1
|
Xiang L, Zhao Y, Li X, Shi R, Wen Z, Xu X, Hu Y, Xu Q, Chen Y, Ma J, Shen W. Astrocytic calcium signals modulate exercise-induced fatigue in mice. Neuroscience 2024:S0306-4522(24)00621-3. [PMID: 39551270 DOI: 10.1016/j.neuroscience.2024.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Exercise-induced fatigue (EF) is characterized by a decline in maximal voluntary muscle force following prolonged physical activity, influenced by both peripheral and central factors. Central fatigue involves complex interactions within the central nervous system (CNS), where astrocytes play a crucial role. This study explores the impact of astrocytic calcium signals on EF. We used adeno-associated viruses to express GCaMP7b in astrocytes of the dorsal striatum in mice, allowing us to monitor calcium dynamics. Our findings reveal that EF significantly increases the frequency of spontaneous astrocytic calcium signals. Utilizing genetic tools to either enhance or reduce astrocytic calcium signaling, we observed corresponding decreases and increases in exercise-induced fatigue time, respectively. Furthermore, modulation of astrocytic calcium signals influenced corticostriatal synaptic plasticity, with increased signals impairing and decreased signals ameliorating long-term depression (LTD). These results highlight the pivotal role of astrocytic calcium signaling in the regulation of exercise-induced fatigue and synaptic plasticity in the striatum.
Collapse
Affiliation(s)
- Liyang Xiang
- School of Medicine, Nankai University, Tianjin 300071, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China; Zhejiang Key Laboratory of Neuroelectronics and Brain Computer Interface Technology, Hangzhou 311121, China
| | - Yulu Zhao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - XinRui Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Ran Shi
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Zhou Wen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Xiaohang Xu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Yifan Hu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Qianyun Xu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Yaodan Chen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Jin Ma
- China Institute of Sport Science, Beijing 100061, China
| | - Weida Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China.
| |
Collapse
|
2
|
Li B, Sun Q, Ding F, Xu Q, Kang N, Xue Y, Ladron-de-Guevara A, Hirase H, Weikop P, Gong S, Nathan S, Nedergaard M. Anti-seizure effects of norepinephrine-induced free fatty acid release. Cell Metab 2024:S1550-4131(24)00407-8. [PMID: 39486416 DOI: 10.1016/j.cmet.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/17/2024] [Accepted: 10/10/2024] [Indexed: 11/04/2024]
Abstract
The brain's ability to rapidly transition between sleep, quiet wakefulness, and states of high vigilance is remarkable. Cerebral norepinephrine (NE) plays a key role in promoting wakefulness, but how does the brain avoid neuronal hyperexcitability upon arousal? Here, we show that NE exposure results in the generation of free fatty acids (FFAs) within the plasma membrane from both astrocytes and neurons. In turn, FFAs dampen excitability by differentially modulating the activity of astrocytic and neuronal Na+, K+, ATPase. Direct application of FFA to the occipital cortex in awake, behaving mice dampened visual-evoked potential (VEP). Conversely, blocking FFA production via local application of a lipase inhibitor heightened VEP and triggered seizure-like activity. These results suggest that FFA release is a crucial step in NE signaling that safeguards against hyperexcitability. Targeting lipid-signaling pathways may offer a novel therapeutic approach for seizure prevention.
Collapse
Affiliation(s)
- Baoman Li
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Qian Sun
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Fengfei Ding
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Qiwu Xu
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ning Kang
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yang Xue
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Antonio Ladron-de-Guevara
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hajime Hirase
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA; Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Pia Weikop
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sheng Gong
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Smith Nathan
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Maiken Nedergaard
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA; Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
3
|
Baraibar AM, Colomer T, Moreno-García A, Bernal-Chico A, Sánchez-Martín E, Utrilla C, Serrat R, Soria-Gómez E, Rodríguez-Antigüedad A, Araque A, Matute C, Marsicano G, Mato S. Autoimmune inflammation triggers aberrant astrocytic calcium signaling to impair synaptic plasticity. Brain Behav Immun 2024; 121:192-210. [PMID: 39032542 PMCID: PMC11415231 DOI: 10.1016/j.bbi.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
Cortical pathology involving inflammatory and neurodegenerative mechanisms is a hallmark of multiple sclerosis and a correlate of disease progression and cognitive decline. Astrocytes play a pivotal role in multiple sclerosis initiation and progression but astrocyte-neuronal network alterations contributing to gray matter pathology remain undefined. Here we unveil deregulation of astrocytic calcium signaling and astrocyte-to-neuron communication as key pathophysiological mechanisms of cortical dysfunction in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. Using two-photon imaging ex vivo and fiber photometry in freely behaving mice, we found that acute EAE was associated with the emergence of spontaneously hyperactive cortical astrocytes exhibiting dysfunctional responses to cannabinoid, glutamate and purinoreceptor agonists. Abnormal astrocyte signaling by Gi and Gq protein coupled receptors was observed in the inflamed cortex. This was mirrored by treatments with pro-inflammatory factors both in vitro and ex vivo, suggesting cell-autonomous effects of the cortical neuroinflammatory environment. Finally, deregulated astrocyte calcium activity was associated with an enhancement of glutamatergic gliotransmission and a shift of astrocyte-mediated short-term and long-term plasticity mechanisms towards synaptic potentiation. Overall, our data identify astrocyte-neuronal network dysfunctions as key pathological features of gray matter inflammation in multiple sclerosis and potentially additional neuroimmunological disorders.
Collapse
Affiliation(s)
- A M Baraibar
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| | - T Colomer
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - A Moreno-García
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - A Bernal-Chico
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - E Sánchez-Martín
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - C Utrilla
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - R Serrat
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - E Soria-Gómez
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain
| | - A Rodríguez-Antigüedad
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - A Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, 55455 MN, USA
| | - C Matute
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| | - G Marsicano
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France.
| | - S Mato
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain.
| |
Collapse
|
4
|
Guttenplan KA, Maxwell I, Santos E, Borchardt LA, Manzo E, Abalde-Atristain L, Kim RD, Freeman MR. Adrenergic signaling gates astrocyte responsiveness to neurotransmitters and control of neuronal activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614537. [PMID: 39386551 PMCID: PMC11463463 DOI: 10.1101/2024.09.23.614537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
How astrocytes regulate neuronal circuits is a fundamental, unsolved question in neurobiology. Nevertheless, few studies have explored the rules that govern when astrocytes respond to different neurotransmitters in vivo and how they affect downstream circuit modulation. Here, we report an unexpected mechanism in Drosophila by which G-protein coupled adrenergic signaling in astrocytes can control, or "gate," their ability to respond to other neurotransmitters. Further, we show that manipulating this pathway potently regulates neuronal circuit activity and animal behavior. Finally, we demonstrate that this gating mechanism is conserved in mammalian astrocytes, arguing it is an ancient feature of astrocyte circuit function. Our work establishes a new mechanism by which astrocytes dynamically respond to and modulate neuronal activity in different brain regions and in different behavioral states.
Collapse
Affiliation(s)
- Kevin A. Guttenplan
- Vollum Institute, Oregon Health and Sciences University; Portland, Oregon, USA
| | - Isa Maxwell
- Vollum Institute, Oregon Health and Sciences University; Portland, Oregon, USA
| | - Erin Santos
- Vollum Institute, Oregon Health and Sciences University; Portland, Oregon, USA
| | - Luke A. Borchardt
- Vollum Institute, Oregon Health and Sciences University; Portland, Oregon, USA
| | - Ernesto Manzo
- Vollum Institute, Oregon Health and Sciences University; Portland, Oregon, USA
| | | | - Rachel D Kim
- Neuroscience Institute, NYU Grossman School of Medicine; New York, NY., USA
| | - Marc R. Freeman
- Vollum Institute, Oregon Health and Sciences University; Portland, Oregon, USA
| |
Collapse
|
5
|
Roh WS, Yoo JH, Dravid SM, Mannaioni G, Krizman EN, Wahl P, Robinson MB, Traynelis SF, Lee CJ, Han KS. Astrocytic PAR1 and mGluR2/3 control synaptic glutamate time course at hippocampal CA1 synapses. Glia 2024; 72:1707-1724. [PMID: 38864289 PMCID: PMC11410382 DOI: 10.1002/glia.24579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Astrocytes play an essential role in regulating synaptic transmission. This study describes a novel form of modulation of excitatory synaptic transmission in the mouse hippocampus by astrocytic G-protein-coupled receptors (GPCRs). We have previously described astrocytic glutamate release via protease-activated receptor-1 (PAR1) activation, although the regulatory mechanisms for this are complex. Through electrophysiological analysis and modeling, we discovered that PAR1 activation consistently increases the concentration and duration of glutamate in the synaptic cleft. This effect was not due to changes in the presynaptic glutamate release or alteration in glutamate transporter expression. However, blocking group II metabotropic glutamate receptors (mGluR2/3) abolished PAR1-mediated regulation of synaptic glutamate concentration, suggesting a role for this GPCR in mediating the effects of PAR1 activation on glutamate release. Furthermore, activation of mGluR2/3 causes glutamate release through the TREK-1 channel in hippocampal astrocytes. These data show that astrocytic GPCRs engage in a novel regulatory mechanism to shape the time course of synaptically-released glutamate in excitatory synapses of the hippocampus.
Collapse
Affiliation(s)
- Woo Suk Roh
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea
| | - Jae Hong Yoo
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea
| | - Shashank M Dravid
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology, Atlanta, Georgia, USA
- Creighton University, Department of Pharmacology, Omaha, Nebraska, USA
| | - Guido Mannaioni
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology, Atlanta, Georgia, USA
- Department of Pharmacology, University of Florence, Florence, GA, Italy
| | - Elizabeth N Krizman
- Departments of Pediatrics and Pharmacology, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Philip Wahl
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology, Atlanta, Georgia, USA
| | - Michael B Robinson
- Departments of Pediatrics and Pharmacology, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen F Traynelis
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology, Atlanta, Georgia, USA
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea
| | - Kyung-Seok Han
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
6
|
Li J, Serafin EK, Koorndyk N, Baccei ML. Astrocyte D1/D5 Dopamine Receptors Govern Non-Hebbian Long-Term Potentiation at Sensory Synapses onto Lamina I Spinoparabrachial Neurons. J Neurosci 2024; 44:e0170242024. [PMID: 38955487 PMCID: PMC11308343 DOI: 10.1523/jneurosci.0170-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Recent work demonstrated that activation of spinal D1 and D5 dopamine receptors (D1/D5Rs) facilitates non-Hebbian long-term potentiation (LTP) at primary afferent synapses onto spinal projection neurons. However, the cellular localization of the D1/D5Rs driving non-Hebbian LTP in spinal nociceptive circuits remains unknown, and it is also unclear whether D1/D5R signaling must occur concurrently with sensory input in order to promote non-Hebbian LTP at these synapses. Here we investigate these issues using cell-type-selective knockdown of D1Rs or D5Rs from lamina I spinoparabrachial neurons, dorsal root ganglion (DRG) neurons, or astrocytes in adult mice of either sex using Cre recombinase-based genetic strategies. The LTP evoked by low-frequency stimulation of primary afferents in the presence of the selective D1/D5R agonist SKF82958 persisted following the knockdown of D1R or D5R in spinoparabrachial neurons, suggesting that postsynaptic D1/D5R signaling was dispensable for non-Hebbian plasticity at sensory synapses onto these key output neurons of the superficial dorsal horn (SDH). Similarly, the knockdown of D1Rs or D5Rs in DRG neurons failed to influence SKF82958-enabled LTP in lamina I projection neurons. In contrast, SKF82958-induced LTP was suppressed by the knockdown of D1R or D5R in spinal astrocytes. Furthermore, the data indicate that the activation of D1R/D5Rs in spinal astrocytes can either retroactively or proactively drive non-Hebbian LTP in spinoparabrachial neurons. Collectively, these results suggest that dopaminergic signaling in astrocytes can strongly promote activity-dependent LTP in the SDH, which is predicted to significantly enhance the amplification of ascending nociceptive transmission from the spinal cord to the brain.
