1
|
Noeraparast M, Krajina K, Pichler R, Niedersüß‐Beke D, Shariat SF, Grünwald V, Ahyai S, Pichler M. FGFR3 alterations in bladder cancer: Sensitivity and resistance to targeted therapies. Cancer Commun (Lond) 2024; 44:1189-1208. [PMID: 39161208 PMCID: PMC11483561 DOI: 10.1002/cac2.12602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
In this review, we revisit the pivotal role of fibroblast growth factor receptor 3 (FGFR3) in bladder cancer (BLCA), underscoring its prevalence in both non-muscle-invasive and muscle-invasive forms of the disease. FGFR3 mutations in up to half of BLCAs play a well-established role in tumorigenesis, shaping distinct tumor initiation patterns and impacting the tumor microenvironment (TME). Emphasizing the importance of considering epithelial-mesenchymal transition profile and TME status, we revisit their relevance in predicting responses to immune checkpoint inhibitors in FGFR3-mutated BLCAs. This writing highlights the initially promising yet transient efficacy of the FGFR inhibitor Erdafitinib on FGFR3-mutated BLCA, stressing the pressing need to unravel resistance mechanisms and identify co-targets for future combinatorial studies. A thorough analysis of recent preclinical and clinical evidence reveals resistance mechanisms, including secondary mutations, epigenetic alterations in pathway effectors, phenotypic heterogeneity, and population-specific variations within FGFR3 mutational status. Lastly, we discuss the potential of combinatorial treatments and concepts like synthetic lethality for discovering more effective targeted therapies against FGFR3-mutated BLCA.
Collapse
Affiliation(s)
- Maxim Noeraparast
- Translational OncologyII. Med Clinics Hematology and OncologyAugsburgGermany
| | - Katarina Krajina
- Translational OncologyII. Med Clinics Hematology and OncologyAugsburgGermany
| | - Renate Pichler
- Department of UrologyMedical University of InnsbruckInnsbruckAustria
| | | | | | - Viktor Grünwald
- Interdisciplinary Genitourinary OncologyClinic for Urology, Clinic for Medical OncologyUniversity Hospital Essen, Hufelandstraße 55EssenGermany
| | - Sascha Ahyai
- Department of UrologyMedical University of GrazGrazAustria
| | - Martin Pichler
- Translational OncologyII. Med Clinics Hematology and OncologyAugsburgGermany
| |
Collapse
|
2
|
Hade MD, Suire CN, Suo Z. Significant Enhancement of Fibroblast Migration, Invasion, and Proliferation by Exosomes Loaded with Human Fibroblast Growth Factor 1. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1969-1984. [PMID: 38181175 DOI: 10.1021/acsami.3c10350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Exosomes possess several inherent properties that make them ideal for biomedical applications, including robust stability, biocompatibility, minimal immunogenicity, and the ability to cross biological barriers. These natural nanoparticles have recently been developed as drug delivery vesicles. To do so, therapeutic molecules must be efficiently loaded into exosomes first. Very recently, we developed a cell-penetrating peptide (CPP)-based platform for loading of nucleic acids and small molecules into exosomes by taking advantage of the membrane-penetration power of CPPs. Here, we extended this simple but effective platform by loading a protein cargo into exosomes isolated from either mesenchymal stem cells from three different sources or two different cancer cell lines. The protein cargo is a fusion protein YARA-FGF1-GFP through the covalent conjugation of a model CPP called YARA to human fibroblast growth factor 1 (FGF1) and green fluorescence protein (GFP). Loading of YARA-FGF1-GFP into exosomes was time-dependent and reached a maximum of about 1600 YARA-FGF1-GFP molecules in each exosome after 16 h. The ladened exosomes were effectively internalized by mammalian cells, and subsequently, the loaded protein cargo YARA-FGF1-GFP was delivered intracellularly. In comparison to YARA, YARA-FGF1-GFP, the unloaded exosomes, and the exosomes loaded with YARA, the exosomes loaded with YARA-FGF1-GFP substantially promoted the migration, proliferation, and invasion capabilities of mouse and human fibroblasts, which are important factors for wound repair. The work extended our CPP-based exosomal cargo loading platform and established a foundation for developing novel wound-healing therapies using exosomes loaded with FGF1 and other growth factors.
Collapse
Affiliation(s)
- Mangesh D Hade
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, United States
| | - Caitlin N Suire
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, United States
| | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
3
|
Iglesia RP, Prado MB, Alves RN, Escobar MIM, Fernandes CFDL, Fortes ACDS, Souza MCDS, Boccacino JM, Cangiano G, Soares SR, de Araújo JPA, Tiek DM, Goenka A, Song X, Keady JR, Hu B, Cheng SY, Lopes MH. Unconventional Protein Secretion in Brain Tumors Biology: Enlightening the Mechanisms for Tumor Survival and Progression. Front Cell Dev Biol 2022; 10:907423. [PMID: 35784465 PMCID: PMC9242006 DOI: 10.3389/fcell.2022.907423] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022] Open
Abstract
Non-canonical secretion pathways, collectively known as unconventional protein secretion (UPS), are alternative secretory mechanisms usually associated with stress-inducing conditions. UPS allows proteins that lack a signal peptide to be secreted, avoiding the conventional endoplasmic reticulum-Golgi complex secretory pathway. Molecules that generally rely on the canonical pathway to be secreted may also use the Golgi bypass, one of the unconventional routes, to reach the extracellular space. UPS studies have been increasingly growing in the literature, including its implication in the biology of several diseases. Intercellular communication between brain tumor cells and the tumor microenvironment is orchestrated by various molecules, including canonical and non-canonical secreted proteins that modulate tumor growth, proliferation, and invasion. Adult brain tumors such as gliomas, which are aggressive and fatal cancers with a dismal prognosis, could exploit UPS mechanisms to communicate with their microenvironment. Herein, we provide functional insights into the UPS machinery in the context of tumor biology, with a particular focus on the secreted proteins by alternative routes as key regulators in the maintenance of brain tumors.
Collapse
Affiliation(s)
- Rebeca Piatniczka Iglesia
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil,The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Mariana Brandão Prado
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodrigo Nunes Alves
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Isabel Melo Escobar
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Camila Felix de Lima Fernandes
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ailine Cibele dos Santos Fortes
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Clara da Silva Souza
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jacqueline Marcia Boccacino
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giovanni Cangiano
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Samuel Ribeiro Soares
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - João Pedro Alves de Araújo
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Deanna Marie Tiek
- The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Anshika Goenka
- The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Xiao Song
- The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jack Ryan Keady
- The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Bo Hu
- The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Shi Yuan Cheng
- The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Marilene Hohmuth Lopes
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil,*Correspondence: Marilene Hohmuth Lopes,
| |
Collapse
|
4
|
Effects of ACTH-Induced Long-Term Hypercortisolism on the Transcriptome of Canine Visceral Adipose Tissue. Vet Sci 2022; 9:vetsci9060250. [PMID: 35737302 PMCID: PMC9228614 DOI: 10.3390/vetsci9060250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Cushing’s syndrome, or hypercortisolism (HC), a common endocrinopathy in adult dogs, is caused by chronic hypercortisolemia. Among different metabolic disorders, this syndrome is associated with enhanced subcutaneous lipolysis and visceral adiposity. However, effects of HC in adipose tissue, especially regarding visceral adipose tissue (VAT), are still poorly understood. Herein, the transcriptomic effects of chronic HC on VAT of dogs were evaluated. For this, subcutaneously implanted ACTH-releasing pumps were used, followed by deep RNA sequencing of the canine VAT. Prolonged HC seems to affect a plethora of regulatory mechanisms in VAT of treated dogs, with 1190 differentially expressed genes (DEGs, p and FDR < 0.01) being found. The 691 downregulated DEGs were mostly associated with functional terms like cell adhesion and migration, intracellular signaling, immune response, extracellular matrix and angiogenesis. Treatment also appeared to modulate local glucocorticoid and insulin signaling and hormonal sensitivity, and several factors, e.g., TIMP4, FGF1, CCR2, CXCR4 and HSD11B1/2, were identified as possible important players in the glucocorticoid-related expansion of VAT. Modulation of their function during chronic HC might present interesting targets for further clinical studies. Similarities in the effects of chronic HC on VAT of dogs and humans are highlighted.
Collapse
|
5
|
Pérez Piñero C, Giulianelli S, Lamb CA, Lanari C. New Insights in the Interaction of FGF/FGFR and Steroid Receptor Signaling in Breast Cancer. Endocrinology 2022; 163:6491899. [PMID: 34977930 DOI: 10.1210/endocr/bqab265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Indexed: 11/19/2022]
Abstract
Luminal breast cancer (BrCa) has a favorable prognosis compared with other tumor subtypes. However, with time, tumors may evolve and lead to disease progression; thus, there is a great interest in unraveling the mechanisms that drive tumor metastasis and endocrine resistance. In this review, we focus on one of the many pathways that have been involved in tumor progression, the fibroblast growth factor/fibroblast growth factor receptor (FGFR) axis. We emphasize in data obtained from in vivo experimental models that we believe that in luminal BrCa, tumor growth relies in a crosstalk with the stromal tissue. We revisited the studies that illustrate the interaction between hormone receptors and FGFR. We also highlight the most frequent alterations found in BrCa cell lines and provide a short review on the trials that use FGFR inhibitors in combination with endocrine therapies. Analysis of these data suggests there are many players involved in this pathway that might be also targeted to decrease FGF signaling, in addition to specific FGFR inhibitors that may be exploited to increase their efficacy.
