1
|
Xia X, Kong C, Zhao X, Zhao K, Shi N, Jiang J, Li P. The complexities of cell death mechanisms: a new perspective in systemic sclerosis therapy. Apoptosis 2025; 30:636-651. [PMID: 39924583 DOI: 10.1007/s10495-025-02082-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/11/2025]
Abstract
Systemic sclerosis, also termed scleroderma, is a severe and debilitating autoimmune disease characterized by fibrosis, an aberrant immune response, and vascular dysfunction. Cell death is essential to the body's continued normal development as it removes old or damaged cells. This process is governed by several mechanisms, including programmed cell death through apoptosis, necrosis, and pyroptosis, as well as metabolic processes, such as ferroptosis and cuproptosis. This review describes the signaling pathways associated with each form of cell death, examining the linkages between these pathways, and discussing how the dysregulation of cell death processes is involved in the development of autoimmune disorders such as systemic sclerosis. Existing and promising therapeutic strategies aimed at restoring the balance of cell death in systemic sclerosis and other autoimmune disorders are also emphasized.
Collapse
Affiliation(s)
- Xue Xia
- Department of Rheumatology and Immunology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Chenfei Kong
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Xiaoming Zhao
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Kelin Zhao
- Department of Rheumatology and Immunology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Naixu Shi
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, 130033, China.
| | - Ping Li
- Department of Rheumatology and Immunology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China.
| |
Collapse
|
2
|
Jin G, Guo T, Liu JW, Yang HY, Xu JG, Pang Y, Yang Y, He SE, Yi K. The relationship of miR-155 host gene polymorphism in the susceptibility of cancer: a systematic review and meta-analysis. Front Genet 2025; 16:1517513. [PMID: 40115820 PMCID: PMC11922843 DOI: 10.3389/fgene.2025.1517513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/27/2025] [Indexed: 03/23/2025] Open
Abstract
Background miR-155 is overexpressed in many cancers, highlighting its potential as a biomarker for cancer diagnosis, treatment, and therapeutic evaluation. miR-155 is processed from the miR-155 host gene (MIR155HG). Genetic variations in MIR155HG may influence cancer susceptibility, but existing evidence is inconclusive. This study aimed to evaluate the association of MIR155HG polymorphisms with cancer risk. Material/Methods A systematic literature search identified 15 case-control studies on three single nucleotide polymorphisms (SNPs): rs767649 (T > A), rs928883 (G > A), and rs1893650 (T > C). Meta-analysis was performed using RevMan 5.4, with odds ratios (ORs) and 95% confidence intervals (CIs) as effect measures. Results No significant association was observed for rs767649 and rs928883 in overall cancer analysis. However, subgroup analysis revealed rs767649 increased susceptibility to respiratory, digestive, and reproductive cancers, while reducing cancer risk after excluding reproductive cancers. rs928883 showed a protective effect for digestive cancers. rs1893650 was not significantly associated with cancer risk. Conclusion MIR155HG polymorphisms influence susceptibility to specific cancer subtypes, particularly respiratory and digestive cancers. These findings underscore the importance of genetic and environmental factors in cancer risk and warrant further investigation.
Collapse
Affiliation(s)
- Gang Jin
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Tao Guo
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of Cardiovascular Surgery, Gansu Provincial Hospital, Lanzhou, China
- The First School of Clinical Medicine of Gansu University of Chinese Medicine, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Diagnosis and Treatment of Congenital Heart Disease, Lanzhou, China
| | - Jia-Wei Liu
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Han-Yu Yang
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of Thoracic Surgery, Qin'an County People's Hospital, Tianshui, China
| | - Jian-Guo Xu
- Gansu International Scientific and Technological Cooperation Base of Diagnosis and Treatment of Congenital Heart Disease, Lanzhou, China
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yao Pang
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Yi Yang
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Shao-E He
- Gansu International Scientific and Technological Cooperation Base of Diagnosis and Treatment of Congenital Heart Disease, Lanzhou, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Department of Thoracic Surgery, Kangle County Lianlu Town Health Center, Linxia, Gansu, China
| | - Kang Yi
- Department of Cardiovascular Surgery, Gansu Provincial Hospital, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Diagnosis and Treatment of Congenital Heart Disease, Lanzhou, China
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Nie W, Fu H, Zhang Y, Yang H, Liu B. Chinese Herbal Medicine and Their Active Ingredients Involved in the Treatment of Atopic Dermatitis Related Signaling Pathways. Phytother Res 2025; 39:1190-1237. [PMID: 39764710 DOI: 10.1002/ptr.8409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 02/19/2025]
Abstract
Atopic dermatitis (AD) is a common inflammatory dermatitis of the skin and poses therapeutic challenges due to the adverse reactions and high costs associated with available treatments. In Eastern Asian countries, a plethora of herbal remedies is extensively employed for the alleviation of AD. Many of these botanicals are renowned for their formidable anti-inflammatory properties, contributing to AD management. Chinese herbal medicine (CHM) and its active ingredients exhibit both prophylactic and therapeutic promise against AD by modulating inflammatory response, orchestrating immune system functions, and enhancing antioxidant activities. A comprehensive exploration of the underlying mechanisms involved in CHM treatment can enhance the comprehension of AD pathogenesis and facilitate the development of innovative drugs for AD. This study aims to elucidate the signaling pathways and potential targets implicated in CHM-based treatment of AD, providing a systematic theoretical framework for its application in therapy while serving as a valuable reference for developing more effective and safer AD therapeutic agents.
Collapse
Affiliation(s)
- Wenkai Nie
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hao Fu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huiwen Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bing Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
4
|
Taha SR, Karimi M, Mahdavi B, Yousefi Tehrani M, Bemani A, Kabirian S, Mohammadi J, Jabbari S, Hushmand M, Mokhtar A, Pourhanifeh MH. Crosstalk between non-coding RNAs and programmed cell death in colorectal cancer: implications for targeted therapy. Epigenetics Chromatin 2025; 18:3. [PMID: 39810224 PMCID: PMC11734566 DOI: 10.1186/s13072-024-00560-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/13/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) remains one of the most common causes of cancer-related mortality worldwide. Its progression is influenced by complex interactions involving genetic, epigenetic, and environmental factors. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been identified as key regulators of gene expression, affecting diverse biological processes, notably programmed cell death (PCD). OBJECTIVE This review aims to explore the relationship between ncRNAs and PCD in CRC, focusing on how ncRNAs influence cancer cell survival, proliferation, and treatment resistance. METHODS A comprehensive literature analysis was conducted to examine recent findings on the role of ncRNAs in modulating various PCD mechanisms, including apoptosis, autophagy, necroptosis, and pyroptosis, and their impact on CRC development and therapeutic response. RESULTS ncRNAs were found to significantly regulate PCD pathways, impacting tumor growth, metastasis, and treatment sensitivity in CRC. Their influence on these pathways highlights the potential of ncRNAs as biomarkers for early CRC detection and as targets for innovative therapeutic interventions. CONCLUSION Understanding the involvement of ncRNAs in PCD regulation offers new insights into CRC biology. The targeted modulation of ncRNA-PCD interactions presents promising avenues for personalized cancer treatment, which may improve patient outcomes by enhancing therapeutic effectiveness and reducing resistance.