Collapse
Affiliation(s)
- Jie Li
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Elizabeth K Serafin
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Nathan Koorndyk
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Mark L Baccei
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| |
Collapse
|
7
|
Lu CL, Ren J, Cao X. An Astroglial Basis of Major Depressive Disorder: Molecular, Cellular, and Circuit Features. Biol Psychiatry 2024:S0006-3223(24)01484-7. [PMID: 39084500 DOI: 10.1016/j.biopsych.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Major depressive disorder is a common psychiatric disorder and a leading cause of disability worldwide. Astrocytes play a role in the maintenance of the function of the central nervous system, both physiologically and pathologically. Accumulated evidence indicates that the astrocyte is an important contributor to the pathophysiology of major depressive disorder including blood-brain barrier integrity, gap junctions, gliotransmission, glutamate homeostasis, and energy metabolism. Here, we comprehensively summarize an astroglial basis for major depressive disorder based on molecular, cellular, and circuit properties, suggesting that astrocytes appear to be highly sensitive to stress and are likely to be uniquely positioned to integrate peripheral and central stress responses.
Collapse
Affiliation(s)
- Cheng-Lin Lu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jing Ren
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiong Cao
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
8
|
Kersbergen CJ, Bergles DE. Priming central sound processing circuits through induction of spontaneous activity in the cochlea before hearing onset. Trends Neurosci 2024; 47:522-537. [PMID: 38782701 PMCID: PMC11236524 DOI: 10.1016/j.tins.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Sensory systems experience a period of intrinsically generated neural activity before maturation is complete and sensory transduction occurs. Here we review evidence describing the mechanisms and functions of this 'spontaneous' activity in the auditory system. Both ex vivo and in vivo studies indicate that this correlated activity is initiated by non-sensory supporting cells within the developing cochlea, which induce depolarization and burst firing of groups of nearby hair cells in the sensory epithelium, activity that is conveyed to auditory neurons that will later process similar sound features. This stereotyped neural burst firing promotes cellular maturation, synaptic refinement, acoustic sensitivity, and establishment of sound-responsive domains in the brain. While sensitive to perturbation, the developing auditory system exhibits remarkable homeostatic mechanisms to preserve periodic burst firing in deaf mice. Preservation of this early spontaneous activity in the context of deafness may enhance the efficacy of later interventions to restore hearing.
Collapse
Affiliation(s)
- Calvin J Kersbergen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
9
|
Meadows SM, Palaguachi F, Jang MW, Licht-Murava A, Barnett D, Zimmer TS, Zhou C, McDonough SR, Orr AL, Orr AG. Hippocampal astrocytes induce sex-dimorphic effects on memory. Cell Rep 2024; 43:114278. [PMID: 38795347 PMCID: PMC11234507 DOI: 10.1016/j.celrep.2024.114278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/19/2024] [Accepted: 05/09/2024] [Indexed: 05/27/2024] Open
Abstract
Astrocytic receptors influence cognitive function and can promote behavioral deficits in disease. These effects may vary based on variables such as biological sex, but it is not known if the effects of astrocytic receptors are dependent on sex. We leveraged in vivo gene editing and chemogenetics to examine the roles of astrocytic receptors in spatial memory and other processes. We show that reductions in metabotropic glutamate receptor 3 (mGluR3), the main astrocytic glutamate receptor in adults, impair memory in females but enhance memory in males. Similarly, increases in astrocytic mGluR3 levels have sex-dependent effects and enhance memory in females. mGluR3 manipulations also alter spatial search strategies during recall in a sex-specific manner. In addition, acute chemogenetic stimulation of Gi/o-coupled or Gs-coupled receptors in hippocampal astrocytes induces bidirectional and sex-dimorphic effects on memory. Thus, astrocytes are sex-dependent modulators of cognitive function and may promote sex differences in aging and disease.
Collapse
Affiliation(s)
- Samantha M Meadows
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10021, USA
| | - Fernando Palaguachi
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Minwoo Wendy Jang
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Avital Licht-Murava
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Daniel Barnett
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10021, USA
| | - Till S Zimmer
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Constance Zhou
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Samantha R McDonough
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10021, USA
| | - Adam L Orr
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10021, USA
| | - Anna G Orr
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA.
| |
Collapse
|
10
|
Umpierre AD, Li B, Ayasoufi K, Simon WL, Zhao S, Xie M, Thyen G, Hur B, Zheng J, Liang Y, Bosco DB, Maynes MA, Wu Z, Yu X, Sung J, Johnson AJ, Li Y, Wu LJ. Microglial P2Y 6 calcium signaling promotes phagocytosis and shapes neuroimmune responses in epileptogenesis. Neuron 2024; 112:1959-1977.e10. [PMID: 38614103 PMCID: PMC11189754 DOI: 10.1016/j.neuron.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/09/2024] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Microglial calcium signaling is rare in a baseline state but strongly engaged during early epilepsy development. The mechanism(s) governing microglial calcium signaling are not known. By developing an in vivo uridine diphosphate (UDP) fluorescent sensor, GRABUDP1.0, we discovered that UDP release is a conserved response to seizures and excitotoxicity across brain regions. UDP can signal through the microglial-enriched P2Y6 receptor to increase calcium activity during epileptogenesis. P2Y6 calcium activity is associated with lysosome biogenesis and enhanced production of NF-κB-related cytokines. In the hippocampus, knockout of the P2Y6 receptor prevents microglia from fully engulfing neurons. Attenuating microglial calcium signaling through calcium extruder ("CalEx") expression recapitulates multiple features of P2Y6 knockout, including reduced lysosome biogenesis and phagocytic interactions. Ultimately, P2Y6 knockout mice retain more CA3 neurons and better cognitive task performance during epileptogenesis. Our results demonstrate that P2Y6 signaling impacts multiple aspects of myeloid cell immune function during epileptogenesis.
Collapse
Affiliation(s)
| | - Bohan Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | | | - Whitney L Simon
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Shunyi Zhao
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Grace Thyen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Benjamin Hur
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yue Liang
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Dale B Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mark A Maynes
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhaofa Wu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Xinzhu Yu
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jaeyun Sung
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Aaron J Johnson
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China.
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA; Center for Neuroimmunology and Glial Biology, Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Moreira R, Nóbrega C, de Almeida LP, Mendonça L. Brain-targeted drug delivery - nanovesicles directed to specific brain cells by brain-targeting ligands. J Nanobiotechnology 2024; 22:260. [PMID: 38760847 PMCID: PMC11100082 DOI: 10.1186/s12951-024-02511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
Neurodegenerative diseases are characterized by extensive loss of function or death of brain cells, hampering the life quality of patients. Brain-targeted drug delivery is challenging, with a low success rate this far. Therefore, the application of targeting ligands in drug vehicles, such as lipid-based and polymeric nanoparticles, holds the promise to overcome the blood-brain barrier (BBB) and direct therapies to the brain, in addition to protect their cargo from degradation and metabolization. In this review, we discuss the barriers to brain delivery and the different types of brain-targeting ligands currently in use in brain-targeted nanoparticles, such as peptides, proteins, aptamers, small molecules, and antibodies. Moreover, we present a detailed review of the different targeting ligands used to direct nanoparticles to specific brain cells, like neurons (C4-3 aptamer, neurotensin, Tet-1, RVG, and IKRG peptides), astrocytes (Aquaporin-4, D4, and Bradykinin B2 antibodies), oligodendrocytes (NG-2 antibody and the biotinylated DNA aptamer conjugated to a streptavidin core Myaptavin-3064), microglia (CD11b antibody), neural stem cells (QTRFLLH, VPTQSSG, and NFL-TBS.40-63 peptides), and to endothelial cells of the BBB (transferrin and insulin proteins, and choline). Reports demonstrated enhanced brain-targeted delivery with improved transport to the specific cell type targeted with the conjugation of these ligands to nanoparticles. Hence, this strategy allows the implementation of high-precision medicine, with reduced side effects or unwanted therapy clearance from the body. Nevertheless, the accumulation of some of these nanoparticles in peripheral organs has been reported indicating that there are still factors to be improved to achieve higher levels of brain targeting. This review is a collection of studies exploring targeting ligands for the delivery of nanoparticles to the brain and we highlight the advantages and limitations of this type of approach in precision therapies.
Collapse
Grants
- under BrainHealth2020 projects (CENTRO-01-0145-FEDER-000008), through the COMPETE 2020 - Operational Programme for Competitiveness and Internationalization and Portuguese national funds via FCT - Fundação para a Ciência e a Tecnologia, under projects - UIDB/04539/2020 and UIDP/04539/2020, POCI-01-0145-FEDER-030737 (NeuroStemForMJD, PTDC/BTM-ORG/30737/2017), CEECIND/04242/2017, and PhD Scholarship European Regional Development Fund (ERDF) through the Centro 2020 Regional Operational Programme
- under BrainHealth2020 projects (CENTRO-01-0145-FEDER-000008), through the COMPETE 2020 - Operational Programme for Competitiveness and Internationalization and Portuguese national funds via FCT - Fundação para a Ciência e a Tecnologia, under projects - UIDB/04539/2020 and UIDP/04539/2020, POCI-01-0145-FEDER-030737 (NeuroStemForMJD, PTDC/BTM-ORG/30737/2017), CEECIND/04242/2017, and PhD Scholarship European Regional Development Fund (ERDF) through the Centro 2020 Regional Operational Programme
Collapse
Affiliation(s)
- Ricardo Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, polo 1, Coimbra, FMUC, 3004-504, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, 8005-139, Portugal
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, polo 1, Coimbra, FMUC, 3004-504, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal
| | - Liliana Mendonça
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, polo 1, Coimbra, FMUC, 3004-504, Portugal.
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal.
| |
Collapse
|
12
|
Cahill MK, Collard M, Tse V, Reitman ME, Etchenique R, Kirst C, Poskanzer KE. Network-level encoding of local neurotransmitters in cortical astrocytes. Nature 2024; 629:146-153. [PMID: 38632406 PMCID: PMC11062919 DOI: 10.1038/s41586-024-07311-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024]
Abstract
Astrocytes, the most abundant non-neuronal cell type in the mammalian brain, are crucial circuit components that respond to and modulate neuronal activity through calcium (Ca2+) signalling1-7. Astrocyte Ca2+ activity is highly heterogeneous and occurs across multiple spatiotemporal scales-from fast, subcellular activity3,4 to slow, synchronized activity across connected astrocyte networks8-10-to influence many processes5,7,11. However, the inputs that drive astrocyte network dynamics remain unclear. Here we used ex vivo and in vivo two-photon astrocyte imaging while mimicking neuronal neurotransmitter inputs at multiple spatiotemporal scales. We find that brief, subcellular inputs of GABA and glutamate lead to widespread, long-lasting astrocyte Ca2+ responses beyond an individual stimulated cell. Further, we find that a key subset of Ca2+ activity-propagative activity-differentiates astrocyte network responses to these two main neurotransmitters, and may influence responses to future inputs. Together, our results demonstrate that local, transient neurotransmitter inputs are encoded by broad cortical astrocyte networks over a minutes-long time course, contributing to accumulating evidence that substantial astrocyte-neuron communication occurs across slow, network-level spatiotemporal scales12-14. These findings will enable future studies to investigate the link between specific astrocyte Ca2+ activity and specific functional outputs, which could build a consistent framework for astrocytic modulation of neuronal activity.
