1
|
Fu L, Upadhyay R, Pokrovskii M, Chen FM, Romero-Meza G, Griesemer A, Littman DR. Prdm16-dependent antigen-presenting cells induce tolerance to intestinal antigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.23.604803. [PMID: 39091750 PMCID: PMC11291166 DOI: 10.1101/2024.07.23.604803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The gastrointestinal tract is continuously exposed to foreign antigens in food and commensal microbes with potential to induce adaptive immune responses. Peripherally induced T regulatory (pTreg) cells are essential for mitigating inflammatory responses to these agents1-4. While RORγt+ antigen-presenting cells (RORγt-APCs) were shown to program gut microbiota-specific pTreg5-7, their definition remains incomplete, and the APC responsible for food tolerance has remained elusive. Here, we identify a distinct subset of RORγt-APCs, designated tolerogenic dendritic cells (tDC), required for differentiation of both food- and microbiota-specific pTreg cells and for establishment of oral tolerance. tDC development and function require expression of the transcription factors Prdm16 and RORγt, as well as a unique Rorc(t) cis-regulatory element. Gene expression, chromatin accessibility, and surface marker analysis establish tDC as myeloid in origin, distinct from ILC3, and sharing epigenetic profiles with classical DC. Upon genetic perturbation of tDC, we observe a substantial increase in food antigen-specific T helper 2 (Th2) cells in lieu of pTreg, leading to compromised tolerance in mouse models of asthma and food allergy. Single-cell analyses of freshly resected mesenteric lymph nodes from a human organ donor, as well as multiple specimens of human intestine and tonsil, reveal candidate tDC with co-expression of PRDM16 and RORC and an extensive transcriptome shared with mice, highlighting an evolutionarily conserved role across species. Our findings suggest that a better understanding of how tDC develop and how they regulate T cell responses to food and microbial antigens could offer new insights into developing therapeutic strategies for autoimmune and allergic diseases as well as organ transplant tolerance.
Collapse
Affiliation(s)
- Liuhui Fu
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Rabi Upadhyay
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Maria Pokrovskii
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
- Calico Life Sciences, LLC, South San Francisco, CA, USA
| | - Francis M. Chen
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Gabriela Romero-Meza
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Adam Griesemer
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA
| | - Dan R. Littman
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
2
|
Huang J, Gao T, Lu Z, Zhong D, Li M, Qiu HJ, Li Y, Wu H, Sun Y. Evaluation of the Immunogenicity of a Pool of Recombinant Lactococcus lactis Expressing Eight Antigens of African Swine Fever Virus in a Mouse Model. Vet Sci 2025; 12:140. [PMID: 40005900 PMCID: PMC11861804 DOI: 10.3390/vetsci12020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/30/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
African swine fever (ASF), caused by African swine fever virus (ASFV), poses a great threat to the global pig industry. There is an urgent demand for effective and safe vaccines to address this threat. This study reports the generation and evaluation of a recombinant Lactococcus lactis pool, each strain expressing one of eight ASFV antigens (F317L, H171R, D117L, E120R, B602L, CD2v, p54, and p72). We evaluated the immune responses in mice through oral gavage and intramuscular immunization to the recombinant L. lactis pool. The results show that the mice immunized via intramuscular injection induced high-level serum IgG antibodies within 7 d post-primary immunization, which was maintained over an extended period. Additionally, there was a marked increase in the interferon gamma (IFN-γ) and interleukin 10 (IL-10) levels in the sera. In contrast, the mice immunized via oral gavage did not induce obvious serum IgG antibodies. However, they experienced a transient peak of secretory IgA (sIgA) antibodies in fecal samples within 7 d post-primary immunization, which subsequently decreased to levels that were statistically similar to those in the control group. In addition, this study also found that the multi-antigen cocktail vaccination was safe for mice. This study provides a reference for the development and immunization of ASF vaccines with L. lactis as live carriers.
Collapse
Affiliation(s)
- Jingshan Huang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.H.); (T.G.); (Z.L.); (D.Z.); (M.L.); (H.-J.Q.); (Y.L.)
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Tianqi Gao
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.H.); (T.G.); (Z.L.); (D.Z.); (M.L.); (H.-J.Q.); (Y.L.)
| | - Zhanhao Lu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.H.); (T.G.); (Z.L.); (D.Z.); (M.L.); (H.-J.Q.); (Y.L.)
| | - Dailang Zhong
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.H.); (T.G.); (Z.L.); (D.Z.); (M.L.); (H.-J.Q.); (Y.L.)
| | - Mingzhi Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.H.); (T.G.); (Z.L.); (D.Z.); (M.L.); (H.-J.Q.); (Y.L.)
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.H.); (T.G.); (Z.L.); (D.Z.); (M.L.); (H.-J.Q.); (Y.L.)
| | - Yongfeng Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.H.); (T.G.); (Z.L.); (D.Z.); (M.L.); (H.-J.Q.); (Y.L.)
| | - Hongxia Wu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.H.); (T.G.); (Z.L.); (D.Z.); (M.L.); (H.-J.Q.); (Y.L.)
| | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.H.); (T.G.); (Z.L.); (D.Z.); (M.L.); (H.-J.Q.); (Y.L.)
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
3
|
Weiner HL. Immune mechanisms and shared immune targets in neurodegenerative diseases. Nat Rev Neurol 2025; 21:67-85. [PMID: 39681722 DOI: 10.1038/s41582-024-01046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The immune system plays a major part in neurodegenerative diseases. In some, such as multiple sclerosis, it is the primary driver of the disease. In others, such as Alzheimer disease, amyotrophic lateral sclerosis and Parkinson disease, it has an amplifying role. Immunotherapeutic approaches that target the adaptive and innate immune systems are being explored for the treatment of almost all neurological diseases, and the targets and approaches are often common across diseases. Microglia are the primary immune cells in the brain that contribute to disease pathogenesis, and are consequently a common immune target for therapy. Other therapeutic approaches target components of the peripheral immune system, such as regulatory T cells and monocytes, which in turn act within the CNS. This Review considers in detail how microglia, monocytes and T cells contribute to the pathogenesis of multiple sclerosis, Alzheimer disease, amyotrophic lateral sclerosis and Parkinson disease, and their potential as shared therapeutic targets across these diseases. The microbiome is also highlighted as an emerging therapeutic target that indirectly modulates the immune system. Therapeutic approaches being developed to target immune function in neurodegenerative diseases are discussed, highlighting how immune-based approaches developed to treat one disease could be applicable to multiple other neurological diseases.
Collapse
Affiliation(s)
- Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Chu KH, Chiang BL. A Novel Subset of Regulatory T Cells Induced by B Cells Alleviate the Severity of Immunological Diseases. Clin Rev Allergy Immunol 2024; 67:73-82. [PMID: 39465485 DOI: 10.1007/s12016-024-09009-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Regulatory T (Treg) cells are crucial for maintaining immune tolerance by suppressing response to self-antigens and harmless antigens to prevent autoimmune diseases and uncontrolled immune responses. Therefore, using Treg cells is considered a therapeutic strategy treating inflammatory diseases. Based on their origin, Treg cells are classified into thymus-derived, peripherally induced, and in vitro induced Treg cells. Our group discovered a novel Treg cell subset, namely, Treg-of-B (Treg/B) cells, generated by culturing CD4+CD25- T cells with B cells, including Peyer's patch B cells, splenic B cells and peritoneal B1a cells, for 3 days. Treg/B cells express CD44, OX40 (CD134), cytotoxic T-lymphocyte-associated antigen-4 (CD152), glucocorticoid-induced tumor necrosis factor receptor family-related protein (CD357), interleukin-10 receptor, lymphocyte activation gene-3 (CD223), inducible co-stimulator (CD278), programmed-death 1 (CD279), tumor necrosis factor receptor II, and high levels of IL-10, but not forkhead box protein P3, similar to type 1 Treg (Tr1) cells. However, unlike Tr1 cells, Treg/B cells do not express CD103, CD226, and latency-associated peptide. Treg/B cells have been applied for the treatment of some murine models of inflammatory diseases, including allergic asthma, inflammatory bowel disease, collagen-induced arthritis, gout, psoriasis and primary biliary cholangitis. This review summarizes the current knowledge of Treg/B cells.
Collapse
Affiliation(s)
- Kuan-Hua Chu
- Department of Pediatrics, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Taipei, 100, Taiwan
| | - Bor-Luen Chiang
- Department of Pediatrics, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Taipei, 100, Taiwan.
- Genomes and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan.
- Allergy Center, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
5
|
Postlethwaite AE, Jiao Y, Yang C, Dong W, Aelion JA, Wang B, Postlethwaite BE, Sigal L, Kang AH, Myers LK, Wheller P, Ingels J, Gu W. Optimizing oral immune tolerance to Type II collagen in patients with rheumatoid arthritis: The importance of dose, interfering medication and genetics. Am J Med Sci 2024; 368:300-310. [PMID: 38897565 DOI: 10.1016/j.amjms.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/17/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVES Oral immune tolerance (OT) is a complex process with unknown genetic regulation. Our aim is to explore possible genetic control of OT in patients with rheumatoid arthritis (RA). METHODS RA patients with increased interferon γ production invitro when their isolated peripheral blood mononuclear cells (PBMC) were cultured with type II bovine collagen α1 chain [α1 (II)] were enrolled in this study and were randomly assigned to the "Low dose" type II collagen (CII) group (30 µg/day for 10 weeks, followed by 50 µg/day for 10 weeks, followed by 70 µg/day for 10 weeks) or "High dose" CII group (90 µg/day for 10 weeks, followed by 110 µg/day for 10 weeks, followed by 130 µg/day for 10 weeks). Heparinized blood was obtained at baseline and after each of the 10 weeks treatment for analysis of the invitro production of IFNγ by their PBMC stimulated by α1(II) . Single nucleotide polymorphism (SNP) analysis of the responders and non-responders to oral CII was conducted using GeneChip Mapping 10 K 2.0 Array. RESULTS The SNP A-15,737 was found to associate with the ability of CII to suppress IFNγ production by α1(CII)-stimulated RA PBMC. The potential for SNP A-15,737 to associate with the OT response for patients with another autoimmune disease [OT induced by oral type I bovine collagen (CI) in patients with diffuse cutaneous systemic sclersodid (dsSSc)] was also explored. CONCLUSIONS The ROT1 region plays a role in the control of IFNγ production after oral dosing of auto-antigens, thereby determining if oral tolerance to that antigen will develop.
