1
|
Hernández F, Vercellino RB, Todesco M, Bercovich N, Alvarez D, Brunet J, Presotto A, Rieseberg LH. Admixture With Cultivated Sunflower Likely Facilitated Establishment and Spread of Wild Sunflower (Helianthus annuus) in Argentina. Mol Ecol 2024; 33:e17560. [PMID: 39422702 DOI: 10.1111/mec.17560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024]
Abstract
A better understanding of the genetic and ecological factors underlying successful invasions is critical to mitigate the negative impacts of invasive species. Here, we study the invasion history of Helianthus annuus populations from Argentina, with particular emphasis on the role of post-introduction admixture with cultivated sunflower (also H. annuus) and climate adaptation driven by large haploblocks. We conducted genotyping-by-sequencing of samples of wild populations as well as Argentinian cultivars and compared them with wild (including related annual Helianthus species) and cultivated samples from the native range. We also characterised samples for 11 known haploblocks associated with environmental variation in native populations to test whether haploblocks contributed to invasion success. Population genomics analyses supported two independent geographic sources for Argentinian populations, the central United States and Texas, but no significant contribution of related annual Helianthus species. We found pervasive admixture with cultivated sunflower, likely as result of post-introduction hybridization. Genomic scans between invasive populations and their native sources identified multiple genomic regions of divergence, possibly indicative of selection, in the invaded range. These regions significantly overlapped between the two native-invasive comparisons and showed disproportionally high crop ancestry, suggesting that crop alleles contributed to invasion success. We did not find evidence of climate adaptation mediated by haploblocks, yet outliers of genome scans were enriched in haploblock regions and, for at least two haploblocks, the cultivar haplotype was favoured in Argentina. Our results show that admixture with cultivated sunflower played a major role in the establishment and spread of H. annuus populations in Argentina.
Collapse
Affiliation(s)
- Fernando Hernández
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Román B Vercellino
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Marco Todesco
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Irving K. Barber Faculty of Science, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Natalia Bercovich
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Alvarez
- Estación Experimental Agropecuaria INTA Manfredi, Córdoba, Argentina
| | - Johanne Brunet
- Vegetable Crops Research Unit, USDA-ARS, Madison, Wisconsin, USA
| | - Alejandro Presotto
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Schraiber JG, Edge MD, Pennell M. Unifying approaches from statistical genetics and phylogenetics for mapping phenotypes in structured populations. PLoS Biol 2024; 22:e3002847. [PMID: 39383205 PMCID: PMC11493298 DOI: 10.1371/journal.pbio.3002847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/21/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024] Open
Abstract
In both statistical genetics and phylogenetics, a major goal is to identify correlations between genetic loci or other aspects of the phenotype or environment and a focal trait. In these 2 fields, there are sophisticated but disparate statistical traditions aimed at these tasks. The disconnect between their respective approaches is becoming untenable as questions in medicine, conservation biology, and evolutionary biology increasingly rely on integrating data from within and among species, and once-clear conceptual divisions are becoming increasingly blurred. To help bridge this divide, we lay out a general model describing the covariance between the genetic contributions to the quantitative phenotypes of different individuals. Taking this approach shows that standard models in both statistical genetics (e.g., genome-wide association studies; GWAS) and phylogenetic comparative biology (e.g., phylogenetic regression) can be interpreted as special cases of this more general quantitative-genetic model. The fact that these models share the same core architecture means that we can build a unified understanding of the strengths and limitations of different methods for controlling for genetic structure when testing for associations. We develop intuition for why and when spurious correlations may occur analytically and conduct population-genetic and phylogenetic simulations of quantitative traits. The structural similarity of problems in statistical genetics and phylogenetics enables us to take methodological advances from one field and apply them in the other. We demonstrate by showing how a standard GWAS technique-including both the genetic relatedness matrix (GRM) as well as its leading eigenvectors, corresponding to the principal components of the genotype matrix, in a regression model-can mitigate spurious correlations in phylogenetic analyses. As a case study, we re-examine an analysis testing for coevolution of expression levels between genes across a fungal phylogeny and show that including eigenvectors of the covariance matrix as covariates decreases the false positive rate while simultaneously increasing the true positive rate. More generally, this work provides a foundation for more integrative approaches for understanding the genetic architecture of phenotypes and how evolutionary processes shape it.
Collapse
Affiliation(s)
- Joshua G. Schraiber
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Michael D. Edge
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Matt Pennell
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
3
|
Zheng H, Mao X, Lin Y, Fu K, Qi Z, Wu Y. Reconstructing the biological invasion of noxious invasive weed Parthenium hysterophorus and invasion risk assessment in China. FRONTIERS IN PLANT SCIENCE 2024; 15:1430576. [PMID: 39363921 PMCID: PMC11446801 DOI: 10.3389/fpls.2024.1430576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024]
Abstract
Invasive alien plants (IAPs) present a severe threat to native ecosystems and biodiversity. Comprehending the potential distribution patterns of these plant invaders and their responses to climate change is essential. Parthenium hysterophorus, native to the Americas, has become an aggressively invasive species since its introduction to China in the 1930s. This study aims to collect and reconstruct the historical occurrence and invasion of P. hysterophorus. Using the optimal MaxEnt model, the potential geographical distributions of P. hysterophorus were predicted based on screened species occurrences and environmental variables under the current and three future scenarios in the 2030s, 2050s, and 2070s (i.e., SSP1-2.6, SSP2-4.5, and SSP5-8.5), and the invasion risk of P. hysterophorus in Chinese cities, croplands, forests, and grasslands was assessed. The results show that: (1) The species initially invaded highly suitable areas and further spread to regions with non-analogous climate conditions. (2) Under the current climatic conditions, the overall potential distribution of P. hysterophorus is characterized by more in the southeast and less in the northwest. Climate variables, including mean annual temperature (bio1), precipitation in the wettest month (bio13), isothermality (bio3), and temperature seasonality (bio4), are the primary factors influencing its distribution. (3) The potential distribution of P. hysterophorus will expand further under future climate scenarios, particularly toward higher latitudes. (4) Forests and crop lands are the areas with the most serious potential invasion risk of P. hysterophorus. Therefore, we suggest that the government should strengthen the monitoring and management of P. hysterophorus to prevent its spread and protect agro-ecosystems and human habitats. Depending on the potential risk areas, measures such as quarantine, removal, and publicity should be taken to mitigate the threat of P. hysterophorus invasion and to raise awareness of P. hysterophorus invasion prevention.
Collapse
Affiliation(s)
- Huisen Zheng
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xinjie Mao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yi Lin
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Keyi Fu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Zanyi Qi
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yongbin Wu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Gamba D, Vahsen ML, Maxwell TM, Pirtel N, Romero S, Ee JJV, Penn A, Das A, Ben-Zeev R, Baughman O, Blaney CS, Bodkins R, Budha-Magar S, Copeland SM, Davis-Foust SL, Diamond A, Donnelly RC, Dunwiddie PW, Ensing DJ, Everest TA, Hoitink H, Holdrege MC, Hufbauer RA, Juzėnas S, Kalwij JM, Kashirina E, Kim S, Klisz M, Klyueva A, Langeveld M, Lutfy S, Martin D, Merkord CL, Morgan JW, Nagy DU, Ott JP, Puchalka R, Pyle LA, Rasran L, Rector BG, Rosche C, Sadykova M, Shriver RK, Stanislavschi A, Starzomski BM, Stone RL, Turner KG, Urza AK, VanWallendael A, Wegenschimmel CA, Zweck J, Brown CS, Leger EA, Blumenthal DM, Germino MJ, Porensky LM, Hooten MB, Adler PB, Lasky JR. Local adaptation to climate facilitates a global invasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612725. [PMID: 39345363 PMCID: PMC11429938 DOI: 10.1101/2024.09.12.612725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Local adaptation may facilitate range expansion during invasions, but the mechanisms promoting destructive invasions remain unclear. Cheatgrass (Bromus tectorum), native to Eurasia and Africa, has invaded globally, with particularly severe impacts in western North America. We sequenced 307 genotypes and conducted controlled experiments. We found that diverse lineages invaded North America, where long-distance gene flow is common. Ancestry and phenotypic clines in the native range predicted those in the invaded range, indicating pre-adapted genotypes colonized different regions. Common gardens showed directional selection on flowering time that reversed between warm and cold sites, potentially maintaining clines. In the Great Basin, genomic predictions of strong local adaptation identified sites where cheatgrass is most dominant. Preventing new introductions that may fuel adaptation is critical for managing ongoing invasions.
Collapse
Affiliation(s)
- Diana Gamba
- Department of Biology, Pennsylvania State University; University Park, PA, USA
| | - Megan L. Vahsen
- Department of Wildland Resources and the Ecology Center, Utah State University; Logan, UT, USA
| | - Toby M. Maxwell
- Department of Biological Sciences, Boise State University; Boise, ID, USA
| | - Nikki Pirtel
- Department of Wildland Resources and the Ecology Center, Utah State University; Logan, UT, USA
| | - Seth Romero
- US Department of Agriculture, Agricultural Research Service, Rangeland Resources and Systems Research Unit; Fort Collins, CO, USA
| | - Justin J. Van Ee
- Department of Agricultural Biology, Colorado State University; Fort Collins, CO, USA
| | - Amanda Penn
- Department of Biology, Pennsylvania State University; University Park, PA, USA
| | - Aayudh Das
- Department of Biology, Pennsylvania State University; University Park, PA, USA
| | - Rotem Ben-Zeev
- Department of Biology, Pennsylvania State University; University Park, PA, USA
| | | | - C. Sean Blaney
- Atlantic Canada Conservation Data Centre; Sackville, NB, Canada
| | | | | | - Stella M. Copeland
- US Department of Agriculture, Agricultural Research Service, Eastern Oregon Agricultural Research Center; Burns, OR, USA
| | | | - Alvin Diamond
- Department of Biological and Environmental Sciences, Troy University; Troy, Alabama, USA
| | - Ryan C. Donnelly
- Division of Biology, Kansas State University; Manhattan, KS, USA
| | | | - David J. Ensing
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada; Summerland, BC, Canada
| | | | | | - Martin C. Holdrege
- Northern Arizona University, Center for Adaptable Western Landscapes; Flagstaff, AZ, USA
| | - Ruth A. Hufbauer
- Department of Agricultural Biology, Colorado State University; Fort Collins, CO, USA
| | - Sigitas Juzėnas
- Department of Botany and Genetics, Institute of Biosciences, Life Sciences Center, Vilnius University; Vilnius, Lithuania
| | - Jesse M. Kalwij
- Institute of Geography and Geoecology, Karlsruhe Institute of Technology; Karlsruhe, Germany
| | | | - Sangtae Kim
- Department of Biology, Sungshin Women’s University; Seoul, Republic of Korea
| | - Marcin Klisz
- Department of Silviculture and Genetics of Forest Trees, Forest Research Institute; Raszyn, Poland
| | - Alina Klyueva
- Bryansk State University named after Academician I. G. Petrovsky; Bryansk, Russia
| | | | - Samuel Lutfy
- Caesar Kleberg Wildlife Research Institute, Texas A&M University - Kingsville; Kingsville, TX, USA
| | | | | | - John W. Morgan
- Department of Environment and Genetics, La Trobe University; Bundoora, Victoria, Australia
| | - Dávid U. Nagy
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg; Halle, Saale, Germany
| | - Jacqueline P. Ott
- USDA Forest Service, Rocky Mountain Research Station, Rapid City, SD, USA
| | - Radoslaw Puchalka
- Department of Ecology and Biogeography, Nicolaus Copernicus University; Torun, Poland
| | | | - Leonid Rasran
- University of Natural Resources and Life Sciences, Vienna; Vienna, Austria
| | - Brian G. Rector
- US Department of Agriculture, Agricultural Research Service, Invasive Species and Pollinator Health Research Unit; Albany, CA, USA
| | - Christoph Rosche
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg; Halle, Saale, Germany
| | | | - Robert K. Shriver
- Department of Natural Resources and Environmental Science, University of Nevada; Reno, NV, USA
| | - Alexandr Stanislavschi
- Department of Organic, Biochemical, and Food Engineering, Gheorghe Asachi Technical University of Iasi; Iasi, Romania
| | - Brian M. Starzomski
- School of Environmental Studies, University of Victoria; Victoria, BC, Canada
| | - Rachel L. Stone
- Department of Biology, Case Western Reserve University; Cleveland, OH, USA
| | - Kathryn G. Turner
- Department of Biological Sciences, Idaho State University; Pocatello, ID, USA
| | | | - Acer VanWallendael
- Department of Horticultural Science, North Carolina State University; Raleigh, NC, USA
| | | | - Justin Zweck
- Department of Ecosystem Science and Management, Pennsylvania State University; University Park, PA, USA
| | - Cynthia S. Brown
- Department of Agricultural Biology, Colorado State University; Fort Collins, CO, USA
| | | | - Dana M. Blumenthal
- US Department of Agriculture, Agricultural Research Service, Rangeland Resources and Systems Research Unit; Fort Collins, CO, USA
| | - Matthew J. Germino
- US Geological Survey, Forest and Rangeland Ecosystem Science Center; Boise, Idaho, USA
| | - Lauren M. Porensky
- US Department of Agriculture, Agricultural Research Service, Rangeland Resources and Systems Research Unit; Fort Collins, CO, USA
| | - Mevin B. Hooten
- Department of Statistics and Data Sciences, The University of Texas at Austin; Austin, TX, USA
| | - Peter B. Adler
- Department of Wildland Resources and the Ecology Center, Utah State University; Logan, UT, USA
| | - Jesse R. Lasky
- Department of Biology, Pennsylvania State University; University Park, PA, USA
| |
Collapse
|
5
|
Cross RL, Eckert CG. Is adaptation associated with long-term persistence beyond a geographic range limit? Evolution 2024; 78:1527-1538. [PMID: 38869498 DOI: 10.1093/evolut/qpae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/04/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
Adaptation to new habitats might facilitate species' range shifts in response to climate change. In 2005, we transplanted experimental populations of coastal dune plant Camissoniopsis cheiranthifolia into 4 sites within and 1 site beyond its poleward range limit. Beyond-range transplants had high fitness but often delayed reproduction. To test for adaptation associated with experimental range expansion, we transplanted descendants from beyond- and within-range populations after 10 generations in situ into 2 sites within the range, 1 at the range edge, and 2 sites beyond the range. We expected to detect adaptation to beyond-range conditions due to substantial genetic variation within experimental populations and environmental variation among sites. However, individuals from beyond-range experimental populations were not fitter than those from within the range when planted at either beyond-range site, indicating no adaptation to the beyond-range site or beyond-range environments in general. Beyond-range descendants also did not suffer lower fitness within the range. Although reproduction was again delayed beyond the range, late reproduction was not favored more strongly beyond than within the range, and beyond-range descendants did not delay reproduction more than within-range descendants. Persistence in beyond-range environments may not require adaptation, which could allow a rapid response to climate change.