Collapse
Affiliation(s)
- Michelle K Cahill
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Max Collard
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Vincent Tse
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA
| | - Michael E Reitman
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Roberto Etchenique
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Christoph Kirst
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, San Francisco, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kira E Poskanzer
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA.
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, San Francisco, CA, USA.
| |
Collapse
|
13
|
Kellner V, Parker P, Mi X, Yu G, Saher G, Bergles DE. Conservation of neuron-astrocyte coordinated activity among sensory processing centers of the developing brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589519. [PMID: 38659917 PMCID: PMC11042386 DOI: 10.1101/2024.04.15.589519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Afferent neurons in developing sensory organs exhibit a prolonged period of burst firing prior to the onset of sensory experience. This intrinsically generated activity propagates from the periphery through central processing centers to promote the survival and physiological maturation of neurons and refine their synaptic connectivity. Recent studies in the auditory system indicate that these bursts of action potentials also trigger metabotropic glutamate receptor-mediated calcium increases within astrocytes that are spatially and temporally correlated with neuronal events; however, it is not known if this phenomenon occurs in other sensory modalities. Here we show using in vivo simultaneous imaging of neuronal and astrocyte calcium activity in awake mouse pups that waves of retinal ganglion cell activity induce spatially and temporally correlated waves of astrocyte activity in the superior colliculus that depend on metabotropic glutamate receptors mGluR5 and mGluR3. Astrocyte calcium transients reliably occurred with each neuronal wave, but peaked more than one second after neuronal events. Despite differences in the temporal features of spontaneous activity in auditory and visual processing regions, individual astrocytes exhibited similar overall calcium activity patterns, providing a conserved mechanism to synchronize neuronal and astrocyte maturation within discrete sensory domains.
Collapse
|
14
|
Heir R, Abbasi Z, Komal P, Altimimi HF, Franquin M, Moschou D, Chambon J, Stellwagen D. Astrocytes Are the Source of TNF Mediating Homeostatic Synaptic Plasticity. J Neurosci 2024; 44:e2278222024. [PMID: 38395613 PMCID: PMC10993029 DOI: 10.1523/jneurosci.2278-22.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Tumor necrosis factor α (TNF) mediates homeostatic synaptic plasticity (HSP) in response to chronic activity blockade, and prior work has established that it is released from glia. Here we demonstrate that astrocytes are the necessary source of TNF during HSP. Hippocampal cultures from rats of both sexes depleted of microglia still will increase TNF levels following activity deprivation and still express TTX-driven HSP. Slice cultures from mice of either sex with a conditional deletion of TNF from microglia also express HSP, but critically, slice cultures with a conditional deletion of TNF from astrocytes do not. In astrocytes, glutamate signaling is sufficient to reduce NFκB signaling and TNF mRNA levels. Further, chronic TTX treatment increases TNF in an NFκB-dependent manner, although NFκB signaling is dispensable for the neuronal response to TTX-driven HSP. Thus, astrocytes can sense neuronal activity through glutamate spillover and increase TNF production when activity falls, to drive HSP through the production of TNF.
Collapse
Affiliation(s)
- Renu Heir
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montréal, Quebec H3G 1A4, Canada
| | - Zahra Abbasi
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montréal, Quebec H3G 1A4, Canada
| | - Pragya Komal
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montréal, Quebec H3G 1A4, Canada
| | - Haider F Altimimi
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montréal, Quebec H3G 1A4, Canada
| | - Marie Franquin
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montréal, Quebec H3G 1A4, Canada
| | - Dionysia Moschou
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montréal, Quebec H3G 1A4, Canada
| | - Julien Chambon
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montréal, Quebec H3G 1A4, Canada
| | - David Stellwagen
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montréal, Quebec H3G 1A4, Canada
| |
Collapse
|
15
|
Vestring S, Dorner A, Scholliers J, Ehrenberger K, Kiss A, Arenz L, Theiss A, Rossner P, Frase S, Du Vinage C, Wendler E, Serchov T, Domschke K, Bischofberger J, Normann C. D-Cycloserine enhances the bidirectional range of NMDAR-dependent hippocampal synaptic plasticity. Transl Psychiatry 2024; 14:18. [PMID: 38195548 PMCID: PMC10776623 DOI: 10.1038/s41398-023-02725-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/24/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024] Open
Abstract
The partial N-methyl-D-aspartate receptor (NMDAR) agonist D-Cycloserine (DCS) has been evaluated for the treatment of a wide variety of psychiatric disorders, including dementia, schizophrenia, depression and for the augmentation of exposure-based psychotherapy. Most if not all of the potential psychiatric applications of DCS target an enhancement or restitution of cognitive functions, learning and memory. Their molecular correlate is long-term synaptic plasticity; and many forms of synaptic plasticity depend on the activation of NMDA receptors. Here, we comprehensively examined the modulation of different forms of synaptic plasticity in the hippocampus by DCS and its mechanism. We found that DCS positively modulates NMDAR-dependent forms of long-term synaptic plasticity (long-term synaptic potentiation, LTP, and long-term synaptic depression, LTD) in hippocampal brain slices of juvenile rats without affecting basal synaptic transmission. DCS binds to the D-serine/glycine binding site of the NMDAR. Pharmacological inhibition of this site prevented the induction of LTP, whereas agonism at the D-serine/glycine binding site augmented LTP and could functionally substitute for weak LTP induction paradigms. The most probable origin of endogenous D-serine are astrocytes, and its exocytosis is regulated by astrocytic metabotropic glutamate receptors (mGluR1). Functional eradication of astrocytes, inhibition of mGluR1 receptors and G-protein signaling in astrocytes adjacent to postsynaptic neurons prevented the induction of NMDAR-dependent forms of LTP and LTD. Our results support the enhancement of a bidirectional range of NMDAR-dependent hippocampal synaptic plasticity by DCS and D-serine-mediated gliotransmission. Therefore, the D-serine/glycine-binding site in NMDAR is a major target for psychopharmacological interventions targeting plasticity-related disorders.
Collapse
Affiliation(s)
- Stefan Vestring
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany.
- Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, D-79110, Freiburg, Germany.
| | - Alexandra Dorner
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
| | - Jonas Scholliers
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
| | - Konstantin Ehrenberger
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
| | - Andrea Kiss
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
| | - Luis Arenz
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
| | - Alice Theiss
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
| | - Paul Rossner
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
| | - Sibylle Frase
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
| | - Catherine Du Vinage
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
| | - Elisabeth Wendler
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
| | - Tsvetan Serchov
- Centre National de la Recherche Scientifique (CNRS) UPR3212, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (INCI), Strasbourg, France
- University of Strasbourg, Institute for Advanced Study (USIAS), Strasbourg, France
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
- Center for Basics in Neuromodulation (NeuoModulBasics), Faculty of Medicine, University of Freiburg, D-79106, Freiburg, Germany
| | | | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
- Center for Basics in Neuromodulation (NeuoModulBasics), Faculty of Medicine, University of Freiburg, D-79106, Freiburg, Germany
| |
Collapse
|
16
|
Imrie G, Gray MB, Raghuraman V, Farhy-Tselnicker I. Gene Expression at the Tripartite Synapse: Bridging the Gap Between Neurons and Astrocytes. ADVANCES IN NEUROBIOLOGY 2024; 39:95-136. [PMID: 39190073 DOI: 10.1007/978-3-031-64839-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Astrocytes, a major class of glial cells, are an important element at the synapse where they engage in bidirectional crosstalk with neurons to regulate numerous aspects of neurotransmission, circuit function, and behavior. Mutations in synapse-related genes expressed in both neurons and astrocytes are central factors in a vast number of neurological disorders, making the proteins that they encode prominent targets for therapeutic intervention. Yet, while the roles of many of these synaptic proteins in neurons are well established, the functions of the same proteins in astrocytes are largely unknown. This gap in knowledge must be addressed to refine therapeutic approaches. In this chapter, we integrate multiomic meta-analysis and a comprehensive overview of current literature to show that astrocytes express an astounding number of genes that overlap with the neuronal and synaptic transcriptomes. Further, we highlight recent reports that characterize the expression patterns and potential novel roles of these genes in astrocytes in both physiological and pathological conditions, underscoring the importance of considering both cell types when investigating the function and regulation of synaptic proteins.
Collapse
Affiliation(s)
- Gillian Imrie
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Madison B Gray
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Vishnuvasan Raghuraman
- Department of Biology, Texas A&M University, College Station, TX, USA
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA
| | - Isabella Farhy-Tselnicker
- Department of Biology, Texas A&M University, College Station, TX, USA.
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA.
- Center for Biological Clocks Research, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
17
|
de Lima IBQ, Cardozo PL, Fahel JS, Lacerda JPS, Miranda AS, Teixeira AL, Ribeiro FM. Blockade of mGluR5 in astrocytes derived from human iPSCs modulates astrocytic function and increases phagocytosis. Front Immunol 2023; 14:1283331. [PMID: 38146365 PMCID: PMC10749358 DOI: 10.3389/fimmu.2023.1283331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/23/2023] [Indexed: 12/27/2023] Open
Abstract
TNF-α is essential for induction and maintenance of inflammatory responses and its dysregulation is associated with susceptibility to various pathogens that infect the central nervous system. Activation of both microglia and astrocytes leads to TNF-α production, which in turn triggers further activation of these cells. Astrocytes have been implicated in the pathophysiology of a wide range of neurodegenerative diseases with either harmful or protective roles, as these cells are capable of secreting several inflammatory factors and also promote synapse elimination and remodeling. These responses are possible because they sense their surroundings via several receptors, including the metabotropic glutamate receptor 5 (mGluR5). Under neuroinflammatory conditions, mGluR5 activation in astrocytes can be neuroprotective or have the opposite effect. In the current study, we investigated the role of mGluR5 in hiPSC-derived astrocytes subjected to pro-inflammatory stimulation by recombinant TNF-α (rTNF-α). Our results show that mGluR5 blockade by CTEP decreases the secreted levels of pro-inflammatory cytokines (IL-6 and IL-8) following short rTNF-α stimulation, although this effect subsides with time. Additionally, CTEP enhances synaptoneurosome phagocytosis by astrocytes in both non-stimulated and rTNF-α-stimulated conditions, indicating that mGluR5 blockade alone is enough to drive synaptic material engulfment. Finally, mGluR5 antagonism as well as rTNF-α stimulation augment the expression of the reactivity marker SERPINA3 and reduces the expression of synaptogenic molecules. Altogether, these data suggest a complex role for mGluR5 in human astrocytes, since its blockade may have beneficial and detrimental effects under inflammatory conditions.
