1
|
Zhao X, Yao M, Wang Y, Feng C, Yang Y, Tian L, Bao C, Li X, Zhu X, Zhang X. Neuroregulation during Bone Formation and Regeneration: Mechanisms and Strategies. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7223-7250. [PMID: 39869030 DOI: 10.1021/acsami.4c16786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The skeleton is highly innervated by numerous nerve fibers. These nerve fibers, in addition to transmitting information within the bone and mediating bone sensations, play a crucial role in regulating bone tissue formation and regeneration. Traditional bone tissue engineering (BTE) often fails to achieve satisfactory outcomes when dealing with large-scale bone defects, which is frequently related to the lack of effective reconstruction of the neurovascular network. In recent years, increasing research has revealed the critical role of nerves in bone metabolism. Nerve fibers regulate bone cells through neurotransmitters, neuropeptides, and peripheral glial cells. Furthermore, nerves also coordinate with the vascular and immune systems to jointly construct a microenvironment favorable for bone regeneration. As a signaling driver of bone formation, neuroregulation spans the entire process of bone physiological activities from the embryonic formation to postmaturity remodeling and repair. However, there is currently a lack of comprehensive summaries of these regulatory mechanisms. Therefore, this review sketches out the function of nerves during bone formation and regeneration. Then, we elaborate on the mechanisms of neurovascular coupling and neuromodulation of bone immunity. Finally, we discuss several novel strategies for neuro-bone tissue engineering (NBTE) based on neuroregulation of bone, focusing on the coordinated regeneration of nerve and bone tissue.
Collapse
Affiliation(s)
- Xiangrong Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Meilin Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuyi Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Cong Feng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuhan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Luoqiang Tian
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
2
|
Stundl J, Bronner ME. Tempting fate: Neural crest induction along the body axis. Cells Dev 2025:204000. [PMID: 39894223 DOI: 10.1016/j.cdev.2025.204000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Neural crest induction begins at the neural plate border and involves the intricate interplay of signaling and transcriptional events. In this review, we examine the literature on neural crest induction, focusing primarily on the chick model due to the extended time during which the induction process occurs. While it is well-established that induction initiates during mid-gastrulation, evidence from tissue recombination and transcriptomic analyses suggests that the process continues until neural tube closure. Along the body axis, distinct neural crest populations with varying developmental potentials emerge in a rostral to caudal progression. Testing axial level differences has revealed axial level specific subcircuits that influence region-specific neural crest cell fate decision, though what leads to axial level specification remains unknown.
Collapse
Affiliation(s)
- Jan Stundl
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena 91125, USA
| | - Marianne E Bronner
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena 91125, USA.
| |
Collapse
|
3
|
Edens BM, Lin J, Bronner ME. Ancient emergence of neuronal heterogeneity in the enteric nervous system of jawless vertebrates. Dev Biol 2025; 520:117-124. [PMID: 39756495 DOI: 10.1016/j.ydbio.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/25/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
While the enteric nervous system (ENS) of jawed vertebrates is largely derived from the vagal neural crest, lamprey are jawless vertebrates that lack the vagal neural crest, yet possess enteric neurons derived from late-migrating Schwann cell precursors. To illuminate homologies between the ENS of jawed and jawless vertebrates, here we examine the diversity and distribution of neuronal subtypes within the intestine of the sea lamprey during late embryonic and ammocete stages. In addition to previously described 5-HT-immunoreactive serotonergic neurons, we identified NOS+ and VIP+ neurons, consistent with motor neuron identity. Moreover, the presence of Calbindin+ neurons was suggestive of sensory IPANs. Quantification of neural numbers by subtype across the length of the intestine revealed significant, albeit subtle differences in distribution of neuronal markers at different axial levels, suggesting that the complex organizational features of the ENS may have emerged much earlier in the vertebrate lineage than previously appreciated.
Collapse
Affiliation(s)
- Brittany M Edens
- Division of Biology and Biological Engineering, California Institute of Technology, 91125, Pasadena, CA, USA
| | - Jason Lin
- Division of Biology and Biological Engineering, California Institute of Technology, 91125, Pasadena, CA, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, 91125, Pasadena, CA, USA.
| |
Collapse
|
4
|
Ma XR, Conley SD, Kosicki M, Bredikhin D, Cui R, Tran S, Sheth MU, Qiu WL, Chen S, Kundu S, Kang HY, Amgalan D, Munger CJ, Duan L, Dang K, Rubio OM, Kany S, Zamirpour S, DePaolo J, Padmanabhan A, Olgin J, Damrauer S, Andersson R, Gu M, Priest JR, Quertermous T, Qiu X, Rabinovitch M, Visel A, Pennacchio L, Kundaje A, Glass IA, Gifford CA, Pirruccello JP, Goodyer WR, Engreitz JM. Molecular convergence of risk variants for congenital heart defects leveraging a regulatory map of the human fetal heart. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.20.24317557. [PMID: 39606363 PMCID: PMC11601760 DOI: 10.1101/2024.11.20.24317557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Congenital heart defects (CHD) arise in part due to inherited genetic variants that alter genes and noncoding regulatory elements in the human genome. These variants are thought to act during fetal development to influence the formation of different heart structures. However, identifying the genes, pathways, and cell types that mediate these effects has been challenging due to the immense diversity of cell types involved in heart development as well as the superimposed complexities of interpreting noncoding sequences. As such, understanding the molecular functions of both noncoding and coding variants remains paramount to our fundamental understanding of cardiac development and CHD. Here, we created a gene regulation map of the healthy human fetal heart across developmental time, and applied it to interpret the functions of variants associated with CHD and quantitative cardiac traits. We collected single-cell multiomic data from 734,000 single cells sampled from 41 fetal hearts spanning post-conception weeks 6 to 22, enabling the construction of gene regulation maps in 90 cardiac cell types and states, including rare populations of cardiac conduction cells. Through an unbiased analysis of all 90 cell types, we find that both rare coding variants associated with CHD and common noncoding variants associated with valve traits converge to affect valvular interstitial cells (VICs). VICs are enriched for high expression of known CHD genes previously identified through mapping of rare coding variants. Eight CHD genes, as well as other genes in similar molecular pathways, are linked to common noncoding variants associated with other valve diseases or traits via enhancers in VICs. In addition, certain common noncoding variants impact enhancers with activities highly specific to particular subanatomic structures in the heart, illuminating how such variants can impact specific aspects of heart structure and function. Together, these results implicate new enhancers, genes, and cell types in the genetic etiology of CHD, identify molecular convergence of common noncoding and rare coding variants on VICs, and suggest a more expansive view of the cell types instrumental in genetic risk for CHD, beyond the working cardiomyocyte. This regulatory map of the human fetal heart will provide a foundational resource for understanding cardiac development, interpreting genetic variants associated with heart disease, and discovering targets for cell-type specific therapies.
Collapse
Affiliation(s)
- X Rosa Ma
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Stephanie D Conley
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Michael Kosicki
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Danila Bredikhin
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Ran Cui
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven Tran
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Maya U Sheth
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Wei-Lin Qiu
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sijie Chen
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Soumya Kundu
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Helen Y Kang
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Current address: PhD Program in Computational and Systems Biology, MIT, Cambridge, MA, USA
| | - Dulguun Amgalan
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, USA
| | - Chad J Munger
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Lauren Duan
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Katherine Dang
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Oriane Matthys Rubio
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Shinwan Kany
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Cardiology, University Heart and Vascular Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Siavash Zamirpour
- School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - John DePaolo
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arun Padmanabhan
- Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco School of Medicine, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Jeffrey Olgin
- Division of Cardiology, Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Scott Damrauer
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robin Andersson
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mingxia Gu
- Center for Stem Cell and Organoid Medicine, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - James R Priest
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Tenaya Therapeutics, South San Francisco, CA, USA
| | - Thomas Quertermous
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Xiaojie Qiu
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Bio-X, Stanford University, Stanford, CA, USA
| | - Marlene Rabinovitch
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University, Stanford, CA, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Natural Sciences, University of California, Merced, Merced, CA, USA
| | - Len Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, 94720, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Ian A Glass
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, USA
- Department of Pediatrics and Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Casey A Gifford
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - James P Pirruccello
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Cardiology, Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA, USA
- Bakar Computation Health Sciences Institute, University of California, San Francisco, CA, USA
| | - William R Goodyer
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Jesse M Engreitz
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
5
|
Wu HF, Hamilton C, Porritt H, Winbo A, Zeltner N. Modelling neurocardiac physiology and diseases using human pluripotent stem cells: current progress and future prospects. J Physiol 2024. [PMID: 39235952 DOI: 10.1113/jp286416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Throughout our lifetime the heart executes cycles of contraction and relaxation to meet the body's ever-changing metabolic needs. This vital function is continuously regulated by the autonomic nervous system. Cardiovascular dysfunction and autonomic dysregulation are also closely associated; however, the degrees of cause and effect are not always readily discernible. Thus, to better understand cardiovascular disorders, it is crucial to develop model systems that can be used to study the neurocardiac interaction in healthy and diseased states. Human pluripotent stem cell (hiPSC) technology offers a unique human-based modelling system that allows for studies of disease effects on the cells of the heart and autonomic neurons as well as of their interaction. In this review, we summarize current understanding of the embryonic development of the autonomic, cardiac and neurocardiac systems, their regulation, as well as recent progress of in vitro modelling systems based on hiPSCs. We further discuss the advantages and limitations of hiPSC-based models in neurocardiac research.
Collapse
Affiliation(s)
- Hsueh-Fu Wu
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Charlotte Hamilton
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Harrison Porritt
- Department of Physiology, The University of Auckland, Auckland, New Zealand
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Annika Winbo
- Department of Physiology, The University of Auckland, Auckland, New Zealand
- Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Nadja Zeltner
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
6
|
Erickson AG, Motta A, Kastriti ME, Edwards S, Coulpier F, Théoulle E, Murtazina A, Poverennaya I, Wies D, Ganofsky J, Canu G, Lallemend F, Topilko P, Hadjab S, Fried K, Ruhrberg C, Schwarz Q, Castellani V, Bonanomi D, Adameyko I. Motor innervation directs the correct development of the mouse sympathetic nervous system. Nat Commun 2024; 15:7065. [PMID: 39152112 PMCID: PMC11329663 DOI: 10.1038/s41467-024-51290-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
The sympathetic nervous system controls bodily functions including vascular tone, cardiac rhythm, and the "fight-or-flight response". Sympathetic chain ganglia develop in parallel with preganglionic motor nerves extending from the neural tube, raising the question of whether axon targeting contributes to sympathetic chain formation. Using nerve-selective genetic ablations and lineage tracing in mouse, we reveal that motor nerve-associated Schwann cell precursors (SCPs) contribute sympathetic neurons and satellite glia after the initial seeding of sympathetic ganglia by neural crest. Motor nerve ablation causes mispositioning of SCP-derived sympathoblasts as well as sympathetic chain hypoplasia and fragmentation. Sympathetic neurons in motor-ablated embryos project precociously and abnormally towards dorsal root ganglia, eventually resulting in fusion of sympathetic and sensory ganglia. Cell interaction analysis identifies semaphorins as potential motor nerve-derived signaling molecules regulating sympathoblast positioning and outgrowth. Overall, central innervation functions both as infrastructure and regulatory niche to ensure the integrity of peripheral ganglia morphogenesis.
Collapse
Affiliation(s)
- Alek G Erickson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Alessia Motta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Brain Research, Department of Neuroimmunology, Medical University Vienna, Vienna, Austria
| | - Steven Edwards
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Fanny Coulpier
- Mondor Institute for Biomedical Research (IMRB), INSERM, Créteil, France
| | - Emy Théoulle
- University of Claude Bernard Lyon 1, MeLiS, CNRS, INSERM, NeuroMyoGene Institute, Lyon, France
| | - Aliia Murtazina
- Department of Neuroscience, Biomedicum, Karolinska Institute, Stockholm, Sweden
| | - Irina Poverennaya
- Center for Brain Research, Department of Neuroimmunology, Medical University Vienna, Vienna, Austria
| | - Daniel Wies
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jeremy Ganofsky
- University of Claude Bernard Lyon 1, MeLiS, CNRS, INSERM, NeuroMyoGene Institute, Lyon, France
| | - Giovanni Canu
- University College London, Department of Ophthalmology London, London, UK
| | - Francois Lallemend
- Department of Neuroscience, Biomedicum, Karolinska Institute, Stockholm, Sweden
| | - Piotr Topilko
- Mondor Institute for Biomedical Research (IMRB), INSERM, Créteil, France
| | - Saida Hadjab
- Department of Neuroscience, Biomedicum, Karolinska Institute, Stockholm, Sweden
| | - Kaj Fried
- Department of Neuroscience, Biomedicum, Karolinska Institute, Stockholm, Sweden
| | | | - Quenten Schwarz
- Center for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Valerie Castellani
- University of Claude Bernard Lyon 1, MeLiS, CNRS, INSERM, NeuroMyoGene Institute, Lyon, France
| | - Dario Bonanomi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy.