Collapse
Affiliation(s)
- Arnold E Postlethwaite
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Veterans Affairs Medical Center, Memphis, Tennessee, 38104, USA.
| | - Yan Jiao
- Departments of Orthopaedic Surgery and BME-Campbell Clinic, and Pathology, University of Tennessee Health Science Center (UTHSC), Memphis, TN 38163, USA
| | - Chengyuan Yang
- Departments of Orthopaedic Surgery and BME-Campbell Clinic, and Pathology, University of Tennessee Health Science Center (UTHSC), Memphis, TN 38163, USA
| | - Wei Dong
- Departments of Orthopaedic Surgery and BME-Campbell Clinic, and Pathology, University of Tennessee Health Science Center (UTHSC), Memphis, TN 38163, USA
| | - Jacob A Aelion
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Benjamin Wang
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | - Leonard Sigal
- Gateway Immunosciences, LLC, Stockbridge MA. 01262, USA
| | - Andrew H Kang
- Department of Veterans Affairs Medical Center, Memphis, Tennessee, 38104, USA
| | - Linda K Myers
- Department of Pediatrics University of Tennessee Health Science Center, Memphis, TN, USA
| | - Patricia Wheller
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jesse Ingels
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Weikuan Gu
- Departments of Orthopaedic Surgery and BME-Campbell Clinic, and Pathology, University of Tennessee Health Science Center (UTHSC), Memphis, TN 38163, USA; Department of Veterans Affairs Medical Center, Memphis, Tennessee, 38104, USA
| |
Collapse
|
6
|
Zhang H, Felthaus O, Eigenberger A, Klein S, Prantl L. Treg Cell Therapeutic Strategies for Breast Cancer: Holistic to Local Aspects. Cells 2024; 13:1526. [PMID: 39329710 PMCID: PMC11429654 DOI: 10.3390/cells13181526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Regulatory T cells (Tregs) play a key role in maintaining immune homeostasis and preventing autoimmunity through their immunosuppressive function. There have been numerous reports confirming that high levels of Tregs in the tumor microenvironment (TME) are associated with a poor prognosis, highlighting their role in promoting an immunosuppressive environment. In breast cancer (BC), Tregs interact with cancer cells, ultimately leading to the suppression of immune surveillance and promoting tumor progression. This review discusses the dual role of Tregs in breast cancer, and explores the controversies and therapeutic potential associated with targeting these cells. Researchers are investigating various strategies to deplete or inhibit Tregs, such as immune checkpoint inhibitors, cytokine antagonists, and metabolic inhibition. However, the heterogeneity of Tregs and the variable precision of treatments pose significant challenges. Understanding the functional diversity of Tregs and the latest advances in targeted therapies is critical for the development of effective therapies. This review highlights the latest approaches to Tregs for BC treatment that both attenuate Treg-mediated immunosuppression in tumors and maintain immune tolerance, and advocates precise combination therapy strategies to optimize breast cancer outcomes.
Collapse
Affiliation(s)
- Hanwen Zhang
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany (L.P.)
| | | | | | | | | |
Collapse
|
7
|
Eom JE, Shin DU, Kim GD, Yoon JH, Shin HS, Lee SY. Pediococcus pentosaceus KF159 alleviates house dust mite-induced atopic dermatitis by promoting IL10 production and regulatory T cell induction. Food Funct 2024; 15:6975-6987. [PMID: 38853660 DOI: 10.1039/d4fo00933a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Atopic dermatitis (AD) is a chronic immune disease that requires long-term management owing to its relative ease of recurrence. However, steroid treatment is limited owing to the side effects. Therefore, research on therapeutics with proven safety is required. Here, we evaluated the anti-allergic activity of the probiotic strain Pediococcus pentosaceus KF159 (PPKF159) with an ex vivo mouse model sensitized with ovalbumin (OVA) and a mouse model of AD induced by house dust mites. Changes in pathological symptoms were confirmed based on the clinical status of the AD-induced lesion site and the levels of T helper type 2 (Th2)-derived cytokines and immunoglobulin E (IgE). In addition, cell-mediated responses and related mechanisms were elucidated using various kinds of primary cells including splenocytes, mesenteric lymph nodes, Peyer's patch, and bone marrow-derived dendritic cells (BMDCs) in vitro and ex vivo. Oral administration of PPKF159 alleviated AD-like clinical symptoms such as erythema, edema, hemorrhage, and increased tissue thickness, and suppressed the production of Th2-associated cytokines and serum IgE while increasing T helper type 1 (Th1)-mediated cytokine production. PPKF159 induced tolerogenic dendritic cells (tol-DCs) by increasing the expression of ICOS-L, PD-L1, and IDO which were closely related to Treg induction in PPKF159-treated BMDCs. In addition, BMDCs and naive T cells co-cultured in the presence of PPKF159 had elevated IL10 production and increased proportions of CD4+CD25+Foxp3+ Tregs compared to the absence of PPKF159. This study showed that PPKF159 relieved AD-like clinical symptoms, modulated the Th1/Th2 immune balance, and inhibited IgE production in a mouse AD model. PPKF159 induced the transformation of dendritic cells into tolerogenic versions. These induced tol-DCs directly enhanced the production of IL10 or improved the secretion of IL10 through the induction of CD4+CD25+Foxp3+ Treg cells, thereby improving AD. These results suggest that PPKF159 can be applied as a functional food material for the treatment and prevention of AD.
Collapse
Affiliation(s)
- Ji-Eun Eom
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea.
| | - Dong-Uk Shin
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea.
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Gun-Dong Kim
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea.
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hee Soon Shin
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea.
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - So-Young Lee
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea.
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
8
|
Legrand C, Vanneste D, Hego A, Sabatel C, Mollers K, Schyns J, Maréchal P, Abinet J, Tytgat A, Liégeois M, Polese B, Meunier M, Radermecker C, Fiévez L, Bureau F, Marichal T. Lung Interstitial Macrophages Can Present Soluble Antigens and Induce Foxp3 + Regulatory T Cells. Am J Respir Cell Mol Biol 2024; 70:446-456. [PMID: 38329817 DOI: 10.1165/rcmb.2023-0254oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/08/2024] [Indexed: 02/10/2024] Open
Abstract
Lung macrophages constitute a sophisticated surveillance and defense system that contributes to tissue homeostasis and host defense and allows the host to cope with the myriad of insults and antigens to which the lung mucosa is exposed. As opposed to alveolar macrophages, lung interstitial macrophages (IMs) express high levels of Type 2 major histocompatibility complex (MHC-II), a hallmark of antigen-presenting cells. Here, we showed that lung IMs, like dendritic cells, possess the machinery to present soluble antigens in an MHC-II-restricted way. Using ex vivo ovalbumin (OVA)-specific T cell proliferation assays, we found that OVA-pulsed IMs could trigger OVA-specific CD4+ T cell proliferation and Foxp3 expression through MHC-II-, IL-10-, and transforming growth factor β-dependent mechanisms. Moreover, we showed that IMs efficiently captured locally instilled antigens in vivo, did not migrate to the draining lymph nodes, and enhanced local interactions with CD4+ T cells in a model of OVA-induced allergic asthma. These results support that IMs can present antigens to CD4+ T cells and trigger regulatory T cells, which might attenuate lung immune responses and have functional consequences for lung immunity and T cell-mediated disorders.
Collapse
Affiliation(s)
| | | | | | - Catherine Sabatel
- Laboratory of Cellular and Molecular Immunology
- Faculty of Veterinary Medicine, University of Liège, Liège, Belgium; and
| | | | - Joey Schyns
- Laboratory of Cellular and Molecular Immunology
- Faculty of Veterinary Medicine, University of Liège, Liège, Belgium; and
| | - Pauline Maréchal
- Laboratory of Immunophysiology, and
- Faculty of Veterinary Medicine, University of Liège, Liège, Belgium; and
| | | | | | | | | | - Margot Meunier
- Laboratory of Immunophysiology, and
- Faculty of Veterinary Medicine, University of Liège, Liège, Belgium; and
| | - Coraline Radermecker
- Laboratory of Immunophysiology, and
- Faculty of Veterinary Medicine, University of Liège, Liège, Belgium; and
| | - Laurence Fiévez
- Laboratory of Cellular and Molecular Immunology
- Faculty of Veterinary Medicine, University of Liège, Liège, Belgium; and
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology
- Faculty of Veterinary Medicine, University of Liège, Liège, Belgium; and
| | - Thomas Marichal
- Laboratory of Immunophysiology, and
- Faculty of Veterinary Medicine, University of Liège, Liège, Belgium; and
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
9
|
Wu K, Zhang G, Shen C, Zhu L, Yu C, Sartorius K, Ding W, Jiang Y, Lu Y. Role of T cells in liver metastasis. Cell Death Dis 2024; 15:341. [PMID: 38755133 PMCID: PMC11099083 DOI: 10.1038/s41419-024-06726-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
The liver is a major metastatic site (organ) for gastrointestinal cancers (such as colorectal, gastric, and pancreatic cancers) as well as non-gastrointestinal cancers (such as lung, breast, and melanoma cancers). Due to the innate anatomical position of the liver, the apoptosis of T cells in the liver, the unique metabolic regulation of hepatocytes and other potential mechanisms, the liver tends to form an immunosuppressive microenvironment and subsequently form a pre-metastatic niche (PMN), which can promote metastasis and colonization by various tumor cells(TCs). As a result, the critical role of immunoresponse in liver based metastasis has become increasingly appreciated. T cells, a centrally important member of adaptive immune response, play a significant role in liver based metastases and clarifying the different roles of the various T cells subsets is important to guide future clinical treatment. In this review, we first introduce the predisposing factors and related mechanisms of liver metastasis (LM) before introducing the PMN and its transition to LM. Finally, we detail the role of different subsets of T cells in LM and advances in the management of LM in order to identify potential therapeutic targets for patients with LM.
Collapse
Affiliation(s)
- Kejia Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Guozhu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Emergency Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Changbing Shen
- Department of Hepatobiliary and Pancreatic Surgery, Taizhou Second People's Hospital Affiliated with Yangzhou University, Taizhou, China
| | - Li Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Emergency Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Chongyuan Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Kurt Sartorius
- School of Laboratory Medicine and Molecular Sciences, University of Kwazulu-Natal, Durban, South Africa
- Africa Hepatopancreatobiliary Cancer Consortium, Mayo Clinic, Jacksonville, FL, USA
| | - Wei Ding
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China.
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou, China.
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China.
| | - Yong Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| | - Yunjie Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Africa Hepatopancreatobiliary Cancer Consortium, Mayo Clinic, Jacksonville, FL, USA.
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China.
| |
Collapse
|
10
|
Lima ADR, Ferrari BB, Pradella F, Carvalho RM, Rivero SLS, Quintiliano RPS, Souza MA, Brunetti NS, Marques AM, Santos IP, Farias AS, Oliveira EC, Santos LMB. Dimethyl fumarate modulates the regulatory T cell response in the mesenteric lymph nodes of mice with experimental autoimmune encephalomyelitis. Front Immunol 2024; 15:1391949. [PMID: 38765015 PMCID: PMC11099268 DOI: 10.3389/fimmu.2024.1391949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024] Open
Abstract
Dimethyl fumarate (DMF, Tecfidera) is an oral drug utilized to treat relapsing-remitting multiple sclerosis (MS). DMF treatment reduces disease activity in MS. Gastrointestinal discomfort is a common adverse effect of the treatment with DMF. This study aimed to investigate the effect of DMF administration in the gut draining lymph nodes cells of C57BL6/J female mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. We have demonstrated that the treatment with DMF (7.5 mg/kg) significantly reduces the severity of EAE. This reduction of the severity is accompanied by the increase of both proinflammatory and anti-inflammatory mechanisms at the beginning of the treatment. As the treatment progressed, we observed an increasing number of regulatory Foxp3 negative CD4 T cells (Tr1), and anti-inflammatory cytokines such as IL-27, as well as the reduction of PGE2 level in the mesenteric lymph nodes of mice with EAE. We provide evidence that DMF induces a gradual anti-inflammatory response in the gut draining lymph nodes, which might contribute to the reduction of both intestinal discomfort and the inflammatory response of EAE. These findings indicate that the gut is the first microenvironment of action of DMF, which may contribute to its effects of reducing disease severity in MS patients.