Collapse
Affiliation(s)
- Seyed Reza Taha
- Department of Pathology and Immunology, Washington University School of Medicine, St. LouisWashington, MO, USA
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Karimi
- Faculty of Medicine, Bogomolets National Medical University (NMU), Kiev, Ukraine.
| | - Bahar Mahdavi
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | | | - Ali Bemani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahriar Kabirian
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Javad Mohammadi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sina Jabbari
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Meysam Hushmand
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mokhtar
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
- PAKAN Institute, Tehran, Iran.
| |
Collapse
|
5
|
Alrouji M, Anwar S, Venkatesan K, Shahwan M, Hassan MI, Islam A, Shamsi A. Iron homeostasis and neurodegeneration in the ageing brain: Insight into ferroptosis pathways. Ageing Res Rev 2024; 102:102575. [PMID: 39515619 DOI: 10.1016/j.arr.2024.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Ageing is a major risk factor for various chronic diseases and offers a potential target for developing novel and broadly effective preventatives or therapeutics for age-related conditions, including those affecting the brain. Mechanisms contributing to ageing have been summarized as the hallmarks of ageing, with iron imbalance being one of the major factors. Ferroptosis, an iron-mediated lipid peroxidation-induced programmed cell death, has recently been implicated in neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Addressing ferroptosis offers both opportunities and challenges for treating neurodegenerative diseases, though the specific mechanisms remain unclear. This research explores the key processes behind how ferroptosis contributes to brain ageing, with a focus on the complex signaling networks that are involved. The current article aims to uncover that how ferroptosis, a specific type of cell death, may drive age-related changes in the brain. Additionally, the article also unveils its role in neurodegenerative diseases, discussing how understanding these mechanisms could open up new therapeutic avenues.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Saleha Anwar
- Center for Global Health Research, Saveetha medical college, Saveetha institute of Medical and Technical Sciences, Chennai, India.
| | - Kumar Venkatesan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates.
| | - Md Imtaiyaz Hassan
- Center for Interdsicplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Asimul Islam
- Center for Interdsicplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Anas Shamsi
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates.
| |
Collapse
|
6
|
Sarkar AR, Mukherjee N, Sarkar AK, Jana NR. Designing Nano-Hemin for Ferroptosis-Mediated Cell Death via Enzymatic Hemin Digestion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64628-64637. [PMID: 39552348 DOI: 10.1021/acsami.4c17763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Hemin is a protoporphyrin complex of ferric ion which catalyzes H2O2 degradation and produces reactive oxygen species (ROS). This ROS generation property induces oxidative stress to hemin-exposed cells that can lead to various situations such as intracellular Fenton reaction, ferroptosis, or autophagy. Therapeutic performance of hemin is hindered due to low bioavailability of the active monomeric form with an intact ROS generation property. Here, we demonstrate a colloidal nanoparticle form of hemin (nano-hemin) with a high ROS generation property and high cell uptake property. We have shown that nano-hemin produces ROS inside a cell that upregulate heme oxygenase-1 in order to metabolize hemin. This leads to the ferroptosis-mediated cell death. Furthermore, we show that the ROS generation property of nano-hemin can be modulated to control hemin cytotoxicity for either ferroptosis or autophagy. Our findings suggest that nano-hemin can be designed with modular cytotoxicity for different therapeutic applications.
Collapse
Affiliation(s)
- Abu Raihan Sarkar
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Nayana Mukherjee
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Ankan Kumar Sarkar
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| |
Collapse
|
7
|
Sun Z, He W, Meng H, Ji Z, Qu J, Yu G. Lactate activates ER stress to promote alveolar epithelial cells apoptosis in pulmonary fibrosis. Respir Res 2024; 25:401. [PMID: 39522031 PMCID: PMC11550544 DOI: 10.1186/s12931-024-03016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive lung disease characterized by fibroblast proliferation, extensive extracellular matrix and collagen deposition, accompanied by inflammatory damage, ultimately leading to death due to respiratory failure. Endoplasmic reticulum (ER) stress in pulmonary fibrotic tissue is indeed recognized as a significant factor exacerbating PF development. Emerging evidences indicated a potential association between ER stress induced by lactate and cellular apoptosis in PF. However, the mechanisms in this process need further elucidation. In this paper, pulmonary fibrosis model was induced by bleomycin (BLM) intratracheally in mice. In the cellular model, type II epithelial cells were treated by lactate and TGF-β to detect ER stress and apoptosis markers. Lactate could promote ER stress response and apoptosis. Mechanically, lactate activated Caspase-12 via ATF4-Chop axis to induce cell apoptosis and promote fibrosis. ER stress inhibitor could effectively suppress alveolar epithelial cells apoptosis and pulmonary fibrosis. We concluded that pro-fibrotic properties of lactate are associated with alveolar epithelial cells apoptosis by causing ER stress and thus provide new potential therapeutic targets for pulmonary fibrosis.
Collapse
Affiliation(s)
- Zhiheng Sun
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China.
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China.
| | - Wanyu He
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China
| | - Huiwen Meng
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China
| | - Zhihua Ji
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China
| | - Junxing Qu
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, Henan, China.
- Xinxiang Key Laboratory for Tumor Drug Screening and Targeted Therapy, Xinxiang, Henan, China.
| | - Guoying Yu
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China.
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China.
| |
Collapse
|
8
|
Chandra A, Kesavardhana S. PANoptosis Regulation in Reservoir Hosts of Zoonotic Viruses. Viruses 2024; 16:1733. [PMID: 39599847 PMCID: PMC11599095 DOI: 10.3390/v16111733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Zoonotic viruses originating from reservoir hosts, such as bats and birds, often cause severe illness and outbreaks amongst humans. Upon zoonotic virus transmission, infected cells mount innate immune responses that include the activation of programmed cell death pathways to recruit innate immune cells to the site of infection and eliminate viral replication niches. Different inflammatory and non-inflammatory cell death pathways, such as pyroptosis, apoptosis, necroptosis, and PANoptosis can undergo concurrent activation in humans leading to mortality and morbidity during zoonosis. While controlled activation of PANoptosis is vital for viral clearance during infection and restoring tissue homeostasis, uncontrolled PANoptosis activation results in immunopathology during zoonotic virus infections. Intriguingly, animal reservoirs of zoonotic viruses, such as bats and birds, appear to have a unique immune tolerance adaptation, allowing them to host viruses without succumbing to disease. The mechanisms facilitating high viral tolerance in bats and birds are poorly understood. In this perspective review, we discuss the regulation of PANoptotic pathways in bats and birds and indicate how they co-exist with viruses with mild clinical signs and no immunopathology. Understanding the PANoptotic machinery of bats and birds may thus assist us in devising strategies to contain zoonotic outbreaks amongst humans.