Collapse
Affiliation(s)
- Regan L Cross
- Department of Biology, Queen's University, Kingston, ON, Canada
| | | |
Collapse
|
6
|
Feng S, DeGrey SP, Guédot C, Schoville SD, Pool JE. Genomic Diversity Illuminates the Environmental Adaptation of Drosophila suzukii. Genome Biol Evol 2024; 16:evae195. [PMID: 39235033 PMCID: PMC11421661 DOI: 10.1093/gbe/evae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Biological invasions carry substantial practical and scientific importance and represent natural evolutionary experiments on contemporary timescales. Here, we investigated genomic diversity and environmental adaptation of the crop pest Drosophila suzukii using whole-genome sequencing data and environmental metadata for 29 population samples from its native and invasive range. Through a multifaceted analysis of this population genomic data, we increase our understanding of the D. suzukii genome, its diversity and its evolution, and we identify an appropriate genotype-environment association pipeline for our dataset. Using this approach, we detect genetic signals of local adaptation associated with nine distinct environmental factors related to altitude, wind speed, precipitation, temperature, and human land use. We uncover unique functional signatures for each environmental variable, such as the prevalence of cuticular genes associated with annual precipitation. We also infer biological commonalities in the adaptation to diverse selective pressures, particularly in terms of the apparent contribution of nervous system evolution to enriched processes (ranging from neuron development to circadian behavior) and to top genes associated with all nine environmental variables. Our findings therefore depict a finer-scale adaptive landscape underlying the rapid invasion success of this agronomically important species.
Collapse
Affiliation(s)
- Siyuan Feng
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI, USA
| | - Samuel P DeGrey
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christelle Guédot
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
7
|
Balogh CM, Barrett SCH. An experimental field study of inbreeding depression in an outcrossing invasive plant. FRONTIERS IN PLANT SCIENCE 2024; 15:1393294. [PMID: 39267999 PMCID: PMC11390429 DOI: 10.3389/fpls.2024.1393294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024]
Abstract
Inbreeding depression is likely to play an important role during biological invasion. But relatively few studies have investigated the fitness of selfed and outcrossed offspring in self-incompatible invasive plants in natural environments in their introduced range. Moreover, the majority of studies on inbreeding depression have investigated self-compatible species with mixed mating, and less is known about the intensity of inbreeding depression in outcrossing self-incompatible species. Here, we address these questions experimentally by comparing selfed and outcrossed progeny of purple loosestrife (Lythrum salicaria) over four growing seasons, including three under field conditions in a freshwater marsh in southern Ontario, Canada, a region where L. salicaria is highly invasive. The tristylous mating system of L. salicaria involves disassortative mating among floral morphs enforced by trimorphic incompatibility. However, owing to partial incompatibility, self-fertilized seed can be obtained by manual self-pollination thus facilitating comparisons of selfed and outcrossed progeny. We compared progeny with and without intraspecific competition from selfed or outcrossed neighbours and examined the influence of breeding treatment and competition on fitness correlates by measuring a range of life-history traits including: proportion of seeds germinating, days to germination, survival, proportion of plants flowering, time to flowering, vegetative mass, and inflorescence number and mass. We analysed data for each trait using functions from time series estimates of growth and two multiplicative estimates of fitness. We detected varying intensities of inbreeding depression for several traits in three of the four years of the experiment, including inflorescence mass and reproductive output. Cumulative inbreeding depression over four years averaged δ = 0.48 and 0.68, depending on the method used to estimate multiplicative fitness. The competition treatments did not significantly affect plant performance and the magnitude of inbreeding depression. Given the primarily outcrossing mating system of L. salicaria populations, the detection of inbreeding depression for several key life-history traits was as predicted by theory. Our results suggests that biparental inbreeding and low selfing in colonizing populations may have significant effects on demographic parameters such as population growth.
Collapse
Affiliation(s)
- Christopher M Balogh
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Liu Y, Heinen R. Plant invasions under artificial light at night. Trends Ecol Evol 2024; 39:703-705. [PMID: 38821783 DOI: 10.1016/j.tree.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 06/02/2024]
Abstract
Artificial light at night (ALAN) is a global change driver but how it interacts with plant invasions is unclear. Determining this requires understanding direct effects of ALAN on physiology, phenology, growth, and fitness of both invasive and native plant species and its indirect effects mediated through mutualistic and/or antagonistic interactions.
Collapse
Affiliation(s)
- Yanjie Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Robin Heinen
- Terrestrial Ecology Research Group, Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| |
Collapse
|
9
|
Modica A, Lalagüe H, Muratorio S, Scotti I. Rolling down that mountain: microgeographical adaptive divergence during a fast population expansion along a steep environmental gradient in European beech. Heredity (Edinb) 2024; 133:99-112. [PMID: 38890557 PMCID: PMC11286953 DOI: 10.1038/s41437-024-00696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Forest tree populations harbour high genetic diversity thanks to large effective population sizes and strong gene flow, allowing them to diversify through adaptation to local environmental pressures within dispersal distance. Many tree populations also experienced historical demographic fluctuations, including spatial population contraction or expansions at various temporal scales, which may constrain their ability to adapt to environmental variations. Our aim is to investigate how recent contraction and expansion events interfere with local adaptation, by studying patterns of adaptive divergence between closely related stands undergoing environmentally contrasted conditions, and having or not recently expanded. To investigate genome-wide signatures of local adaptation while accounting for demography, we analysed divergence in a European beech population by testing pairwise differentiation among four tree stands at ~35k Single Nucleotide Polymorphisms from ~9k genomic regions. We applied three divergence outlier search methods resting on different assumptions and targeting either single SNPs or contiguous genomic regions, while accounting for the effect of population size variations on genetic divergence. We found 27 signals of selective signatures in 19 target regions. Putatively adaptive divergence involved all stand pairs. We retrieved signals both when comparing old-growth stands and recently colonised areas and when comparing stands within the old-growth area. Therefore, adaptive divergence processes have taken place both over short time spans, under strong environmental contrasts, and over short ecological gradients, in populations that have been stable in the long term. This suggests that standing genetic variation supports local, microgeographic divergence processes, which can maintain genetic diversity at the landscape level.
Collapse
Affiliation(s)
- Andrea Modica
- INRAE, URFM, 228, Route de l'Aérodrome, 84914, Avignon, France
| | - Hadrien Lalagüe
- INRAE, EcoFoG, Campus agronomique, 97310, Kourou, French Guiana
| | - Sylvie Muratorio
- INRAE, EcoBioP, 173, Route de Saint-Jean-de-Luz RD 918, 64310, Saint-Pée-sur-Nivelle, France
| | - Ivan Scotti
- INRAE, URFM, 228, Route de l'Aérodrome, 84914, Avignon, France.
| |
Collapse
|
10
|
Prosser RS, Brain RA. Where have all the flowers gone? A systematic evaluation of factors driving native terrestrial plant decline in North America. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48460-48483. [PMID: 39030455 PMCID: PMC11297832 DOI: 10.1007/s11356-024-34349-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/07/2024] [Indexed: 07/21/2024]
Abstract
Prior to the arrival of Europeans in North America, forest and grasslands individually covered a 3rd of the conterminous United States; however, following the colonial and pioneer periods, respectively, these land cover categories were reduced to 70% and 50% of their original prominence. The dominant driving force for native land conversion was agriculture, which expanded exponentially from the Atlantic to the Pacific, comprising over half the total land area of America at its peak in 1950. However, farmland area has subsequently declined by 25%, so what has been driving native plant declines north of the 30th latitudinal parallel over the past 75 years? Analysis of recovery plans issued by the U.S. Fish and Wildlife Service indicates that of the over 900 plant species "listed" as threatened and endangered the primary driver of decline was invasive species, followed by habitat alteration, and development, which collectively accounted for 93.2% of the primary drivers for listed species. In Canada, these three drivers of decline were the primary drivers for 81% of listed species. Comparatively, herbicides were identified as the primary or secondary driver in 13 out of 1124 cases (1.2%). Given that agricultural land area is contracting in the U.S. and Canada, there appears to be a misconception that agrochemicals are the seminal cause of native plant decline. Here, we explore the individual contribution of drivers relative to the historical events of North America to provide context and perspective as well as focus and prioritize conservation efforts accordingly.
Collapse
Affiliation(s)
- Ryan S Prosser
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada.
| | | |
Collapse
|
11
|
Benning JW, Clark EI, Hufbauer RA, Weiss-Lehman C. Environmental gradients mediate dispersal evolution during biological invasions. Ecol Lett 2024; 27:e14472. [PMID: 39011649 DOI: 10.1111/ele.14472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/17/2024]
Abstract
Rapid evolution of increased dispersal at the edge of a range expansion can accelerate invasions. However, populations expanding across environmental gradients often face challenging environments that reduce fitness of dispersing individuals. We used an eco-evolutionary model to explore how environmental gradients influence dispersal evolution and, in turn, modulate the speed and predictability of invasion. Environmental gradients opposed evolution of increased dispersal during invasion, even leading to evolution of reduced dispersal along steeper gradients. Counterintuitively, reduced dispersal could allow for faster expansion by minimizing maladaptive gene flow and facilitating adaptation. While dispersal evolution across homogenous landscapes increased both the mean and variance of expansion speed, these increases were greatly dampened by environmental gradients. We illustrate our model's potential application to prediction and management of invasions by parameterizing it with data from a recent invertebrate range expansion. Overall, we find that environmental gradients strongly modulate the effect of dispersal evolution on invasion trajectories.
