments to interrogate cofactor effects on RNA helicase activities in vitro. We outline the mechanistic frame for helicase reactions, discuss optimization of experimental setup and reaction parameters for measuring cofactor effects on RNA helicase activities, and provide basic guides to data analysis and interpretation. The described approaches are also instructive for determining the impact of small molecule inhibitors of RNA helicases.
Collapse
|
36
|
Chen YG, Hur S. Cellular origins of dsRNA, their recognition and consequences. Nat Rev Mol Cell Biol 2022; 23:286-301. [PMID: 34815573 PMCID: PMC8969093 DOI: 10.1038/s41580-021-00430-1] [Citation(s) in RCA: 207] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 01/02/2023]
Abstract
Double-stranded RNA (dsRNA) is associated with most viral infections - it either constitutes the viral genome (in the case of dsRNA viruses) or is generated in host cells during viral replication. Hence, nearly all organisms have the capability of recognizing dsRNA and mounting a response, the primary aim of which is to mitigate the potential infection. In vertebrates, a set of innate immune receptors for dsRNA induce a multitude of cell-intrinsic and cell-extrinsic immune responses upon dsRNA recognition. Notably, recent studies showed that vertebrate cells can accumulate self-derived dsRNAs or dsRNA-like species upon dysregulation of several cellular processes, activating the very same immune pathways as in infected cells. On the one hand, such aberrant immune activation in the absence of infection can lead to pathogenesis of immune disorders, such as Aicardi-Goutières syndrome. On the other hand, the same innate immune reaction can be induced in a controlled setting for a therapeutic benefit, as occurs in immunotherapies. In this Review, we describe mechanisms by which immunostimulatory dsRNAs are generated in mammalian cells, either by viruses or by the host cells, and how cells respond to them, with the focus on recent developments regarding the role of cellular dsRNAs in immune modulation.
Collapse
Affiliation(s)
- Y Grace Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Sun Hur
- Harvard Medical School & Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
37
|
Rho-dependent transcription termination proceeds via three routes. Nat Commun 2022; 13:1663. [PMID: 35351884 PMCID: PMC8964686 DOI: 10.1038/s41467-022-29321-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 03/09/2022] [Indexed: 01/26/2023] Open
Abstract
Rho is a general transcription termination factor in bacteria, but many aspects of its mechanism of action are unclear. Diverse models have been proposed for the initial interaction between the RNA polymerase (RNAP) and Rho (catch-up and stand-by pre-terminational models); for the terminational release of the RNA transcript (RNA shearing, RNAP hyper-translocation or displacing, and allosteric models); and for the post-terminational outcome (whether the RNAP dissociates or remains bound to the DNA). Here, we use single-molecule fluorescence assays to study those three steps in transcription termination mediated by E. coli Rho. We find that different mechanisms previously proposed for each step co-exist, but apparently occur on various timescales and tend to lead to specific outcomes. Our results indicate that three kinetically distinct routes take place: (1) the catch-up mode leads first to RNA shearing for RNAP recycling on DNA, and (2) later to RNAP displacement for decomposition of the transcriptional complex; (3) the last termination usually follows the stand-by mode with displacing for decomposing. This three-route model would help reconcile current controversies on the mechanisms. Rho is a general transcription termination factor in bacteria. Here, Song et al. use single-molecule fluorescence assays to provide evidence that Rho-mediated transcription termination can occur via three kinetically different routes.
Collapse
|
38
|
Nguyen LN, Kanneganti TD. PANoptosis in Viral Infection: The Missing Puzzle Piece in the Cell Death Field. J Mol Biol 2022; 434:167249. [PMID: 34537233 PMCID: PMC8444475 DOI: 10.1016/j.jmb.2021.167249] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023]
Abstract
In the past decade, emerging viral outbreaks like SARS-CoV-2, Zika and Ebola have presented major challenges to the global health system. Viruses are unique pathogens in that they fully rely on the host cell to complete their lifecycle and potentiate disease. Therefore, programmed cell death (PCD), a key component of the host innate immune response, is an effective strategy for the host cell to curb viral spread. The most well-established PCD pathways, pyroptosis, apoptosis and necroptosis, can be activated in response to viruses. Recently, extensive crosstalk between PCD pathways has been identified, and there is evidence that molecules from all three PCD pathways can be activated during virus infection. These findings have led to the emergence of the concept of PANoptosis, defined as an inflammatory PCD pathway regulated by the PANoptosome complex with key features of pyroptosis, apoptosis, and/or necroptosis that cannot be accounted for by any of these three PCD pathways alone. While PCD is important to eliminate infected cells, many viruses are equipped to hijack host PCD pathways to benefit their own propagation and subvert host defense, and PCD can also lead to the production of inflammatory cytokines and inflammation. Therefore, PANoptosis induced by viral infection contributes to either host defense or viral pathogenesis in context-specific ways. In this review, we will discuss the multi-faceted roles of PCD pathways in controlling viral infections.