Collapse
Affiliation(s)
- Cecilia Pérez Piñero
- Instituto de Biología y Medicina Experimental, IBYME CONICET, C1428ADN Ciudad de Buenos Aires, Argentina
| | - Sebastián Giulianelli
- Instituto de Biología y Medicina Experimental, IBYME CONICET, C1428ADN Ciudad de Buenos Aires, Argentina
- Instituto de Biología de Organismos Marinos, IBIOMAR-CCT CENPAT-CONICET, U9120ACD Puerto Madryn, Argentina
| | - Caroline A Lamb
- Instituto de Biología y Medicina Experimental, IBYME CONICET, C1428ADN Ciudad de Buenos Aires, Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental, IBYME CONICET, C1428ADN Ciudad de Buenos Aires, Argentina
| |
Collapse
|
6
|
Seitz T, Hellerbrand C. Role of fibroblast growth factor signalling in hepatic fibrosis. Liver Int 2021; 41:1201-1215. [PMID: 33655624 DOI: 10.1111/liv.14863] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
Fibrotic remodelling is a highly conserved protective response to tissue injury and it is essential for the maintenance of structural and functional tissue integrity. Also hepatic fibrosis can be considered as a wound-healing response to liver injury, reflecting a balance between liver repair and scar formation. In contrast, pathological fibrosis corresponds to impaired wound healing. Usually, the liver regenerates after acute injury. However, if the damaging mechanisms persist, the liver reacts with progressive and uncontrolled accumulation of extracellular matrix proteins. Eventually, excessive fibrosis can lead to cirrhosis and hepatic failure. Furthermore, cirrhosis is the major risk factor for the development of hepatocellular cancer (HCC). Therefore, hepatic fibrosis is the most critical pathological factor that determines the morbidity and mortality of patients with chronic liver disease. Still, no effective anti-fibrogenic therapies exist, despite the very high medical need. The regulation of fibroblast growth factor (FGF) signalling is a prerequisite for adequate wound healing, repair and homeostasis in various tissues and organs. The FGF family comprises 22 proteins that can be classified into paracrine, intracrine and endocrine factors. Most FGFs signal through transmembrane tyrosine kinase FGF receptors (FGFRs). Although FGFRs are promising targets for the treatment of HCC, the expression and function of FGFR-ligands in hepatic fibrosis is still poorly understood. This review summarizes the latest advances in our understanding of FGF signalling in hepatic fibrosis. Furthermore, the potential of FGFs as targets for the treatment of hepatic fibrosis and remaining challenges for the field are discussed.
Collapse
Affiliation(s)
- Tatjana Seitz
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
7
|
Weant J, Eveleth DD, Subramaniam A, Jenkins-Eveleth J, Blaber M, Li L, Ornitz DM, Alimardanov A, Broadt T, Dong H, Vyas V, Yang X, Bradshaw RA. Regenerative responses of rabbit corneal endothelial cells to stimulation by fibroblast growth factor 1 (FGF1) derivatives, TTHX1001 and TTHX1114. Growth Factors 2021; 39:14-27. [PMID: 34879776 DOI: 10.1080/08977194.2021.2012468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Utilising rabbit corneal endothelial cells (CEC) in three different paradigms, two human FGF1 derivatives (TTHX1001 and TTHX1114), engineered to exhibit greater stability, were tested as proliferative agents. Primary CECs and mouse NIH 3T3 cells treated with the two FGF1 derivatives showed equivalent EC50 ranges (3.3-24 vs.1.9-16. ng/mL) and, in organ culture, chemically lesioned corneas regained half of the lost endothelial layer in three days after treatment with the FGF1 derivatives as compared to controls. In vivo, following cryolesioning, the CEC monolayer, as judged by specular microscopy, regenerated 10-11 days faster when treated with TTHX1001. Over two weeks, all treated eyes showed clearing of opacity about twice that of untreated controls. In all three rabbit models, both FGF1 derivatives were effective in inducing CEC proliferation over control conditions, supporting the prediction that these stabilised FGF1 derivatives can potentially regenerate corneal endothelial deficits in humans.
Collapse
Affiliation(s)
| | | | | | | | - Michael Blaber
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, USA
| | - Ling Li
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Asaf Alimardanov
- Therapeutics Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Trevor Broadt
- Biopharmaceutical Development Program, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research Inc, Frederick, MD, USA
| | - Hui Dong
- Biopharmaceutical Development Program, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research Inc, Frederick, MD, USA
| | - Vinay Vyas
- Biopharmaceutical Development Program, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research Inc, Frederick, MD, USA
| | - Xiaoyi Yang
- Biopharmaceutical Development Program, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research Inc, Frederick, MD, USA
| | - Ralph A Bradshaw
- Trefoil Therapeutics, Inc, San Diego, CA, USA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
8
|
Zhang J, Liu Z, Li Y, You Q, Yang J, Jin Y, Zou G, Tang J, Ge Z, Liu Y. FGF2: a key regulator augmenting tendon-to-bone healing and cartilage repair. Regen Med 2020; 15:2129-2142. [PMID: 33201773 DOI: 10.2217/rme-2019-0080] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ligament/tendon and cartilage injuries are clinically common diseases that perplex most clinicians. Because of the lack of blood vessels and nerves, their self-repairing abilities are rather poor. Therefore, surgeries are necessary and also widely used to treat ligament/tendon or cartilage injuries. However, after surgery, there are still many problems that affect healing. In recent years, it has been found that exogenous FGF2 plays an important role in the repair of ligament/tendon and cartilage injuries and exerts a synergistic effect with endogenous FGF2. Therefore, FGF2 can be used as a new type of biomolecule to accelerate tendon-to-bone healing and cartilage repair after injury.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Guizhou 563000, China
| | - Ziming Liu
- Peking University Institute of Sports Medicine, Beijing 100083, China
| | - Yuwan Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qi You
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Guizhou 563000, China
| | - Jibin Yang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Guizhou 563000, China
| | - Ying Jin
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Guizhou 563000, China
| | - Gang Zou
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Guizhou 563000, China
| | - Jingfeng Tang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Guizhou 563000, China
| | - Zhen Ge
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Guizhou 563000, China
| | - Yi Liu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Guizhou 563000, China
| |
Collapse
|
9
|
Comparative study on seasonal hair follicle cycling by analysis of the transcriptomes from cashmere and milk goats. Genomics 2019; 112:332-345. [PMID: 30779940 DOI: 10.1016/j.ygeno.2019.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 01/06/2023]
Abstract
Guard hair and cashmere undercoat are developed from primary and secondary hair follicle, respectively. Little is known about the gene expression differences between primary and secondary hair follicle cycling. In this study, we obtained RNA-seq data from cashmere and milk goats grown at four different seasons. We studied the differentially expressed genes (DEGs) during the yearly hair follicle cycling, and between cashmere and milk goats. WNT, NOTCH, MAPK, BMP, TGFβ and Hedgehog signaling pathways were involved in hair follicle cycling in both cashmere and milk goat. However, Milk goat DEGs between different months were significantly more than cashmere goat DEGs, with the largest difference being identified in December. Some expression dynamics were confirmed by quantitative PCR and western blot, and immunohistochemistry. This study offers new information sources related to hair follicle cycling in milk and cashmere goats, which could be applicable to improve the wool production and quality.
Collapse
|
10
|
Ghazavi H, Hoseini SJ, Ebrahimzadeh-Bideskan A, Mashkani B, Mehri S, Ghorbani A, Sadri K, Mahdipour E, Ghasemi F, Forouzanfar F, Hoseini A, Pasdar AR, Sadeghnia HR, Ghayour-Mobarhan M. Fibroblast Growth Factor Type 1 (FGF1)-Overexpressed Adipose-Derived Mesenchaymal Stem Cells (AD-MSC FGF1) Induce Neuroprotection and Functional Recovery in a Rat Stroke Model. Stem Cell Rev Rep 2018; 13:670-685. [PMID: 28795363 DOI: 10.1007/s12015-017-9755-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stroke, as the second most common cause of death, imposes a great financial burden on both the individual and society. Mesenchymal stem cells from rodents have demonstrated efficacy in experimental animal models of stroke due to enhanced neurological recovery. Since FGF1 (fibroblast growth factor 1) displays neuroprotective properties, for the first time, we investigated the effect of acute intravenous administration of FGF1 gene transfected adipose-derived mesenchymal stem cell (AD-MSCFGF1) on transient experimental ischemic stroke in rats. Stroke induction was made by transient middle cerebral artery occlusion (tMCAO). 2 × 106 AD-MSCFGF1 was administrated intravenously 30 min after carotid reperfusion. The ability of technetium99m-hexamethyl propylene amine oxime (99mTc-HMPAO)-labeled AD-MSCFGF1 to enter into ischemic brain was evaluated 2 h post injection. 24 h post operation, the neurological recovery (rotarod and Roger's tests), the infarct volume (2, 3, 5-triphenyltetrazolium chloride, TTC assay), apoptosis rate (TUNEL assay), and the expression of FGF1 protein (western blotting) in the ischemic hemisphere were assessed. The 99mTc-HMPAO-labeled AD-MSCFGF1 could enter into the ischemic brain. Ischemic hemisphere activity was significantly higher than that observed in the contralateral hemisphere (p = 0.002). The administration of AD-MSCFGF1 resulted in significant improvement of neurological function tests and increased density of FGF1 protein in the peri-infarct area, while the infarct volume and the apoptotic index were significantly decreased, in comparison to the other treated groups. In conclusion, acute intravenous administration of AD-MSCFGF1 can be a novel and promising candidate approach for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Hamed Ghazavi
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Javad Hoseini
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Baratali Mashkani
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kayvan Sadri
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Mahdipour
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Ghasemi
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Fatemeh Forouzanfar
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azar Hoseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Reza Pasdar
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Sadeghnia
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, 99199-91766, Iran.