Collapse
Affiliation(s)
- John W Benning
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | - Eliza I Clark
- Department of Agricultural Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Ruth A Hufbauer
- Department of Agricultural Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | | |
Collapse
|
12
|
Landoni B, Suárez-Montes P, Habeahan RHF, Brennan AC, Pérez-Barrales R. Local climate and vernalization sensitivity predict the latitudinal patterns of flowering onset in the crop wild relative Linum bienne Mill. ANNALS OF BOTANY 2024; 134:117-130. [PMID: 38482916 PMCID: PMC11161566 DOI: 10.1093/aob/mcae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/13/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND AND AIMS The timing of flowering onset is often correlated with latitude, indicative of climatic gradients. Flowering onset in temperate species commonly requires exposure to cold temperatures, known as vernalization. Hence, population differentiation of flowering onset with latitude might reflect adaptation to the local climatic conditions experienced by populations. METHODS Within its western range, seeds from Linum bienne populations (the wild relative of cultivated Linum usitatissimum) were used to describe the latitudinal differentiation of flowering onset to determine its association with the local climate of the population. A vernalization experiment including different crop cultivars was used to determine how vernalization accelerates flowering onset, in addition to the vernalization sensitivity response among populations and cultivars. Additionally, genetic differentiation of L. bienne populations along the latitudinal range was scrutinized using microsatellite markers. KEY RESULTS Flowering onset varied with latitude of origin, with southern populations flowering earlier than their northern counterparts. Vernalization reduced the number of days to flowering onset, but vernalization sensitivity was greater in northern populations compared with southern ones. Conversely, vernalization delayed flowering onset in the crop, exhibiting less variation in sensitivity. In L. bienne, both flowering onset and vernalization sensitivity were better predicted by the local climate of the population than by latitude itself. Microsatellite data unveiled genetic differentiation of populations, forming two groups geographically partitioned along latitude. CONCLUSIONS The consistent finding of latitudinal variation across experiments suggests that both flowering onset and vernalization sensitivity in L. bienne populations are under genetic regulation and might depend on climatic cues at the place of origin. The association with climatic gradients along latitude suggests that the climate experienced locally drives population differentiation of the flowering onset and vernalization sensitivity patterns. The genetic population structure suggests that past population history could have influenced the flowering initiation patterns detected, which deserves further work.
Collapse
Affiliation(s)
- Beatrice Landoni
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK
- Department of Biosciences, University of Milan, Milan, Italy
| | | | | | | | - Rocío Pérez-Barrales
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK
- Botany Department, University of Granada, Granada, Spain
| |
Collapse
|
13
|
Melen MK, Snyder ED, Fernandez M, Lopez A, Lustenhouwer N, Parker IM. Invasion away from roadsides was not driven by adaptation to grassland habitats in Dittrichia graveolens (stinkwort). Biol Invasions 2024; 26:2923-2939. [PMID: 39144139 PMCID: PMC11319513 DOI: 10.1007/s10530-024-03359-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/22/2024] [Indexed: 08/16/2024]
Abstract
Invasive plants along transportation corridors can significantly threaten ecosystems and biodiversity if they spread beyond anthropogenic environments. Rapid evolution may increase the ability of invading plant populations to establish in resident plant communities over time, posing a challenge to invasion risk assessment. We tested for adaptive differentiation in Dittrichia graveolens (stinkwort), an invasive species of ruderal habitat in California that is increasingly spreading away from roadsides into more established vegetation. We collected seeds from eight pairs of vegetated sites and their nearest (presumed progenitor) roadside population. We assessed differentiation between populations in roadside and vegetated habitat for germination behavior and for response to competition in a greenhouse experiment. We also tested for increased performance in vegetated habitat with a grassland field experiment including a neighbor removal treatment. Germination rates were slightly reduced in seeds from vegetated sites, which may indicate lower seed viability. Otherwise, plants did not show consistent differences between the two habitat types. Competition strongly reduced performance of D. graveolens in both the greenhouse and in the field, but plants originating from vegetated sites did not show enhanced competitive ability. Our findings show no evidence of adaptive differentiation between D. graveolens populations from roadside and vegetated habitats to date, suggesting that invasiveness in grasslands has not been enhanced by rapid evolution in the 40 + years since this species was introduced to California. Evolutionary constraints or potentially high levels of gene flow at this small scale may limit adaptation to novel habitats along roadsides. Supplementary Information The online version contains supplementary material available at 10.1007/s10530-024-03359-6.
Collapse
Affiliation(s)
- Miranda K. Melen
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA USA
| | - Emma D. Snyder
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA USA
| | - Michael Fernandez
- College of Natural & Applied Science, University of Guam, Mangilao, Guam USA
| | - Andrew Lopez
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA USA
| | - Nicky Lustenhouwer
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA USA
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Ingrid M. Parker
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA USA
| |
Collapse
|
14
|
Daco L, Colling G, Matthies D. Clinal variation in quantitative traits but not in evolutionary potential along elevational and latitudinal gradients in the widespread Anthyllis vulneraria. AMERICAN JOURNAL OF BOTANY 2024; 111:e16360. [PMID: 38888183 DOI: 10.1002/ajb2.16360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 06/20/2024]
Abstract
PREMISE Strong elevational and latitudinal gradients allow the study of genetic differentiation in response to similar environmental changes. However, it is uncertain whether the environmental changes along the two types of gradients result in similar genetically based changes in quantitative traits. Peripheral arctic and alpine populations are thought to have less evolutionary potential than more central populations do. METHODS We studied quantitative traits of the widespread Anthyllis vulneraria in a common garden. Plants originated from 20 populations along a 2000-m elevational gradient from the lowlands to the elevational limit of the species in the Alps, and from 20 populations along a 2400-km latitudinal gradient from the center of the distribution of the species in Central Europe to its northern distributional margin. RESULTS Most traits showed similar clinal variations with elevation and latitude of origin, and the magnitude of all measured traits in relation to mean annual temperature was similar. Higher QST values than FST values in several traits indicated diversifying selection, but for others QST was smaller than FST. Genetic diversity of quantitative traits and neutral molecular markers was not correlated. Plasticity in response to favorable conditions declined with elevation and less strongly with latitude of origin, but the evolvability of traits did not. CONCLUSIONS The clinal variation suggests adaptive differentiation of quantitative traits along the two gradients. The evolutionary potential of peripheral populations is not necessarily reduced, but lower plasticity may threaten their survival under rapidly changing climatic conditions.
Collapse
Affiliation(s)
- Laura Daco
- Musée national d'histoire naturelle, 25 rue Münster, Luxembourg, L-2160, Luxembourg
- Department of Biology, University of Marburg, Karl-von-Frisch-Str. 8, Marburg, D-35043, Germany
- Fondation faune-flore, 24 rue Münster, Luxembourg, L-2160, Luxembourg
| | - Guy Colling
- Musée national d'histoire naturelle, 25 rue Münster, Luxembourg, L-2160, Luxembourg
| | - Diethart Matthies
- Department of Biology, University of Marburg, Karl-von-Frisch-Str. 8, Marburg, D-35043, Germany
| |
Collapse
|
15
|
Xie A, Wang Y, Xiao L, Wang Y, Liao S, Yang M, Su S, Meng S, Liu H. Plasticity in resource allocation of the invasive Phytolacca americana: Balancing growth, reproduction, and defense along urban-rural gradients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173532. [PMID: 38802014 DOI: 10.1016/j.scitotenv.2024.173532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
In response to varying environments along urban and rural gradients, invasive plants may strategically allocate resources to enhance their invasiveness. However, how invasive plants balance their resources for growth, reproduction, and defense as responses to biotic and abiotic factors across these gradients remain unclear. We conducted field surveys on the growth, reproduction, and herbivory of the invasive species Phytolacca americana across diverse urban and rural habitats. Leaf samples were collected to analyze the nutritional content, primary and secondary metabolites. We found that plant growth rates, specific leaf area, leaf nitrogen content, and concentrations of flavonoids and saponins were higher in urban habitats, while reproduction, herbivory, and carbon-to‑nitrogen ratios were lower than those in rural habitats. We also found a trade-off between growth rate and herbivory, as well as trade-offs among defense traits associated with herbivory (e.g., leaf mass per area, the inverse of leaf nitrogen content, and carbon‑nitrogen ratio) and the production of metabolites associated with abiotic stress tolerance (e.g., soluble sugars, flavonoids, and saponins). As earlier studies showed low levels of genetic diversity within and between populations, our findings suggest that the urban-rural gradient patterns of resource allocation are primarily phenotypic plasticity in response to herbivory in rural areas and abiotic factors in urban areas. Our study sheds light on the mechanisms by which urbanization affects plant invasions and offers insights for the implementation of their management strategies.
Collapse
Affiliation(s)
- Anni Xie
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Yajie Wang
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Li Xiao
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; National Engineering Laboratory of Applied Technology for Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Yuanyuan Wang
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Shuang Liao
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Miao Yang
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Sese Su
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Shibo Meng
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Hongjia Liu
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| |
Collapse
|
16
|
Yuan X, Zhang Y, Hu L, Sang W, Yang Z. Investigating the effects of species niche shifts on the potential distribution of Tuta absoluta (Lepidoptera: Gelechiidae) by using global occurrence data. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:8. [PMID: 38771255 PMCID: PMC11107378 DOI: 10.1093/jisesa/ieae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/18/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Invasive species may occupy quite different environments in their invaded areas to native ones, which may intensively interfere with predicting potential distribution through ecological niche modeling (ENM). Here, we take the tomato leafminer Tuta absoluta Meyrick (Lepidoptera: Gelechiidae), a tomato pest, as an example to investigate this topic. We analyzed niche expansion, stability, unfilling, and Schoener's D by principal component analysis (PCA) ordination method to examine its realized niche shifts and to explore how ENM approaches are affected by niche shifts. We used 5 datasets: Asian, African, European, South American, and global occurrence records in this study. Results showed that high niche unfilling for the species' invaded areas in Asia (20%), Africa (12%), and Europe (37%), possibly due to T. absoluta being in the early stages of invasion. High niche expansion was observed in Asia (38%) and Europe (19%), implying that some European and Asian populations had reached new climatic areas. African niche had the most niche stability (94%) and was equivalent to the native one in climate space (PCA ordination method), but the n-dimensional climate space framework showed that they were different. When projecting the native model to Asia and Europe, the native model performed poorly, implying that the niche shifts affected the transferability of the native model. ENM based on global data outperformed than other models, and our results suggested that T. absoluta has a large potential distribution in Asia, Mexico, South Europe, the United States, and Australia. Meanwhile, we recommend updating ENMs based on the species' invasion stage.
Collapse
Affiliation(s)
- Xuejiao Yuan
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yuanyuan Zhang
- Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing 100076, China
- Beijing Biodiversity Conservation Research Center, Beijing Academy of Science and Technology, Beijing 100076, China
| | - Luyi Hu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Weiguo Sang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Zheng Yang
- Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing 100076, China
- Beijing Biodiversity Conservation Research Center, Beijing Academy of Science and Technology, Beijing 100076, China
| |
Collapse
|
17
|
Bock DG, Baeckens S, Kolbe JJ, Losos JB. When adaptation is slowed down: Genomic analysis of evolutionary stasis in thermal tolerance during biological invasion in a novel climate. Mol Ecol 2024; 33:e17075. [PMID: 37489260 DOI: 10.1111/mec.17075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/25/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023]
Abstract
Research conducted during the past two decades has demonstrated that biological invasions are excellent models of rapid evolution. Even so, characteristics of invasive populations such as a short time for recombination to assemble optimal combinations of alleles may occasionally limit adaptation to new environments. Here, we investigated such genetic constraints to adaptation in the invasive brown anole (Anolis sagrei)-a tropical ectotherm that was introduced to the southeastern United States, a region with a much colder climate than in its native Caribbean range. We examined thermal physiology for 30 invasive populations and tested for a climatic cline in cold tolerance. Also, we used genomics to identify mechanisms that may limit adaptation. We found no support for a climatic cline, indicating that thermal tolerance did not shift adaptively. Concomitantly, population genomic results were consistent with the occurrence of recombination cold spots that comprise more than half of the genome and maintain long-range associations among alleles in invasive populations. These genomic regions overlap with both candidate thermal tolerance loci that we identified using a standard genome-wide association test. Moreover, we found that recombination cold spots do not have a large contribution to population differentiation in the invasive range, contrary to observations in the native range. We suggest that limited recombination is constraining the contribution of large swaths of the genome to adaptation in invasive brown anoles. Our study provides an example of evolutionary stasis during invasion and highlights the possibility that reduced recombination occasionally slows down adaptation in invasive populations.