Collapse
Affiliation(s)
| | - Sannula Kesavardhana
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
9
|
Shen Z, Qiu Y, Ding H, Ren F, Chen H. Cuproptosis and Cuproptosis-Based Synergistic Therapy for Cancer Treatment. ChemMedChem 2024; 19:e202400216. [PMID: 38943463 DOI: 10.1002/cmdc.202400216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/01/2024]
Abstract
Copper, as an essential trace nutrient for human, plays a crucial role in numerous cellular activities, and is vital for maintaining homeostasis in organisms. Deviations from normal intracellular copper concentration range can disrupt the cellular homeostasis and lead to cell death. Cell death is the process in which cells lose their vitality and cannot sustain normal metabolism, which has various forms. The recently discovered cuproptosis mechanism differs from the previously recognized forms, which is triggered by intracellular copper accumulation. The discovery of cuproptosis has sparked interest among researchers, and this mechanism has been applied in the treatment of various intractable diseases, including different types of cancer. However, the developed cuproptosis-based therapies have revealed certain limitations, such as low immunostimulatory efficiency, poor tumor targeting, and inhibition by the tumor microenvironment. Therefore, researchers are devoted to combining cuproptosis with existing cancer therapies to develop more effective synergistic cancer therapies. This review summarizes the latest research advancements in the cuproptosis-based therapies for various types of cancer, with a focus on the synergistic cancer therapies. Finally, it provides an outlook on the future development of cuproptosis in anti-tumor therapy.
Collapse
Affiliation(s)
- Zhiyang Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Yu Qiu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Haizhen Ding
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Fangfang Ren
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Hongmin Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
10
|
Zhi X, Du L, Zhang P, Guo X, Li W, Wang Y, He Q, Wu P, Lei X, Qu B. BPA induces testicular damage in male rodents via apoptosis, autophagy, and ferroptosis. Food Chem Toxicol 2024; 193:114984. [PMID: 39245402 DOI: 10.1016/j.fct.2024.114984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Bisphenol A (BPA), chemically known as 2,2-bis(4-hydroxyphenyl) propane, is one of the most common endocrine-disrupting chemicals in our environment. Long-term or high-dose exposure to BPA may lead to testicular damage and adversely affect male reproductive function. In vivo studies on rodents have demonstrated that BPA triggers apoptosis in testicular cells through both intrinsic and extrinsic pathways. Further in vitro studies on spermatogonia, Sertoli cells, and Leydig cells have all confirmed the pro-apoptotic effects of BPA. Given these findings, apoptosis is considered a primary mode of cell death induced by BPA in testicular tissue. In addition, BPA promotes autophagy by altering the activity of the Akt/mTOR pathway and upregulating the expression of autophagy-related genes and proteins. Recent studies have also identified ferroptosis as a significant contributing factor to BPA-induced testicular damage, further complicating the landscape of BPA's effects. This review summarizes natural substances that mitigate BPA-induced testicular damage by inhibiting these cell death pathways. These findings not only highlight potential therapeutic strategies but also underscore the need for further research into the underlying mechanisms of BPA-induced toxicity, particularly as it pertains to human health risk assessment and the development of more effective BPA management strategies.
Collapse
Affiliation(s)
- Xiaoyu Zhi
- The First Medical Center of Chinese PLA General Hospital, Beijing, China; Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Lehui Du
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Pei Zhang
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xingdong Guo
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Weiwei Li
- The 81st Group Army Hospital of Chinese PLA, Zhangjiakou, China
| | - Yuan Wang
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiduo He
- The First Medical Center of Chinese PLA General Hospital, Beijing, China; Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Peien Wu
- The First Medical Center of Chinese PLA General Hospital, Beijing, China; Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Xiao Lei
- The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Baolin Qu
- The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
11
|
Hou X, Ga L, Zhang X, Ai J. Advances in the application of logic gates in nanozymes. Anal Bioanal Chem 2024; 416:5893-5914. [PMID: 38488951 DOI: 10.1007/s00216-024-05240-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
Nanozymes are a class of nanomaterials with biocatalytic function and enzyme-like activity, whose advantages include high stability, low cost, and mass production. They can catalyze the substrates of natural enzymes based on specific nanostructures and serve as substitutes for natural enzymes. Their applied research involves a wide range of fields such as biomedicine, environmental governance, agriculture, and food. Molecular logic gates are a new cross-disciplinary discipline, which can simulate the function of silicon circuits on a molecular scale, perform single or multiple input logic operations, and generate logic outputs. A molecular logic gate is a binary operation that converts an input signal into an output signal according to the rules of Boolean logic, generating two signals, a high level, and a low level. The high and low levels represent the "true" and "false" values of the logic gates, and their outputs correspond to "l" and "0" of the molecular logic gates, respectively. The combination of nanozymes and logic gates is a novel and attractive research direction, and the cross-application of the two brings new opportunities and ideas for various fields, such as the construction of efficient biocomputers, intelligent drug delivery systems, and the precise diagnosis of diseases. This review describes the application of logic gates based on nanozymes, which is expected to provide a certain theoretical foundation for researchers' subsequent studies.
Collapse
Affiliation(s)
- Xiangru Hou
- College of Chemistry and Enviromental Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 zhaowudalu, Hohhot, 010022, China
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot, 010110, China
| | - Xin Zhang
- College of Chemical Engineering, Inner Mongolia University of Technology, 49 Aimin Road, Hohhot, 010051, China.
| | - Jun Ai
- College of Chemistry and Enviromental Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 zhaowudalu, Hohhot, 010022, China.
| |
Collapse
|
12
|
Park HJ, Nam MH, Park JH, Lee JM, Hong HS, Kim TW, Lee IH, Shin CH, Lee SH, Seo YK. Comparison of Malondialdehyde, Acetylcholinesterase, and Apoptosis-Related Markers in the Cortex and Hippocampus of Cognitively Dysfunctional Mice Induced by Scopolamine. Biomedicines 2024; 12:2475. [PMID: 39595042 PMCID: PMC11592181 DOI: 10.3390/biomedicines12112475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Objectives: Until now, many researchers have conducted evaluations on hippocampi for analyses of cognitive dysfunction models using scopolamine. However, depending on the purposes of these analyses, there are differences in the experimental results for the hippocampi and cortexes. Therefore, this study intends to compare various analyses of cognitive dysfunction after scopolamine administration with each other in hippocampi and cortexes. Methods: Scopolamine was administered at three dosages in mice: 0.5, 1, and 3 mg/kg. And this study evaluates the differences in cognitive function and the expression of malondialdehyde (MDA), acetylcholinesterase (AChE), and brain-derived neurotrophic factor (BDNF) in mice's hippocampi and cortexes based on scopolamine dosages. Results: The Morris water maze test was conducted between 1 and 3 h after scopolamine injection to assess its duration. A significant decrease in behavioral ability was evaluated at 1 h, and we observed a similar recovery to the normal group at 3 h. And the Morris water maze escape latency showed differences depending on scopolamine concentration. While the escape waiting time in the control group and scop 0.5 administration group remained similar to that seen before administration, the administration of scop 1 and 3 increased it. In the experimental group administered scop 1 and 3, cerebral MDA levels in the cerebral cortex significantly increased. In the hippocampus, the MDA level in the scopolamine-administered groups slightly increased compared to the cortex. A Western blotting assay shows that Bax and Bcl-xl showed a tendency to increase or decrease depending on the concentration, but BDNF increased in scop 0.5, and scop 1 and 3 did not show a significant decrease compared to the control at the cerebral cortex. In the hippocampus, BDNF showed a concentration-dependent decrease in expression. Conclusions: This study's findings indicate that chemical analyses for MDA and AChE can be performed in the cerebral cortex, while the hippocampus is better suited for protein analysis of apoptosis and BDNF.