| | - Majid Ghayour-Mobarhan
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Biochemistry of Nutrition Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 99199-91766, Iran. .,Cardiovascular Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Affiliation(s)
- K.P. Gudehithlu
- Hektoen Institute for Medical Research, Division of Nephrology, Cook County Hospital, Chicago, IL - USA
| | - A.K. Singh
- Hektoen Institute for Medical Research, Division of Nephrology, Cook County Hospital, Chicago, IL - USA
| |
Collapse
|
12
|
Hoseini SJ, Ghazavi H, Forouzanfar F, Mashkani B, Ghorbani A, Mahdipour E, Ghasemi F, Sadeghnia HR, Ghayour-Mobarhan M. Fibroblast Growth Factor 1-Transfected Adipose-Derived Mesenchymal Stem Cells Promote Angiogenic Proliferation. DNA Cell Biol 2017; 36:401-412. [PMID: 28281780 PMCID: PMC5421621 DOI: 10.1089/dna.2016.3546] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/28/2017] [Accepted: 02/08/2017] [Indexed: 01/10/2023] Open
Abstract
The aim of this study was to investigate, for the first time, the effects of using adipose-derived mesenchymal stem cells (AD-MSCs) transfected with an episomal plasmid encoding fibroblast growth factor 1 (FGF1) (AD-MSCsFGF1), in providing the microenvironment required for angiogenic proliferation. The isolated rat AD-MSCs were positive for mesenchymal (CD29 and CD90) and negative for hematopoietic (CD34 and CD45) surface markers. Adipogenic and osteogenic differentiation of the AD-MSCs also occurred in the proper culture media. The presence of FGF1 in the conditioned medium from the AD-MSCsFGF1 was confirmed by Western blotting. G418 and PCR were used for selection of transfected cells and confirmation of the presence of FGF1 mRNA, respectively. Treatment with the AD-MSCFGF1-conditioned medium significantly increased the NIH-3T3 cell proliferation and human umbilical vein endothelial cell (HUVEC) tube formation compared to conditioned medium from nontransfected AD-MSCs (p < 0.001). In conclusion, the AD-MSCsFGF1 efficiently secreted functional FGF1, which promoted angiogenic proliferation. Using AD-MSCsFGF1 may provide a useful strategy in cell therapy, which can merge the beneficial effects of stem cells with the positive biological effects of FGF1 in various disorders, especially tissue defects, neurodegenerative, cardiovascular and diabetes endocrine pathologies, which remain to be tested in preclinical and clinical studies.
Collapse
Affiliation(s)
- Seyed Javad Hoseini
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Ghazavi
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Baratali Mashkani
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Mahdipour
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Ghasemi
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Sadeghnia
- Neurocognitive Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Cardiovascular Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Guo DD, Guan WZ, Sun YW, Chen J, Jiang XY, Zou SM. Comparative expression and regulation of duplicated fibroblast growth factor 1 genes in grass carp (Ctenopharyngodon idella). Gen Comp Endocrinol 2017; 240:61-68. [PMID: 27677452 DOI: 10.1016/j.ygcen.2016.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/18/2016] [Accepted: 09/23/2016] [Indexed: 10/21/2022]
Abstract
Fibroblast growth factor 1 (Fgf1) is known as a mitogenic factor involved in the regulation of cell growth, proliferation, and differentiation in vertebrates. Here, we report the isolation and characterization of two fgf1 genes in grass carp (Ctenopharyngodon idella). Grass carp fgf1a and fgf1b cDNAs are highly divergent, sharing a relatively low amino acid sequence identity of 50%, probably due to fish-specific gene duplication. fgf1a and fgf1b mRNAs were detected in the zygote and expressed throughout embryogenesis. Both fgf1a and fgf1b mRNAs were primarily detectable in the notochord at 12 hpf. At 24 hpf, fgf1a mRNA was mainly expressed in the gut and somites, while fgf1b transcript persisted in the notochord and was detected in the tailbud. At 36 hpf, both fgf1a and fgf1b transcripts were detected in the brain, somites, and tailbud. In addition, the fgf1a mRNA was detected at the base of the yolk sac, whereas the fgf1b mRNA was expressed in the pectoral fin. In adult fish, duplicated fgf1a and fgf1b mRNAs were distributed in most tissues. After 2-6days of starvation, both fgf1a and fgf1b mRNAs were upregulated in the muscle and liver. In the brain, fgf1a mRNA was upregulated, while fgf1b mRNA was significantly downregulated at 6days. Furthermore, both fgf1a and fgf1b mRNA levels were significantly decreased in the brain and muscle after administration of 10 or 50μg of the human growth hormone (hGH),while their mRNA levels were no significant difference in the liver. These results suggest that duplicated fgf1s may play important but divergent roles in the grass carp development.
Collapse
Affiliation(s)
- Dan-Dan Guo
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Huchenghuan Road 999, Shanghai 201306, China
| | - Wen-Zhi Guan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Huchenghuan Road 999, Shanghai 201306, China
| | - Yi-Wen Sun
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Huchenghuan Road 999, Shanghai 201306, China
| | - Jie Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Huchenghuan Road 999, Shanghai 201306, China
| | - Xia-Yun Jiang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Huchenghuan Road 999, Shanghai 201306, China.
| | - Shu-Ming Zou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Huchenghuan Road 999, Shanghai 201306, China.
| |
Collapse
|
14
|
FGF1 C-terminal domain and phosphorylation regulate intracrine FGF1 signaling for its neurotrophic and anti-apoptotic activities. Cell Death Dis 2016; 7:e2079. [PMID: 26844696 PMCID: PMC4849156 DOI: 10.1038/cddis.2016.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/17/2015] [Accepted: 12/23/2015] [Indexed: 11/09/2022]
Abstract
Fibroblast growth factor 1 (FGF1) is a prototypic member of the FGFs family overexpressed in various tumors. Contrarily to most FGFs, FGF1 lacks a secretion peptide signal and acts mainly in an intracellular and nuclear manner. Intracellular FGF1 induces cell proliferation, differentiation and survival. We previously showed that intracellular FGF1 induces neuronal differentiation and inhibits both p53- and serum-free-medium-induced apoptosis in PC12 cells. FGF1 nuclear localization is required for these intracellular activities, suggesting that FGF1 regulates p53-dependent apoptosis and neuronal differentiation by new nuclear pathways. To better characterize intracellular FGF1 pathways, we studied the effect of three mutations localized in the C-terminal domain of FGF1 (i.e., FGF1K132E, FGF1S130A and FGF1S130D) on FGF1 neurotrophic and anti-apoptotic activities in PC12 cells. The change of the serine 130 to alanine precludes FGF1 phosphorylation, while its mutation to aspartic acid mimics phosphorylation. These FGF1 mutants kept both a nuclear and cytosolic localization in PC12 cells. Our study highlights for the first time the role of FGF1 phosphorylation and the implication of FGF1 C-terminal domain on its intracellular activities. Indeed, we show that the K132E mutation inhibits both the neurotrophic and anti-apoptotic activities of FGF1, suggesting a regulatory activity for FGF1 C terminus. Furthermore, we observed that both FGF1S130A and FGF1S130D mutant forms induced PC12 cells neuronal differentiation. Therefore, FGF1 phosphorylation does not regulate FGF1-induced differentiation of PC12 cells. Then, we showed that only FGF1S130A protects PC12 cells against p53-dependent apoptosis, thus phosphorylation appears to inhibit FGF1 anti-apoptotic activity in PC12 cells. Altogether, our results show that phosphorylation does not regulate FGF1 neurotrophic activity but inhibits its anti-apoptotic activity after p53-dependent apoptosis induction, giving new insight into the poorly described FGF1 intracrine/nuclear pathway. The study of nuclear pathways could be crucial to identify key regulators involved in neuronal differentiation, tumor progression and resistances to radio- and chemo-therapy.
Collapse
|
15
|
Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:215-66. [PMID: 25772309 PMCID: PMC4393358 DOI: 10.1002/wdev.176] [Citation(s) in RCA: 1360] [Impact Index Per Article: 151.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/23/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022]
Abstract
The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of MedicineSt. Louis, MO, USA
- *
Correspondence to:
| | - Nobuyuki Itoh
- Graduate School of Pharmaceutical Sciences, Kyoto UniversitySakyo, Kyoto, Japan
| |
Collapse
|
16
|
Kim SK, Park SG, Kim KW. Expression of vascular endothelial growth factor in oral squamous cell carcinoma. J Korean Assoc Oral Maxillofac Surg 2015; 41:11-8. [PMID: 25741463 PMCID: PMC4347029 DOI: 10.5125/jkaoms.2015.41.1.11] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES The goal of this study was to determine the correlation of clinicopathological factors and the up-regulation of vascular endothelial growth factor (VEGF) expression in oral squamous cell carcinoma. MATERIALS AND METHODS Immunohistochemical staining of VEGF and quantitative real-time polymerase chain reaction (RT-PCR) of VEGF mRNA were performed in 20 specimens from 20 patients with oral squamous cell carcinoma and another 20 specimens from 20 patients with carcinoma in situ as a controlled group. RESULTS The results were as follows: 1) In immunohistochemical study of poorly differentiated and invasive oral squamous cell carcinoma, high-level staining of VEGF was observed. Significant correlation was observed between immunohistochemical VEGF expression and histologic differentiation, tumor size of specimens (Pearson correlation analysis, significance r>0.6, P<0.05). 2) In VEGF quantitative RT-PCR analysis, progressive cancer showed more VEGF expression than carcinoma in situ. Paired-samples analysis determined the difference of VEGF mRNA expression level between cancer tissue and carcinoma in situ tissue, between T1 and T2-4 (Student's t-test, P<0.05). CONCLUSION These findings suggest that up-regulation of VEGF may play a role in the angiogenesis and progression of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Seok-Kon Kim
- Department of Anesthesiology and Pain Medicine, Dankook University College of Medicine, Cheonan, Korea
| | - Seung-Goo Park
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Dankook University, Cheonan, Korea
| | - Kyung-Wook Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Dankook University, Cheonan, Korea
| |
Collapse
|
17
|
Prada I, Furlan R, Matteoli M, Verderio C. Classical and unconventional pathways of vesicular release in microglia. Glia 2013; 61:1003-17. [PMID: 23625857 DOI: 10.1002/glia.22497] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/22/2013] [Indexed: 12/30/2022]
Abstract
Emerging evidence indicates that activation of microglia, the immune cells of the brain, is strictly associated to both secretion of soluble molecules and release of extracellular membrane vesicles (EMVs) into the pericellular space. Through these processes, microglia heavily influence brain cell functions, either propagating inflammation and causing damage to neurons or playing a supportive, neuroprotective role. In this review, we highlight the emerging concepts related to vesicular mechanisms of secretion operating in microglial cells, with the aim of dissecting how microglia communicate with other cell types within the brain microenvironment in health and disease.