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Center for Brain Research, Department of Neuroimmunology, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Kletskaya I, Belousova I, Makarova O, Narbutov A, Oganesyan R, Donati M, Říčař J, Salgado CM, Reyes-Múgica M, Kazakov DV. Schwannian and Perineuriomatous Differentiation in a Series of Giant Congenital Melanocytic Nevi. Am J Dermatopathol 2024; 46:483-491. [PMID: 38842402 DOI: 10.1097/dad.0000000000002754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
ABSTRACT Close relationship between melanocytes and neural cells is accepted to reflect their common derivation from the neural crest and tumors combining both elements. We present a series of 10 patients with giant congenital melanocytic nevi (CMN) in which a secondary proliferation (11 lesions) with schwannian and/or perineuriomatous differentiation developed in the course of the disease. The age of the patients (4 male and 6 female) at the time of surgery and histological assessment varied from 3 months to 57 years. Histopathologically, the following subgroups were delineated: (1) nodular/tumoriform "neurotization" in CMN, (2) diffuse neurofibroma-like proliferation within CMN, (3) plexiform neurofibroma-like proliferation within CMN, and (4) diffuse perineuriomatous (hybrid schwannomatous-perineuriomatous) differentiation in CMN. We review the pertinent literature, including the role of recently identified Schwann cell precursors which are believed to represent the nerve-associated state of neural crest-like cells that persists into later developmental stages.
Collapse
Affiliation(s)
- Irina Kletskaya
- Russian Children's Clinical Hospital of Pirogov's Russian National Research Medical University of the Ministry of Healthcare, Russian Federation, Moscow, Russia
- Dmitry Rogachev's National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Irena Belousova
- Department of Dermatology, Medical Military Academy, Saint Petersburg, Russia
| | - Olga Makarova
- Russian Children's Clinical Hospital of Pirogov's Russian National Research Medical University of the Ministry of Healthcare, Russian Federation, Moscow, Russia
| | - Anton Narbutov
- Russian Children's Clinical Hospital of Pirogov's Russian National Research Medical University of the Ministry of Healthcare, Russian Federation, Moscow, Russia
| | - Raisa Oganesyan
- Dmitry Rogachev's National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Michele Donati
- Department of Pathology, University Hospital Campus Bio-Medico, Rome, Italy
| | - Jan Říčař
- Department of Dermatology, Charles University Medical Faculty Hospital, Pilsen, Czech Republic
| | - Claudia M Salgado
- Division of Pathology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh; and
| | - Miguel Reyes-Múgica
- Division of Pathology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh; and
| | - Dmitry V Kazakov
- IDP Institut für Dermatohistopathologie, Pathologie Institut Enge, Zürich, Switzerland
| |
Collapse
|
8
|
Lowenstein ED, Misios A, Buchert S, Ruffault PL. Molecular Characterization of Nodose Ganglia Development Reveals a Novel Population of Phox2b+ Glial Progenitors in Mice. J Neurosci 2024; 44:e1441232024. [PMID: 38830761 PMCID: PMC11236582 DOI: 10.1523/jneurosci.1441-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 03/17/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
The vagal ganglia, comprised of the superior (jugular) and inferior (nodose) ganglia of the vagus nerve, receive somatosensory information from the head and neck or viscerosensory information from the inner organs, respectively. Developmentally, the cranial neural crest gives rise to all vagal glial cells and to neurons of the jugular ganglia, while the epibranchial placode gives rise to neurons of the nodose ganglia. Crest-derived nodose glial progenitors can additionally generate autonomic neurons in the peripheral nervous system, but how these progenitors generate neurons is unknown. Here, we found that some Sox10+ neural crest-derived cells in, and surrounding, the nodose ganglion transiently expressed Phox2b, a master regulator of autonomic nervous system development, during early embryonic life. Our genetic lineage-tracing analysis in mice of either sex revealed that despite their common developmental origin and extreme spatial proximity, a substantial proportion of glial cells in the nodose, but not in the neighboring jugular ganglia, have a history of Phox2b expression. We used single-cell RNA-sequencing to demonstrate that these progenitors give rise to all major glial subtypes in the nodose ganglia, including Schwann cells, satellite glia, and glial precursors, and mapped their spatial distribution by in situ hybridization. Lastly, integration analysis revealed transcriptomic similarities between nodose and dorsal root ganglia glial subtypes and revealed immature nodose glial subtypes. Our work demonstrates that these crest-derived nodose glial progenitors transiently express Phox2b, give rise to the entire complement of nodose glial cells, and display a transcriptional program that may underlie their bipotent nature.
Collapse
Affiliation(s)
- Elijah D Lowenstein
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Aristotelis Misios
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Sven Buchert
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Pierre-Louis Ruffault
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| |
Collapse
|
9
|
Knyazeva A, Dyachuk V. Neural crest and sons: role of neural crest cells and Schwann cell precursors in development and gland embryogenesis. Front Cell Dev Biol 2024; 12:1406199. [PMID: 38989061 PMCID: PMC11233730 DOI: 10.3389/fcell.2024.1406199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
In this review, we consider the multipotency of neural crest cells (NCCs), Schwann cell precursors (SCPs), and their role in embryogenesis base on genetic tracing and knock out model animals and single cell transcriptomic analysis. In particular, we summarize and analyze data on the contribution of NCCs and SCPs to the gland development and functions.
Collapse
|
10
|
Van Lent J, Prior R, Pérez Siles G, Cutrupi AN, Kennerson ML, Vangansewinkel T, Wolfs E, Mukherjee-Clavin B, Nevin Z, Judge L, Conklin B, Tyynismaa H, Clark AJ, Bennett DL, Van Den Bosch L, Saporta M, Timmerman V. Advances and challenges in modeling inherited peripheral neuropathies using iPSCs. Exp Mol Med 2024; 56:1348-1364. [PMID: 38825644 PMCID: PMC11263568 DOI: 10.1038/s12276-024-01250-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 06/04/2024] Open
Abstract
Inherited peripheral neuropathies (IPNs) are a group of diseases associated with mutations in various genes with fundamental roles in the development and function of peripheral nerves. Over the past 10 years, significant advances in identifying molecular disease mechanisms underlying axonal and myelin degeneration, acquired from cellular biology studies and transgenic fly and rodent models, have facilitated the development of promising treatment strategies. However, no clinical treatment has emerged to date. This lack of treatment highlights the urgent need for more biologically and clinically relevant models recapitulating IPNs. For both neurodevelopmental and neurodegenerative diseases, patient-specific induced pluripotent stem cells (iPSCs) are a particularly powerful platform for disease modeling and preclinical studies. In this review, we provide an update on different in vitro human cellular IPN models, including traditional two-dimensional monoculture iPSC derivatives, and recent advances in more complex human iPSC-based systems using microfluidic chips, organoids, and assembloids.
Collapse
Grants
- R01 NS119678 NINDS NIH HHS
- U01 ES032673 NIEHS NIH HHS
- Wellcome Trust
- R01 AG072052 NIA NIH HHS
- DOC-PRO4 Universiteit Antwerpen (University of Antwerp)
- RF1 AG072052 NIA NIH HHS
- This work was supported in part by the University of Antwerp (DOC-PRO4 PhD fellowship to J.V.L. and TOP-BOF research grant no. 38694 to V.T.), the Association Française contre les Myopathies (AFM research grant no. 24063 to V.T.), Association Belge contre les Maladies Neuromusculaires (ABMM research grant no. 1 to J.V.L and V.T), the interuniversity research fund (iBOF project to. L.V.D.B, E.W. and V.T.). V.T. is part of the μNEURO Research Centre of Excellence of the University of Antwerp and is an active member of the European Network for Stem Cell Core Facilities (CorEUStem, COST Action CA20140). Work in the M.L.K group was supported by the NHMRC Ideas Grant (APP1186867), CMT Australia Grant awarded to M.L.K and G.P.-S and the Australian Medical Research Future Fund (MRFF) Genomics Health Futures Mission Grant 2007681. B.M.C. is supported by the American Academy of Neurology and the Passano Foundation. L.M.J. and B.R.C. are supported by the Charcot-Marie-Tooth Association, NINDS R01 NS119678, NIEHS U01 ES032673. H.T. is supported by Academy of Finland Centre of Excellence in Stem Cell Metabolism and Sigrid Juselius Foundation. Work in the D.L.B. group is supported by a Wellcome Investigator Grant (223149/Z/21/Z), the MRC (MR/T020113/1), and with funding from the MRC and Versus Arthritis to the PAINSTORM consortium as part of the Advanced Pain Discovery Platform (MR/W002388/1).
- Australian Medical Association (Australian Medical Association Limited)
- Universiteit Hasselt (UHasselt)
- American Academy of Neurology (AAN)
- Gladstone Institutes (J. David Gladstone Institutes)
- Academy of Finland (Suomen Akatemia)
- Academy of Medical Royal Colleges (AoMRC)
- Wellcome Trust (Wellcome)
- Oxford University Hospitals NHS Trust (Oxford University Hospitals National Health Service Trust)
- KU Leuven (Katholieke Universiteit Leuven)
- Vlaams Instituut voor Biotechnologie (Flanders Institute for Biotechnology)
- Miami University | Leonard M. Miller School of Medicine (Miller School of Medicine)
Collapse
Affiliation(s)
- Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, 2610, Antwerp, Belgium
- Institute of Oncology Research (IOR), BIOS+, 6500, Bellinzona, Switzerland
- Università della Svizzera Italiana, 6900, Lugano, Switzerland
| | - Robert Prior
- Universitätsklinikum Bonn (UKB), University of Bonn, Bonn, Germany
| | - Gonzalo Pérez Siles
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Anthony N Cutrupi
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Molecular Medicine Laboratory, Concord Hospital, Sydney, NSW, Australia
| | - Tim Vangansewinkel
- UHasselt - Hasselt University, BIOMED, Laboratory for Functional Imaging and Research on Stem Cells (FIERCE Lab), Agoralaan, 3590, Diepenbeek, Belgium
- VIB-Center for Brain and Disease Research, Laboratory of Neurobiology, 3000, Leuven, Belgium
| | - Esther Wolfs
- UHasselt - Hasselt University, BIOMED, Laboratory for Functional Imaging and Research on Stem Cells (FIERCE Lab), Agoralaan, 3590, Diepenbeek, Belgium
| | | | | | - Luke Judge
- Gladstone Institutes, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce Conklin
- Gladstone Institutes, San Francisco, CA, USA
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Alex J Clark
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, Oxford University, Oxford, UK
| | - Ludo Van Den Bosch
- VIB-Center for Brain and Disease Research, Laboratory of Neurobiology, 3000, Leuven, Belgium
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven-University of Leuven, 3000, Leuven, Belgium
| | - Mario Saporta
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium.
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, 2610, Antwerp, Belgium.
| |
Collapse
|
11
|
Habecker BA, Bers DM, Birren SJ, Chang R, Herring N, Kay MW, Li D, Mendelowitz D, Mongillo M, Montgomery JM, Ripplinger CM, Tampakakis E, Winbo A, Zaglia T, Zeltner N, Paterson DJ. Molecular and cellular neurocardiology in heart disease. J Physiol 2024:10.1113/JP284739. [PMID: 38778747 PMCID: PMC11582088 DOI: 10.1113/jp284739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
This paper updates and builds on a previous White Paper in this journal that some of us contributed to concerning the molecular and cellular basis of cardiac neurobiology of heart disease. Here we focus on recent findings that underpin cardiac autonomic development, novel intracellular pathways and neuroplasticity. Throughout we highlight unanswered questions and areas of controversy. Whilst some neurochemical pathways are already demonstrating prognostic viability in patients with heart failure, we also discuss the opportunity to better understand sympathetic impairment by using patient specific stem cells that provides pathophysiological contextualization to study 'disease in a dish'. Novel imaging techniques and spatial transcriptomics are also facilitating a road map for target discovery of molecular pathways that may form a therapeutic opportunity to treat cardiac dysautonomia.