Collapse
Affiliation(s)
- Amanda D. R. Lima
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Breno B. Ferrari
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Fernando Pradella
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Rodrigo M. Carvalho
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Sandra L. S. Rivero
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Raphael P. S. Quintiliano
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Matheus A. Souza
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Natália S. Brunetti
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Ana M. Marques
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Irene P. Santos
- Departamento de Citometria do Centro de Hematologia e Hemoterapia da UNICAMP, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Alessandro S. Farias
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Elaine C. Oliveira
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Technology Faculty of Sorocaba- Paula Souza State Center of Technological Education, Sorocaba, Brazil
| | - Leonilda M. B. Santos
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, (INCT-NIM), National Council for Scientific and Technological Development (CNPq), Brasilia, Brazil
| |
Collapse
|
11
|
Rapp PB, Baccile JA, Galimidi RP, Vielmetter J. Engineering Antigen-Specific Tolerance to an Artificial Protein Hydrogel. ACS Biomater Sci Eng 2024; 10:2188-2199. [PMID: 38479351 DOI: 10.1021/acsbiomaterials.3c01430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Artificial protein hydrogels are an emerging class of biomaterials with numerous prospective applications in tissue engineering and regenerative medicine. These materials are likely to be immunogenic due to their frequent incorporation of novel amino acid sequence domains, which often serve a functional role within the material itself. We engineered injectable "self" and "nonself" artificial protein hydrogels, which were predicted to have divergent immune outcomes in vivo on the basis of their primary amino acid sequence. Following implantation in mouse, the nonself gels raised significantly higher antigel antibody titers than the corresponding self gels. Prophylactic administration of a fusion antibody targeting the nonself hydrogel epitopes to DEC-205, an endocytic receptor involved in Treg induction, fully suppressed the elevated antibody titer against the nonself gels. These results suggest that the clinical immune response to artificial protein biomaterials, including those that contain highly antigenic sequence domains, can be tuned through the induction of antigen-specific tolerance.
Collapse
Affiliation(s)
- Peter B Rapp
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Joshua A Baccile
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Rachel P Galimidi
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Jost Vielmetter
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| |
Collapse
|
12
|
White TLA, Jin Y, Roberts SDA, Gable MJ, Morel PA. Phosphorylation of hnRNP A1-Serine 199 Is Not Required for T Cell Differentiation and Function. Immunohorizons 2024; 8:136-146. [PMID: 38334757 PMCID: PMC10916359 DOI: 10.4049/immunohorizons.2300074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/05/2024] [Indexed: 02/10/2024] Open
Abstract
hnRNP A1 is an important RNA-binding protein that influences many stages of RNA processing, including transcription, alternative splicing, mRNA nuclear export, and RNA stability. However, the role of hnRNP A1 in immune cells, specifically CD4+ T cells, remains unclear. We previously showed that Akt phosphorylation of hnRNP A1 was dependent on TCR signal strength and was associated with Treg differentiation. To explore the impact of hnRNP A1 phosphorylation by Akt on CD4+ T cell differentiation, our laboratory generated a mutant mouse model, hnRNP A1-S199A (A1-MUT) in which the major Akt phosphorylation site on hnRNP A1 was mutated to alanine using CRISPR Cas9 technology. Immune profiling of A1-MUT mice revealed changes in the numbers of Tregs in the mesenteric lymph node. We found no significant differences in naive CD4+ T cell differentiation into Th1, Th2, Th17, or T regulatory cells (Tregs) in vitro. In vivo, Treg differentiation assays using OTII-A1-Mut CD4+ T cells exposed to OVA food revealed migration and homing defects in the A1-MUT but no change in Treg induction. A1-MUT mice were immunized with NP- keyhole limpet hemocyanin, and normal germinal center development, normal numbers of NP-specific B cells, and no change in Tfh numbers were observed. In conclusion, Akt phosphorylation of hnRNP A1 S199 does not play a role in CD4+ T cell fate or function in the models tested. This hnRNP A1-S199A mouse model should be a valuable tool to study the role of Akt phosphorylation of hnRNP A1-S199 in different cell types or other mouse models of human disease.
Collapse
Affiliation(s)
- Tristan L. A. White
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Ye Jin
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Sean D. A. Roberts
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Matthew J. Gable
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Penelope A. Morel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
13
|
Lin H, Xu Y, Lin C. Heterogeneity and subtypes of CD4 + regulatory T cells: implications for tumor therapy. Front Immunol 2024; 14:1291796. [PMID: 38250084 PMCID: PMC10796559 DOI: 10.3389/fimmu.2023.1291796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
In the conventional view, CD4+ regulatory T cell (Treg) represents a subset of lymphocytes that involve the perception and negative regulation of the immune response. CD4+Treg plays an important role in the maintenance of immune homeostasis and immune tolerance. However, recent studies have revealed that CD4+Treg do not suppress the immune response in some diseases, but promote inflammatory injury or inhibit tissue remodeling, suggesting the functional heterogeneity of CD4+Treg. Their involvement in tumor pathogenesis is more complex than previously understood. This article reviews the relevant research on the heterogeneity of CD4+Treg, subtype classification, and their relationship with tumor therapy.
Collapse
Affiliation(s)
- Hanqing Lin
- Department of Otolaryngology, Fujian Institute of Otorhinolaryngology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- National Regional Medical Center, Fujian Medical University, Fuzhou, China
| | - Yuanteng Xu
- Department of Otolaryngology, Fujian Institute of Otorhinolaryngology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- National Regional Medical Center, Fujian Medical University, Fuzhou, China
| | - Chang Lin
- Department of Otolaryngology, Fujian Institute of Otorhinolaryngology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- National Regional Medical Center, Fujian Medical University, Fuzhou, China
| |
Collapse
|
14
|
Li J, Gong Y, Wang Y, Huang H, Du H, Cheng L, Ma C, Cai Y, Han H, Tao J, Li G, Cheng P. Classification of regulatory T cells and their role in myocardial ischemia-reperfusion injury. J Mol Cell Cardiol 2024; 186:94-106. [PMID: 38000204 DOI: 10.1016/j.yjmcc.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is closely related to the final infarct size in acute myocardial infarction (AMI). Therefore, reducing MIRI can effectively improve the prognosis of AMI patients. At the same time, the healing process after AMI is closely related to the local inflammatory microenvironment. Regulatory T cells (Tregs) can regulate various physiological and pathological immune inflammatory responses and play an important role in regulating the immune inflammatory response after AMI. However, different subtypes of Tregs have different effects on MIRI, and the same subtype of Tregs may also have different effects at different stages of MIRI. This article systematically reviews the classification and function of Tregs, as well as the role of various subtypes of Tregs in MIRI. A comprehensive understanding of the role of each subtype of Tregs can help design effective methods to control immune reactions, reduce MIRI, and provide new potential therapeutic options for AMI.
Collapse
Affiliation(s)
- Junlin Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Department of Cardiology, The Second People's Hospital of Neijiang, Neijiang 641100, China
| | - Yajun Gong
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yiren Wang
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Huihui Huang
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Huan Du
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lianying Cheng
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Cui Ma
- Department of Mathematics, Army Medical University, Chongqing 400038, China
| | - Yongxiang Cai
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hukui Han
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jianhong Tao
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Gang Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Panke Cheng
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu 610072, China.
| |
Collapse
|
15
|
Menchén-Martínez D, Martínez-Blanco M, Lozano-Ojalvo D, Berin MC. Evaluation of the Suppressive Capacity of Regulatory T Cells in Food Allergy Research. Methods Mol Biol 2024; 2717:191-205. [PMID: 37737985 DOI: 10.1007/978-1-0716-3453-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Regulatory T cells (Treg) exert a crucial role in the suppression of exacerbated T helper (Th) cell responses, including those of type 2 Th (Th2) cells, and in the maintenance of tolerance to environmental antigens and food allergens. The functional capacity of Tregs to suppress Th2 responses has been studied through activation and immunosuppression assays using cells from mice and humans. The immunosuppression assay is an essential in vitro tool that allows the evaluation of the Treg capacity to limit the proliferation and expansion of conventional T cells. This approach enables the determination of the suppressive ability of different Treg subsets. In this chapter, we describe a basic and well-established immunosuppression protocol for human and murine Treg that has been widely applied in food allergy research.
Collapse
Affiliation(s)
- David Menchén-Martínez
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| | - Mónica Martínez-Blanco
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Daniel Lozano-Ojalvo
- Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Cecilia Berin
- Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
16
|
Nagler CR. Inhibition of Immunological Suppression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1255-1256. [PMID: 37987807 DOI: 10.4049/jimmunol.2300296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
This Pillars of Immunology article is a commentary on “Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation,” a pivotal article written by S. Read, V. Malmström, and F. Powrie, and published in the Journal of Experimental Medicine, in 2000. https://doi.org/10.1084/jem.192.2.295.
Collapse
Affiliation(s)
- Cathryn R Nagler
- Pritzker School of Molecular Engineering and Biological Sciences Division, University of Chicago, Chicago, IL
| |
Collapse
|
17
|
Malyshkina A, Brüggemann A, Paschen A, Dittmer U. Cytotoxic CD4 + T cells in chronic viral infections and cancer. Front Immunol 2023; 14:1271236. [PMID: 37965314 PMCID: PMC10642198 DOI: 10.3389/fimmu.2023.1271236] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
CD4+ T cells play an important role in immune responses against pathogens and cancer cells. Although their main task is to provide help to other effector immune cells, a growing number of infections and cancer entities have been described in which CD4+ T cells exhibit direct effector functions against infected or transformed cells. The most important cell type in this context are cytotoxic CD4+ T cells (CD4+ CTL). In infectious diseases anti-viral CD4+ CTL are mainly found in chronic viral infections. Here, they often compensate for incomplete or exhausted CD8+ CTL responses. The induction of CD4+ CTL is counter-regulated by Tregs, most likely because they can be dangerous inducers of immunopathology. In viral infections, CD4+ CTL often kill via the Fas/FasL pathway, but they can also facilitate the exocytosis pathway of killing. Thus, they are very important effectors to keep persistent virus in check and guarantee host survival. In contrast to viral infections CD4+ CTL attracted attention as direct anti-tumor effectors in solid cancers only recently. Anti-tumor CD4+ CTL are defined by the expression of cytolytic markers and have been detected within the lymphocyte infiltrates of different human cancers. They kill tumor cells in an antigen-specific MHC class II-restricted manner not only by cytolysis but also by release of IFNγ. Thus, CD4+ CTL are interesting tools for cure approaches in chronic viral infections and cancer, but their potential to induce immunopathology has to be carefully taken into consideration.