Collapse
Affiliation(s)
- Ilaria Prada
- Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | | | | | | |
Collapse
|
18
|
Sun K, Scherer PE. The PPARγ-FGF1 axis: an unexpected mediator of adipose tissue homeostasis. Cell Res 2012; 22:1416-8. [PMID: 22710798 DOI: 10.1038/cr.2012.94] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Adipose tissue remodeling is a dynamic process during nutritional fluctuation that plays critical roles in metabolic homeostasis and insulin sensitivity. The process is highly regulated by many factors, including adipokines and cytokines that are locally released within fat pads. In a recent study published in Nature, Jonker and colleagues identified FGF1 as an important mediator that is selectively induced in fat cells by high-fat diet feeding and established the PPARγ-FGF1 axis as a critical pathway that regulates adipose tissue remodeling and ultimately systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Kai Sun
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
19
|
Olson JJ, Reisner A, Klemm JM, Bakay RA. Basic fibroblastic growth factor as a potential meningeal angiogenic factor. Skull Base Surg 2011; 3:117-22. [PMID: 17170900 PMCID: PMC1656445 DOI: 10.1055/s-2008-1060573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vascular supply plays a significant role in the management of skull base tumors. The diagnosis is aided by contrast-enhanced imaging and angiographic techniques, and embolization procedures are used to devascularize certain lesions. The degree of surgical technical difficulty is strongly influenced by the degree of tumor vascularity. Although the importance of this blood supply is clearly understood, the mechanism involved in developing a system of tumor-perfusing vessels is yet to be defined. The development of a vascular network, or angiogenesis, is an important event in allowing tumor proliferation to progress beyond small clusters of cells. Basic fibroblastic growth factor (bFGF) is an especially attractive candidate as an angiogenic growth factor because of its ability to stimulate processes that are characteristic of angiogenesis in vitro. Tumors that involve the meninges may have the ability to liberate normally stored bFGF, which may, in turn, induce new vessel formation for continued tumor proliferation. An immunohistochemical analysis of rodent and bovine meninges to study this phenomenon is described. The dura, arachnoid, and their associated vessels are shown clearly to contain this growth factor. Ultimately, an adjuvant therapy based on the inhibition of angiogenesis may provide a reasonable alternative to aggressive surgical approaches in skull base tumors that are incompletely resectable.
Collapse
|
20
|
Kang S, Li SZ, Wang N, Zhou RM, Wang T, Wang DJ, Li XF, Bui J, Li Y. Association between genetic polymorphisms in fibroblast growth factor (FGF)1 and FGF2 and risk of endometriosis and adenomyosis in Chinese women. Hum Reprod 2010; 25:1806-11. [PMID: 20504870 DOI: 10.1093/humrep/deq128] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Angiogenesis appears to be an important event in the pathophysiology of endometriosis (EM) and adenomyosis. Two angiogenic factors, fibroblast growth factor (FGF) 1 and 2, play a central role in the initiation of angiogenesis. We investigated whether FGF1 -1385A/G and FGF2 754C/G polymorphisms are associated with a risk of developing EM and adenomyosis. METHODS Genotypes were analyzed by the PCR-restriction fragment length polymorphism method in two groups of women, of Han ethnicity in north China, aged 16-55 years: (1) 421 EM patients and 421 controls; (2) 269 adenomyosis patients and 269 controls. RESULTS There was no difference in genotype distribution of the FGF1 -1385A/G polymorphism between adenomyosis cases and controls (P > 0.05), but the frequency of the A allele in EM patients was lower than that in controls (P = 0.013). Genotype and allele frequencies of the FGF2 754C/C polymorphism were significantly different in both EM and adenomyosis cases versus control groups. Compared with C/C homozygotes, the G allele (C/G + G/G) was associated with a decreased susceptibility to developing EM [odds ratio (OR) = 0.575, 95% confidence interval (CI) = 0.387-0.854] and adenomyosis (OR = 0.577, 95% CI = 0.367-0.906). Combined genotype analysis of both polymorphisms also showed differences between cases versus controls (all P < 0.001). CONCLUSIONS Our study shows for the first time that the FGF2 754C/G polymorphism may be associated with a risk of developing EM and adenomyosis in north Chinese women. Carriers of the G allele in the FGF2 gene appear to be protected from these gynecological diseases. Further studies in other populations, and of other candidate genes, are now warranted.
Collapse
Affiliation(s)
- Shan Kang
- Department of Obstetrics and Gynaecology, Hebei Cancer Institute, Hebei Medical University, Fourth Hospital, Jiankanglu 12, Shijiazhuang 050011, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Levin RI, Moscatelli DA, Recht PA. Oxalate, a Potential Atherogenic Toxin of Uremia, Inhibits Endothelial Proliferation Induced by Heparin-binding Growth FactorsIn Vitro. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10623329309102695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Yang QR, Zwijsen A, Slegers H, Berghe DV. Purification and Characterization of VEGFNPF Secreted by Human Retinal Pigment Epithelial Cells. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10623329409024636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Liao S, Bodmer J, Pietras D, Azhar M, Doetschman T, Schultz JEJ. Biological functions of the low and high molecular weight protein isoforms of fibroblast growth factor-2 in cardiovascular development and disease. Dev Dyn 2009; 238:249-64. [PMID: 18773489 DOI: 10.1002/dvdy.21677] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Fibroblast growth factor 2 (FGF2) consists of multiple protein isoforms (low molecular weight, LMW, and high molecular weight, HMW) produced by alternative translation from the Fgf2 gene. These protein isoforms are localized to different cellular compartments, indicating unique biological activity. FGF2 isoforms in the heart have distinct roles in many pathological circumstances in the heart including cardiac hypertrophy, ischemia-reperfusion injury, and atherosclerosis. These studies suggest distinct biological activities of FGF2 LMW and HMW isoforms both in vitro and in vivo. Yet, due to the limitations that only the recombinant FGF2 LMW isoform is readily available and that the FGF2 antibody is nonspecific with regards to its isoforms, much remains to be determined regarding the role(s) of the FGF2 LMW and HMW isoforms in cellular behavior and in cardiovascular development and pathophysiology. This review summarizes the activities of LMW and HMW isoforms of FGF2 in cardiovascular development and disease.
Collapse
Affiliation(s)
- Siyun Liao
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati, Ohio, USA
| | | | | | | | | | | |
Collapse
|
24
|
Al-Jaouni S, Pinkerton PH, Sheridan BL, Dube ID, Norman CS. Breakpoints Involved in Deletions of the Long Arm of Chromosome 5 in Myelodysplasia and Acute Non-Lymphoblastic Leukemia do not Correlate with the Morphological Diagnosis. Leuk Lymphoma 2009; 3:195-200. [DOI: 10.3109/10428199009050995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Asada M, Shinomiya M, Suzuki M, Honda E, Sugimoto R, Ikekita M, Imamura T. Glycosaminoglycan affinity of the complete fibroblast growth factor family. Biochim Biophys Acta Gen Subj 2009; 1790:40-8. [DOI: 10.1016/j.bbagen.2008.09.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 09/01/2008] [Accepted: 09/04/2008] [Indexed: 11/17/2022]
|
26
|
Zakrzewska M, Marcinkowska E, Wiedlocha A. FGF-1: From Biology Through Engineering to Potential Medical Applications. Crit Rev Clin Lab Sci 2008; 45:91-135. [DOI: 10.1080/10408360701713120] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Kilani RT, Medina A, Aitken A, Jalili RB, Carr M, Ghahary A. Identification of different isoforms of 14-3-3 protein family in human dermal and epidermal layers. Mol Cell Biochem 2008; 314:161-9. [DOI: 10.1007/s11010-008-9777-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 04/22/2008] [Indexed: 11/29/2022]
|
28
|
Sang Cho-Chung Y. Overview: Oncologic, Endocrine & Metabolic Antisense oligonucleotides for the treatment of cancer. ACTA ACUST UNITED AC 2008. [DOI: 10.1517/13543776.3.12.1737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Hill-Kapturczak N, Jarmi T, Agarwal A. Growth factors and heme oxygenase-1: perspectives in physiology and pathophysiology. Antioxid Redox Signal 2007; 9:2197-207. [PMID: 17979525 DOI: 10.1089/ars.2007.1798] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Growth factors are mediators of both normal homeostasis and pathophysiology through their effects on various cellular processes. Similarly, heme oxygenase-1 (HO-1) has a role in maintaining physiologic equilibrium, by which it can either alleviate or exacerbate disease, depending on several considerations, including amount, timing, and location of expression, as well as the disease setting. Thus, the synthesis and activities of growth factors and HO-1 are intricately regulated. Interestingly, several growth factors induce HO-1, and, conversely, HO-1 can regulate the expression of some growth factors. This review focuses on the influence of growth factors and HO-1 and potential physiologic effects of the growth factor(s)-HO-1 interaction.