Collapse
Affiliation(s)
- Izabella B. Q. de Lima
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pablo L. Cardozo
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Julia S. Fahel
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana P. S. Lacerda
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Aline S. Miranda
- Department of Morphology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Antônio L. Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Fabiola M. Ribeiro
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
18
|
Cahill MK, Collard M, Tse V, Reitman ME, Etchenique R, Kirst C, Poskanzer KE. Network-level encoding of local neurotransmitters in cortical astrocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.568932. [PMID: 38106119 PMCID: PMC10723263 DOI: 10.1101/2023.12.01.568932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Astrocytes-the most abundant non-neuronal cell type in the mammalian brain-are crucial circuit components that respond to and modulate neuronal activity via calcium (Ca 2+ ) signaling 1-8 . Astrocyte Ca 2+ activity is highly heterogeneous and occurs across multiple spatiotemporal scales: from fast, subcellular activity 3,4 to slow, synchronized activity that travels across connected astrocyte networks 9-11 . Furthermore, astrocyte network activity has been shown to influence a wide range of processes 5,8,12 . While astrocyte network activity has important implications for neuronal circuit function, the inputs that drive astrocyte network dynamics remain unclear. Here we used ex vivo and in vivo two-photon Ca 2+ imaging of astrocytes while mimicking neuronal neurotransmitter inputs at multiple spatiotemporal scales. We find that brief, subcellular inputs of GABA and glutamate lead to widespread, long-lasting astrocyte Ca 2+ responses beyond an individual stimulated cell. Further, we find that a key subset of Ca 2+ activity-propagative events-differentiates astrocyte network responses to these two major neurotransmitters, and gates responses to future inputs. Together, our results demonstrate that local, transient neurotransmitter inputs are encoded by broad cortical astrocyte networks over the course of minutes, contributing to accumulating evidence across multiple model organisms that significant astrocyte-neuron communication occurs across slow, network-level spatiotemporal scales 13-15 . We anticipate that this study will be a starting point for future studies investigating the link between specific astrocyte Ca 2+ activity and specific astrocyte functional outputs, which could build a consistent framework for astrocytic modulation of neuronal activity.
Collapse
|
19
|
Barnett D, Bohmbach K, Grelot V, Charlet A, Dallérac G, Ju YH, Nagai J, Orr AG. Astrocytes as Drivers and Disruptors of Behavior: New Advances in Basic Mechanisms and Therapeutic Targeting. J Neurosci 2023; 43:7463-7471. [PMID: 37940585 PMCID: PMC10634555 DOI: 10.1523/jneurosci.1376-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 11/10/2023] Open
Abstract
Astrocytes are emerging as key regulators of cognitive function and behavior. This review highlights some of the latest advances in the understanding of astrocyte roles in different behavioral domains across lifespan and in disease. We address specific molecular and circuit mechanisms by which astrocytes modulate behavior, discuss their functional diversity and versatility, and highlight emerging astrocyte-targeted treatment strategies that might alleviate behavioral and cognitive dysfunction in pathologic conditions. Converging evidence across different model systems and manipulations is revealing that astrocytes regulate behavioral processes in a precise and context-dependent manner. Improved understanding of these astrocytic functions may generate new therapeutic strategies for various conditions with cognitive and behavioral impairments.
Collapse
Affiliation(s)
- Daniel Barnett
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, New York 10021
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, New York 10021
| | - Kirsten Bohmbach
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Valentin Grelot
- Institute of Cellular and Integrative Neuroscience, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, 67000, France
| | - Alexandre Charlet
- Institute of Cellular and Integrative Neuroscience, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, 67000, France
| | - Glenn Dallérac
- Centre National de la Recherche Scientifique and Paris-Saclay University, Paris-Saclay Institute for Neurosciences, Paris, 91400, France
| | - Yeon Ha Ju
- Department of Psychiatry and Neuroscience, University of Texas-Austin Dell Medical School, Austin, Texas 78712
| | - Jun Nagai
- RIKEN Center for Brain Science, Laboratory for Glia-Neuron Circuit Dynamics, Saitama, 351-0198, Japan
| | - Anna G Orr
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, New York 10021
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, New York 10021
| |
Collapse
|
20
|
de Ceglia R, Ledonne A, Litvin DG, Lind BL, Carriero G, Latagliata EC, Bindocci E, Di Castro MA, Savtchouk I, Vitali I, Ranjak A, Congiu M, Canonica T, Wisden W, Harris K, Mameli M, Mercuri N, Telley L, Volterra A. Specialized astrocytes mediate glutamatergic gliotransmission in the CNS. Nature 2023; 622:120-129. [PMID: 37674083 PMCID: PMC10550825 DOI: 10.1038/s41586-023-06502-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/31/2023] [Indexed: 09/08/2023]
Abstract
Multimodal astrocyte-neuron communications govern brain circuitry assembly and function1. For example, through rapid glutamate release, astrocytes can control excitability, plasticity and synchronous activity2,3 of synaptic networks, while also contributing to their dysregulation in neuropsychiatric conditions4-7. For astrocytes to communicate through fast focal glutamate release, they should possess an apparatus for Ca2+-dependent exocytosis similar to neurons8-10. However, the existence of this mechanism has been questioned11-13 owing to inconsistent data14-17 and a lack of direct supporting evidence. Here we revisited the astrocyte glutamate exocytosis hypothesis by considering the emerging molecular heterogeneity of astrocytes18-21 and using molecular, bioinformatic and imaging approaches, together with cell-specific genetic tools that interfere with glutamate exocytosis in vivo. By analysing existing single-cell RNA-sequencing databases and our patch-seq data, we identified nine molecularly distinct clusters of hippocampal astrocytes, among which we found a notable subpopulation that selectively expressed synaptic-like glutamate-release machinery and localized to discrete hippocampal sites. Using GluSnFR-based glutamate imaging22 in situ and in vivo, we identified a corresponding astrocyte subgroup that responds reliably to astrocyte-selective stimulations with subsecond glutamate release events at spatially precise hotspots, which were suppressed by astrocyte-targeted deletion of vesicular glutamate transporter 1 (VGLUT1). Furthermore, deletion of this transporter or its isoform VGLUT2 revealed specific contributions of glutamatergic astrocytes in cortico-hippocampal and nigrostriatal circuits during normal behaviour and pathological processes. By uncovering this atypical subpopulation of specialized astrocytes in the adult brain, we provide insights into the complex roles of astrocytes in central nervous system (CNS) physiology and diseases, and identify a potential therapeutic target.
Collapse
Affiliation(s)
- Roberta de Ceglia
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Ada Ledonne
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
- Department of Experimental Neuroscience, IRCCS Santa Lucia Foundation, Rome, Italy
| | - David Gregory Litvin
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
- Wyss Center for Bio and Neuro Engineering, Campus Biotech, Geneva, Switzerland
| | - Barbara Lykke Lind
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Giovanni Carriero
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | | | - Erika Bindocci
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | | | - Iaroslav Savtchouk
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Ilaria Vitali
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Anurag Ranjak
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Mauro Congiu
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Tara Canonica
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - William Wisden
- Department of Life Sciences and UK Dementia Research Institute, Imperial College London, London, UK
| | - Kenneth Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Manuel Mameli
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Nicola Mercuri
- Department of Experimental Neuroscience, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Ludovic Telley
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland.
| | - Andrea Volterra
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland.
- Wyss Center for Bio and Neuro Engineering, Campus Biotech, Geneva, Switzerland.
| |
Collapse
|
21
|
Csemer A, Kovács A, Maamrah B, Pocsai K, Korpás K, Klekner Á, Szücs P, Nánási PP, Pál B. Astrocyte- and NMDA receptor-dependent slow inward currents differently contribute to synaptic plasticity in an age-dependent manner in mouse and human neocortex. Aging Cell 2023; 22:e13939. [PMID: 37489544 PMCID: PMC10497838 DOI: 10.1111/acel.13939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023] Open
Abstract
Slow inward currents (SICs) are known as excitatory events of neurons elicited by astrocytic glutamate via activation of extrasynaptic NMDA receptors. By using slice electrophysiology, we tried to provide evidence that SICs can elicit synaptic plasticity. Age dependence of SICs and their impact on synaptic plasticity was also investigated in both on murine and human cortical slices. It was found that SICs can induce a moderate synaptic plasticity, with features similar to spike timing-dependent plasticity. Overall SIC activity showed a clear decline with aging in humans and completely disappeared above a cutoff age. In conclusion, while SICs contribute to a form of astrocyte-dependent synaptic plasticity both in mice and humans, this plasticity is differentially affected by aging. Thus, SICs are likely to play an important role in age-dependent physiological and pathological alterations of synaptic plasticity.
Collapse
Affiliation(s)
- Andrea Csemer
- Department of Physiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
- Doctoral School of Molecular MedicineUniversity of DebrecenDebrecenHungary
| | - Adrienn Kovács
- Department of Physiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Baneen Maamrah
- Department of Physiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
- Doctoral School of Molecular MedicineUniversity of DebrecenDebrecenHungary
| | - Krisztina Pocsai
- Department of Physiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Kristóf Korpás
- Department of Physiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Álmos Klekner
- Department of Neurosurgery, Clinical CentreUniversity of DebrecenDebrecenHungary
| | - Péter Szücs
- Department of Anatomy, Histology and Embryology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Péter P. Nánási
- Department of Physiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
- Department of Dental Physiology and Pharmacology, Faculty of DentistryUniversity of DebrecenDebrecenHungary
| | - Balázs Pál
- Department of Physiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
- Doctoral School of Molecular MedicineUniversity of DebrecenDebrecenHungary
| |
Collapse
|
22
|
Meng A, Ameroso D, Rios M. mGluR5 in Astrocytes in the Ventromedial Hypothalamus Regulates Pituitary Adenylate Cyclase-Activating Polypeptide Neurons and Glucose Homeostasis. J Neurosci 2023; 43:5918-5935. [PMID: 37507231 PMCID: PMC10436691 DOI: 10.1523/jneurosci.0193-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/09/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
The ventromedial hypothalamus (VMH) is a functionally heterogeneous nucleus critical for systemic energy, glucose, and lipid balance. We showed previously that the metabotropic glutamate receptor 5 (mGluR5) plays essential roles regulating excitatory and inhibitory transmission in SF1+ neurons of the VMH and facilitating glucose and lipid homeostasis in female mice. Although mGluR5 is also highly expressed in VMH astrocytes in the mature brain, its role there influencing central metabolic circuits is unknown. In contrast to the glucose intolerance observed only in female mice lacking mGluR5 in VMH SF1 neurons, selective depletion of mGluR5 in VMH astrocytes enhanced glucose tolerance without affecting food intake or body weight in both adult female and male mice. The improved glucose tolerance was associated with elevated glucose-stimulated insulin release. Astrocytic mGluR5 male and female mutants also exhibited reduced adipocyte size and increased sympathetic tone in gonadal white adipose tissue. Diminished excitatory drive and synaptic inputs onto VMH Pituitary adenylate cyclase-activating polypeptide (PACAP+) neurons and reduced activity of these cells during acute hyperglycemia underlie the observed changes in glycemic control. These studies reveal an essential role of astrocytic mGluR5 in the VMH regulating the excitatory drive onto PACAP+ neurons and activity of these cells facilitating glucose homeostasis in male and female mice.SIGNIFICANCE STATEMENT Neuronal circuits within the VMH play chief roles in the regulation of whole-body metabolic homeostasis. It remains unclear how astrocytes influence neurotransmission in this region to facilitate energy and glucose balance control. Here, we explored the role of the metabotropic glutamate receptor, mGluR5, using a mouse model with selective depletion of mGluR5 from VMH astrocytes. We show that astrocytic mGluR5 critically regulates the excitatory drive and activity of PACAP-expressing neurons in the VMH to control glucose homeostasis in both female and male mice. Furthermore, mGluR5 in VMH astrocytes influences adipocyte size and sympathetic tone in white adipose tissue. These studies provide novel insight toward the importance of hypothalamic astrocytes participating in central circuits regulating peripheral metabolism.
