1
|
Keinath S, De Silva S, Sommerwerk N, Freyhof J. High levels of species' extirpation in an urban environment-A case study from Berlin, Germany, covering 1700-2023. Ecol Evol 2024; 14:e70018. [PMID: 39015877 PMCID: PMC11250399 DOI: 10.1002/ece3.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024] Open
Abstract
Species loss is highly scale-dependent, following the species-area relationship. We analysed spatio-temporal patterns of species' extirpation on a multitaxonomic level using Berlin, the capital city of Germany. Berlin is one of the largest cities in Europe and has experienced a strong urbanisation trend since the late nineteenth century. We expected species' extirpation to be exceptionally high due to the long history of urbanisation. Analysing 37 regional Red Lists of Threatened Plants, Animals and Fungi of Berlin (covering 9498 species), we found that 16% of species were extirpated, a rate 5.9 times higher than at the German scale and 47.1 times higher than at the European scale. Species' extirpation in Berlin is comparable to that of another German city with a similarly broad taxonomic coverage, but much higher than in regional areas with less human impact. The documentation of species' extirpation started in the eighteenth century and is well documented for the nineteenth and twentieth centuries. We found an average annual extirpation of 3.6 species in the nineteenth century, 9.6 species in the twentieth century and the same number of extirpated species as in the nineteenth century were documented in the twenty-first century, despite the much shorter time period. Our results showed that species' extirpation is higher at small than on large spatial scales, and might be negatively influenced by urbanisation, with different effects on different taxonomic groups and habitats. Over time, we found that species' extirpation is highest during periods of high human alterations and is negatively affected by the number of people living in the city. But, there is still a lack of data to decouple the size of the area and the human impact of urbanisation. However, cities might be suitable systems for studying species' extirpation processes due to their small scale and human impact.
Collapse
Affiliation(s)
- Silvia Keinath
- Museum für NaturkundeBerlin–Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
| | - Shenya De Silva
- Museum für NaturkundeBerlin–Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
| | - Nike Sommerwerk
- Museum für NaturkundeBerlin–Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
| | - Jörg Freyhof
- Museum für NaturkundeBerlin–Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
| |
Collapse
|
2
|
Eldon B, Stephan W. Sweepstakes reproduction facilitates rapid adaptation in highly fecund populations. Mol Ecol 2024; 33:e16903. [PMID: 36896794 DOI: 10.1111/mec.16903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
Adaptation enables natural populations to survive in a changing environment. Understanding the mechanics of adaptation is therefore crucial for learning about the evolution and ecology of natural populations. We focus on the impact of random sweepstakes on selection in highly fecund haploid and diploid populations partitioned into two genetic types, with one type conferring selective advantage. For the diploid populations, we incorporate various dominance mechanisms. We assume that the populations may experience recurrent bottlenecks. In random sweepstakes, the distribution of individual recruitment success is highly skewed, resulting in a huge variance in the number of offspring contributed by the individuals present in any given generation. Using computer simulations, we investigate the joint effects of random sweepstakes, recurrent bottlenecks and dominance mechanisms on selection. In our framework, bottlenecks allow random sweepstakes to have an effect on the time to fixation, and in diploid populations, the effect of random sweepstakes depends on the dominance mechanism. We describe selective sweepstakes that are approximated by recurrent sweeps of strongly beneficial allelic types arising by mutation. We demonstrate that both types of sweepstakes reproduction may facilitate rapid adaptation (as defined based on the average time to fixation of a type conferring selective advantage conditioned on fixation of the type). However, whether random sweepstakes cause rapid adaptation depends also on their interactions with bottlenecks and dominance mechanisms. Finally, we review a case study in which a model of recurrent sweeps is shown to essentially explain population genomic data from Atlantic cod.
Collapse
Affiliation(s)
- Bjarki Eldon
- Institute of Evolution and Biodiversity Science, Natural History Museum Berlin, Berlin, Germany
| | | |
Collapse
|
3
|
Teng D, Zhang W. The diversification of butterfly wing patterns: progress and prospects. CURRENT OPINION IN INSECT SCIENCE 2024; 61:101137. [PMID: 37922984 DOI: 10.1016/j.cois.2023.101137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Butterfly wings display rich phenotypic diversity and are associated with complex biological functions, thus serving as an important evolutionary system to address the genetic basis and evolution of phenotypic diversification. We review recent butterfly studies that revealed complex functions underlying diversified wing patterns and describe the genetic and environmental factors involved in wing pattern determinations. These factors lead to inter-specific divergence, genetic polymorphism, and phenotypic plasticity, which in many cases are decided by several key genes. We also summarize the research advances on gene co-option as an important origin of functional complexity and evolutionary novelty. These findings reveal a pattern of evolutionary innovation within a constrained developmental framework during butterfly wing morphogenesis, but further research is required to gain a systematic and comprehensive understanding.
Collapse
Affiliation(s)
- Dequn Teng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wei Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Medog Biodiversity Observation and Research Station of Tibet Autonomous Region, Nyingchi 860711, China.
| |
Collapse
|
4
|
Howe NS, Hale MC, Waters CD, Schaal SM, Shedd KR, Larson WA. Genomic evidence for domestication selection in three hatchery populations of Chinook salmon, Oncorhynchus tshawytscha. Evol Appl 2024; 17:e13656. [PMID: 38357359 PMCID: PMC10866082 DOI: 10.1111/eva.13656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
Fish hatcheries are widely used to enhance fisheries and supplement declining wild populations. However, substantial evidence suggests that hatchery fish are subject to differential selection pressures compared to their wild counterparts. Domestication selection, or adaptation to the hatchery environment, poses a risk to wild populations if traits specific to success in the hatchery environment have a genetic component and there is subsequent introgression between hatchery and wild fish. Few studies have investigated domestication selection in hatcheries on a genomic level, and even fewer have done so in parallel across multiple hatchery-wild population pairs. In this study, we used low-coverage whole-genome sequencing to investigate signals of domestication selection in three separate hatchery populations of Chinook salmon, Oncorhynchus tshawytscha, after approximately seven generations of divergence from their corresponding wild progenitor populations. We sequenced 192 individuals from populations across Southeast Alaska and estimated genotype likelihoods at over six million loci. We discovered a total of 14 outlier peaks displaying high genetic differentiation (F ST) between hatchery-wild pairs, although no peaks were shared across the three comparisons. Peaks were small (53 kb on average) and often displayed elevated absolute genetic divergence (D xy) and linkage disequilibrium, suggesting some level of domestication selection has occurred. Our study provides evidence that domestication selection can lead to genetic differences between hatchery and wild populations in only a few generations. Additionally, our data suggest that population-specific adaptation to hatchery environments likely occurs through different genetic pathways, even for populations with similar standing genetic variation. These results highlight the need to collect paired genotype-phenotype data to understand how domestication may be affecting fitness and to identify potential management practices that may mitigate genetic risks despite multiple pathways of domestication.
Collapse
Affiliation(s)
- Natasha S. Howe
- Department of BiologyTexas Christian UniversityFort WorthTexasUSA
| | - Matthew C. Hale
- Department of BiologyTexas Christian UniversityFort WorthTexasUSA
| | - Charles D. Waters
- National Oceanographic and Atmospheric Administration, National Marine Fisheries ServiceAlaska Fisheries Science Center, Auke Bay LaboratoriesJuneauAlaskaUSA
| | - Sara M. Schaal
- National Oceanographic and Atmospheric Administration, National Marine Fisheries ServiceAlaska Fisheries Science Center, Auke Bay LaboratoriesJuneauAlaskaUSA
| | - Kyle R. Shedd
- Alaska Department of Fish and Game, Division of Commercial FisheriesGene Conservation LaboratoryAnchorageAlaskaUSA
| | - Wesley A. Larson
- National Oceanographic and Atmospheric Administration, National Marine Fisheries ServiceAlaska Fisheries Science Center, Auke Bay LaboratoriesJuneauAlaskaUSA
| |
Collapse
|
5
|
Jones GM, Goldberg JF, Wilcox TM, Buckley LB, Parr CL, Linck EB, Fountain ED, Schwartz MK. Fire-driven animal evolution in the Pyrocene. Trends Ecol Evol 2023; 38:1072-1084. [PMID: 37479555 DOI: 10.1016/j.tree.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/23/2023]
Abstract
Fire regimes are a major agent of evolution in terrestrial animals. Changing fire regimes and the capacity for rapid evolution in wild animal populations suggests the potential for rapid, fire-driven adaptive animal evolution in the Pyrocene. Fire drives multiple modes of evolutionary change, including stabilizing, directional, disruptive, and fluctuating selection, and can strongly influence gene flow and genetic drift. Ongoing and future research in fire-driven animal evolution will benefit from further development of generalizable hypotheses, studies conducted in highly responsive taxa, and linking fire-adapted phenotypes to their underlying genetic basis. A better understanding of evolutionary responses to fire has the potential to positively influence conservation strategies that embrace evolutionary resilience to fire in the Pyrocene.