Collapse
Affiliation(s)
- Nathalie Hill-Kapturczak
- Department of Medicine, Nephrology Research and Training Center and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | |
Collapse
|
30
|
Al Sabti H. Therapeutic angiogenesis in cardiovascular disease. J Cardiothorac Surg 2007; 2:49. [PMID: 18021404 PMCID: PMC2169246 DOI: 10.1186/1749-8090-2-49] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 11/16/2007] [Indexed: 01/13/2023] Open
Abstract
Atherosclerotic disease of the arteries is a major cause of coronary artery disease, peripheral vascular disease and stroke. Some patients are however not candidate for the standard treatment of angioplasty or bypass surgery. Hence there is tremendous enthusiasm for the utilization of angiogenesis as a therapeutic modality for atherosclerotic arterial disease. This augmentation of physiological neo-vascularization in cardiovascular disease can be achieved through different pathways. In this article we are reviewing the Use of Gene therapy, Protein therapy and cellular therapy.
Collapse
Affiliation(s)
- Hilal Al Sabti
- Department of surgery, Sultan Qaboos University Hospital, Code 123, P.Box 35, Al Khod, Sultanate of Oman.
| |
Collapse
|
31
|
Graziani I, Bagalá C, Duarte M, Soldi R, Kolev V, Tarantini F, Suresh Kumar TK, Doyle A, Neivandt D, Yu C, Maciag T, Prudovsky I. Release of FGF1 and p40 synaptotagmin 1 correlates with their membrane destabilizing ability. Biochem Biophys Res Commun 2006; 349:192-9. [PMID: 16930531 PMCID: PMC1779946 DOI: 10.1016/j.bbrc.2006.08.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 08/04/2006] [Indexed: 10/24/2022]
Abstract
Fibroblast growth factor (FGF)1 is released from cells as a constituent of a complex that contains the small calcium binding protein S100A13, and the p40 kDa form of synaptotagmin (Syt)1, through an ER-Golgi-independent stress-induced pathway. FGF1 and the other components of its secretory complex are signal peptide-less proteins. We examined their capability to interact with lipid bilayers by studying protein-induced carboxyfluorescein release from liposomes of different phospholipid (pL) compositions. FGF1, p40 Syt1, and S100A13 induced destabilization of liposomes composed of acidic but not of zwitterionic pL. We produced mutants of FGF1 and p40 Syt1, in which specific basic amino acid residues in the regions that bind acidic pL were substituted. The ability of these mutants to induce liposomes destabilization was strongly attenuated, and they exhibited drastically diminished spontaneous and stress-induced release. Apparently, the non-classical release of FGF1 and p40 Syt1 involves destabilization of membranes containing acidic pL.
Collapse
Affiliation(s)
- Irene Graziani
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | - Cinzia Bagalá
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | - Maria Duarte
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | - Raffaella Soldi
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | - Vihren Kolev
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | - Francesca Tarantini
- Department of Critical Care Medicine and Surgery, Gerontology and Geriatrics Unit, University of Florence, Florence 50139, Italy
| | | | - Andrew Doyle
- Department of Chemical and Biological Engineering, and Functional Genomics Program, University of Maine, Orono, ME 04469 USA
| | - David Neivandt
- Department of Chemical and Biological Engineering, and Functional Genomics Program, University of Maine, Orono, ME 04469 USA
| | - Chin Yu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30043, Taiwan
| | - Thomas Maciag
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | - Igor Prudovsky
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
- * To whom correspondence should be addressed. Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough ME 04074. Telephone: 207-885-8146; Fax 201-885-8179;
| |
Collapse
|
32
|
Okano H, Toyoda KI, Bamba H, Hisa Y, Oomura Y, Imamura T, Furukawa S, Kimura H, Tooyama I. Localization of Fibroblast Growth Factor-1 in Cholinergic Neurons Innervating the Rat Larynx. J Histochem Cytochem 2006; 54:1061-71. [PMID: 16735594 DOI: 10.1369/jhc.5a6843.2006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cholinergic neurons in the dorsal motor nucleus of the vagus (DMNV) are particularly vulnerable to laryngeal nerve damage, possibly because they lack fibroblast growth factor-1 (FGF1). To test this hypothesis, we investigated the localization of FGF1 in cholinergic neurons innervating the rat larynx by immunohistochemistry using central-type antibodies to choline acetyltransferase (cChAT) and peripheral type (pChAT) antibodies, as well as tracer experiments. In the DMNV, only 9% of cChAT-positive neurons contained FGF1, and 71% of FGF1-positive neurons colocalized with cChAT. In the nucleus ambiguus, 100% of cChAT-positive neurons were FGF1 positive. In the intralaryngeal ganglia, all ganglionic neurons contained both pChAT and FGF1. In the nodose ganglia, 66% of pChAT-positive neurons were also positive for FGF1, and 90% of FGF1-positive ganglionic cells displayed pChAT immunoreactivity. Neuronal tracing using cholera toxin B subunit (CTb) demonstrated that cholinergic neurons sending their axons from the DMNV and nucleus ambiguus to the superior laryngeal nerve were FGF1 negative and FGF1 positive, respectively. In the nodose ganglia, some FGF1-positive cells were labeled with CTb. The results indicate that for innervation of the rat larynx, FGF1 is localized to motor neurons, postganglionic parasympathetic neurons, and sensory neurons, but expression is very low in preganglionic parasympathetic cholinergic neurons.
Collapse
Affiliation(s)
- Hiroyuki Okano
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatsukinowa-cho, Otsu 520-2192, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Toyoda KI, Okano H, Bamba H, Hisa Y, Oomura Y, Imamura T, Furukawa S, Tooyama I. Comparison of FGF1 (aFGF) expression between the dorsal motor nucleus of vagus and the hypoglossal nucleus of rat. Acta Histochem Cytochem 2006; 39:1-7. [PMID: 17460766 PMCID: PMC1831852 DOI: 10.1267/ahc.05047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 12/18/2005] [Indexed: 11/22/2022] Open
Abstract
Neurons in the dorsal motor nucleus of the vagus (DMNV) are more severely affected by axonal injury than most other nerves, such as those of the hypoglossal nucleus. However, the mechanism underlying such a response remains unclear. In this study, we compared the expression of fibroblast growth factor 1 (FGF1), a neurotrophic factor, between the DMNV and the hypoglossal nucleus by RT-PCR and immunohistochemical analyses. RT-PCR showed that the level of FGF1 mRNA expression in the DMNV was lower than that in the hypoglossal nucleus (P<0.01). Immunohistochemistry revealed that FGF1 was localized to neurons. FGF1-positive neurons in large numbers were evenly distributed in the hypoglossal nucleus, whereas FGF1-positive neurons were located in the lateral part of the DMNV. Double immunostaining for FGF1 and choline acetyltransferase demonstrated that 22.7% and 78% of cholinergic neurons were positive for FGF1 in the DMNV and hypoglossal nucleus, respectively. A tracing study with cholera toxin B subunit (CTb) demonstrated that cholinergic neurons sending their axons from the DMNV to the superior laryngeal nerve were FGF1-negative. The results suggest that the low expression of FGF1 in the DMNV is due to severe damage of neurons in the DMNV.
Collapse
Affiliation(s)
- Ken-ichiro Toyoda
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatukinowa-cho, Otsu 520–2192, Japan
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kyoto 602–8566, Japan
| | - Hiroyuki Okano
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatukinowa-cho, Otsu 520–2192, Japan
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kyoto 602–8566, Japan
| | - Hitoshi Bamba
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kyoto 602–8566, Japan
| | - Yasuo Hisa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kyoto 602–8566, Japan
| | - Yutaka Oomura
- Department of Physiology, School of Medicine, Kyushu University, Fukuoka 812–8582, Japan
| | - Toru Imamura
- Signaling Molecules Research Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 1–1–1 Higashi, Tsukuba, Ibaraki 305–8566, Japan
| | - Shoei Furukawa
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Mitahora-higashi 5–6–1, Gifu 502–8585, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatukinowa-cho, Otsu 520–2192, Japan
- Correspondence to: Ikuo Tooyama, Professor, Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatsukinowa-cho, Otsu 520–2192, Japan. E-mail:
| |
Collapse
|
34
|
Jahan R, Solberg TD, Lee D, Medin P, Tateshima S, Sayre J, De Salles A, Vinters HV, Vinuela F. Stereotactic Radiosurgery of the Rete Mirabile in Swine: A Longitudinal Study of Histopathological Changes. Neurosurgery 2006; 58:551-8; discussion 551-8. [PMID: 16528197 DOI: 10.1227/01.neu.0000197335.93538.bd] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
OBJECTIVE:
Stereotactic radiosurgery is an established, effective treatment for brain arteriovenous malformations. The mechanisms of vessel occlusion in arteriovenous malformations has not been extensively evaluated. To better understand these mechanisms, we report histopathological changes in the swine rete mirabile after stereotactic radiosurgery.
METHODS:
Thirty-five swine were used, 15 as nonradiated controls and 20 as radiated. Two in the control group and five in the radiated group were sacrificed before the study endpoint. Tissue was obtained from 13 nonradiated (4 at 3 mo, 5 at 6 mo, 4 at 9 mo) and 15 radiated swine (2 at 3 mo, 3 at 6 mo, 10 at 9 mo) for histological, immunohistochemical, and morphometric analysis.
RESULTS:
Radiated vessels showed increasing intimal hyperplasia over the follow-up period. Histometrical analysis confirmed this with evidence of progressive luminal narrowing over the follow-up period. Immunohistochemical analysis showed intimal cells to be proliferating smooth muscle cells with surrounding extracellular collagen Type IV. Adventitial fibrosis composed of collagen Type IV was also seen with smooth muscle cells interspersed within the collagen matrix. The nonradiated animals showed no intimal hyperplasia or change in the appearance or size of the vessels over the same follow-up period. Adventitial fibrosis was minimal in the nonradiated animals.