Collapse
Affiliation(s)
- Alice Meng
- Graduate Program in Cell, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Dominique Ameroso
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts 02111, United States
| | - Maribel Rios
- Graduate Program in Cell, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts 02111
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts 02111, United States
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| |
Collapse
|
23
|
Patani R, Hardingham GE, Liddelow SA. Functional roles of reactive astrocytes in neuroinflammation and neurodegeneration. Nat Rev Neurol 2023; 19:395-409. [PMID: 37308616 DOI: 10.1038/s41582-023-00822-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2023] [Indexed: 06/14/2023]
Abstract
Despite advances in uncovering the mechanisms that underlie neuroinflammation and neurodegenerative disease, therapies that prevent neuronal loss remain elusive. Targeting of disease-defining markers in conditions such as Alzheimer disease (amyloid-β and tau) or Parkinson disease (α-synuclein) has been met with limited success, suggesting that these proteins do not act in isolation but form part of a pathological network. This network could involve phenotypic alteration of multiple cell types in the CNS, including astrocytes, which have a major neurosupportive, homeostatic role in the healthy CNS but adopt reactive states under acute or chronic adverse conditions. Transcriptomic studies in human patients and disease models have revealed the co-existence of many putative reactive sub-states of astrocytes. Inter-disease and even intra-disease heterogeneity of reactive astrocytic sub-states are well established, but the extent to which specific sub-states are shared across different diseases is unclear. In this Review, we highlight how single-cell and single-nuclei RNA sequencing and other 'omics' technologies can enable the functional characterization of defined reactive astrocyte states in various pathological scenarios. We provide an integrated perspective, advocating cross-modal validation of key findings to define functionally important sub-states of astrocytes and their triggers as tractable therapeutic targets with cross-disease relevance.
Collapse
Affiliation(s)
- Rickie Patani
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, Human Stem Cells and Neurodegeneration Laboratory, London, UK
| | - Giles E Hardingham
- Euan MacDonald Centre for MND, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute at the University of Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA.
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
24
|
Umpierre AD, Li B, Ayasoufi K, Zhao S, Xie M, Thyen G, Hur B, Zheng J, Liang Y, Wu Z, Yu X, Sung J, Johnson AJ, Li Y, Wu LJ. Microglial P2Y 6 calcium signaling promotes phagocytosis and shapes neuroimmune responses in epileptogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544691. [PMID: 37398001 PMCID: PMC10312639 DOI: 10.1101/2023.06.12.544691] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Microglial calcium signaling is rare in a baseline state but shows strong engagement during early epilepsy development. The mechanism and purpose behind microglial calcium signaling is not known. By developing an in vivo UDP fluorescent sensor, GRABUDP1.0, we discovered that UDP release is a conserved response to seizures and excitotoxicity across brain regions. UDP signals to the microglial P2Y6 receptor for broad increases in calcium signaling during epileptogenesis. UDP-P2Y6 signaling is necessary for lysosome upregulation across limbic brain regions and enhances production of pro-inflammatory cytokines-TNFα and IL-1β. Failures in lysosome upregulation, observed in P2Y6 KO mice, can also be phenocopied by attenuating microglial calcium signaling in Calcium Extruder ("CalEx") mice. In the hippocampus, only microglia with P2Y6 expression can perform full neuronal engulfment, which substantially reduces CA3 neuron survival and impairs cognition. Our results demonstrate that calcium activity, driven by UDP-P2Y6 signaling, is a signature of phagocytic and pro-inflammatory function in microglia during epileptogenesis.
Collapse
Affiliation(s)
- Anthony D. Umpierre
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- These authors contributed equally
| | - Bohan Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Peking University School of Life Sciences, Beijing, CN 100871
- These authors contributed equally
| | | | - Shunyi Zhao
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Neuroscience Track, Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905
| | - Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Neuroscience Track, Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905
| | - Grace Thyen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
| | - Benjamin Hur
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905
- Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN 55905
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Neuroscience Track, Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905
| | - Yue Liang
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
| | - Zhaofa Wu
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Peking University School of Life Sciences, Beijing, CN 100871
| | - Xinzhu Yu
- Department of Molecular and Integrative Physiology, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jaeyun Sung
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905
- Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN 55905
| | - Aaron J. Johnson
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
- Department of Molecular Medicine, Mayo Clinic, Rochester MN 55905
| | - Yulong Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Peking University School of Life Sciences, Beijing, CN 100871
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
- Lead contact
| |
Collapse
|
25
|
Ingiosi AM, Frank MG. Goodnight, astrocyte: waking up to astroglial mechanisms in sleep. FEBS J 2023; 290:2553-2564. [PMID: 35271767 PMCID: PMC9463397 DOI: 10.1111/febs.16424] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/16/2022] [Accepted: 03/07/2022] [Indexed: 01/03/2023]
Abstract
Astrocytes mediate many important aspects of neural homeostasis, but until recently, their role in sleep was largely unknown. The situation has dramatically changed in the last decade. The use of transgenic animals, optogenetics, chemogenetics, brain imaging and sophisticated molecular assays has led to exciting discoveries. Astrocytes dynamically change their activity across the sleep-wake cycle and may encode sleep need via changes in intracellular signalling pathways. Astrocytes also exocytose/secrete sleep-inducing molecules which modulate brain activity, sleep architecture and sleep regulation. Many of these observations have been made in mice and Drosophila melanogaster, indicating that astroglial sleep mechanisms are evolutionarily conserved. We review recent findings and discuss future directions.
Collapse
Affiliation(s)
- Ashley M Ingiosi
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Marcos G Frank
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| |
Collapse
|
26
|
Pérez-Sala D, Pajares MA. Appraising the Role of Astrocytes as Suppliers of Neuronal Glutathione Precursors. Int J Mol Sci 2023; 24:ijms24098059. [PMID: 37175763 PMCID: PMC10179008 DOI: 10.3390/ijms24098059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The metabolism and intercellular transfer of glutathione or its precursors may play an important role in cellular defense against oxidative stress, a common hallmark of neurodegeneration. In the 1990s, several studies in the Neurobiology field led to the widely accepted notion that astrocytes produce large amounts of glutathione that serve to feed neurons with precursors for glutathione synthesis. This assumption has important implications for health and disease since a reduction in this supply from astrocytes could compromise the capacity of neurons to cope with oxidative stress. However, at first glance, this shuttling would imply a large energy expenditure to get to the same point in a nearby cell. Thus, are there additional underlying reasons for this expensive mechanism? Are neurons unable to import and/or synthesize the three non-essential amino acids that are the glutathione building blocks? The rather oxidizing extracellular environment favors the presence of cysteine (Cys) as cystine (Cis), less favorable for neuronal import. Therefore, it has also been proposed that astrocytic GSH efflux could induce a change in the redox status of the extracellular space nearby the neurons, locally lowering the Cis/Cys ratio. This astrocytic glutathione release would also increase their demand for precursors, stimulating Cis uptake, which these cells can import, further impacting the local decline of the Cis/Cys ratio, in turn, contributing to a more reduced extracellular environment and subsequently favoring neuronal Cys import. Here, we revisit the experimental evidence that led to the accepted hypothesis of astrocytes acting as suppliers of neuronal glutathione precursors, considering recent data from the Human Protein Atlas. In addition, we highlight some potential drawbacks of this hypothesis, mainly supported by heterogeneous cellular models. Finally, we outline additional and more cost-efficient possibilities by which astrocytes could support neuronal glutathione levels, including its shuttling in extracellular vesicles.
Collapse
Affiliation(s)
- Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
27
|
Wang F, Wang W, Gu S, Qi D, Smith NA, Peng W, Dong W, Yuan J, Zhao B, Mao Y, Cao P, Lu QR, Shapiro LA, Yi SS, Wu E, Huang JH. Distinct astrocytic modulatory roles in sensory transmission during sleep, wakefulness, and arousal states in freely moving mice. Nat Commun 2023; 14:2186. [PMID: 37069258 PMCID: PMC10110578 DOI: 10.1038/s41467-023-37974-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
Despite extensive research on astrocytic Ca2+ in synaptic transmission, its contribution to the modulation of sensory transmission during different brain states remains largely unknown. Here, by using two-photon microscopy and whole-cell recordings, we show two distinct astrocytic Ca2+ signals in the murine barrel cortex: a small, long-lasting Ca2+ increase during sleep and a large, widespread but short-lasting Ca2+ spike when aroused. The large Ca2+ wave in aroused mice was inositol trisphosphate (IP3)-dependent, evoked by the locus coeruleus-norepinephrine system, and enhanced sensory input, contributing to reliable sensory transmission. However, the small Ca2+ transient was IP3-independent and contributed to decreased extracellular K+, hyperpolarization of the neurons, and suppression of sensory transmission. These events respond to different pharmacological inputs and contribute to distinct sleep and arousal functions by modulating the efficacy of sensory transmission. Together, our data demonstrate an important function for astrocytes in sleep and arousal states via astrocytic Ca2+ waves.
Collapse
Affiliation(s)
- Fushun Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, Sichuan, 610060, China.
- Department of Neurosurgery, University of Rochester, Rochester, NY, 14643, USA.
| | - Wei Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, Sichuan, 610060, China
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Simeng Gu
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, Sichuan, 610060, China
- Department of Medical Psychology, Jiangsu University Medical School, Zhenjiang, 212013, China
| | - Dan Qi
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, 76508, USA
| | - Nathan A Smith
- Department of Neurosurgery, University of Rochester, Rochester, NY, 14643, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20010, USA
| | - Weiguo Peng
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, Sichuan, 610060, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Jiajin Yuan
- Department of Neurosurgery, University of Rochester, Rochester, NY, 14643, USA
| | - Binbin Zhao
- Basic Medicine College, Hubei University of Chinese Medicine, Wuhan, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Peng Cao
- School of Psychology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qing Richard Lu
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Lee A Shapiro
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University, Bryan, TX, 77807, USA.
| | - S Stephen Yi
- Livestrong Cancer Institutes and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA.
- Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, 78712, USA.
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Erxi Wu
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, 76508, USA.
- Livestrong Cancer Institutes and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA.
- Texas A & M University Health Science Center, College Station, TX, 77843, USA.
| | - Jason H Huang
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, 76508, USA.
- Texas A & M University Health Science Center, College Station, TX, 77843, USA.
- Department of Neurosurgery, Baylor College of Medicine, Temple, TX, 76508, USA.
| |
Collapse
|
28
|
Lia A, Di Spiezio A, Speggiorin M, Zonta M. Two decades of astrocytes in neurovascular coupling. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1162757. [PMID: 37078069 PMCID: PMC10106690 DOI: 10.3389/fnetp.2023.1162757] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
The brain is a highly energy demanding organ, which accounts in humans for the 20% of total energy consumption at resting state although comprising only 2% of the body mass. The necessary delivery of nutrients to brain parenchyma is ensured by the cerebral circulatory system, through the exchange of glucose and oxygen (O2) at the capillary level. Notably, a tight spatial and temporal correlation exists between local increases in neuronal activity and the subsequent changes in regional cerebral blood flow. The recognized concept of neurovascular coupling (NVC), also named functional hyperemia, expresses this close relationship and stands at the basis of the modern functional brain imaging techniques. Different cellular and molecular mechanisms have been proposed to mediate this tight coupling. In this context, astrocytes are ideally positioned to act as relay elements that sense neuronal activity through their perisynaptic processes and release vasodilator agents at their endfeet in contact with brain parenchymal vessels. Two decades after the astrocyte involvement in neurovascular coupling has been proposed, we here review the experimental evidence that contributed to unraveling the molecular and cellular mechanisms underlying cerebral blood flow regulation. While traveling through the different controversies that moved the research in this field, we keep a peculiar focus on those exploring the role of astrocytes in neurovascular coupling and conclude with two sections related to methodological aspects in neurovascular research and to some pathological conditions resulting in altered neurovascular coupling.