Collapse
Affiliation(s)
- Beth A Habecker
- Department of Chemical Physiology & Biochemistry, Department of Medicine Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | - Susan J Birren
- Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Rui Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Dan Li
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Johanna M Montgomery
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | | | - Annika Winbo
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Nadja Zeltner
- Departments of Biochemistry and Molecular Biology, Cell Biology, and Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Wu HF, Saito-Diaz K, Huang CW, McAlpine JL, Seo DE, Magruder DS, Ishan M, Bergeron HC, Delaney WH, Santori FR, Krishnaswamy S, Hart GW, Chen YW, Hogan RJ, Liu HX, Ivanova NB, Zeltner N. Parasympathetic neurons derived from human pluripotent stem cells model human diseases and development. Cell Stem Cell 2024; 31:734-753.e8. [PMID: 38608707 PMCID: PMC11069445 DOI: 10.1016/j.stem.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/16/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024]
Abstract
Autonomic parasympathetic neurons (parasymNs) control unconscious body responses, including "rest-and-digest." ParasymN innervation is important for organ development, and parasymN dysfunction is a hallmark of autonomic neuropathy. However, parasymN function and dysfunction in humans are vastly understudied due to the lack of a model system. Human pluripotent stem cell (hPSC)-derived neurons can fill this void as a versatile platform. Here, we developed a differentiation paradigm detailing the derivation of functional human parasymNs from Schwann cell progenitors. We employ these neurons (1) to assess human autonomic nervous system (ANS) development, (2) to model neuropathy in the genetic disorder familial dysautonomia (FD), (3) to show parasymN dysfunction during SARS-CoV-2 infection, (4) to model the autoimmune disease Sjögren's syndrome (SS), and (5) to show that parasymNs innervate white adipocytes (WATs) during development and promote WAT maturation. Our model system could become instrumental for future disease modeling and drug discovery studies, as well as for human developmental studies.
Collapse
Affiliation(s)
- Hsueh-Fu Wu
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Kenyi Saito-Diaz
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Chia-Wei Huang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Jessica L McAlpine
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Dong Eun Seo
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - D Sumner Magruder
- Department of Genetics, Department of Computer Science, Wu Tsai Institute, Program for Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Mohamed Ishan
- Regenerative Bioscience Center, Department of Animal and Dairy Science College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Harrison C Bergeron
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - William H Delaney
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Fabio R Santori
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Smita Krishnaswamy
- Department of Genetics, Department of Computer Science, Wu Tsai Institute, Program for Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Gerald W Hart
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ya-Wen Chen
- Department of Otolaryngology, Department of Cell, Developmental, and Regenerative Biology, Institute for Airway Sciences, Institute for Regenerative Medicine, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert J Hogan
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Hong-Xiang Liu
- Regenerative Bioscience Center, Department of Animal and Dairy Science College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Natalia B Ivanova
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Nadja Zeltner
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
13
|
Shurin MR, Wheeler SE, Shurin GV, Zhong H, Zhou Y. Schwann cells in the normal and pathological lung microenvironment. Front Mol Biosci 2024; 11:1365760. [PMID: 38638689 PMCID: PMC11024312 DOI: 10.3389/fmolb.2024.1365760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
The lungs are a key organ in the respiratory system. They are regulated by a complex network of nerves that control their development, structure, function, and response to various pathological stimuli. Accumulating evidence suggests the involvement of a neural mechanism in different pathophysiological conditions in the lungs and the development and progression of common respiratory diseases. Lung diseases are the chief source of death globally. For instance, lung cancer is the second most commonly diagnosed malignancy, after prostate cancer in men and breast cancer in women, and is the most lethal cancer worldwide. However, although airway nerves are accepted as a mechanistically and therapeutically important feature that demands appropriate emphasizing in the context of many respiratory diseases, significantly less is known about the role of the neuroglial cells in lung physiology and pathophysiology, including lung cancer. New data have uncovered some cellular and molecular mechanisms of how Schwann cells, as fundamental components of the peripheral nervous system, may regulate lung cancer cells' survival, spreading, and invasiveness in vitro and in vivo. Schwann cells control the formation and maintenance of the lung cancer microenvironment and support metastasis formation. It was also reported that the number of lung cancer-associated Schwann cells correlates with patients' survival. Different factors secreted by Schwann cells, including microRNA, are known to sharpen the lung cancer environment by regulating the tumor-neuro-immune axis. Further clinical and experimental studies are required to elucidate the detailed role of Schwann cells in creating and maintaining pulmonary tumor-neuro-immune axis, which will advance our understanding of the pathogenesis of lung cancer and may inform therapeutic hypotheses aiming neoplasms and metastases in the lung.
Collapse
Affiliation(s)
- Michael R. Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Sarah E. Wheeler
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Galina V. Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Hua Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Verlinden TJM, Lamers WH, Herrler A, Köhler SE. The differences in the anatomy of the thoracolumbar and sacral autonomic outflow are quantitative. Clin Auton Res 2024; 34:79-97. [PMID: 38403748 PMCID: PMC10944453 DOI: 10.1007/s10286-024-01023-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/12/2023] [Indexed: 02/27/2024]
Abstract
PURPOSE We have re-evaluated the anatomical arguments that underlie the division of the spinal visceral outflow into sympathetic and parasympathetic divisions. METHODOLOGY Using a systematic literature search, we mapped the location of catecholaminergic neurons throughout the mammalian peripheral nervous system. Subsequently, a narrative method was employed to characterize segment-dependent differences in the location of preganglionic cell bodies and the composition of white and gray rami communicantes. RESULTS AND CONCLUSION One hundred seventy studies were included in the systematic review, providing information on 389 anatomical structures. Catecholaminergic nerve fibers are present in most spinal and all cranial nerves and ganglia, including those that are known for their parasympathetic function. Along the entire spinal autonomic outflow pathways, proximal and distal catecholaminergic cell bodies are common in the head, thoracic, and abdominal and pelvic region, which invalidates the "short-versus-long preganglionic neuron" argument. Contrary to the classically confined outflow levels T1-L2 and S2-S4, preganglionic neurons have been found in the resulting lumbar gap. Preganglionic cell bodies that are located in the intermediolateral zone of the thoracolumbar spinal cord gradually nest more ventrally within the ventral motor nuclei at the lumbar and sacral levels, and their fibers bypass the white ramus communicans and sympathetic trunk to emerge directly from the spinal roots. Bypassing the sympathetic trunk, therefore, is not exclusive for the sacral outflow. We conclude that the autonomic outflow displays a conserved architecture along the entire spinal axis, and that the perceived differences in the anatomy of the autonomic thoracolumbar and sacral outflow are quantitative.
Collapse
Affiliation(s)
- Thomas J M Verlinden
- Department of Anatomy & Embryology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Wouter H Lamers
- Department of Anatomy & Embryology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Andreas Herrler
- Department of Anatomy & Embryology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - S Eleonore Köhler
- Department of Anatomy & Embryology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| |
Collapse
|
15
|
Gerschenfeld G, Coulpier F, Gresset A, Pulh P, Job B, Topilko T, Siegenthaler J, Kastriti ME, Brunet I, Charnay P, Topilko P. Neural tube-associated boundary caps are a major source of mural cells in the skin. eLife 2023; 12:e69413. [PMID: 38095361 PMCID: PMC10786459 DOI: 10.7554/elife.69413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
In addition to their roles in protecting nerves and increasing conduction velocity, peripheral glia plays key functions in blood vessel development by secreting molecules governing arteries alignment and maturation with nerves. Here, we show in mice that a specific, nerve-attached cell population, derived from boundary caps (BCs), constitutes a major source of mural cells for the developing skin vasculature. Using Cre-based reporter cell tracing and single-cell transcriptomics, we show that BC derivatives migrate into the skin along the nerves, detach from them, and differentiate into pericytes and vascular smooth muscle cells. Genetic ablation of this population affects the organization of the skin vascular network. Our results reveal the heterogeneity and extended potential of the BC population in mice, which gives rise to mural cells, in addition to previously described neurons, Schwann cells, and melanocytes. Finally, our results suggest that mural specification of BC derivatives takes place before their migration along nerves to the mouse skin.
Collapse
Affiliation(s)
- Gaspard Gerschenfeld
- Institut de Biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, Inserm, Université PSLParisFrance
- Sorbonne Université, Collège DoctoralParisFrance
| | - Fanny Coulpier
- Institut de Biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, Inserm, Université PSLParisFrance
- nstitut Mondor de Recherche Biomédicale, Inserm U955-Team 9CréteilFrance
- Genomic facility, Ecole normale supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'Ecole normale supérieure (IBENS)ParisFrance
| | - Aurélie Gresset
- Institut de Biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, Inserm, Université PSLParisFrance
| | - Pernelle Pulh
- Institut de Biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, Inserm, Université PSLParisFrance
- nstitut Mondor de Recherche Biomédicale, Inserm U955-Team 9CréteilFrance
| | - Bastien Job
- Inserm US23, AMMICA, Institut Gustave RoussyVillejuifFrance
| | - Thomas Topilko
- Laboratoire de Plasticité Structurale, Sorbonne Université, ICM Institut du Cerveau et de la Moelle Epinière, Inserm U1127, CNRS UMR7225ParisFrance
| | - Julie Siegenthaler
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska InstitutetStockholmSweden
- Department of Neuroimmunology, Center for Brain Research, Medical University ViennaViennaAustria
| | - Isabelle Brunet
- Inserm U1050, Centre Interdisciplinaire de Recherche en Biologie (CIRB), Collège de FranceParisFrance
| | - Patrick Charnay
- Institut de Biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, Inserm, Université PSLParisFrance
| | - Piotr Topilko
- Institut de Biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, Inserm, Université PSLParisFrance
- nstitut Mondor de Recherche Biomédicale, Inserm U955-Team 9CréteilFrance
| |
Collapse
|
16
|
Hsu IU, Lin Y, Guo Y, Xu QJ, Shao Y, Wang RL, Yin D, Zhao J, Young LH, Zhao H, Zhang L, Chang RB. Differential developmental blueprints of organ-intrinsic nervous systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571306. [PMID: 38168446 PMCID: PMC10759999 DOI: 10.1101/2023.12.12.571306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The organ-intrinsic nervous system is a major interface between visceral organs and the brain, mediating important sensory and regulatory functions in the body-brain axis and serving as critical local processors for organ homeostasis. Molecularly, anatomically, and functionally, organ-intrinsic neurons are highly specialized for their host organs. However, the underlying mechanism that drives this specialization is largely unknown. Here, we describe the differential strategies utilized to achieve organ-specific organization between the enteric nervous system (ENS) 1 and the intrinsic cardiac nervous system (ICNS) 2 , a neuronal network essential for heart performance but poorly characterized. Integrating high-resolution whole-embryo imaging, single-cell genomics, spatial transcriptomics, proteomics, and bioinformatics, we uncover that unlike the ENS which is highly mobile and colonizes the entire gastrointestinal (GI) tract, the ICNS uses a rich set of extracellular matrix (ECM) genes that match with surrounding heart cells and an intermediate dedicated neuronal progenitor state to stabilize itself for a 'beads-on-the-necklace' organization on heart atria. While ICNS- and ENS-precursors are genetically similar, their differentiation paths are influenced by their host-organs, leading to distinct mature neuron types. Co-culturing ENS-precursors with heart cells shifts their identity towards the ICNS and induces the expression of heart-matching ECM genes. Our cross-organ study thus reveals fundamental principles for the maturation and specialization of organ-intrinsic neurons.