Collapse
Affiliation(s)
- Lam Nhat Nguyen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA. https://twitter.com/LamNguy81889610
| | | |
Collapse
|
39
|
Lee H, Cho H, Kim J, Lee S, Yoo J, Park D, Lee G. RNase H is an exo- and endoribonuclease with asymmetric directionality, depending on the binding mode to the structural variants of RNA:DNA hybrids. Nucleic Acids Res 2022; 50:1801-1814. [PMID: 34788459 PMCID: PMC8886854 DOI: 10.1093/nar/gkab1064] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022] Open
Abstract
RNase H is involved in fundamental cellular processes and is responsible for removing the short stretch of RNA from Okazaki fragments and the long stretch of RNA from R-loops. Defects in RNase H lead to embryo lethality in mice and Aicardi-Goutieres syndrome in humans, suggesting the importance of RNase H. To date, RNase H is known to be a non-sequence-specific endonuclease, but it is not known whether it performs other functions on the structural variants of RNA:DNA hybrids. Here, we used Escherichia coli RNase H as a model, and examined its catalytic mechanism and its substrate recognition modes, using single-molecule FRET. We discovered that RNase H acts as a processive exoribonuclease on the 3' DNA overhang side but as a distributive non-sequence-specific endonuclease on the 5' DNA overhang side of RNA:DNA hybrids or on blunt-ended hybrids. The high affinity of previously unidentified double-stranded (ds) and single-stranded (ss) DNA junctions flanking RNA:DNA hybrids may help RNase H find the hybrid substrates in long genomic DNA. Our study provides new insights into the multifunctionality of RNase H, elucidating unprecedented roles of junctions and ssDNA overhang on RNA:DNA hybrids.
Collapse
Affiliation(s)
- Hyunjee Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Single-Molecule Biology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - HyeokJin Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Single-Molecule Biology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jooyoung Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Sua Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jungmin Yoo
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Single-Molecule Biology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Daeho Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Gwangrog Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Single-Molecule Biology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
40
|
Jia J, Fu J, Tang H. Activation and Evasion of RLR Signaling by DNA Virus Infection. Front Microbiol 2022; 12:804511. [PMID: 34987495 PMCID: PMC8721196 DOI: 10.3389/fmicb.2021.804511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Antiviral innate immune response triggered by nucleic acid recognition plays an extremely important role in controlling viral infections. The initiation of antiviral immune response against RNA viruses through ligand recognition of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) was extensively studied. RLR’s role in DNA virus infection, which is less known, is increasing attention. Here, we review the research progress of the ligand recognition of RLRs during the DNA virus infection process and the viral evasion mechanism from host immune responses.
Collapse
Affiliation(s)
- Junli Jia
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Jiangan Fu
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Huamin Tang
- Department of Immunology, Nanjing Medical University, Nanjing, China.,Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
41
|
Lee D, Oh S, Cho H, Yoo J, Lee G. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2211-2222. [PMID: 35137198 PMCID: PMC8887469 DOI: 10.1093/nar/gkac043] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/20/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Donghun Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Single-Molecule Biology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Sanghoon Oh
- Single-Molecule Biology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - HyeokJin Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Single-Molecule Biology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jungmin Yoo
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Single-Molecule Biology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Gwangrog Lee
- To whom correspondence should be addressed. Tel: +82 62 715 3558;
| |
Collapse
|
42
|
Abstract
One of the first layers of protection that metazoans put in place to defend themselves against viruses rely on the use of proteins containing DExD/H-box helicase domains. These members of the duplex RNA–activated ATPase (DRA) family act as sensors of double-stranded RNA (dsRNA) molecules, a universal marker of viral infections. DRAs can be classified into 2 subgroups based on their mode of action: They can either act directly on the dsRNA, or they can trigger a signaling cascade. In the first group, the type III ribonuclease Dicer plays a key role to activate the antiviral RNA interference (RNAi) pathway by cleaving the viral dsRNA into small interfering RNAs (siRNAs). This represents the main innate antiviral immune mechanism in arthropods and nematodes. Even though Dicer is present and functional in mammals, the second group of DRAs, containing the RIG-I-like RNA helicases, appears to have functionally replaced RNAi and activate type I interferon (IFN) response upon dsRNA sensing. However, recent findings tend to blur the frontier between these 2 mechanisms, thereby highlighting the crucial and diverse roles played by RNA helicases in antiviral innate immunity. Here, we will review our current knowledge of the importance of these key proteins in viral infection, with a special focus on the interplay between the 2 main types of response that are activated by dsRNA.