Collapse
Affiliation(s)
- Gavin M Jones
- USDA Forest Service, Rocky Mountain Research Station, Albuquerque, NM 87102, USA.
| | - Joshua F Goldberg
- USDA Forest Service, Rocky Mountain Research Station, Albuquerque, NM 87102, USA
| | - Taylor M Wilcox
- National Genomics Center for Fish and Wildlife Conservation, USDA Forest Service, Rocky Mountain Research Station, Missoula, MT 59801, USA
| | - Lauren B Buckley
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Catherine L Parr
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L3 5TR, UK; Department of Zoology and Entomology, University of Pretoria, Pretoria 0028, South Africa; School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| | - Ethan B Linck
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Emily D Fountain
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI 53706, USA
| | - Michael K Schwartz
- National Genomics Center for Fish and Wildlife Conservation, USDA Forest Service, Rocky Mountain Research Station, Missoula, MT 59801, USA
| |
Collapse
|
6
|
Hundsdoerfer AK, Schell T, Patzold F, Wright CJ, Yoshido A, Marec F, Daneck H, Winkler S, Greve C, Podsiadlowski L, Hiller M, Pippel M. High-quality haploid genomes corroborate 29 chromosomes and highly conserved synteny of genes in Hyles hawkmoths (Lepidoptera: Sphingidae). BMC Genomics 2023; 24:443. [PMID: 37550607 PMCID: PMC10405479 DOI: 10.1186/s12864-023-09506-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/05/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Morphological and traditional genetic studies of the young Pliocene genus Hyles have led to the understanding that despite its importance for taxonomy, phenotypic similarity of wing patterns does not correlate with phylogenetic relationship. To gain insights into various aspects of speciation in the Spurge Hawkmoth (Hyles euphorbiae), we assembled a chromosome-level genome and investigated some of its characteristics. RESULTS The genome of a male H. euphorbiae was sequenced using PacBio and Hi-C data, yielding a 504 Mb assembly (scaffold N50 of 18.2 Mb) with 99.9% of data represented by the 29 largest scaffolds forming the haploid chromosome set. Consistent with this, FISH analysis of the karyotype revealed n = 29 chromosomes and a WZ/ZZ (female/male) sex chromosome system. Estimates of chromosome length based on the karyotype image provided an additional quality metric of assembled chromosome size. Rescaffolding the published male H. vespertilio genome resulted in a high-quality assembly (651 Mb, scaffold N50 of 22 Mb) with 98% of sequence data in the 29 chromosomes. The larger genome size of H. vespertilio (average 1C DNA value of 562 Mb) was accompanied by a proportional increase in repeats from 45% in H. euphorbiae (measured as 472 Mb) to almost 55% in H. vespertilio. Several wing pattern genes were found on the same chromosomes in the two species, with varying amounts and positions of repetitive elements and inversions possibly corrupting their function. CONCLUSIONS Our two-fold comparative genomics approach revealed high gene synteny of the Hyles genomes to other Sphingidae and high correspondence to intact Merian elements, the ancestral linkage groups of Lepidoptera, with the exception of three simple fusion events. We propose a standardized approach for genome taxonomy using nucleotide homology via scaffold chaining as the primary tool combined with Oxford plots based on Merian elements to infer and visualize directionality of chromosomal rearrangements. The identification of wing pattern genes promises future understanding of the evolution of forewing patterns in the genus Hyles, although further sequencing data from more individuals are needed. The genomic data obtained provide additional reliable references for further comparative studies in hawkmoths (Sphingidae).
Collapse
Affiliation(s)
- Anna K Hundsdoerfer
- Senckenberg Natural History Collections Dresden, Königsbrücker Landstr. 159, 01109, Dresden, Germany.
| | - Tilman Schell
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt Am Main, Germany
| | - Franziska Patzold
- Senckenberg Natural History Collections Dresden, Königsbrücker Landstr. 159, 01109, Dresden, Germany
| | | | - Atsuo Yoshido
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - František Marec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Hana Daneck
- Senckenberg Natural History Collections Dresden, Königsbrücker Landstr. 159, 01109, Dresden, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany
| | - Carola Greve
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt Am Main, Germany
| | - Lars Podsiadlowski
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, 53113, Bonn, Germany
| | - Michael Hiller
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt Am Main, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307, Dresden, Germany
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Uppsala, 751 23, Sweden
| |
Collapse
|
7
|
Neto C, Hancock A. Genetic Architecture of Flowering Time Differs Between Populations With Contrasting Demographic and Selective Histories. Mol Biol Evol 2023; 40:msad185. [PMID: 37603463 PMCID: PMC10461413 DOI: 10.1093/molbev/msad185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
Understanding the evolutionary factors that impact the genetic architecture of traits is a central goal of evolutionary genetics. Here, we investigate how quantitative trait variation accumulated over time in populations that colonized a novel environment. We compare the genetic architecture of flowering time in Arabidopsis populations from the drought-prone Cape Verde Islands and their closest outgroup population from North Africa. We find that trait polygenicity is severely reduced in the island populations compared to the continental North African population. Further, trait architectures and reconstructed allelic histories best fit a model of strong directional selection in the islands in accord with a Fisher-Orr adaptive walk. Consistent with this, we find that large-effect variants that disrupt major flowering time genes (FRI and FLC) arose first, followed by smaller effect variants, including ATX2 L125F, which is associated with a 4-day reduction in flowering time. The most recently arising flowering time-associated loci are not known to be directly involved in flowering time, consistent with an omnigenic signature developing as the population approaches its trait optimum. Surprisingly, we find no effect in the natural population of EDI-Cvi-0 (CRY2 V367M), an allele for which an effect was previously validated by introgression into a Eurasian line. Instead, our results suggest the previously observed effect of the EDI-Cvi-0 allele on flowering time likely depends on genetic background, due to an epistatic interaction. Altogether, our results provide an empirical example of the effects demographic history and selection has on trait architecture.
Collapse
Affiliation(s)
- Célia Neto
- Molecular Basis of Adaptation Research Group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Angela Hancock
- Molecular Basis of Adaptation Research Group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
8
|
Keinath S, Frisch J, Müller J, Mayer F, Struck U, Rödel M. Species- and sex-dependent changes in body size between 1892 and 2017, and recent biochemical signatures in rural and urban populations of two ground beetle species. Ecol Evol 2023; 13:e10329. [PMID: 37484935 PMCID: PMC10361362 DOI: 10.1002/ece3.10329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
Increasing urbanisation and intensified agriculture lead to rapid transitions of ecosystems. Species that persist throughout rapid transitions may respond to environmental changes across space and/or time, for instance by altering morphological and/or biochemical traits. We used natural history museum specimens, covering the Anthropocene epoch, to obtain long-term data combined with recent samples. We tested whether rural and urban populations of two ground beetle species, Harpalus affinis and H. rufipes, exhibit spatio-temporal intraspecific differences in body size. On a spatial scale, we tested signatures of nitrogen and carbon stable isotopes enrichments in different tissues and body components in recent populations of both species from urban and agricultural habitats. For body size examinations, we used beetles, collected from the early 20th century until 2017 in the Berlin-Brandenburg region, Germany, where urbanisation and agriculture have intensified throughout the last century. For stable isotope examinations, we used recent beetles from urban and agricultural habitats. Our results revealed no spatio-temporal changes in body size in both species' females. Body size of H. rufipes males decreased in the city but remained constant in rural areas over time. We discuss our findings with respect to habitat quality, urban heat and interspecific differences in activity pattern. Although nitrogen isotope ratios were mostly higher in specimens from agricultural habitats, some urban beetles reached equal enrichments. Carbon signatures of both species did not differ between habitats, detecting no differences in energy sources. Our results indicate that increasing urbanisation and intensified agriculture are influencing species' morphology and/or biochemistry. However, changes may be species- and sex-specific.
Collapse
Affiliation(s)
- Silvia Keinath
- Museum für Naturkunde, Berlin – Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research – BBIBBerlinGermany
| | - Johannes Frisch
- Museum für Naturkunde, Berlin – Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
| | - Johannes Müller
- Museum für Naturkunde, Berlin – Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research – BBIBBerlinGermany
| | - Frieder Mayer
- Museum für Naturkunde, Berlin – Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research – BBIBBerlinGermany
| | - Ulrich Struck
- Museum für Naturkunde, Berlin – Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
- Department of Earth ScienceFreie Universität BerlinBerlinGermany
| | - Mark‐Oliver Rödel
- Museum für Naturkunde, Berlin – Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research – BBIBBerlinGermany
| |
Collapse
|
9
|
Kalcev G, Cossu G, Preti A, Littera MT, Frau S, Primavera D, Zaccheddu R, Matza V, Ermellino M, Pintus E, Carta MG. Development and Validation of the Questionnaire for Adaptive Hyperactivity and Goal Achievement (AHGA). Clin Pract Epidemiol Ment Health 2023; 19:e174501792303281. [PMID: 37916197 PMCID: PMC10351347 DOI: 10.2174/17450179-v19-e230419-2022-50] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 11/03/2023]
Abstract
Objective This paper illustrates the preliminary psychometric properties of the Questionnaire for Adaptive Hyperactivity and Goal Achievement (AHGA), aimed at measuring adaptive characteristics of hyperactivity and goal pursuit in older adults. Methods The 12-item scale was administered to a sample of 120 subjects (older adults) between February 2022 and June 2022. The reliability of AHGA was measured using Cronbach's alpha, and factor structure was established using parallel analysis (PA) and principal component analysis (PCA). Convergent validity was tested against the Biological Rhythms Interview of Assessment in Neuropsychiatry (BRIAN). Results All included subjects have an average age of 74.1±5.1 years. AHGA reliability was good (Cronbach's alpha: 0.713 [95%CI: 0.630 to 0.783]). Factor analysis suggested two main components: goal achievement and hyperactivity, which explained 41% of the variance in the data. The results support the convergent validity of the scale: AHGA measures adaptive characteristics of hyperactivity and goal pursuit, in contrast to BRIAN, which measures pathological characteristics. Conclusion The reported findings represent an innovative approach to hyperthymic features by embracing a broader spectrum concept that conceptualizes the potential transition between pathological and adaptive aspects as a continuum.
Collapse
Affiliation(s)
- Goce Kalcev
- Department of Innovation Sciences and Technologies at the University of Cagliari, Cagliari, Italy
| | - Giulia Cossu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Antonio Preti
- Department of Neuroscience, University of Turin, Turin, Italy
| | | | - Stèphanie Frau
- Department of Psychology, University of Cagliari, Cagliari, Italy
| | - Diego Primavera
- Azienda Regionale della Salute (ARES, Sardegna), Medio Campidano, Italy
| | - Rosanna Zaccheddu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | | | - Elisa Pintus
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Mauro G. Carta
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
10
|
Mangan R, Bussière LF, Polanczyk RA, Tinsley MC. Increasing ecological heterogeneity can constrain biopesticide resistance evolution. Trends Ecol Evol 2023:S0169-5347(23)00016-2. [PMID: 36906434 DOI: 10.1016/j.tree.2023.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 03/11/2023]
Abstract
Microbial biopesticides containing living parasites are valuable emerging crop protection technologies against insect pests, but they are vulnerable to resistance evolution. Fortunately, the fitness of alleles that provide resistance, including to parasites used in biopesticides, frequently depends on parasite identity and environmental conditions. This context-specificity suggests a sustainable approach to biopesticide resistance management through landscape diversification. To mitigate resistance risks, we advocate increasing the range of biopesticides available to farmers, whilst simultaneously encouraging other aspects of landscape-wide crop heterogeneity that can generate variable selection on resistance alleles. This approach requires agricultural stakeholders to prioritize diversity as well as efficiency, both within agricultural landscapes and the biocontrol marketplace.