Collapse
|
17
|
Abdel-Maksoud FM, Fadl S, Abou-Elmagd A, Saleh AMM. Post-hatching developmental changes in the adrenal gland of the Japanese quail (Coturnix coturnix japonica): Histological, immunohistochemical, and electron microscopic studies. Microsc Res Tech 2023; 86:1461-1474. [PMID: 37204121 DOI: 10.1002/jemt.24348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/21/2023] [Accepted: 05/06/2023] [Indexed: 05/20/2023]
Abstract
The adrenal glands are paired abdominal endocrine organs vital to the bird's health. The present research aimed to provide a comprehensive examination of the histological, ultrastructural, and immunohistochemical investigations of the adrenal gland in Japanese quail during the post hatching period. The current study was performed on 21 healthy Japanese quail chicks at different post hatching periods. Our results showed the adrenal gland is surrounded by a connective tissue capsule, which consists of dense collagen fibers containing large blood vessels, chromaffin cells, autonomic ganglia, fibroblasts, and migrating Schwann cells. The zonation of the adrenal gland is composed of a subcapsular layer, a peripheral zone, and a central zone, which gets more pronounced with age. At the ultrastructural level, the interrenal cells take the steroid-secreting cells characters; they have varying amounts of lipid droplets and abundant mitochondria. Adrenal medullary chromaffin cells showed positive immunoreactivity to the NSE. With increasing age, the chromaffin tissue's Sox10 immunoreactivity increased. β-catenin is expressed within the plasmalemma and the cytoplasm of the interrenal and chromaffin cells and its reactivity increased with age, especially in the chromaffin cells. Our results indicate the adrenal gland undergoes significant morphological changes during the postnatal life. Overall, the postnatal period is an important time for the development and maturation of the adrenal glands.
Collapse
Affiliation(s)
- Fatma M Abdel-Maksoud
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Saher Fadl
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Ahmed Abou-Elmagd
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Abdelmohaimen M M Saleh
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
18
|
Nozdrachev AD. A brief history of Russian research on the autonomic nervous system. Anat Rec (Hoboken) 2023; 306:2230-2248. [PMID: 35633506 DOI: 10.1002/ar.24944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/30/2022] [Accepted: 04/15/2022] [Indexed: 11/12/2022]
Abstract
The first information on the structure and function of the autonomic nervous system dates back to the time of Galen (second century), while the beginning of the study of the autonomic nervous system in Russia can be traced back to the mid-19th century. This review is devoted to the professional achievements of Russian researchers in the 19th and 20th centuries who were active in the field of the autonomic nervous system at different stages of the development of neuromorphology and neurophysiology. In addition, recent achievements of modern Russian researchers active in this domain are also highlighted. This review is mainly devoted to research on the autonomic nervous system in Russia, but it would be unfair not to mention the scientists who made a significant contribution to this field of science and worked in the republics of the former USSR. Russian morphology and physiology developed under the significant influence of well-known western scientific schools. I sincerely hope that cooperation between Russian and foreign colleagues will continue and will be fruitful for global science.
Collapse
Affiliation(s)
- Alexandr D Nozdrachev
- Department of General Physiology, St Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
19
|
Fountain DM, Sauka-Spengler T. The SWI/SNF Complex in Neural Crest Cell Development and Disease. Annu Rev Genomics Hum Genet 2023; 24:203-223. [PMID: 37624665 DOI: 10.1146/annurev-genom-011723-082913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
While the neural crest cell population gives rise to an extraordinary array of derivatives, including elements of the craniofacial skeleton, skin pigmentation, and peripheral nervous system, it is today increasingly recognized that Schwann cell precursors are also multipotent. Two mammalian paralogs of the SWI/SNF (switch/sucrose nonfermentable) chromatin-remodeling complexes, BAF (Brg1-associated factors) and PBAF (polybromo-associated BAF), are critical for neural crest specification during normal mammalian development. There is increasing evidence that pathogenic variants in components of the BAF and PBAF complexes play central roles in the pathogenesis of neural crest-derived tumors. Transgenic mouse models demonstrate a temporal window early in development where pathogenic variants in Smarcb1 result in the formation of aggressive, poorly differentiated tumors, such as rhabdoid tumors. By contrast, later in development, homozygous inactivation of Smarcb1 requires additional pathogenic variants in tumor suppressor genes to drive the development of differentiated adult neoplasms derived from the neural crest, which have a comparatively good prognosis in humans.
Collapse
Affiliation(s)
- Daniel M Fountain
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom; ,
| | - Tatjana Sauka-Spengler
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom; ,
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| |
Collapse
|
20
|
McGinnis A, Ji RR. The Similar and Distinct Roles of Satellite Glial Cells and Spinal Astrocytes in Neuropathic Pain. Cells 2023; 12:965. [PMID: 36980304 PMCID: PMC10047571 DOI: 10.3390/cells12060965] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Preclinical studies have identified glial cells as pivotal players in the genesis and maintenance of neuropathic pain after nerve injury associated with diabetes, chemotherapy, major surgeries, and virus infections. Satellite glial cells (SGCs) in the dorsal root and trigeminal ganglia of the peripheral nervous system (PNS) and astrocytes in the central nervous system (CNS) express similar molecular markers and are protective under physiological conditions. They also serve similar functions in the genesis and maintenance of neuropathic pain, downregulating some of their homeostatic functions and driving pro-inflammatory neuro-glial interactions in the PNS and CNS, i.e., "gliopathy". However, the role of SGCs in neuropathic pain is not simply as "peripheral astrocytes". We delineate how these peripheral and central glia participate in neuropathic pain by producing different mediators, engaging different parts of neurons, and becoming active at different stages following nerve injury. Finally, we highlight the recent findings that SGCs are enriched with proteins related to fatty acid metabolism and signaling such as Apo-E, FABP7, and LPAR1. Targeting SGCs and astrocytes may lead to novel therapeutics for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Aidan McGinnis
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
21
|
Ott LC, Han CY, Mueller JL, Rahman AA, Hotta R, Goldstein AM, Stavely R. Bone Marrow Stem Cells Derived from Nerves Have Neurogenic Properties and Potential Utility for Regenerative Therapy. Int J Mol Sci 2023; 24:5211. [PMID: 36982286 PMCID: PMC10048809 DOI: 10.3390/ijms24065211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Neurons and glia of the peripheral nervous system are derived from progenitor cell populations, originating from embryonic neural crest. The neural crest and vasculature are intimately associated during embryonic development and in the mature central nervous system, in which they form a neurovascular unit comprised of neurons, glia, pericytes, and vascular endothelial cells that play important roles in health and disease. Our group and others have previously reported that postnatal populations of stem cells originating from glia or Schwann cells possess neural stem cell qualities, including rapid proliferation and differentiation into mature glia and neurons. Bone marrow receives sensory and sympathetic innervation from the peripheral nervous system and is known to contain myelinating and unmyelinating Schwann cells. Herein, we describe a population of neural crest-derived Schwann cells residing in a neurovascular niche of bone marrow in association with nerve fibers. These Schwann cells can be isolated and expanded. They demonstrate plasticity in vitro, generating neural stem cells that exhibit neurogenic potential and form neural networks within the enteric nervous system in vivo following transplantation to the intestine. These cells represent a novel source of autologous neural stem cells for the treatment of neurointestinal disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Allan M. Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
22
|
Samuel RM, Navickas A, Maynard A, Gaylord EA, Garcia K, Bhat S, Majd H, Richter MN, Elder N, Le D, Nguyen P, Shibata B, Llabata ML, Selleri L, Laird DJ, Darmanis S, Goodarzi H, Fattahi F. Generation of Schwann cell derived melanocytes from hPSCs identifies pro-metastatic factors in melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531220. [PMID: 36945537 PMCID: PMC10028814 DOI: 10.1101/2023.03.06.531220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The neural crest (NC) is highly multipotent and generates diverse lineages in the developing embryo. However, spatiotemporally distinct NC populations display differences in fate potential, such as increased gliogenic and parasympathetic potential from later migrating, nerve-associated Schwann cell precursors (SCPs). Interestingly, while melanogenic potential is shared by both early migrating NC and SCPs, differences in melanocyte identity resulting from differentiation through these temporally distinct progenitors have not been determined. Here, we leverage a human pluripotent stem cell (hPSC) model of NC temporal patterning to comprehensively characterize human NC heterogeneity, fate bias, and lineage development. We captured the transition of NC differentiation between temporally and transcriptionally distinct melanogenic progenitors and identified modules of candidate transcription factor and signaling activity associated with this transition. For the first time, we established a protocol for the directed differentiation of melanocytes from hPSCs through a SCP intermediate, termed trajectory 2 (T2) melanocytes. Leveraging an existing protocol for differentiating early NC-derived melanocytes, termed trajectory 1 (T1), we performed the first comprehensive comparison of transcriptional and functional differences between these distinct melanocyte populations, revealing differences in pigmentation and unique expression of transcription factors, ligands, receptors and surface markers. We found a significant link between the T2 melanocyte transcriptional signature and decreased survival in melanoma patients in the cancer genome atlas (TCGA). We performed an in vivo CRISPRi screen of T1 and T2 melanocyte signature genes in a human melanoma cell line and discovered several T2-specific markers that promote lung metastasis in mice. We further demonstrated that one of these factors, SNRPB, regulates the splicing of transcripts involved in metastasis relevant functions such as migration, cell adhesion and proliferation. Overall, this study identifies distinct developmental trajectories as a source of diversity in melanocytes and implicates the unique molecular signature of SCP-derived melanocytes in metastatic melanoma.
Collapse
Affiliation(s)
- Ryan M. Samuel
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Albertas Navickas
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Current address: Institut Curie, CNRS UMR3348, INSERM U1278, Orsay, France
| | - Ashley Maynard
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Current address: Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Eliza A. Gaylord
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Kristle Garcia
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Samyukta Bhat
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Homa Majd
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Mikayla N. Richter
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Nicholas Elder
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Daniel Le
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Current address: Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech Inc, South San Francisco, CA
| | - Phi Nguyen
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Bradley Shibata
- Biological Electron Microscopy Facility, University of California, Davis, CA 95616, USA
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA 95616, USA
| | - Marta Losa Llabata
- Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94110, USA
- Current address: Caribou Biosciences, Berkley, CA 94710
| | - Licia Selleri
- Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94110, USA
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Diana J. Laird
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Spyros Darmanis
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Current address: Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech Inc, South San Francisco, CA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Faranak Fattahi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
- Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|
23
|
Subkhankulova T, Camargo Sosa K, Uroshlev LA, Nikaido M, Shriever N, Kasianov AS, Yang X, Rodrigues FSLM, Carney TJ, Bavister G, Schwetlick H, Dawes JHP, Rocco A, Makeev VJ, Kelsh RN. Zebrafish pigment cells develop directly from persistent highly multipotent progenitors. Nat Commun 2023; 14:1258. [PMID: 36878908 PMCID: PMC9988989 DOI: 10.1038/s41467-023-36876-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Neural crest cells are highly multipotent stem cells, but it remains unclear how their fate restriction to specific fates occurs. The direct fate restriction model hypothesises that migrating cells maintain full multipotency, whilst progressive fate restriction envisages fully multipotent cells transitioning to partially-restricted intermediates before committing to individual fates. Using zebrafish pigment cell development as a model, we show applying NanoString hybridization single cell transcriptional profiling and RNAscope in situ hybridization that neural crest cells retain broad multipotency throughout migration and even in post-migratory cells in vivo, with no evidence for partially-restricted intermediates. We find that leukocyte tyrosine kinase early expression marks a multipotent stage, with signalling driving iridophore differentiation through repression of fate-specific transcription factors for other fates. We reconcile the direct and progressive fate restriction models by proposing that pigment cell development occurs directly, but dynamically, from a highly multipotent state, consistent with our recently-proposed Cyclical Fate Restriction model.