CONCLUSION:
The vessels show an intimal response to radiation with progressive occlusion caused by migrating, proliferating smooth muscle cells, a likely source of the extracellular collagen in the intima. Cytokine mediated pathways likely produce these morphological changes. Future studies will be directed toward elucidating these underlying molecular mechanisms.
Collapse
Affiliation(s)
- Reza Jahan
- Division of Interventional Neuroradiology, Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Witzenbichler B, Mahfoudi A, Soubrier F, Le Roux A, Branellec D, Schultheiss HP, Isner JM. Intramuscular gene transfer of fibroblast growth factor-1 using improved pCOR plasmid design stimulates collateral formation in a rabbit ischemic hindlimb model. J Mol Med (Berl) 2005; 84:491-502. [PMID: 16389546 DOI: 10.1007/s00109-005-0031-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2005] [Accepted: 11/17/2005] [Indexed: 11/29/2022]
Abstract
Fibroblast growth factor 1 (FGF1) is an angiogenic factor known to play a role in the growth of arteries. The purpose of this study was to evaluate the usefulness of direct intramuscular injection of an optimized expression plasmid encoding FGF1 to augment collateral formation and tissue perfusion in a rabbit ischemic hindlimb model. Truncated FGF1 fused to the human fibroblast interferon (FIN) signal peptide was expressed from a newly designed plasmid backbone with an improved safety profile for gene therapy applications. In vitro, optimization of plasmid design yielded in a dramatic increase in expression efficiency for FGF1, independent of the presence of a signal peptide, as analyzed by Western Blotting. In vivo, successful transgene expression could be demonstrated by FGF1 immunostaining after gene application. FGF1 plasmid containing FIN signal peptide (100, 500, and 1,000 mug), when injected into ischemic muscle areas of rabbits 10 days after ligation of the external iliac artery, exhibited a pronounced therapeutic effect on collateral formation to the ischemic hindlimb in a dose-depending manner, as assessed by physiological (blood pressure ratio, maximal intra-arterial Doppler flow) and anatomical (angiographic score, histologic evaluation of capillary density) measurements 30 days after therapy, compared to saline or lacZ control plasmid. FGF1 plasmid without a signal peptide sequence resulted in a comparable therapeutic effect on collateral formation at comparable doses (500 and 1,000 mug). Our results indicate that intramuscular FGF1 gene application could be useful to stimulate collateral formation in a situation of chronic peripheral ischemia. The presence of a signal peptide does not seem to be obligatory to achieve bioactivity of intramuscular transfected FGF1. An optimized vector design improved both biosafety of gene transfer and expression efficiency of the transgene, rendering this vector highly suitable for human gene therapy. Therefore, this new generation vector encoding FGF1 might be useful as an alternative treatment for patients with chronic ischemic disorders not amenable to conventional therapy.
Collapse
Affiliation(s)
- Bernhard Witzenbichler
- Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
36
|
Etscheid M, Beer N, Dodt J. The hyaluronan-binding protease upregulates ERK1/2 and PI3K/Akt signalling pathways in fibroblasts and stimulates cell proliferation and migration. Cell Signal 2005; 17:1486-94. [PMID: 16153533 DOI: 10.1016/j.cellsig.2005.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Accepted: 03/04/2005] [Indexed: 11/21/2022]
Abstract
The hyaluronan-binding protease (HABP) is a serine protease in human plasma which is structurally related to plasminogen activators, coagulation factor XII and hepathocyte growth factor activator. It can in vitro activate the coagulation factor FVII, kininogen and plasminogen activators. The present study was initiated to gain a more complete picture of the cell-associated activities of this fibrinolysis-related protease. Treatment of lung fibroblasts with HABP lead to a rapid activation of signalling pathways, including the mitogen-activated protein kinase (MAPK) pathway with c-Raf, MEK and ERK1/2. Additionally the activation of the PI3K/Akt pathway and of several translation-related proteins was found. Proliferation assays confirmed the assumption of a strong growth-stimulating effect of HABP on human lung and skin fibroblasts. Intracellular signalling and growth stimulation were strongly dependent on the proteolytic activity of HABP. Stimulation of signalling and proliferation by HABP involved the fibroblast growth factor receptor 1 (FGFR-1). HABP-stimulated proliferation of lung fibroblasts MRC-5 was accompanied by a significant intracellular increase in basic fibroblast growth factor (bFGF), the major ligand of FGFR-1; bFGF could however not be identified in the supernatant of HABP-treated cells. Though, the conditioned medium from HABP-treated cells showed a strong growth-promoting activity on quiescent fibroblasts, indicating the release of a yet unknown growth factor amplifying the initial growth stimulus. In a two-dimensional wound model HABP stimulated the invasion of fibroblasts into a scratch area, adding a strong pro-migratory activity to this plasma protease. In summary, HABP exhibits a significant growth factor-like activity on quiescent human lung and dermal fibroblasts. Our findings suggest that this fibrinolysis-related plasma protease may participate in physiologic or pathologic processes where cell proliferation and migration are pivotal, like tissue repair, vascular remodelling, wound healing or tumor development.
Collapse
Affiliation(s)
- M Etscheid
- Department of Hematology/Transfusion Medicine, Paul Ehrlich Institute, Federal Agency for Sera and Vaccines, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany.
| | | | | |
Collapse
|
37
|
Carreño FR, Goñi CN, Castro LM, Ferro ES. 14-3-3 epsilon modulates the stimulated secretion of endopeptidase 24.15. J Neurochem 2005; 93:10-25. [PMID: 15773901 DOI: 10.1111/j.1471-4159.2004.02967.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Endopeptidase 24.15 (ep24.15: EC3.4.24.15), a secreted protein involved in peptide metabolism, is unusual in that it does not contain a signal peptide sequence. In this work, we describe the physical interaction between ep24.15 and 14-3-3 epsilon, one isoform of a family of ubiquitous phosphoserine/threonine-scaffold proteins that organizes cell signaling and is involved in exocytosis. The interaction between ep24.15 and 14-3-3 epsilon increased following phosphorylation of ep24.15 at Ser(644) by protein kinase A (PKA). The co-localization of ep24.15 and 14-3-3 epsilon was increased by exposure of HEK293 cells (human embryonic kidney cells) to forskolin (10 microm). Overexpression of 14-3-3 epsilon in HEK293 cells almost doubled the secretion of ep24.15 stimulated by A23187 (7.5 microm) from 10%[1.4 +/- 0.24 AFU/(min 10(6) cells)] to 19%[2.54 +/- 0.24 AFU/(min 10(6) cells)] (p < 0.001) of the total intracellular enzyme activity. Treatment with forskolin had a synergistic effect on the A23187-stimulated secretion of ep24.15 that was totally blocked by the PKA inhibitor KT5720. The ep24.15 point mutation S644A reduced the co-localization of ep24.15 and 14-3-3 in stably transfected HEK293 cells. Indeed, secretion of the ep24.15 S644A mutant from these cells was only slightly stimulated by A23187 and insensitive to forskolin, in contrast to that of the wild type enzyme. Together, these data suggest that prior interaction with 14-3-3 is an important step in the unconventional stimulated secretion of ep24.15.
Collapse
Affiliation(s)
- Flávia R Carreño
- Department of Cell Biology and Development, Cell Biology Program, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
38
|
Ghahary A, Marcoux Y, Karimi-Busheri F, Li Y, Tredget EE, Kilani RT, Lam E, Weinfeld M. Differentiated keratinocyte-releasable stratifin (14-3-3 sigma) stimulates MMP-1 expression in dermal fibroblasts. J Invest Dermatol 2005; 124:170-7. [PMID: 15654971 DOI: 10.1111/j.0022-202x.2004.23521.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Through the use of a keratinocyte/fibroblast co-culture system, we have recently identified a potent keratinocyte-derived anti-fibrogenic factor (KDAF) for dermal fibroblasts. A sequential chromatography of the active fractions of keratinocyte-conditioned medium (KCM) and peptide mapping of the candidate proteins identified KDAF as being the keratinocyte-releasable 14-3-3 sigma (14-3-3sigma) protein, which is also known as stratifin. In this study, we hypothesize that differentiated, but not proliferating, keratinocytes are the primary source of releasable 14-3-3sigma in conditioned medium. To address this hypothesis, in a longitudinal study, keratinocyte differentiation was induced by growing these cells in a medium consisting of 50% keratinocyte serum-free medium (KSFM) and 50% Dulbecco's modified eagle's medium without any additives for up to 20 d. When KCM was collected every other day and added to fibroblasts, the level of matrix metalloproteinase (MMP)-1 mRNA expression was markedly increased in fibroblasts receiving KCM and this increase was even greater in cells receiving conditioned media collected at later time points relative to that of controls. The results of a western blot analysis further showed a marked increase in the expression of 14-3-3sigma protein in keratinocytes grown in test medium from day 4 to day 10. This finding was consistent with the levels of 14-3-3sigma mRNA expression in differentiated keratinocytes. In contrast to a very high level of 14-3-3sigma mRNA expression seen in keratinocytes, fibroblasts that are highly responsive to14-3-3sigma were unable to express this factor. Interestingly, the level of 14-3-3sigma mRNA expression was markedly higher in keratinocytes co-cultured with fibroblasts relative to that of mono-cultured keratinocytes. In conclusion, this study provides evidence that keratinocytes express a high level of 14-3-3sigma at the levels of mRNA and protein. But the releasable form of 14-3-3sigma protein was only found in conditioned medium derived from differentiated keratinocytes. Further, our recently purified recombinant 14-3-3sigma protein mimics the collagenase stimulatory effect of KCM in dermal fibroblasts.
