1
|
Tram NDT, Xu J, Chan KH, Rajamani L, Ee PLR. Bacterial clustering biomaterials as anti-infective therapies. Biomaterials 2025; 316:123017. [PMID: 39708775 DOI: 10.1016/j.biomaterials.2024.123017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/23/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
In Nature, bacterial clustering by host-released peptides or nucleic acids is an evolutionarily conserved immune defense strategy employed to prevent adhesion of pathogenic microbes, which is prerequisite for most infections. Synthetic anti-adhesion strategies present as non-lethal means of targeting bacteria and may potentially be used to avoid resistance against antimicrobial therapies. From bacteria-agglutinating biomolecules discovered in nature to synthetic designs involving peptides, cationic polymers and nanoparticles, the modes of actions appear broad and unconsolidated. Herein, we present a critical review and update of the state-of-the-art in synthetic bacteria-clustering designs with proposition of a more streamlined nomenclature and classification. Overall, this review aims to consolidate the conceptual framework in the field of bacterial clustering and highlight its potentials as an avenue for discovering novel antibacterial biomaterials.
Collapse
Affiliation(s)
- Nhan Dai Thien Tram
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Jian Xu
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, 16 College Avenue West, Singapore, 138527, Singapore; NUS College, National University of Singapore, 18 College Avenue East, Singapore, 138593, Singapore
| | - Lakshminarayanan Rajamani
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore; Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, Singapore, 169856, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, 169857, Singapore
| | - Pui Lai Rachel Ee
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore.
| |
Collapse
|
2
|
Lei R, Yang C, Zhu T, Zhu X, Zhu Z, Cui H, Pei H, Li J, Mao Y, Lan C. Multifunctional cyclic biomimetic peptides: Self-assembling nanotubes for effective treatment of sepsis. Int J Biol Macromol 2025; 288:138522. [PMID: 39672431 DOI: 10.1016/j.ijbiomac.2024.138522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
Antibiotic abuse has led to an increasingly serious risk of antimicrobial resistance, developing alternative antimicrobials to combat this alarming issue is urgently needed. Rhesus theta defensin-1 (RTD-1) is a theta-defensin contributing to broad-spectrum bactericidal activity via the mechanisms of membrane perturbation. Intriguingly, human defensin-6 (HD6), an enteric defensin secreted by Paneth cells without direct bactericidal effect, could self-assembled into fibrous networks to trap enteric pathogens for assistance of innate immunity. The direct bactericidal action of RTD-1 and the bacterial trapping of HD6 inspire a promising antimicrobial paradigm for unique antibacterial strategies. In this study, we utilized the principle of alternating arrangement of D- and L-amino acids in cyclic peptides, which endows them with the potential to self-assemble into nanotubes, mimic the antimicrobial processes of RTD-1 and HD6. We designed and synthesized five cyclic biomimetic peptides (CBPs), among these biomimetics, CBP-4, which possessed a nanotube-like structure, demonstrated the ability to directly and rapidly disrupt the cell membranes of Gram-positive S. aureus and MRSA, while also targeting the surfaces of Gram-negative E. coil using its nanofibrous network to capture bacteria, preventing invasion and migration, and indirectly killing the bacteria. Moreover, CBP-4 eliminated pathogens, inhibited excessive inflammatory responses caused by infections, and maintained immune system homeostasis in septic mice. By fully emulating the antimicrobial mechanisms of both RTD-1 and HD6, CBP-4 showed promising potential for anti-infectious therapies.
Collapse
Affiliation(s)
- Ruyi Lei
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Chujun Yang
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Tao Zhu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xingqiang Zhu
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhiqiang Zhu
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hongwei Cui
- Department of General ICU, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hui Pei
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jiye Li
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yujing Mao
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chao Lan
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
3
|
Li G, Deng H, Xu W, Chen W, Lai Z, Zhu Y, Zhang L, Shao C, Shan A. Combating Antibiotic-Resistant Bacterial Infection Using Coassembled Dimeric Antimicrobial Peptide-Based Nanofibers. ACS NANO 2025; 19:3155-3171. [PMID: 39803903 DOI: 10.1021/acsnano.4c09347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The emergence of multidrug-resistant (MDR) pathogens, coupled with the limited effectiveness of existing antibiotics in eradicating biofilms, presents a significant threat to global health care. This critical situation underscores the urgent need for the discovery and development of antimicrobial agents. Recently, peptide-derived antimicrobial nanomaterials have shown promise in combating such infections. Amino acid noncovalent forces, notably π-π stacking and electrostatic interactions, remain underutilized for guiding the coassembly of peptides into bacteriostatic nanomaterials. Thus, we constructed a dimeric nanopeptide system using the disulfide bonds of cysteine. The self-assembly of dimeric peptides into nanofibers was realized by the interaction of π-π aromatic amino acids (Trp, Phe, and Pyr) and the electrostatic attraction between oppositely charged amino acids (Asp and Arg). The optimal dimeric peptide 2D2W exhibits potent antibacterial activity against resistant bacteria and is nontoxic. Mechanistically, 2D2W penetrated the outer membrane after electrostatic adsorption, resulting in plasma membrane depolarization, homeostatic disruption, and ultimately bacterial death. In a mouse model of peritonitis, 2D2W demonstrated efficacy in the in vivo treatment of bacterial infections. In conclusion, the design of dimeric nanopeptides co-driven by intermolecular forces provides a promising avenue for the development of high-performance antimicrobial nanomaterials. These advances may also facilitate the application and advancement of peptide-based bacteriostatic agents in clinical practice.
Collapse
Affiliation(s)
- Guoyu Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Haoran Deng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Wanying Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Wenwen Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Zhenheng Lai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yongjie Zhu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Licong Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Changxuan Shao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
4
|
Zhu TF, Guo HP, Nie L, Chen J. Oral administration of LEAP2 enhances immunity against Edwardsiella tarda through regulation of gut bacterial community and metabolite in mudskipper. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110128. [PMID: 39824300 DOI: 10.1016/j.fsi.2025.110128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
The liver-expressed antimicrobial peptide 2 (LEAP2) is gaining recognition for its immune regulatory functions beyond direct antimicrobial activity. In this study, we investigated the role of mudskipper (Boleophthalmus pectinirostris) LEAP2 (BpLEAP2) in enhancing the survival, gut health, and immune resilience against Edwardsiella tarda infection. Pre-oral delivery of BpLEAP2 significantly improved survival rates and mitigated infection-induced damage to the gut, as evidenced by preserved villus length and goblet cell count. Analysis of gut microbial communities using 16S rRNA sequencing revealed that pre-oral delivery of BpLEAP2 increased microbial diversity, evenness, and the abundance of beneficial genera such as Pseudoalteromonas and Shewanella, while reducing pathogenic genera like Pseudorhodobacter. Metabolomic profiling showed that BpLEAP2 altered the gut metabolite composition, significantly increasing levels of bile acids and amino acids, which are known to support gut health and immune responses. Correlation analysis demonstrated strong positive associations between BpLEAP2-induced microbial shifts and increased metabolites involved in amino acid metabolism. These findings suggest that BpLEAP2 promotes intestinal homeostasis by modulating gut microbiota composition and enhancing beneficial metabolite production, ultimately improving gut barrier integrity and conferring resistance against E. tarda infection. This study highlights the potential application of BpLEAP2 in enhancing disease resilience in aquaculture species, offering a promising strategy for sustainable aquaculture practices.
Collapse
Affiliation(s)
- Ting-Fang Zhu
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Hai-Peng Guo
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Li Nie
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
5
|
Peng Y, Li H, Yang J, Yang X, Miao X, Fan X, Liu L, Li X. Temporal transcriptome profiling in the response to Salmonella enterica serovar enteritidis infection in chicken cecum. Poult Sci 2025; 104:104773. [PMID: 39813862 PMCID: PMC11782854 DOI: 10.1016/j.psj.2025.104773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis) is a common zoonotic pathogen that not only causes gastroenteritis or death of livestock and poultry but also poses a serious threat to human health, causing severe economic losses to the poultry industry and society. Herein, RNA-sequencing (RNA-seq) was used to analyze the transcriptome variation of chicken cecum at four different time points (1, 3, 7, and 14 days) following S. Enteritidis infection. There were 529, 1477, 476, and 432 differentially expressed genes (DEGs) in the cecum at four different days post-infection (dpi), respectively. The DEGs were significantly enriched in various immune-related pathways on 3 dpi and 7 dpi, such as cytokine-cytokine-receptor interaction and Toll-like receptor signaling pathway. DEGs were significantly enriched in several metabolic pathways on 14 dpi. Gene ontology (GO) enrichment of DEGs showed that up-regulated genes were significantly enriched in immune-related terms on 3 and 7 dpi. On 14 dpi, up-regulated genes were mainly enriched in the signaling-related terms, while the down-regulated genes were primarily enriched in the metabolic-related terms. Based on weighted gene co-expression network analysis (WGCNA), the key modules related to energy, non-coding processes, immunity, and development-related functions were identified at 1, 3, 7, and 14 dpi, respectively, and 5, 8, 6, and 5 hub genes were screened out, respectively. This study demonstrated that the chicken cecal transcriptome regulation responding to S. Enteritidis infection is time-dependent. The regulation of S. Enteritidis infection in chickens is coordinated by multiple systems, mainly involving immunity, metabolism, and signal transduction. Both 3 and 7 dpi are key time points for immune response. As the infection progresses, metabolism-related pathways were increasingly identified. This change reflects the dynamic adjustment between immune response and metabolism in Jining Bairi chickens following S. Enteritidis infection. These results suggested that starting from 3 dpi, the chickens gradually transition from an immune response triggered by S. Enteritidis infection to a state where they adapt to the infection by modulating their metabolism.
Collapse
Affiliation(s)
- Yanan Peng
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation Utilization, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018 China
| | - Huilong Li
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation Utilization, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018 China
| | - Jingchao Yang
- Shandong Animal Husbandry General Station, Jinan 250010, China
| | - Xiaohua Yang
- Animal Husbandry and Veterinary Development Center of Zhangqiu District, Jinan 250200, China
| | - Xiuxiu Miao
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation Utilization, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018 China
| | - Xinzhong Fan
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation Utilization, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018 China
| | - Liying Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018 China
| | - Xianyao Li
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation Utilization, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018 China.
| |
Collapse
|
6
|
Nagib M, Sayed AM, Korany AH, Abdelkader K, Shari FH, Mackay WG, Rateb ME. Human Defensins: Structure, Function, and Potential as Therapeutic Antimicrobial Agents with Highlights Against SARS CoV-2. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10436-8. [PMID: 39693007 DOI: 10.1007/s12602-024-10436-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
The human defensins are a group of cationic antimicrobial peptides that range in size from 2 to 5 kDa and share a common structural motif of six disulphide-linked cysteines. Several naturally occurring human α- and β-defensins have been identified over the past two decades. They have a wide variety of antimicrobial effects, and their potential to avoid the development of resistance to antimicrobial treatment makes them attractive as therapeutic agents. Human defensins have recently been the focus of medical and molecular biology studies due to their promising application in medicine and the pharmaceutical industry. This work aims to provide a comprehensive summary of the current developments of human defensins, including their identification, categorization, molecular features, expression, modes of action, and potential application in medical settings. Current obstacles and future opportunities for using human defensins are also covered. Furthermore, we shed light on the potential of this class as an antiviral agent, particularly against SARS CoV-2, by providing an in silico-based investigation of their plausible mechanisms of action.
Collapse
Affiliation(s)
- Maryam Nagib
- School of Computing Engineering and Physical Sciences, University of the West of Scotland, Paisley, Scotland, PA12BE, UK
| | - Ahmed M Sayed
- Department of Pharmacognosy, College of Pharmacy, Almaaqal University, Basrah, 61014, Iraq
| | - Ahmed H Korany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Nahda University, Beni Suef, 62513, Egypt
| | - Karim Abdelkader
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Falah H Shari
- Department of Clinical Biochemistry, College of Pharmacy, Almaaqal University, Basrah, 61014, Iraq
| | - William G Mackay
- School of Health and Life Sciences, University of the West of Scotland, Blantyre, Glasgow, G72 0LH, UK
| | - Mostafa E Rateb
- School of Computing Engineering and Physical Sciences, University of the West of Scotland, Paisley, Scotland, PA12BE, UK.
| |
Collapse
|
7
|
Wang Q, Hermannsson K, Másson E, Bergman P, Guðmundsson GH. Host-directed therapies modulating innate immunity against infection in hematologic malignancies. Blood Rev 2024:101255. [PMID: 39690006 DOI: 10.1016/j.blre.2024.101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
Patients with hematologic malignancies (HM) are highly susceptible to bloodstream infection (BSI), particularly those undergoing treatments such as chemotherapy. A common and debilitating side effect of chemotherapy is oral and intestinal mucositis. These Patients are also at high risk of developing sepsis, which can arise from mucosal barrier injuries and significantly increases mortality in these patients. While conventional antibiotics are effective, their use can lead to antimicrobial resistance (AMR) and disrupt the gut microbiota (dysbiosis). In this review, we discuss utilizing host defense peptides (HDPs), key components of the innate immune system, and immune system inducers (ISIs) to maintain mucosal barrier integrity against infection, an underexplored host-directed therapy (HDT) approach to prevent BSI and sepsis. We advocate for the discovery of potent and safe ISIs for clinical use and call for further research into the mechanisms by which these ISIs induce HDPs and strengthen mucosal barriers.