Collapse
Affiliation(s)
- Hee-Jung Park
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Myeong-Hyun Nam
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Ji-Hoon Park
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Ji-Min Lee
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Hye-Sun Hong
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Tae-Woo Kim
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - In-Ho Lee
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Chang-Ho Shin
- Department of AI Convergence Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
- AriBio Co., Ltd., Seongnam-si 13535, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Young-Kwon Seo
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
- Department of AI Convergence Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| |
Collapse
|
13
|
Chen RY, Ding LJ, Liu YJ, Shi JJ, Yu J, Li CY, Lu JF, Yang GJ, Chen J. Marine Staurosporine Analogues: Activity and Target Identification in Triple-Negative Breast Cancer. Mar Drugs 2024; 22:459. [PMID: 39452867 PMCID: PMC11509616 DOI: 10.3390/md22100459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with high mortality and drug resistance and no targeted drug available at present. Compound 4, a staurosporine alkaloid derived from Streptomyces sp. NBU3142 in a marine sponge, exhibits potent anti-TNBC activity. This research investigated its impact on MDA-MB-231 cells and their drug-resistant variants. The findings highlighted that compound 4 inhibits breast cancer cell migration, induces apoptosis, arrests the cell cycle, and promotes cellular senescence in both regular and paclitaxel-resistant MDA-MB-231 cells. Additionally, this study identified mitogen-activated protein kinase kinase kinase 11 (MAP3K11) as a target of compound 4, implicating its role in breast tumorigenesis by affecting cell proliferation, migration, and cell cycle progression.
Collapse
Affiliation(s)
- Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Li-Jian Ding
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo 315211, China;
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Jing Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| |
Collapse
|
14
|
Oh SR, Park SB, Cho YJ. p,p'-DDT induces apoptosis in human endometrial stromal cells via the PI3K/AKT pathway and oxidative stress. Clin Exp Reprod Med 2024; 51:247-259. [PMID: 38711333 PMCID: PMC11372311 DOI: 10.5653/cerm.2022.05792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/06/2023] [Indexed: 05/08/2024] Open
Abstract
OBJECTIVE Bis-[4-chlorophenyl]-1,1,1-trichloroethane (DDT), one of the most widely used synthetic pesticides, is an endocrine-disrupting chemical with the potential to interfere with the human reproductive system. The effects of DDT and one of its metabolites, p,p'-DDT, on human endometrial stromal cells (ESCs) and health outcomes remain unknown. In this study, we investigated whether p,p'-DDT induces an imbalance in cell proliferation and apoptosis in human ESCs via oxidative stress. METHODS We assessed apoptosis in ESCs by quantifying the expression of markers associated with both intrinsic and extrinsic pathways. Additionally, we measured levels of reactive oxygen species (ROS), antioxidant enzyme activity, and estrogen receptors (ERs). We also examined changes in signaling involving nuclear factor kappa-light-chain-enhancer of activated B cells. RESULTS Following treatment with 1,000 pg/mL of p,p'-DDT, we observed an increase in Bax expression, a decrease in Bcl-2 expression, and increases in the expression of caspases 3, 6, and 8. We also noted a rise in the generation of ROS and a reduction in glutathione peroxidase expression after treatment with p,p'-DDT. Additionally, p,p'-DDT treatment led to changes in ER expression and increases in the protein levels of phosphatidylinositol 3-kinase (PI3K), phospho-protein kinase B (phospho-AKT), and phospho-extracellular signal-regulated kinase (phospho-ERK). CONCLUSION p,p'-DDT was found to induce apoptosis in human ESCs through oxidative stress and an ER-mediated pathway. The activation of the PI3K/AKT and ERK pathways could represent potential mechanisms by which p,p'-DDT prompts apoptosis in human ESCs and may be linked to endometrial pathologies.
Collapse
Affiliation(s)
- So Ra Oh
- Department of Obstetrics and Gynecology, Dong-A University Medical Center, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Seung Bin Park
- Department of Obstetrics and Gynecology, Dong-A University Medical Center, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Yeon Jean Cho
- Department of Obstetrics and Gynecology, Samsung Jeil Women's Clinic, Busan, Republic of Korea
| |
Collapse
|
15
|
Li S, Feng W, Wu J, Cui H, Wang Y, Liang T, An J, Chen W, Guo Z, Lei H. A Narrative Review: Immunometabolic Interactions of Host-Gut Microbiota and Botanical Active Ingredients in Gastrointestinal Cancers. Int J Mol Sci 2024; 25:9096. [PMID: 39201782 PMCID: PMC11354385 DOI: 10.3390/ijms25169096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
The gastrointestinal tract is where the majority of gut microbiota settles; therefore, the composition of the gut microbiota and the changes in metabolites, as well as their modulatory effects on the immune system, have a very important impact on the development of gastrointestinal diseases. The purpose of this article was to review the role of the gut microbiota in the host environment and immunometabolic system and to summarize the beneficial effects of botanical active ingredients on gastrointestinal cancer, so as to provide prospective insights for the prevention and treatment of gastrointestinal diseases. A literature search was performed on the PubMed database with the keywords "gastrointestinal cancer", "gut microbiota", "immunometabolism", "SCFAs", "bile acids", "polyamines", "tryptophan", "bacteriocins", "immune cells", "energy metabolism", "polyphenols", "polysaccharides", "alkaloids", and "triterpenes". The changes in the composition of the gut microbiota influenced gastrointestinal disorders, whereas their metabolites, such as SCFAs, bacteriocins, and botanical metabolites, could impede gastrointestinal cancers and polyamine-, tryptophan-, and bile acid-induced carcinogenic mechanisms. GPRCs, HDACs, FXRs, and AHRs were important receptor signals for the gut microbial metabolites in influencing the development of gastrointestinal cancer. Botanical active ingredients exerted positive effects on gastrointestinal cancer by influencing the composition of gut microbes and modulating immune metabolism. Gastrointestinal cancer could be ameliorated by altering the gut microbial environment, administering botanical active ingredients for treatment, and stimulating or blocking the immune metabolism signaling molecules. Despite extensive and growing research on the microbiota, it appeared to represent more of an indicator of the gut health status associated with adequate fiber intake than an autonomous causative factor in the prevention of gastrointestinal diseases. This study detailed the pathogenesis of gastrointestinal cancers and the botanical active ingredients used for their treatment in the hope of providing inspiration for research into simpler, safer, and more effective treatment pathways or therapeutic agents in the field.
Collapse
Affiliation(s)
- Shanlan Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Wuwen Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| | - Jiaqi Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Herong Cui
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Yiting Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Tianzhen Liang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Jin An
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Wanling Chen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Zhuoqian Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| |
Collapse
|
16
|
Gu Q, Luan J, Yu M, Xia J, Wang Z. Chronic prostatitis/chronic pelvic pain syndrome impairs erectile function by inducing apoptosis in a rat model of experimental autoimmune prostatitis. Int J Impot Res 2024:10.1038/s41443-024-00965-9. [PMID: 39169141 DOI: 10.1038/s41443-024-00965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Over the years, numerous epidemiological studies have shown that chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) promotes erectile dysfunction. Nonetheless, the precise underlying mechanism remains to be fully clarified. The objective of this research was to identify crucial signaling pathways responsible for CP/CPPS-induced erectile dysfunction. Thirty 8-week-old male Sprague‒Dawley rats were randomly assigned to either the CP/CPPS model group or the control group. The CP/CPPS rat model was established through subcutaneous injection of a combination of rat prostate protein and Freund's adjuvant. Penile erectile function assessment was conducted 45 days after immunization through electrical stimulation of the cavernous nerve. RNA sequencing of the corpus cavernosum of the penis was then performed using the Kyoto Encyclopedia of Genes and Genomes and protein‒protein interaction network analysis. Western blotting was performed on the cavernous tissue. Cell apoptosis assays, cell counting kit-8 assays, cell cloning assays, and Western blotting were conducted on rat endothelial cells. Erectile function was significantly lower in the CP/CPPS model group than in the control group (p < 0.001). Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that differentially expressed genes were predominantly enriched in the apoptosis pathway. Moreover, an increase in apoptosis in the rat corpus cavernosum, along with a decrease in the protein expression of CD31 (p = 0.0089) and eNOS (p = 0.0069) following CP/CPPS induction, was observed. In a protein‒protein interaction network, Pitx2 was recognized as a central gene. The role of Pitx2 in regulating apoptosis was demonstrated in experiments using rat endothelial cell lines, and it was found to be regulated by the Wnt/β-catenin pathway. This study highlights the occurrence of cavernous endothelial cell apoptosis in CP/CPPS-induced erectile dysfunction, and the potential mechanism of apoptosis may involve inhibition of the Wnt/β-catenin/Pitx2 pathway.