Collapse
Affiliation(s)
- Aziz Ghahary
- Department of Surgery, Wound Healing Research Group, University of Alberta, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Tyrosine 769 of the keratinocyte growth factor receptor is required for receptor signaling but not endocytosis. Biochem Biophys Res Commun 2005; 327:523-32. [DOI: 10.1016/j.bbrc.2004.12.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Indexed: 10/26/2022]
|
40
|
Ravassa S, Bennaghmouch A, Kenis H, Lindhout T, Hackeng T, Narula J, Hofstra L, Reutelingsperger C. Annexin A5 down-regulates surface expression of tissue factor: a novel mechanism of regulating the membrane receptor repertoir. J Biol Chem 2004; 280:6028-35. [PMID: 15576370 DOI: 10.1074/jbc.m411710200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Phosphatidylserine (PtdSer) is exposed on the external leaflet of the plasma membrane during apoptosis. The protein annexin A5 (anxA5) shows high affinity for PtdSer. When anxA5 binds to the PtdSer-expressing membranes during apoptosis, it crystallizes as an extended two-dimensional network and activates thereby a novel portal of cell entry that results in the internalization of the PtdSer-expressing membrane patches. This novel pathway of cell entry is potentially involved in the regulation of the surface expression of membrane receptors. In this study we report the regulation of surface expression of the initiator of blood coagulation tissue factor (TF) by this novel pathway of cell entry. AnxA5 induces the internalization of tissue factor expressed on the surface of apoptotic THP-1 macrophages. This down-regulation depends on the abilities of anxA5 to bind to PtdSer and to form a two-dimensional crystal at the membrane. We furthermore show that THP-1 cells produce and externalize anxA5 that cause the internalization of TF in an autocrine type of mechanism. We extended our in vitro work to the in vivo situation and show in a mouse model that anxA5 causes the down-regulation of TF expression by smooth muscle cells of the media of the carotid artery that was mechanically injured. In conclusion, anxA5 down-regulates surface-expressed TF by activating the novel portal of cell entry. This mechanism may be part of a more general autocrine function of anxA5 to regulate the plasma membrane receptor repertoir under stress conditions associated with the surface expression of PtdSer.
Collapse
Affiliation(s)
- Susana Ravassa
- Department of Biochemistry, University of Maastricht, P. O. Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Brych SR, Dubey VK, Bienkiewicz E, Lee J, Logan TM, Blaber M. Symmetric Primary and Tertiary Structure Mutations within a Symmetric Superfold: A Solution, not a Constraint, to Achieve a Foldable Polypeptide. J Mol Biol 2004; 344:769-80. [PMID: 15533444 DOI: 10.1016/j.jmb.2004.09.060] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 09/17/2004] [Accepted: 09/21/2004] [Indexed: 11/16/2022]
Abstract
In previous studies designed to increase the primary structure symmetry within the hydrophobic core of human acidic fibroblast growth factor (FGF-1) a combination of five mutations were accommodated, resulting in structure, stability and folding kinetic properties similar to wild-type (despite the symmetric constraint upon the set of core residues). A sixth mutation in the core, involving a highly conserved Met residue at position 67, appeared intolerant to substitution. Structural analysis suggested that the local packing environment of position 67 involved two regions of apparent insertions that distorted the tertiary structure symmetry inherent in the beta-trefoil architecture. It was postulated that a symmetric constraint upon the primary structure within the core could only be achieved after these insertions had been deleted (concomitantly increasing the tertiary structure symmetry). The deletion of these insertions is now shown to permit mutation of position 67, thereby increasing the primary structure symmetry relationship within the core. Furthermore, despite the imposed symmetric constraint upon both the primary and tertiary structure, the resulting mutant form of FGF-1 is substantially more stable. The apparent inserted regions are shown to be associated with heparin-binding functionality; however, despite a marked reduction in heparin-binding affinity the mutant form of FGF-1 is surprisingly approximately 70 times more potent in 3T3 fibroblast mitogenic assays. The results support the hypothesis that primary structure symmetry within a symmetric protein superfold represents a possible solution, rather than a constraint, to achieving a foldable polypeptide.
Collapse
Affiliation(s)
- Stephen R Brych
- Kasha Laboratory, Institute of Molecular Biophysics and Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4380, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen in vitro and an angiogenic inducer in a variety of in vivo models. Hypoxia has been shown to be a major inducer of VEGF gene transcription. The tyrosine kinases Flt-1 (VEGFR-1) and Flk-1/KDR (VEGFR-2) are high-affinity VEGF receptors. The role of VEGF in developmental angiogenesis is emphasized by the finding that loss of a single VEGF allele results in defective vascularization and early embryonic lethality. VEGF is critical also for reproductive and bone angiogenesis. Substantial evidence also implicates VEGF as a mediator of pathological angiogenesis. In situ hybridization studies demonstrate expression of VEGF mRNA in the majority of human tumors. Anti-VEGF monoclonal antibodies and other VEGF inhibitors block the growth of several tumor cell lines in nude mice. Clinical trials with various VEGF inhibitors in a variety of malignancies are ongoing. Very recently, an anti-VEGF monoclonal antibody (bevacizumab; Avastin) has been approved by the Food and Drug Administration as a first-line treatment for metastatic colorectal cancer in combination with chemotherapy. Furthermore, VEGF is implicated in intraocular neovascularization associated with diabetic retinopathy and age-related macular degeneration.
Collapse
Affiliation(s)
- Napoleone Ferrara
- Department of Molecular Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
43
|
Ghahary A, Karimi-Busheri F, Marcoux Y, Li Y, Tredget EE, Taghi Kilani R, Li L, Zheng J, Karami A, Keller BO, Weinfeld M. Keratinocyte-releasable stratifin functions as a potent collagenase-stimulating factor in fibroblasts. J Invest Dermatol 2004; 122:1188-97. [PMID: 15140222 DOI: 10.1111/j.0022-202x.2004.22519.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Termination of wound healing requires a fine balance between collagen deposition and its hydrolysis. To dissect the underlying control mechanisms for this process, we established a keratinocyte/fibroblast co-culture system and subsequently demonstrated more than a 10-fold increase in collagenase expression in fibroblasts co-cultured with keratinocytes relative to that of control cells. This finding was further confirmed in fibroblasts grown in a keratinocyte/fibroblast collagen-GAG gel. The efficacy of keratinocyte-derived collagenase stimulatory factors on collagenase activity was evaluated, and the results showed that only conditioned medium derived from fibroblasts co-cultured with keratinocytes was able to break down markedly type I collagen to its one-quarter and three-quarter fragments of both alpha (alpha1 and alpha2) and beta (beta1.1 and beta1.2) chains. The results of a dose-response experiment showed that keratinocyte-conditioned medium (KCM) stimulates the expression of collagenase mRNA by dermal fibroblasts in a concentration-dependent fashion. In a similar experiment, the results of a time-response experiment revealed that KCM treatment increases the expression of collagenase mRNA in dermal fibroblasts as early as 6 h and reaches its maximum level within 24-48 h. Considering that this keratinocyte-releasable factor has a potent collagenase stimulatory effect on fibroblasts, which favors the resolution of accumulated type I and type III collagen found in fibrotic tissue, we referred to this protein as a keratinocyte-derived anti-fibrogenic factor (KDAF). In a series of chromatography experiments and a direct trypsin digestion of the proteins and subsequent peptide mapping, a keratinocyte-derived collagenase-stimulating factor turned out to be a releasable form of stratifin, also known as 14-3-3 sigma protein. To validate this finding, stratifin cDNA was cloned into a pGEX-6P-1 expressing vector and more than 50 mg of recombinant stratifin was generated and used to treat fibroblasts with various concentrations for 24 h. The results of northern analysis showed a remarkable dose-response increase in the expression of collagenase mRNA in stratifin-treated fibroblasts relative to that of the control. This finding was consistent with that obtained from collagenase activity assay. In conclusion, we identified a keratinocyte-releasable form of stratifin in KCM that mimics the collagenase stimulatory effect of KCM for dermal fibroblasts. This finding suggests that stratifin is likely to be, at least, one of the KDAFs found in KCM.
Collapse
Affiliation(s)
- Aziz Ghahary
- Department of Surgery, Wound Healing Research Group, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tada T, Ito JI, Asai M, Yokoyama S. Fibroblast growth factor 1 is produced prior to apolipoprotein E in the astrocytes after cryo-injury of mouse brain. Neurochem Int 2004; 45:23-30. [PMID: 15082218 DOI: 10.1016/j.neuint.2004.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Revised: 08/05/2003] [Accepted: 01/14/2004] [Indexed: 10/26/2022]
Abstract
We recently reported that fibroblast growth factor 1 (FGF-1) upregulates apolipoprotein E (apoE) synthesis and its secretion as high density lipoprotein (HDL) in cultured astrocytes potentially by an autocrine or paracrine mechanism [Biochim. Biopys. Acta 1589 (2002) 261]. In order to examine pathophysiological relevance of this reaction, we studied association of the production of FGF-1 and apoE in the post-injury mouse brain. After the spot-injury of the brain by liquid nitrogen, the surface size of the wound shrunk more rapidly in the C57BL/6 wild-type mice than the apoE-knock out C57BL/6 mice. Immunohistochemical analysis of the lesions revealed that production of FGF-1 was identified in the reactive astrocytes by the day 2 after the injury in both types of mouse, prior to the production of apoE confirmed by the day 4 in the wild-type. These findings were consistent with our in-vitro observations and hypothesis that FGF-1 upregulates apoE synthesis and subsequently HDL production in the reactive astrocytes by an autocrine or paracrine manner. FGF-1 thus would exert its effect after the CNS damage through apoE secretion.