Collapse
Affiliation(s)
- Qiong Wang
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland.
| | - Kristján Hermannsson
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland.
| | - Egill Másson
- Akthelia Pharmaceuticals, Grandagardi 16, 101 Reykjavik, Iceland.
| | - Peter Bergman
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
| | | |
Collapse
|
8
|
Wani NA, Gazit E, Ramamoorthy A. Interplay between Antimicrobial Peptides and Amyloid Proteins in Host Defense and Disease Modulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25355-25366. [PMID: 39564995 DOI: 10.1021/acs.langmuir.4c03123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The biological properties of antimicrobial peptides (AMPs) and amyloid proteins and their cross-talks have gained increasing attention due to their potential implications in both host defense mechanisms and amyloid-related diseases. However, complex interactions, molecular mechanisms, and physiological applications are not fully understood. The interplay between antimicrobial peptides and amyloid proteins is crucial for uncovering new insights into immune defense and disease mechanisms, bridging critical gaps in understanding infectious and neurodegenerative diseases. This review provides an overview of the cross-talk between AMPs and amyloids, highlighting their intricate interplay, mechanisms of action, and potential therapeutic implications. The dual roles of AMPs, which not only serve as key components of the innate immune system, combating microbial infections, but also exhibit modulatory effects on amyloid formation and toxicity, are discussed. The diverse mechanisms employed by AMPs to modulate amyloid aggregation, fibril formation, and toxicity are also discussed. Additionally, we explore emerging evidence suggesting that amyloid proteins may possess antimicrobial properties, adding a new dimension to the intricate relationship between AMPs and amyloids. This review underscores the importance of understanding the cross-talk between AMPs and amyloids to better understand the molecular processes underlying infectious diseases and amyloid-related disorders and to aid in the development of therapeutic avenues to treat them.
Collapse
Affiliation(s)
- Naiem Ahmad Wani
- Department Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida 32310, United States
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Ehud Gazit
- Department of Materials Science and Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Ayyalusamy Ramamoorthy
- Department Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida 32310, United States
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32304, United States
| |
Collapse
|
9
|
Wu M, Li Y, Shen H, Zhang Y, Cong W, Hu X, Shi Y, Hu H. A β-Lactamase Responsive Peptide Inhibits MRSA Infection through Self-Assembled Nanonet. Adv Healthc Mater 2024; 13:e2402453. [PMID: 39118587 DOI: 10.1002/adhm.202402453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Gram-positive S. aureus is one of the leading pathogens for death associated with antimicrobial resistance. The β-lactamase (Bla) secreted by methicillin-resistant S. aureus (MRSA) hydrolyzes nearly all β-lactam antibiotics, leaving only a few antibiotics available for the clinical treatment of MRSA infections. Thereby, a Bla-responsive peptide (BLAP) is designed here with the capacity of inhibiting MRSA infection through mimicking the host defense mechanism of human defensin-6. The BLAP comprising a self-assembling peptide sequence can respond specifically to the secreted Bla and assemble in situ surrounding MRSA. The assembled nanofibrous network is able to trap MRSA, preventing its invasion into the host cells effectively. As a consequence, the intramuscular injection of BLAP significantly restricted bacterial infection and abscess formation in mice. The biomimetic BLAP holds great potential for the efficient treatment of drug-resistant gram-positive bacterial infections.
Collapse
Affiliation(s)
- Minghao Wu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yuting Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Huaxing Shen
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yanan Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Wei Cong
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiaochun Hu
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yejiao Shi
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Honggang Hu
- School of Medicine, Shanghai University, Shanghai, 200444, China
- Shanghai Engineering Research Center of Organ Repair, Shanghai, 200444, China
- Shanghai Integration and Innovation Center of Marine Medical Engineering, Shanghai, 200444, China
| |
Collapse
|
10
|
Huang W, Xiao W, Qin G, Lu Z, Peng X, Liu Y, Lin Q, Sun J. The antibacterial defence role of β-defensin in the seahorse testis. FISH & SHELLFISH IMMUNOLOGY 2024:110022. [PMID: 39542066 DOI: 10.1016/j.fsi.2024.110022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Seahorses represent the only known group of animals with male pregnancy. Seahorses have small testis that produce a limited quantity of sperm. To date, the response of this immune-privileged organ to pathogenic infections has not been reported. β-defensin (BD) is an important innate immune defence factor against pathogens in vertebrate testis. To elucidate its immunoprotection in seahorse testis, we identified the Hippocampus erectus β-defensin (HeBD) sequence in its genome via phylogenetic tree and protein-sequence structure analysis. Gene-expression analysis showed that HeBD was highly expressed in the seahorse testis and was significantly upregulated after bacterial infection, indicating that HeBD expression was related to testicular immune responses. Furthermore, antibacterial activity testing demonstrated that the mature HeBD peptide exhibited broad-spectrum aggregation activity but only moderate antibacterial activity. We found that the mature HeBD mature significantly neutralised bacterial endotoxin activity. In conclusion, our results imply that HeBD serves an immunoprotective role in seahorse testis.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Aquatic Ecology and Aquaculture of Tianjin, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Wanghong Xiao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Geng Qin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Zijian Lu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiaoqian Peng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Ying Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jinhui Sun
- Key Laboratory of Aquatic Ecology and Aquaculture of Tianjin, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
11
|
Tram ND, Marzinek JK, Perrin L, Mukherjee D, Selvarajan V, Bond PJ, Ee PLR. Structure-Guided Bacteria Specificity and Wide Activity Spectrum of Endotoxin-Responsive Peptide Nanonets. NANO LETTERS 2024; 24:13574-13582. [PMID: 39431594 PMCID: PMC11528433 DOI: 10.1021/acs.nanolett.4c03166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
Peptide nanonets offer a promising avenue for constructing anti-infective biomaterials. Our group recently reported innovative designs of synthetic BTT nanonets that fibrillate selectively in response to bacterial endotoxins. Herein, we delved deeper into the molecular interactions between our peptides and these bacteria-specific biomolecules, which is an aspect critically missing from major works in the field. Using microscopic and biophysical techniques, we identified phosphate moieties in endotoxins as being the most essential to the initiation of peptide fibrillation. This was strongly supported by molecular dynamics simulations in an outer membrane environment with variable states of phosphorylation. To support the claim over bacterial specificity, we demonstrated a lack of nanonet formation in the presence of various phosphate-containing biomolecules native to human biology. The structural importance of phosphate moieties among pathogenic strains strongly indicates a wide clinical spectrum of our peptides, which was experimentally verified.
Collapse
Affiliation(s)
- Nhan Dai
Thien Tram
- Department
of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Jan Kazimierz Marzinek
- Bioinformatics
Institute (BII), Agency for Science, Technology
and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Louis Perrin
- Bioinformatics
Institute (BII), Agency for Science, Technology
and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Devika Mukherjee
- Department
of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Vanitha Selvarajan
- Department
of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Peter John Bond
- Bioinformatics
Institute (BII), Agency for Science, Technology
and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
- Department
of Biological Sciences, National University
of Singapore, Singapore 117558, Singapore
| | - Pui Lai Rachel Ee
- Department
of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| |
Collapse
|
12
|
Ma X, Yang N, Mao R, Hao Y, Li Y, Guo Y, Teng D, Huang Y, Wang J. Self-assembly antimicrobial peptide for treatment of multidrug-resistant bacterial infection. J Nanobiotechnology 2024; 22:668. [PMID: 39478570 PMCID: PMC11526549 DOI: 10.1186/s12951-024-02896-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
The wide-spreading of multidrug resistance poses a significant threat to human and animal health. Although antimicrobial peptides (AMPs) show great potential application, their instability has severely limited their clinical application. Here, self-assembled AMPs composed of multiple modules based on the principle of associating natural marine peptide N6 with ß-sheet-forming peptide were designed. It is noteworthy that one of the designed peptides, FFN could self-assemble into nanoparticles at 35.46 µM and achieve a dynamic transformation from nanoparticles to nanofibers in the presence of bacteria, resulting in a significant increase in stability in trypsin and tissues by 1.72-57.5 times compared to that of N6. Additionally, FFN exhibits a broad spectrum of antibacterial activity against multidrug-resistant (MDR) gram-positive (G+) and gram-negative (G-) bacteria with Minimum inhibitory concentrations (MICs) as low as 2 µM by membrane destruction and complemented by nanofiber capture. In vivo mouse mastitis infection model further confirmed the therapeutic potential and promising biosafety of the self-assembled peptide FFN, which can effectively alleviate mastitis caused by MDR Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), and eliminate pathogenic bacteria. In conclusion, the design of peptide-based nanomaterials presents a novel approach for the delivery and clinical translation of AMPs, promoting their application in medicine and animal husbandry.
Collapse
Affiliation(s)
- Xuanxuan Ma
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, China
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Na Yang
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Ruoyu Mao
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Ya Hao
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yuanyuan Li
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Ying Guo
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Da Teng
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, China.
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| | - Yinhua Huang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, Beijing, 100193, China.
| | - Jianhua Wang
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, China.
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
13
|
Xiao X, Wang J, Ma J, Peng X, Wu S, Chen X, Lu H, Tan C, Fang L, Xiao S. Interferon lambda 4 is a gut antimicrobial protein. Proc Natl Acad Sci U S A 2024; 121:e2409684121. [PMID: 39436662 PMCID: PMC11536128 DOI: 10.1073/pnas.2409684121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/11/2024] [Indexed: 10/23/2024] Open
Abstract
To withstand complex microbial challenges, the mammalian gut largely depends on the secretion of diverse antimicrobial proteins. Type III interferons (IFNλs) are ordinarily considered inducible antiviral cytokines involved in intestinal immunity. Unlike other IFNλs, we found that newly identified IFNλ4 is an intestinal antibacterial protein. Large amounts of natural IFNλ4 are present in the secretory layer of the intestinal tracts of healthy piglets, which suggests that IFNλ4 is in direct physiological contact with microbial pathogens. We also identified two biochemical functions of mammalian IFNλ4, the induction of bacterial agglutination and direct microbial killing, which are not functions of the other IFNλs. Further mechanistic investigations revealed that after binding to the carbohydrate fraction of lipopolysaccharide, mammalian IFNλ4 self-assembles into bacteria-surrounding nanoparticles that agglutinate bacteria, and that its unique cationic amphiphilic molecular structure facilitates the destruction of bacterial membranes. Our data reveal features of IFNλ4 distinct from those of previously reported IFNλs and suggest that noncanonical IFNλ4 is deeply involved in intestinal immunity, beyond simply cytokine signaling.
Collapse
Affiliation(s)
- Xun Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan430070, China
| | - Jinting Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan430070, China
| | - Jun Ma
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan430070, China
| | - Xuan Peng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan430070, China
| | - Shengqiang Wu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan430070, China
| | - Xiaolei Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan430070, China
| | - Hao Lu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan430070, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan430070, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan430070, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan430070, China
| |
Collapse
|
14
|
Fang L, Yang T, Wang H, Cao J. Multiplex antimicrobial activities of the self-assembled amphiphilic polypeptide β nanofiber KF-5 against vaginal pathogens. Biol Direct 2024; 19:96. [PMID: 39438996 PMCID: PMC11495241 DOI: 10.1186/s13062-024-00546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Vaginal infections caused by multidrug-resistant pathogens such as Candida albicans and Gardnerella spp. represent a significant health challenge. Current treatments often fail because of resistance and toxicity. This study aimed to synthesize and characterize a novel amphiphilic polypeptide, KF-5, and evaluate its antibacterial and antifungal activities, biocompatibility, and potential mechanisms of action. RESULTS The KF-5 peptide was synthesized via solid-phase peptide synthesis and self-assembled into nanostructures with filamentous and hydrogel-like configurations. Characterization by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) confirmed the unique nanostructural properties of KF-5. KF-5 (125, 250, or 500 µg/ml) demonstrated potent antibacterial and antifungal activities, with significant inhibitory effects on drug-resistant Candida albicans and Gardnerella spp. (P < 0.05). In vitro assays revealed that 500 µg/ml KF-5 disrupted microbial cell membranes, increased membrane permeability, and induced lipid oxidation, leading to cell death (P < 0.05). Cytotoxicity tests revealed minimal toxicity in human vaginal epithelial cells, keratinocytes, and macrophages, with over 95% viability at high concentrations. Molecular dynamics simulations indicated that KF-5 interacts with phospholipid bilayers through electrostatic interactions, causing membrane disruption. In vivo studies using a mouse model of vaginal infection revealed that 0.5, 1, and 2 mg/ml KF-5 significantly reduced fungal burden and inflammation, and histological analysis confirmed the restoration of vaginal mucosal integrity (P < 0.01). Compared with conventional antifungal treatments such as miconazole, KF-5 exhibited superior efficacy (P < 0.01). CONCLUSIONS KF-5 demonstrates significant potential as a safe and effective antimicrobial agent for treating vaginal infections. Its ability to disrupt microbial membranes while maintaining biocompatibility with human cells highlights its potential for clinical application. These findings provide a foundation for further development of KF-5 as a therapeutic option for combating drug-resistant infections.