Collapse
Affiliation(s)
- Qi Gu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Jiaochen Luan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Mengchi Yu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Jiadong Xia
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China.
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
17
|
Mangrum DS, Finley SD. Modeling the heterogeneous apoptotic response of caspase-mediated signaling in tumor cells. J Theor Biol 2024; 590:111857. [PMID: 38797470 DOI: 10.1016/j.jtbi.2024.111857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Resisting apoptosis is a hallmark of cancer. For this reason, it may be possible to force cancer cells to die by targeting components along the apoptotic signaling pathway. However, apoptosis signaling is challenging to understand due to dynamic and complex behaviors of ligands, receptors, and intracellular signaling components in response to cancer therapy. In this work, we forecast the apoptotic response based on the combined impact of these features. We expanded a previously established mathematical model of caspase-mediated apoptosis to include extracellular activation and receptor dynamics. In addition, three potential threshold values of caspase-3 necessary for the activation of apoptosis were selected to forecast which cells become apoptotic over time. We first vary ligand and receptor levels with the number of intracellular signaling proteins remaining consistent. Then, we vary the intracellular protein molecules in each simulated tumor cell to forecast the response of a heterogeneous population. By leveraging the benefits of computational modeling, we investigate the combined effect of several factors on the onset of apoptosis. This work provides quantitative insights for how the apoptotic signaling response can be forecasted, and precisely triggered, amongst heterogeneous cells via extracellular activation.
Collapse
Affiliation(s)
- Diamond S Mangrum
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Stacey D Finley
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
18
|
Unsal V, Cicek M, Aktepe N, Oner E. Morin attenuates arsenic-induced toxicity in 3T3 embryonic fibroblast cells by suppressing oxidative stress, inflammation, and apoptosis: In vitro and silico evaluations. Toxicol Res (Camb) 2024; 13:tfae113. [PMID: 39036522 PMCID: PMC11260228 DOI: 10.1093/toxres/tfae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/13/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
This study aims to investigate the curative effects of Morin, a flavonoid, against arsenic toxicity in 3T3 embryonic fibroblast cells and its effect on the molecular mechanisms of cells. The cytotoxicity and viability of the cells were measured by MTT and LDH tests. Arsenic (0.74 μM) was used to trigger toxicity and Morin (50 μM) was used for treatment. The levels of oxidative stress biomarkers and the activities of antioxidant enzymes were measured by spectrophotometric method, and inflammatory markers were measured by ELISA method. While mRNA expression levels of Bax, Bcl-2 levels, and Caspase-3 activity were measured by qRT-PCR technique, TUNEL staining was performed to detect DNA breaks and DAPI staining to visualize nuclear changes. Protein structures were retrieved from the protein data bank. OpenBabel and Autodock programs were used for the molecular docking study. Morin rescued the 3T3 embryonic fibroblast cells exposed to arsenic. However, Arsenic decreased the activities of antioxidant enzymes in cells and significantly increased oxidative stress, inflammation, and apoptosis. Morin treatment reduced oxidative damage and TNF-α and IL-1β levels. Arsenic-induced Caspase-3 mRNA expression level and Bax protein mRNA expression level were significantly increased, while Bcl-2 mRNA expression level was significantly decreased. While Caspase-3 mRNA expression level and Bax protein mRNA expression level decreased with morin treatment, Bcl-2 mRNA expression level increased significantly. Molecular docking study results showed good binding affinity of morin in SOD, GSH-Px, Bax, Bcl-2, Caspase-3, TNF-α, and IL-1β structures. Morin showed antioxidant, anti-inflammatory, and anti-apoptotic effects against Arsenic-induced cellular toxicity.
Collapse
Affiliation(s)
- Velid Unsal
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Mardin Artuklu University, Mardin, 47200, Türkiye
| | - Mustafa Cicek
- Department of Medical Biology, Faculty of Medicine, Kahramanmaras Sütcü Imam University, Kahramanmaras, 46050, Türkiye
| | - Necmettin Aktepe
- Department of Nursing, Faculty of Health Sciences Mardin Artuklu University, Mardin, 47200, Türkiye
| | - Erkan Oner
- Department of Biochemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, 02000, Türkiye
| |
Collapse
|
19
|
Nakayama S, Yoda E, Yamashita S, Takamatsu Y, Suzuki Y, Kondo Y, Hara S. Knockdown of iPLA 2γ enhances cisplatin-induced apoptosis by increasing ROS-dependent peroxidation of mitochondrial phospholipids in bladder cancer cells. Free Radic Biol Med 2024; 220:301-311. [PMID: 38734266 DOI: 10.1016/j.freeradbiomed.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Cisplatin (CDDP) is a platinum-based drug with anti-cancer activity and is widely used as a standard therapy for bladder cancer. It is well known that CDDP causes cell death by increasing the generation of reactive oxygen species (ROS) and lipid peroxidation, but the mechanism of its anti-cancer effects has not been fully elucidated. There are still some problems such as chemoresistance in CDDP therapy. In the present study, we found the expression of Ca2+-independent phospholipase A2γ (iPLA2γ), which has been reported to regulate cellular redox homeostasis by inhibiting lipid peroxide accumulation, in human bladder cancer tissues. Thus, we investigated the effect of iPLA2γ knockdown on CDDP-induced bladder cancer cell death. As a result, we found that iPLA2γ knockdown significantly enhanced CDDP-induced apoptosis, intracellular and mitochondrial ROS production, cytochrome c release and caspase activation in bladder cancer cells. Moreover, mitochondrial membrane potential was decreased and peroxidation of mitochondrial phospholipids was increased by iPLA2γ knockdown. It was also shown that co-treatment of bromoenol lactone, an iPLA2 inhibitor, increased CDDP-induced apoptosis. These results indicated that iPLA2γ plays an important role in protecting bladder cancer cells from CDDP-induced apoptosis, and that iPLA2γ inhibitors might represent a novel strategy in CDDP-based multi-drug therapy.