Collapse
Affiliation(s)
- Rosie Mangan
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
| | - Luc F Bussière
- Biological and Environmental Sciences and Gothenburg Global Biodiversity Centre, The University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Ricardo Antônio Polanczyk
- Júlio de Mesquita Filho State University of São Paulo, Faculty of Agrarian and Veterinary Sciences of Jaboticabal, Jaboticabal, SP, Brazil
| | - Matthew C Tinsley
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
11
|
Devi A, Jain K. Polygenic adaptation dynamics in large, finite populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525607. [PMID: 36747829 PMCID: PMC9901025 DOI: 10.1101/2023.01.25.525607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although many phenotypic traits are determined by a large number of genetic variants, how a polygenic trait adapts in response to a change in the environment is not completely understood. In the framework of diffusion theory, we study the steady state and the adaptation dynamics of a large but finite population evolving under stabilizing selection and symmetric mutations when selection and mutation are moderately large. We find that in the stationary state, the allele frequency distribution at a locus is unimodal if its effect size is below a threshold effect and bimodal otherwise; these results are the stochastic analog of the deterministic ones where the stable allele frequency becomes bistable when the effect size exceeds a threshold. It is known that following a sudden shift in the phenotypic optimum, in an infinitely large population, selective sweeps at a large-effect locus are prevented and adaptation proceeds exclusively via subtle changes in the allele frequency; in contrast, we find that the chance of sweep is substantially enhanced in large, finite populations and the allele frequency at a large-effect locus can reach a high frequency at short times even for small shifts in the phenotypic optimum.
Collapse
Affiliation(s)
- Archana Devi
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, USA
| | - Kavita Jain
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
12
|
Tomasini M, Peischl S. The role of spatial structure in multi-deme models of evolutionary rescue. J Evol Biol 2022; 35:986-1001. [PMID: 35704340 DOI: 10.1111/jeb.14018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022]
Abstract
Genetic variation and population sizes are critical factors for successful adaptation to novel environmental conditions. Gene flow between sub-populations is a potent mechanism to provide such variation and can hence facilitate adaptation, for instance by increasing genetic variation or via the introduction of beneficial variants. On the other hand, if gene flow between different habitats is too strong, locally beneficial alleles may not be able to establish permanently. In the context of evolutionary rescue, intermediate levels of gene flow are therefore often optimal for maximizing a species chance for survival in metapopulations without spatial structure. To which extent and under which conditions gene flow facilitates or hinders evolutionary rescue in spatially structured populations remains unresolved. We address this question by studying the differences between evolutionary rescue in the island model and in the stepping stone model in a gradually deteriorating habitat. We show that evolutionary rescue is modulated by the rate of gene flow between different habitats, which in turn depends strongly on the spatial structure and the pattern of environmental deterioration. We use these insights to show that in many cases spatially structured models can be translated into a simpler island model using an appropriately scaled effective migration rate.
Collapse
Affiliation(s)
- Matteo Tomasini
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland.,Computational and Molecular Population Genetics Laboratory, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Stephan Peischl
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland.,Swiss Institute for Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
13
|
Diamond SE, Prileson EG, Martin RA. Adaptation to urban environments. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100893. [PMID: 35240334 DOI: 10.1016/j.cois.2022.100893] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Despite widespread evidence of urban evolution, the adaptive nature of these changes is often unclear. We review different phenotypic and molecular lines of evidence used for assessing urban adaptation, discussing the benefits and limitations of each approach, and rare examples of their integration. We then provide a synthesis of local adaptation to urban and rural environments. These data were drawn from phenotypic reciprocal transplant studies, the majority of which focus on insects and other arthropods. Broadly, we found support for local adaptation to urban and rural environments. However, there was asymmetry in the evidence for local adaptation depending on population of origin, with urban adaptation being less prevalent than rural adaptation, suggesting many urban populations are still adapting to urban environments. Further, the general patterns were underlain by considerable variation among study systems; we discuss how environmental heterogeneity and costs of adaptation might explain system-specific variation in urban-rural local adaptation. We then look to the future of urban adaptation research, considering the magnitude and direction of adaptation in context of different agents of selection including urban heat islands, chemical pollutants, and biotic interactions.
Collapse
Affiliation(s)
- Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA.
| | - Eric G Prileson
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Ryan A Martin
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
14
|
Sprengelmeyer QD, Lack JB, Braun DT, Monette MJ, Pool JE. The evolution of larger size in high-altitude Drosophila melanogaster has a variable genetic architecture. G3 GENES|GENOMES|GENETICS 2022; 12:6493269. [PMID: 35100377 PMCID: PMC8895999 DOI: 10.1093/g3journal/jkab454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 11/12/2022]
Abstract
Important uncertainties persist regarding the genetic architecture of adaptive trait evolution in natural populations, including the number of genetic variants involved, whether they are drawn from standing genetic variation, and whether directional selection drives them to complete fixation. Here, we take advantage of a unique natural population of Drosophila melanogaster from the Ethiopian highlands, which has evolved larger body size than any other known population of this species. We apply a bulk segregant quantitative trait locus mapping approach to 4 unique crosses between highland Ethiopian and lowland Zambian populations for both thorax length and wing length. Results indicated a persistently variable genetic basis for these evolved traits (with largely distinct sets of quantitative trait loci for each cross), and at least a moderately polygenic architecture with relatively strong effects present. We complemented these mapping experiments with population genetic analyses of quantitative trait locus regions and gene ontology enrichment analysis, generating strong hypotheses for specific genes and functional processes that may have contributed to these adaptive trait changes. Finally, we find that the genetic architectures indicated by our quantitative trait locus mapping results for size traits mirror those from similar experiments on other recently evolved traits in this species. Collectively, these studies suggest a recurring pattern of polygenic adaptation in this species, in which causative variants do not approach fixation and moderately strong effect loci are present.
Collapse
Affiliation(s)
| | - Justin B Lack
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dylan T Braun
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Matthew J Monette
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
15
|
Ze LJ, Jin L, Li GQ. Silencing of Adc and Ebony Causes Abnormal Darkening of Cuticle in Henosepilachna vigintioctopunctata. Front Physiol 2022; 13:829675. [PMID: 35283776 PMCID: PMC8907826 DOI: 10.3389/fphys.2022.829675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/10/2022] [Indexed: 11/24/2022] Open
Abstract
N-β-alanyldopamine (NBAD) is a precursor of N-acylquinone sclerotin utilized for cross-linking between cuticular proteins for cuticle during insect molting. The importance of NBAD in cuticle tanning has not been well compared among different developing stages of insects. Henosepilachna vigintioctopunctata, a typical polyphagous pest feeding on a large number of Solanaceae and Cucurbitaceae plants in Asian countries, displays diverse cuticle pigmentation patterns among developing stages and body regions. Here, we found that the expression of three genes (Hvadc, Hvebony, and Hvtan) involved in NBAD biosynthesis peaked in the 4-day-old pupae or 0-day-old adults of H. vigintioctopunctata. At the first, second, third, and fourth larval instar and pupal stage, their transcript levels were high just before and/or right after the molting. Moreover, they were more abundantly transcribed at the larval heads than in the bodies. RNA interference (RNAi) of either Hvadc or Hvebony at the third instar larvae selectively deepened the color of the larval head capsules, antennae, mouthpart, scoli, strumae, and legs; and depletion of the two genes blackened the pupal head capsules, antennae, mouthpart, and legs. However, the knockdown of either Hvadc or Hvebony darkened the whole bodies of the adults. Conversely, RNAi of Hvtan at the third instar stage had little influence on the pigmentation in the larvae, pupae, and adults. These findings demonstrated that Adc and Ebony are important in cuticle pigmentation of H. vigintioctopunctata and suggested that larger quantities of NBAD were present in adults and play more important roles in pigmentation than larvae/pupae.
Collapse
|
16
|
OUP accepted manuscript. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Dumartinet T, Ravel S, Roussel V, Perez-Vicente L, Aguayo J, Abadie C, Carlier J. Complex adaptive architecture underlies adaptation to quantitative host resistance in a fungal plant pathogen. Mol Ecol 2021; 31:1160-1179. [PMID: 34845779 DOI: 10.1111/mec.16297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022]
Abstract
Plant pathogens often adapt to plant genetic resistance so characterization of the architecture underlying such an adaptation is required to understand the adaptive potential of pathogen populations. Erosion of banana quantitative resistance to a major leaf disease caused by polygenic adaptation of the causal agent, the fungus Pseudocercospora fijiensis, was recently identified in the northern Caribbean region. Genome scan and quantitative genetics approaches were combined to investigate the adaptive architecture underlying this adaptation. Thirty-two genomic regions showing host selection footprints were identified by pool sequencing of isolates collected from seven plantation pairs of two cultivars with different levels of quantitative resistance. Individual sequencing and phenotyping of isolates from one pair revealed significant and variable levels of correlation between haplotypes in 17 of these regions with a quantitative trait of pathogenicity (the diseased leaf area). The multilocus pattern of haplotypes detected in the 17 regions was found to be highly variable across all the population pairs studied. These results suggest complex adaptive architecture underlying plant pathogen adaptation to quantitative resistance with a polygenic basis, redundancy, and a low level of parallel evolution between pathogen populations. Candidate genes involved in quantitative pathogenicity and host adaptation of P. fijiensis were identified in genomic regions by combining annotation analysis with available biological data.