Collapse
Affiliation(s)
- Dan G Bock
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Simon Baeckens
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Evolution and Optics of Nanostructures Lab, Department of Biology, Ghent University, Ghent, Belgium
- Functional Morphology Lab, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Jason J Kolbe
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Jonathan B Losos
- Department of Biology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
18
|
Davies WJ, Saccheri IJ. Evolutionary trajectory of phenological escape in a flowering plant: Mechanistic insights from bidirectional avoidance of butterfly egg-laying pressure. Ecol Evol 2024; 14:e11330. [PMID: 38694753 PMCID: PMC11056787 DOI: 10.1002/ece3.11330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024] Open
Abstract
Phenological escape, whereby species alter the timing of life-history events to avoid seasonal antagonists, is usually analyzed either as a potential evolutionary outcome given current selection coefficients, or as a realized outcome in response to known enemies. We here gain mechanistic insights into the evolutionary trajectory of phenological escape in the brassicaceous herb Cardamine pratensis, by comparing the flowering schedules of two sympatric ecotypes in different stages of a disruptive response to egg-laying pressure imposed by the pierid butterfly Anthocharis cardamines, whose larvae are pre-dispersal seed predators (reducing realized fecundity by ~70%). When the focal point of highest intensity selection (peak egg-laying) occurs early in the flowering schedule, selection for late flowering dependent on reduced egg-laying combined with selection for early flowering dependent on reduced predator survival results in a symmetrical bimodal flowering curve; when the focal point occurs late, an asymmetrical flowering curve results with a large early flowering mode due to selection for reduced egg-laying augmented by selection for infested plants to outrun larval development and dehisce prior to seed-pod consumption. Unequal selection pressures on high and low fecundity ramets, due to asynchronous flowering and morphologically targeted (size-dependent) egg-laying, constrain phenological escape, with bimodal flowering evolving primarily in response to disruptive selection on high fecundity phenotypes. These results emphasize the importance of analyzing variation in selection coefficients among morphological phenotypes over the entire flowering schedule to predict how populations will evolve in response to altered phenologies resulting from climate change.
Collapse
Affiliation(s)
- W. James Davies
- Institute of Infection, Veterinary and Ecological Sciences, Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolUK
| | - Ilik J. Saccheri
- Institute of Infection, Veterinary and Ecological Sciences, Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
19
|
Wan JSH, Bonser SP, Pang CK, Fazlioglu F, Rutherford S. Adaptive responses to living in stressful habitats: Do invasive and native plant populations use different strategies? Ecol Lett 2024; 27:e14419. [PMID: 38613177 DOI: 10.1111/ele.14419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 04/14/2024]
Abstract
Plants inhabit stressful environments characterized by a variety of stressors, including mine sites, mountains, deserts, and high latitudes. Populations from stressful and reference (non-stressful) sites often have performance differences. However, while invasive and native species may respond differently to stressful environments, there is limited understanding of the patterns in reaction norms of populations from these sites. Here, we use phylogenetically controlled meta-analysis to assess the performance of populations under stress and non-stress conditions. We ask whether stress populations of natives and invasives differ in the magnitude of lowered performance under non-stress conditions and if they vary in the degree of performance advantage under stress. We also assessed whether these distinctions differ with stress intensity. Our findings revealed that natives not only have greater adaptive advantages but also more performance reductions than invasives. Populations from very stressful sites had more efficient adaptations, and performance costs increased with stress intensity in natives only. Overall, the results support the notion that adaptation is frequently costless. Reproductive output was most closely associated with adaptive costs and benefits. Our study characterized the adaptive strategies used by invasive and native plants under stressful conditions, thereby providing important insights into the limitations of adaptation to extreme sites.
Collapse
Affiliation(s)
- Justin S H Wan
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Sydney, New South Wales, Australia
| | - Stephen P Bonser
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales (UNSW), Sydney, New South Wales, Australia
| | - Clara K Pang
- PlantClinic, Australian Institute of Botanical Science, Royal Botanic Garden, Sydney, New South Wales, Australia
| | | | - Susan Rutherford
- Center for Sustainable Environmental and Ecosystem Research, Department of Environmental Science, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
- Department of Environmental and Sustainability Sciences, The Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, New Jersey, USA
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Ouhai, Wenzhou, Zhejiang Province, China
| |
Collapse
|
20
|
Schraiber JG, Edge MD, Pennell M. Unifying approaches from statistical genetics and phylogenetics for mapping phenotypes in structured populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579721. [PMID: 38496530 PMCID: PMC10942266 DOI: 10.1101/2024.02.10.579721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In both statistical genetics and phylogenetics, a major goal is to identify correlations between genetic loci or other aspects of the phenotype or environment and a focal trait. In these two fields, there are sophisticated but disparate statistical traditions aimed at these tasks. The disconnect between their respective approaches is becoming untenable as questions in medicine, conservation biology, and evolutionary biology increasingly rely on integrating data from within and among species, and once-clear conceptual divisions are becoming increasingly blurred. To help bridge this divide, we derive a general model describing the covariance between the genetic contributions to the quantitative phenotypes of different individuals. Taking this approach shows that standard models in both statistical genetics (e.g., Genome-Wide Association Studies; GWAS) and phylogenetic comparative biology (e.g., phylogenetic regression) can be interpreted as special cases of this more general quantitative-genetic model. The fact that these models share the same core architecture means that we can build a unified understanding of the strengths and limitations of different methods for controlling for genetic structure when testing for associations. We develop intuition for why and when spurious correlations may occur using analytical theory and conduct population-genetic and phylogenetic simulations of quantitative traits. The structural similarity of problems in statistical genetics and phylogenetics enables us to take methodological advances from one field and apply them in the other. We demonstrate this by showing how a standard GWAS technique-including both the genetic relatedness matrix (GRM) as well as its leading eigenvectors, corresponding to the principal components of the genotype matrix, in a regression model-can mitigate spurious correlations in phylogenetic analyses. As a case study of this, we re-examine an analysis testing for co-evolution of expression levels between genes across a fungal phylogeny, and show that including covariance matrix eigenvectors as covariates decreases the false positive rate while simultaneously increasing the true positive rate. More generally, this work provides a foundation for more integrative approaches for understanding the genetic architecture of phenotypes and how evolutionary processes shape it.
Collapse
|
21
|
Ma LJ, Cao LJ, Chen JC, Tang MQ, Song W, Yang FY, Shen XJ, Ren YJ, Yang Q, Li H, Hoffmann AA, Wei SJ. Rapid and Repeated Climate Adaptation Involving Chromosome Inversions following Invasion of an Insect. Mol Biol Evol 2024; 41:msae044. [PMID: 38401527 PMCID: PMC10924284 DOI: 10.1093/molbev/msae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/23/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024] Open
Abstract
Following invasion, insects can become adapted to conditions experienced in their invasive range, but there are few studies on the speed of adaptation and its genomic basis. Here, we examine a small insect pest, Thrips palmi, following its contemporary range expansion across a sharp climate gradient from the subtropics to temperate areas. We first found a geographically associated population genetic structure and inferred a stepping-stone dispersal pattern in this pest from the open fields of southern China to greenhouse environments of northern regions, with limited gene flow after colonization. In common garden experiments, both the field and greenhouse groups exhibited clinal patterns in thermal tolerance as measured by critical thermal maximum (CTmax) closely linked with latitude and temperature variables. A selection experiment reinforced the evolutionary potential of CTmax with an estimated h2 of 6.8% for the trait. We identified 3 inversions in the genome that were closely associated with CTmax, accounting for 49.9%, 19.6%, and 8.6% of the variance in CTmax among populations. Other genomic variations in CTmax outside the inversion region were specific to certain populations but functionally conserved. These findings highlight rapid adaptation to CTmax in both open field and greenhouse populations and reiterate the importance of inversions behaving as large-effect alleles in climate adaptation.
Collapse
Affiliation(s)
- Li-Jun Ma
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Li-Jun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Meng-Qing Tang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wei Song
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fang-Yuan Yang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiu-Jing Shen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ya-Jing Ren
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qiong Yang
- Bio21 Institute, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ary Anthony Hoffmann
- Bio21 Institute, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
22
|
Chen Y, Gao Y, Huang X, Li S, Zhang Z, Zhan A. Incorporating adaptive genomic variation into predictive models for invasion risk assessment. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 18:100299. [PMID: 37701243 PMCID: PMC10494315 DOI: 10.1016/j.ese.2023.100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 09/14/2023]
Abstract
Global climate change is expected to accelerate biological invasions, necessitating accurate risk forecasting and management strategies. However, current invasion risk assessments often overlook adaptive genomic variation, which plays a significant role in the persistence and expansion of invasive populations. Here we used Molgula manhattensis, a highly invasive ascidian, as a model to assess its invasion risks along Chinese coasts under climate change. Through population genomics analyses, we identified two genetic clusters, the north and south clusters, based on geographic distributions. To predict invasion risks, we employed the gradient forest and species distribution models to calculate genomic offset and species habitat suitability, respectively. These approaches yielded distinct predictions: the gradient forest model suggested a greater genomic offset to future climatic conditions for the north cluster (i.e., lower invasion risks), while the species distribution model indicated higher future habitat suitability for the same cluster (i.e, higher invasion risks). By integrating these models, we found that the south cluster exhibited minor genome-niche disruptions in the future, indicating higher invasion risks. Our study highlights the complementary roles of genomic offset and habitat suitability in assessing invasion risks under climate change. Moreover, incorporating adaptive genomic variation into predictive models can significantly enhance future invasion risk predictions and enable effective management strategies for biological invasions in the future.
Collapse
Affiliation(s)
- Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yangchun Gao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, 510260, China
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhixin Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510275, China
- Global Ocean and Climate Research Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510275, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
23
|
Ramirez-Parada TH, Park IW, Record S, Davis CC, Ellison AM, Mazer SJ. Plasticity and not adaptation is the primary source of temperature-mediated variation in flowering phenology in North America. Nat Ecol Evol 2024; 8:467-476. [PMID: 38212525 DOI: 10.1038/s41559-023-02304-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024]
Abstract
Phenology varies widely over space and time because of its sensitivity to climate. However, whether phenological variation is primarily generated by rapid organismal responses (plasticity) or local adaptation remains unresolved. Here we used 1,038,027 herbarium specimens representing 1,605 species from the continental United States to measure flowering-time sensitivity to temperature over time (Stime) and space (Sspace). By comparing these estimates, we inferred how adaptation and plasticity historically influenced phenology along temperature gradients and how their contributions vary among species with different phenology and native climates and among ecoregions differing in species composition. Parameters Sspace and Stime were positively correlated (r = 0.87), of similar magnitude and more frequently consistent with plasticity than adaptation. Apparent plasticity and adaptation generated earlier flowering in spring, limited responsiveness in late summer and delayed flowering in autumn in response to temperature increases. Nonetheless, ecoregions differed in the relative contributions of adaptation and plasticity, from consistently greater importance of plasticity (for example, southeastern United States plains) to their nearly equal importance throughout the season (for example, Western Sierra Madre Piedmont). Our results support the hypothesis that plasticity is the primary driver of flowering-time variation along temperature gradients, with local adaptation having a widespread but comparatively limited role.
Collapse
Affiliation(s)
- Tadeo H Ramirez-Parada
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA.
| | - Isaac W Park
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Sydne Record
- Department of Wildlife, Fisheries and Conservation Biology, University of Maine, Orono, ME, USA
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Aaron M Ellison
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Sound Solutions for Sustainable Science, Boston, MA, USA
| | - Susan J Mazer
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| |
Collapse
|
24
|
Robeck P, Essl F, van Kleunen M, Pyšek P, Pergl J, Weigelt P, Mesgaran MB. Invading plants remain undetected in a lag phase while they explore suitable climates. Nat Ecol Evol 2024; 8:477-488. [PMID: 38332027 DOI: 10.1038/s41559-023-02313-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/14/2023] [Indexed: 02/10/2024]
Abstract
Successful alien species may experience a period of quiescence, known as the lag phase, before becoming invasive and widespread. The existence of lags introduces severe uncertainty in risk analyses of aliens as the present state of species is a poor predictor of future distributions, invasion success and impact. Predicting a species' ability to invade and pose negative impacts requires a quantitative understanding of the commonality and magnitude of lags, environmental factors and mechanisms likely to terminate lag. Using herbarium and climate data, we analysed over 5,700 time series (species × regions) in 3,505 naturalized plant species from nine regions in temperate and tropical climates to quantify lags and test whether there have been shifts in the species' climatic space during the transition from the lag phase to the expansion phase. Lags were identified in 35% of the assessed invasion events. We detected phylogenetic signals for lag phases in temperate climate regions and that annual self-fertilizing species were less likely to experience lags. Where lags existed, they had an average length of 40 years and a maximum of 320 years. Lengthy lags (>100 years) were more likely to occur in perennial plants and less frequent in self-pollinating species. For 98% of the species with a lag phase, the climate spaces sampled during the lag period differed from those in the expansion phase based on the assessment of centroid shifts or degree of climate space overlap. Our results highlight the importance of functional traits for the onset of the expansion phase and suggest that climate discovery may play a role in terminating the lag phase. However, other possibilities, such as sampling issues and climate niche shifts, cannot be ruled out.