Collapse
Affiliation(s)
| | - Karen Camargo Sosa
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Leonid A Uroshlev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Ul. Gubkina 3, Moscow, 119991, Russia
| | - Masataka Nikaido
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- Graduate School of Science, University of Hyogo, Ako-gun, Hyogo Pref., 678-1297, Japan
| | - Noah Shriever
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Artem S Kasianov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Ul. Gubkina 3, Moscow, 119991, Russia
- Department of Medical and Biological Physics, Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
- A.A. Kharkevich Institute for Information Transmission Problems (IITP), Russian Academy of Sciences, Bolshoy Karetny per. 19, build.1, Moscow, 127051, Russia
| | - Xueyan Yang
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- The MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | | | - Thomas J Carney
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, Nanyang Technological University, 59 Nanyang Drive, Yunnan Garden, 636921, Singapore
| | - Gemma Bavister
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Hartmut Schwetlick
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Jonathan H P Dawes
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Andrea Rocco
- Department of Microbial Sciences, FHMS, University of Surrey, GU2 7XH, Guildford, UK
- Department of Physics, FEPS, University of Surrey, GU2 7XH, Guildford, UK
| | - Vsevolod J Makeev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Ul. Gubkina 3, Moscow, 119991, Russia
- Department of Medical and Biological Physics, Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
- Laboratory 'Regulatory Genomics', Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya street, Kazan, 420008, Russia
| | - Robert N Kelsh
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
24
|
Abstract
Satellite glial cells (SGCs) that surround sensory neurons in the peripheral nervous system ganglia originate from neural crest cells. Although several studies have focused on SGCs, the origin and characteristics of SGCs are unknown, and their lineage remains unidentified. Traditionally, it has been considered that SGCs regulate the environment around neurons under pathological conditions, and perform functions of supporting, nourishing, and protecting neurons. However, recent studies demonstrated that SGCs may have the characteristics of stem cells. After nerve injury, SGCs up-regulate the expression of stem cell markers and can differentiate into functional sensory neurons. Moreover, SGCs express several markers of Schwann cell precursors and Schwann cells, such as CDH19, MPZ, PLP1, SOX10, ERBB3, and FABP7. Schwann cell precursors have also been proposed as a potential source of neurons in the peripheral nervous system. The similarity in function and markers suggests that SGCs may represent a subgroup of Schwann cell precursors. Herein, we discuss the roles and functions of SGCs, and the lineage relationship between SGCs and Schwann cell precursors. We also describe a new perspective on the roles and functions of SGCs. In the DRG located on the posterior root of spinal nerves, satellite glial cells wrap around each sensory neuron to form an anatomically and functionally distinct unit with the sensory neurons. Following nerve injury, satellite glial cells up-regulate the expression of progenitor markers, and can differentiate into neurons.
Collapse
|
25
|
Sountoulidis A, Marco Salas S, Braun E, Avenel C, Bergenstråhle J, Theelke J, Vicari M, Czarnewski P, Liontos A, Abalo X, Andrusivová Ž, Mirzazadeh R, Asp M, Li X, Hu L, Sariyar S, Martinez Casals A, Ayoglu B, Firsova A, Michaëlsson J, Lundberg E, Wählby C, Sundström E, Linnarsson S, Lundeberg J, Nilsson M, Samakovlis C. A topographic atlas defines developmental origins of cell heterogeneity in the human embryonic lung. Nat Cell Biol 2023; 25:351-365. [PMID: 36646791 PMCID: PMC9928586 DOI: 10.1038/s41556-022-01064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/23/2022] [Indexed: 01/18/2023]
Abstract
The lung contains numerous specialized cell types with distinct roles in tissue function and integrity. To clarify the origins and mechanisms generating cell heterogeneity, we created a comprehensive topographic atlas of early human lung development. Here we report 83 cell states and several spatially resolved developmental trajectories and predict cell interactions within defined tissue niches. We integrated single-cell RNA sequencing and spatially resolved transcriptomics into a web-based, open platform for interactive exploration. We show distinct gene expression programmes, accompanying sequential events of cell differentiation and maturation of the secretory and neuroendocrine cell types in proximal epithelium. We define the origin of airway fibroblasts associated with airway smooth muscle in bronchovascular bundles and describe a trajectory of Schwann cell progenitors to intrinsic parasympathetic neurons controlling bronchoconstriction. Our atlas provides a rich resource for further research and a reference for defining deviations from homeostatic and repair mechanisms leading to pulmonary diseases.
Collapse
Affiliation(s)
- Alexandros Sountoulidis
- Science for Life Laboratory, Solna, Sweden
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sergio Marco Salas
- Science for Life Laboratory, Solna, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Emelie Braun
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Christophe Avenel
- Department of Information Technology, Uppsala University, Uppsala, Sweden
- BioImage Informatics Facility, Science for Life Laboratory, SciLifeLab, Sweden
| | - Joseph Bergenstråhle
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jonas Theelke
- Science for Life Laboratory, Solna, Sweden
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marco Vicari
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Paulo Czarnewski
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Andreas Liontos
- Science for Life Laboratory, Solna, Sweden
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Xesus Abalo
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Žaneta Andrusivová
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Reza Mirzazadeh
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Michaela Asp
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Xiaofei Li
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Lijuan Hu
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Sanem Sariyar
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Anna Martinez Casals
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Burcu Ayoglu
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Alexandra Firsova
- Science for Life Laboratory, Solna, Sweden
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Emma Lundberg
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Carolina Wählby
- Department of Information Technology, Uppsala University, Uppsala, Sweden
- BioImage Informatics Facility, Science for Life Laboratory, SciLifeLab, Sweden
| | - Erik Sundström
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Solna, Sweden.
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | - Christos Samakovlis
- Science for Life Laboratory, Solna, Sweden.
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
- Molecular Pneumology, Cardiopulmonary Institute, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
26
|
Muacevic A, Adler JR, Chaiyamoon A, Iwanaga J, Tubbs RS. The Parasympathetic Root of the Submandibular Ganglion: A Review. Cureus 2023; 15:e33775. [PMID: 36798624 PMCID: PMC9925356 DOI: 10.7759/cureus.33775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 01/15/2023] Open
Abstract
The submandibular ganglion is a small fusiform-shaped cluster of cell bodies of the parasympathetic nervous system. Parasympathetic innervation of the submandibular gland is not only responsible for the secretion of saliva, but it also plays a main role in the development and regeneration of the gland. The parasympathetic root of the submandibular ganglion or the posterior branch of the lingual nerve to the submandibular ganglion is one of three roots of the submandibular ganglion. Using standard search engines (PubMed, Google), papers in English discussing the anatomy, embryology, variations, and clinical significance of the parasympathetic root of the submandibular ganglion were reviewed.
Collapse
|
27
|
Cao S, Wang Y, Zhou Y, Zhang Y, Ling X, Zhang L, Li J, Yang Y, Wang W, Shurin MR, Zhong H. A Novel Therapeutic Target for Small-Cell Lung Cancer: Tumor-Associated Repair-like Schwann Cells. Cancers (Basel) 2022; 14:cancers14246132. [PMID: 36551618 PMCID: PMC9776631 DOI: 10.3390/cancers14246132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Small-cell lung cancer (SCLC), representing 15-20% of all lung cancers, is an aggressive malignancy with a distinct natural history, poor prognosis, and limited treatment options. We have previously identified Schwann cells (SCs), the main glial cells of the peripheral nervous system, in tumor tissues and demonstrated that they may support tumor spreading and metastasis formation in the in vitro and in vivo models. However, the role of SCs in the progression of SCLC has not been investigated. To clarify this issue, the cell proliferation assay, the annexin V apoptosis assay, and the transwell migration and invasion assay were conducted to elucidate the roles in SCLC of tumor-associated SCs (TA-SCs) in the proliferation, apoptosis, migration, and invasion of SCLC cells in vitro, compared to control group. In addition, the animal models to assess SC action's effects on SCLC in vivo were also developed. The result confirmed that TA-SCs have a well-established and significant role in facilitating SCLC cell cancer migration and invasion of SCLC in vitro, and we also observed that SC promotes tumor growth of SCLC in vivo and that TA-SCs exhibited an advantage and show a repair-like phenotype, which allowed defining them as tumor-associated repair SCs (TAR-SCs). Potential molecular mechanisms of pro-tumorigenic activity of TAR-SCs were investigated by the screening of differentially expressed genes and constructing networks of messenger-, micro-, and long- non-coding RNA (mRNA-miRNA-lncRNA) using DMS114 cells, a human SCLC, stimulated with media from DMS114-activated SCs, non-stimulated SCs, and appropriate controls. This study improves our understanding of how SCs, especially tumor-activated SCs, may promote SCLC progression. Our results highlight a new functional phenotype of SCs in cancer and bring new insights into the characterization of the nervous system-tumor crosstalk.
Collapse
Affiliation(s)
- Shuhui Cao
- Department of Pulmonary, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yue Wang
- Department of Pulmonary, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yan Zhou
- Department of Pulmonary, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yao Zhang
- Department of Pulmonary, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xuxinyi Ling
- Department of Pulmonary, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lincheng Zhang
- Department of Pulmonary, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jingwen Li
- Department of Pulmonary, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yu Yang
- Department of Pulmonary, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Weimin Wang
- Department of Pulmonary, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Michael R. Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
- Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
- Correspondence: (M.R.S.); (H.Z.); Tel.: +86-180-1732-1320 (H.Z.)
| | - Hua Zhong
- Department of Pulmonary, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Correspondence: (M.R.S.); (H.Z.); Tel.: +86-180-1732-1320 (H.Z.)
| |
Collapse
|
28
|
Hörner SJ, Couturier N, Gueiber DC, Hafner M, Rudolf R. Development and In Vitro Differentiation of Schwann Cells. Cells 2022; 11:3753. [PMID: 36497014 PMCID: PMC9739763 DOI: 10.3390/cells11233753] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Schwann cells are glial cells of the peripheral nervous system. They exist in several subtypes and perform a variety of functions in nerves. Their derivation and culture in vitro are interesting for applications ranging from disease modeling to tissue engineering. Since primary human Schwann cells are challenging to obtain in large quantities, in vitro differentiation from other cell types presents an alternative. Here, we first review the current knowledge on the developmental signaling mechanisms that determine neural crest and Schwann cell differentiation in vivo. Next, an overview of studies on the in vitro differentiation of Schwann cells from multipotent stem cell sources is provided. The molecules frequently used in those protocols and their involvement in the relevant signaling pathways are put into context and discussed. Focusing on hiPSC- and hESC-based studies, different protocols are described and compared, regarding cell sources, differentiation methods, characterization of cells, and protocol efficiency. A brief insight into developments regarding the culture and differentiation of Schwann cells in 3D is given. In summary, this contribution provides an overview of the current resources and methods for the differentiation of Schwann cells, it supports the comparison and refinement of protocols and aids the choice of suitable methods for specific applications.
Collapse
Affiliation(s)
- Sarah Janice Hörner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Nathalie Couturier
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Daniele Caroline Gueiber
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Department of Electronics Engineering, Federal University of Technology Paraná, Ponta Grossa 84017-220, Brazil
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, 69117 Heidelberg, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, 69117 Heidelberg, Germany
| |
Collapse
|
29
|
Guo SW. Cracking the enigma of adenomyosis: an update on its pathogenesis and pathophysiology. Reproduction 2022; 164:R101-R121. [PMID: 36099328 DOI: 10.1530/rep-22-0224] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/12/2022] [Indexed: 11/08/2022]
Abstract
In brief Traditionally viewed as enigmatic and elusive, adenomyosis is a fairly common gynecological disease but is under-recognized and under-researched. This review summarizes the latest development on the pathogenesis and pathophysiology of adenomyosis, which have important implications for imaging diagnosis of the disease and for the development of non-hormonal therapeutics. Abstract Traditionally considered as an enigmatic disease, adenomyosis is a uterine disease that affects many women of reproductive age and is a contributing factor for pelvic pain, heavy menstrual bleeding (HMB), and subfertility. In this review, the new development in the pathogenesis and pathophysiology of adenomyosis has been summarized, along with their clinical implications. After reviewing the progress in our understanding of the pathogenesis and describing the prevailing theories, in conjunction with their deficiencies, a new hypothesis, called endometrial-myometrial interface disruption (EMID), which is backed by extensive epidemiologic data and demonstrated by a mouse model, is reviewed, along with recent data implicating the role of Schwann cells in the EMI area in the genesis of adenomyosis. Additionally, the natural history of adenomyotic lesions is elaborated and underscores that, in essence, adenomyotic lesions are fundamentally wounds undergoing repeated tissue injury and repair (ReTIAR), which progress to fibrosis through epithelial-mesenchymal transition, fibroblast-to-myofibroblast transdifferentiation, and smooth muscle metaplasia. Increasing lesional fibrosis propagates into the neighboring EMI and endometrium. The increased endometrial fibrosis, with ensuing greater tissue stiffness, results in attenuated prostaglandin E2, hypoxia signaling and glycolysis, impairing endometrial repair and causing HMB. Compared with adenomyosis-associated HMB, the mechanisms underlying adenomyosis-associated pain are less understood but presumably involve increased uterine contractility, hyperinnervation, increased lesional production of pain mediators, and central sensitization. Viewed through the prism of ReTIAR, a new imaging technique can be used to diagnose adenomyosis more accurately and informatively and possibly help to choose the best treatment modality.