Collapse
Affiliation(s)
- Thomas Dumartinet
- CIRAD, UMR PHIM, Montpellier, France.,PHIM, Univ Montpellier, INRAe, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Sébastien Ravel
- CIRAD, UMR PHIM, Montpellier, France.,PHIM, Univ Montpellier, INRAe, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Véronique Roussel
- CIRAD, UMR PHIM, Montpellier, France.,PHIM, Univ Montpellier, INRAe, CIRAD, Montpellier SupAgro, Montpellier, France
| | | | - Jaime Aguayo
- ANSES, Laboratoire de la Santé des Végétaux (LSV), Unité de Mycologie, Malzéville, France
| | - Catherine Abadie
- CIRAD, UMR PHIM, Montpellier, France.,PHIM, Univ Montpellier, INRAe, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Jean Carlier
- CIRAD, UMR PHIM, Montpellier, France.,PHIM, Univ Montpellier, INRAe, CIRAD, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
18
|
|
19
|
Sprengelmeyer QD, Pool JE. Ethanol resistance in Drosophila melanogaster has increased in parallel cold-adapted populations and shows a variable genetic architecture within and between populations. Ecol Evol 2021; 11:15364-15376. [PMID: 34765183 PMCID: PMC8571616 DOI: 10.1002/ece3.8228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/24/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the genetic properties of adaptive trait evolution is a fundamental crux of biological inquiry that links molecular processes to biological diversity. Important uncertainties persist regarding the genetic predictability of adaptive trait change, the role of standing variation, and whether adaptation tends to result in the fixation of favored variants. Here, we use the recurrent evolution of enhanced ethanol resistance in Drosophila melanogaster during this species' worldwide expansion as a promising system to add to our understanding of the genetics of adaptation. We find that elevated ethanol resistance has evolved at least three times in different cooler regions of the species' modern range-not only at high latitude but also in two African high-altitude regions. Applying a bulk segregant mapping framework, we find that the genetic architecture of ethanol resistance evolution differs substantially not only between our three resistant populations, but also between two crosses involving the same European population. We then apply population genetic scans for local adaptation within our quantitative trait locus regions, and we find potential contributions of genes with annotated roles in spindle localization, membrane composition, sterol and alcohol metabolism, and other processes. We also apply simulation-based analyses that confirm the variable genetic basis of ethanol resistance and hint at a moderately polygenic architecture. However, these simulations indicate that larger-scale studies will be needed to more clearly quantify the genetic architecture of adaptive evolution and to firmly connect trait evolution to specific causative loci.
Collapse
Affiliation(s)
| | - John E. Pool
- Laboratory of GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
20
|
Stephan W. Rapid Evolutionary Adaptation in Response to Selection on Quantitative Traits. Life (Basel) 2021; 11:life11080797. [PMID: 34440541 PMCID: PMC8398862 DOI: 10.3390/life11080797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022] Open
Abstract
Evolutionary adaptation after sudden environmental changes can occur very rapidly. The mechanisms facilitating rapid adaptation range from strong positive directional selection leading to large shifts in the allele frequencies at a few loci (selective sweeps) to polygenic selection causing small changes in allele frequencies at many loci. In addition, combinations of these two extreme mechanisms may also result in fast evolution. In recent years, following reports of new case studies of rapid adaptation, population genetic models have been proposed to explain these observations. In these models, the role of the major selective forces (positive directional and stabilizing selection) is highlighted as well as the genetic architecture of quantitative traits. Furthermore, the factors limiting the speed of adaptation are analyzed, in particular, the effects of random genetic drift and demography due to finite population size.
Collapse
Affiliation(s)
- Wolfgang Stephan
- Natural History Museum, 10115 Berlin, Germany;
- Faculty of Biology, Evolutionary Biology, Ludwig-Maximilian University of Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
21
|
Lafuente E, Alves F, King JG, Peralta CM, Beldade P. Many ways to make darker flies: Intra- and interspecific variation in Drosophila body pigmentation components. Ecol Evol 2021; 11:8136-8155. [PMID: 34188876 PMCID: PMC8216949 DOI: 10.1002/ece3.7646] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/13/2022] Open
Abstract
Body pigmentation is an evolutionarily diversified and ecologically relevant trait with substantial variation within and between species, and important roles in animal survival and reproduction. Insect pigmentation, in particular, provides some of the most compelling examples of adaptive evolution, including its ecological significance and genetic bases. Pigmentation includes multiple aspects of color and color pattern that may vary more or less independently, and can be under different selective pressures. We decompose Drosophila thorax and abdominal pigmentation, a valuable eco-evo-devo model, into distinct measurable traits related to color and color pattern. We investigate intra- and interspecific variation for those traits and assess its different sources. For each body part, we measured overall darkness, as well as four other pigmentation properties distinguishing between background color and color of the darker pattern elements that decorate each body part. By focusing on two standard D. melanogaster laboratory populations, we show that pigmentation components vary and covary in distinct manners depending on sex, genetic background, and temperature during development. Studying three natural populations of D. melanogaster along a latitudinal cline and five other Drosophila species, we then show that evolution of lighter or darker bodies can be achieved by changing distinct component traits. Our results paint a much more complex picture of body pigmentation variation than previous studies could uncover, including patterns of sexual dimorphism, thermal plasticity, and interspecific diversity. These findings underscore the value of detailed quantitative phenotyping and analysis of different sources of variation for a better understanding of phenotypic variation and diversification, and the ecological pressures and genetic mechanisms underlying them.
Collapse
Affiliation(s)
- Elvira Lafuente
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Present address:
Swiss Federal Institute of Aquatic Science and TechnologyDepartment of Aquatic EcologyDübendorfSwitzerland
| | | | - Jessica G. King
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Present address:
Institute of Evolutionary BiologySchool of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Carolina M. Peralta
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Present address:
Max Planck Institute for Evolutionary BiologyPlönGermany
| | - Patrícia Beldade
- Instituto Gulbenkian de CiênciaOeirasPortugal
- CE3C: Centre for Ecology, Evolution, and Environmental Changes, Faculty of SciencesUniversity of LisbonLisbonPortugal
| |
Collapse
|
22
|
Pan Y, Fang G, Wang Z, Cao Y, Liu Y, Li G, Liu X, Xiao Q, Zhan S. Chromosome-level genome reference and genome editing of the tea geometrid. Mol Ecol Resour 2021; 21:2034-2049. [PMID: 33738922 DOI: 10.1111/1755-0998.13385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022]
Abstract
The tea geometrid is a destructive insect pest on tea plants, which seriously affects tea production in terms of both yield and quality and causes severe economic losses. The tea geometrid also provides an important study system to address the ecological adaptive mechanisms underlying its unique host plant adaptation and protective resemblance. In this study, we fully sequenced and de novo assembled the reference genome of the tea geometrid, Ectropis grisescens, using long sequencing reads. We presented a highly continuous, near-complete genome reference (787.4 Mb; scaffold N50: 26.9 Mb), along with the annotation of 18,746 protein-coding genes and 53.3% repeat contents. Importantly, we successfully placed 97.8% of the assembly in 31 chromosomes based on Hi-C interactions and characterized the sex chromosome based on sex-biased sequencing coverage. Multiple quality-control assays and chromosome-scale synteny with the model species all supported the high quality of the presented genome reference. We focused biological annotations on gene families related to the host plant adaptation and camouflage in the tea geometrid and performed comparisons with other representative lepidopteran species. Important findings include the E. grisescens-specific expansion of CYP6 P450 genes that might be involved in metabolism of tea defensive chemicals and unexpected massive expansion of gustatory receptor gene families that suggests potential polyphagy for this tea pest. Furthermore, we developed an efficient genome editing system based on CRISPR/Cas9 technology and successfully implement mutagenesis of a Hox gene in the tea geometrid. Our study provides key genomic resources both for exploring unique mechanisms underlying the ecological adaptation of tea geometrids and for developing environment-friendly strategies for tea pest management.
Collapse
Affiliation(s)
- Yunjie Pan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Gangqi Fang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Zhibo Wang
- Key Laboratory of Tea Quality and Safety Control, Tea Research Institute, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yanghui Cao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yongjian Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guiyun Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaojing Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Xiao
- Key Laboratory of Tea Quality and Safety Control, Tea Research Institute, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Gilbert SF. Evolutionary developmental biology and sustainability: A biology of resilience. Evol Dev 2021; 23:273-291. [PMID: 33400344 DOI: 10.1111/ede.12366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022]
Abstract
Evolutionary developmental biology, and especially ecological developmental biology, is essential for discussions of sustainability and the responses to global climate change. First, this paper explores examples of animals that have successfully altered their development to accommodate human-made changes to their environments. We next document the ability of global warming to disrupt the development of those organisms with temperature-dependent sex-determination or with phenologies coordinating that organism's development with those of other species. The thermotolerance of Homo sapiens is also related to key developmental factors concerning brain development and maintenance, and the development of corals, the keystone organisms of tropical reefs, is discussed in relation to global warming as well as to other anthropogenic changes. While teratogenic and endocrine-disrupting compounds are not discussed in this essay, the ability of glyphosate herbicides to block insect development is highlighted. Last, the paper discusses the need to creatively integrate developmental biology with ecological, political, religious, and economic perspectives, as the flourishing of contemporary species may require altering the ways that Western science has considered the categories of nature, culture, and self.
Collapse
Affiliation(s)
- Scott F Gilbert
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, USA
| |
Collapse
|
24
|
Sterken MG, Bevers RPJ, Volkers RJM, Riksen JAG, Kammenga JE, Snoek BL. Dissecting the eQTL Micro-Architecture in Caenorhabditis elegans. Front Genet 2020; 11:501376. [PMID: 33240309 PMCID: PMC7670075 DOI: 10.3389/fgene.2020.501376] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 10/13/2020] [Indexed: 01/11/2023] Open
Abstract
The study of expression quantitative trait loci (eQTL) using natural variation in inbred populations has yielded detailed information about the transcriptional regulation of complex traits. Studies on eQTL using recombinant inbred lines (RILs) led to insights on cis and trans regulatory loci of transcript abundance. However, determining the underlying causal polymorphic genes or variants is difficult, but ultimately essential for the understanding of regulatory networks of complex traits. This requires insight into whether associated loci are single eQTL or a combination of closely linked eQTL, and how this QTL micro-architecture depends on the environment. We addressed these questions by testing for independent replication of previously mapped eQTL in Caenorhabditis elegans using new data from introgression lines (ILs). Both populations indicate that the overall heritability of gene expression, number, and position of eQTL differed among environments. Across environments we were able to replicate 70% of the cis- and 40% of the trans-eQTL using the ILs. Testing eight different simulation models, we suggest that additive effects explain up to 60-93% of RIL/IL heritability for all three environments. Closely linked eQTL explained up to 40% of RIL/IL heritability in the control environment whereas only 7% in the heat-stress and recovery environments. In conclusion, we show that reproducibility of eQTL was higher for cis vs. trans eQTL and that the environment affects the eQTL micro-architecture.