Collapse
Affiliation(s)
- Ling Fang
- Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Xishan People's Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Southeast University, Wuxi, 214105, Jiangsu, China
- Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, Jiangsu, China
| | - Tiancheng Yang
- Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, Jiangsu, China
| | - Haojue Wang
- Xishan People's Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Southeast University, Wuxi, 214105, Jiangsu, China.
| | - Jun Cao
- Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, Jiangsu, China.
| |
Collapse
|
15
|
Kumaresan V, Kamaraj Y, Subramaniyan S, Punamalai G. Understanding the Dynamics of Human Defensin Antimicrobial Peptides: Pathogen Resistance and Commensal Induction. Appl Biochem Biotechnol 2024; 196:6993-7024. [PMID: 38478321 DOI: 10.1007/s12010-024-04893-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 11/21/2024]
Abstract
Antimicrobial peptides (AMPs), also known as host defense peptides, are petite molecules with inherent microbicidal properties that are synthesized by the host's innate immune response. These peptides serve as an initial barrier against pathogenic microorganisms, effectively eliminating them. Human defensin (HD) AMPs represent a prominent group of peptides involved in the innate immune response of humans. These peptides are primarily produced by neutrophils and epithelial cells, serving as a crucial defense mechanism against invading pathogens. The extensive research conducted has focused on the broad spectrum of antimicrobial activities and multifaceted immunomodulatory functions exhibited by human defensin AMPs. During the process of co-evolution between hosts and bacterial pathogens, bacteria have developed the ability to recognize and develop an adaptive response to AMPs to counterattack their bactericidal activity by different antibiotic-resistant mechanisms. However, numerous non-pathogenic commensal bacteria elicit the upregulation of defensins as a means to surmount the resistance mechanisms implemented by pathogens. The precise mechanism underlying the induction of HD by commensal organisms remains to be fully understood. This review summarizes the most recent research on the expression of human defensin by pathogens and discusses the various defense mechanisms used by pathogens to counter host AMP production. We also mention recent developments in the commensal induction of defensin AMPs. A better knowledge of the pathogens' defensin AMP resistance mechanisms and commensals' induction of AMP expression may shed light on the creation of fresh antibacterial tactics to get rid of bacterial infection.
Collapse
Affiliation(s)
- Veenayohini Kumaresan
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, Tamilnadu, 608002, India
| | - Yoganathan Kamaraj
- Biofuel Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Satheeshkumar Subramaniyan
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, Tamilnadu, 608002, India
| | - Ganesh Punamalai
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, Tamilnadu, 608002, India.
| |
Collapse
|
16
|
Di YP, Kuhn JM, Mangoni ML. Lung antimicrobial proteins and peptides: from host defense to therapeutic strategies. Physiol Rev 2024; 104:1643-1677. [PMID: 39052018 PMCID: PMC11495187 DOI: 10.1152/physrev.00039.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Representing severe morbidity and mortality globally, respiratory infections associated with chronic respiratory diseases, including complicated pneumonia, asthma, interstitial lung disease, and chronic obstructive pulmonary disease, are a major public health concern. Lung health and the prevention of pulmonary disease rely on the mechanisms of airway surface fluid secretion, mucociliary clearance, and adequate immune response to eradicate inhaled pathogens and particulate matter from the environment. The antimicrobial proteins and peptides contribute to maintaining an antimicrobial milieu in human lungs to eliminate pathogens and prevent them from causing pulmonary diseases. The predominant antimicrobial molecules of the lung environment include human α- and β-defensins and cathelicidins, among numerous other host defense molecules with antimicrobial and antibiofilm activity such as PLUNC (palate, lung, and nasal epithelium clone) family proteins, elafin, collectins, lactoferrin, lysozymes, mucins, secretory leukocyte proteinase inhibitor, surfactant proteins SP-A and SP-D, and RNases. It has been demonstrated that changes in antimicrobial molecule expression levels are associated with regulating inflammation, potentiating exacerbations, pathological changes, and modifications in chronic lung disease severity. Antimicrobial molecules also display roles in both anticancer and tumorigenic effects. Lung antimicrobial proteins and peptides are promising alternative therapeutics for treating and preventing multidrug-resistant bacterial infections and anticancer therapies.
Collapse
Affiliation(s)
- Yuanpu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jenna Marie Kuhn
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
17
|
Gao N, Bai P, Fang C, Wu W, Bi C, Wang J, Shan A. Biomimetic Peptide Nanonets: Exploiting Bacterial Entrapment and Macrophage Rerousing for Combatting Infections. ACS NANO 2024; 18:25446-25464. [PMID: 39240217 DOI: 10.1021/acsnano.4c03669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The alarming rise in global antimicrobial resistance underscores the urgent need for effective antibacterial drugs. Drawing inspiration from the bacterial-entrapment mechanism of human defensin 6, we have fabricated biomimetic peptide nanonets composed of multiple functional fragments for bacterial eradication. These biomimetic peptide nanonets are designed to address antimicrobial resistance challenges through a dual-approach strategy. First, the resulting nanofibrous networks trap bacteria and subsequently kill them by loosening the membrane structure, dissipating proton motive force, and causing multiple metabolic perturbations. Second, these trapped bacterial clusters reactivate macrophages to scavenge bacteria through enhanced chemotaxis and phagocytosis via the PI3K-AKT signaling pathway and ECM-receptor interaction. In vivo results have proven that treatment with biomimetic peptide nanonets can alleviate systemic bacterial infections without causing noticeable systemic toxicity. As anticipated, the proposed strategy can address stubborn infections by entrapping bacteria and awakening antibacterial immune responses. This approach might serve as a guide for the design of bioinspired materials for future clinical applications.
Collapse
Affiliation(s)
- Nan Gao
- College of animal science and technology, Northeast Agricultural University, Harbin 150030, China
| | - Pengfei Bai
- College of animal science and technology, Northeast Agricultural University, Harbin 150030, China
| | - Chunyang Fang
- College of animal science and technology, Northeast Agricultural University, Harbin 150030, China
| | - Wanpeng Wu
- College of animal science and technology, Northeast Agricultural University, Harbin 150030, China
| | - Chongpeng Bi
- College of animal science and technology, Northeast Agricultural University, Harbin 150030, China
| | - Jiajun Wang
- College of animal science and technology, Northeast Agricultural University, Harbin 150030, China
| | - Anshan Shan
- College of animal science and technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
18
|
Chen D, Zhou Z, Kong N, Xu T, Liang J, Xu P, Yao B, Zhang Y, Sun Y, Li Y, Wu B, Yang X, Wang H. Inhalable SPRAY nanoparticles by modular peptide assemblies reverse alveolar inflammation in lethal Gram-negative bacteria infection. SCIENCE ADVANCES 2024; 10:eado1749. [PMID: 39270015 PMCID: PMC11397428 DOI: 10.1126/sciadv.ado1749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024]
Abstract
Current pharmacotherapy remains futile in acute alveolar inflammation induced by Gram-negative bacteria (GNB), eliciting consequent respiratory failure. The release of lipid polysaccharides after antibiotic treatment and subsequent progress of proinflammatory cascade highlights the necessity to apply effective inflammation management simultaneously. This work describes modular self-assembling peptides for rapid anti-inflammatory programming (SPRAY) to form nanoparticles targeting macrophage specifically, having anti-inflammation and bactericidal functions synchronously. SPRAY nanoparticles accelerate the self-delivery process in macrophages via lysosomal membrane permeabilization, maintaining anti-inflammatory programming in macrophages with efficacy close to T helper 2 cytokines. By pulmonary deposition, SPRAY nanoparticles effectively suppress inflammatory infiltration and promote alveoli regeneration in murine aseptic acute lung injury. Moreover, SPRAY nanoparticles efficiently eradicate multidrug-resistant GNB in alveoli by disrupting bacterial membrane. The universal molecular design of SPRAY nanoparticles provides a robust and clinically unseen local strategy in reverse acute inflammation featured by a high accumulation of proinflammatory cellularity and drug-resistant bacteria.
Collapse
Affiliation(s)
- Dinghao Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Ziao Zhou
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Nan Kong
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Tengyan Xu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Juan Liang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Pingping Xu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Bingpeng Yao
- Departments of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University, School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou, China
| | - Yu Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Ying Sun
- Departments of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University, School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou, China
| | - Ying Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Bihan Wu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Xuejiao Yang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
19
|
Jandl B, Dighe S, Gasche C, Makristathis A, Muttenthaler M. Intestinal biofilms: pathophysiological relevance, host defense, and therapeutic opportunities. Clin Microbiol Rev 2024; 37:e0013323. [PMID: 38995034 PMCID: PMC11391705 DOI: 10.1128/cmr.00133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYThe human intestinal tract harbors a profound variety of microorganisms that live in symbiosis with the host and each other. It is a complex and highly dynamic environment whose homeostasis directly relates to human health. Dysbiosis of the gut microbiota and polymicrobial biofilms have been associated with gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel diseases, and colorectal cancers. This review covers the molecular composition and organization of intestinal biofilms, mechanistic aspects of biofilm signaling networks for bacterial communication and behavior, and synergistic effects in polymicrobial biofilms. It further describes the clinical relevance and diseases associated with gut biofilms, the role of biofilms in antimicrobial resistance, and the intestinal host defense system and therapeutic strategies counteracting biofilms. Taken together, this review summarizes the latest knowledge and research on intestinal biofilms and their role in gut disorders and provides directions toward the development of biofilm-specific treatments.
Collapse
Affiliation(s)
- Bernhard Jandl
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christoph Gasche
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Athanasios Makristathis
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
20
|
Tang Y, Zhang Y, Zhang D, Liu Y, Nussinov R, Zheng J. Exploring pathological link between antimicrobial and amyloid peptides. Chem Soc Rev 2024; 53:8713-8763. [PMID: 39041297 DOI: 10.1039/d3cs00878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Amyloid peptides (AMYs) and antimicrobial peptides (AMPs) are considered as the two distinct families of peptides, characterized by their unique sequences, structures, biological functions, and specific pathological targets. However, accumulating evidence has revealed intriguing pathological connections between these peptide families in the context of microbial infection and neurodegenerative diseases. Some AMYs and AMPs share certain structural and functional characteristics, including the ability to self-assemble, the presence of β-sheet-rich structures, and membrane-disrupting mechanisms. These shared features enable AMYs to possess antimicrobial activity and AMPs to acquire amyloidogenic properties. Despite limited studies on AMYs-AMPs systems, the cross-seeding phenomenon between AMYs and AMPs has emerged as a crucial factor in the bidirectional communication between the pathogenesis of neurodegenerative diseases and host defense against microbial infections. In this review, we examine recent developments in the potential interplay between AMYs and AMPs, as well as their pathological implications for both infectious and neurodegenerative diseases. By discussing the current progress and challenges in this emerging field, this account aims to inspire further research and investments to enhance our understanding of the intricate molecular crosstalk between AMYs and AMPs. This knowledge holds great promise for the development of innovative therapies to combat both microbial infections and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| | - Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
- Department of Human Molecular Genetics and Biochemistry Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| |
Collapse
|
21
|
Yang A, Song J, Li J, Li Y, Bai S, Zhou C, Wang M, Zhou Y, Wen K, Luo M, Chen P, Liu B, Yang H, Bai Y, Wong WL, Cai Q, Pu H, Qian Y, Hu W, Huang W, Wan M, Zhang C, Feng X. Ligand-Receptor Interaction-Induced Intracellular Phase Separation: A Global Disruption Strategy for Resistance-Free Lethality of Pathogenic Bacteria. J Am Chem Soc 2024; 146:23121-23137. [PMID: 38980064 DOI: 10.1021/jacs.4c04749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Addressing the global challenge of bacterial resistance demands innovative approaches, among which multitargeting is a widely used strategy. Current strategies of multitargeting, typically achieved through drug combinations or single agents inherently aiming at multiple targets, face challenges such as stringent pharmacokinetic and pharmacodynamic requirements and cytotoxicity concerns. In this report, we propose a bacterial-specific global disruption approach as a vastly expanded multitargeting strategy that effectively disrupts bacterial subcellular organization. This effect is achieved through a pioneering chemical design of ligand-receptor interaction-induced aggregation of small molecules, i.e., DNA-induced aggregation of a diarginine peptidomimetic within bacterial cells. These intracellular aggregates display affinity toward various proteins and thus substantially interfere with essential bacterial functions and rupture bacterial cell membranes in an "inside-out" manner, leading to robust antibacterial activities and suppression of drug resistance. Additionally, biochemical analysis of macromolecule binding affinity, cytoplasmic localization patterns, and bacterial stress responses suggests that this bacterial-specific intracellular aggregation mechanism is fundamentally different from nonselective classic DNA or membrane binding mechanisms. These mechanistic distinctions, along with the peptidomimetic's selective permeation of bacterial membranes, contribute to its favorable biocompatibility and pharmacokinetic properties, enabling its in vivo antimicrobial efficacy in several animal models, including mice-based superficial wound models, subcutaneous abscess models, and septicemia infection models. These results highlight the great promise of ligand-receptor interaction-induced intracellular aggregation in achieving a globally disruptive multitargeting effect, thereby offering potential applications in the treatment of malignant cells, including pathogens, tumor cells, and infected tissues.