Collapse
Affiliation(s)
- Anna Malyshkina
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Alicia Brüggemann
- Department of Dermatology, Venereology, and Allergology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Annette Paschen
- Department of Dermatology, Venereology, and Allergology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
18
|
Wang J, Zhao X, Wan YY. Intricacies of TGF-β signaling in Treg and Th17 cell biology. Cell Mol Immunol 2023; 20:1002-1022. [PMID: 37217798 PMCID: PMC10468540 DOI: 10.1038/s41423-023-01036-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Balanced immunity is pivotal for health and homeostasis. CD4+ helper T (Th) cells are central to the balance between immune tolerance and immune rejection. Th cells adopt distinct functions to maintain tolerance and clear pathogens. Dysregulation of Th cell function often leads to maladies, including autoimmunity, inflammatory disease, cancer, and infection. Regulatory T (Treg) and Th17 cells are critical Th cell types involved in immune tolerance, homeostasis, pathogenicity, and pathogen clearance. It is therefore critical to understand how Treg and Th17 cells are regulated in health and disease. Cytokines are instrumental in directing Treg and Th17 cell function. The evolutionarily conserved TGF-β (transforming growth factor-β) cytokine superfamily is of particular interest because it is central to the biology of both Treg cells that are predominantly immunosuppressive and Th17 cells that can be proinflammatory, pathogenic, and immune regulatory. How TGF-β superfamily members and their intricate signaling pathways regulate Treg and Th17 cell function is a question that has been intensely investigated for two decades. Here, we introduce the fundamental biology of TGF-β superfamily signaling, Treg cells, and Th17 cells and discuss in detail how the TGF-β superfamily contributes to Treg and Th17 cell biology through complex yet ordered and cooperative signaling networks.
Collapse
Affiliation(s)
- Junying Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xingqi Zhao
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yisong Y Wan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
19
|
Wu LL, Li XY, Deng K, Lin BL, Deng H, Xie DY, Zhang GL, Zhao QY, Mo ZS, Huang YH, Gao ZL. Predictive value of Th17 and Treg cells at baseline for HBsAg loss in chronic hepatitis B patients with low HBsAg quantification treated with pegylated interferon and nucleos(t)ide analogue. LIVER RESEARCH 2023; 7:136-144. [PMID: 39958952 PMCID: PMC11791923 DOI: 10.1016/j.livres.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/23/2022] [Accepted: 04/25/2023] [Indexed: 01/02/2025]
Abstract
Background and aims The primary goal of chronic hepatitis B (CHB) treatment is to reduce hepatitis B surface antigen (HBsAg). T helper 17 (Th17) and regulatory T (Treg) cells are essential for the development of CHB. However, how Th17 and Treg cells contribute to HBsAg loss is still unknown. Therefore, this study aimed to search for the predictive value of Th17 and Treg cells for HBsAg loss in CHB patients with low HBsAg quantification. Methods The study included 99 hepatitis B e antigen (HBeAg)-negative CHB patients who had completed a year of nucleos(t)ide analogue (NA) monotherapy and had received both NA and pegylated interferon (PEG-IFN) treatment for less than 96 weeks (96 wk). In the cured group, 48 patients lost HBsAg within 48 wk, while 51 patients did not (uncured group). Blood samples and clinical data were collected for research. Results During PEG-IFN and NA combination therapy, the proportion of Th17 cells in the cured group increased significantly, while the proportion of Treg cells in the uncured group increased. From 0 to 24 wk, the proportion of Th17 cells in the cured group was significantly higher than in the uncured group, while the opposite was true for Treg cells. Patients with alanine aminotransferase (ALT) ≥ 2.5 upper limit of normal (ULN) at 12 wk had a higher proportion of Th17 cells and a lower proportion of Treg cells than those with ALT <2.5 ULN at 12 wk. Additionally, the proportion of Th17 cells is inversely associated with the level of HBsAg, whereas the level of Treg cells is positively related to HBsAg quantification. The clinical cure index, including age, HBsAg quantification, and the proportions of Th17 and Treg cells, had a higher area under the curve (0.957) for predicting HBsAg loss when compared to the proportions of Th17 and Treg cells and HBsAg quantification alone. Conclusions Combined with quantification of HBsAg, the proportions of Th17 cells and Treg cells at baseline can be used as good predictors of HBsAg loss in patients with low HBsAg quantification treated with NA and PEG-IFN.
Collapse
Affiliation(s)
- Li-Li Wu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Yan Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kai Deng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bing-Liang Lin
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hong Deng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dong-Ying Xie
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Geng-Lin Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qi-Yi Zhao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhi-Shuo Mo
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yue-Hua Huang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhi-Liang Gao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Shakya AK, Mallick B, Nandakumar KS. A Perspective on Oral Immunotherapeutic Tools and Strategies for Autoimmune Disorders. Vaccines (Basel) 2023; 11:1031. [PMID: 37376420 DOI: 10.3390/vaccines11061031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Oral immune tolerance is a physiological process to achieve tolerance against autoimmunity by oral ingestion of self-antigen(s) or other therapeutics. At the cellular level, oral tolerance suppresses autoimmune diseases by activating FoxP-positive and -negative regulatory T cells (Tregs) and/or causing clonal anergy or deletion of autoreactive T cells, affecting B cell tolerance. However, oral delivery of antigens/biologics is challenging due to their instability in the harsh environment of the gastrointestinal (GI) tract. Several antigen/drug delivery tools and approaches, including micro/nanoparticles and transgenic plant-based delivery systems, have been explored to demonstrate oral immune tolerance for different autoimmune diseases successfully. However, despite the effectiveness, variation in results, dose optimization, and undesirable immune system activation are the limitations of the oral approach to further advancement. From this perspective, the current review discusses the oral tolerance phenomenon, cellular mechanisms, antigen delivery tools and strategies, and its challenges.
Collapse
Affiliation(s)
| | - Buddhadev Mallick
- Department of Zoology, Raniganj Girls College, Bardhaman 713358, West Bengal, India
| | - Kutty Selva Nandakumar
- Department of Environmental and Biosciences, School of Business, Innovation, and Sustainability, Halmstad University, 301 18 Halmstad, Sweden
| |
Collapse
|
21
|
Yoo S, Jeong YH, Choi HH, Chae S, Hwang D, Shin SJ, Ha SJ. Chronic LCMV infection regulates the effector T cell response by inducing the generation of less immunogenic dendritic cells. Exp Mol Med 2023:10.1038/s12276-023-00991-5. [PMID: 37121977 DOI: 10.1038/s12276-023-00991-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 05/02/2023] Open
Abstract
Chronic viral infection impairs systemic immunity in the host; however, the mechanism underlying the dysfunction of immune cells in chronic viral infection is incompletely understood. In this study, we studied the lineage differentiation of hematopoietic stem cells (HSCs) during chronic viral infection to elucidate the changes in dendritic cell (DC) differentiation and subsequent impact on T cell functionality using a chronic lymphocytic choriomeningitis virus (LCMV) infection model. We first investigated the lineage differentiation of HSCs in the bone marrow (BM) to elucidate the modulation of immune cell differentiation and found that the populations highly restrained in their differentiation were common myeloid progenitors (CMPs) and common dendritic cell progenitors (CDPs). Of interest, the main immune cells infected with LCMV Clone 13 (CL13) in the BM were CD11b/c+ myeloid DCs. We next characterized CD11b+ DCs that differentiated during chronic LCMV infection. These DCs displayed a less immunogenic phenotype than DCs in naive or acutely infected mice, showing low expression of CD80 but high expression of PD-L1, B7-H4, IDO, TGF-β, and IL-10. Consequently, these CD11b+ DCs induced less effective CD8+ T cells and more Foxp3+ regulatory T (Treg) cells. Furthermore, CD11b+ DCs generated during CL13 infection could not induce effective CD8+ T cells specific to the antigens of newly invading pathogens. Our findings demonstrate that DCs generated from the BM during chronic viral infection cannot activate fully functional effector CD8+ T cells specific to newly incoming antigens as well as persistent antigens themselves, suggesting a potential cause of the functional alterations in the T cell immune response during chronic viral infection.
Collapse
Affiliation(s)
- Seungbo Yoo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yun Hee Jeong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hong-Hee Choi
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sehyun Chae
- Korea Brain Bank, Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
22
|
Shiojima Y, Takahashi M, Takahashi R, Maruyama K, Moriyama H, Bagchi D, Bagchi M, Akanuma M. Efficacy and Safety of Dietary Undenatured Type II Collagen on Joint and Motor Function in Healthy Volunteers: A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Study. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:224-241. [PMID: 35512781 DOI: 10.1080/07315724.2021.2024466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Prevalence of osteoarthritis (OA) is increasing alarmingly worldwide. Slowing down the progression of OA and diverse locomotive organ disorders is gaining interest in improving the quality of life (QOL) and extending healthy life-span. In a pilot study, intake of a small amount of undenatured type II collagen exhibited suppression of damage to the articular cartilage via oral immune tolerance. It also demonstrated improvement of knee and joint flexibility and mobility with continued intake of undenatured type II collagen (NEXT-II®) derived from chicken sternum cartilage. This randomized, double-blind, placebo-controlled, parallel-group clinical investigation (RCT) evaluated the efficacy and safety of 12 weeks of regular intake of NEXT-II® on joint and motor function in healthy Japanese male and female participants (aged 20 to <75 years). Sixty-four participants were randomized to receive either NEXT-II® (undenatured type II collagen 3.2 mg/d) or placebo over a period of 12 consecutive weeks. Efficacy on joint and motor functions were evaluated measuring knee passive range of motion as the primary outcome; the Japan Knee Osteoarthritis Measure (JKOM), Visual Analog Scale (VAS) for knee discomfort, and motor functions (10-meter walking and stair-climbing test) as the secondary outcomes; and Japan Low back pain Evaluation Questionnaire (JLEQ) and VAS for lower back discomfort as the exploratory outcomes. Fifty-eight participants (placebo = 28; NEXT-II® group = 30) completed the study. In the assessment of knee passive range of motion, significant improvements in "flexion" and "flexible angle (range)" were observed in the NEXT-II® group at 4, 8, and 12 weeks of treatment. NEXT-II® induced significant improvements in JKOM, VAS for knee and lower back discomfort, 10-meter walking test, stair-climbing test, and JLEQ. Results demonstrate that undenatured type II collagen is safe and efficacious in improving knee flexibility and mobility, reducing knee and lower back pain, and enhancing motor function.
Collapse
Affiliation(s)
| | - Megumi Takahashi
- Ryusendo Co., Ltd., R&D, Tokyo, Japan.,Laboratory of Ultrasound Theranostics, Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | - Ryohei Takahashi
- Ryusendo Co., Ltd., R&D, Tokyo, Japan.,Laboratory of Ultrasound Theranostics, Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | - Kazuo Maruyama
- Laboratory of Ultrasound Theranostics, Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | | | - Debasis Bagchi
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| | | | | |
Collapse
|
23
|
Guan T, Zhou X, Zhou W, Lin H. Regulatory T cell and macrophage crosstalk in acute lung injury: future perspectives. Cell Death Dis 2023; 9:9. [PMID: 36646692 PMCID: PMC9841501 DOI: 10.1038/s41420-023-01310-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/18/2023]
Abstract
Acute lung injury (ALI) describes the injury to endothelial cells in the lungs and associated vessels due to various factors. Furthermore, ALI accompanied by inflammation and thrombosis has been reported as a common complication of SARS-COV-2 infection. It is widely accepted that inflammation and the cytokine storm are main causes of ALI. Two classical anti-inflammatory cell types, regulatory T cells (Tregs) and M2 macrophages, are theoretically capable of resisting uncontrolled inflammation. Recent studies have indicated possible crosstalk between Tregs and macrophages involving their mutual activation. In this review, we discuss the current findings related to ALI pathogenesis and the role of Tregs and macrophages. In particular, we review the molecular mechanisms underlying the crosstalk between Tregs and macrophages in ALI pathogenesis. Understanding the role of Tregs and macrophages will provide the potential targets for treating ALI.