Collapse
Affiliation(s)
- Sun-Wei Guo
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Reed CB, Feltri ML, Wilson ER. Peripheral glia diversity. J Anat 2022; 241:1219-1234. [PMID: 34131911 PMCID: PMC8671569 DOI: 10.1111/joa.13484] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Recent years have seen an evolving appreciation for the role of glial cells in the nervous system. As we move away from the typical neurocentric view of neuroscience, the complexity and variability of central nervous system glia is emerging, far beyond the three main subtypes: astrocytes, oligodendrocytes, and microglia. Yet the diversity of the glia found in the peripheral nervous system remains rarely discussed. In this review, we discuss the developmental origin, morphology, and function of the different populations of glia found in the peripheral nervous system, including: myelinating Schwann cells, Remak Schwann cells, repair Schwann cells, satellite glia, boundary cap-derived glia, perineurial glia, terminal Schwann cells, glia found in the skin, olfactory ensheathing cells, and enteric glia. The morphological and functional heterogeneity of glia found in the periphery reflects the diverse roles the nervous system performs throughout the body. Further, it highlights a complexity that should be appreciated and considered when it comes to a complete understanding of the peripheral nervous system in health and disease.
Collapse
Affiliation(s)
- Chelsey B. Reed
- Hunter James Kelly Research InstituteJacobs School of Medicine and Biomedical Sciences StateUniversity of New York at BuffaloBuffaloNew YorkUSA
- Department of NeurologyJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
| | - M. Laura Feltri
- Hunter James Kelly Research InstituteJacobs School of Medicine and Biomedical Sciences StateUniversity of New York at BuffaloBuffaloNew YorkUSA
- Department of NeurologyJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
- Department of BiochemistryJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
| | - Emma R. Wilson
- Hunter James Kelly Research InstituteJacobs School of Medicine and Biomedical Sciences StateUniversity of New York at BuffaloBuffaloNew YorkUSA
- Department of BiochemistryJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
| |
Collapse
|
31
|
Akkuratova N, Faure L, Kameneva P, Kastriti ME, Adameyko I. Developmental heterogeneity of embryonic neuroendocrine chromaffin cells and their maturation dynamics. Front Endocrinol (Lausanne) 2022; 13:1020000. [PMID: 36237181 PMCID: PMC9553123 DOI: 10.3389/fendo.2022.1020000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
During embryonic development, nerve-associated Schwann cell precursors (SCPs) give rise to chromaffin cells of the adrenal gland via the "bridge" transient stage, according to recent functional experiments and single cell data from humans and mice. However, currently existing data do not resolve the finest heterogeneity of developing chromaffin populations. Here we took advantage of deep SmartSeq2 transcriptomic sequencing to expand our collection of individual cells from the developing murine sympatho-adrenal anlage and uncover the microheterogeneity of embryonic chromaffin cells and their corresponding developmental paths. We discovered that SCPs on the splachnic nerve show a high degree of microheterogeneity corresponding to early biases towards either Schwann or chromaffin terminal fates. Furthermore, we found that a post-"bridge" population of developing chromaffin cells gives rise to persisting oxygen-sensing chromaffin cells and the two terminal populations (adrenergic and noradrenergic) via diverging differentiation paths. Taken together, we provide a thorough identification of novel markers of adrenergic and noradrenergic populations in developing adrenal glands and report novel differentiation paths leading to them.
Collapse
Affiliation(s)
- Natalia Akkuratova
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Louis Faure
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Polina Kameneva
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
32
|
Ehnes DD, Alghadeer A, Hanson-Drury S, Zhao YT, Tilmes G, Mathieu J, Ruohola-Baker H. Sci-Seq of Human Fetal Salivary Tissue Introduces Human Transcriptional Paradigms and a Novel Cell Population. FRONTIERS IN DENTAL MEDICINE 2022; 3:887057. [PMID: 36540608 PMCID: PMC9762771 DOI: 10.3389/fdmed.2022.887057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Multiple pathologies and non-pathological factors can disrupt the function of the non-regenerative human salivary gland including cancer and cancer therapeutics, autoimmune diseases, infections, pharmaceutical side effects, and traumatic injury. Despite the wide range of pathologies, no therapeutic or regenerative approaches exist to address salivary gland loss, likely due to significant gaps in our understanding of salivary gland development. Moreover, identifying the tissue of origin when diagnosing salivary carcinomas requires an understanding of human fetal development. Using computational tools, we identify developmental branchpoints, a novel stem cell-like population, and key signaling pathways in the human developing salivary glands by analyzing our human fetal single-cell sequencing data. Trajectory and transcriptional analysis suggest that the earliest progenitors yield excretory duct and myoepithelial cells and a transitional population that will yield later ductal cell types. Importantly, this single-cell analysis revealed a previously undescribed population of stem cell-like cells that are derived from SD and expresses high levels of genes associated with stem cell-like function. We have observed these rare cells, not in a single niche location but dispersed within the developing duct at later developmental stages. Our studies introduce new human-specific developmental paradigms for the salivary gland and lay the groundwork for the development of translational human therapeutics.
Collapse
Affiliation(s)
- Devon Duron Ehnes
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Ammar Alghadeer
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Sesha Hanson-Drury
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
| | - Yan Ting Zhao
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
| | - Gwen Tilmes
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Julie Mathieu
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Hannele Ruohola-Baker
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
33
|
Kastriti ME, Faure L, Von Ahsen D, Bouderlique TG, Boström J, Solovieva T, Jackson C, Bronner M, Meijer D, Hadjab S, Lallemend F, Erickson A, Kaucka M, Dyachuk V, Perlmann T, Lahti L, Krivanek J, Brunet J, Fried K, Adameyko I. Schwann cell precursors represent a neural crest-like state with biased multipotency. EMBO J 2022; 41:e108780. [PMID: 35815410 PMCID: PMC9434083 DOI: 10.15252/embj.2021108780] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/29/2022] Open
Abstract
Schwann cell precursors (SCPs) are nerve-associated progenitors that can generate myelinating and non-myelinating Schwann cells but also are multipotent like the neural crest cells from which they originate. SCPs are omnipresent along outgrowing peripheral nerves throughout the body of vertebrate embryos. By using single-cell transcriptomics to generate a gene expression atlas of the entire neural crest lineage, we show that early SCPs and late migratory crest cells have similar transcriptional profiles characterised by a multipotent "hub" state containing cells biased towards traditional neural crest fates. SCPs keep diverging from the neural crest after being primed towards terminal Schwann cells and other fates, with different subtypes residing in distinct anatomical locations. Functional experiments using CRISPR-Cas9 loss-of-function further show that knockout of the common "hub" gene Sox8 causes defects in neural crest-derived cells along peripheral nerves by facilitating differentiation of SCPs towards sympathoadrenal fates. Finally, specific tumour populations found in melanoma, neurofibroma and neuroblastoma map to different stages of SCP/Schwann cell development. Overall, SCPs resemble migrating neural crest cells that maintain multipotency and become transcriptionally primed towards distinct lineages.
Collapse
Affiliation(s)
- Maria Eleni Kastriti
- Department of Molecular Neuroscience, Center for Brain ResearchMedical University ViennaViennaAustria
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| | - Louis Faure
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| | - Dorothea Von Ahsen
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| | | | - Johan Boström
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| | - Tatiana Solovieva
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Cameron Jackson
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Marianne Bronner
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Dies Meijer
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Saida Hadjab
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | | | - Alek Erickson
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Marketa Kaucka
- Max Planck Institute for Evolutionary BiologyPlönGermany
| | | | - Thomas Perlmann
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Laura Lahti
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Jean‐Francois Brunet
- Institut de Biologie de l'ENS (IBENS), INSERM, CNRS, École Normale SupérieurePSL Research UniversityParisFrance
| | - Kaj Fried
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Igor Adameyko
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| |
Collapse
|
34
|
Shi J, Xu J, Li Y, Li B, Ming H, Nice EC, Huang C, Li Q, Wang C. Drug repurposing in cancer neuroscience: From the viewpoint of the autophagy-mediated innervated niche. Front Pharmacol 2022; 13:990665. [PMID: 36105204 PMCID: PMC9464986 DOI: 10.3389/fphar.2022.990665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Based on the bidirectional interactions between neurology and cancer science, the burgeoning field “cancer neuroscience” has been proposed. An important node in the communications between nerves and cancer is the innervated niche, which has physical contact with the cancer parenchyma or nerve located in the proximity of the tumor. In the innervated niche, autophagy has recently been reported to be a double-edged sword that plays a significant role in maintaining homeostasis. Therefore, regulating the innervated niche by targeting the autophagy pathway may represent a novel therapeutic strategy for cancer treatment. Drug repurposing has received considerable attention for its advantages in cost-effectiveness and safety. The utilization of existing drugs that potentially regulate the innervated niche via the autophagy pathway is therefore a promising pharmacological approach for clinical practice and treatment selection in cancer neuroscience. Herein, we present the cancer neuroscience landscape with an emphasis on the crosstalk between the innervated niche and autophagy, while also summarizing the underlying mechanisms of candidate drugs in modulating the autophagy pathway. This review provides a strong rationale for drug repurposing in cancer treatment from the viewpoint of the autophagy-mediated innervated niche.
Collapse
Affiliation(s)
- Jiayan Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jia Xu
- Department of Pharmacology, Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| | - Yang Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Hui Ming
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qifu Li
- Department of Neurology and Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- *Correspondence: Qifu Li, ; Chuang Wang,
| | - Chuang Wang
- Department of Pharmacology, Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
- *Correspondence: Qifu Li, ; Chuang Wang,
| |
Collapse
|
35
|
Regan JL, Schumacher D, Staudte S, Steffen A, Lesche R, Toedling J, Jourdan T, Haybaeck J, Golob-Schwarzl N, Mumberg D, Henderson D, Győrffy B, Regenbrecht CR, Keilholz U, Schäfer R, Lange M. Identification of a neural development gene expression signature in colon cancer stem cells reveals a role for EGR2 in tumorigenesis. iScience 2022; 25:104498. [PMID: 35720265 PMCID: PMC9204726 DOI: 10.1016/j.isci.2022.104498] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/28/2022] [Accepted: 05/26/2022] [Indexed: 11/12/2022] Open
Abstract
Recent evidence demonstrates that colon cancer stem cells (CSCs) can generate neurons that synapse with tumor innervating fibers required for tumorigenesis and disease progression. Greater understanding of the mechanisms that regulate CSC driven tumor neurogenesis may therefore lead to more effective treatments. RNA-sequencing analyses of ALDHPositive CSCs from colon cancer patient-derived organoids (PDOs) and xenografts (PDXs) showed CSCs to be enriched for neural development genes. Functional analyses of genes differentially expressed in CSCs from PDO and PDX models demonstrated the neural crest stem cell (NCSC) regulator EGR2 to be required for tumor growth and to control expression of homebox superfamily embryonic master transcriptional regulator HOX genes and the neural stem cell and master cell fate regulator SOX2. These data support CSCs as the source of tumor neurogenesis and suggest that targeting EGR2 may provide a therapeutic differentiation strategy to eliminate CSCs and block nervous system driven disease progression.