Collapse
Affiliation(s)
- Morgane Baldaccini
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Sébastien Pfeffer
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
- * E-mail:
| |
Collapse
|
43
|
Gupta S, Friedman LJ, Gelles J, Bell SP. A helicase-tethered ORC flip enables bidirectional helicase loading. eLife 2021; 10:74282. [PMID: 34882090 PMCID: PMC8828053 DOI: 10.7554/elife.74282] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Replication origins are licensed by loading two Mcm2‑7 helicases around DNA in a head-to-head conformation poised to initiate bidirectional replication. This process requires ORC, Cdc6, and Cdt1. Although different Cdc6 and Cdt1 molecules load each helicase, whether two ORC proteins are required is unclear. Using colocalization single-molecule spectroscopy combined with FRET, we investigated interactions between ORC and Mcm2‑7 during helicase loading. In the large majority of events, we observed a single ORC molecule recruiting both Mcm2‑7/Cdt1 complexes via similar interactions that end upon Cdt1 release. Between first and second helicase recruitment, a rapid change in interactions between ORC and the first Mcm2-7 occurs. Within seconds, ORC breaks the interactions mediating first Mcm2-7 recruitment, releases from its initial DNA-binding site, and forms a new interaction with the opposite face of the first Mcm2-7. This rearrangement requires release of the first Cdt1 and tethers ORC as it flips over the first Mcm2-7 to form an inverted Mcm2‑7-ORC-DNA complex required for second-helicase recruitment. To ensure correct licensing, this complex is maintained until head-to-head interactions between the two helicases are formed. Our findings reconcile previous observations and reveal a highly-coordinated series of events through which a single ORC molecule can load two oppositely-oriented helicases.
Collapse
Affiliation(s)
- Shalini Gupta
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Larry J Friedman
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Stephen P Bell
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
44
|
Determining translocation orientations of nucleic acid helicases. Methods 2021; 204:160-171. [PMID: 34758393 PMCID: PMC9076756 DOI: 10.1016/j.ymeth.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
Helicase enzymes translocate along an RNA or DNA template with a defined polarity to unwind, separate, or remodel duplex strands for a variety of genome maintenance processes. Helicase mutations are commonly associated with a variety of diseases including aging, cancer, and neurodegeneration. Biochemical characterization of these enzymes has provided a wealth of information on the kinetics of unwinding and substrate preferences, and several high-resolution structures of helicases alone and bound to oligonucleotides have been solved. Together, they provide mechanistic insights into the structural translocation and unwinding orientations of helicases. However, these insights rely on structural inferences derived from static snapshots. Instead, continued efforts should be made to combine structure and kinetics to better define active translocation orientations of helicases. This review explores many of the biochemical and biophysical methods utilized to map helicase binding orientation to DNA or RNA substrates and includes several time-dependent methods to unequivocally map the active translocation orientation of these enzymes to better define the active leading and trailing faces.
Collapse
|
45
|
Yang XW, Liu J. Observing Protein One-Dimensional Sliding: Methodology and Biological Significance. Biomolecules 2021; 11:1618. [PMID: 34827616 PMCID: PMC8615959 DOI: 10.3390/biom11111618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/28/2022] Open
Abstract
One-dimensional (1D) sliding of DNA-binding proteins has been observed by numerous kinetic studies. It appears that many of these sliding events play important roles in a wide range of biological processes. However, one challenge is to determine the physiological relevance of these motions in the context of the protein's biological function. Here, we discuss methods of measuring protein 1D sliding by highlighting the single-molecule approaches that are capable of visualizing particle movement in real time. We also present recent findings that show how protein sliding contributes to function.