Collapse
Affiliation(s)
- Tianshu Guan
- grid.260463.50000 0001 2182 8825Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, 330006 Nanchang, Jiangxi China ,grid.260463.50000 0001 2182 8825Queen Mary university, Nanchang University, 330006 Nanchang, Jiangxi Province China
| | - Xv Zhou
- grid.260463.50000 0001 2182 8825Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, 330006 Nanchang, Jiangxi China ,grid.260463.50000 0001 2182 8825Queen Mary university, Nanchang University, 330006 Nanchang, Jiangxi Province China
| | - Wenwen Zhou
- grid.260463.50000 0001 2182 8825Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, 330006 Nanchang, Jiangxi China
| | - Hui Lin
- grid.260463.50000 0001 2182 8825Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, 330006 Nanchang, Jiangxi China
| |
Collapse
|
24
|
Dutta A, Hung CY, Chen TC, Chang CS, Hsiao SH, Lin YC, Lin CY, Huang CT. The origin of regulatory from the effector cells in LAG-3-marked Th1 immunity against severe influenza virus infection. Immunol Suppl 2022; 169:167-184. [PMID: 36522294 DOI: 10.1111/imm.13620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
In severe respiratory virus infections, including influenza, an exaggerated host immune response has been linked to the severe disease and death. Control of the overwhelming immune response is thus essential. Efforts with broad-spectrum immunosuppressive agents such as steroids are disappointing. A better understanding of host immune response using animal experimental system is required to avoid undesired outcome of experimental manipulation. Following severe influenza virus infection in influenza hemagglutinin antigen-specific transgenic mouse experimental model, step-wise evolving cells from a pool of naïve hemagglutinin-specific CD4+ T cells were studied for phenotypic, genomic, and functional characterization in vivo. Naïve CD4+ T cells respond with Th1 commitment in the absolute majority. They first develop into LAG-3Med IFN-γ-secreting Th1 effectors and then evolve into LAG-3High IFN-γ-not-secreting regulators with increasing LAG-3 expression upon continuous activation and cell division. The LAG-3Med IFN-γ-secreting effectors contribute to inflammation, boost inflammatory response of cognate antigen-specific CD8+ T cells, and aggravate the disease despite facilitated virus clearance. In contrast, LAG-3High regulators do not contribute to inflammation, suppress CD8+ T cell inflammatory response, alleviate lung pathology, and ameliorate the disease with preserved virus clearance. Moderated CD8+ T cells retain proliferative capacity, and persist beyond virus clearance. Such moderation is distinct from Foxp-3+ regulator-mediated suppression, which suppresses proliferative and inflammatory responses of the CD8+ T cells and impairs virus clearance with inflammation alleviation. Origin of regulatory from the effector cells of LAG-3-marked Th1 immunity alleviates lung inflammation without impairment of virus eradication.
Collapse
Affiliation(s)
- Avijit Dutta
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan
| | - Chen-Yiu Hung
- Division of Thoracic Medicine, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan
| | - Tse-Ching Chen
- Department of Pathology, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan.,College of Medicine, Chang Gung University, Guishan, Taoyuan City, Taiwan
| | - Chia-Shiang Chang
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan
| | - Sung-Han Hsiao
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan
| | - Yung-Chang Lin
- College of Medicine, Chang Gung University, Guishan, Taoyuan City, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan
| | - Chun-Yen Lin
- College of Medicine, Chang Gung University, Guishan, Taoyuan City, Taiwan.,Division of Hepatogastroenterology, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan
| | - Ching-Tai Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan.,College of Medicine, Chang Gung University, Guishan, Taoyuan City, Taiwan
| |
Collapse
|
25
|
Chandran S, Tang Q. Impact of interleukin-6 on T cells in kidney transplant recipients. Am J Transplant 2022; 22 Suppl 4:18-27. [PMID: 36453710 DOI: 10.1111/ajt.17209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022]
Abstract
Interleukin-6 (IL-6), a multifunctional proinflammatory cytokine, plays a key role in T cell activation, survival, and differentiation. Acting as a switch that induces the differentiation of naïve T cells into Th17 cells and inhibits their development into regulatory T cells, IL-6 promotes rejection and abrogates tolerance. Therapies that target IL-6 signaling include antibodies to IL-6 and the IL-6 receptor and inhibitors of janus kinases; several of these therapeutics have demonstrated robust clinical efficacy in autoimmune and inflammatory diseases. Clinical trials of IL-6 inhibition in kidney transplantation have focused primarily on its effects on B cells, plasma cells, and HLA antibodies. In this review, we summarize the impact of IL-6 on T cells in experimental models of transplant and describe the effects of IL-6 inhibition on the T cell compartment in kidney transplant recipients.
Collapse
Affiliation(s)
- Sindhu Chandran
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Qizhi Tang
- Department of Surgery, Diabetes Center, Gladstone-UCSF Institute of Genome Immunology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
26
|
Rana J, Muñoz MM, Biswas M. Oral tolerance to prevent anti-drug antibody formation in protein replacement therapies. Cell Immunol 2022; 382:104641. [PMID: 36402002 PMCID: PMC9730862 DOI: 10.1016/j.cellimm.2022.104641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Protein based therapeutics have successfully improved the quality of life for patients of monogenic disorders like hemophilia, Pompe and Fabry disease. However, a significant proportion of patients develop immune responses towards intravenously infused therapeutic protein, which can complicate or neutralize treatment and compromise patient safety. Strategies aimed at circumventing immune responses following therapeutic protein infusion can greatly improve therapeutic efficacy. In recent years, antigen-based oral tolerance induction has shown promising results in the prevention and treatment of autoimmune diseases, food allergies and can prevent anti-drug antibody formation to protein replacement therapies. Oral tolerance exploits regulatory mechanisms that are initiated in the gut associated lymphoid tissue (GALT) to promote active suppression of orally ingested antigen. In this review, we outline general perceptions and current knowledge about the mechanisms of oral tolerance, including tissue specific sites of tolerance induction and the cells involved, with emphasis on antigen presenting cells and regulatory T cells. We define several factors, such as cytokines and metabolites that impact the stability and expansion potential of these immune modulatory cells. We highlight preclinical studies that have been performed to induce oral tolerance to therapeutic proteins or enzymes for single gene disorders, such as hemophilia or Pompe disease. These studies mainly utilize a transgenic plant-based system for oral delivery of antigen in conjugation with fusion protein technology that favors the prevention of antigen degradation in the stomach while enhancing uptake in the small intestine by antigen presenting cells and regulatory T cell induction, thereby promoting antigen specific systemic tolerance.
Collapse
Affiliation(s)
- Jyoti Rana
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maite Melero Muñoz
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
27
|
Sterling KG, Dodd GK, Alhamdi S, Asimenios PG, Dagda RK, De Meirleir KL, Hudig D, Lombardi VC. Mucosal Immunity and the Gut-Microbiota-Brain-Axis in Neuroimmune Disease. Int J Mol Sci 2022; 23:13328. [PMID: 36362150 PMCID: PMC9655506 DOI: 10.3390/ijms232113328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Recent advances in next-generation sequencing (NGS) technologies have opened the door to a wellspring of information regarding the composition of the gut microbiota. Leveraging NGS technology, early metagenomic studies revealed that several diseases, such as Alzheimer's disease, Parkinson's disease, autism, and myalgic encephalomyelitis, are characterized by alterations in the diversity of gut-associated microbes. More recently, interest has shifted toward understanding how these microbes impact their host, with a special emphasis on their interactions with the brain. Such interactions typically occur either systemically, through the production of small molecules in the gut that are released into circulation, or through signaling via the vagus nerves which directly connect the enteric nervous system to the central nervous system. Collectively, this system of communication is now commonly referred to as the gut-microbiota-brain axis. While equally important, little attention has focused on the causes of the alterations in the composition of gut microbiota. Although several factors can contribute, mucosal immunity plays a significant role in shaping the microbiota in both healthy individuals and in association with several diseases. The purpose of this review is to provide a brief overview of the components of mucosal immunity that impact the gut microbiota and then discuss how altered immunological conditions may shape the gut microbiota and consequently affect neuroimmune diseases, using a select group of common neuroimmune diseases as examples.
Collapse
Affiliation(s)
| | - Griffin Kutler Dodd
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Shatha Alhamdi
- Clinical Immunology and Allergy Division, Department of Pediatrics, King Abdullah Specialist Children’s Hospital, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | | | - Ruben K. Dagda
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | | | - Dorothy Hudig
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Vincent C. Lombardi
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| |
Collapse
|
28
|
Yan S, Kotschenreuther K, Deng S, Kofler DM. Regulatory T cells in rheumatoid arthritis: functions, development, regulation, and therapeutic potential. Cell Mol Life Sci 2022; 79:533. [PMID: 36173485 PMCID: PMC9522664 DOI: 10.1007/s00018-022-04563-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/31/2022] [Accepted: 09/17/2022] [Indexed: 11/06/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that mainly affects the joints but also leads to systemic inflammation. Auto-reactivity and dysregulation of self-tolerance are thought to play a vital role in disease onset. In the pathogenesis of autoimmune diseases, disturbed immunosuppressive properties of regulatory T cells contribute to the dysregulation of immune homeostasis. In RA patients, the functions of Treg cells and their frequency are reduced. Therefore, focusing on the re-establishment of self-tolerance by increasing Treg cell frequencies and preventing a loss of function is a promising strategy for the treatment of RA. This approach could be especially beneficial for those patients who do not respond well to current therapies. In this review, we summarize and discuss the current knowledge about the function, differentiation and regulation of Treg cells in RA patients and in animal models of autoimmune arthritis. In addition, we highlight the therapeutic potential as well as the challenges of Treg cell targeting treatment strategies.
Collapse
Affiliation(s)
- Shuaifeng Yan
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Konstantin Kotschenreuther
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany
| | - Shuya Deng
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - David M Kofler
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany.
- Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf, Cologne, Germany.
| |
Collapse
|
29
|
Stemazole Promotes Oligodendrocyte Precursor Cell Survival In Vitro and Remyelination In Vivo. Int J Mol Sci 2022; 23:ijms231810756. [PMID: 36142668 PMCID: PMC9500784 DOI: 10.3390/ijms231810756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022] Open
Abstract
Maintaining the normal function of oligodendrocyte precursor cells (OPCs) and protecting OPCs from damage is the basis of myelin regeneration in multiple sclerosis (MS). In this paper, we investigated the effect of stemazole, a novel small molecule, on the promotion of oligodendrocyte precursor cell survival and remyelination. The results show that stemazole enhanced the survival rate and the number of clone formation in a dose-dependent manner and decreased the percentage of cell apoptosis. In particular, the number of cell clones was increased up to 6-fold (p < 0.001) in the stemazole group compared with the control group. In vivo, we assessed the effect of stemazole on recovering the motor dysfunction and demyelination induced by cuprizone (CPZ). The results show that stemazole promoted the recovery of motor dysfunction and the repair of myelin sheaths. Compared with the CPZ group, the stemazole group showed a 30.46% increase in the myelin area (p < 0.001), a 37.08% increase in MBP expression (p < 0.01), and a 1.66-fold increase in Olig2 expression (p < 0.001). Histologically, stemazole had a better effect than the positive control drugs. In conclusion, stemazole promoted OPC survival in vitro and remyelination in vivo, suggesting that this compound may be used as a therapeutic agent against demyelinating disease.