Collapse
Affiliation(s)
- Philipp Robeck
- School of BioSciences, Faculty of Science, University of Melbourne, Parkville, Victoria, Australia
| | - Franz Essl
- Division of BioInvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, South Africa
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Petr Pyšek
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Pergl
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
| | - Patrick Weigelt
- Department of Biodiversity, Macroecology & Biogeography, University of Göttingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
- Campus Institute Data Science, Göttingen, Germany
| | - Mohsen B Mesgaran
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
25
|
Parvizi E, Vaughan AL, Dhami MK, McGaughran A. Genomic signals of local adaptation across climatically heterogenous habitats in an invasive tropical fruit fly (Bactrocera tryoni). Heredity (Edinb) 2024; 132:18-29. [PMID: 37903919 PMCID: PMC10798995 DOI: 10.1038/s41437-023-00657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/21/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023] Open
Abstract
Local adaptation plays a key role in the successful establishment of pest populations in new environments by enabling them to tolerate novel biotic and abiotic conditions experienced outside their native range. However, the genomic underpinnings of such adaptive responses remain unclear, especially for agriculturally important pests. We investigated population genomic signatures in the tropical/subtropical Queensland fruit fly, Bactrocera tryoni, which has an expanded range encompassing temperate and arid zones in Australia, and tropical zones in the Pacific Islands. Using reduced representation sequencing data from 28 populations, we detected allele frequency shifts associated with the native/invasive status of populations and identified environmental factors that have likely driven population differentiation. We also determined that precipitation, temperature, and geographic variables explain allelic shifts across the distribution range of B. tryoni. We found spatial heterogeneity in signatures of local adaptation across various climatic conditions in invaded areas. Specifically, disjunct invasive populations in the tropical Pacific Islands and arid zones of Australia were characterised by multiple significantly differentiated single nucleotide polymorphisms (SNPs), some of which were associated with genes with well-understood function in environmental stress (e.g., heat and desiccation) response. However, invasive populations in southeast Australian temperate zones showed higher gene flow with the native range and lacked a strong local adaptive signal. These results suggest that population connectivity with the native range has differentially affected local adaptive patterns in different invasive populations. Overall, our findings provide insights into the evolutionary underpinnings of invasion success of an important horticultural pest in climatically distinct environments.
Collapse
Affiliation(s)
- Elahe Parvizi
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| | - Amy L Vaughan
- Biocontrol and Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
| | - Manpreet K Dhami
- Biocontrol and Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
| | - Angela McGaughran
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand.
| |
Collapse
|
26
|
Fletcher RA, Atwater DZ, Haak DC, Bagavathiannan MV, DiTommaso A, Lehnhoff E, Paterson AH, Auckland S, Govindasamy P, Lemke C, Morris E, Rainville L, Barney JN. Adaptive constraints at the range edge of a widespread and expanding invasive plant. AOB PLANTS 2023; 15:plad070. [PMID: 38028747 PMCID: PMC10651072 DOI: 10.1093/aobpla/plad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023]
Abstract
Identifying the factors that facilitate and limit invasive species' range expansion has both practical and theoretical importance, especially at the range edges. Here, we used reciprocal common garden experiments spanning the North/South and East/West range that include the North American core, intermediate and range edges of the globally invasive plant, Johnsongrass (Sorghum halepense) to investigate the interplay of climate, biotic interactions (i.e. competition) and patterns of adaptation. Our results suggest that the rapid range expansion of Johnsongrass into diverse environments across wide geographies occurred largely without local adaptation, but that further range expansion may be restricted by a fitness trade-off that limits population growth at the range edge. Interestingly, plant competition strongly dampened Johnsongrass growth but did not change the rank order performance of populations within a garden, though this varied among gardens (climates). Our findings highlight the importance of including the range edge when studying the range dynamics of invasive species, especially as we try to understand how invasive species will respond to accelerating global changes.
Collapse
Affiliation(s)
- Rebecca A Fletcher
- School of Plant and Environmental Sciences, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA
| | - Daniel Z Atwater
- Department of Animal & Range Sciences, Montana State University, 103 Animal Biosciences Building, Bozeman, MT 59717, USA
| | - David C Haak
- School of Plant and Environmental Sciences, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA
| | - Muthukumar V Bagavathiannan
- Department of Soil and Crop Sciences, Texas A&M University, 370 Olsen Boulevard, College Station, TX 77843, USA
| | - Antonio DiTommaso
- School of Integrative Plant Science, Section of Soil and Crop Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Erik Lehnhoff
- Department of Entomology, Plant Pathology, and Weed Science, New Mexico State University, MSC 3BE, Las Cruces, NM 88003, USA
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA
| | - Susan Auckland
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA
| | - Prabhu Govindasamy
- Department of Soil and Crop Sciences, Texas A&M University, 370 Olsen Boulevard, College Station, TX 77843, USA
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Cornelia Lemke
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA
| | - Edward Morris
- Department of Entomology, Plant Pathology, and Weed Science, New Mexico State University, MSC 3BE, Las Cruces, NM 88003, USA
| | - Lisa Rainville
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA
| | | |
Collapse
|
27
|
Kim AS, Kreiner JM, Hernández F, Bock DG, Hodgins KA, Rieseberg LH. Temporal collections to study invasion biology. Mol Ecol 2023; 32:6729-6742. [PMID: 37873879 DOI: 10.1111/mec.17176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Biological invasions represent an extraordinary opportunity to study evolution. This is because accidental or deliberate species introductions have taken place for centuries across large geographical scales, frequently prompting rapid evolutionary transitions in invasive populations. Until recently, however, the utility of invasions as evolutionary experiments has been hampered by limited information on the makeup of populations that were part of earlier invasion stages. Now, developments in ancient and historical DNA technologies, as well as the quickening pace of digitization for millions of specimens that are housed in herbaria and museums globally, promise to help overcome this obstacle. In this review, we first introduce the types of temporal data that can be used to study invasions, highlighting the timescale captured by each approach and their respective limitations. We then discuss how ancient and historical specimens as well as data available from prior invasion studies can be used to answer questions on mechanisms of (mal)adaptation, rates of evolution, or community-level changes during invasions. By bridging the gap between contemporary and historical invasive populations, temporal data can help us connect pattern to process in invasion science. These data will become increasingly important if invasions are to achieve their full potential as experiments of evolution in nature.
Collapse
Affiliation(s)
- Amy S Kim
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julia M Kreiner
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fernando Hernández
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dan G Bock
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
28
|
Wunder J, Fulgione A, Toräng P, Wötzel S, Herzog M, Obeso JR, Kourmpetis Y, van Ham R, Odong T, Bink M, Kemi U, Ågren J, Coupland G. Adaptation of perennial flowering phenology across the European range of Arabis alpina. Proc Biol Sci 2023; 290:20231401. [PMID: 37989245 PMCID: PMC10688268 DOI: 10.1098/rspb.2023.1401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
Flowering phenology is important in the adaptation of many plants to their local environment, but its adaptive value has not been extensively studied in herbaceous perennials. We used Arabis alpina as a model system to determine the importance of flowering phenology to fitness of a herbaceous perennial with a wide geographical range. Individual plants representative of local genetic diversity (accessions) were collected across Europe, including in Spain, the Alps and Scandinavia. The flowering behaviour of these accessions was documented in controlled conditions, in common-garden experiments at native sites and in situ in natural populations. Accessions from the Alps and Scandinavia varied in whether they required exposure to cold (vernalization) to induce flowering, and in the timing and duration of flowering. By contrast, all Spanish accessions obligately required vernalization and had a short duration of flowering. Using experimental gardens at native sites, we show that an obligate requirement for vernalization increases survival in Spain. Based on our analyses of genetic diversity and flowering behaviour across Europe, we propose that in the model herbaceous perennial A. alpina, an obligate requirement for vernalization, which is correlated with short duration of flowering, is favoured by selection in Spain where the plants experience a long growing season.
Collapse
Affiliation(s)
- Jörg Wunder
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Andrea Fulgione
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Per Toräng
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden
| | - Stefan Wötzel
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Michel Herzog
- Laboratoire d’Écologie Alpine, LECA, Université Grenoble Alpes, 38000 Grenoble, France
| | - José Ramón Obeso
- Research Unit of Biodiversity (UO-CSIC-PA), Universidad de Oviedo, Campus de Mieres, 33600 Mieres, Spain
| | - Yiannis Kourmpetis
- Biometris, Wageningen University and Research Centre, 6700 AC Wageningen, The Netherlands
| | - Roeland van Ham
- Laboratory of Bioinformatics, Wageningen University, 6708 PB Wageningen, The Netherlands
- KeyGene, 6708 PW Wageningen, The Netherlands
| | - Thomas Odong
- Biometris, Wageningen University and Research Centre, 6700 AC Wageningen, The Netherlands
| | - Marco Bink
- Biometris, Wageningen University and Research Centre, 6700 AC Wageningen, The Netherlands
| | - Ulla Kemi
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Jon Ågren
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden
| | - George Coupland
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| |
Collapse
|
29
|
Feng S, DeGrey SP, Guédot C, Schoville SD, Pool JE. Genomic Diversity Illuminates the Environmental Adaptation of Drosophila suzukii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547576. [PMID: 37461625 PMCID: PMC10349955 DOI: 10.1101/2023.07.03.547576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Biological invasions carry substantial practical and scientific importance, and represent natural evolutionary experiments on contemporary timescales. Here, we investigated genomic diversity and environmental adaptation of the crop pest Drosophila suzukii using whole-genome sequencing data and environmental metadata for 29 population samples from its native and invasive range. Through a multifaceted analysis of this population genomic data, we increase our understanding of the D. suzukii genome, its diversity and its evolution, and we identify an appropriate genotype-environment association pipeline for our data set. Using this approach, we detect genetic signals of local adaptation associated with nine distinct environmental factors related to altitude, wind speed, precipitation, temperature, and human land use. We uncover unique functional signatures for each environmental variable, such as a prevalence of cuticular genes associated with annual precipitation. We also infer biological commonalities in the adaptation to diverse selective pressures, particularly in terms of the apparent contribution of nervous system evolution to enriched processes (ranging from neuron development to circadian behavior) and to top genes associated with all nine environmental variables. Our findings therefore depict a finer-scale adaptive landscape underlying the rapid invasion success of this agronomically important species.
Collapse
Affiliation(s)
- Siyuan Feng
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Samuel P. DeGrey
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christelle Guédot
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sean D. Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - John E. Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
30
|
Pita-Aquino JN, Bock DG, Baeckens S, Losos JB, Kolbe JJ. Stronger evidence for genetic ancestry than environmental conditions in shaping the evolution of a complex signalling trait during biological invasion. Mol Ecol 2023; 32:5558-5574. [PMID: 37698063 DOI: 10.1111/mec.17123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/17/2023] [Indexed: 09/13/2023]
Abstract
Introductions of invasive species to new environments often result in rapid rates of trait evolution. While in some cases these evolutionary transitions are adaptive and driven by natural selection, they can also result from patterns of genetic and phenotypic variation associated with the invasion history. Here, we examined the brown anole (Anolis sagrei), a widespread invasive lizard for which genetic data have helped trace the sources of non-native populations. We focused on the dewlap, a complex signalling trait known to be subject to multiple selective pressures. We measured dewlap reflectance, pattern and size in 30 non-native populations across the southeastern United States. As well, we quantified environmental variables known to influence dewlap signal effectiveness, such as canopy openness. Further, we used genome-wide data to estimate genetic ancestry, perform association mapping and test for signatures of selection. We found that among-population variation in dewlap characteristics was best explained by genetic ancestry. This result was supported by genome-wide association mapping, which identified several ancestry-specific loci associated with dewlap traits. Despite the strong imprint of this aspect of the invasion history on dewlap variation, we also detected significant relationships between dewlap traits and local environmental conditions. However, we found limited evidence that dewlap-associated genetic variants have been subject to selection. Our study emphasizes the importance of genetic ancestry and admixture in shaping phenotypes during biological invasion, while leaving the role of selection unresolved, likely due to the polygenic genetic architecture of dewlaps and selection acting on many genes of small effect.