Collapse
Affiliation(s)
- Anming Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Junfeng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jiaqi Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Youzhi Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Silei Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Cailing Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Min Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yu Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Kang Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Miaomiao Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Peiren Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Bo Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Huan Yang
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Yugang Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Huangsheng Pu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel NanoOptoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
| | - Yu Qian
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhao Hu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Muyang Wan
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Chunhui Zhang
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Xinxin Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
22
|
Sharma TT, Edassery SL, Rajinikanth N, Karra V, Bury MI, Sharma AK. Proteomic profiling of regenerated urinary bladder tissue in a non-human primate augmentation model. Sci Rep 2024; 14:15757. [PMID: 38977772 PMCID: PMC11231185 DOI: 10.1038/s41598-024-66088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Urinary bladder dysfunction can be caused by environmental, genetic, and developmental insults. Depending upon insult severity, the bladder may lose its ability to maintain volumetric capacity and intravesical pressure resulting in renal deterioration. Bladder augmentation enterocystoplasty (BAE) is utilized to increase bladder capacity to preserve renal function using autologous bowel tissue as a "patch." To avoid the clinical complications associated with this procedure, we have engineered composite grafts comprised of autologous bone marrow mesenchymal stem cells (MSCs) co-seeded with CD34+ hematopoietic stem/progenitor cells (HSPCs) onto a pliable synthetic scaffold [poly(1,8-octamethylene-citrate-co-octanol)(POCO)] or a biological scaffold (SIS; small intestinal submucosa) to regenerate bladder tissue in our baboon bladder augmentation model. We set out to determine the global protein expression profile of bladder tissue that has undergone regeneration with the aforementioned stem cell seeded scaffolds along with baboons that underwent BAE. Data demonstrate that POCO and SIS grafted animals share high protein homogeneity between native and regenerated tissues while BAE animals displayed heterogeneous protein expression between the tissues following long-term engraftment. We posit that stem cell-seeded scaffolds can recapitulate tissue that is nearly indistinguishable from native tissue at the protein level and may be used in lieu of procedures such as BAE.
Collapse
Affiliation(s)
- Tiffany T Sharma
- Division of Pediatric Urology, Ann and Robert H. Lurie Children's Hospital, Chicago, IL, 60611, USA.
- Stanley Manne Children's Research Institute, Simpson Querrey Biomedical Research Center, 303 E. Superior Street, Chicago, IL, 60611, USA.
| | - Seby L Edassery
- Cell and Molecular Physiology Department, Center for Translational Research and Education, Loyola University Chicago, Chicago, IL, 60153, USA
| | - Nachiket Rajinikanth
- Stanley Manne Children's Research Institute, Simpson Querrey Biomedical Research Center, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Vikram Karra
- Stanley Manne Children's Research Institute, Simpson Querrey Biomedical Research Center, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Matthew I Bury
- Division of Pediatric Urology, Ann and Robert H. Lurie Children's Hospital, Chicago, IL, 60611, USA
- Stanley Manne Children's Research Institute, Simpson Querrey Biomedical Research Center, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Arun K Sharma
- Division of Pediatric Urology, Ann and Robert H. Lurie Children's Hospital, Chicago, IL, 60611, USA.
- Stanley Manne Children's Research Institute, Simpson Querrey Biomedical Research Center, 303 E. Superior Street, Chicago, IL, 60611, USA.
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Simpson Querrey Institute (SQI), Northwestern University, 303 East Superior Street, Chicago, IL, 60611, USA.
| |
Collapse
|
23
|
Myers C, Cornwall GA. Host defense amyloids: Biosensors of the immune system? Andrology 2024; 12:973-980. [PMID: 37963844 DOI: 10.1111/andr.13555] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
There is considerable evidence showing that highly ordered aggregate structures known as amyloids carry out essential biological roles in species ranging from bacteria to humans. Indeed, many antimicrobial peptides/proteins form amyloids to carry out their host defense functions and many amyloids are antimicrobial. The similarity of host defense amyloids from bacterial biofilms to the mammalian epididymal amyloid matrix implies highly conserved host defense structures/functions. With an emphasis on the epididymal amyloid matrix, here we review the common properties of host defense amyloids including unique traits that would allow them to function as powerful biosensors of the immune system.
Collapse
Affiliation(s)
- Caitlyn Myers
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Gail A Cornwall
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
24
|
Chen S, Zhu L, Fang X, Appiah C, Ji Y, Chen Z, Qiao S, Gong C, Li J, Zhao Y. Alloferon Mitigates LPS-Induced Endometritis by Attenuating the NLRP3/CASP1/IL-1β/IL-18 Signaling Cascade. Inflammation 2024:10.1007/s10753-024-02083-6. [PMID: 38913143 DOI: 10.1007/s10753-024-02083-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
Endometritis is an inflammatory reaction of the uterine lining that can lead to infertility. Alloferon, a linear non-glycosylated oligopeptide, has been recognized for its potent anti-inflammatory and immunomodulatory effects. In light of these attributes, this study aims to explore the potential therapeutic effects of alloferon in alleviating endometrial inflammation induced by lipopolysaccharide (LPS), while elucidating the underlying protective mechanisms. Two conditions representing pre- and post-menopause states were simulated using an ovariectomized (Ovx) murine model. The findings underscore alloferon's remarkable capacity to alleviate cardinal signs of endometritis, including redness, swelling, and congestion, while concurrently restoring the structural integrity of the endometrial tissue. Moreover, alloferon effectively modulates the expression of key inflammatory mediators, such as nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3), cysteine aspartate-specific protease 1 (CASP1), interleukin-1β (IL-1β), and interleukin-18 (IL-18). In vitro experiments were conducted to further corroborate and validate these findings. In conclusion, alloferon shows promising potential in mitigating LPS-induced inflammation by attenuating the NLRP3/CASP1/IL-1β/IL-18 signaling cascade.
Collapse
Affiliation(s)
- Shitian Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Lin Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Xinyu Fang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Clara Appiah
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Yuanbo Ji
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Ziyi Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Shuai Qiao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Chen Gong
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Jian Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
25
|
Myers C, Atkins GR, Villarreal J, Sutton RB, Cornwall GA. The mouse epididymal amyloid matrix is a mammalian counterpart of a bacterial biofilm. iScience 2024; 27:110152. [PMID: 38974467 PMCID: PMC11225826 DOI: 10.1016/j.isci.2024.110152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/14/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024] Open
Abstract
The mouse epididymis is a long tubule connecting the testis to the vas deferens. Its primary functions are to mature spermatozoa into motile and fertile cells and to protect them from pathogens that ascend the male tract. We previously demonstrated that a functional extracellular amyloid matrix surrounds spermatozoa in the epididymal lumen and has host defense functions, properties not unlike that of an extracellular biofilm that encloses and protects a bacterial community. Here we show the epididymal amyloid matrix also structurally resembles a biofilm by containing eDNA, eRNA, and mucin-like polysaccharides. Further these structural components exhibit comparable behaviors and perform functions such as their counterparts in bacterial biofilms. Our studies suggest that nature has used the ancient building blocks of bacterial biofilms to form an analogous structure that nurtures and protects the mammalian male germline.
Collapse
Affiliation(s)
- Caitlyn Myers
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Georgia Rae Atkins
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Johanna Villarreal
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - R. Bryan Sutton
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Gail A. Cornwall
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
26
|
Wang Y, Zhang Y, Su R, Wang Y, Qi W. Antimicrobial therapy based on self-assembling peptides. J Mater Chem B 2024; 12:5061-5075. [PMID: 38726712 DOI: 10.1039/d4tb00260a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The emergence of drug-resistant microorganisms has threatened global health, and microbial infections have severely limited the use of medical materials. For example, the attachment and colonization of pathogenic bacteria to medical implant materials can lead to wound infections, inflammation and complications, as well as implant failure, shortening their lifespan and even resulting in patient death. In the era of antibiotic resistance, antimicrobial drug discovery needs to prioritize unconventional therapies that act on new targets or adopt new mechanisms. In this regard, supramolecular antimicrobial peptides have emerged as attractive therapeutic platforms, both as bactericides for combination antibiotics and as delivery vehicles. By taking advantage of their programmable intermolecular and intramolecular interactions, peptides can be modified to form higher-order structures (including nanofibers and nanoparticles) with unique functionality. This paper begins with an analysis of the relationship between peptide self-assembly and antimicrobial activity, describes in detail the research and development of various self-assembled antimicrobial peptides in recent years, and finally explores different combinatorial strategies for self-assembling antimicrobial peptides.
Collapse
Affiliation(s)
- Yuqi Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yexi Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Rongxin Su
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yuefei Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
27
|
El Battioui K, Chakraborty S, Wacha A, Molnár D, Quemé-Peña M, Szigyártó IC, Szabó CL, Bodor A, Horváti K, Gyulai G, Bősze S, Mihály J, Jezsó B, Románszki L, Tóth J, Varga Z, Mándity I, Juhász T, Beke-Somfai T. In situ captured antibacterial action of membrane-incising peptide lamellae. Nat Commun 2024; 15:3424. [PMID: 38654023 PMCID: PMC11039730 DOI: 10.1038/s41467-024-47708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Developing unique mechanisms of action are essential to combat the growing issue of antimicrobial resistance. Supramolecular assemblies combining the improved biostability of non-natural compounds with the complex membrane-attacking mechanisms of natural peptides are promising alternatives to conventional antibiotics. However, for such compounds the direct visual insight on antibacterial action is still lacking. Here we employ a design strategy focusing on an inducible assembly mechanism and utilized electron microscopy (EM) to follow the formation of supramolecular structures of lysine-rich heterochiral β3-peptides, termed lamellin-2K and lamellin-3K, triggered by bacterial cell surface lipopolysaccharides. Combined molecular dynamics simulations, EM and bacterial assays confirmed that the phosphate-induced conformational change on these lamellins led to the formation of striped lamellae capable of incising the cell envelope of Gram-negative bacteria thereby exerting antibacterial activity. Our findings also provide a mechanistic link for membrane-targeting agents depicting the antibiotic mechanism derived from the in-situ formation of active supramolecules.
Collapse
Grants
- CZ.02.1.01/0.0/0.0/18_046/0015974 EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
- This work was funded by the Momentum Program (LP2016-2 and LP2021-28) of the Hungarian Academy of Sciences, the National Competitiveness and Excellence Program (NVKP_16-1-2016-0007), the BIONANO_GINOP-2.3.2-15-2016-00017 project, and the National Research, Development and Innovation Office, Hungary (TKP2021-EGA-31, 2020-1.1.2-PIACI-KFI-2020-00021, 2019-2.1.11-TÉT-2019-00091, KKP_22 Project n.o. 144180, K131594 for J.M., K124900, K137940 for A.B., K142904 for Sz.B., and K138318 to J.T.). Support from Eötvös Loránd Research Network, Grant Nos. SA-87/2021 and KEP-5/2021, are also acknowledged. A.W. and Z.V. were supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. The authors acknowledge support from ELTE Thematic Excellence Programme 2020, the Szint+ Program, National Challenges Subprogramme-TKP2020-NKA-06. CIISB, Instruct-CZ Centre of Instruct-ERIC EU consortium, funded by MEYS CR infrastructure project LM2018127, LM2023042 and European Regional Development Fund-Project „UP CIISB“ (No. CZ.02.1.01/0.0/0.0/18_046/0015974), is gratefully acknowledged for the financial support of the measurements at the CF Cryo-Electron Microscopy and Tomography.