Collapse
|
30
|
Wu Y, Yu S, Qiao H. Understanding the functional inflammatory factors involved in therapeutic response to immune checkpoint inhibitors for pan-cancer. Front Pharmacol 2022; 13:990445. [PMID: 36120342 PMCID: PMC9474995 DOI: 10.3389/fphar.2022.990445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) fight tumor progression by activating immune conditions. The inflammatory factors are playing a functional role in programmed death-1 (PD-1) or other immune checkpoints. They are involved in regulating the expression of programmed death ligand-1 (PD-L1), the only predictor recognized by the guidelines in response to ICIs. In addition, abundant components of the tumor microenvironment (TME) all interact with various immune factors contributing to the response to ICIs, including infiltration of various immune cells, extracellular matrix, and fibroblasts. Notably, the occurrence of immune-related adverse events (irAEs) in patients receiving ICIs is increasingly observed in sundry organs. IrAEs are often regarded as an inflammatory factor-mediated positive feedback loop associated with better response to ICIs. It deserves attention because inflammatory factors were observed to be different when targeting different immune checkpoints or in the presence of different irAEs. In the present review, we address the research progresses on regulating inflammatory factors for an intentional controlling anti-cancer response with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Yanmeizhi Wu
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shan Yu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Qiao
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
31
|
Bafor EE, Valencia JC, Young HA. Double Negative T Regulatory Cells: An Emerging Paradigm Shift in Reproductive Immune Tolerance? Front Immunol 2022; 13:886645. [PMID: 35844500 PMCID: PMC9283768 DOI: 10.3389/fimmu.2022.886645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Immune regulation of female reproductive function plays a crucial role in fertility, as alterations in the relationship between immune and reproductive processes result in autoimmune subfertility or infertility. The breakdown of immune tolerance leads to ovulation dysfunction, implantation failure, and pregnancy loss. In this regard, immune cells with regulatory activities are essential to restore self-tolerance. Apart from regulatory T cells, double negative T regulatory cells (DNTregs) characterized by TCRαβ+/γδ+CD3+CD4–CD8– (and negative for natural killer cell markers) are emerging as effector cells capable of mediating immune tolerance in the female reproductive system. DNTregs are present in the female reproductive tract of humans and murine models. However, their full potential as immune regulators is evolving, and studies so far indicate that DNTregs exhibit features that can also maintain tolerance in the female reproductive microenvironment. This review describes recent progress on the presence, role and mechanisms of DNTregs in the female reproductive system immune regulation and tolerance. In addition, we address how DNTregs can potentially provide a paradigm shift from the known roles of conventional regulatory T cells and immune tolerance by maintaining and restoring balance in the reproductive microenvironment of female fertility.
Collapse
Affiliation(s)
- Enitome E Bafor
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Julio C Valencia
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Howard A Young
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| |
Collapse
|
32
|
Xiong Y, Xu G, Chen M, Ma H. Intestinal Uptake and Tolerance to Food Antigens. Front Immunol 2022; 13:906122. [PMID: 35757706 PMCID: PMC9226482 DOI: 10.3389/fimmu.2022.906122] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Food allergy is a growing concern due to its increasing world-wide incidence. Strict avoidance of allergens is a passive treatment strategy. Since the mechanisms responsible for the occurrence and development of food allergy have not yet been fully elucidated, effective individualized treatment options are lacking. In this review, we summarize the pathways through which food antigens enter the intestine and review the proposed mechanisms describing how the intestine acquires and tolerates food antigens. When oral tolerance is not established, food allergy occurs. In addition, we also discuss the contribution of commensal bacteria of the gut in shaping tolerance to food antigens in the intestinal tract. Finally, we propose that elucidating the mechanisms of intestinal uptake and tolerance of food antigens will provide additional clues for potential treatment options for food allergy.
Collapse
Affiliation(s)
- Yuhong Xiong
- Department of Pediatrics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, The Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Guifeng Xu
- Department of Pediatrics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mingwu Chen
- Department of Pediatrics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongdi Ma
- Department of Pediatrics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, The Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
33
|
Cenerenti M, Saillard M, Romero P, Jandus C. The Era of Cytotoxic CD4 T Cells. Front Immunol 2022; 13:867189. [PMID: 35572552 PMCID: PMC9094409 DOI: 10.3389/fimmu.2022.867189] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
In 1986, Mosmann and Coffman identified 2 functionally distinct subsets of activated CD4 T cells, Th1 and Th2 cells, being key in distinct T cell mediated responses. Over the past three decades, our understanding of CD4 T cell differentiation has expanded and the initial paradigm of a dichotomic CD4 T cell family has been revisited to accommodate a constantly growing number of functionally distinct CD4 T helper and regulatory subpopulations. Of note, CD4 T cells with cytotoxic functions have also been described, initially in viral infections, autoimmune disorders and more recently also in cancer settings. Here, we provide an historical overview on the discovery and characterization of cytotoxic CD4 T cells, followed by a description of their mechanisms of cytotoxicity. We emphasize the relevance of these cells in disease conditions, particularly in cancer, and we provide insights on how to exploit these cells in immunotherapy.
Collapse
Affiliation(s)
- Mara Cenerenti
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Margaux Saillard
- Ludwig Institute for Cancer Research, Lausanne, Switzerland.,Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Pedro Romero
- Ludwig Institute for Cancer Research, Lausanne, Switzerland.,Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne, Switzerland
| |
Collapse
|
34
|
Qu G, Chen J, Li Y, Yuan Y, Liang R, Li B. Current status and perspectives of regulatory T cell-based therapy. J Genet Genomics 2022; 49:599-611. [DOI: 10.1016/j.jgg.2022.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/08/2022] [Accepted: 05/18/2022] [Indexed: 02/08/2023]
|
35
|
Liu Q, Zhu F, Liu X, Lu Y, Yao K, Tian N, Tong L, Figge DA, Wang X, Han Y, Li Y, Zhu Y, Hu L, Ji Y, Xu N, Li D, Gu X, Liang R, Gan G, Wu L, Zhang P, Xu T, Hu H, Hu Z, Xu H, Ye D, Yang H, Li B, Tong X. Non-oxidative pentose phosphate pathway controls regulatory T cell function by integrating metabolism and epigenetics. Nat Metab 2022; 4:559-574. [PMID: 35606596 DOI: 10.1038/s42255-022-00575-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 04/11/2022] [Indexed: 01/14/2023]
Abstract
Regulatory T (Treg) cells are critical for maintaining immune homeostasis and preventing autoimmunity. Here, we show that the non-oxidative pentose phosphate pathway (PPP) regulates Treg function to prevent autoimmunity. Deletion of transketolase (TKT), an indispensable enzyme of non-oxidative PPP, in Treg cells causes a fatal autoimmune disease in mice, with impaired Treg suppressive capability despite regular Treg numbers and normal Foxp3 expression levels. Mechanistically, reduced glycolysis and enhanced oxidative stress induced by TKT deficiency triggers excessive fatty acid and amino acid catabolism, resulting in uncontrolled oxidative phosphorylation and impaired mitochondrial fitness. Reduced α-KG levels as a result of reductive TCA cycle activity leads to DNA hypermethylation, thereby limiting functional gene expression and suppressive activity of TKT-deficient Treg cells. We also find that TKT levels are frequently downregulated in Treg cells of people with autoimmune disorders. Our study identifies the non-oxidative PPP as an integrator of metabolic and epigenetic processes that control Treg function.
Collapse
Affiliation(s)
- Qi Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangming Zhu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xinnan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Lu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Yao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Na Tian
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lingfeng Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - David A Figge
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xiuwen Wang
- Department of Rheumatology and Immunology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yichao Han
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yakui Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yemin Zhu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Hu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingning Ji
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nannan Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaochuan Gu
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Rui Liang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guifang Gan
- Shanghai Ninth People's Hospital, Department of Clinical Laboratories, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifang Wu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianle Xu
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Hu
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Huji Xu
- Department of Rheumatology and Immunology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Dan Ye
- Molecular and Cell Biology Lab of Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, College of Life Science, Fudan University, Shanghai, China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Bin Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xuemei Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
36
|
Ismail II, Saqr M. A Quantitative Synthesis of Eight Decades of Global Multiple Sclerosis Research Using Bibliometrics. Front Neurol 2022; 13:845539. [PMID: 35280299 PMCID: PMC8907526 DOI: 10.3389/fneur.2022.845539] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Bibliometric studies on the field of multiple sclerosis (MS) research are scarce. The aim of this study is to offer an overarching view of the body of knowledge about MS research over eight decades–from 1945 to 2021–by means of a bibliometric analysis. We performed a quantitative analysis of a massive dataset based on Web of Science. The analysis included frequencies, temporal trends, collaboration networks, clusters of research themes, and an in-depth qualitative analysis. A total of 48,356 articles, with 1,766,086 citations were retrieved. Global MS research showed a steady increase with an annual growth rate of 6.4%, with more than half of the scientific production published in the last decade. Published articles came from 98 different countries by 123,569 authors in 3,267 journals, with the United States ranking first in a number of publications (12,770) and citations (610,334). A co-occurrence network analysis formed four main themes of research, covering the pathophysiological mechanisms, neuropsychological symptoms, diagnostic modalities, and treatment of MS. A noticeable increase in research on cognition, depression, and fatigue was observed, highlighting the increased attention to the quality of life of patients with MS. This bibliometric analysis provided a comprehensive overview of the status of global MS research over the past eight decades. These results could provide a better understanding of this field and help identify new directions for future research.