Collapse
Affiliation(s)
- Joseph L. Regan
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Dirk Schumacher
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| | - Stephanie Staudte
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Andreas Steffen
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - Ralf Lesche
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| | - Joern Toedling
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| | - Thibaud Jourdan
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Nicole Golob-Schwarzl
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Dermatology and Venereology, Medical University of Graz, 8036 Graz, Austria
| | - Dominik Mumberg
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - David Henderson
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Bayer AG, Business Development and Licensing and Open Innovation, Pharmaceuticals, 13342 Berlin, Germany
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, 1094 Budapest, Hungary
- TTK Cancer Biomarker Research Group, Institute of Enzymology, 1117 Budapest, Hungary
| | - Christian R.A. Regenbrecht
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- CELLphenomics GmbH, 13125 Berlin, Germany
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Ulrich Keilholz
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Reinhold Schäfer
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| | - Martin Lange
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| |
Collapse
|
36
|
Bonnamour G, Charrier B, Sallis S, Leduc E, Pilon N. NR2F1 regulates a Schwann cell precursor-vs-melanocyte cell fate switch in a mouse model of Waardenburg syndrome type IV. Pigment Cell Melanoma Res 2022; 35:506-516. [PMID: 35816394 DOI: 10.1111/pcmr.13054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022]
Abstract
Waardenburg syndrome type 4 (WS4) combines abnormal development of neural crest cell (NCC)-derived melanocytes (causing depigmentation and inner ear dysfunction) and enteric nervous system (causing aganglionic megacolon). The full spectrum of WS4 phenotype is present in Spot mice, in which an insertional mutation close to a silencer element leads to NCC-specific upregulation of the transcription factor-coding gene Nr2f1. These mice were previously found to develop aganglionic megacolon because of NR2F1-induced premature differentiation of enteric neural progenitors into enteric glia. Intriguingly, this prior work also showed that inner ear dysfunction in Spot mutants specifically affects balance but not hearing, consistent with the absence of melanocytes in the vestibule only. Here, we report an analysis of the effect of Nr2f1 upregulation on the development of both inner ear and skin melanocytes, also taking in consideration their origin relative to the dorsolateral and ventral NCC migration pathways. In the trunk, we found that NR2F1 overabundance in Spot NCCs forces dorso-laterally migrating melanoblasts to abnormally adopt a Schwann cell precursor (SCP) fate and conversely prevents ventrally migrating SCPs to normally adopt a melanoblast fate. In the head, Nr2f1 upregulation appears not to be uniform, which might explain why SCP-derived melanocytes do colonize the cochlea while non-SCP-derived melanocytes cannot reach the vestibule. Collectively, these data point to a key role for NR2F1 in the control of SCP-vs-melanocyte fate choice and unveil a new pathogenic mechanism for WS4. Moreover, our data argue against the proposed existence of a transit-amplifying compartment of melanocyte precursors in hair follicles.
Collapse
Affiliation(s)
- Grégoire Bonnamour
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Canada
| | - Baptiste Charrier
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Canada
| | - Sephora Sallis
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Canada
| | - Elizabeth Leduc
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Canada.,Département de Pédiatrie, Université de Montréal, Montréal, Canada
| |
Collapse
|
37
|
Abstract
Schwann cells in the peripheral nervous system (PNS) are essential for the support and myelination of axons, ensuring fast and accurate communication between the central nervous system and the periphery. Schwann cells and related glia accompany innervating axons in virtually all tissues in the body, where they exhibit remarkable plasticity and the ability to modulate pathology in extraordinary, and sometimes surprising, ways. Here, we provide a brief overview of the various glial cell types in the PNS and describe the cornerstone cellular and molecular processes that enable Schwann cells to perform their canonical functions. We then dive into discussing exciting noncanonical functions of Schwann cells and related PNS glia, which include their role in organizing the PNS, in regulating synaptic activity and pain, in modulating immunity, in providing a pool of stem cells for different organs, and, finally, in influencing cancer.
Collapse
Affiliation(s)
- Carla Taveggia
- Axo-Glial Interaction Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy;
| | - M. Laura Feltri
- Institute for Myelin and Glia Exploration, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
38
|
Alhashem Z, Camargo-Sosa K, Kelsh RN, Linker C. Trunk Neural Crest Migratory Position and Asymmetric Division Predict Terminal Differentiation. Front Cell Dev Biol 2022; 10:887393. [PMID: 35756992 PMCID: PMC9214262 DOI: 10.3389/fcell.2022.887393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
The generation of complex structures during embryogenesis requires the controlled migration and differentiation of cells from distant origins. How these processes are coordinated and impact each other to form functional structures is not fully understood. Neural crest cells migrate extensively giving rise to many cell types. In the trunk, neural crest cells migrate collectively forming chains comprised of cells with distinct migratory identities: one leader cell at the front of the group directs migration, while followers track the leader forming the body of the chain. Herein we analysed the relationship between trunk neural crest migratory identity and terminal differentiation. We found that trunk neural crest migration and fate allocation is coherent. Leader cells that initiate movement give rise to the most distal derivativities. Interestingly, the asymmetric division of leaders separates migratory identity and fate. The distal daughter cell retains the leader identity and clonally forms the Sympathetic Ganglia. The proximal sibling migrates as a follower and gives rise to Schwann cells. The sympathetic neuron transcription factor phox2bb is strongly expressed by leaders from early stages of migration, suggesting that specification and migration occur concomitantly and in coordination. Followers divide symmetrically and their fate correlates with their position in the chain.
Collapse
Affiliation(s)
- Zain Alhashem
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College London, London, United Kingdom
| | - Karen Camargo-Sosa
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Robert N Kelsh
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Claudia Linker
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College London, London, United Kingdom
| |
Collapse
|
39
|
Perioperative Suppression of Schwann Cell Dedifferentiation Reduces the Risk of Adenomyosis Resulting from Endometrial–Myometrial Interface Disruption in Mice. Biomedicines 2022; 10:biomedicines10061218. [PMID: 35740240 PMCID: PMC9219744 DOI: 10.3390/biomedicines10061218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
We have recently demonstrated that endometrial–myometrial interface (EMI) disruption (EMID) can cause adenomyosis in mice, providing experimental evidence for the well-documented epidemiological finding that iatrogenic uterine procedures increase the risk of adenomyosis. To further elucidate its underlying mechanisms, we designed this study to test the hypothesis that Schwann cells (SCs) dedifferentiating after EMID facilitate the genesis of adenomyosis, but the suppression of SC dedifferentiation perioperatively reduces the risk. We treated mice perioperatively with either mitogen-activated protein kinase kinase (MEK)/extracellular-signal regulated protein kinase (ERK) or c-Jun N-terminal kinase (JNK) inhibitors or a vehicle 4 h before and 24 h, 48 h and 72 h after the EMID procedure. We found that EMID resulted in progressive SCs dedifferentiation, concomitant with an increased abundance of epithelial cells in the myometrium and a subsequent epithelial–mesenchymal transition (EMT). This EMID-induced change was abrogated significantly with perioperative administration of JNK or MEK/ERK inhibitors. Consistently, perioperative administration of a JNK or a MEK/ERK inhibitor reduced the incidence by nearly 33.5% and 14.3%, respectively, in conjunction with reduced myometrial infiltration of adenomyosis and alleviation of adenomyosis-associated hyperalgesia. Both treatments significantly decelerated the establishment of adenomyosis and progression of EMT, fibroblast-to-myofibroblast trans-differentiation and fibrogenesis in adenomyotic lesions. Thus, we provide the first piece of evidence strongly implicating the involvement of SCs in the pathogenesis of adenomyosis induced by EMID.
Collapse
|
40
|
Abstract
Purpose of Review The evolving information of the initiation, tumor cell heterogeneity, and plasticity of childhood neuroblastoma has opened up new perspectives for developing therapies based on detailed knowledge of the disease. Recent Findings The cellular origin of neuroblastoma has begun to unravel and there have been several reports on tumor cell heterogeneity based on transcriptional core regulatory circuitries that have given us important information on the biology of neuroblastoma as a developmental disease. This together with new insight of the tumor microenvironment which acts as a support for neuroblastoma growth has given us the prospect for designing better treatment approaches for patients with high-risk neuroblastoma. Here, we discuss these new discoveries and highlight some emerging therapeutic options. Summary Neuroblastoma is a disease with multiple facets. Detailed biological and molecular knowledge on neuroblastoma initiation, heterogeneity, and the communications between cells in the tumor microenvironment holds promise for better therapies.
Collapse
|
41
|
Liu Y, Zhou S, Zhao L, Gu X. Identification of Neuronal Cells in Sciatic Nerves of Adult Rats. Front Cell Neurosci 2022; 16:816814. [PMID: 35401123 PMCID: PMC8991689 DOI: 10.3389/fncel.2022.816814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Prior research generally confirms that there are no neuronal cell bodies in the adult sciatic nerve. However, we occasionally find some neuronal cells in adult rat sciatic nerves, either intact or crush-injured. By whole-mount staining and optical imaging of the hyalinized sciatic nerves for Stmn2 (a specific marker for neuronal cells), we found those neuronal cells with irregular distribution in the sciatic nerves in both crushed model and normal rats. We investigated the identity of those cells and established a cultured sciatic nerve model. Immunohistochemistry evidence both in vivo and in vitro illustrated that some of those cells are mature neurons in sciatic nerves. With single-cell sequencing of neuronal cells in adeno-associated virus (AAV)-infected sciatic nerves, we identified that some of those cells are a kind of neuronal stem-like cells. Then we constructed a Nestin-CreERT 2 rat line and traced those cells with fluorescence labeling which was induced by tamoxifen. Interesting, we proved that neuronal stem-like cells could proliferate by combination of EdU incorporation with staining in the sciatic nerves of transgenic rats. Together, the discovery of neuronal cells in adult sciatic nerves will make us aware of the distribution of neurons in the peripheral nervous system. Especially our data suggest that neuronal stem-like cells could proliferate in the sciatic nerves of adult rats.
Collapse
Affiliation(s)
- Yisheng Liu
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Lili Zhao
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Xiaosong Gu
- Model Animal Research Center, Nanjing University, Nanjing, China
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
42
|
Sinegubov A, Andreeva D, Burzak N, Vasyutina M, Murashova L, Dyachuk V. Heterogeneity and Potency of Peripheral Glial Cells in Embryonic Development and Adults. Front Mol Neurosci 2022; 15:737949. [PMID: 35401107 PMCID: PMC8990813 DOI: 10.3389/fnmol.2022.737949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
This review describes the heterogeneity of peripheral glial cell populations, from the emergence of Schwann cells (SCs) in early development, to their involvement, and that of their derivatives in adult glial populations. We focus on the origin of the first glial precursors from neural crest cells (NCCs), and their ability to differentiate into several cell types during development. We also discuss the heterogeneity of embryonic glia in light of the latest data from genetic tracing and transcriptome analysis. Special attention has been paid to the biology of glial populations in adult animals, by highlighting common features of different glial cell types and molecular differences that modulate their functions. Finally, we consider the communication of glial cells with axons of neurons in normal and pathological conditions. In conclusion, the present review details how information available on glial cell types and their functions in normal and pathological conditions may be utilized in the development of novel therapeutic strategies for the treatment of patients with neurodiseases.
Collapse
|
43
|
Honeycutt SE, N'Guetta PEY, O'Brien LL. Innervation in organogenesis. Curr Top Dev Biol 2022; 148:195-235. [PMID: 35461566 PMCID: PMC10636594 DOI: 10.1016/bs.ctdb.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Proper innervation of peripheral organs helps to maintain physiological homeostasis and elicit responses to external stimuli. Disruptions to normal function can result in pathophysiological consequences. The establishment of connections and communication between the central nervous system and the peripheral organs is accomplished through the peripheral nervous system. Neuronal connections with target tissues arise from ganglia partitioned throughout the body. Organ innervation is initiated during development with stimuli being conducted through several types of neurons including sympathetic, parasympathetic, and sensory. While the physiological modulation of mature organs by these nerves is largely understood, their role in mammalian development is only beginning to be uncovered. Interactions with cells in target tissues can affect the development and eventual function of several organs, highlighting their significance. This chapter will cover the origin of peripheral neurons, factors mediating organ innervation, and the composition and function of organ-specific nerves during development. This emerging field aims to identify the functional contribution of innervation to development which will inform future investigations of normal and abnormal mammalian organogenesis, as well as contribute to regenerative and organ replacement efforts where nerve-derived signals may have significant implications for the advancement of such studies.