Collapse
Affiliation(s)
- Kamal El Battioui
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Sohini Chakraborty
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - András Wacha
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Dániel Molnár
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Doctoral School of Biology and Institute of Biology, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Mayra Quemé-Peña
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Imola Cs Szigyártó
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Csenge Lilla Szabó
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
- ELTE Eötvös Loránd University, Institute of Chemistry, Analytical and BioNMR Laboratory, Budapest, H-1117, Hungary
| | - Andrea Bodor
- ELTE Eötvös Loránd University, Institute of Chemistry, Analytical and BioNMR Laboratory, Budapest, H-1117, Hungary
| | - Kata Horváti
- MTA-HUN-REN TTK "Momentum" Peptide-Based Vaccines Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Gergő Gyulai
- MTA-HUN-REN TTK "Momentum" Peptide-Based Vaccines Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- ELTE Eötvös Loránd University, Institute of Chemistry, Laboratory of Interfaces and Nanostructures, Budapest, H-1117, Hungary
| | - Szilvia Bősze
- HUN-REN ELTE Research Group of Peptide Chemistry, Hungarian Research Network, Eötvös Loránd University, Budapest, Hungary
| | - Judith Mihály
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Bálint Jezsó
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Loránd Románszki
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Judit Tóth
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, H-1111, Hungary
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, 1111, Hungary
| | - István Mándity
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Department of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, Budapest, H-1092, Hungary
| | - Tünde Juhász
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Tamás Beke-Somfai
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary.
| |
Collapse
|
28
|
He X, Wu W, Hu Y, Wu M, Li H, Ding L, Huang S, Fan Y. Visualizing the global trends of peptides in wound healing through an in-depth bibliometric analysis. Int Wound J 2024; 21:e14575. [PMID: 38116897 PMCID: PMC10961903 DOI: 10.1111/iwj.14575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
Wound healing is a complicated and multistage biological process for the repair of damaged/injured tissues, which requires intelligent designs to provide comprehensive and convenient treatment. Peptide-based wound dressings have received extensive attention for further development and application due to their excellent biocompatibility and multifunctionality. However, the current lack of intuitive analysis of the development trend and research hotspots of peptides applied in wound healing, as well as detailed elaboration of possible research hotspots, restricted obtaining a comprehensive understanding and development in this field. The present study analysed publications from the Web of Science (WOS) Core Collection database and visualized the hotspots and current trends of peptide research in wound healing. Data between January 1st, 2003, and December 31st, 2022, were collected and subjected to a bibliometric analysis. The countries, institutions, co-authorship, co-citation reference, and co-occurrence of keywords in this subject were examined using VOSviewer and CiteSpace. We provided an intuitive, timely, and logical overview of the development prospects and challenges of peptide application in wound healing and some solutions to the major obstacles, which will help researchers gain insights into the investigation of this promising field.
Collapse
Affiliation(s)
- Xinyan He
- Department of Pharmaceutics, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China
| | - Wen Wu
- Chongqing key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yuchen Hu
- School of Biological Engineering and Food, Hubei University of Technology, Wuhan, China
| | - Meiling Wu
- Université de Lorraine, CITHEFOR, Nancy, France
| | - Hong Li
- School of Pharmacy, Guangxi Medical University, Nanning, China
| | - Ling Ding
- Department of Pharmaceutics, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China
| | - Shiqin Huang
- Department of Pharmaceutics, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China
| | - Ying Fan
- Department of Pharmaceutics, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
29
|
Wu Y, Liu P, Mehrjou B, Chu PK. Interdisciplinary-Inspired Smart Antibacterial Materials and Their Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305940. [PMID: 37469232 DOI: 10.1002/adma.202305940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
The discovery of antibiotics has saved millions of lives, but the emergence of antibiotic-resistant bacteria has become another problem in modern medicine. To avoid or reduce the overuse of antibiotics in antibacterial treatments, stimuli-responsive materials, pathogen-targeting nanoparticles, immunogenic nano-toxoids, and biomimetic materials are being developed to make sterilization better and smarter than conventional therapies. The common goal of smart antibacterial materials (SAMs) is to increase the antibiotic efficacy or function via an antibacterial mechanism different from that of antibiotics in order to increase the antibacterial and biological properties while reducing the risk of drug resistance. The research and development of SAMs are increasingly interdisciplinary because new designs require the knowledge of different fields and input/collaboration from scientists in different fields. A good understanding of energy conversion in materials, physiological characteristics in cells and bacteria, and bactericidal structures and components in nature are expected to promote the development of SAMs. In this review, the importance of multidisciplinary insights for SAMs is emphasized, and the latest advances in SAMs are categorized and discussed according to the pertinent disciplines including materials science, physiology, and biomimicry.
Collapse
Affiliation(s)
- Yuzheng Wu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Pei Liu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Babak Mehrjou
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
30
|
Gleeson PJ, Benech N, Chemouny J, Metallinou E, Berthelot L, da Silva J, Bex-Coudrat J, Boedec E, Canesi F, Bounaix C, Morelle W, Moya-Nilges M, Kenny J, O'Mahony L, Saveanu L, Arnulf B, Sannier A, Daugas E, Vrtovsnik F, Lepage P, Sokol H, Monteiro RC. The gut microbiota posttranslationally modifies IgA1 in autoimmune glomerulonephritis. Sci Transl Med 2024; 16:eadl6149. [PMID: 38536935 DOI: 10.1126/scitranslmed.adl6149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/01/2024] [Indexed: 04/05/2024]
Abstract
Mechanisms underlying the disruption of self-tolerance in acquired autoimmunity remain unclear. Immunoglobulin A (IgA) nephropathy is an acquired autoimmune disease where deglycosylated IgA1 (IgA subclass 1) auto-antigens are recognized by IgG auto-antibodies, forming immune complexes that are deposited in the kidneys, leading to glomerulonephritis. In the intestinal microbiota of patients with IgA nephropathy, there was increased relative abundance of mucin-degrading bacteria, including Akkermansia muciniphila. IgA1 was deglycosylated by A. muciniphila both in vitro and in the intestinal lumen of mice. This generated neo-epitopes that were recognized by autoreactive IgG from the sera of patients with IgA nephropathy. Mice expressing human IgA1 and the human Fc α receptor I (α1KI-CD89tg) that underwent intestinal colonization by A. muciniphila developed an aggravated IgA nephropathy phenotype. After deglycosylation of IgA1 by A. muciniphila in the mouse gut lumen, IgA1 crossed the intestinal epithelium into the circulation by retrotranscytosis and became deposited in the glomeruli of mouse kidneys. Human α-defensins-a risk locus for IgA nephropathy-inhibited growth of A. muciniphila in vitro. A negative correlation observed between stool concentration of α-defensin 6 and quantity of A. muciniphila in the guts of control participants was lost in patients with IgA nephropathy. This study demonstrates that gut microbiota dysbiosis contributes to generation of auto-antigens in patients with IgA nephropathy and in a mouse model of this disease.
Collapse
Affiliation(s)
- Patrick J Gleeson
- Université Paris Cité, INSERM UMR1149 and CNRS EMR8252, Centre de Recherche sur l'Inflammation, Inflamex Laboratory of Excellence, Paris 75018, France
- Department of Medicine, School of Microbiology, APC Microbiome Ireland, University College Cork, Cork T12 Y337 Ireland
- AP-HP, Nord/université de Paris, hôpital Bichat-Claude Bernard, Service de Néphrologie, Paris 75018, France
| | - Nicolas Benech
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris 75012, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris 75012, France
- Hospices Civils de Lyon, Claude Bernard Lyon 1 University, CRCL, 69003 Lyon, France
| | - Jonathan Chemouny
- Université Paris Cité, INSERM UMR1149 and CNRS EMR8252, Centre de Recherche sur l'Inflammation, Inflamex Laboratory of Excellence, Paris 75018, France
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Eleftheria Metallinou
- Université Paris Cité, INSERM UMR1149 and CNRS EMR8252, Centre de Recherche sur l'Inflammation, Inflamex Laboratory of Excellence, Paris 75018, France
| | - Laureline Berthelot
- Université Paris Cité, INSERM UMR1149 and CNRS EMR8252, Centre de Recherche sur l'Inflammation, Inflamex Laboratory of Excellence, Paris 75018, France
| | - Jennifer da Silva
- Université Paris Cité, INSERM UMR1149 and CNRS EMR8252, Centre de Recherche sur l'Inflammation, Inflamex Laboratory of Excellence, Paris 75018, France
| | - Julie Bex-Coudrat
- Université Paris Cité, INSERM UMR1149 and CNRS EMR8252, Centre de Recherche sur l'Inflammation, Inflamex Laboratory of Excellence, Paris 75018, France
| | - Erwan Boedec
- Université Paris Cité, INSERM UMR1149 and CNRS EMR8252, Centre de Recherche sur l'Inflammation, Inflamex Laboratory of Excellence, Paris 75018, France
| | - Fanny Canesi
- Université Paris Cité, INSERM UMR1149 and CNRS EMR8252, Centre de Recherche sur l'Inflammation, Inflamex Laboratory of Excellence, Paris 75018, France
| | - Carine Bounaix
- Université Paris Cité, INSERM UMR1149 and CNRS EMR8252, Centre de Recherche sur l'Inflammation, Inflamex Laboratory of Excellence, Paris 75018, France
| | - Willy Morelle
- Université Lille, Centre National de la Recherche Française, UMR 8576-Unité de Glycobiologie Structurale et Fonctionnelle-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Maryse Moya-Nilges
- Unité Technologie et Service Bioimagerie Ultrastructurale (UTechS UBI), Institut Pasteur, 28 Rue Du Docteur Roux, 75015 Paris, France
| | - John Kenny
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996 Ireland
- APC Microbiome Ireland, University College Cork, College Road, Cork, T12 YT20 Ireland
| | - Liam O'Mahony
- Department of Medicine, School of Microbiology, APC Microbiome Ireland, University College Cork, Cork T12 Y337 Ireland
| | - Loredana Saveanu
- Université Paris Cité, INSERM UMR1149 and CNRS EMR8252, Centre de Recherche sur l'Inflammation, Inflamex Laboratory of Excellence, Paris 75018, France
| | - Bertrand Arnulf
- AP-HP, Nord/université de Paris, hôpital Saint Louis, Service d'Immuno-Hématologie, Myosotis 4, 75010 Paris, France
| | - Aurélie Sannier
- AP-HP, Nord/université de Paris, hôpital Bichat-Claude Bernard, Service d'Anatomie-Pathologique, 75018 Paris, France
| | - Eric Daugas
- Université Paris Cité, INSERM UMR1149 and CNRS EMR8252, Centre de Recherche sur l'Inflammation, Inflamex Laboratory of Excellence, Paris 75018, France
- AP-HP, Nord/université de Paris, hôpital Bichat-Claude Bernard, Service de Néphrologie, Paris 75018, France
| | - François Vrtovsnik
- Université Paris Cité, INSERM UMR1149 and CNRS EMR8252, Centre de Recherche sur l'Inflammation, Inflamex Laboratory of Excellence, Paris 75018, France
- AP-HP, Nord/université de Paris, hôpital Bichat-Claude Bernard, Service de Néphrologie, Paris 75018, France
| | - Patricia Lepage
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Harry Sokol
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris 75012, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris 75012, France
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Renato C Monteiro
- Université Paris Cité, INSERM UMR1149 and CNRS EMR8252, Centre de Recherche sur l'Inflammation, Inflamex Laboratory of Excellence, Paris 75018, France
- AP-HP, Nord/université de Paris, hôpital Bichat-Claude Bernard, Service d'Immunologie, 75018 Paris, France
| |
Collapse
|
31
|
Zhao G, He Y, Chen Y, Jiang Y, Li C, Xiong T, Han S, He Y, Gao J, Su Y, Wang J, Wang C. Application of a derivative of human defensin 5 to treat ionizing radiation-induced enterogenic infection. JOURNAL OF RADIATION RESEARCH 2024; 65:194-204. [PMID: 38264835 PMCID: PMC10959430 DOI: 10.1093/jrr/rrad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/28/2023] [Accepted: 12/17/2023] [Indexed: 01/25/2024]
Abstract
Enterogenic infection is a common complication for patients with radiation injury and requires efficient therapeutics in the clinic. Herein, we evaluated the promising drug candidate T7E21RHD5, which is a peptide derived from intestinal Paneth cell-secreted human defensin 5. Oral administration of this peptide alleviated the diarrhea symptoms of mice that received total abdominal irradiation (TAI, γ-ray, 12 Gy) and improved survival. Pathologic analysis revealed that T7E21RHD5 elicited an obvious mitigation of ionizing radiation (IR)-induced epithelial damage and ameliorated the reduction in the levels of claudin, zonula occluden 1 and occludin, three tight junction proteins in the ileum. Additionally, T7E21RHD5 regulated the gut microbiota in TAI mice by remodeling β diversity, manifested as a reversal of the inverted proportion of Bacteroidota to Firmicutes caused by IR. T7E21RHD5 treatment also decreased the abundance of pathogenic Escherichia-Shigella but significantly increased the levels of Alloprevotella and Prevotellaceae_NK3B31, two short-chain fatty acid-producing bacterial genera in the gut. Accordingly, the translocation of enterobacteria and lipopolysaccharide to the blood, as well as the infectious inflammatory responses in the intestine after TAI, was all suppressed by T7E21RHD5 administration. Hence, this versatile antimicrobial peptide possesses promising application prospects in the treatment of IR-induced enterogenic infection.