Collapse
Affiliation(s)
| | - Mohammed Saqr
- School of Computing, University of Eastern Finland, Joensuu, Finland
- *Correspondence: Mohammed Saqr
| |
Collapse
|
37
|
Garcia-Bonilla L, Iadecola C, Anrather J. Inflammation and Immune Response. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Supriya R, Gao Y, Gu Y, Baker JS. Role of Exercise Intensity on Th1/Th2 Immune Modulations During the COVID-19 Pandemic. Front Immunol 2021; 12:761382. [PMID: 35003073 PMCID: PMC8727446 DOI: 10.3389/fimmu.2021.761382] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
The COVID-19 pandemic has led to several pioneering scientific discoveries resulting in no effective solutions with the exception of vaccination. Moderate exercise is a significant non-pharmacological strategy, to reduce the infection-related burden of COVID-19, especially in patients who are obese, elderly, and with additional comorbidities. The imbalance of T helper type 1 (Th1) or T helper type 2 (Th2) cells has been well documented among populations who have suffered as a result of the COVID-19 pandemic, and who are at maximum risk of infection and mortality. Moderate and low intensity exercise can benefit persons at risk from the disease and survivors by favorable modulation in Th1/Th2 ratios. Moreover, in COVID-19 patients, mild to moderate intensity aerobic exercise also increases immune system function but high intensity aerobic exercise may have adverse effects on immune responses. In addition, sustained hypoxia in COVID-19 patients has been reported to cause organ failure and cell death. Hypoxic conditions have also been highlighted to be triggered in COVID-19-susceptible individuals and COVID-19 survivors. This suggests that hypoxia inducible factor (HIF 1α) might be an important focus for researchers investigating effective strategies to minimize the effects of the pandemic. Intermittent hypoxic preconditioning (IHP) is a method of exposing subjects to short bouts of moderate hypoxia interspersed with brief periods of normal oxygen concentrations (recovery). This methodology inhibits the production of pro-inflammatory factors, activates HIF-1α to activate target genes, and subsequently leads to a higher production of red blood cells and hemoglobin. This increases angiogenesis and increases oxygen transport capacity. These factors can help alleviate virus induced cardiopulmonary hemodynamic disorders and endothelial dysfunction. Therefore, during the COVID-19 pandemic we propose that populations should engage in low to moderate exercise individually designed, prescribed and specific, that utilizes IHP including pranayama (yoga), swimming and high-altitude hiking exercise. This would be beneficial in affecting HIF-1α to combat the disease and its severity. Therefore, the promotion of certain exercises should be considered by all sections of the population. However, exercise recommendations and prescription for COVID-19 patients should be structured to match individual levels of capability and adaptability.
Collapse
Affiliation(s)
- Rashmi Supriya
- Faculty of Sports Science, Ningbo University, Zhejiang, China
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- *Correspondence: Rashmi Supriya,
| | - Yang Gao
- Faculty of Sports Science, Ningbo University, Zhejiang, China
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Zhejiang, China
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Julien S. Baker
- Faculty of Sports Science, Ningbo University, Zhejiang, China
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
39
|
Amoroso M, Langgartner D, Lowry CA, Reber SO. Rapidly Growing Mycobacterium Species: The Long and Winding Road from Tuberculosis Vaccines to Potent Stress-Resilience Agents. Int J Mol Sci 2021; 22:ijms222312938. [PMID: 34884743 PMCID: PMC8657684 DOI: 10.3390/ijms222312938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory diseases and stressor-related psychiatric disorders, for which inflammation is a risk factor, are increasing in modern Western societies. Recent studies suggest that immunoregulatory approaches are a promising tool in reducing the risk of suffering from such disorders. Specifically, the environmental saprophyte Mycobacterium vaccae National Collection of Type Cultures (NCTC) 11659 has recently gained attention for the prevention and treatment of stress-related psychiatric disorders. However, effective use requires a sophisticated understanding of the effects of M. vaccae NCTC 11659 and related rapidly growing mycobacteria (RGMs) on microbiome–gut–immune–brain interactions. This historical narrative review is intended as a first step in exploring these mechanisms and provides an overview of preclinical and clinical studies on M. vaccae NCTC 11659 and related RGMs. The overall objective of this review article is to increase the comprehension of, and interest in, the mechanisms through which M. vaccae NCTC 11659 and related RGMs promote stress resilience, with the intention of fostering novel clinical strategies for the prevention and treatment of stressor-related disorders.
Collapse
Affiliation(s)
- Mattia Amoroso
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University of Ulm, 89081 Ulm, Germany; (M.A.); (D.L.)
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University of Ulm, 89081 Ulm, Germany; (M.A.); (D.L.)
| | - Christopher A. Lowry
- Department of Integrative Physiology, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA;
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), The Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA
- Senior Fellow, inVIVO Planetary Health, of the Worldwide Universities Network (WUN), West New York, NJ 07093, USA
| | - Stefan O. Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University of Ulm, 89081 Ulm, Germany; (M.A.); (D.L.)
- Correspondence:
| |
Collapse
|
40
|
Gershteyn IM, Burov AA, Miao BY, Morais VH, Ferreira LMR. Immunodietica: interrogating the role of diet in autoimmune disease. Int Immunol 2021; 32:771-783. [PMID: 32808986 DOI: 10.1093/intimm/dxaa054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Diet is an environmental factor in autoimmune disorders, where the immune system erroneously destroys one's own tissues. Yet, interactions between diet and autoimmunity remain largely unexplored, particularly the impact of immunogenetics, one's human leukocyte antigen (HLA) allele make-up, in this interplay. Here, we interrogated animals and plants for the presence of epitopes implicated in human autoimmune diseases. We mapped autoimmune epitope distribution across organisms and determined their tissue expression pattern. Interestingly, diet-derived epitopes implicated in a disease were more likely to bind to HLA alleles associated with that disease than to protective alleles, with visible differences between organisms with similar autoimmune epitope content. We then analyzed an individual's HLA haplotype, generating a personalized heatmap of potential dietary autoimmune triggers. Our work uncovered differences in autoimmunogenic potential across food sources and revealed differential binding of diet-derived epitopes to autoimmune disease-associated HLA alleles, shedding light on the impact of diet on autoimmunity.
Collapse
Affiliation(s)
- Iosif M Gershteyn
- Ajax Biomedical Foundation, Newton, MA, USA
- ImmuVia LLC, Waltham, MA, USA
- SoundMedicine LLC, Waltham, MA, USA
| | | | - Brenda Y Miao
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Vasco H Morais
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Leonardo M R Ferreira
- Ajax Biomedical Foundation, Newton, MA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
41
|
Tuzlak S, Dejean AS, Iannacone M, Quintana FJ, Waisman A, Ginhoux F, Korn T, Becher B. Repositioning T H cell polarization from single cytokines to complex help. Nat Immunol 2021; 22:1210-1217. [PMID: 34545250 DOI: 10.1038/s41590-021-01009-w] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022]
Abstract
When helper T (TH) cell polarization was initially described three decades ago, the TH cell universe grew dramatically. New subsets were described based on their expression of few specific cytokines. Beyond TH1 and TH2 cells, this led to the coining of various TH17 and regulatory (Treg) cell subsets as well as TH22, TH25, follicular helper (TFH), TH3, TH5 and TH9 cells. High-dimensional single-cell analysis revealed that a categorization of TH cells into a single-cytokine-based nomenclature fails to capture the complexity and diversity of TH cells. Similar to the simple nomenclature used to describe innate lymphoid cells (ILCs), we propose that TH cell polarization should be categorized in terms of the help they provide to phagocytes (type 1), to B cells, eosinophils and mast cells (type 2) and to non-immune tissue cells, including the stroma and epithelium (type 3). Studying TH cells based on their helper function and the cells they help, rather than phenotypic features such as individual analyzed cytokines or transcription factors, better captures TH cell plasticity and conversion as well as the breadth of immune responses in vivo.
Collapse
Affiliation(s)
- Selma Tuzlak
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Anne S Dejean
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITy), INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse, France
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.,Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, the Academia, Singapore, Singapore.,Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Thomas Korn
- Institute for Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany. .,Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
42
|
Abstract
CD4+ T cells or helper T cells play various roles in the immune response to pathogens, tumors, as well as in asthma, allergy, and autoimmunity. Consequently, there is great interest in the comprehensive investigation of different T helper cell subsets. Here, we use mass cytometry (CyTOF), which is similar to flow cytometry but uses metal ion-tagged antibodies, which are detected using time-of-flight mass spectrometry. CyTOF allows the simultaneous detection of over 40 different antibodies, allowing us to collect high-dimensional single-cell proteomic data on T helper subsets. We use an extensive staining panel with a large number of lineage markers, cytokines, and other functional markers to identify and characterize CD4+ T cell subsets. In this method, human peripheral blood mononuclear cells are stimulated ex vivo with PMA and ionomycin, which activates T cells. The activated CD4+ T cells can then be identified as Th1, Th2, or Th17 cells based on their production of IFNγ, IL-4, and IL-17, respectively. Tregs are identified as CD4+CD25+CD127lo. Once Th1, Th2, Th17, and Tregs have been identified, they can be characterized in more detail using the large number of phenotypic and functional markers included in the CyTOF staining panel. Finally, automated and unbiased high-dimensional data analysis tools can be employed to comprehensively characterize T helper cells and discover novel features.
Collapse
|
43
|
Natua S, Dhamdhere SG, Mutnuru SA, Shukla S. Interplay within tumor microenvironment orchestrates neoplastic RNA metabolism and transcriptome diversity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1676. [PMID: 34109748 DOI: 10.1002/wrna.1676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/03/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022]
Abstract
The heterogeneous population of cancer cells within a tumor mass interacts intricately with the multifaceted aspects of the surrounding microenvironment. The reciprocal crosstalk between cancer cells and the tumor microenvironment (TME) shapes the cancer pathophysiome in a way that renders it uniquely suited for immune tolerance, angiogenesis, metastasis, and therapy resistance. This dynamic interaction involves a dramatic reconstruction of the transcriptomic landscape of tumors by altering the synthesis, modifications, stability, and processing of gene readouts. In this review, we categorically evaluate the influence of TME components, encompassing a myriad of resident and infiltrating cells, signaling molecules, extracellular vesicles, extracellular matrix, and blood vessels, in orchestrating the cancer-specific metabolism and diversity of both mRNA and noncoding RNA, including micro RNA, long noncoding RNA, circular RNA among others. We also highlight the transcriptomic adaptations in response to the physicochemical idiosyncrasies of TME, which include tumor hypoxia, extracellular acidosis, and osmotic stress. Finally, we provide a nuanced analysis of existing and prospective therapeutics targeting TME to ameliorate cancer-associated RNA metabolism, consequently thwarting the cancer progression. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Subhashis Natua
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Shruti Ganesh Dhamdhere
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Srinivas Abhishek Mutnuru
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
44
|
Richardson N, Wraith DC. Advancement of antigen-specific immunotherapy: knowledge transfer between allergy and autoimmunity. IMMUNOTHERAPY ADVANCES 2021; 1:ltab009. [PMID: 35919740 PMCID: PMC9327121 DOI: 10.1093/immadv/ltab009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/28/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
Targeted restoration of immunological tolerance to self-antigens or innocuous environmental allergens represents the ultimate aim of treatment options in autoimmune and allergic disease. Antigen-specific immunotherapy (ASI) is the only intervention that has proven disease-modifying efficacy as evidenced by induction of long-term remission in a number of allergic conditions. Mounting evidence is now indicating that specific targeting of pathogenic T cells in autoinflammatory and autoimmune settings enables effective restoration of immune homeostasis between effector and regulatory cells and alters the immunological course of disease. Here, we discuss the key lessons learned during the development of antigen-specific immunotherapies and how these can be applied to inform future interventions. Armed with this knowledge and current high-throughput technology to track immune cell phenotype and function, it may no longer be a matter of ‘if’ but ‘when’ this ultimate aim of targeted tolerance restoration is realised.