Collapse
Affiliation(s)
- Mark G. Sterken
- Laboratory of Nematology, Wageningen University & Research, Wageningen, Netherlands
| | - Roel P. J. Bevers
- Laboratory of Nematology, Wageningen University & Research, Wageningen, Netherlands
| | - Rita J. M. Volkers
- Laboratory of Nematology, Wageningen University & Research, Wageningen, Netherlands
| | - Joost A. G. Riksen
- Laboratory of Nematology, Wageningen University & Research, Wageningen, Netherlands
| | - Jan E. Kammenga
- Laboratory of Nematology, Wageningen University & Research, Wageningen, Netherlands
| | - Basten L. Snoek
- Laboratory of Nematology, Wageningen University & Research, Wageningen, Netherlands
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
25
|
Morris J, Darolti I, van der Bijl W, Mank JE. High-resolution characterization of male ornamentation and re-evaluation of sex linkage in guppies. Proc Biol Sci 2020; 287:20201677. [PMID: 33081622 PMCID: PMC7661287 DOI: 10.1098/rspb.2020.1677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022] Open
Abstract
Coloration plays a key role in the ecology of many species, influencing how an organism interacts with its environment, other species and conspecifics. Guppies are sexually dimorphic, with males displaying sexually selected coloration resulting from female preference. Previous work has suggested that much of guppy colour pattern variation is Y-linked. However, it remains unclear how many individual colour patterns are Y-linked in natural populations as much of the previous work has focused on phenotypes either not found in the wild, or aggregate measures such as total colour area. Moreover, ornaments have traditionally been identified and delineated by hand, and computational methods now make it possible to extract pixels and identify ornaments with automated methods, reducing the potential for human bias. Here we developed a pipeline for semi-automated ornament identification and high-resolution image analysis of male guppy colour patterns and applied it to a multigenerational pedigree. Our results show that loci controlling the presence or the absence of individual male ornaments in our population are not predominantly Y-linked. However, we find that ornaments of similar colour are not independent of each other, and modifier loci that affect whole animal coloration appear to be at least partially Y-linked. Considering these results, Y-linkage of individual ornaments may not be important in driving colour changes in natural populations of guppies, or in expansions of the non-recombining Y region, while Y-linked modifier loci that affect aggregate traits may well play an important role.
Collapse
Affiliation(s)
- Jake Morris
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wouter van der Bijl
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Judith E. Mank
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
Brealey JC, Leitão HG, van der Valk T, Xu W, Bougiouri K, Dalén L, Guschanski K. Dental Calculus as a Tool to Study the Evolution of the Mammalian Oral Microbiome. Mol Biol Evol 2020; 37:3003-3022. [PMID: 32467975 PMCID: PMC7530607 DOI: 10.1093/molbev/msaa135] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dental calculus, the calcified form of the mammalian oral microbial plaque biofilm, is a rich source of oral microbiome, host, and dietary biomolecules and is well preserved in museum and archaeological specimens. Despite its wide presence in mammals, to date, dental calculus has primarily been used to study primate microbiome evolution. We establish dental calculus as a valuable tool for the study of nonhuman host microbiome evolution, by using shotgun metagenomics to characterize the taxonomic and functional composition of the oral microbiome in species as diverse as gorillas, bears, and reindeer. We detect oral pathogens in individuals with evidence of oral disease, assemble near-complete bacterial genomes from historical specimens, characterize antibiotic resistance genes, reconstruct components of the host diet, and recover host genetic profiles. Our work demonstrates that metagenomic analyses of dental calculus can be performed on a diverse range of mammalian species, which will allow the study of oral microbiome and pathogen evolution from a comparative perspective. As dental calculus is readily preserved through time, it can also facilitate the quantification of the impact of anthropogenic changes on wildlife and the environment.
Collapse
Affiliation(s)
- Jaelle C Brealey
- Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Henrique G Leitão
- Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Tom van der Valk
- Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Wenbo Xu
- Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Katia Bougiouri
- Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Katerina Guschanski
- Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
27
|
Stephan W, John S. Polygenic Adaptation in a Population of Finite Size. ENTROPY 2020; 22:e22080907. [PMID: 33286676 PMCID: PMC7517530 DOI: 10.3390/e22080907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/31/2020] [Accepted: 08/15/2020] [Indexed: 12/15/2022]
Abstract
Polygenic adaptation in response to selection on quantitative traits has become an important topic in evolutionary biology. Here we review the recent literature on models of polygenic adaptation. In particular, we focus on a model that includes mutation and both directional and stabilizing selection on a highly polygenic trait in a population of finite size (thus experiencing random genetic drift). Assuming that a sudden environmental shift of the fitness optimum occurs while the population is in a stochastic equilibrium, we analyze the adaptation of the trait to the new optimum. When the shift is not too large relative to the equilibrium genetic variance and this variance is determined by loci with mostly small effects, the approach of the mean phenotype to the optimum can be approximated by a rapid exponential process (whose rate is proportional to the genetic variance). During this rapid phase the underlying changes to allele frequencies, however, may depend strongly on genetic drift. While trait-increasing alleles with intermediate equilibrium frequencies are dominated by selection and contribute positively to changes of the trait mean (i.e., are aligned with the direction of the optimum shift), alleles with low or high equilibrium frequencies show more of a random dynamics, which is expected when drift is dominating. A strong effect of drift is also predicted for population size bottlenecks. Our simulations show that the presence of a bottleneck results in a larger deviation of the population mean of the trait from the fitness optimum, which suggests that more loci experience the influence of drift.
Collapse
Affiliation(s)
- Wolfgang Stephan
- Leibniz Institute for Evolution and Biodiversity Science, Natural History Museum, 10115 Berlin, Germany;
| | - Sona John
- Department of Life Science Systems, Technical University of Munich, 85354 Freising, Germany
- Correspondence:
| |
Collapse
|
28
|
John S, Stephan W. Important role of genetic drift in rapid polygenic adaptation. Ecol Evol 2020; 10:1278-1287. [PMID: 32076513 PMCID: PMC7029068 DOI: 10.1002/ece3.5981] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/05/2019] [Accepted: 12/08/2019] [Indexed: 01/02/2023] Open
Abstract
We analyzed a model to determine the factors that facilitate or limit rapid polygenic adaptation. This model includes population genetic terms of mutation and both directional and stabilizing selection on a highly polygenic trait in a diploid population of finite size. First, we derived the equilibrium distribution of the allele frequencies of the multilocus model by diffusion approximation. This formula describing the equilibrium allele frequencies as a mutation-selection-drift balance was examined by computer simulation using parameter values inferred for human height, a well-studied polygenic trait. Second, assuming that a sudden environmental shift of the fitness optimum occurs while the population is in equilibrium, we analyzed the adaptation of the trait to the new optimum. The speed at which the trait mean approaches the new optimum increases with the equilibrium genetic variance. Thus, large population size and/or large mutation rate may facilitate rapid adaptation. Third, the contribution of an individual locus i to polygenic adaptation depends on the compound parameterγ i p i 0 q i 0 , where γ i is the effect size,p i 0 the equilibrium frequency of the trait-increasing allele of this locus, andq i 0 = 1 - p i 0 . Thus, only loci with large values of this parameter contribute coherently to polygenic adaptation. Given that mutation rates are relatively small, this is more likely in large populations, in which the effects of drift are limited.
Collapse
Affiliation(s)
- Sona John
- Section of Population GeneticsTechnical University of MunichFreisingGermany
| | - Wolfgang Stephan
- Leibniz Institute for Evolution and Biodiversity ScienceNatural History MuseumBerlinGermany
| |
Collapse
|
29
|
Keinath S, Frisch J, Müller J, Mayer F, Rödel MO. Spatio-Temporal Color Differences Between Urban and Rural Populations of a Ground Beetle During the Last 100 Years. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2019.00525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Pascoal S, Risse JE, Zhang X, Blaxter M, Cezard T, Challis RJ, Gharbi K, Hunt J, Kumar S, Langan E, Liu X, Rayner JG, Ritchie MG, Snoek BL, Trivedi U, Bailey NW. Field cricket genome reveals the footprint of recent, abrupt adaptation in the wild. Evol Lett 2019; 4:19-33. [PMID: 32055408 PMCID: PMC7006468 DOI: 10.1002/evl3.148] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/21/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
Evolutionary adaptation is generally thought to occur through incremental mutational steps, but large mutational leaps can occur during its early stages. These are challenging to study in nature due to the difficulty of observing new genetic variants as they arise and spread, but characterizing their genomic dynamics is important for understanding factors favoring rapid adaptation. Here, we report genomic consequences of recent, adaptive song loss in a Hawaiian population of field crickets (Teleogryllus oceanicus). A discrete genetic variant, flatwing, appeared and spread approximately 15 years ago. Flatwing erases sound‐producing veins on male wings. These silent flatwing males are protected from a lethal, eavesdropping parasitoid fly. We sequenced, assembled and annotated the cricket genome, produced a linkage map, and identified a flatwing quantitative trait locus covering a large region of the X chromosome. Gene expression profiling showed that flatwing is associated with extensive genome‐wide effects on embryonic gene expression. We found that flatwing male crickets express feminized chemical pheromones. This male feminizing effect, on a different sexual signaling modality, is genetically associated with the flatwing genotype. Our findings suggest that the early stages of evolutionary adaptation to extreme pressures can be accompanied by greater genomic and phenotypic disruption than previously appreciated, and highlight how abrupt adaptation might involve suites of traits that arise through pleiotropy or genomic hitchhiking.