Collapse
Affiliation(s)
- Toyohiro Tada
- Department of Pathology, Nagoya City University School of Nursing, Nagoya 467-8601, Japan
| | | | | | | |
Collapse
|
45
|
Hajjar KA. Thomas Maciag: In praise of an open mind. J Clin Invest 2004. [DOI: 10.1172/jci21880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
46
|
Wiedłocha A, Sørensen V. Signaling, internalization, and intracellular activity of fibroblast growth factor. Curr Top Microbiol Immunol 2004; 286:45-79. [PMID: 15645710 DOI: 10.1007/978-3-540-69494-6_3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The fibroblast growth factor (FGF) family contains 23 members in mammals including its prototype members FGF-1 and FGF-2. FGFs have been implicated in regulation of many key cellular responses involved in developmental and physiological processes. These includes proliferation, differentiation, migration, apoptosis, angiogenesis, and wound healing. FGFs bind to five related, specific cell surface receptors (FGFRs). Four of these have intrinsic tyrosine kinase activity. Dimerization of the receptor is a prerequisite for receptor transphosphorylation and activation of downstream signaling molecules. All members of the FGF family have a high affinity for heparin and for cell surface heparan sulfate proteoglycans, which participate in formation of stable and active FGF-FGFR complexes. FGF-mediated signaling is an evolutionarily conserved signaling module operative in invertebrates and vertebrates. It seems that some members of the family have a dual mode of action. FGF-1, FGF-2, FGF-3, and FGF-11-14 have been found intranuclearly as endogenous proteins. Exogenous FGF-1 and FGF-2 are internalized by receptor-mediated endocytosis, in a clathrin-dependent and -independent way. Internalized FGF-1 and FGF-2 are able to cross cellular membranes to reach the cytosol and the nuclear compartment. The role of FGF internalization and the intracellular activity of some FGFs are discussed in the context of the known signaling induced by FGF.
Collapse
Affiliation(s)
- A Wiedłocha
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway.
| | | |
Collapse
|
47
|
Yu C, Wang F, Jin C, Huang X, Miller DL, Basilico C, McKeehan WL. Role of fibroblast growth factor type 1 and 2 in carbon tetrachloride-induced hepatic injury and fibrogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1653-62. [PMID: 14507672 PMCID: PMC1868310 DOI: 10.1016/s0002-9440(10)63522-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Genomic ablation of hepatocyte-specific fibroblast growth factor receptor (FGFR)4 in mice revealed a role of FGF signaling in cholesterol and bile acid metabolism and hepatolobular restoration in response to injury without effect on liver development or hepatocyte proliferation. Although the potential role of all 23 FGF polypeptides in the liver is still unclear, the most widely studied prototypes, FGF1 and FGF2, are present and have been implicated in liver cell growth and function in vitro. To determine whether FGF1 and FGF2 play a role in response to injury and fibrosis, we examined the impact of both acute and chronic exposure to carbon tetrachloride (CCl(4)) in the livers of FGF1- and FGF2-deficient mice. After acute CCl(4) exposure, FGF1(-/-)FGF2(-/-) mice exhibited an accelerated release of serum alanine aminotransferase similar to FGFR4 deficiency, but no effect on overall hepatolobular restoration or bile acid metabolism. FGF1(-/-)FGF2(-/-) mice exhibited a normal increase in alpha-smooth muscle actin and desmin associated with activation and migration of hepatic stellate cells to damage, but a reduced level of hepatic stellate cell-derived matrix collagen alpha1(I) synthesis. Liver fibrosis resulting from chronic CCl(4) exposure was markedly decreased in the livers of FGF1/FGF2-deficient mice. These results suggest an agonist role for FGF1 and FGF2 in specifically insult-induced liver matrix deposition and hepatic fibrogenesis and a potential target for the prevention of hepatic fibrosis.
Collapse
Affiliation(s)
- Chundong Yu
- Department of Biochemistry and Biophysics, Texas A&M University, and the Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Stachowiak MK, Fang X, Myers JM, Dunham SM, Berezney R, Maher PA, Stachowiak EK. Integrative nuclear FGFR1 signaling (INFS) as a part of a universal ?feed-forward-and-gate? signaling module that controls cell growth and differentiation. J Cell Biochem 2003; 90:662-91. [PMID: 14587025 DOI: 10.1002/jcb.10606] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A novel signaling mechanism is described through which extracellular signals and intracellular signaling pathways regulate proliferation, growth, differentiation, and other functions of cells in the nervous system. Upon cell stimulation, fibroblast growth factor receptor-1 (FGFR1), a typically plasma membrane-associated protein, is released from ER membranes into the cytosol and translocates to the cell nucleus by an importin-beta-mediated transport pathway along with its ligand, FGF-2. The nuclear accumulation of FGFR1 is activated by changes in cell contacts and by stimulation of cells with growth factors, neurotransmitters and hormones as well as by a variety of different second messengers and thus was named integrative nuclear FGFR1 signaling (INFS). In the nucleus, FGFR1 localizes specifically within nuclear matrix-attached speckle-domains, which are known to be sites for RNA Pol II-mediated transcription and co-transcriptional pre-mRNA processing. In these domains, nuclear FGFR1 colocalizes with RNA transcription sites, splicing factors, modified histones, phosphorylated RNA Pol II, and signaling kinases. Within the nucleus, FGFR1 serves as a general transcriptional regulator, as indicated by its association with the majority of active nuclear centers of RNA synthesis and processing, by the ability of nuclear FGFR1 to activate structurally distinct genes located on different chromosomes and by its stimulation of multi-gene programs for cell growth and differentiation. We propose that FGFR1 is part of a universal "feed-forward-and-gate" signaling module in which classical signaling cascades initiated by specific membrane receptors transmit signals to sequence specific transcription factors (ssTFs), while INFS elicited by the same stimuli feeds the signal forward to the common coactivator, CREB-binding protein (CBP). Activation of CBP by INFS, along with the activation of ssTFs by classical signaling cascades brings about coordinated responses from structurally different genes located at different genomic loci.
Collapse
Affiliation(s)
- Michal K Stachowiak
- Molecular and Structural Neurobiology and Gene Therapy Program, Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, New York 14214, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Miyakawa K, Imamura T. Secretion of FGF-16 requires an uncleaved bipartite signal sequence. J Biol Chem 2003; 278:35718-24. [PMID: 12851399 DOI: 10.1074/jbc.m300690200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor (FGF)-16 is one of the rare secreted proteins that do not possess a cleavable signal sequence. Here we describe our examination of the mechanism and structural requirements for the secretion of FGF-16 from COS-1 transfectants. Inhibition of its secretion by brefeldin A and identification of an N-glycan on the secreted form confirmed that FGF-16 is secreted by means of the endoplasmic reticulum and Golgi apparatus, as are secreted proteins having a conventional cleavable signal sequence. Deletion of its N terminus abolished secretion of FGF-16. When chimerized with prolactin, however, the N-terminal sequence of FGF-16 was not able to mediate secretion of the chimera. Point mutations that made the N terminus less hydrophobic had little effect on secretion of FGF-16, whereas making the central hydrophobic region less hydrophobic abolished secretion. Within cells, an unsecretable FGF-16 N-terminal deletion mutant was distributed in the perinuclear region and overlapped the distribution of the Golgi apparatus. Mutants with less hydrophobic central regions were distributed evenly throughout the cytosol. Collectively, these results indicate that FGF-16 employs a unique bipartite signal sequence (i.e. both the N-terminal region and central hydrophobic region) that is not cleaved, although it shares the same secretory machinery used by secreted proteins with cleavable signal sequences.
Collapse
Affiliation(s)
- Kazuko Miyakawa
- Age Dimension Research Center, National Institute of Advanced Industrial Science and Technology and Institute for Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
50
|
Mathew S, Arandjelovic S, Beyer WF, Gonias SL, Pizzo SV. Characterization of the interaction between alpha2-macroglobulin and fibroblast growth factor-2: the role of hydrophobic interactions. Biochem J 2003; 374:123-9. [PMID: 12755687 PMCID: PMC1223577 DOI: 10.1042/bj20021655] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2002] [Revised: 03/31/2003] [Accepted: 05/19/2003] [Indexed: 01/28/2023]
Abstract
Basic fibroblast growth factor (FGF-2) is important in development, wound healing and angiogenesis. The human plasma proteinase inhibitor alpha2-macroglobulin (alpha2M) binds to and regulates the biological activity of various growth factors, including FGF-2. FGF-2 binds specifically and saturably to native alpha2M and conformationally modified alpha2M (alpha2M*); however, the KD for FGF-2 binding to alpha2M* is 10-fold lower. This study investigates the biochemical nature of the interaction between FGF-2 and alpha2M* and localizes a possible FGF-2 binding site in the alpha2M subunit. FGF-2 binding to alpha2M* was not affected by shifts in pH between 6.5 and 10; however, increasing temperature decreased the KD for this interaction. The binding affinity of FGF-2 for alpha2M* also increased with increasing ionic strength. These results are consistent with the hypothesis that hydrophobic interactions predominate in promoting FGF-2 association with alpha2M*. Consistent with this hypothesis, FGF-2 bound to a glutathione S-transferase fusion protein containing amino acids 591-774 of the alpha2M subunit (FP3) and to a hydrophobic 16-amino-acid peptide (amino acids 718-733) within FP3. Specific binding of FGF-2 to the 16-amino-acid peptide was inhibited by excess transforming growth factor-beta1. When the 16-amino-acid peptide was chemically modified to neutralize the only two charged amino acids, FGF-2-binding activity was unaffected, supporting the predominant role of hydrophobic interactions. FGF-2 presentation to signalling receptors is influenced by growth factor binding to heparan sulphate proteoglycans (HSPGs), which is electrostatic in nature. Our results demonstrate that the interactions of FGF-2 with alpha2M* and HSPGs are biochemically distinct, suggesting that different FGF-2 sequences are involved.
Collapse
Affiliation(s)
- Smitha Mathew
- Department of Pathology, Box 3712, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|