Collapse
Affiliation(s)
- Jessica N Pita-Aquino
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Dan G Bock
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Simon Baeckens
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Jonathan B Losos
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jason J Kolbe
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
31
|
Williamson M, Gerhard D, Hulme PE, Millar A, Chapman H. High-performing plastic clones best explain the spread of yellow monkeyflower from lowland to higher elevation areas in New Zealand. J Evol Biol 2023; 36:1455-1470. [PMID: 37731241 DOI: 10.1111/jeb.14218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
The relative contribution of adaptation and phenotypic plasticity can vary between core and edge populations, with implications for invasive success. We investigated the spread of the invasive yellow monkeyflower, Erythranthe gutatta in New Zealand, where it is spreading from lowland agricultural land into high-elevation conservation areas. We investigated the extent of phenotypic variation among clones from across the South Island, looked for adaptation and compared degrees of plasticity among lowland core versus montane range-edge populations. We grew 34 clones and measured their vegetative and floral traits in two common gardens, one in the core range at 9 m a.s.l. and one near the range-edge at 560 m a.s.l. Observed trait variation was explained by a combination of genotypic diversity (as identified through common gardens) and high phenotypic plasticity. We found a subtle signature of local adaptation to lowland habitats but all clones were plastic and able to survive and reproduce in both gardens. In the range-edge garden, above-ground biomass was on average almost double and stolon length almost half that of the same clone in the core garden. Clones from low-elevation sites showed higher plasticity on average than those from higher elevation sites. The highest performing clones in the core garden were also top performers in the range-edge garden. These results suggest some highly fit general-purpose genotypes, possibly pre-adapted to New Zealand montane conditions, best explains the spread of E. gutatta from lowland to higher elevation areas.
Collapse
Affiliation(s)
- Michelle Williamson
- Institute of Environmental Science and Research ESR Christchurch, Christchurch, New Zealand
| | - Daniel Gerhard
- School of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand
| | - Philip E Hulme
- Department of Pest Management and Conservation, Lincoln University, Lincoln, New Zealand
- Bioprotection Aotearoa, Lincoln University, Lincoln, New Zealand
| | - Aaron Millar
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Hazel Chapman
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
32
|
Reyes E, Cunliffe F, M'Gonigle LK. Evolutionary dynamics of dispersal and local adaptation in multi-resource landscapes. Theor Popul Biol 2023; 153:102-110. [PMID: 37442528 DOI: 10.1016/j.tpb.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Dispersal can enable access to resources in new locations. Consequently, traits that govern dispersal probability and dispersal distance may impact an individual's ability to acquire resources. However, spatial variation in the quality or quantity of resources may mediate potential adaptive benefits of novel dispersal traits. Ecological traits (i.e., those that determine how an individual processes resources) will also, by definition, affect how an individual interacts with the resource landscape. In a spatially heterogeneous environment, this creates potential for evolutionary feedbacks between dispersal-related traits and ecological traits. For example, dispersal may introduce individuals to novel resources, at which point there may be selection for local adaptation of ecological traits. Conversely, an individual's ability to utilize different resource types may determine how dispersal impacts fitness. Here, we develop an individual-based model to investigate co-evolution of dispersal and ecological traits in a landscape where multiple resources vary independently across space. We find that: (1) resource specialists can emerge and tend to evolve dispersal strategies suited to the structure of their preferred resource type and (2) generalists, when they emerge, tend to possess intermediate dispersal strategies. Lastly, we note that the effect of dispersal on the evolution of the ecological trait is weaker than vice versa and, as a result, appreciable heterogeneity in the abundance of resources across a landscape will likely obscure a signal of co-evolution.
Collapse
Affiliation(s)
- Elijah Reyes
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada, V5A 1S6.
| | - Finnerty Cunliffe
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada, V5A 1S6
| | - Leithen K M'Gonigle
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada, V5A 1S6
| |
Collapse
|
33
|
Yang R, Yu X, Nie P, Cao R, Feng J, Hu X. Climatic niche and range shifts of grey squirrels (Sciurus carolinensis Gmelin) in Europe: An invasive pest displacing native squirrels. PEST MANAGEMENT SCIENCE 2023; 79:3731-3739. [PMID: 37194192 DOI: 10.1002/ps.7554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND As an invasive pest from North America, grey squirrels (GSs; Sciurus carolinensis Gmelin) are displacing native squirrels in Europe. However, the climatic niche and range dynamics of GSs in Europe remain largely unknown. Through niche and range dynamic models, we investigated climatic niche and range shifts between introduced GSs in Europe and native GSs in North America. RESULTS GSs in North America can survive in more variable climatic conditions and have much wider climatic niche breadth than do GSs in Europe. Based on climate, the potential range of GSs in Europe included primarily Britain, Ireland, and Italy, whereas the potential range of GSs in North America included vast regions of western and southern Europe. If GSs in Europe could occupy the same climatic niche space and potential range as GSs in North America, they would occupy an area ca. 2.45 times the size of their current range. The unfilling ranges of GSs in Europe relative to those of GSs in North America were primarily in France, Italy, Spain, Croatia, and Portugal. CONCLUSION Our observations implied that GSs in Europe have significant invasion potential, and that range projections based on their occurrence records in Europe may underestimate their invasion risk. Given that small niche shifts between GSs in Europe and in North America could lead to large range shifts, niche shifts could be a sensitive indicator in invasion risk assessment. The identified unfilling ranges of the GS in Europe should be prioritized in combating GS invasions in the future. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rujing Yang
- College of Agriculture and Biological Science, Dali University, Dali, China
- Research Center for Agroecology in Erhai Lake Watershed of Dali University, Dali, China
- Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province, Dali University, Dali, China
| | - Xiaoli Yu
- College of Agriculture and Biological Science, Dali University, Dali, China
- Research Center for Agroecology in Erhai Lake Watershed of Dali University, Dali, China
- Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province, Dali University, Dali, China
| | - Peixiao Nie
- College of Agriculture and Biological Science, Dali University, Dali, China
- Research Center for Agroecology in Erhai Lake Watershed of Dali University, Dali, China
- Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province, Dali University, Dali, China
| | - Runyao Cao
- College of Agriculture and Biological Science, Dali University, Dali, China
- Research Center for Agroecology in Erhai Lake Watershed of Dali University, Dali, China
- Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province, Dali University, Dali, China
| | - Jianmeng Feng
- College of Agriculture and Biological Science, Dali University, Dali, China
- Research Center for Agroecology in Erhai Lake Watershed of Dali University, Dali, China
- Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province, Dali University, Dali, China
| | - Xiaokang Hu
- College of Agriculture and Biological Science, Dali University, Dali, China
- Research Center for Agroecology in Erhai Lake Watershed of Dali University, Dali, China
- Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province, Dali University, Dali, China
| |
Collapse
|
34
|
Lake TA, Briscoe Runquist RD, Flagel LE, Moeller DA. Chronosequence of invasion reveals minimal losses of population genomic diversity, niche expansion, and trait divergence in the polyploid, leafy spurge. Evol Appl 2023; 16:1680-1696. [PMID: 38020872 PMCID: PMC10660801 DOI: 10.1111/eva.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/05/2023] [Accepted: 08/25/2023] [Indexed: 12/01/2023] Open
Abstract
Rapid evolution may play an important role in the range expansion of invasive species and modify forecasts of invasion, which are the backbone of land management strategies. However, losses of genetic variation associated with colonization bottlenecks may constrain trait and niche divergence at leading range edges, thereby impacting management decisions that anticipate future range expansion. The spatial and temporal scales over which adaptation contributes to invasion dynamics remain unresolved. We leveraged detailed records of the ~130-year invasion history of the invasive polyploid plant, leafy spurge (Euphorbia virgata), across ~500 km in Minnesota, U.S.A. We examined the consequences of range expansion for population genomic diversity, niche breadth, and the evolution of germination behavior. Using genotyping-by-sequencing, we found some population structure in the range core, where introduction occurred, but panmixia among all other populations. Range expansion was accompanied by only modest losses in sequence diversity, with small, isolated populations at the leading edge harboring similar levels of diversity to those in the range core. The climatic niche expanded during most of the range expansion, and the niche of the range core was largely non-overlapping with the invasion front. Ecological niche models indicated that mean temperature of the warmest quarter was the strongest determinant of habitat suitability and that populations at the leading edge had the lowest habitat suitability. Guided by these findings, we tested for rapid evolution in germination behavior over the time course of range expansion using a common garden experiment and temperature manipulations. Germination behavior diverged from the early to late phases of the invasion, with populations from later phases having higher dormancy at lower temperatures. Our results suggest that trait evolution may have contributed to niche expansion during invasion and that distribution models, which inform future management planning, may underestimate invasion potential without accounting for evolution.
Collapse
Affiliation(s)
- Thomas A. Lake
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
| | | | - Lex E. Flagel
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
- GencoveLong Island CityNew YorkUSA
| | - David A. Moeller
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
| |
Collapse
|
35
|
Park DS, Xie Y, Ellison AM, Lyra GM, Davis CC. Complex climate-mediated effects of urbanization on plant reproductive phenology and frost risk. THE NEW PHYTOLOGIST 2023; 239:2153-2165. [PMID: 36942966 DOI: 10.1111/nph.18893] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Urbanization can affect the timing of plant reproduction (i.e. flowering and fruiting) and associated ecosystem processes. However, our knowledge of how plant phenology responds to urbanization and its associated environmental changes is limited. Herbaria represent an important, but underutilized source of data for investigating this question. We harnessed phenological data from herbarium specimens representing 200 plant species collected across 120 yr from the eastern US to investigate the spatiotemporal effects of urbanization on flowering and fruiting phenology and frost risk (i.e. time between the last frost date and flowering). Effects of urbanization on plant reproductive phenology varied significantly in direction and magnitude across species ranges. Increased urbanization led to earlier flowering in colder and wetter regions and delayed fruiting in regions with wetter spring conditions. Frost risk was elevated with increased urbanization in regions with colder and wetter spring conditions. Our study demonstrates that predictions of phenological change and its associated impacts must account for both climatic and human effects, which are context dependent and do not necessarily coincide. We must move beyond phenological models that only incorporate temperature variables and consider multiple environmental factors and their interactions when estimating plant phenology, especially at larger spatial and taxonomic scales.
Collapse
Affiliation(s)
- Daniel S Park
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47906, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47906, USA
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Harvard University, Cambridge, MA, 02138, USA
| | - Yingying Xie
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47906, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47906, USA
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41099, USA
| | - Aaron M Ellison
- Harvard University Herbaria, Harvard University, Cambridge, MA, 02135, USA
- Sound Solutions for Sustainable Science, Boston, MA, 02135, USA
| | - Goia M Lyra
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Harvard University, Cambridge, MA, 02138, USA
- Programa de Pós Graduação em Biodiversidade e Evolução, Instituto de Biologia, Universidade Federal da Bahia, Salvador, Bahia, 40170-115, Brazil
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
36
|
Brendel MR, Schurr FM, Sheppard CS. Alien plant fitness is limited by functional trade-offs rather than a long-term increase in competitive effects of native communities. Ecol Evol 2023; 13:e10468. [PMID: 37664495 PMCID: PMC10472529 DOI: 10.1002/ece3.10468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023] Open
Abstract
Alien plants experience novel abiotic conditions and interactions with native communities in the introduced area. Intra- and interspecific selection on functional traits in the new environment may lead to increased population growth with time since introduction (residence time). However, selection regimes might differ depending on the invaded habitat. Additionally, in high-competition habitats, a build-up of biotic resistance of native species due to accumulation of eco-evolutionary experience to aliens over time may limit invasion success. We tested if the effect of functional traits and the population dynamics of aliens depends on interspecific competition with native plant communities. We conducted a multi-species experiment with 40 annual Asteraceae that differ in residence time in Germany. We followed their population growth in monocultures and in interspecific competition with an experienced native community (varying co-existence times between focals and community). To more robustly test our findings, we used a naïve community that never co-existed with the focals. We found that high seed mass decreased population growth in monocultures but tended to increase population growth under high interspecific competition. We found no evidence for a build-up of competition-mediated biotic resistance by the experienced community over time. Instead, population growth of the focal species was similarly inhibited by the experienced and naïve community. By comparing the effect of experienced and naïve communities on population dynamics over 2 years across a large set of species with a high variation in functional traits and residence time, this study advances the understanding of the long-term dynamics of plant invasions. In our study system, population growth of alien species was not limited by an increase of competitive effects by native communities (one aspect of biotic resistance) over time. Instead, invasion success of alien plants may be limited because initial spread in low-competition habitats requires different traits than establishment in high-competition habitats.