Collapse
Affiliation(s)
- Sonia Pascoal
- Department of Zoology University of Cambridge Cambridge CB2 3EJ United Kingdom
| | - Judith E Risse
- Division of Bioinformatics, Department of Plant Sciences Wageningen University & Research Wageningen 6708 PB The Netherlands.,Animal Ecology Netherlands Institute of Ecology Wageningen 6700 AB The Netherlands
| | - Xiao Zhang
- School of Biology University of St Andrews St Andrews Fife KY16 9TH United Kingdom
| | - Mark Blaxter
- Edinburgh Genomics University of Edinburgh Edinburgh EH9 3JT United Kingdom.,Institute of Evolutionary Biology University of Edinburgh Edinburgh EH9 3JT United Kingdom
| | - Timothee Cezard
- Edinburgh Genomics University of Edinburgh Edinburgh EH9 3JT United Kingdom
| | - Richard J Challis
- Edinburgh Genomics University of Edinburgh Edinburgh EH9 3JT United Kingdom
| | - Karim Gharbi
- Edinburgh Genomics University of Edinburgh Edinburgh EH9 3JT United Kingdom.,Earlham Institute Norwich Research Park Norwich NR4 7UZ United Kingdom
| | - John Hunt
- School of Science and Health and the Hawkesbury Institute for the Environment Western Sydney University Penrith NSW 2751 Australia.,Centre for Ecology and Conservation University of Exeter Penryn TR10 9FE United Kingdom
| | - Sujai Kumar
- Edinburgh Genomics University of Edinburgh Edinburgh EH9 3JT United Kingdom
| | - Emma Langan
- Edinburgh Genomics University of Edinburgh Edinburgh EH9 3JT United Kingdom.,School of Environmental Sciences University of East Anglia Norwich NR4 7UZ United Kingdom
| | - Xuan Liu
- Centre for Genomic Research University of Liverpool Liverpool L69 7ZB United Kingdom
| | - Jack G Rayner
- School of Biology University of St Andrews St Andrews Fife KY16 9TH United Kingdom
| | - Michael G Ritchie
- School of Biology University of St Andrews St Andrews Fife KY16 9TH United Kingdom
| | - Basten L Snoek
- Theoretical Biology and Bioinformatics Utrecht University Utrecht 3584 CH The Netherlands.,Terrestrial Ecology Netherlands Institute of Ecology Wageningen 6700 AB The Netherlands
| | - Urmi Trivedi
- Edinburgh Genomics University of Edinburgh Edinburgh EH9 3JT United Kingdom
| | - Nathan W Bailey
- School of Biology University of St Andrews St Andrews Fife KY16 9TH United Kingdom
| |
Collapse
|
31
|
Van't Hof AE, Reynolds LA, Yung CJ, Cook LM, Saccheri IJ. Genetic convergence of industrial melanism in three geometrid moths. Biol Lett 2019; 15:20190582. [PMID: 31615373 PMCID: PMC6832188 DOI: 10.1098/rsbl.2019.0582] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The rise of dark (melanic) forms of many species of moth in heavily coal-polluted areas of nineteenth- and twentieth-century Britain, and their post-1970s fall, point to a common selective pressure (camouflage against bird predators) acting at the community level. The extent to which this convergent phenotypic response relied on similar genetic and developmental mechanisms is unknown. We examine this problem by testing the hypothesis that the locus controlling melanism in Phigalia pilosaria and Odontopera bidentata, two species of geometrid moth that showed strong associations between melanism and coal pollution, is the same as that controlling melanism in Biston betularia, previously identified as the gene cortex. Comparative linkage mapping using family material supports the hypothesis for both species, indicating a deeply conserved developmental mechanism for melanism involving cortex. However, in contrast to the strong selective sweep signature seen in British B. betularia, no significant association was detected between cortex-region markers and melanic morphs in wild-caught samples of P. pilosaria and O. bidentata, implying much older, or diverse, origins of melanic morph alleles in these latter species.
Collapse
Affiliation(s)
- Arjen E Van't Hof
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.,Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Louise A Reynolds
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Carl J Yung
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Laurence M Cook
- Department of Entomology, The Manchester Museum, University of Manchester, Manchester M13 9PT, UK
| | - Ilik J Saccheri
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
32
|
Miles LS, Breitbart ST, Wagner HH, Johnson MTJ. Urbanization Shapes the Ecology and Evolution of Plant-Arthropod Herbivore Interactions. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00310] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Morris J, Navarro N, Rastas P, Rawlins LD, Sammy J, Mallet J, Dasmahapatra KK. The genetic architecture of adaptation: convergence and pleiotropy in Heliconius wing pattern evolution. Heredity (Edinb) 2019; 123:138-152. [PMID: 30670842 PMCID: PMC6781118 DOI: 10.1038/s41437-018-0180-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
Unravelling the genetic basis of adaptive traits is a major challenge in evolutionary biology. Doing so informs our understanding of evolution towards an adaptive optimum, the distribution of locus effect sizes, and the influence of genetic architecture on the evolvability of a trait. In the Müllerian co-mimics Heliconius melpomene and Heliconius erato some Mendelian loci affecting mimicry shifts are well known. However, several phenotypes in H. melpomene remain to be mapped, and the quantitative genetics of colour pattern variation has rarely been analysed. Here we use quantitative trait loci (QTL) analyses of crosses between H. melpomene races from Peru and Suriname to map, for the first time, the control of the broken band phenotype to WntA and identify a ~100 kb region controlling this variation. Additionally, we map variation in basal forewing red-orange pigmentation to a locus centred around the gene ventral veins lacking (vvl). The locus also appears to affect medial band shape variation as it was previously known to do in H. erato. This adds to the list of homologous regions controlling convergent phenotypes between these two species. Finally we show that Heliconius wing-patterning genes are strikingly pleiotropic among wing pattern traits. Our results demonstrate how genetic architecture can shape, aid and constrain adaptive evolution.
Collapse
Affiliation(s)
- Jake Morris
- Department of Biology, University of York, Heslington, YO10 5DD, UK.
| | - Nicolas Navarro
- EPHE, PSL University, 21000, Dijon, France
- Biogéosciences, UMR CNRS 6282, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Pasi Rastas
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Lauren D Rawlins
- Department of Environment and Geography, University of York, Heslington, YO10 5DD, UK
| | - Joshua Sammy
- Department of Biology, University of York, Heslington, YO10 5DD, UK
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | | |
Collapse
|
34
|
Krohn AR, Diepeveen ET, Bi K, Rosenblum EB. Local adaptation does not lead to genome-wide differentiation in lava flow lizards. Ecol Evol 2019; 9:6810-6820. [PMID: 31380017 PMCID: PMC6662252 DOI: 10.1002/ece3.5231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 11/09/2022] Open
Abstract
Adaptation can occur with or without genome-wide differentiation. If adaptive loci are linked to traits involved in reproductive isolation, genome-wide divergence is likely, and speciation is possible. However, adaptation can also lead to phenotypic differentiation without genome-wide divergence if levels of ongoing gene flow are high. Here, we use the replicated occurrence of melanism in lava flow lizards to assess the relationship between local adaptation and genome-wide differentiation. We compare patterns of phenotypic and genomic divergence among lava flow and nonlava populations for three lizard species and three lava flows in the Chihuahuan Desert. We find that local phenotypic adaptation (melanism) is not typically accompanied by genome-wide differentiation. Specifically, lava populations do not generally exhibit greater divergence from nonlava populations than expected by geography alone, regardless of whether the lava formation is 5,000 or 760,000 years old. We also infer that gene flow between lava and nonlava populations is ongoing in all lava populations surveyed. Recent work in the isolation by environment and ecological speciation literature suggests that environmentally driven genome-wide differentiation is common in nature. However, local adaptation may often simply be local adaptation rather than an early stage of ecological speciation.
Collapse
Affiliation(s)
- Alexander R. Krohn
- Department of Environmental Science, Policy and ManagementUniversity of California, BerkeleyBerkeleyCalifornia
- Museum of Vertebrate ZoologyUniversity of California, BerkeleyBerkeleyCalifornia
| | - Eveline T. Diepeveen
- Department of Bionanoscience, Kavli Institute of NanoScience, Faculty of Applied SciencesDelft University of TechnologyDelftThe Netherlands
| | - Ke Bi
- Museum of Vertebrate ZoologyUniversity of California, BerkeleyBerkeleyCalifornia
- Computational Genomics Resource Laboratory (CGRL), California Institute for Quantitative Biosciences (QB3)University of California, BerkeleyBerkeleyCalifornia
| | - Erica Bree Rosenblum
- Department of Environmental Science, Policy and ManagementUniversity of California, BerkeleyBerkeleyCalifornia
- Museum of Vertebrate ZoologyUniversity of California, BerkeleyBerkeleyCalifornia
| |
Collapse
|
35
|
Friedline CJ, Faske TM, Lind BM, Hobson EM, Parry D, Dyer RJ, Johnson DM, Thompson LM, Grayson KL, Eckert AJ. Evolutionary genomics of gypsy moth populations sampled along a latitudinal gradient. Mol Ecol 2019; 28:2206-2223. [PMID: 30834645 DOI: 10.1111/mec.15069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/31/2019] [Accepted: 02/13/2019] [Indexed: 01/05/2023]
Abstract
The European gypsy moth (Lymantria dispar L.) was first introduced to Massachusetts in 1869 and within 150 years has spread throughout eastern North America. This large-scale invasion across a heterogeneous landscape allows examination of the genetic signatures of adaptation potentially associated with rapid geographical spread. We tested the hypothesis that spatially divergent natural selection has driven observed changes in three developmental traits that were measured in a common garden for 165 adult moths sampled from six populations across a latitudinal gradient covering the entirety of the range. We generated genotype data for 91,468 single nucleotide polymorphisms based on double digest restriction-site associated DNA sequencing and used these data to discover genome-wide associations for each trait, as well as to test for signatures of selection on the discovered architectures. Genetic structure across the introduced range of gypsy moth was low in magnitude (FST = 0.069), with signatures of bottlenecks and spatial expansion apparent in the rare portion of the allele frequency spectrum. Results from applications of Bayesian sparse linear mixed models were consistent with the presumed polygenic architectures of each trait. Further analyses indicated spatially divergent natural selection acting on larval development time and pupal mass, with the linkage disequilibrium component of this test acting as the main driver of observed patterns. The populations most important for these signals were two range-edge populations established less than 30 generations ago. We discuss the importance of rapid polygenic adaptation to the ability of non-native species to invade novel environments.