Collapse
Affiliation(s)
- Samuel E Honeycutt
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Pierre-Emmanuel Y N'Guetta
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lori L O'Brien
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
44
|
Suazo I, Vega JA, García-Mesa Y, García-Piqueras J, García-Suárez O, Cobo T. The Lamellar Cells of Vertebrate Meissner and Pacinian Corpuscles: Development, Characterization, and Functions. Front Neurosci 2022; 16:790130. [PMID: 35356056 PMCID: PMC8959428 DOI: 10.3389/fnins.2022.790130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Sensory corpuscles, or cutaneous end-organ complexes, are complex structures localized at the periphery of Aβ-axon terminals from primary sensory neurons that primarily work as low-threshold mechanoreceptors. Structurally, they consist, in addition to the axons, of non-myelinating Schwann-like cells (terminal glial cells) and endoneurial- and perineurial-related cells. The terminal glial cells are the so-called lamellar cells in Meissner and Pacinian corpuscles. Lamellar cells are variably arranged in sensory corpuscles as a “coin stack” in the Meissner corpuscles or as an “onion bulb” in the Pacinian ones. Nevertheless, the origin and protein profile of the lamellar cells in both morphotypes of sensory corpuscles is quite similar, although it differs in the expression of mechano-gated ion channels as well as in the composition of the extracellular matrix between the cells. The lamellar cells have been regarded as supportive cells playing a passive role in the process of genesis of the action potential, i.e., the mechanotransduction process. However, they express ion channels related to the mechano–electric transduction and show a synapse-like mechanism that suggest neurotransmission at the genesis of the electrical action potential. This review updates the current knowledge about the embryonic origin, development modifications, spatial arrangement, ultrastructural characteristics, and protein profile of the lamellar cells of cutaneous end-organ complexes focusing on Meissner and Pacinian morphotypes.
Collapse
Affiliation(s)
- Iván Suazo
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
- Faculcultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - José A. Vega
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
- Faculcultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
- *Correspondence: José A. Vega,
| | - Yolanda García-Mesa
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
| | - Jorge García-Piqueras
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
| | - Olivia García-Suárez
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
45
|
Erickson AG, Kameneva P, Adameyko I. The transcriptional portraits of the neural crest at the individual cell level. Semin Cell Dev Biol 2022; 138:68-80. [PMID: 35260294 PMCID: PMC9441473 DOI: 10.1016/j.semcdb.2022.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 01/15/2023]
Abstract
Since the discovery of this cell population by His in 1850, the neural crest has been under intense study for its important role during vertebrate development. Much has been learned about the function and regulation of neural crest cell differentiation, and as a result, the neural crest has become a key model system for stem cell biology in general. The experiments performed in embryology, genetics, and cell biology in the last 150 years in the neural crest field has given rise to several big questions that have been debated intensely for many years: "How does positional information impact developmental potential? Are neural crest cells individually multipotent or a mixed population of committed progenitors? What are the key factors that regulate the acquisition of stem cell identity, and how does a stem cell decide to differentiate towards one cell fate versus another?" Recently, a marriage between single cell multi-omics, statistical modeling, and developmental biology has shed a substantial amount of light on these questions, and has paved a clear path for future researchers in the field.
Collapse
Affiliation(s)
- Alek G Erickson
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Polina Kameneva
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090 Vienna, Austria
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Stockholm, Sweden; Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090 Vienna, Austria.
| |
Collapse
|
46
|
Schwann Cells in the Tumor Microenvironment: Need More Attention. JOURNAL OF ONCOLOGY 2022; 2022:1058667. [PMID: 35186076 PMCID: PMC8853772 DOI: 10.1155/2022/1058667] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/20/2022] [Indexed: 12/13/2022]
Abstract
The tumor microenvironment (TME), which is composed of various cell components and signaling molecules, plays an important role in the occurrence and progression of tumors and has become the central issue of current cancer research. In recent years, as a part of the TME, the peripheral nervous system (PNS) has attracted increasing attention. Moreover, emerging evidence shows that Schwann cells (SCs), which are the most important glial cells in the PNS, are not simply spectators in the TME. In this review article, we focused on the up-to-date research progress on SCs in the TME and introduced our point of view. In detail, we described that under two main tumor-nerve interaction patterns, perineural invasion (PNI) and tumor innervation, SCs were reprogrammed and acted as important participants. We also investigated the newest mechanisms between the interactions of SCs and tumor cells. In addition, SCs can have profound impacts on other cellular components in the TME, such as immune cells and cancer-associated fibroblasts (CAFs), involving immune regulation, tumor-related pain, and nerve remodeling. Overall, these innovative statements can expand the scope of the TME, help fully understand the significant role of SCs in the tumor-nerve-immune axis, and propose enlightenments to innovate antitumor therapeutic methods and future research.
Collapse
|
47
|
Wu Z, Xie S, Kang Y, Shan X, Li Q, Cai Z. Biocompatibility evaluation of a 3D-bioprinted alginate-GelMA-bacteria nanocellulose (BNC) scaffold laden with oriented-growth RSC96 cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112393. [PMID: 34579912 DOI: 10.1016/j.msec.2021.112393] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/27/2021] [Accepted: 08/20/2021] [Indexed: 12/18/2022]
Abstract
Peripheral nerve injury can cause various degrees of damage to the morphological structure and physiological function of the peripheral nerve. At present, compared with "gold standard" autologous nerve transplantation, tissue engineering has certain potential for regeneration and growth; however, achieving oriented guidance is still a challenge. In this study, we used 3D bioprinting to construct a nerve scaffold of RSC96 cells wrapped in sodium alginate/gelatin methacrylate (GelMA)/bacterial nanocellulose (BNC) hydrogel. The 5% sodium alginate+5% GelMA+0.3% BNC group had the thinnest lines among all groups after printing, indicating that the inherent shape of the scaffold could be maintained after adding BNC. Physical and chemical property testing (Fourier transform infrared, rheometer, conductivity, and compression modulus) showed that the 5% alginate+5% GelMA+0.3% BNC group had better mechanical and rheological properties. Live/dead cell staining showed that no mass cell death was observed on days 1, 3, 5, and 7 after printing. In the 5% alginate+5% GelMA group, the cells grew and formed linear connections in the scaffold. This phenomenon was more obvious in the 5% alginate+5% GelMA+0.3% BNC group. In the 5% alginate+5% GelMA+0.3% BNC group, S-100β immunofluorescence staining and cytoskeleton staining showed oriented growth. Polymerase chain reaction (PCR) array results showed that mRNA levels of related neurofactors ASCL1, POU3F3, NEUROG1, DLL1, NOTCH1 and ERBB2 in the 5%GelMA+0.3%BNC group were higher than those of other groups. Four weeks after implantation in nude mice, RSC96 cells grew and proliferated well, blood vessels grew, and S-100β immunofluorescence was positive. These results indicate that a 3D-bioprinted sodium alginate/GelMA/BNC composite scaffold can improve cell-oriented growth, adhesion and the expression of related factors. This 3D-bioprinted composite scaffold has good biocompatibility and is expected to become a new type of scaffold material in the field of neural tissue engineering.
Collapse
Affiliation(s)
- Zongxi Wu
- Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China; National Clinical Research Center for Oral Diseases, Beijing, China; National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China; Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Shang Xie
- Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China; National Clinical Research Center for Oral Diseases, Beijing, China; National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China; Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yifan Kang
- Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China; National Clinical Research Center for Oral Diseases, Beijing, China; National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China; Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Xiaofeng Shan
- Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China; National Clinical Research Center for Oral Diseases, Beijing, China; National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China; Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Qing Li
- National Clinical Research Center for Oral Diseases, Beijing, China; National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China; Beijing Key Laboratory of Digital Stomatology, Beijing, China; Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, China.
| | - Zhigang Cai
- Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China; National Clinical Research Center for Oral Diseases, Beijing, China; National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China; Beijing Key Laboratory of Digital Stomatology, Beijing, China.
| |
Collapse
|
48
|
Solovieva T, Bronner M. Reprint of: Schwann cell precursors: Where they come from and where they go. Cells Dev 2021; 168:203729. [PMID: 34456178 DOI: 10.1016/j.cdev.2021.203729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 10/20/2022]
Abstract
Schwann cell precursors (SCPs) are a transient population in the embryo, closely associated with nerves along which they migrate into the periphery of the body. Long considered to be progenitors that only form Schwann cells-the myelinating cells of nerves, current evidence suggests that SCPs have much broader developmental potential. Indeed, different cell marking techniques employed over the past 20 years have identified multiple novel SCP derivatives throughout the body. It is now clear that SCPs represent a multipotent progenitor population, which also display a level of plasticity in response to injury. Moreover, they originate from multiple origins in the embryo and may reflect several distinct subpopulations in terms of molecular identity and fate. Here we review SCP origins, derivatives and plasticity in development, growth and repair.
Collapse
Affiliation(s)
- Tatiana Solovieva
- Division of Biology and Biological Engineering, California Institute of Technology, United States of America.
| | - Marianne Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, United States of America
| |
Collapse
|
49
|
Nerve-associated Schwann cell precursors contribute extracutaneous melanocytes to the heart, inner ear, supraorbital locations and brain meninges. Cell Mol Life Sci 2021; 78:6033-6049. [PMID: 34274976 PMCID: PMC8316242 DOI: 10.1007/s00018-021-03885-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
Melanocytes are pigmented cells residing mostly in the skin and hair follicles of vertebrates, where they contribute to colouration and protection against UV-B radiation. However, the spectrum of their functions reaches far beyond that. For instance, these pigment-producing cells are found inside the inner ear, where they contribute to the hearing function, and in the heart, where they are involved in the electrical conductivity and support the stiffness of cardiac valves. The embryonic origin of such extracutaneous melanocytes is not clear. We took advantage of lineage-tracing experiments combined with 3D visualizations and gene knockout strategies to address this long-standing question. We revealed that Schwann cell precursors are recruited from the local innervation during embryonic development and give rise to extracutaneous melanocytes in the heart, brain meninges, inner ear, and other locations. In embryos with a knockout of the EdnrB receptor, a condition imitating Waardenburg syndrome, we observed only nerve-associated melanoblasts, which failed to detach from the nerves and to enter the inner ear. Finally, we looked into the evolutionary aspects of extracutaneous melanocytes and found that pigment cells are associated mainly with nerves and blood vessels in amphibians and fish. This new knowledge of the nerve-dependent origin of extracutaneous pigment cells might be directly relevant to the formation of extracutaneous melanoma in humans.
Collapse
|
50
|
Uesaka T, Okamoto M, Nagashimada M, Tsuda Y, Kihara M, Kiyonari H, Enomoto H. Enhanced enteric neurogenesis by Schwann cell precursors in mouse models of Hirschsprung disease. Glia 2021; 69:2575-2590. [PMID: 34272903 DOI: 10.1002/glia.24059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/21/2021] [Accepted: 07/05/2021] [Indexed: 12/31/2022]
Abstract
Hirschsprung disease (HSCR) is characterized by congenital absence of enteric neurons in distal portions of the gut. Although recent studies identified Schwann cell precursors (SCPs) as a novel cellular source of enteric neurons, it is unknown how SCPs contribute to the disease phenotype of HSCR. Using Schwann cell-specific genetic labeling, we investigated SCP-derived neurogenesis in two mouse models of HSCR; Sox10 haploinsufficient mice exhibiting distal colonic aganglionosis and Ednrb knockout mice showing small intestinal aganglionosis. We also examined Ret dependency in SCP-derived neurogenesis using mice displaying intestinal aganglionosis in which Ret expression was conditionally removed in the Schwann cell lineage. SCP-derived neurons were abundant in the transition zone lying between the ganglionated and aganglionic segments, although SCP-derived neurogenesis was scarce in the aganglionic region. In the transition zone, SCPs mainly gave rise to nitrergic neurons that are rarely observed in the SCP-derived neurons under the normal condition. Enhanced SCP-derived neurogenesis was also detected in the transition zone of mice lacking RET expression in the Schwann cell lineage. Increased SCP-derived neurogenesis in the transition zone suggests that reduction in the vagal neural crest-derived enteric neurons promotes SCP-derived neurogenesis. SCPs may adopt a neuronal subtype by responding to changes in the gut environment. Robust SCP-derived neurogenesis can occur in a Ret-independent manner, which suggests that SCPs are a cellular source to compensate for missing enteric neurons in HSCR.
Collapse
Affiliation(s)
- Toshihiro Uesaka
- Division for Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Mitsumasa Okamoto
- Division for Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.,Department of Pediatric Surgery, Japanese Red Cross Society, Himeji Hospital, Himeji, Hyogo, Japan
| | - Mayumi Nagashimada
- Division for Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.,Division of Health Science, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yoshihiro Tsuda
- Division for Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Miho Kihara
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Hideki Enomoto
- Division for Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|