Collapse
Affiliation(s)
- Marco R. Brendel
- Institute of Landscape and Plant EcologyUniversity of HohenheimStuttgartGermany
- Division of Conservation in AgricultureGerman Federal Agency for Nature ConservationBonnGermany
| | - Frank M. Schurr
- Institute of Landscape and Plant EcologyUniversity of HohenheimStuttgartGermany
| | | |
Collapse
|
37
|
Walter GM, Clark J, Terranova D, Cozzolino S, Cristaudo A, Hiscock SJ, Bridle J. Hidden genetic variation in plasticity provides the potential for rapid adaptation to novel environments. THE NEW PHYTOLOGIST 2023; 239:374-387. [PMID: 36651081 DOI: 10.1111/nph.18744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/02/2023] [Indexed: 06/02/2023]
Abstract
Rapid environmental change is forcing populations into environments where plasticity will no longer maintain fitness. When populations are exposed to novel environments, evolutionary theory predicts that genetic variation in fitness will increase and should be associated with genetic differences in plasticity. If true, then genetic variation in plasticity can increase adaptive potential in novel environments, and population persistence via evolutionary rescue is more likely. To test whether genetic variation in fitness increases in novel environments and is associated with plasticity, we transplanted 8149 clones of 314 genotypes of a Sicilian daisy (Senecio chrysanthemifolius) within and outside its native range, and quantified genetic variation in fitness, and plasticity in leaf traits and gene expression. Although mean fitness declined by 87% in the novel environment, genetic variance in fitness increased threefold and was correlated with plasticity in leaf traits. High fitness genotypes showed greater plasticity in gene expression, but lower plasticity in most leaf traits. Interestingly, genotypes with the highest fitness in the novel environment had the lowest fitness at the native site. These results suggest that standing genetic variation in plasticity could help populations to persist and adapt to novel environments, despite remaining hidden in native environments.
Collapse
Affiliation(s)
- Greg M Walter
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - James Clark
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Delia Terranova
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, 95128, Italy
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
| | - Salvatore Cozzolino
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
| | - Antonia Cristaudo
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, 95128, Italy
| | - Simon J Hiscock
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Jon Bridle
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| |
Collapse
|
38
|
Franzese J, Ripa RR. Common juniper, an overlooked conifer with high invasion potential in protected areas of Patagonia. Sci Rep 2023; 13:9818. [PMID: 37330618 PMCID: PMC10276858 DOI: 10.1038/s41598-023-37023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023] Open
Abstract
The benefits of early detection of biological invasions are widely recognized, especially for protected areas (PAs). However, research on incipient invasive plant species is scarce compared to species with a recognized history of invasion. Here, we characterized the invasion status of the non-native conifer Juniperus communis in PAs and interface areas of Andean Patagonia, Argentina. We mapped its distribution and described both the invasion and the environments this species inhabits through field studies, a literature review, and a citizen science initiative. We also modeled the species' potential distribution by comparing the climatic characteristics of its native range with those of the introduced ranges studied. The results show that J. communis is now widely distributed in the region, occurring naturally in diverse habitats, and frequently within and close to PAs. This species can be considered an incipient invader with a high potential for expansion in its regional distribution range, largely due to its high reproductive potential and the high habitat suitability of this environment. Early detection of a plant invasion affords a valuable opportunity to inform citizens of the potential risks to high conservation value ecosystems before the invader is perceived as a natural component of the landscape.
Collapse
Affiliation(s)
- Jorgelina Franzese
- Investigaciones de Ecología en Ambientes Antropizados, Instituto de Investigaciones en Biodiversidad y Medioambiente (CONICET-UNCo), R8400, S. C. Bariloche, Argentina.
| | - Ramiro Rubén Ripa
- Grupo de Genética Ecológica, Instituto de Investigaciones en Biodiversidad y Medioambiente (CONICET-UNCo), Evolutiva y de la Conservación, R8400, S. C. Bariloche, Argentina
- Instituto de Evolución, Ecología Histórica y Ambiente (CONICET-UTN), San Rafael, Mendoza, Argentina
| |
Collapse
|
39
|
Soudi S, Crepeau M, Collier TC, Lee Y, Cornel AJ, Lanzaro GC. Genomic signatures of local adaptation in recent invasive Aedes aegypti populations in California. BMC Genomics 2023; 24:311. [PMID: 37301847 PMCID: PMC10257851 DOI: 10.1186/s12864-023-09402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Rapid adaptation to new environments can facilitate species invasions and range expansions. Understanding the mechanisms of adaptation used by invasive disease vectors in new regions has key implications for mitigating the prevalence and spread of vector-borne disease, although they remain relatively unexplored. RESULTS Here, we integrate whole-genome sequencing data from 96 Aedes aegypti mosquitoes collected from various sites in southern and central California with 25 annual topo-climate variables to investigate genome-wide signals of local adaptation among populations. Patterns of population structure, as inferred using principal components and admixture analysis, were consistent with three genetic clusters. Using various landscape genomics approaches, which all remove the confounding effects of shared ancestry on correlations between genetic and environmental variation, we identified 112 genes showing strong signals of local environmental adaptation associated with one or more topo-climate factors. Some of them have known effects in climate adaptation, such as heat-shock proteins, which shows selective sweep and recent positive selection acting on these genomic regions. CONCLUSIONS Our results provide a genome wide perspective on the distribution of adaptive loci and lay the foundation for future work to understand how environmental adaptation in Ae. aegypti impacts the arboviral disease landscape and how such adaptation could help or hinder efforts at population control.
Collapse
Affiliation(s)
- Shaghayegh Soudi
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Marc Crepeau
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Travis C Collier
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Yoosook Lee
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, USA
| | - Anthony J Cornel
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, CA, USA
- Mosquito Control Research Laboratory, Department of Entomology and Nematology, University of California, Parlier, CA, USA
| | - Gregory C Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, CA, USA.
| |
Collapse
|
40
|
Costan CA, Godsoe W, Bufford JL, Hulme PE. Comparing the Above and Below-Ground Chemical Defences of Three Rumex Species Between Their Native and Introduced Provenances. J Chem Ecol 2023; 49:276-286. [PMID: 37121960 PMCID: PMC10495513 DOI: 10.1007/s10886-023-01427-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
Compared to their native range, non-native plants often experience reduced levels of herbivory in the introduced range. This may result in reduced pressure to produce chemical defences that act against herbivores. We measured the most abundant secondary metabolites found in Rumex spp., namely oxalates, phenols and tannins. To test this hypothesis, we compared native (UK) and introduced (NZ) provenances of three different Rumex species (R. obtusifolius, R. crispus and R. conglomeratus, Polygonaceae) to assess whether any significant differences existed in their levels of chemical defences in either leaves and roots. All three species have previously been shown to support a lower diversity of insect herbivores and experience less herbivory in the introduced range. We further examined leaf herbivory on plants from both provenances when grown together in a common garden experiment in New Zealand to test whether any differences in damage might be consistent with variation in the quantity of chemical defences. We found that two Rumex species (R. obtusifolius and R. crispus) showed no evidence for a reduction in chemical defences, while a third (R. conglomeratus) showed only limited evidence. The common garden experiment revealed that the leaves analysed had low levels of herbivory (~ 0.5%) with no differences in damage between provenances for any of the three study species. Roots tended to have a higher concentration of tannins than shoots, but again showed no difference between the provenances. As such, the findings of this study provide no evidence for lower plant investments in chemical defences, suggesting that other factors explain the success of Rumex spp. in New Zealand.
Collapse
Affiliation(s)
- Cristian-Andrei Costan
- Bio-Protection Research Centre, Lincoln, Canterbury 7647 New Zealand
- Foundation for Arable Research, Templeton, Canterbury 7678 New Zealand
| | - William Godsoe
- Bio-Protection Research Centre, Lincoln, Canterbury 7647 New Zealand
| | - Jennifer L. Bufford
- Bio-Protection Research Centre, Lincoln, Canterbury 7647 New Zealand
- Manaaki Whenua – Landcare Research, Lincoln, Canterbury 7647 New Zealand
| | - Philip E. Hulme
- Bio-Protection Research Centre, Lincoln, Canterbury 7647 New Zealand
| |
Collapse
|
41
|
Battlay P, Wilson J, Bieker VC, Lee C, Prapas D, Petersen B, Craig S, van Boheemen L, Scalone R, de Silva NP, Sharma A, Konstantinović B, Nurkowski KA, Rieseberg LH, Connallon T, Martin MD, Hodgins KA. Large haploblocks underlie rapid adaptation in the invasive weed Ambrosia artemisiifolia. Nat Commun 2023; 14:1717. [PMID: 36973251 PMCID: PMC10042993 DOI: 10.1038/s41467-023-37303-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/11/2023] [Indexed: 03/29/2023] Open
Abstract
Adaptation is the central feature and leading explanation for the evolutionary diversification of life. Adaptation is also notoriously difficult to study in nature, owing to its complexity and logistically prohibitive timescale. Here, we leverage extensive contemporary and historical collections of Ambrosia artemisiifolia-an aggressively invasive weed and primary cause of pollen-induced hayfever-to track the phenotypic and genetic causes of recent local adaptation across its native and invasive ranges in North America and Europe, respectively. Large haploblocks-indicative of chromosomal inversions-contain a disproportionate share (26%) of genomic regions conferring parallel adaptation to local climates between ranges, are associated with rapidly adapting traits, and exhibit dramatic frequency shifts over space and time. These results highlight the importance of large-effect standing variants in rapid adaptation, which have been critical to A. artemisiifolia's global spread across vast climatic gradients.
Collapse
Affiliation(s)
- Paul Battlay
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Jonathan Wilson
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Vanessa C Bieker
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Christopher Lee
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Diana Prapas
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Bent Petersen
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, 08100, Bedong, Kedah, Malaysia
| | - Sam Craig
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Lotte van Boheemen
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Romain Scalone
- Department of Crop Production Ecology, Uppsala Ecology Center, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Grapevine Breeding, Hochschule Geisenheim University, Geisenheim, Germany
| | - Nissanka P de Silva
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Amit Sharma
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Bojan Konstantinović
- Department of Environmental and Plant Protection, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Kristin A Nurkowski
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Tim Connallon
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
42
|
Wilson Brown MK, Josephs EB. Evaluating niche changes during invasion with seasonal models in Capsella bursa-pastoris. AMERICAN JOURNAL OF BOTANY 2023; 110:1-11. [PMID: 36758170 PMCID: PMC10088061 DOI: 10.1002/ajb2.16140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 05/11/2023]
Abstract
PREMISE Researchers often use ecological niche models to predict where species might establish and persist under future or novel climate conditions. However, these predictive methods assume species have stable niches across time and space. Furthermore, ignoring the time of occurrence data can obscure important information about species reproduction and ultimately fitness. Here, we assess compare ecological niche models generated from full-year averages to seasonal models. METHODS In this study, we generate full-year and monthly ecological niche models for Capsella bursa-pastoris in Europe and North America to see if we can detect changes in the seasonal niche of the species after long-distance dispersal. RESULTS We find full-year ecological niche models have low transferability across continents and there are continental differences in the climate conditions that influence the distribution of C. bursa-pastoris. Monthly models have greater predictive accuracy than full-year models in cooler seasons, but no monthly models can predict North American summer occurrences very well. CONCLUSIONS The relative predictive ability of European monthly models compared to North American monthly models suggests a change in the seasonal timing between the native range to the non-native range. These results highlight the utility of ecological niche models at finer temporal scales in predicting species distributions and unmasking subtle patterns of evolution.
Collapse
Affiliation(s)
- Maya K Wilson Brown
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Emily B Josephs
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
43
|
Global invasion history and native decline of the common starling: insights through genetics. Biol Invasions 2023. [DOI: 10.1007/s10530-022-02982-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
AbstractFew invasive birds are as globally successful as the Common or European Starling (Sturnus vulgaris). Native to the Palearctic, the starling has been intentionally introduced to North and South America, South Africa, Australia, and the Pacific Islands, enabling us to explore species traits that may contribute to its invasion success. Coupling the rich studies of life history and more recent explorations of genomic variation among invasions, we illustrate how eco-evolutionary dynamics shape the invasion success of this long-studied and widely distributed species. Especially informative is the comparison between Australian and North American invasions, because these populations colonized novel ranges concurrently and exhibit shared signals of selection despite distinct population histories. In this review, we describe population dynamics across the native and invasive ranges, identify putatively selected traits that may influence the starling’s spread, and suggest possible determinants of starling success world-wide. We also identify future opportunities to utilize this species as a model for avian invasion research, which will inform our understanding of species’ rapid evolution in response to environmental change.