Collapse
Affiliation(s)
- Satoko Nakayama
- Department of Urology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Emiko Yoda
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Saki Yamashita
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Yuka Takamatsu
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Yasutomo Suzuki
- Department of Urology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Yukihiro Kondo
- Department of Urology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| |
Collapse
|
20
|
Abbas R, Hartmann O, Asiss DT, Abbas R, Kagan J, Kim HT, Oren M, Diefenbacher M, Orian A, Larisch S. ARTS and small-molecule ARTS mimetics upregulate p53 levels by promoting the degradation of XIAP. Apoptosis 2024; 29:1145-1160. [PMID: 38684550 PMCID: PMC11263447 DOI: 10.1007/s10495-024-01957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 05/02/2024]
Abstract
Mutations resulting in decreased activity of p53 tumor suppressor protein promote tumorigenesis. P53 protein levels are tightly regulated through the Ubiquitin Proteasome System (UPS). Several E3 ligases were shown to regulate p53 stability, including MDM2. Here we report that the ubiquitin E3 ligase XIAP (X-linked Inhibitors of Apoptosis) is a direct ligase for p53 and describe a novel approach for modulating the levels of p53 by targeting the XIAP pathway. Using in vivo (live-cell) and in vitro (cell-free reconstituted system) ubiquitylation assays, we show that the XIAP-antagonist ARTS regulates the levels of p53 by promoting the degradation of XIAP. XIAP directly binds and ubiquitylates p53. In apoptotic cells, ARTS inhibits the ubiquitylation of p53 by antagonizing XIAP. XIAP knockout MEFs express higher p53 protein levels compared to wild-type MEFs. Computational screen for small molecules with high affinity to the ARTS-binding site within XIAP identified a small-molecule ARTS-mimetic, B3. This compound stimulates apoptosis in a wide range of cancer cells but not normal PBMC (Peripheral Blood Mononuclear Cells). Like ARTS, the B3 compound binds to XIAP and promotes its degradation via the UPS. B3 binding to XIAP stabilizes p53 by disrupting its interaction with XIAP. These results reveal a novel mechanism by which ARTS and p53 regulate each other through an amplification loop to promote apoptosis. Finally, these data suggest that targeting the ARTS binding pocket in XIAP can be used to increase p53 levels as a new strategy for developing anti-cancer therapeutics.
Collapse
Affiliation(s)
- Ruqaia Abbas
- Cell Death and Cancer Research Laboratory, Department of Human Biology and Medical Sciences, University of Haifa, 31905, Haifa, Israel
| | - Oliver Hartmann
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Munich, Germany
| | - Dorin Theodora Asiss
- Cell Death and Cancer Research Laboratory, Department of Human Biology and Medical Sciences, University of Haifa, 31905, Haifa, Israel
| | - Rabab Abbas
- Cell Death and Cancer Research Laboratory, Department of Human Biology and Medical Sciences, University of Haifa, 31905, Haifa, Israel
| | - Julia Kagan
- Cell Death and Cancer Research Laboratory, Department of Human Biology and Medical Sciences, University of Haifa, 31905, Haifa, Israel
| | | | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Markus Diefenbacher
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Munich, Germany
- Ludwig-Maximilian-Universität München (LMU), Munich, Germany
- German Cancer Consortium (DKTK), LMU, Munich, Germany
| | - Amir Orian
- Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, 3109610, Haifa, Israel
| | - Sarit Larisch
- Cell Death and Cancer Research Laboratory, Department of Human Biology and Medical Sciences, University of Haifa, 31905, Haifa, Israel.
| |
Collapse
|
21
|
Masum AA, Aoki S, Rahman MM, Hisamatsu Y. Chemical synthetic approaches to mimic the TRAIL: promising cancer therapeutics. RSC Med Chem 2024; 15:d4md00183d. [PMID: 39246747 PMCID: PMC11376135 DOI: 10.1039/d4md00183d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024] Open
Abstract
Apoptosis is programmed cell death that eliminates undesired cells to maintain homeostasis in metazoan. Aberration of this process may lead to cancer genesis. The tumor necrosis factor related apoptosis inducing ligand (TRAIL) induces apoptosis in cancer cells after ligation with death receptors (DR4/DR5) while sparing most normal cells. Therefore, strategies to induce apoptosis in cancer cells by mimicking the TRAIL emerge as a promising therapeutic tool. Hence, approaches are taken to develop TRAIL/DR-based cancer therapeutics. The recombinant soluble TRAIL (rhTRAIL) and death receptor agonistic antibodies were produced and tested pre-clinically and clinically. Pre-clinical and clinical trial data demonstrate that these therapeutics are safe and relatively well tolerated. But some of these therapeutics failed to exert adequate efficacy in clinical settings. Besides these biotechnologically derived therapeutics, a few chemically synthesized therapeutics are reported. Some of these therapeutics exert considerable efficacy in vitro and in vivo. In this review, we will discuss chemically synthesized TRAIL/DR-based therapeutics, their chemical and biological behaviour, design concepts and strategies that may contribute to further improvement of TRAIL/DR-based therapeutics.
Collapse
Affiliation(s)
- Abdullah-Al Masum
- Department of Pharmaceutical Sciences, North South University Bashundhara R/A Dhaka-1229 Bangladesh
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science 2641 Yamazaki, Noda-shi Chiba 278-8510 Japan
- Research Institute for Science and Technology, Tokyo University of Science 2641 Yamazaki, Noda-shi Chiba 278-8510 Japan
- Research Institute for Biomedical Sciences, Tokyo University of Science 2641 Yamazaki, Noda-shi Chiba 278-8510 Japan
| | - Md Mahbubur Rahman
- Department of Pharmaceutical Sciences, North South University Bashundhara R/A Dhaka-1229 Bangladesh
| | - Yosuke Hisamatsu
- Graduate School of Pharmaceutical Sciences, Nagoya City University Mizuho-Ku Nagoya 467-8603 Japan
| |
Collapse
|
22
|
Zhao F, Chen DY, Jing B, Jiang Y, Liu LY, Song H. Effect of Flammulina velutipes polysaccharide on mitochondrial apoptosis in lung adenocarcinoma A549 cells. Sci Rep 2024; 14:16102. [PMID: 38997305 PMCID: PMC11245558 DOI: 10.1038/s41598-024-57211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/15/2024] [Indexed: 07/14/2024] Open
Abstract
FVP is a polysaccharide extracted from Flammulina velutipes with immunomodulatory, anti-tumor, and anti-oxidation activities. In this study, we obtained the crude polysaccharide FVP-C from the water extract of Flammulina velutipes, and its main component FVP-S1 was obtained after further purification. Upon structural identification, we found that FVP-C is a neutral polysaccharide, and FVP-S1 was an acidic golden mushroom polysaccharide, consisting of glucuronic acid, xylose, and glucose. Lung adenocarcinoma (A549) was treated with FVP-S1 and FVP-C, respectively, and we found that FVP-S1 and FVP-C inhibited the proliferation and migration ability of tumor cells, as well as changed the morphology of the tumor cells and caused chromosome sheteropythosis, among which FVP-S1 had the best inhibition effect. The results of flow cytometry experiments and mitochondrial membrane potential, RT-qPCR, and Western blot showed that FVP-S1 and FVP-C were able to decrease the mitochondrial membrane potential, increase the expression level of apoptotic proteins Casepase-3 and Casepase-9 proteins, and at the same time, increase the ratio of Bax and Bcl-2, which promoted apoptosis of tumor cells. In conclusion, these data indicated that FVP-S1 and FVP-C were able to induce apoptosis in A549 cells through the mitochondrial pathway, which played an important role in inhibiting tumor cells.