Collapse
Affiliation(s)
| | - Jiaquan Liu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China;
| |
Collapse
|
46
|
Qu L, Chen C, Yin T, Fang Q, Hong Z, Zhou R, Tang H, Dong H. ACE2 and Innate Immunity in the Regulation of SARS-CoV-2-Induced Acute Lung Injury: A Review. Int J Mol Sci 2021; 22:11483. [PMID: 34768911 PMCID: PMC8583933 DOI: 10.3390/ijms222111483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023] Open
Abstract
Despite the protracted battle against coronavirus acute respiratory infection (COVID-19) and the rapid evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), no specific and effective drugs have to date been reported. Angiotensin-converting enzyme 2 (ACE2) is a zinc metalloproteinase and a critical modulator of the renin-angiotensin system (RAS). In addition, ACE2 has anti-inflammatory and antifibrosis functions. ACE has become widely known in the past decade as it has been identified as the primary receptor for SARS-CoV and SARS-CoV-2, being closely associated with their infection. SARS-CoV-2 primarily targets the lung, which induces a cytokine storm by infecting alveolar cells, resulting in tissue damage and eventually severe acute respiratory syndrome. In the lung, innate immunity acts as a critical line of defense against pathogens, including SARS-CoV-2. This review aims to summarize the regulation of ACE2, and lung host cells resist SARS-CoV-2 invasion by activating innate immunity response. Finally, we discuss ACE2 as a therapeutic target, providing reference and enlightenment for the clinical treatment of COVID-19.
Collapse
Affiliation(s)
- Lihua Qu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (L.Q.); (T.Y.); (Q.F.); (Z.H.); (R.Z.)
| | - Chao Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210013, China;
| | - Tong Yin
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (L.Q.); (T.Y.); (Q.F.); (Z.H.); (R.Z.)
| | - Qian Fang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (L.Q.); (T.Y.); (Q.F.); (Z.H.); (R.Z.)
| | - Zizhan Hong
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (L.Q.); (T.Y.); (Q.F.); (Z.H.); (R.Z.)
| | - Rui Zhou
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (L.Q.); (T.Y.); (Q.F.); (Z.H.); (R.Z.)
| | - Hongbin Tang
- Center for Animal Experiment, State Key Laboratory of Virology, Wuhan University, Wuhan 430071, China
| | - Huifen Dong
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (L.Q.); (T.Y.); (Q.F.); (Z.H.); (R.Z.)
| |
Collapse
|
47
|
Lee JM, Kim CR, Kim S, Min J, Lee MH, Lee S. Mix-and-read, one-minute SARS-CoV-2 diagnostic assay: development of PIFE-based aptasensor. Chem Commun (Camb) 2021; 57:10222-10225. [PMID: 34523638 DOI: 10.1039/d1cc04066a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We developed a one-minute, one-step SARS-CoV-2 antigen assay based on protein-induced fluorescence enhancement of a DNA aptamer. The system showed significant selectivity and sensitivity towards both nucleocapsid protein and SARS-CoV-2 virus lysate, but with marked improvements in speed and manufacturability. We hence propose this platform as a mix-and-read testing strategy for SARS-CoV-2 that can be applied to POC diagnostics in clinical settings, especially in low- and middle-income countries.
Collapse
Affiliation(s)
- J Michelle Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,PCL, Inc., Rm 701, Star Valley, 99, Digital-ro-9-gil, Ge-umcheon-gu, Seoul, 08510, Republic of Korea.
| | - Chae Rin Kim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,PCL, Inc., Rm 701, Star Valley, 99, Digital-ro-9-gil, Ge-umcheon-gu, Seoul, 08510, Republic of Korea.
| | - Sion Kim
- PCL, Inc., Rm 701, Star Valley, 99, Digital-ro-9-gil, Ge-umcheon-gu, Seoul, 08510, Republic of Korea. .,College of LSA, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - SangWook Lee
- PCL, Inc., Rm 701, Star Valley, 99, Digital-ro-9-gil, Ge-umcheon-gu, Seoul, 08510, Republic of Korea. .,e Bio-health Product Research Center, Inje University, Gimhae-si, 50834, Korea
| |
Collapse
|
48
|
Muñoz-Moreno R, Martínez-Romero C, García-Sastre A. Induction and Evasion of Type-I Interferon Responses during Influenza A Virus Infection. Cold Spring Harb Perspect Med 2021; 11:a038414. [PMID: 32661015 PMCID: PMC8485741 DOI: 10.1101/cshperspect.a038414] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Influenza A viruses (IAVs) are contagious pathogens and one of the leading causes of respiratory tract infections in both humans and animals worldwide. Upon infection, the innate immune system provides the first line of defense to neutralize or limit the replication of invading pathogens, creating a fast and broad response that brings the cells into an alerted state through the secretion of cytokines and the induction of the interferon (IFN) pathway. At the same time, IAVs have developed a plethora of immune evasion mechanisms in order to avoid or circumvent the host antiviral response, promoting viral replication. Herein, we will review and summarize already known and recently described innate immune mechanisms that host cells use to fight IAV viral infections as well as the main strategies developed by IAVs to overcome such powerful defenses during this fascinating virus-host interplay.