Collapse
Affiliation(s)
- Annamaria Lia
- Neuroscience Institute, National Research Council (CNR), Padua, Italy
| | - Alessandro Di Spiezio
- Neuroscience Institute, National Research Council (CNR), Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Micaela Zonta
- Neuroscience Institute, National Research Council (CNR), Padua, Italy
| |
Collapse
|
29
|
Lee SH, Mak A, Verheijen MHG. Comparative assessment of the effects of DREADDs and endogenously expressed GPCRs in hippocampal astrocytes on synaptic activity and memory. Front Cell Neurosci 2023; 17:1159756. [PMID: 37051110 PMCID: PMC10083367 DOI: 10.3389/fncel.2023.1159756] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) have proven themselves as one of the key in vivo techniques of modern neuroscience, allowing for unprecedented access to cellular manipulations in living animals. With respect to astrocyte research, DREADDs have become a popular method to examine the functional aspects of astrocyte activity, particularly G-protein coupled receptor (GPCR)-mediated intracellular calcium (Ca2+) and cyclic adenosine monophosphate (cAMP) dynamics. With this method it has become possible to directly link the physiological aspects of astrocytic function to cognitive processes such as memory. As a result, a multitude of studies have explored the impact of DREADD activation in astrocytes on synaptic activity and memory. However, the emergence of varying results prompts us to reconsider the degree to which DREADDs expressed in astrocytes accurately mimic endogenous GPCR activity. Here we compare the major downstream signaling mechanisms, synaptic, and behavioral effects of stimulating Gq-, Gs-, and Gi-DREADDs in hippocampal astrocytes of adult mice to those of endogenously expressed GPCRs.
Collapse
Affiliation(s)
- Sophie H. Lee
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Research Master’s Programme Brain and Cognitive Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Aline Mak
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Mark H. G. Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- *Correspondence: Mark Verheijen,
| |
Collapse
|
30
|
Reyes-Ortiz AM, Abud EM, Burns MS, Wu J, Hernandez SJ, McClure N, Wang KQ, Schulz CJ, Miramontes R, Lau A, Michael N, Miyoshi E, Van Vactor D, Reidling JC, Blurton-Jones M, Swarup V, Poon WW, Lim RG, Thompson LM. Single-nuclei transcriptome analysis of Huntington disease iPSC and mouse astrocytes implicates maturation and functional deficits. iScience 2023; 26:105732. [PMID: 36590162 PMCID: PMC9800269 DOI: 10.1016/j.isci.2022.105732] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/13/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Huntington disease (HD) is a neurodegenerative disorder caused by expanded CAG repeats in the huntingtin gene that alters cellular homeostasis, particularly in the striatum and cortex. Astrocyte signaling that establishes and maintains neuronal functions are often altered under pathological conditions. We performed single-nuclei RNA-sequencing on human HD patient-induced pluripotent stem cell (iPSC)-derived astrocytes and on striatal and cortical tissue from R6/2 HD mice to investigate high-resolution HD astrocyte cell state transitions. We observed altered maturation and glutamate signaling in HD human and mouse astrocytes. Human HD astrocytes also showed upregulated actin-mediated signaling, suggesting that some states may be cell-autonomous and human specific. In both species, astrogliogenesis transcription factors may drive HD astrocyte maturation deficits, which are supported by rescued climbing deficits in HD drosophila with NFIA knockdown. Thus, dysregulated HD astrocyte states may induce dysfunctional astrocytic properties, in part due to maturation deficits influenced by astrogliogenesis transcription factor dysregulation.
Collapse
Affiliation(s)
- Andrea M. Reyes-Ortiz
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92617, USA
| | - Edsel M. Abud
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Mara S. Burns
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92617, USA
| | - Sarah J. Hernandez
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Nicolette McClure
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92617, USA
| | - Keona Q. Wang
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Corey J. Schulz
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92617, USA
| | - Ricardo Miramontes
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Alice Lau
- Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Neethu Michael
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Emily Miyoshi
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - David Van Vactor
- Harvard Medical School, Department of Cell Biology, Boston, MA 02115, USA
| | - John C. Reidling
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92617, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Vivek Swarup
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Wayne W. Poon
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Ryan G. Lim
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Leslie M. Thompson
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92617, USA
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92617, USA
- Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine, CA 92617, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| |
Collapse
|
31
|
Cuellar-Santoyo AO, Ruiz-Rodríguez VM, Mares-Barbosa TB, Patrón-Soberano A, Howe AG, Portales-Pérez DP, Miquelajáuregui Graf A, Estrada-Sánchez AM. Revealing the contribution of astrocytes to glutamatergic neuronal transmission. Front Cell Neurosci 2023; 16:1037641. [PMID: 36744061 PMCID: PMC9893894 DOI: 10.3389/fncel.2022.1037641] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
Research on glutamatergic neurotransmission has focused mainly on the function of presynaptic and postsynaptic neurons, leaving astrocytes with a secondary role only to ensure successful neurotransmission. However, recent evidence indicates that astrocytes contribute actively and even regulate neuronal transmission at different levels. This review establishes a framework by comparing glutamatergic components between neurons and astrocytes to examine how astrocytes modulate or otherwise influence neuronal transmission. We have included the most recent findings about the role of astrocytes in neurotransmission, allowing us to understand the complex network of neuron-astrocyte interactions. However, despite the knowledge of synaptic modulation by astrocytes, their contribution to specific physiological and pathological conditions remains to be elucidated. A full understanding of the astrocyte's role in neuronal processing could open fruitful new frontiers in the development of therapeutic applications.
Collapse
Affiliation(s)
- Ares Orlando Cuellar-Santoyo
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Victor Manuel Ruiz-Rodríguez
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Teresa Belem Mares-Barbosa
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | - Araceli Patrón-Soberano
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Andrew G. Howe
- Intelligent Systems Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| | - Diana Patricia Portales-Pérez
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | | | - Ana María Estrada-Sánchez
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| |
Collapse
|
32
|
Schwarz K, Schmitz F. Synapse Dysfunctions in Multiple Sclerosis. Int J Mol Sci 2023; 24:ijms24021639. [PMID: 36675155 PMCID: PMC9862173 DOI: 10.3390/ijms24021639] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system (CNS) affecting nearly three million humans worldwide. In MS, cells of an auto-reactive immune system invade the brain and cause neuroinflammation. Neuroinflammation triggers a complex, multi-faceted harmful process not only in the white matter but also in the grey matter of the brain. In the grey matter, neuroinflammation causes synapse dysfunctions. Synapse dysfunctions in MS occur early and independent from white matter demyelination and are likely correlates of cognitive and mental symptoms in MS. Disturbed synapse/glia interactions and elevated neuroinflammatory signals play a central role. Glutamatergic excitotoxic synapse damage emerges as a major mechanism. We review synapse/glia communication under normal conditions and summarize how this communication becomes malfunctional during neuroinflammation in MS. We discuss mechanisms of how disturbed glia/synapse communication can lead to synapse dysfunctions, signaling dysbalance, and neurodegeneration in MS.
Collapse
|
33
|
de Lima IB, Ribeiro FM. The Implication of Glial Metabotropic Glutamate Receptors in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:164-182. [PMID: 34951388 PMCID: PMC10190153 DOI: 10.2174/1570159x20666211223140303] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/05/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) was first identified more than 100 years ago, yet aspects pertaining to its origin and the mechanisms underlying disease progression are not well known. To this date, there is no therapeutic approach or disease-modifying drug that could halt or at least delay disease progression. Until recently, glial cells were seen as secondary actors in brain homeostasis. Although this view was gradually refuted and the relevance of glial cells for the most diverse brain functions such as synaptic plasticity and neurotransmission was vastly proved, many aspects of its functioning, as well as its role in pathological conditions, remain poorly understood. Metabotropic glutamate receptors (mGluRs) in glial cells were shown to be involved in neuroinflammation and neurotoxicity. Besides its relevance for glial function, glutamatergic receptors are also central in the pathology of AD, and recent studies have shown that glial mGluRs play a role in the establishment and progression of AD. AD-related alterations in Ca2+ signalling, APP processing, and Aβ load, as well as AD-related neurodegeneration, are influenced by glial mGluRs. However, different types of mGluRs play different roles, depending on the cell type and brain region that is being analysed. Therefore, in this review, we focus on the current understanding of glial mGluRs and their implication in AD, providing an insight for future therapeutics and identifying existing research gaps worth investigating.
Collapse
Affiliation(s)
- Izabella B.Q. de Lima
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabíola M. Ribeiro
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
34
|
Bi W, Lei T, Cai S, Zhang X, Yang Y, Xiao Z, Wang L, Du H. Potential of astrocytes in targeting therapy for Alzheimer’s disease. Int Immunopharmacol 2022; 113:109368. [DOI: 10.1016/j.intimp.2022.109368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
35
|
Gong P, Zhang S, Ren L, Zhang J, Zhao Y, Mao X, Gan L, Wang H, Ma C, Lin Y, Ye Q, Qian K, Lin X. Electroacupuncture of the trigeminal nerve causes N-methyl-D-aspartate receptors to mediate blood-brain barrier opening and induces neuronal excitatory changes. Front Cell Neurosci 2022; 16:1020644. [PMID: 36313622 PMCID: PMC9606778 DOI: 10.3389/fncel.2022.1020644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022] Open
Abstract
The blood-brain barrier (BBB) is an important structure for maintaining environmental stability in the central nervous system (CNS). Our previous study showed that specific parameters of electroacupuncture (EA) at the head points Shuigou (GV26) and Baihui (GV20) can open the BBB; however, the mechanism by which stimulation of body surface acupuncture points on the head results in peripheral stimulation and affects the status of the central BBB and the neuronal excitatory changes has not been elucidated. We used laser spectroscopy, the In Vivo Imaging System (IVIS), immunofluorescence and immunoblotting to verified the role of the trigeminal nerve in BBB opening during EA, and we applied the central N-methyl-D-aspartate (NMDA) receptors blocker MK-801 to verify the mediating role of NMDA receptors in EA-induced BBB opening. Next, electroencephalogram (EEG) and in vivo calcium imaging techniques were applied to verify the possible electrical patterns of BBB opening promoted by different intensities of EA stimulation. The results showed that the trigeminal nerve plays an important role in the alteration of BBB permeability promoted by EA stimulation of the head acupoints. Brain NMDA receptors play a mediating role in promoting BBB permeability during EA of the trigeminal nerve, which may affect the expression of the TJ protein occludin, and thus alter BBB permeability. The analysis of the electrical mechanism showed that there was no significant change in the rhythm of local field potentials (LFP) in different brain regions across frequency bands immediately after EA of the trigeminal nerve at different intensities. However, the local primary somatosensory (S1BF) area corresponding to the trigeminal nerve showed a transient reduction in the delta rhythm of LFP with no change in the high-frequency band, and the action potential (spike) with short inter spike interval (ISI) varied with EA intensity. Meanwhile, EA of the trigeminal nerve resulted in rhythmic changes in calcium waves in the S1BF region, which were influenced by different EA intensities. This study provides a research perspective and a technical approach to further explore the mechanism of EA-induced BBB opening and its potential clinical applications.