Collapse
Affiliation(s)
| | - Trevor M Faske
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Brandon M Lind
- Integrative Life Sciences Ph.D. Program, Virginia Commonwealth University, Richmond, Virginia
| | - Erin M Hobson
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Dylan Parry
- Department of Environmental & Forest Biology, State University of New York, Syracuse, New York
| | - Rodney J Dyer
- Center for Environmental Studies, Virginia Commonwealth University, Richmond, Virginia
| | - Derek M Johnson
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Lily M Thompson
- Department of Biology, University of Richmond, Richmond, Virginia
| | | | - Andrew J Eckert
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
36
|
Selby JP, Willis JH. MajorQTLcontrols adaptation to serpentine soils inMimulus guttatus. Mol Ecol 2018; 27:5073-5087. [DOI: 10.1111/mec.14922] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/23/2018] [Accepted: 10/19/2018] [Indexed: 01/03/2023]
Affiliation(s)
| | - John H. Willis
- Department of Biology Duke University Durham North Carolina
| |
Collapse
|
37
|
Johnson AM, Chang CH, Fuller RC. Testing the potential mechanisms for the maintenance of a genetic color polymorphism in bluefin killifish populations. Curr Zool 2018; 64:733-743. [PMID: 30538733 PMCID: PMC6280095 DOI: 10.1093/cz/zoy017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/28/2018] [Indexed: 02/03/2023] Open
Abstract
The maintenance of genetic variation in the face of natural selection is a long-standing question in evolutionary biology. In the bluefin killifish Lucania goodei, male coloration is polymorphic. Males can produce either red or yellow coloration in their anal fins, and both color morphs are present in all springs. These 2 morphs are heritable and how they are maintained in nature is unknown. Here, we tested 2 mechanisms for the maintenance of the red/yellow color morphs. Negative frequency-dependent mating success predicts that rare males have a mating advantage over common males. Spatial variation in fitness predicts that different color morphs have an advantage in different microhabitat types. Using a breeding experiment, we tested these hypotheses by creating populations with different ratios of red to yellow males (5 red:1 yellow; 1 red:5 yellow) and determining male mating success on shallow and deep spawning substrates. We found no evidence of negative frequency-dependent mating success. Common morphs tended to have higher mating success, and this was particularly so on shallow spawning substrates. However, on deep substrates, red males enjoyed higher mating success than yellow males, particularly so when red males were rare. However, yellow males did not have an advantage at either depth nor when rare. We suggest that preference for red males is expressed in deeper water, possibly due to alterations in the lighting environment. Finally, male pigment levels were correlated with one another and predicted male mating success. Hence, pigmentation plays an important role in male mating success.
Collapse
Affiliation(s)
- Ashley M Johnson
- Department of Animal Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Chia-Hao Chang
- Department of Animal Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Rebecca C Fuller
- Department of Animal Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
38
|
|
39
|
Sibilia CD, Brosko KA, Hickling CJ, Thompson LM, Grayson KL, Olson JR. Thermal Physiology and Developmental Plasticity of Pigmentation in the Harlequin Bug (Hemiptera: Pentatomidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5051929. [PMID: 30010926 PMCID: PMC6044328 DOI: 10.1093/jisesa/iey066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Indexed: 06/08/2023]
Abstract
Traits that promote the maintenance of body temperatures within an optimal range provide advantages to ectothermic species. Pigmentation plasticity is found in many insects and enhances thermoregulatory potential as increased melanization can result in greater heat retention. The thermal melanism hypothesis predicts that species with developmental plasticity will have darker pigmentation in colder environments, which can be an important adaptation for temperate species experiencing seasonal variation in climate. The harlequin bug (Murgantia histrionica, Hemiptera: Pentatomidae, Hahn 1834) is a widespread invasive crop pest with variable patterning where developmental plasticity in melanization could affect performance. To investigate the impact of temperature and photoperiod on melanization and size, nymphs were reared under two temperatures and two photoperiods simulating summer and fall seasons. The size and degree of melanization of adults were quantified using digital imagery. To assess the effect of coloration on the amount of heat absorption, we monitored the temperature of adults in a heating experiment. Overall, our results supported the thermal melanism hypothesis and temperature had a comparatively larger effect on coloration and size than photoperiod. When heated, the body temperature of individuals with darker pigmentation increased more relative to the ambient air temperature than individuals with lighter pigmentation. These results suggest that colder temperatures experienced late in the season can induce developmental plasticity for a phenotype that improves thermoregulation in this species. Our work highlights environmental signals and consequences for individual performance due to thermal melanism in a common invasive species, where capacity to respond to changing environments is likely contributing to its spread.
Collapse
Affiliation(s)
| | - Kelly A Brosko
- Department of Biology, University of Richmond, Richmond, VA
| | | | | | | | - Jennifer R Olson
- Department of Biology, University of Richmond, Richmond, VA
- Department of Biology, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
40
|
Marques DA, Jones FC, Di Palma F, Kingsley DM, Reimchen TE. Experimental evidence for rapid genomic adaptation to a new niche in an adaptive radiation. Nat Ecol Evol 2018; 2:1128-1138. [PMID: 29942074 PMCID: PMC6519129 DOI: 10.1038/s41559-018-0581-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/17/2018] [Indexed: 12/20/2022]
Abstract
A substantial part of biodiversity is thought to have arisen from adaptive radiations in which one lineage rapidly diversified into multiple lineages adapted to many different niches. However, selection and drift reduce genetic variation during adaptation to new niches and may thus prevent or slow down further niche shifts. We tested whether rapid adaptation is still possible from a highly derived ecotype in the adaptive radiation of threespine stickleback on the Haida Gwaii archipelago, Western Canada. In a 19-years selection experiment, we let giant stickleback from a large blackwater lake evolve in a small clearwater pond without vertebrate predators. 56 whole genomes from the experiment and 26 natural populations revealed that adaptive genomic change was rapid in many small genomic regions and encompassed 75% of the adaptive genomic change between 12,000 years old ecotypes. Adaptive genomic change was as fast as phenotypic change in defence and trophic morphology and both were largely parallel between the short-term selection experiment and long-term natural adaptive radiation. Our results show that functionally relevant standing genetic variation can persist in derived adaptive radiation members, allowing adaptive radiations to unfold very rapidly.
Collapse
Affiliation(s)
- David A Marques
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada. .,Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland. .,Department of Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.
| | - Felicity C Jones
- Department of Developmental Biology, HHMI and Stanford University School of Medicine, Stanford, CA, USA.,Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Federica Di Palma
- Earlham Institute, Norwich Research Park, Norwich, UK.,Department of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - David M Kingsley
- Department of Developmental Biology, HHMI and Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas E Reimchen
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
41
|
Gore AC, Holley AM, Crews D. Mate choice, sexual selection, and endocrine-disrupting chemicals. Horm Behav 2018; 101:3-12. [PMID: 28888817 PMCID: PMC5845777 DOI: 10.1016/j.yhbeh.2017.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/26/2017] [Accepted: 09/05/2017] [Indexed: 12/30/2022]
Abstract
Humans have disproportionately affected the habitat and survival of species through environmental contamination. Important among these anthropogenic influences is the proliferation of organic chemicals, some of which perturb hormone systems, the latter referred to as endocrine-disrupting chemicals (EDCs). EDCs are widespread in the environment and affect all levels of reproduction, including development of reproductive organs, hormone release and regulation through the life cycle, the development of secondary sexual characteristics, and the maturation and maintenance of adult physiology and behavior. However, what is not well-known is how the confluence of EDC actions on the manifestation of morphological and behavioral sexual traits influences mate choice, a process that requires the reciprocal evaluation of and/or acceptance of a sexual partner. Moreover, the outcomes of EDC-induced perturbations are likely to influence sexual selection; yet this has rarely been directly tested. Here, we provide background on the development and manifestation of sexual traits, reproductive competence, and the neurobiology of sexual behavior, and evidence for their perturbation by EDCs. Selection acts on individuals, with the consequences manifest in populations, and we discuss the implications for EDC contamination of these processes, and the future of species.
Collapse
Affiliation(s)
- Andrea C Gore
- Division of Pharmacology and Toxicology, College of Pharmacy, USA.
| | - Amanda M Holley
- Division of Pharmacology and Toxicology, College of Pharmacy, USA; Department of Integrative Biology, College of Natural Sciences, USA
| | - David Crews
- Department of Integrative Biology, College of Natural Sciences, USA.
| |
Collapse
|
42
|
Abstract
Our planet is an increasingly urbanized landscape, with over half of the human population residing in cities. Despite advances in urban ecology, we do not adequately understand how urbanization affects the evolution of organisms, nor how this evolution may affect ecosystems and human health. Here, we review evidence for the effects of urbanization on the evolution of microbes, plants, and animals that inhabit cities. Urbanization affects adaptive and nonadaptive evolutionary processes that shape the genetic diversity within and between populations. Rapid adaptation has facilitated the success of some native species in urban areas, but it has also allowed human pests and disease to spread more rapidly. The nascent field of urban evolution brings together efforts to understand evolution in response to environmental change while developing new hypotheses concerning adaptation to urban infrastructure and human socioeconomic activity. The next generation of research on urban evolution will provide critical insight into the importance of evolution for sustainable interactions between humans and our city environments.