Collapse
Affiliation(s)
- Fei Zhao
- School of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, People's Republic of China
| | - Dan-Yang Chen
- School of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, People's Republic of China
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130112, Jilin, People's Republic of China
| | - Bo Jing
- School of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, People's Republic of China
| | - Yu Jiang
- School of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, People's Republic of China
| | - Lan-Yue Liu
- School of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, People's Republic of China
| | - Hui Song
- School of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, People's Republic of China.
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Changchun, 130118, People's Republic of China.
| |
Collapse
|
23
|
Wynne C, Elmes RBP. Utilising a 1,8-naphthalimide probe for the ratiometric fluorescent visualisation of caspase-3. Front Chem 2024; 12:1418378. [PMID: 39036660 PMCID: PMC11257929 DOI: 10.3389/fchem.2024.1418378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/03/2024] [Indexed: 07/23/2024] Open
Abstract
The development of selective and sensitive probes for monitoring caspase-3 activity-a critical enzyme involved in apoptosis-remains an area of significant interest in biomedical research. Herein, we report the synthesis and characterisation of a novel ratiometric fluorescent probe, Ac-DEVD-PABC-Naph, designed to detect caspase-3 activity. The probe utilises a 1,8-naphthalimide fluorophore covalently linked to a peptide sequence via a self-immolative p-aminobenzyl alcohol (PABA) linker. Upon enzymatic cleavage by caspase-3, the probe undergoes spontaneous degradation, releasing the free naphthalimide fluorophore, resulting in a ratiometric change in fluorescence emission. Spectroscopic studies revealed a time-dependent ratiometric fluorescent response, demonstrating the probe's ability to visualise caspase-3 activity with high sensitivity. Enzyme kinetics such as K m (Michaelis constant), k cat (turnover number), and LOD (Limit of Detection) were obtained, suggesting that the probe possesses comparable kinetic data to other probes in literature, but with the added benefits of ratiometric detection. Selectivity studies also demonstrated the probe's specificity for caspase-3 over other endogenous species and enzymes. Ac-DEVD-PABC-Naph may be a promising tool for the quantitative detection and fluorescent visualisation of caspase-3 activity in biological systems, with potential applications in apoptosis research and drug development.
Collapse
Affiliation(s)
- Conor Wynne
- Department of Chemistry, Maynooth University, National University of Ireland, Maynooth, Ireland
- Synthesis and Solid-State Pharmaceutical Centre (SSPC), Bernal Institute, University of Limerick, Castletroy, Ireland
| | - Robert B. P. Elmes
- Department of Chemistry, Maynooth University, National University of Ireland, Maynooth, Ireland
- Synthesis and Solid-State Pharmaceutical Centre (SSPC), Bernal Institute, University of Limerick, Castletroy, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, Maynooth, Ireland
| |
Collapse
|
24
|
Chu WX, Ding C, Du ZH, Wei P, Wang YX, Ge XJ, Yu GY. SHED-exos promote saliva secretion by suppressing p-ERK1/2-mediated apoptosis in glandular cells. Oral Dis 2024; 30:3066-3080. [PMID: 37849447 DOI: 10.1111/odi.14776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
OBJECTIVES Confirm that stem cells from human exfoliated deciduous teeth-derived exosomes (SHED-exos) can limit inflammation-triggered epithelial cell apoptosis and explore the molecular mechanism. METHODS SHED-exos were injected into the submandibular glands (SMGs) of non-obese diabetic (NOD) mice, an animal model of Sjögren's syndrome (SS). Cell death was evaluated by western blotting and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling staining. RESULTS SHED-exos treatment promoted the saliva flow rates of NOD mice, accompanied by decreased cleaved caspase-3 levels and apoptotic cell numbers in SMGs. SHED-exos inhibited autophagy, pyroptosis, NETosis, ferroptosis, necroptosis and oxeiptosis marker expression in SS-damaged glands. Mechanistically, Kyoto Encyclopedia of Genes and Genomes analysis of exosomal miRNAs suggested that the rat sarcoma virus (RAS)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway might play an important role. In vivo, the expression of Kirsten RAS, Harvey RAS, MEK1/2 and p-ERK1/2 was upregulated in SMGs, and this change was blocked by SHED-exos treatment. In vitro, SHED-exos suppressed p-ERK1/2 activation and increased cleaved caspase-3 and apoptotic cell numbers, which were induced by IFN-γ. CONCLUSION SHED-exos suppress epithelial cell death, which is responsible for promoting salivary secretion. SHED-exos inhibited inflammation-triggered epithelial cell apoptosis by suppressing p-ERK1/2 activation, which is involved in these effects.
Collapse
Affiliation(s)
- Wei-Xia Chu
- Department of Periodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, P.R. China
- Center Laboratory, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Chong Ding
- Center Laboratory, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Zhi-Hao Du
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Pan Wei
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P.R. China
| | - Yi-Xiang Wang
- Center Laboratory, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Xue-Jun Ge
- Department of Periodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, P.R. China
| | - Guang-Yan Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| |
Collapse
|
25
|
Kwon SH, Lee J, Yoo J, Jung Y. Artificial keloid skin models: understanding the pathophysiological mechanisms and application in therapeutic studies. Biomater Sci 2024; 12:3321-3334. [PMID: 38812375 DOI: 10.1039/d4bm00005f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Keloid is a type of scar formed by the overexpression of extracellular matrix substances from fibroblasts following inflammation after trauma. The existing keloid treatment methods include drug injection, surgical intervention, light exposure, cryotherapy, etc. However, these methods have limitations such as recurrence, low treatment efficacy, and side effects. Consequently, studies are being conducted on the treatment of keloids from the perspective of inflammatory mechanisms. In this study, keloid models are created to understand inflammatory mechanisms and explore treatment methods to address them. While previous studies have used animal models with gene mutations, chemical treatments, and keloid tissue transplantation, there are limitations in fully reproducing the characteristics of keloids unique to humans, and ethical issues related to animal welfare pose additional challenges. Consequently, studies are underway to create in vitro artificial skin models to simulate keloid disease and apply them to the development of treatments for skin diseases. In particular, herein, scaffold technologies that implement three-dimensional (3D) full-thickness keloid models are introduced to enhance mechanical properties as well as biological properties of tissues, such as cell proliferation, differentiation, and cellular interactions. It is anticipated that applying these technologies to the production of artificial skin for keloid simulation could contribute to the development of inflammatory keloid treatment techniques in the future.