Collapse
|
36
|
Roboon J, Hattori T, Nguyen DT, Ishii H, Takarada-Iemata M, Kannon T, Hosomichi K, Maejima T, Saito K, Shinmyo Y, Mieda M, Tajima A, Kawasaki H, Hori O. Isolation of ferret astrocytes reveals their morphological, transcriptional, and functional differences from mouse astrocytes. Front Cell Neurosci 2022; 16:877131. [PMID: 36274991 PMCID: PMC9584309 DOI: 10.3389/fncel.2022.877131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Astrocytes play key roles in supporting the central nervous system structure, regulating synaptic functions, and maintaining brain homeostasis. The number of astrocytes in the cerebrum has markedly increased through evolution. However, the manner by which astrocytes change their features during evolution remains unknown. Compared with the rodent brain, the brain of the ferret, a carnivorous animal, has a folded cerebral cortex and higher white to gray matter ratio, which are common features of the human brain. To further clarify the features of ferret astrocytes, we isolated astrocytes from ferret neonatal brains, cultured these cells, and compared their morphology, gene expression, calcium response, and proliferating ability with those of mouse astrocytes. The morphology of cultured ferret astrocytes differed from that of mouse astrocytes. Ferret astrocytes had longer and more branched processes, smaller cell bodies, and different calcium responses to glutamate, as well as had a greater ability to proliferate, compared to mouse astrocytes. RNA sequencing analysis revealed novel ferret astrocyte-specific genes, including several genes that were the same as those in humans. Astrocytes in the ferret brains had larger cell size, longer primary processes in larger numbers, and a higher proliferation rate compared to mouse astrocytes. Our study shows that cultured ferret astrocytes have different features from rodent astrocytes and similar features to human astrocytes, suggesting that they are useful in studying the roles of astrocytes in brain evolution and cognitive functions in higher animals.
Collapse
Affiliation(s)
- Jureepon Roboon
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tsuyoshi Hattori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- *Correspondence: Tsuyoshi Hattori,
| | - Dinh Thi Nguyen
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Ishii
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Mika Takarada-Iemata
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takayuki Kannon
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Maejima
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kengo Saito
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Michihiro Mieda
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
37
|
Kruyer A. Astrocyte Heterogeneity in Regulation of Synaptic Activity. Cells 2022; 11:cells11193135. [PMID: 36231097 PMCID: PMC9562199 DOI: 10.3390/cells11193135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/02/2022] [Accepted: 10/02/2022] [Indexed: 02/07/2023] Open
Abstract
Our awareness of the number of synapse regulatory functions performed by astroglia is rapidly expanding, raising interesting questions regarding astrocyte heterogeneity and specialization across brain regions. Whether all astrocytes are poised to signal in a multitude of ways, or are instead tuned to surrounding synapses and how astroglial signaling is altered in psychiatric and cognitive disorders are fundamental questions for the field. In recent years, molecular and morphological characterization of astroglial types has broadened our ability to design studies to better analyze and manipulate specific functions of astroglia. Recent data emerging from these studies will be discussed in depth in this review. I also highlight remaining questions emerging from new techniques recently applied toward understanding the roles of astrocytes in synapse regulation in the adult brain.
Collapse
Affiliation(s)
- Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
38
|
Kaul D, Schwab SG, Mechawar N, Ooi L, Matosin N. Alterations in Astrocytic Regulation of Excitation and Inhibition by Stress Exposure and in Severe Psychopathology. J Neurosci 2022; 42:6823-6834. [PMID: 38377014 PMCID: PMC9463979 DOI: 10.1523/jneurosci.2410-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
Dysregulation of excitatory and inhibitory signaling is commonly observed in major psychiatric disorders, including schizophrenia, depression, and bipolar disorder, and is often targeted by psychological and pharmacological treatment methods. The balance of excitation and inhibition is highly sensitive to severe psychological stress, one of the strongest risk factors for psychiatric disorders. The role of astrocytes in regulating excitatory and inhibitory signaling is now widely recognized; however, the specific involvement of astrocytes in the context of psychiatric disorders with a history of significant stress exposure remains unclear. In this review, we summarize how astrocytes regulate the balance of excitation and inhibition in the context of stress exposure and severe psychopathology, with a focus on the PFC, a brain area highly implicated in psychopathology. We first focus on preclinical models to demonstrate that the duration of stress (particularly acute vs chronic stress) is key to shaping astrocyte function and downstream behavior. We then provide a hypothesis for how astrocytes are involved in stress-associated cortical signaling imbalance, discuss how this directly contributes to phenotypes of psychopathologies, and provide suggestions for future research. We highlight that astrocytes are a key target to understand and treat the dysregulation of cortical signaling associated with stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Dominic Kaul
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
| | - Sibylle G Schwab
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
| | - Naguib Mechawar
- Douglas Mental Health University Institute, 6875 LaSalle Blvd, Verdun, Quebec H4H 1R3, Canada
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
| | - Natalie Matosin
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, Munich, 80804, Germany
| |
Collapse
|
39
|
Emerging Role of Neuron-Glia in Neurological Disorders: At a Glance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3201644. [PMID: 36046684 PMCID: PMC9423989 DOI: 10.1155/2022/3201644] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022]
Abstract
Based on the diverse physiological influence, the impact of glial cells has become much more evident on neurological illnesses, resulting in the origins of many diseases appearing to be more convoluted than previously happened. Since neurological disorders are often random and unknown, hence the construction of animal models is difficult to build, representing a small fraction of people with a gene mutation. As a result, an immediate necessity is grown to work within in vitro techniques for examining these illnesses. As the scientific community recognizes cell-autonomous contributions to a variety of central nervous system illnesses, therapeutic techniques involving stem cells for treating neurological diseases are gaining traction. The use of stem cells derived from a variety of sources is increasingly being used to replace both neuronal and glial tissue. The brain's energy demands necessitate the reliance of neurons on glial cells in order for it to function properly. Furthermore, glial cells have diverse functions in terms of regulating their own metabolic activities, as well as collaborating with neurons via secreted signaling or guidance molecules, forming a complex network of neuron-glial connections in health and sickness. Emerging data reveals that metabolic changes in glial cells can cause morphological and functional changes in conjunction with neuronal dysfunction under disease situations, highlighting the importance of neuron-glia interactions in the pathophysiology of neurological illnesses. In this context, it is required to improve our understanding of disease mechanisms and create potential novel therapeutics. According to research, synaptic malfunction is one of the features of various mental diseases, and glial cells are acting as key ingredients not only in synapse formation, growth, and plasticity but also in neuroinflammation and synaptic homeostasis which creates critical physiological capacity in the focused sensory system. The goal of this review article is to elaborate state-of-the-art information on a few glial cell types situated in the central nervous system (CNS) and highlight their role in the onset and progression of neurological disorders.
Collapse
|
40
|
Tyler RE, Besheer J, Joffe ME. Advances in translating mGlu 2 and mGlu 3 receptor selective allosteric modulators as breakthrough treatments for affective disorders and alcohol use disorder. Pharmacol Biochem Behav 2022; 219:173450. [PMID: 35988792 PMCID: PMC10405528 DOI: 10.1016/j.pbb.2022.173450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/26/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are promising targets for the treatment of affective disorders and alcohol use disorder (AUD). Nonspecific ligands for Group II (mGlu2 and mGlu3) mGlu receptors have demonstrated consistent therapeutic potential for affective disorders in preclinical models. Disentangling the specific roles of mGlu2 versus mGlu3 receptors in these effects has persisted as a major challenge, in part due to pharmacological limitations. However, the recent development of highly specific allosteric modulators for both mGlu2 and mGlu3 receptors have enabled straightforward and rigorous investigations into the specific function of each receptor. Here, we review recent experiments using these compounds that have demonstrated both similar and distinct receptor functions in behavioral, molecular, and electrophysiological measures associated with basal function and preclinical models of affective disorders. Studies using these selective drugs have demonstrated that mGlu2 is the predominant receptor subclass involved in presynaptic neurotransmitter release in prefrontal cortex. By contrast, the activation of postsynaptic mGlu3 receptors induces a cascade of cellular changes that results in AMPA receptor internalization, producing long-term depression and diminishing excitatory drive. Acute stress decreases the mGlu3 receptor function and dynamically alters transcript expression for both mGlu2 (Grm2) and mGlu3 (Grm3) receptors in brain areas involved in reward and stress. Accordingly, both mGlu2 and mGlu3 negative allosteric modulators show acute antidepressant-like effects and potential prophylactic effects against acute and traumatic stressors. The wide array of effects displayed by these new allosteric modulators of mGlu2 and mGlu3 receptors suggest that these drugs may act through improving endophenotypes of symptoms observed across several neuropsychiatric disorders. Therefore, recently developed allosteric modulators selective for mGlu2 or mGlu3 receptors show promise as potential therapeutics for affective disorders and AUD.
Collapse
Affiliation(s)
- Ryan E Tyler
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Neuroscience Curriculum, University of North Carolina at Chapel Hill, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, USA
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Neuroscience Curriculum, University of North Carolina at Chapel Hill, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, USA
| | - Max E Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219, USA; Translational Neuroscience Program, University of Pittsburgh, USA.
| |
Collapse
|
41
|
Glutamate Signaling and Filopodiagenesis of Astrocytoma Cells in Brain Cancers: Survey and Questions. Cells 2022; 11:cells11172657. [PMID: 36078065 PMCID: PMC9454653 DOI: 10.3390/cells11172657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022] Open
Abstract
Astrocytes are non-excitable cells in the CNS that can cause life-threatening astrocytoma tumors when they transform to cancerous cells. Perturbed homeostasis of the neurotransmitter glutamate is associated with astrocytoma tumor onset and progression, but the factors that govern this phenomenon are less known. Herein, we review possible mechanisms by which glutamate may act in facilitating the growth of projections in astrocytic cells. This review discusses the similarities and differences between the morphology of astrocytes and astrocytoma cells, and the role that dysregulation in glutamate and calcium signaling plays in the aberrant morphology of astrocytoma cells. Converging reports suggest that ionotropic glutamate receptors and voltage-gated calcium channels expressed in astrocytes may be responsible for the abnormal filopodiagenesis or process extension leading to astrocytoma cells’ infiltration throughout the brain.
Collapse
|
42
|
Mazzitelli M, Presto P, Antenucci N, Meltan S, Neugebauer V. Recent Advances in the Modulation of Pain by the Metabotropic Glutamate Receptors. Cells 2022; 11:2608. [PMID: 36010684 PMCID: PMC9406805 DOI: 10.3390/cells11162608] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 01/22/2023] Open
Abstract
Metabotropic glutamate receptors (mGluR or mGlu) are G-protein coupled receptors activated by the binding of glutamate, the main classical neurotransmitter of the nervous system. Eight different mGluR subtypes (mGluR1-8) have been cloned and are classified in three groups based on their molecular, pharmacological and signaling properties. mGluRs mediate several physiological functions such as neuronal excitability and synaptic plasticity, but they have also been implicated in numerous pathological conditions including pain. The availability of new and more selective allosteric modulators together with the canonical orthosteric ligands and transgenic technologies has led to significant advances in our knowledge about the role of the specific mGluR subtypes in the pathophysiological mechanisms of various diseases. Although development of successful compounds acting on mGluRs for clinical use has been scarce, the subtype-specific-pharmacological manipulation might be a compelling approach for the treatment of several disorders in humans, including pain; this review aims to summarize and update on preclinical evidence for the roles of different mGluRs in the pain system and discusses knowledge gaps regarding mGluR-related sex differences and neuroimmune signaling in pain.
Collapse
Affiliation(s)
- Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Shakira Meltan
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
43
|
Shen W, Li Z, Tang Y, Han P, Zhu F, Dong J, Ma T, Zhao K, Zhang X, Xie Y, Zeng LH. Somatostatin interneurons inhibit excitatory transmission mediated by astrocytic GABA B and presynaptic GABA B and adenosine A 1 receptors in the hippocampus. J Neurochem 2022; 163:310-326. [PMID: 35775994 DOI: 10.1111/jnc.15662] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
GABAergic network activity has been established to be involved in numerous physiological processes and pathological conditions. Extensive studies have corroborated that GABAergic network activity regulates excitatory synaptic networks by activating presynaptic GABAB receptors (GABAB Rs). It is well documented that astrocytes express GABAB Rs and respond to GABAergic network activity. However, little is known about whether astrocytic GABAB Rs regulate excitatory synaptic transmission mediated by GABAergic network activity. To address this issue, we combined whole-cell recordings, optogenetics, calcium imaging, and pharmacological approaches to specifically activate hippocampal somatostatin-expressing interneurons (SOM-INs), a type of interneuron that targets pyramidal cell dendrites, while monitoring excitatory synaptic transmission in CA1 pyramidal cells. We found that optogenetic stimulation of SOM-INs increases astrocyte Ca2+ signaling via the activation of astrocytic GABAB Rs and GAT-3. SOM-INs depress excitatory neurotransmission by activating presynaptic GABAB Rs and astrocytic GABAB Rs, the latter inducing the release of ATP/adenosine. In turn, adenosine inhibits excitatory synaptic transmission by activating presynaptic adenosine A1 receptors (A1 Rs). Overall, our results reveal a novel mechanism that SOM-INs activation-induced synaptic depression is partially mediated by the activation of astrocytic GABAB Rs.