Collapse
Affiliation(s)
- Marc T J Johnson
- Department of Biology and Center for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada. .,Department of Ecology and Evolutionary Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Jason Munshi-South
- Department of Biological Sciences and Louis Calder Center, Fordham University, Armonk, NY, USA.
| |
Collapse
|
43
|
Nohara C, Hiyama A, Taira W, Otaki JM. Robustness and Radiation Resistance of the Pale Grass Blue Butterfly from Radioactively Contaminated Areas: A Possible Case of Adaptive Evolution. J Hered 2018; 109:188-198. [PMID: 28199653 DOI: 10.1093/jhered/esx012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/07/2017] [Indexed: 11/13/2022] Open
Abstract
The pale grass blue butterfly, Zizeeria maha, has been used to evaluate biological impacts of the Fukushima nuclear accident in March 2011. Here, we examined the possibility that butterflies have adapted to be robust in the contaminated environment. Larvae (n = 2432) were obtained from adult butterflies (n = 20) collected from 7 localities with various contamination levels in May 2012, corresponding to the 7th generation after the accident. When the larvae were reared on non-contaminated host plant leaves from Okinawa, the normality rates of natural exposure without artificial irradiation (as an indication of robustness) were high not only in the least contaminated locality but also in the most contaminated localities. The normality rates were similarly obtained when the larvae were reared on non-contaminated leaves with external irradiation or on contaminated leaves from Fukushima to deliver internal irradiation. The normality rate of natural exposure and that of external or internal exposure were correlated, suggesting that radiation resistance (or susceptibility) likely reflects general state of health. The normality rate of external or internal exposure was divided by the relative normality rate of natural exposure, being defined as the resistance value. The resistance value was the highest in the populations of heavily contaminated localities and was inversely correlated with the distance from the Fukushima Dai-ichi nuclear power plant. These results suggest that the butterfly population might have adapted to the contaminated environment within approximately 1 year after the accident. The present study may partly explain the decrease in mortality and abnormality rates later observed in the contaminated areas.
Collapse
Affiliation(s)
- Chiyo Nohara
- BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Atsuki Hiyama
- BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Wataru Taira
- BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Joji M Otaki
- BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
44
|
Laricchia KM, Zdraljevic S, Cook DE, Andersen EC. Natural Variation in the Distribution and Abundance of Transposable Elements Across the Caenorhabditis elegans Species. Mol Biol Evol 2017; 34:2187-2202. [PMID: 28486636 PMCID: PMC5850821 DOI: 10.1093/molbev/msx155] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transposons are mobile DNA elements that generate both adaptive and deleterious phenotypic variation thereby driving genome evolution. For these reasons, genomes have mechanisms to regulate transposable element (TE) activity. Approximately 12–16% of the Caenorhabditis elegans genome is composed of TEs, of which the majority are likely inactive. However, most studies of TE activity have been conducted in the laboratory strain N2, which limits our knowledge of the effects of these mobile elements across natural populations. We analyzed the distribution and abundance of TEs in 208 wild C. elegans strains to better understand how transposons contribute to variation in natural populations. We identified 3,397 TEs as compared with the reference strain, of which 2,771 are novel insertions and 241 are TEs that have been excised in at least one wild strain. Likely because of their hypothesized deleterious effects, we find that TEs are found at low allele frequencies throughout the population, and we predict functional effects of TE insertions. The abundances of TEs reflect their activities, and these data allowed us to perform both genome-wide association mappings and rare variant correlations to reveal several candidate genes that impact TE regulation, including small regulatory piwi-interacting RNAs and chromatin factors. Because TE variation in natural populations could underlie phenotypic variation for organismal and behavioral traits, the transposons that we identified and their regulatory mechanisms can be used in future studies to explore the genomics of complex traits and evolutionary changes.
Collapse
Affiliation(s)
- K M Laricchia
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | - S Zdraljevic
- Department of Molecular Biosciences, Northwestern University, Evanston, IL.,Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL
| | - D E Cook
- Department of Molecular Biosciences, Northwestern University, Evanston, IL.,Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL
| | - E C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL.,Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL
| |
Collapse
|
45
|
|
46
|
Intermediate degrees of synergistic pleiotropy drive adaptive evolution in ecological time. Nat Ecol Evol 2017; 1:1551-1561. [DOI: 10.1038/s41559-017-0297-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 07/27/2017] [Indexed: 11/08/2022]
|
47
|
Wallberg A, Schöning C, Webster MT, Hasselmann M. Two extended haplotype blocks are associated with adaptation to high altitude habitats in East African honey bees. PLoS Genet 2017; 13:e1006792. [PMID: 28542163 PMCID: PMC5444601 DOI: 10.1371/journal.pgen.1006792] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/01/2017] [Indexed: 01/14/2023] Open
Abstract
Understanding the genetic basis of adaption is a central task in biology. Populations of the honey bee Apis mellifera that inhabit the mountain forests of East Africa differ in behavior and morphology from those inhabiting the surrounding lowland savannahs, which likely reflects adaptation to these habitats. We performed whole genome sequencing on 39 samples of highland and lowland bees from two pairs of populations to determine their evolutionary affinities and identify the genetic basis of these putative adaptations. We find that in general, levels of genetic differentiation between highland and lowland populations are very low, consistent with them being a single panmictic population. However, we identify two loci on chromosomes 7 and 9, each several hundred kilobases in length, which exhibit near fixation for different haplotypes between highland and lowland populations. The highland haplotypes at these loci are extremely rare in samples from the rest of the world. Patterns of segregation of genetic variants suggest that recombination between haplotypes at each locus is suppressed, indicating that they comprise independent structural variants. The haplotype on chromosome 7 harbors nearly all octopamine receptor genes in the honey bee genome. These have a role in learning and foraging behavior in honey bees and are strong candidates for adaptation to highland habitats. Molecular analysis of a putative breakpoint indicates that it may disrupt the coding sequence of one of these genes. Divergence between the highland and lowland haplotypes at both loci is extremely high suggesting that they are ancient balanced polymorphisms that greatly predate divergence between the extant honey bee subspecies. Identifying the genes and genetic changes responsible for environmental adaptation is an important step towards understanding how species evolve. The honey bee Apis mellifera has adapted to a variety of habitats across its worldwide geographical distribution. Here we aim to identify the genetic basis of adaptation in honey bees living at high altitudes in the mountains of East Africa, which differ in appearance and behavior from their lowland relatives. We compare whole genome sequences from highland and lowland populations and find that, although in general they are extremely similar, there are two specific chromosomal regions (representing 1.4% of the genome) where they are strongly differentiated. These regions appear to represent structural rearrangements that are strongly correlated with altitude and contain many genes. One of these genomic regions harbors a set of octopamine receptor genes, which we hypothesize regulate differences in learning and foraging behavior between highland and lowland bees. The extremely high divergence between highland and lowland genetic variants in these regions indicates that they have an ancient origin and were likely to have been involved in environmental adaptation even before honey bees came to inhabit their current range.
Collapse
Affiliation(s)
- Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Matthew T. Webster
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail: (MTW); (MH)
| | - Martin Hasselmann
- Department of Livestock Population Genomics, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
- * E-mail: (MTW); (MH)
| |
Collapse
|
48
|
Origin of the Lateral Wall of the Mammalian Skull: Fossils, Monotremes and Therians Revisited. J MAMM EVOL 2017. [DOI: 10.1007/s10914-017-9388-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Rapid Adaptation of a Polygenic Trait After a Sudden Environmental Shift. Genetics 2017; 206:389-406. [PMID: 28341654 DOI: 10.1534/genetics.116.196972] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/07/2017] [Indexed: 02/07/2023] Open
Abstract
Although a number of studies have shown that natural and laboratory populations initially well adapted to their environment can evolve rapidly when conditions suddenly change, the dynamics of rapid adaptation are not well understood. Here a population genetic model of polygenic selection is analyzed to describe the short-term response of a quantitative trait after a sudden shift of the phenotypic optimum. We provide explicit analytical expressions for the timescales over which the trait mean approaches the new optimum. We find that when the effect sizes are small relative to a scaled mutation rate, small to moderate allele frequency changes occur in the short-term phase in a synergistic fashion. In contrast, selective sweeps, i.e., dramatic changes in the allele frequency, may occur provided the size of the effect is sufficiently large. Applications of our theoretical results to the relationship between QTL and selective sweep mapping and to tests of fast polygenic adaptation are discussed.
Collapse
|
50
|
Henning F, Machado-Schiaffino G, Baumgarten L, Meyer A. Genetic dissection of adaptive form and function in rapidly speciating cichlid fishes. Evolution 2017; 71:1297-1312. [PMID: 28211577 DOI: 10.1111/evo.13206] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/04/2017] [Indexed: 12/14/2022]
Abstract
Genes of major phenotypic effects and strong genetic correlations can facilitate adaptation, direct selective responses, and potentially lead to phenotypic convergence. However, the preponderance of this type of genetic architecture in repeatedly evolved adaptations remains unknown. Using hybrids between Haplochromis chilotes (thick-lipped) and Pundamilia nyererei (thin-lipped) we investigated the genetics underlying hypertrophied lips and elongated heads, traits that evolved repeatedly in cichlids. At least 25 loci of small-to-moderate and mainly additive effects were detected. Phenotypic variation in lip and head morphology was largely independent. Although several QTL overlapped for lip and head morphology traits, they were often of opposite effects. The distribution of effect signs suggests strong selection on lips. The fitness implications of several detected loci were demonstrated using a laboratory assay testing for the association between genotype and variation in foraging performance. The persistence of low fitness alleles in head morphology appears to be maintained through antagonistic pleiotropy/close linkage with positive-effect lip morphology alleles. Rather than being based on few major loci with strong positive genetic correlations, our results indicate that the evolution of the Lake Victoria thick-lipped ecomorph is the result of selection on numerous loci distributed throughout the genome.
Collapse
Affiliation(s)
- Frederico Henning
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany.,Department of Genetics, CCS, Federal University of Rio de Janeiro, Ilha do Fundão, 21941-599, Rio de Janeiro, Brazil
| | | | - Lukas Baumgarten
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany
| |
Collapse
|