Collapse
Affiliation(s)
- Gaomei Zhao
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Yingjuan He
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Yin Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Yiyi Jiang
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Chenwenya Li
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Tainong Xiong
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Songling Han
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Yongwu He
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Jining Gao
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Yongping Su
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Cheng Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| |
Collapse
|
32
|
Ra YE, Bang YJ. Balancing Act of the Intestinal Antimicrobial Proteins on Gut Microbiota and Health. J Microbiol 2024; 62:167-179. [PMID: 38630349 DOI: 10.1007/s12275-024-00122-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 05/15/2024]
Abstract
The human gut houses a diverse and dynamic microbiome critical for digestion, metabolism, and immune development, exerting profound effects on human health. However, these microorganisms pose a potential threat by breaching the gut barrier, entering host tissues, and triggering infections, uncontrolled inflammation, and even sepsis. The intestinal epithelial cells form the primary defense, acting as a frontline barrier against microbial invasion. Antimicrobial proteins (AMPs), produced by these cells, serve as innate immune effectors that regulate the gut microbiome by directly killing or inhibiting microbes. Abnormal AMP production, whether insufficient or excessive, can disturb the microbiome equilibrium, contributing to various intestinal diseases. This review delves into the complex interactions between AMPs and the gut microbiota and sheds light on the role of AMPs in governing host-microbiota interactions. We discuss the function and mechanisms of action of AMPs, their regulation by the gut microbiota, microbial evasion strategies, and the consequences of AMP dysregulation in disease. Understanding these complex interactions between AMPs and the gut microbiota is crucial for developing strategies to enhance immune responses and combat infections within the gut microbiota. Ongoing research continues to uncover novel aspects of this intricate relationship, deepening our understanding of the factors shaping gut health. This knowledge has the potential to revolutionize therapeutic interventions, offering enhanced treatments for a wide range of gut-related diseases.
Collapse
Affiliation(s)
- Ye Eun Ra
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Ye-Ji Bang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
33
|
Qi GF, Cui X, Gong XF, Cui X, Xu HG, Liang QL, Zhang K, Sha XL, Li L, Wang GY, Liang HW, Wang L. A self-assembling peptide inhibits the growth and function of fungi via a wrapping strategy. Biomater Sci 2024; 12:990-1003. [PMID: 38193333 DOI: 10.1039/d3bm01845h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Fungal infections contribute substantially to human morbidity and mortality. A particular concern is the high rate of mortality associated with invasive fungal infections, which often exceeds 50.0% despite the availability of several antifungal drugs. Herein, we show a self-assembling antifungal peptide (AFP), which is able to bind to chitin on the fungal cell wall and in situ form AFP nanofibers, wrapping fungi. As a result, AFP limits the proliferation of fungi, slows down the morphological transformation of biphasic fungi, and inhibits the adhesion of fungi to host cells and the formation of biofilms. Compared to the broad-spectrum antifungal fluconazole, AFP achieved a comparable inhibitory effect (MIC50 = 3.5 μM) on fungal proliferation. In addition, AFP significantly inhibited the formation of fungal biofilms with the inhibition rate of 69.6% at 1 μM, better than fluconazole (17.2% at 1 μM). In a skin infection model of mice, it was demonstrated that AFP showed significantly superior efficacy to fluconazole. In the systemic candidiasis mouse model, AFP showed similar efficacy to first-line antifungal amphotericin B (AmpB) and anidulafungin (AFG). This study provides a promising wrapping strategy for anti-fungal infection.
Collapse
Affiliation(s)
- Gao-Feng Qi
- Department of Graduate, Hebei North University, No.11 Diamond South Road, High-tech Zone, Zhangjiakou 075000, Hebei Province, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China.
- Department of Orthopaedics, The 4th Medical Center of Chinese PLA General Hospital, Jia No.17 Heishanhu road, Beijing 100091, China
| | - Xin Cui
- Department of Graduate, Hebei North University, No.11 Diamond South Road, High-tech Zone, Zhangjiakou 075000, Hebei Province, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China.
- Department of Orthopaedics, The 4th Medical Center of Chinese PLA General Hospital, Jia No.17 Heishanhu road, Beijing 100091, China
| | - Xue-Feng Gong
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China.
| | - Xu Cui
- Department of Graduate, Hebei North University, No.11 Diamond South Road, High-tech Zone, Zhangjiakou 075000, Hebei Province, China
- Department of Orthopaedics, The 4th Medical Center of Chinese PLA General Hospital, Jia No.17 Heishanhu road, Beijing 100091, China
| | - Huan-Ge Xu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China.
| | - Qi-Lin Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China.
| | - Kuo Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China.
| | - Xiao-Ling Sha
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China.
| | - Litao Li
- Department of Orthopaedics, The 4th Medical Center of Chinese PLA General Hospital, Jia No.17 Heishanhu road, Beijing 100091, China
| | - Gui-Yuan Wang
- Department of Graduate, Hebei North University, No.11 Diamond South Road, High-tech Zone, Zhangjiakou 075000, Hebei Province, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China.
| | - Hong-Wen Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China.
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China.
| |
Collapse
|
34
|
Zheng T, Wang Y, Zhou Z, Chen S, Jiang J, Chen S. PM2.5 Causes Increased Bacterial Invasion by Affecting HBD1 Expression in the Lung. J Immunol Res 2024; 2024:6622950. [PMID: 38314088 PMCID: PMC10838202 DOI: 10.1155/2024/6622950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024] Open
Abstract
Our research addresses the critical environmental issue of a fine particulate matter (PM2.5), focusing on its association with the increased infection risks. We explored the influence of PM2.5 on human beta-defensin 1 (HBD1), an essential peptide in mucosal immunity found in the airway epithelium. Using C57BL/6J mice and human bronchial epithelial cells (HBE), we examined the effects of PM2.5 exposure followed by Pseudomonas aeruginosa (P. aeruginosa) infection on HBD1 expression at both mRNA and protein levels. The study revealed that PM2.5's toxicity to epithelial cells and animals varies with time and concentration. Notably, HBE cells exposed to PM2.5 and P. aeruginosa showed increased bacterial invasion and decreased HBD1 expression compared to the cells exposed to P. aeruginosa alone. Similarly, mice studies indicated that combined exposure to PM2.5 and P. aeruginosa significantly reduced survival rates and increased bacterial invasion. These harmful effects, however, were alleviated by administering exogenous HBD1. Furthermore, our findings highlight the activation of MAPK and NF-κB pathways following PM2.5 exposure. Inhibiting these pathways effectively increased HBD1 expression and diminished bacterial invasion. In summary, our study establishes that PM2.5 exposure intensifies P. aeruginosa invasion in both HBE cells and mouse models, primarily by suppressing HBD1 expression. This effect can be counteracted with exogenous HBD1, with the downregulation mechanism involving the MAPK and NF-κB pathways. Our study endeavors to elucidate the pathogenesis of lung infections associated with PM2.5 exposure, providing a novel theoretical basis for the development of prevention and treatment strategies, with substantial clinical significance.
Collapse
Affiliation(s)
- Tianqi Zheng
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yajun Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng Zhou
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuyang Chen
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinjun Jiang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Respiratory Research Institute, Shanghai, China
| | - Shujing Chen
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Gao N, Wang J, Fang C, Bai P, Sun Y, Wu W, Shan A. Combating bacterial infections with host defense peptides: Shifting focus from bacteria to host immunity. Drug Resist Updat 2024; 72:101030. [PMID: 38043443 DOI: 10.1016/j.drup.2023.101030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/12/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The increasing prevalence of multidrug-resistant bacterial infections necessitates the exploration of novel paradigms for anti-infective therapy. Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), have garnered extensive recognition as immunomodulatory molecules that leverage natural host mechanisms to enhance therapeutic benefits. The unique immune mechanism exhibited by certain HDPs that involves self-assembly into supramolecular nanonets capable of inducing bacterial agglutination and entrapping is significantly important. This process effectively prevents microbial invasion and subsequent dissemination and significantly mitigates selective pressure for the evolution of microbial resistance, highlighting the potential of HDP-based antimicrobial therapy. Recent advancements in this field have focused on developing bio-responsive materials in the form of supramolecular nanonets. A comprehensive overview of the immunomodulatory and bacteria-agglutinating activities of HDPs, along with a discussion on optimization strategies for synthetic derivatives, is presented in this article. These optimized derivatives exhibit improved biological properties and therapeutic potential, making them suitable for future clinical applications as effective anti-infective therapeutics.
Collapse
Affiliation(s)
- Nan Gao
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiajun Wang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China.
| | - Chunyang Fang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Pengfei Bai
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu Sun
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Wanpeng Wu
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
36
|
Coutry N, Gasmi I, Herbert F, Jay P. Mechanisms of intestinal dysbiosis: new insights into tuft cell functions. Gut Microbes 2024; 16:2379624. [PMID: 39042424 PMCID: PMC11268228 DOI: 10.1080/19490976.2024.2379624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
Symbiosis between the host and intestinal microbial communities is essential for human health. Disruption in this symbiosis is linked to gastrointestinal diseases, including inflammatory bowel diseases, as well as extra-gastrointestinal diseases. Unbalanced gut microbiome or gut dysbiosis contributes in multiple ways to disease frequency, severity and progression. Microbiome taxonomic profiling and metabolomics approaches greatly improved our understanding of gut dysbiosis features; however, the precise mechanisms involved in gut dysbiosis establishment still need to be clarified. The aim of this review is to present new actors and mechanisms underlying gut dysbiosis formation following parasitic infection or in a context of altered Paneth cells, revealing the existence of a critical crosstalk between Paneth and tuft cells to control microbiome composition.
Collapse
Affiliation(s)
- Nathalie Coutry
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Imène Gasmi
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Fabien Herbert
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Philippe Jay
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| |
Collapse
|
37
|
Zhang T, Luo X, Xu K, Zhong W. Peptide-containing nanoformulations: Skin barrier penetration and activity contribution. Adv Drug Deliv Rev 2023; 203:115139. [PMID: 37951358 DOI: 10.1016/j.addr.2023.115139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/21/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Transdermal drug delivery presents a less invasive pathway, circumventing the need to pass through the gastrointestinal tract and liver, thereby reducing drug breakdown, initial metabolism, and gastrointestinal discomfort. Nevertheless, the unique composition and dense structure of the stratum corneum present a significant barrier to transdermal delivery. This article presents an overview of the current developments in peptides and nanotechnology to address this challenge. Initially, we sum up peptide-containing nanoformulations for transdermal drug delivery, examining them through the lenses of both inorganic and organic materials. Particular emphasis is placed on the diverse roles that peptides play within these nanoformulations, including conferring functionality upon nanocarriers and enhancing the biological efficacy of drugs. Subsequently, we summarize innovative strategies for enhancing skin penetration, categorizing them into passive and active approaches. Lastly, we discuss the therapeutic potential of peptide-containing nanoformulations in addressing a range of diseases, drawing insights from the biological activities and functions of peptides. Furthermore, the challenges hindering clinical translation are also discussed, providing valuable insights for future advancements in transdermal drug delivery.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xuan Luo
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Keming Xu
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China.
| | - Wenying Zhong
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
38
|
Wang CM, Fernez MT, Woolston BM, Carrier RL. Native gastrointestinal mucus: Critical features and techniques for studying interactions with drugs, drug carriers, and bacteria. Adv Drug Deliv Rev 2023; 200:114966. [PMID: 37329985 PMCID: PMC11184232 DOI: 10.1016/j.addr.2023.114966] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Gastrointestinal mucus plays essential roles in modulating interactions between intestinal lumen contents, including orally delivered drug carriers and the gut microbiome, and underlying epithelial and immune tissues and cells. This review is focused on the properties of and methods for studying native gastrointestinal mucus and its interactions with intestinal lumen contents, including drug delivery systems, drugs, and bacteria. The properties of gastrointestinal mucus important to consider in its analysis are first presented, followed by a discussion of different experimental setups used to study gastrointestinal mucus. Applications of native intestinal mucus are then described, including experimental methods used to study mucus as a barrier to drug delivery and interactions with intestinal lumen contents that impact barrier properties. Given the significance of the microbiota in health and disease, its impact on drug delivery and drug metabolism, and the use of probiotics and microbe-based delivery systems, analysis of interactions of bacteria with native intestinal mucus is then reviewed. Specifically, bacteria adhesion to, motility within, and degradation of mucus is discussed. Literature noted is focused largely on applications of native intestinal mucus models as opposed to isolated mucins or reconstituted mucin gels.