Collapse
Affiliation(s)
- Weida Shen
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Zijing Li
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Yejiao Tang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Pufan Han
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Feng Zhu
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Jingyin Dong
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Tianyu Ma
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Kai Zhao
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Xin Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Yicheng Xie
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ling-Hui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| |
Collapse
|
44
|
Lansdell TA, Chambers LC, Dorrance AM. Endothelial Cells and the Cerebral Circulation. Compr Physiol 2022; 12:3449-3508. [PMID: 35766836 DOI: 10.1002/cphy.c210015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial cells form the innermost layer of all blood vessels and are the only vascular component that remains throughout all vascular segments. The cerebral vasculature has several unique properties not found in the peripheral circulation; this requires that the cerebral endothelium be considered as a unique entity. Cerebral endothelial cells perform several functions vital for brain health. The cerebral vasculature is responsible for protecting the brain from external threats carried in the blood. The endothelial cells are central to this requirement as they form the basis of the blood-brain barrier. The endothelium also regulates fibrinolysis, thrombosis, platelet activation, vascular permeability, metabolism, catabolism, inflammation, and white cell trafficking. Endothelial cells regulate the changes in vascular structure caused by angiogenesis and artery remodeling. Further, the endothelium contributes to vascular tone, allowing proper perfusion of the brain which has high energy demands and no energy stores. In this article, we discuss the basic anatomy and physiology of the cerebral endothelium. Where appropriate, we discuss the detrimental effects of high blood pressure on the cerebral endothelium and the contribution of cerebrovascular disease endothelial dysfunction and dementia. © 2022 American Physiological Society. Compr Physiol 12:3449-3508, 2022.
Collapse
Affiliation(s)
- Theresa A Lansdell
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Laura C Chambers
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
45
|
Szu JI, Binder DK. Mechanisms Underlying Aquaporin-4 Subcellular Mislocalization in Epilepsy. Front Cell Neurosci 2022; 16:900588. [PMID: 35734218 PMCID: PMC9207308 DOI: 10.3389/fncel.2022.900588] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a chronic brain disorder characterized by unprovoked seizures. Mechanisms underlying seizure activity have been intensely investigated. Alterations in astrocytic channels and transporters have shown to be a critical player in seizure generation and epileptogenesis. One key protein involved in such processes is the astrocyte water channel aquaporin-4 (AQP4). Studies have revealed that perivascular AQP4 redistributes away from astrocyte endfeet and toward the neuropil in both clinical and preclinical studies. This subcellular mislocalization significantly impacts neuronal hyperexcitability and understanding how AQP4 becomes dysregulated in epilepsy is beginning to emerge. In this review, we evaluate the role of AQP4 dysregulation and mislocalization in epilepsy.
Collapse
|
46
|
Sobolczyk M, Boczek T. Astrocytic Calcium and cAMP in Neurodegenerative Diseases. Front Cell Neurosci 2022; 16:889939. [PMID: 35663426 PMCID: PMC9161693 DOI: 10.3389/fncel.2022.889939] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/05/2022] [Indexed: 12/18/2022] Open
Abstract
It is commonly accepted that the role of astrocytes exceeds far beyond neuronal scaffold and energy supply. Their unique morphological and functional features have recently brough much attention as it became evident that they play a fundamental role in neurotransmission and interact with synapses. Synaptic transmission is a highly orchestrated process, which triggers local and transient elevations in intracellular Ca2+, a phenomenon with specific temporal and spatial properties. Presynaptic activation of Ca2+-dependent adenylyl cyclases represents an important mechanism of synaptic transmission modulation. This involves activation of the cAMP-PKA pathway to regulate neurotransmitter synthesis, release and storage, and to increase neuroprotection. This aspect is of paramount importance for the preservation of neuronal survival and functionality in several pathological states occurring with progressive neuronal loss. Hence, the aim of this review is to discuss mutual relationships between cAMP and Ca2+ signaling and emphasize those alterations at the Ca2+/cAMP crosstalk that have been identified in neurodegenerative disorders, such as Alzheimer's and Parkinson's disease.
Collapse
|
47
|
Zhu WM, Neuhaus A, Beard DJ, Sutherland BA, DeLuca GC. Neurovascular coupling mechanisms in health and neurovascular uncoupling in Alzheimer's disease. Brain 2022; 145:2276-2292. [PMID: 35551356 PMCID: PMC9337814 DOI: 10.1093/brain/awac174] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/25/2022] Open
Abstract
To match the metabolic demands of the brain, mechanisms have evolved to couple neuronal activity to vasodilation, thus increasing local cerebral blood flow and delivery of oxygen and glucose to active neurons. Rather than relying on metabolic feedback signals such as the consumption of oxygen or glucose, the main signalling pathways rely on the release of vasoactive molecules by neurons and astrocytes, which act on contractile cells. Vascular smooth muscle cells and pericytes are the contractile cells associated with arterioles and capillaries, respectively, which relax and induce vasodilation. Much progress has been made in understanding the complex signalling pathways of neurovascular coupling, but issues such as the contributions of capillary pericytes and astrocyte calcium signal remain contentious. Study of neurovascular coupling mechanisms is especially important as cerebral blood flow dysregulation is a prominent feature of Alzheimer’s disease. In this article we will discuss developments and controversies in the understanding of neurovascular coupling and finish by discussing current knowledge concerning neurovascular uncoupling in Alzheimer’s disease.
Collapse
Affiliation(s)
- Winston M Zhu
- Oxford Medical School, University of Oxford, Oxford, UK
| | - Ain Neuhaus
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Daniel J Beard
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
48
|
de Oliveira Figueiredo EC, Bondiolotti BM, Laugeray A, Bezzi P. Synaptic Plasticity Dysfunctions in the Pathophysiology of 22q11 Deletion Syndrome: Is There a Role for Astrocytes? Int J Mol Sci 2022; 23:ijms23084412. [PMID: 35457231 PMCID: PMC9028090 DOI: 10.3390/ijms23084412] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 01/01/2023] Open
Abstract
The 22q11 deletion syndrome (DS) is the most common microdeletion syndrome in humans and gives a high probability of developing psychiatric disorders. Synaptic and neuronal malfunctions appear to be at the core of the symptoms presented by patients. In fact, it has long been suggested that the behavioural and cognitive impairments observed in 22q11DS are probably due to alterations in the mechanisms regulating synaptic function and plasticity. Often, synaptic changes are related to structural and functional changes observed in patients with cognitive dysfunctions, therefore suggesting that synaptic plasticity has a crucial role in the pathophysiology of the syndrome. Most interestingly, among the genes deleted in 22q11DS, six encode for mitochondrial proteins that, in mouse models, are highly expressed just after birth, when active synaptogenesis occurs, therefore indicating that mitochondrial processes are strictly related to synapse formation and maintenance of a correct synaptic signalling. Because correct synaptic functioning, not only requires correct neuronal function and metabolism, but also needs the active contribution of astrocytes, we summarize in this review recent studies showing the involvement of synaptic plasticity in the pathophysiology of 22q11DS and we discuss the relevance of mitochondria in these processes and the possible involvement of astrocytes.
Collapse
Affiliation(s)
| | - Bianca Maria Bondiolotti
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland; (E.C.d.O.F.); (B.M.B.); (A.L.)
| | - Anthony Laugeray
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland; (E.C.d.O.F.); (B.M.B.); (A.L.)
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland; (E.C.d.O.F.); (B.M.B.); (A.L.)
- Department of Pharmacology and Physiology, University of Rome Sapienza, 00185 Rome, Italy
- Correspondence: or
| |
Collapse
|
49
|
Danjo Y, Shigetomi E, Hirayama YJ, Kobayashi K, Ishikawa T, Fukazawa Y, Shibata K, Takanashi K, Parajuli B, Shinozaki Y, Kim SK, Nabekura J, Koizumi S. Transient astrocytic mGluR5 expression drives synaptic plasticity and subsequent chronic pain in mice. J Exp Med 2022; 219:213089. [PMID: 35319723 PMCID: PMC8952801 DOI: 10.1084/jem.20210989] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 01/02/2023] Open
Abstract
Activation of astrocytes has a profound effect on brain plasticity and is critical for the pathophysiology of several neurological disorders including neuropathic pain. Here, we show that metabotropic glutamate receptor 5 (mGluR5), which reemerges in astrocytes in a restricted time frame, is essential for these functions. Although mGluR5 is absent in healthy adult astrocytes, it transiently reemerges in astrocytes of the somatosensory cortex (S1). During a limited spatiotemporal time frame, astrocytic mGluR5 drives Ca2+ signals; upregulates multiple synaptogenic molecules such as Thrombospondin-1, Glypican-4, and Hevin; causes excess excitatory synaptogenesis; and produces persistent alteration of S1 neuronal activity, leading to mechanical allodynia. All of these events were abolished by the astrocyte-specific deletion of mGluR5. Astrocytes dynamically control synaptic plasticity by turning on and off a single molecule, mGluR5, which defines subsequent persistent brain functions, especially under pathological conditions.
Collapse
Affiliation(s)
- Yosuke Danjo
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.,Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.,Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Yukiho J Hirayama
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kenji Kobayashi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.,Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Tatsuya Ishikawa
- Department of Functional Anatomy, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Keisuke Shibata
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kenta Takanashi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Bijay Parajuli
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.,Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.,Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Aichi, Japan.,Department of Physiological Sciences, The Graduate School for Advanced Study, Hayama, Kanagawa, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.,Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
50
|
Gorzo KA, Gordon GR. Photonics tools begin to clarify astrocyte calcium transients. NEUROPHOTONICS 2022; 9:021907. [PMID: 35211642 PMCID: PMC8857908 DOI: 10.1117/1.nph.9.2.021907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/01/2022] [Indexed: 05/27/2023]
Abstract
Astrocytes integrate information from neurons and the microvasculature to coordinate brain activity and metabolism. Using a variety of calcium-dependent cellular mechanisms, these cells impact numerous aspects of neurophysiology in health and disease. Astrocyte calcium signaling is highly diverse, with complex spatiotemporal features. Here, we review astrocyte calcium dynamics and the optical imaging tools used to measure and analyze these events. We briefly cover historical calcium measurements, followed by our current understanding of how calcium transients relate to the structure of astrocytes. We then explore newer photonics tools including super-resolution techniques and genetically encoded calcium indicators targeted to specific cellular compartments and how these have been applied to astrocyte biology. Finally, we provide a brief overview of analysis software used to accurately quantify the data and ultimately aid in our interpretation of the various functions of astrocyte calcium transients.
Collapse
Affiliation(s)
- Kelsea A. Gorzo
- University of Calgary, Hotchkiss Brain Institute, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Grant R. Gordon
- University of Calgary, Hotchkiss Brain Institute, Cumming School of Medicine, Calgary, Alberta, Canada
| |
Collapse
|