Collapse
Affiliation(s)
- Raquel Muñoz-Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Carles Martínez-Romero
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
49
|
Thoresen D, Wang W, Galls D, Guo R, Xu L, Pyle AM. The molecular mechanism of RIG-I activation and signaling. Immunol Rev 2021; 304:154-168. [PMID: 34514601 PMCID: PMC9293153 DOI: 10.1111/imr.13022] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022]
Abstract
RIG‐I is our first line of defense against RNA viruses, serving as a pattern recognition receptor that identifies molecular features common among dsRNA and ssRNA viral pathogens. RIG‐I is maintained in an inactive conformation as it samples the cellular space for pathogenic RNAs. Upon encounter with the triphosphorylated terminus of blunt‐ended viral RNA duplexes, the receptor changes conformation and releases a pair of signaling domains (CARDs) that are selectively modified and interact with an adapter protein (MAVS), thereby triggering a signaling cascade that stimulates transcription of interferons. Here, we describe the structural determinants for specific RIG‐I activation by viral RNA, and we describe the strategies by which RIG‐I remains inactivated in the presence of host RNAs. From the initial RNA triggering event to the final stages of interferon expression, we describe the experimental evidence underpinning our working knowledge of RIG‐I signaling. We draw parallels with behavior of related proteins MDA5 and LGP2, describing evolutionary implications of their collective surveillance of the cell. We conclude by describing the cell biology and immunological investigations that will be needed to accurately describe the role of RIG‐I in innate immunity and to provide the necessary foundation for pharmacological manipulation of this important receptor.
Collapse
Affiliation(s)
- Daniel Thoresen
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Wenshuai Wang
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Drew Galls
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Rong Guo
- Chemistry, Yale University, New Haven, CT, USA
| | - Ling Xu
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Anna Marie Pyle
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.,Chemistry, Yale University, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
50
|
Sobhy MA, Tehseen M, Takahashi M, Bralić A, De Biasio A, Hamdan SM. Implementing fluorescence enhancement, quenching, and FRET for investigating flap endonuclease 1 enzymatic reaction at the single-molecule level. Comput Struct Biotechnol J 2021; 19:4456-4471. [PMID: 34471492 PMCID: PMC8385120 DOI: 10.1016/j.csbj.2021.07.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/24/2022] Open
Abstract
Flap endonuclease 1 (FEN1) is an important component of the intricate molecular machinery for DNA replication and repair. FEN1 is a structure-specific 5' nuclease that cleaves nascent single-stranded 5' flaps during the maturation of Okazaki fragments. Here, we review our research primarily applying single-molecule fluorescence to resolve important mechanistic aspects of human FEN1 enzymatic reaction. The methodology presented in this review is aimed as a guide for tackling other biomolecular enzymatic reactions by fluorescence enhancement, quenching, and FRET and their combinations. Using these methods, we followed in real-time the structures of the substrate and product and 5' flap cleavage during catalysis. We illustrate that FEN1 actively bends the substrate to verify its features and continues to mold it to induce a protein disorder-to-order transitioning that controls active site assembly. This mechanism suppresses off-target cleavage of non-cognate substrates and promotes their dissociation with an accuracy that was underestimated from bulk assays. We determined that product release in FEN1 after the 5' flap release occurs in two steps; a brief binding to the bent nicked-product followed by longer binding to the unbent nicked-product before dissociation. Based on our cryo-electron microscopy structure of the human lagging strand replicase bound to FEN1, we propose how this two-step product release mechanism may regulate the final steps during the maturation of Okazaki fragments.
Collapse
Affiliation(s)
- Mohamed A Sobhy
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Muhammad Tehseen
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Masateru Takahashi
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Amer Bralić
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Alfredo De Biasio
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester LE1 7HB, UK
| | - Samir M Hamdan
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|