Collapse
Affiliation(s)
- Chia-Ming Wang
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Matthew T Fernez
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Benjamin M Woolston
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Rebecca L Carrier
- Department of Bioengineering, Northeastern University, Boston, MA, USA; Department of Chemical Engineering, Northeastern University, Boston, MA, USA; Department of Biology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
39
|
Sharma TT, Edassery SL, Rajinikanth N, Karra V, Bury MI, Sharma AK. Proteomic profiling of regenerated urinary bladder tissue with stem cell seeded scaffold composites in a non-human primate bladder augmentation model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.554824. [PMID: 37693577 PMCID: PMC10491202 DOI: 10.1101/2023.08.29.554824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Urinary bladder insult can be caused by environmental, genetic, and developmental factors. Depending upon insult severity, the bladder may lose its ability to maintain capacity and intravesical pressures resulting in renal deterioration. Bladder augmentation enterocystoplasty (BAE) is employed to increase bladder capacity to preserve renal function using autologous bowel tissue as a "patch." To avoid the clinical complications associated with this procedure, we have engineered composite grafts comprised of autologous bone marrow mesenchymal stem cells (MSCs) with CD34+ hematopoietic stem/progenitor cells (HSPCs) co-seeded onto a pliable synthetic scaffold [POCO; poly(1,8-octamethylene-citrate-co-octanol)] or a biological scaffold (SIS; small intestinal submucosa) to regenerate bladder tissue in a baboon bladder augmentation model. We set out to determine the protein expression profile of bladder tissue that has undergone regeneration with the aforementioned stem cell seeded scaffolds along with baboons that underwent BAE. Data demonstrate that POCO and SIS grafted animals share high protein homogeneity between native and regenerated tissues while BAE animals displayed heterogenous protein expression between the tissues following long-term engraftment. We posit that stem cell seeded scaffolds can recapitulate tissue that is almost indistinguishable from native tissue at the protein level and may be used in lieu of procedures such as BAE.
Collapse
Affiliation(s)
- Tiffany T Sharma
- Division of Pediatric Urology, Ann and Robert H. Lurie Children's Hospital, Chicago, IL 60611, USA
- Stanley Manne Children's Research Institute, Chicago, IL 60611, USA
| | - Seby L Edassery
- Center for Translational Research and Education, Loyola University Chicago, Chicago, IL 60153, USA
| | | | - Vikram Karra
- Stanley Manne Children's Research Institute, Chicago, IL 60611, USA
| | - Matthew I Bury
- Division of Pediatric Urology, Ann and Robert H. Lurie Children's Hospital, Chicago, IL 60611, USA
- Stanley Manne Children's Research Institute, Chicago, IL 60611, USA
| | - Arun K Sharma
- Division of Pediatric Urology, Ann and Robert H. Lurie Children's Hospital, Chicago, IL 60611, USA
- Stanley Manne Children's Research Institute, Chicago, IL 60611, USA
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute (SQI), Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
40
|
Winter MG, Hughes ER, Muramatsu MK, Jimenez AG, Chanin RB, Spiga L, Gillis CC, McClelland M, Andrews-Polymenis H, Winter SE. Formate oxidation in the intestinal mucus layer enhances fitness of Salmonella enterica serovar Typhimurium. mBio 2023; 14:e0092123. [PMID: 37498116 PMCID: PMC10470504 DOI: 10.1128/mbio.00921-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/12/2023] [Indexed: 07/28/2023] Open
Abstract
Salmonella enterica serovar Typhimurium induces intestinal inflammation to create a niche that fosters the outgrowth of the pathogen over the gut microbiota. Under inflammatory conditions, Salmonella utilizes terminal electron acceptors generated as byproducts of intestinal inflammation to generate cellular energy through respiration. However, the electron donating reactions in these electron transport chains are poorly understood. Here, we investigated how formate utilization through the respiratory formate dehydrogenase-N (FdnGHI) and formate dehydrogenase-O (FdoGHI) contribute to gut colonization of Salmonella. Both enzymes fulfilled redundant roles in enhancing fitness in a mouse model of Salmonella-induced colitis, and coupled to tetrathionate, nitrate, and oxygen respiration. The formic acid utilized by Salmonella during infection was generated by its own pyruvate-formate lyase as well as the gut microbiota. Transcription of formate dehydrogenases and pyruvate-formate lyase was significantly higher in bacteria residing in the mucus layer compared to the lumen. Furthermore, formate utilization conferred a more pronounced fitness advantage in the mucus, indicating that formate production and degradation occurred predominantly in the mucus layer. Our results provide new insights into how Salmonella adapts its energy metabolism to the local microenvironment in the gut. IMPORTANCE Bacterial pathogens must not only evade immune responses but also adapt their metabolism to successfully colonize their host. The microenvironments encountered by enteric pathogens differ based on anatomical location, such as small versus large intestine, spatial stratification by host factors, such as mucus layer and antimicrobial peptides, and distinct commensal microbial communities that inhabit these microenvironments. Our understanding of how Salmonella populations adapt its metabolism to different environments in the gut is incomplete. In the current study, we discovered that Salmonella utilizes formate as an electron donor to support respiration, and that formate oxidation predominantly occurs in the mucus layer. Our experiments suggest that spatially distinct Salmonella populations in the mucus layer and the lumen differ in their energy metabolism. Our findings enhance our understanding of the spatial nature of microbial metabolism and may have implications for other enteric pathogens as well as commensal host-associated microbial communities.
Collapse
Affiliation(s)
- Maria G. Winter
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis School of Medicine, Davis, California, USA
| | - Elizabeth R. Hughes
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Matthew K. Muramatsu
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis School of Medicine, Davis, California, USA
| | - Angel G. Jimenez
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rachael B. Chanin
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Luisella Spiga
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Caroline C. Gillis
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, UC Irvine, Irvine, California, USA
| | - Helene Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, Texas A&M College of Medicine, College Station, Texas, USA
| | - Sebastian E. Winter
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis School of Medicine, Davis, California, USA
| |
Collapse
|
41
|
Fu J, Zong X, Jin M, Min J, Wang F, Wang Y. Mechanisms and regulation of defensins in host defense. Signal Transduct Target Ther 2023; 8:300. [PMID: 37574471 PMCID: PMC10423725 DOI: 10.1038/s41392-023-01553-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/11/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023] Open
Abstract
As a family of cationic host defense peptides, defensins are mainly synthesized by Paneth cells, neutrophils, and epithelial cells, contributing to host defense. Their biological functions in innate immunity, as well as their structure and activity relationships, along with their mechanisms of action and therapeutic potential, have been of great interest in recent years. To highlight the key research into the role of defensins in human and animal health, we first describe their research history, structural features, evolution, and antimicrobial mechanisms. Next, we cover the role of defensins in immune homeostasis, chemotaxis, mucosal barrier function, gut microbiota regulation, intestinal development and regulation of cell death. Further, we discuss their clinical relevance and therapeutic potential in various diseases, including infectious disease, inflammatory bowel disease, diabetes and obesity, chronic inflammatory lung disease, periodontitis and cancer. Finally, we summarize the current knowledge regarding the nutrient-dependent regulation of defensins, including fatty acids, amino acids, microelements, plant extracts, and probiotics, while considering the clinical application of such regulation. Together, the review summarizes the various biological functions, mechanism of actions and potential clinical significance of defensins, along with the challenges in developing defensins-based therapy, thus providing crucial insights into their biology and potential clinical utility.
Collapse
Affiliation(s)
- Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
42
|
Tram NDT, Tran QTN, Xu J, Su JCT, Liao W, Wong WSF, Ee PLR. Multifunctional Antibacterial Nanonets Attenuate Inflammatory Responses through Selective Trapping of Endotoxins and Pro-Inflammatory Cytokines. Adv Healthc Mater 2023; 12:e2203232. [PMID: 36988351 PMCID: PMC11468709 DOI: 10.1002/adhm.202203232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/08/2023] [Indexed: 03/30/2023]
Abstract
Extracellular lipopolysaccharide (LPS) released from bacteria cells can enter the bloodstream and cause septic complications with excessive host inflammatory responses. Target-specific strategies to inactivate inflammation mediators have largely failed to improve the prognosis of septic patients in clinical trials. By utilizing their high density of positive charges, de novo designed peptide nanonets are shown to selectively entrap the negatively charged LPS and pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). This in turn enables the nanonets to suppress LPS-induced cytokine production by murine macrophage cell line and rescue the antimicrobial activity of the last-resort antibiotic, colistin, from LPS binding. Using an acute lung injury model in mice, it is demonstrated that intratracheal administration of the fibrillating peptides is effective at lowering local release of TNF-α and IL-6. Together with previously shown ability to simultaneously trap and kill pathogenic bacteria, the peptide nanonets display remarkable potential as a holistic, multifunctional anti-infective, and anti-septic biomaterial.
Collapse
Affiliation(s)
- Nhan Dai Thien Tram
- National University of SingaporeDepartment of Pharmacy18 Science Drive 4Singapore117543Singapore
| | - Quy Thi Ngoc Tran
- National University Health SystemDepartment of PharmacologyYong Loo Lin School of Medicine16 Medical Drive MD3Singapore117600Singapore
- Drug Discovery and Optimization Platform (DDOP)Yong Loo Lin School of MedicineNational University Health SystemSingapore117600Singapore
- Singapore‐HUJ Alliance for Research and Enterprise (SHARE)1 CREATE WaySingapore138602Singapore
| | - Jian Xu
- National University of SingaporeDepartment of Pharmacy18 Science Drive 4Singapore117543Singapore
| | - Jeannie Ching Ting Su
- National University of SingaporeDepartment of Pharmacy18 Science Drive 4Singapore117543Singapore
| | - Wupeng Liao
- National University Health SystemDepartment of PharmacologyYong Loo Lin School of Medicine16 Medical Drive MD3Singapore117600Singapore
- Singapore‐HUJ Alliance for Research and Enterprise (SHARE)1 CREATE WaySingapore138602Singapore
| | - Wai Shiu Fred Wong
- National University Health SystemDepartment of PharmacologyYong Loo Lin School of Medicine16 Medical Drive MD3Singapore117600Singapore
- Drug Discovery and Optimization Platform (DDOP)Yong Loo Lin School of MedicineNational University Health SystemSingapore117600Singapore
- Singapore‐HUJ Alliance for Research and Enterprise (SHARE)1 CREATE WaySingapore138602Singapore
| | - Pui Lai Rachel Ee
- National University of SingaporeDepartment of Pharmacy18 Science Drive 4Singapore117543Singapore
| |
Collapse
|
43
|
Bao W, Wang L, Liu X, Li M. Predicting diagnostic biomarkers associated with immune infiltration in Crohn's disease based on machine learning and bioinformatics. Eur J Med Res 2023; 28:255. [PMID: 37496049 PMCID: PMC10369716 DOI: 10.1186/s40001-023-01200-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
OBJECTIVE The objective of this study is to investigate potential biomarkers of Crohn's disease (CD) and the pathological importance of infiltration of associated immune cells in disease development using machine learning. METHODS Three publicly accessible CD gene expression profiles were obtained from the GEO database. Inflammatory tissue samples were selected and differentiated between colonic and ileal tissues. To determine the differentially expressed genes (DEGs) between CD and healthy controls, the larger sample size was merged as a training unit. The function of DEGs was comprehended through disease enrichment (DO) and gene set enrichment analysis (GSEA) on DEGs. Promising biomarkers were identified using the support vector machine-recursive feature elimination and lasso regression models. To further clarify the efficacy of potential biomarkers as diagnostic genes, the area under the ROC curve was observed in the validation group. Additionally, using the CIBERSORT approach, immune cell fractions from CD patients were examined and linked with potential biomarkers. RESULTS Thirty-four DEGs were identified in colon tissue, of which 26 were up-regulated and 8 were down-regulated. In ileal tissues, 50 up-regulated and 50 down-regulated DEGs were observed. Disease enrichment of colon and ileal DEGs primarily focused on immunity, inflammatory bowel disease, and related pathways. CXCL1, S100A8, REG3A, and DEFA6 in colon tissue and LCN2 and NAT8 in ileum tissue demonstrated excellent diagnostic value and could be employed as CD gene biomarkers using machine learning methods in conjunction with external dataset validation. In comparison to controls, antigen processing and presentation, chemokine signaling pathway, cytokine-cytokine receptor interactions, and natural killer cell-mediated cytotoxicity were activated in colonic tissues. Cytokine-cytokine receptor interactions, NOD-like receptor signaling pathways, and toll-like receptor signaling pathways were activated in ileal tissues. NAT8 was found to be associated with CD8 T cells, while CXCL1, S100A8, REG3A, LCN2, and DEFA6 were associated with neutrophils, indicating that immune cell infiltration in CD is closely connected. CONCLUSION CXCL1, S100A8, REG3A, and DEFA6 in colonic tissue and LCN2 and NAT8 in ileal tissue can be employed as CD biomarkers. Additionally, immune cell infiltration is crucial for CD development.