Collapse
|
44
|
Klinerová T, Man M, Dostál P. Invasion tolerance varies along a topographic gradient irrespective of invader presence. OIKOS 2023. [DOI: 10.1111/oik.09430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Tereza Klinerová
- Inst. of Botany, The Czech Academy of Sciences Průhonice Czech Republic
| | - Matěj Man
- Inst. of Botany, The Czech Academy of Sciences Průhonice Czech Republic
| | - Petr Dostál
- Inst. of Botany, The Czech Academy of Sciences Průhonice Czech Republic
| |
Collapse
|
45
|
Liu YY, Yang QF, Li Z, Zhou ZX, Shi XP, Wang YJ. Parallel genetic and phenotypic differentiation of Erigeron annuus invasion in China. FRONTIERS IN PLANT SCIENCE 2023; 13:994367. [PMID: 36684796 PMCID: PMC9845934 DOI: 10.3389/fpls.2022.994367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION The factors that determine the growth and spread advantages of an alien plant during the invasion process remain open to debate. The genetic diversity and differentiation of an invasive plant population might be closely related to its growth adaptation and spread in the introduced range. However, little is known about whether phenotypic and genetic variation in invasive plant populations covary during the invasion process along invaded geographic distances. METHODS In a wild experiment, we examined the genetic variation in populations of the aggressively invasive species Erigeron annuus at different geographical distances from the first recorded point of introduction (FRPI) in China. We also measured growth traits in the wild and common garden experiments, and the coefficient of variation (CV) of populations in the common garden experiments. RESULTS AND DISCUSSION We found that E. annuus populations had better growth performance (i.e., height and biomass) and genetic diversity, and less trait variation, in the long-term introduced region (east) than in the short-term introduced region (west). Furthermore, population growth performance was significantly positively or negatively correlated with genetic diversity or genetic variation. Our results indicate that there was parallel genetic and phenotypic differentiation along the invaded geographic distance in response to adaptation and spread, and populations that entered introduced regions earlier had consistently high genetic diversity and high growth dominance. Growth and reproduction traits can be used as reliable predictors of the adaptation and genetic variation of invasive plants.
Collapse
|
46
|
Parvizi E, Dhami MK, Yan J, McGaughran A. Population genomic insights into invasion success in a polyphagous agricultural pest, Halyomorpha halys. Mol Ecol 2023; 32:138-151. [PMID: 36261398 PMCID: PMC10099481 DOI: 10.1111/mec.16740] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 01/07/2023]
Abstract
Invasive species are increasingly threatening ecosystems and agriculture by rapidly expanding their range and adapting to environmental and human-imposed selective pressures. The genomic mechanisms that underlie such rapid changes remain unclear, especially for agriculturally important pests. Here, we used genome-wide polymorphisms derived from native, invasive, and intercepted samples and populations of the brown marmorated stink bug (BMSB), Halyomorpha halys, to gain insights into population genomics processes that have promoted the successful global invasion of this polyphagous pest. Our analysis demonstrated that BMSB exhibits spatial structure but admixture rates are high among introduced populations, resulting in similar levels of genomic diversity across native and introduced populations. These spatial genomic patterns suggest a complex invasion scenario, potentially with multiple bridgehead events, posing a challenge for accurately assigning BMSB incursions to their source using reduced-representation genomic data. By associating allele frequencies with the invasion status of BMSB populations, we found significantly differentiated single nucleotide polymorphisms (SNPs) located in close proximity to genes for insecticide resistance and olfaction. Comparing variations in allele frequencies among populations for outlier SNPs suggests that BMSB invasion success has probably evolved from standing genetic variation. In addition to being a major nuisance of households, BMSB has caused significant economic losses to agriculture in recent years and continues to expand its range. Despite no record of BMSB insecticide resistance to date, our results show high capacity for potential evolution of such traits, highlighting the need for future sustainable and targeted management strategies.
Collapse
Affiliation(s)
- Elahe Parvizi
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| | - Manpreet K Dhami
- Biocontrol and Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
| | - Juncong Yan
- Plant Health and Environment Laboratory, Ministry for Primary Industries, Auckland, New Zealand
| | - Angela McGaughran
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
47
|
Wortel MT, Agashe D, Bailey SF, Bank C, Bisschop K, Blankers T, Cairns J, Colizzi ES, Cusseddu D, Desai MM, van Dijk B, Egas M, Ellers J, Groot AT, Heckel DG, Johnson ML, Kraaijeveld K, Krug J, Laan L, Lässig M, Lind PA, Meijer J, Noble LM, Okasha S, Rainey PB, Rozen DE, Shitut S, Tans SJ, Tenaillon O, Teotónio H, de Visser JAGM, Visser ME, Vroomans RMA, Werner GDA, Wertheim B, Pennings PS. Towards evolutionary predictions: Current promises and challenges. Evol Appl 2023; 16:3-21. [PMID: 36699126 PMCID: PMC9850016 DOI: 10.1111/eva.13513] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Evolution has traditionally been a historical and descriptive science, and predicting future evolutionary processes has long been considered impossible. However, evolutionary predictions are increasingly being developed and used in medicine, agriculture, biotechnology and conservation biology. Evolutionary predictions may be used for different purposes, such as to prepare for the future, to try and change the course of evolution or to determine how well we understand evolutionary processes. Similarly, the exact aspect of the evolved population that we want to predict may also differ. For example, we could try to predict which genotype will dominate, the fitness of the population or the extinction probability of a population. In addition, there are many uses of evolutionary predictions that may not always be recognized as such. The main goal of this review is to increase awareness of methods and data in different research fields by showing the breadth of situations in which evolutionary predictions are made. We describe how diverse evolutionary predictions share a common structure described by the predictive scope, time scale and precision. Then, by using examples ranging from SARS-CoV2 and influenza to CRISPR-based gene drives and sustainable product formation in biotechnology, we discuss the methods for predicting evolution, the factors that affect predictability and how predictions can be used to prevent evolution in undesirable directions or to promote beneficial evolution (i.e. evolutionary control). We hope that this review will stimulate collaboration between fields by establishing a common language for evolutionary predictions.
Collapse
Affiliation(s)
- Meike T. Wortel
- Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Deepa Agashe
- National Centre for Biological SciencesBangaloreIndia
| | | | - Claudia Bank
- Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
- Gulbenkian Science InstituteOeirasPortugal
| | - Karen Bisschop
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
- Origins CenterGroningenThe Netherlands
- Laboratory of Aquatic Biology, KU Leuven KulakKortrijkBelgium
| | - Thomas Blankers
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
- Origins CenterGroningenThe Netherlands
| | | | - Enrico Sandro Colizzi
- Origins CenterGroningenThe Netherlands
- Mathematical InstituteLeiden UniversityLeidenThe Netherlands
| | | | | | - Bram van Dijk
- Max Planck Institute for Evolutionary BiologyPlönGermany
| | - Martijn Egas
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jacintha Ellers
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Astrid T. Groot
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | | | | | - Ken Kraaijeveld
- Leiden Centre for Applied BioscienceUniversity of Applied Sciences LeidenLeidenThe Netherlands
| | - Joachim Krug
- Institute for Biological PhysicsUniversity of CologneCologneGermany
| | - Liedewij Laan
- Department of Bionanoscience, Kavli Institute of NanoscienceTU DelftDelftThe Netherlands
| | - Michael Lässig
- Institute for Biological PhysicsUniversity of CologneCologneGermany
| | - Peter A. Lind
- Department Molecular BiologyUmeå UniversityUmeåSweden
| | - Jeroen Meijer
- Theoretical Biology and Bioinformatics, Department of BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Luke M. Noble
- Institute de Biologie, École Normale Supérieure, CNRS, InsermParisFrance
| | | | - Paul B. Rainey
- Department of Microbial Population BiologyMax Planck Institute for Evolutionary BiologyPlönGermany
- Laboratoire Biophysique et Évolution, CBI, ESPCI Paris, Université PSL, CNRSParisFrance
| | - Daniel E. Rozen
- Institute of Biology, Leiden UniversityLeidenThe Netherlands
| | - Shraddha Shitut
- Origins CenterGroningenThe Netherlands
- Institute of Biology, Leiden UniversityLeidenThe Netherlands
| | | | | | | | | | - Marcel E. Visser
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Renske M. A. Vroomans
- Origins CenterGroningenThe Netherlands
- Informatics InstituteUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Bregje Wertheim
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | | |
Collapse
|
48
|
Kreiner JM, Latorre SM, Burbano HA, Stinchcombe JR, Otto SP, Weigel D, Wright SI. Rapid weed adaptation and range expansion in response to agriculture over the past two centuries. Science 2022; 378:1079-1085. [PMID: 36480621 DOI: 10.1126/science.abo7293] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
North America has experienced a massive increase in cropland use since 1800, accompanied more recently by the intensification of agricultural practices. Through genome analysis of present-day and historical samples spanning environments over the past two centuries, we studied the effect of these changes in farming on the extent and tempo of evolution across the native range of the common waterhemp (Amaranthus tuberculatus), a now pervasive agricultural weed. Modern agriculture has imposed strengths of selection rarely observed in the wild, with notable shifts in allele frequency trajectories since agricultural intensification in the 1960s. An evolutionary response to this extreme selection was facilitated by a concurrent human-mediated range shift. By reshaping genome-wide diversity across the landscape, agriculture has driven the success of this weed in the 21st century.
Collapse
Affiliation(s)
- Julia M Kreiner
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.,Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Sergio M Latorre
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK.,Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Hernán A Burbano
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK.,Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Sarah P Otto
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
49
|
Watermann LY, Rotert J, Erfmeier A. Coming home: Back-introduced invasive genotypes might pose an underestimated risk in the species´ native range. NEOBIOTA 2022. [DOI: 10.3897/neobiota.78.91394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biological invasions are considered a significant challenge both from an ecological and economical perspective. Compared to the native range, environmental conditions in the invasive range often favor more competitive genotypes. Little attention, however, has so far been paid to the possibility that these invasive and competitive genotypes might also be back-introduced into a species’ native range, where they could trigger a problematic increase in abundance or expansion. The frequency with which this occurs in the species´ native range might be an underestimated aspect in nature conservation. We transplanted native and invasive individuals of the biennial model species Jacobaea vulgaris into field sites of naturally occurring populations within the species’ native range. The aim was to test whether back-introduced invasive origins show decreased performance, e.g., because of the reunion with specialized herbivores or plant-soil-feedbacks or whether they have the potential to trigger problematic population dynamics in the species’ native range. We ran an additional greenhouse experiment to specifically address soil-borne effects in the species’ native habitats. We found that invasive individuals generally outperformed the native transplants if compared in the field sites. By contrast, there were no origin-dependent differences in the greenhouse experiment. Our findings clearly indicate that testing for origin effects exclusively under controlled conditions might underestimate the potential of invasive genotypes to trigger invasion processes in habitats of the species’ native range. Although differences in performance mediated by soil-borne effects were not associated with plant origin, field site susceptibility to J. vulgaris colonization varied largely. Identifying the exact factors driving these differences, offers another focal point to minimize the risk of a detrimental increase in the abundance or expansion of this highly invasive species in its home range.
Collapse
|
50
|
Gorton AJ, Benning JW, Tiffin P, Moeller DA. The spatial scale of adaptation in a native annual plant and its implications for responses to climate change. Evolution 2022; 76:2916-2929. [PMID: 35880454 DOI: 10.1111/evo.14583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 01/22/2023]
Abstract
Spatial patterns of adaptation provide important insights into agents of selection and expected responses of populations to climate change. Robust inference into the spatial scale of adaptation can be gained through reciprocal transplant experiments that combine multiple source populations and common gardens. Here, we examine the spatial scale of local adaptation of the North American annual plant common ragweed, Ambrosia artemisiifolia, using data from four common gardens with 22 source populations sampled from across a ∼1200 km latitudinal gradient within the native range. We found evidence of local adaptation at the northernmost common garden, but maladaptation at the two southern gardens, where more southern source populations outperformed local populations. Overall, the spatial scale of adaptation was large-at the three gardens where distance between source populations and gardens explained variation in fitness, it took an average of 820 km for fitness to decline to 50% of its predicted maximum. Taken together, these results suggest that climate change has already caused maladaptation, especially across the southern portion of the range, and may result in northward range contraction over time.
Collapse
Affiliation(s)
- Amanda J Gorton
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, 55108
| | - John W Benning
- Department of Botany, University of Wyoming, Laramie, Wyoming, 82071
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, 55108
| | - David A Moeller
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, 55108
| |
Collapse
|