Collapse
Affiliation(s)
- Naomi Richardson
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - David Cameron Wraith
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
45
|
Selck C, Dominguez-Villar M. Antigen-Specific Regulatory T Cell Therapy in Autoimmune Diseases and Transplantation. Front Immunol 2021; 12:661875. [PMID: 34054826 PMCID: PMC8160309 DOI: 10.3389/fimmu.2021.661875] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/27/2021] [Indexed: 12/30/2022] Open
Abstract
Regulatory T (Treg) cells are a heterogenous population of immunosuppressive T cells whose therapeutic potential for the treatment of autoimmune diseases and graft rejection is currently being explored. While clinical trial results thus far support the safety and efficacy of adoptive therapies using polyclonal Treg cells, some studies suggest that antigen-specific Treg cells are more potent in regulating and improving immune tolerance in a disease-specific manner. Hence, several approaches to generate and/or expand antigen-specific Treg cells in vitro or in vivo are currently under investigation. However, antigen-specific Treg cell therapies face additional challenges that require further consideration, including the identification of disease-relevant antigens as well as the in vivo stability and migratory behavior of Treg cells following transfer. In this review, we discuss these approaches and the potential limitations and describe prospective strategies to enhance the efficacy of antigen-specific Treg cell treatments in autoimmunity and transplantation.
Collapse
Affiliation(s)
- Claudia Selck
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | | |
Collapse
|
46
|
Proto MC, Fiore D, Piscopo C, Pagano C, Galgani M, Bruzzaniti S, Laezza C, Gazzerro P, Bifulco M. Lipid homeostasis and mevalonate pathway in COVID-19: Basic concepts and potential therapeutic targets. Prog Lipid Res 2021; 82:101099. [PMID: 33915202 PMCID: PMC8074527 DOI: 10.1016/j.plipres.2021.101099] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022]
Abstract
Despite encouraging progresses achieved in the management of viral diseases, efficient strategies to counteract infections are still required. The current global challenge highlighted the need to develop a rapid and cost-effective strategy to counteract the SARS-CoV-2 pandemic. Lipid metabolism plays a crucial role in viral infections. Viruses can use the host lipid machinery to support their life cycle and to impair the host immune response. The altered expression of mevalonate pathway-related genes, induced by several viruses, assures survival and spread in host tissue. In some infections, statins, HMG-CoA-reductase inhibitors, reduce cholesterol in the plasma membrane of permissive cells resulting in lower viral titers and failure to internalize the virus. Statins can also counteract viral infections through their immunomodulatory, anti-inflammatory and anti-thrombotic effects. Beyond statins, interfering with the mevalonate pathway could have an adjuvant effect in therapies aimed at mitigating endothelial dysfunction and deregulated inflammation in viral infection. In this review we depicted the historical and current evidence highlighting how lipid homeostasis and mevalonate pathway targeting represents a valid approach to rapidly neutralize viruses, focusing our attention to their potential use as effective targets to hinder SARS-CoV-2 morbidity and mortality. Pros and cons of statins and Mevalonate-pathway inhibitors have been also dissected.
Collapse
Affiliation(s)
- Maria Chiara Proto
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| | - Donatella Fiore
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| | - Chiara Piscopo
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| | - Cristina Pagano
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131 Naples, Italy
| | - Mario Galgani
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131 Naples, Italy; Institute of Endocrinology and Experimental Oncology, IEOS CNR, 80131 Naples, Italy
| | - Sara Bruzzaniti
- Institute of Endocrinology and Experimental Oncology, IEOS CNR, 80131 Naples, Italy; Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology, IEOS CNR, 80131 Naples, Italy
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy.
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131 Naples, Italy.
| |
Collapse
|
47
|
Liu R, Peng C, Jing D, Xiao Y, Zhu W, Zhao S, Zhang J, Li J, Chen X. Identification of gut microbiota signatures in symptomatic dermographism. Exp Dermatol 2021; 30:1794-1799. [PMID: 33751677 DOI: 10.1111/exd.14326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 02/28/2021] [Accepted: 03/09/2021] [Indexed: 12/31/2022]
Abstract
Symptomatic dermographism (SD) is a recurrent inflammatory skin disease related to immunity; however, the details remain elusive. In view of the important role of gut microbiota in immune regulation, the purpose of this study is to investigate the alterations of gut microbiota in SD and explore the potential bacterial biomarkers for diagnosis. A case-control study including SD patients and normal controls (NCs) was carried out. Gut microbiota of the participants was analysed by the 16S rDNA sequencing of faecal samples. The linear discriminant analysis effect size and the receiver operating characteristic curve (ROC) analysis were used to identify the bacterial biomarkers. Forty-four participants were included in this study. The alpha-diversity and beta-diversity of gut microbiota differed significantly between SD patients and NCs. The abundance of Verrucomicrobia, Ruminococcaceae and their subordinate taxa were reduced in SD patients, while Enterobacteriales and its subordinate taxon exhibited higher relative abundance compared with NCs. Subdoligranulum and Ruminococcus bromii showed a potential diagnostic value for SD, and Prevotella stercorea was negatively relevant to duration of SD. Furthermore, the pyruvate, butyric acid and histamine metabolism pathway were likely to be involved in the pathogenesis of SD. Our results revealed that the gut microbiota of SD patients experienced obvious changes, and Verrucomicrobia, Ruminococcaceae and Enterobacteriales were microbiota signatures for SD.
Collapse
Affiliation(s)
- Runqiu Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Danrong Jing
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Yangjian Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Wu Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Jianglin Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| |
Collapse
|
48
|
Singh RP, Bischoff DS. Sex Hormones and Gender Influence the Expression of Markers of Regulatory T Cells in SLE Patients. Front Immunol 2021; 12:619268. [PMID: 33746959 PMCID: PMC7966510 DOI: 10.3389/fimmu.2021.619268] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/01/2021] [Indexed: 01/07/2023] Open
Abstract
Regulatory T cells have been implicated in the regulation and maintenance of immune homeostasis. Whether gender and sex hormones differentially influence the expression and function of regulatory T cell phenotype and their influence on FoxP3 expression remains obscure. We provide evidence in this study that the number and percent of human regulatory T cells (Tregs) expressing CD4+ and CD8+ are significantly reduced in healthy females compared to healthy males. In addition, both CD4+CD25+hi and CD8+CD25+hi subsets in healthy males have a 2-3 fold increase in FoxP3 mRNA expression compared to healthy females. Female SLE patients, compared to healthy women, have elevated plasma levels of estradiol and decreased levels of testosterone. Higher levels of testosterone correlate with higher expression of FoxP3 in CD4+CD25hiCD127low putative Tregs in women with SLE. Incubation of CD4+ regulatory T cells with 17β-estradiol at physiological levels generally decreased FoxP3 expression in females with SLE. These data suggest that females may be more susceptible than males to SLE and other autoimmune diseases in part because they have fewer Tregs and reduced FoxP3 expression within those cells due to normal E2 levels which suppress FoxP3 expression. In addition, low levels of plasma testosterone in women may further reduce the ability of the Tregs to express FoxP3. These data suggest that gender and sex hormones can influence susceptibility to SLE via effects on regulatory T cells and FoxP3 expression.
Collapse
Affiliation(s)
- Ram P Singh
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - David S Bischoff
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
49
|
Chen X, Berin MC, Gillespie VL, Sampson HA, Dunkin D. Treatment of Intestinal Inflammation With Epicutaneous Immunotherapy Requires TGF-β and IL-10 but Not Foxp3 + Tregs. Front Immunol 2021; 12:637630. [PMID: 33717186 PMCID: PMC7952322 DOI: 10.3389/fimmu.2021.637630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/28/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Inflammatory bowel disease (IBD) involves an increase in T effector cells in the intestines that disrupts the normal balance with T regulatory cells (Tregs). A therapy that restores this balance has the potential to treat IBD. We have shown that epicutaneous exposure to OVA induces Tregs that are able to induce tolerance. The Tregs also migrate to the intestines where they alleviate colitis in mice, demonstrating the potential for skin induced Tregs to treat intestinal inflammation. We investigated the role of Foxp3, IL-10, and TGF-β in the suppression of colitis by epicutaneous immunotherapy (ET). Methods: RAG1-/- mice were transferred with CD4+CD45RBhi T cells from wild type mice to induce colitis. To determine whether Foxp3+ Tregs, IL-10-, or TGF-β-producing Tregs were necessary, Foxp3-DTR, IL-10-/-, or CD4-dnTGFBRII mice were immunized with OVA and OVA TCR enriched T cells were added. As control groups, some mice were given OVA TCR enriched T cells from wild type mice or no OVA TCR enriched T cells. Half of the mice in each group were then exposed on the skin to Viaskin patches containing OVA weekly for 3 weeks. Mice given OVA TCR enriched T cells from Foxp3-DTR mice were given diphtheria toxin (DT) or not in addition to ET. Mice were assessed for weight loss, colon length, colonic cytokine production, and histological inflammation. Results: ET, after injection with OVA TCR enriched T cells derived from wild type mice, prevented weight loss, decreased colonic inflammatory cytokine production and histological colitis. ET in the absence of the OVA TCR enriched T cells did not alleviate colitis. ET, after injection with OVA TCR enriched T cells derived from Foxp3-DTR mice, prevented weight loss, decreased colonic inflammatory cytokine production, and histological colitis. Ablation with DT did not impair the ability of ET to alleviate colitis. ET failed to alleviate colitis when OVA TCR enriched T cells were derived from IL-10-/- or CD4-dnTGFBRII mice. Conclusions: ET through induction of Tregs, which produce IL-10 and TGF-β, could be a promising treatment for IBD.
Collapse
Affiliation(s)
- Xin Chen
- Division of Pediatric Gastroenterology and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - M Cecilia Berin
- Division of Pediatric Allergy and Immunology, Precision Immunology Institute and Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Virginia L Gillespie
- Center for Comparative Medicine and Surgery, The Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Hugh A Sampson
- Division of Pediatric Allergy and Immunology, Precision Immunology Institute and Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,DBV Technologies, LLC, Montrouge, France
| | - David Dunkin
- Division of Pediatric Gastroenterology and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| |
Collapse
|
50
|
Rodriguez-Sillke Y, Visekruna A, Glauben R, Siegmund B, Steinhoff U. Recognition of food antigens by the mucosal and systemic immune system: Consequences for intestinal development and homeostasis. Int J Med Microbiol 2021; 311:151493. [PMID: 33652373 DOI: 10.1016/j.ijmm.2021.151493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022] Open
Abstract
The impact of nutrition on systemic and intestinal immune responses remains controversially discussed and yet not fully understood. The majority of studies investigating the effects of dietary antigens focused to understand how local and systemic unresponsiveness is induced by innocuous food antigens. Moreover, it has been shown that both, microbial and dietary antigens are essential for the normal development of the mucosal immune system. Based on experimental findings from animals and IBD patients, we propose a model how the intestinal immune system performs the balancing act between recognition and tolerance of dietary antigens at the same time: In the healthy gut, repetitive uptake of dietary antigens by Peyer's patches leads to increasing activation of CD4+ T cells till hyper-activated lymphocytes undergo apoptosis. In contrast to healthy controls, this mechanism was disturbed in Crohn's disease patients. This observation might help to better understand beneficial effects of dietary intervention therapy.
Collapse
Affiliation(s)
- Yasmina Rodriguez-Sillke
- Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps University of Marburg, Marburg, Germany
| | - Rainer Glauben
- Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Germany
| | - Britta Siegmund
- Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Germany
| | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hygiene, Philipps University of Marburg, Marburg, Germany.
| |
Collapse
|