Collapse
Affiliation(s)
- Wenhui Bao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Spleen and Gastroenterology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, No.354 Beima Road, Hongqiao District, Tianjin, China
| | - Lin Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoxiao Liu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Comprehensive Rehabilitation, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ming Li
- Spleen and Gastroenterology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, No.354 Beima Road, Hongqiao District, Tianjin, China.
| |
Collapse
|
44
|
Indig RY, Landau M. Designed inhibitors to reduce amyloid virulence and cytotoxicity and combat neurodegenerative and infectious diseases. Curr Opin Chem Biol 2023; 75:102318. [PMID: 37196450 DOI: 10.1016/j.cbpa.2023.102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/19/2023]
Abstract
The review highlights the role of amyloids in various diseases and the challenges associated with targeting human amyloids in therapeutic development. However, due to the better understanding of microbial amyloids' role as virulence factors, there is a growing interest in repurposing and designing anti-amyloid compounds for antivirulence therapy. The identification of amyloid inhibitors has not only significant clinical implications but also provides valuable insights into the structure and function of amyloids. The review showcases small molecules and peptides that specifically target amyloids in both humans and microbes, reducing cytotoxicity and biofilm formation, respectively. The review emphasizes the importance of further research on amyloid structures, mechanisms, and interactions across all life forms to yield new drug targets and improve the design of selective treatments. Overall, the review highlights the potential for amyloid inhibitors in therapeutic development for both human diseases and microbial infections.
Collapse
Affiliation(s)
- Rinat Yona Indig
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Centre for Structural Systems Biology (CSSB) and Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany; Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany; European Molecular Biology Laboratory (EMBL), Hamburg, Germany.
| |
Collapse
|
45
|
Zhang C, Liu H, Sun L, Wang Y, Chen X, Du J, Sjöling Å, Yao J, Wu S. An overview of host-derived molecules that interact with gut microbiota. IMETA 2023; 2:e88. [PMID: 38868433 PMCID: PMC10989792 DOI: 10.1002/imt2.88] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 06/14/2024]
Abstract
The gut microbiota comprises bacteria, archaea, fungi, protists, and viruses that live together and interact with each other and with host cells. A stable gut microbiota is vital for regulating host metabolism and maintaining body health, while a disturbed microbiota may induce different kinds of disease. In addition, diet is also considered to be the main factor that influences the gut microbiota. The host could shape the gut microbiota through other factors. Here, we reviewed the mechanisms that mediate host regulation on gut microbiota, involved in gut-derived molecules, including gut-derived immune system molecules (secretory immunoglobulin A, antimicrobial peptides, cytokines, cluster of differentiation 4+ effector T cell, and innate lymphoid cells), sources related to gut-derived mucosal molecules (carbon sources, nitrogen sources, oxygen sources, and electron respiratory acceptors), gut-derived exosomal noncoding RNA (ncRNAs) (microRNAs, circular RNA, and long ncRNA), and molecules derived from organs other than the gut (estrogen, androgen, neurohormones, bile acid, and lactic acid). This study provides a systemic overview for understanding the interplay between gut microbiota and host, a comprehensive source for potential ways to manipulate gut microbiota, and a solid foundation for future personalized treatment that utilizes gut microbiota.
Collapse
Affiliation(s)
- Chenguang Zhang
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Huifeng Liu
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Lei Sun
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Yue Wang
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Xiaodong Chen
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Juan Du
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Åsa Sjöling
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Junhu Yao
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Shengru Wu
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
46
|
Tobin I, Zhang G. Regulation of Host Defense Peptide Synthesis by Polyphenols. Antibiotics (Basel) 2023; 12:660. [PMID: 37107022 PMCID: PMC10135163 DOI: 10.3390/antibiotics12040660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
The rise of antimicrobial resistance has created an urgent need for antibiotic-alternative strategies for disease control and prevention. Host defense peptides (HDPs), which have both antimicrobial and immunomodulatory properties, are an important component of the innate immune system. A host-directed approach to stimulate the synthesis of endogenous HDPs has emerged as a promising solution to treat infections with a minimum risk for developing antimicrobial resistance. Among a diverse group of compounds that have been identified as inducers of HDP synthesis are polyphenols, which are naturally occurring secondary metabolites of plants characterized by the presence of multiple phenol units. In addition to their well-known antioxidant and anti-inflammatory activities, a variety of polyphenols have been shown to stimulate HDP synthesis across animal species. This review summarizes both the in vitro and in vivo evidence of polyphenols regulating HDP synthesis. The mechanisms by which polyphenols induce HDP gene expression are also discussed. Natural polyphenols warrant further investigation as potential antibiotic alternatives for the control and prevention of infectious diseases.
Collapse
Affiliation(s)
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| |
Collapse
|
47
|
Shelley JR, McHugh BJ, Wills J, Dorin JR, Weller R, Clarke DJ, Davidson DJ. A mechanistic evaluation of human beta defensin 2 mediated protection of human skin barrier in vitro. Sci Rep 2023; 13:2271. [PMID: 36755116 PMCID: PMC9908873 DOI: 10.1038/s41598-023-29558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
The human skin barrier, a biological imperative, is impaired in inflammatory skin diseases such as atopic dermatitis (AD). Staphylococcus aureus is associated with AD lesions and contributes to pathological inflammation and further barrier impairment. S. aureus secretes extracellular proteases, such as V8 (or 'SspA'), which cleave extracellular proteins to reduce skin barrier. Previous studies demonstrated that the host defence peptide human beta-defensin 2 (HBD2) prevented V8-mediated damage. Here, the mechanism of HBD2-mediated barrier protection in vitro is examined. Application of exogenous HBD2 provided protection against V8, irrespective of timeline of application or native peptide folding, raising the prospect of simple peptide analogues as therapeutics. HBD2 treatment, in context of V8-mediated damage, modulated the proteomic/secretomic profiles of HaCaT cells, altering levels of specific extracellular matrix proteins, potentially recovering V8 damage. However, HBD2 alone did not substantially modulate cellular proteomic/secretomics profiles in the absence of damage, suggesting possible therapeutic targeting of lesion damage sites only. HBD2 did not show any direct protease inhibition or induce expression of known antiproteases, did not alter keratinocyte migration or proliferation, or form protective nanonet structures. These data validate the barrier-protective properties of HBD2 in vitro and establish key protein datasets for further targeted mechanistic analyses.
Collapse
Affiliation(s)
- Jennifer R Shelley
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK.
- The Commonwealth Building, The Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | - Brian J McHugh
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Jimi Wills
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh, EH4 2XU, Scotland, UK
| | - Julia R Dorin
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Richard Weller
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - David J Clarke
- The EastChem School of Chemistry, University of Edinburgh, Joseph Black Building, Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Donald J Davidson
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| |
Collapse
|
48
|
Akahoshi DT, Natwick DE, Yuan W, Lu W, Collins SR, Bevins CL. Flagella-driven motility is a target of human Paneth cell defensin activity. PLoS Pathog 2023; 19:e1011200. [PMID: 36821624 PMCID: PMC9990921 DOI: 10.1371/journal.ppat.1011200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/07/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
In the mammalian intestine, flagellar motility can provide microbes competitive advantage, but also threatens the spatial segregation established by the host at the epithelial surface. Unlike microbicidal defensins, previous studies indicated that the protective activities of human α-defensin 6 (HD6), a peptide secreted by Paneth cells of the small intestine, resides in its remarkable ability to bind microbial surface proteins and self-assemble into protective fibers and nets. Given its ability to bind flagellin, we proposed that HD6 might be an effective inhibitor of bacterial motility. Here, we utilized advanced automated live cell fluorescence imaging to assess the effects of HD6 on actively swimming Salmonella enterica in real time. We found that HD6 was able to effectively restrict flagellar motility of individual bacteria. Flagellin-specific antibody, a classic inhibitor of flagellar motility that utilizes a mechanism of agglutination, lost its activity at low bacterial densities, whereas HD6 activity was not diminished. A single amino acid variant of HD6 that was able to bind flagellin, but not self-assemble, lost ability to inhibit flagellar motility. Together, these results suggest a specialized role of HD6 self-assembly into polymers in targeting and restricting flagellar motility.
Collapse
Affiliation(s)
- Douglas T. Akahoshi
- Department of Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Dean E. Natwick
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, United States of America
| | - Weirong Yuan
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sean R. Collins
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, United States of America
| | - Charles L. Bevins
- Department of Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
49
|
Mouse α-Defensins: Structural and Functional Analysis of the 17 Cryptdin Isoforms Identified from a Single Jejunal Crypt. Infect Immun 2023; 91:e0036122. [PMID: 36472443 PMCID: PMC9872612 DOI: 10.1128/iai.00361-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mouse α-defensins, better known as cryptdins, are host protective antimicrobial peptides produced in the intestinal crypt by Paneth cells. To date, more than 20 cryptdin mRNAs have been identified from mouse small intestine, of which the first six cryptdins (Crp1 to Crp6) have been isolated and characterized at the peptide level. We quantified bactericidal activities against Escherichia coli and Staphylococcus aureus of the 17 cryptdin isoforms identified by Ouellette and colleagues from a single jejunal crypt (A. J. Ouellette et al., Infect Immun 62:5040-5047, 1994), along with linearized analogs of Crp1, Crp4, and Crp14. In addition, we analyzed the most potent and weakest cryptdins in the panel with respect to their ability to self-associate in solution. Finally, we solved, for the first time, the high-resolution crystal structure of a cryptdin, Crp14, and performed molecular dynamics simulation on Crp14 and a hypothetical mutant, T14K-Crp14. Our results indicate that mutational effects are highly dependent on cryptdin sequence, residue position, and bacterial strain. Crp14 adopts a disulfide-stabilized, three-stranded β-sheet core structure and forms a noncanonical dimer stabilized by asymmetrical interactions between the two β1 strands in parallel. The killing of E. coli by cryptdins is generally independent of their tertiary and quaternary structures that are important for the killing of S. aureus, which is indicative of two distinct mechanisms of action. Importantly, sequence variations impact the bactericidal activity of cryptdins by influencing their ability to self-associate in solution. This study expands our current understanding of how cryptdins function at the molecular level.
Collapse
|
50
|
Wallaeys C, Garcia‐Gonzalez N, Libert C. Paneth cells as the cornerstones of intestinal and organismal health: a primer. EMBO Mol Med 2022; 15:e16427. [PMID: 36573340 PMCID: PMC9906427 DOI: 10.15252/emmm.202216427] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 12/28/2022] Open
Abstract
Paneth cells are versatile secretory cells located in the crypts of Lieberkühn of the small intestine. In normal conditions, they function as the cornerstones of intestinal health by preserving homeostasis. They perform this function by providing niche factors to the intestinal stem cell compartment, regulating the composition of the microbiome through the production and secretion of antimicrobial peptides, performing phagocytosis and efferocytosis, taking up heavy metals, and preserving barrier integrity. Disturbances in one or more of these functions can lead to intestinal as well as systemic inflammatory and infectious diseases. This review discusses the multiple functions of Paneth cells, and the mechanisms and consequences of Paneth cell dysfunction. It also provides an overview of the tools available for studying Paneth cells.
Collapse
Affiliation(s)
- Charlotte Wallaeys
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Natalia Garcia‐Gonzalez
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Claude Libert
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| |
Collapse
|