Collapse
Affiliation(s)
- Soo Hyun Kwon
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Jongmin Lee
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Republic of Korea
| | - Jin Yoo
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Youngmee Jung
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
- School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
26
|
Glaesser D, Iwig M. Increased molar ratio of free fatty acids to albumin in blood as cause and early biomarker for the development of cataracts and Alzheimer's disease. Exp Eye Res 2024; 243:109888. [PMID: 38583754 DOI: 10.1016/j.exer.2024.109888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Cataracts and Alzheimer's disease (AD) are closely linked and are associated with aging and with systemic diseases that increase the molar ratio of free fatty acids to albumin (mFAR) in the blood. From the results of our earlier studies on the development of senile cataracts and from results recently published in the literature on the pathogenesis of Alzheimer's disease, we suggest that there is a common lipotoxic cascade for both diseases, explaining the strong connection between aging, an elevated mFAR in the blood, cataract formation, and AD. Long-chain free fatty acids (FFA) are transported in the blood as FFA/albumin complexes. In young people, vascular albumin barriers in the eyes and brain, very similar in their structure and effect, reduce the FFA/albumin complex concentration from around 650 μmol/l in the blood to 1-3 μmol/l in the aqueous humour of the eyes as well as in the cerebrospinal fluid of the brain. At such low concentrations the fatty acid uptake of the target cells - lens epithelial and brain cells - rises with increasing FFA/albumin complex concentrations, especially when the fatty acid load of albumin molecules is mFAR>1. At higher albumin concentrations, for instance in blood plasma or the interstitial tissue spaces, the fatty acid uptake of the target cells becomes increasingly independent of the FFA/albumin complex concentration and is mainly a function of the mFAR (Richieri et al., 1993). In the blood plasma of young people, the mFAR is normally below 1.0. In people over 40 years old, aging increases the mFAR by decreasing the plasma concentration of albumin and enhancing the plasma concentrations of FFA. The increase in the mFAR in association with C6-unsaturated FFA are risk factors for the vascular albumin barriers (Hennig et al., 1984). Damage to the vascular albumin barrier in the eyes and brain increases the concentration of FFA/albumin complex in the aqueous humour as well as in the cerebrospinal fluid, leading to mitochondrial dysfunction and the death of lens epithelial and brain cells, the development of cataracts, and AD. An age-dependent increase in the concentration of FFA/albumin complex has been found in the aqueous humour of 177 cataract patients, correlating with the mitochondria-mediated apoptotic death of lens epithelial cells, lens opacification and cataracts (Iwig et al., 2004). Mitochondrial dysfunction is also an early crucial event in Alzheimer's pathology, closely connected with the generation of amyloid beta peptides (Leuner et al., 2012). Very recently, amyloid beta production has also been confirmed in the lenses of Alzheimer's patients, causing cataracts (Moncaster et al., 2022). In view of this, we propose that there is a common lipotoxic cascade for senile cataract formation and senile AD, initiated by aging and/or systemic diseases, leading to an mFAR>1 in the blood.
Collapse
Affiliation(s)
- Dietmar Glaesser
- Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, D-06097, Halle, Germany.
| | - Martin Iwig
- Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, D-06097, Halle, Germany
| |
Collapse
|
27
|
Oubella A, Alossaimi MA, Riadi Y, Bhat MA, Bakheit AH, Taha ML, Auhmani A, Morjani H, Geesi MH, Ait Itto MY. Thiazolidinone-linked-1,2,3-triazoles with (R)-Carvone as new potential anticancer agents. Future Med Chem 2024; 16:1449-1464. [PMID: 39190475 DOI: 10.1080/17568919.2024.2351287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/25/2024] [Indexed: 08/28/2024] Open
Abstract
Aim: This study explores the cytotoxic and apoptotic effects of novel thiazolidinone-1,2,3-triazole hybrids on HT-1080, A-549, and MDA-MB-231 cancer cell lines.Methods & results: The synthesized compounds underwent comprehensive characterization (NMR and HRMS) to confirm their structures and purity. Subsequent anticancer activity screening across diverse cancer cell lines revealed promising antitumor potential notably, compounds 6f and 6g. Mechanistic investigations unveiled that compound 6f triggers apoptosis through the caspase-3/7 pathway. In terms of in silico studies, the compound 6f was identified as a potent inhibitor of caspase-3 and caspase-7.Conclusion: The present study underscores the therapeutic potential of thiazolidinone-1,2,3-triazole hybrids against certain cancer cells. These findings highlight a promising avenue for the development of cancer treatment strategies utilizing these (R)-Carvone-based derivatives.
Collapse
Affiliation(s)
- Ali Oubella
- Laboratory of Organic & Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Iboun Zohr University, Agadir, Morocco
| | - Manal A Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmed Hassan Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed Labd Taha
- Laboratory of Organic & Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Iboun Zohr University, Agadir, Morocco
| | - Aziz Auhmani
- Laboratory of Organic Synthesis & Physico-Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Université Cadi Ayyad, BP PO Box 2390, Marrakech, 40001, Morocco
| | - Hamid Morjani
- BioSpectroscopie Translationnelle, BioSpecT-EA7506, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51 Rue Cognacq Jay, Reims Cedex, 51096, France
| | - Mohammed H Geesi
- Department of Chemistry, College of Science & Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Moulay Youssef Ait Itto
- Laboratory of Organic Synthesis & Physico-Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Université Cadi Ayyad, BP PO Box 2390, Marrakech, 40001, Morocco
| |
Collapse
|
28
|
Wang M, Wang Z, Li Z, Qu Y, Zhao J, Wang L, Zhou X, Xu Z, Zhang D, Jiang P, Fan B, Liu Y. Targeting programmed cell death in inflammatory bowel disease through natural products: New insights from molecular mechanisms to targeted therapies. Phytother Res 2024. [PMID: 38706097 DOI: 10.1002/ptr.8216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/14/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disorder primarily characterized by intestinal inflammation and recurrent ulceration, leading to a compromised intestinal barrier and inflammatory infiltration. This disorder's pathogenesis is mainly attributed to extensive damage or death of intestinal epithelial cells, along with abnormal activation or impaired death regulation of immune cells and the release of various inflammatory factors, which contribute to the inflammatory environment in the intestines. Thus, maintaining intestinal homeostasis hinges on balancing the survival and functionality of various cell types. Programmed cell death (PCD) pathways, including apoptosis, pyroptosis, autophagy, ferroptosis, necroptosis, and neutrophil extracellular traps, are integral in the pathogenesis of IBD by mediating the death of intestinal epithelial and immune cells. Natural products derived from plants, fruits, and vegetables have shown potential in regulating PCD, offering preventive and therapeutic avenues for IBD. This article reviews the role of natural products in IBD treatment by focusing on targeting PCD pathways, opening new avenues for clinical IBD management.
Collapse
Affiliation(s)
- Mengjie Wang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhiyuan Wang
- People's Hospital of Zhengzhou, Zhengzhou, China
| | - Zhichao Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Qu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiting Zhao
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Wang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinpeng Zhou
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ziqi Xu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Zhang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Jiang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Fan
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Liu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
29
|
Zheng J, Liu F, Tuo J, Chen S, Su J, Ou X, Ding M, Chen H, Shi B, Li Y, Chen X, Wang C, Su C. Multidimensional Transcriptomics Unveils RNF34 as a Prognostic Biomarker and Potential Indicator of Chemotherapy Sensitivity in Wilms' Tumour. Mol Biotechnol 2024; 66:1132-1143. [PMID: 38195816 DOI: 10.1007/s12033-023-01008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
Nephroblastoma, colloquially known as Wilms' tumour (WT), is the predominant malignant renal neoplasm arising in the paediatric population. Modern therapeutic approaches for WT incorporate a synergistic combination of surgical intervention, radiotherapy, and chemotherapy, which substantially ameliorate the overall patient survival rate. Despite this, the optimal sequence of chemotherapy and surgical intervention remains a matter of contention, with each strategy presenting its own strengths and weaknesses that could influence clinical decision-making. To make some headway on this clinical dilemma, we deployed a multidimensional transcriptomics integration approach by analysing bulk RNA sequencing data with 136 samples, as well as single-nucleus RNA sequencing (snRNA-seq) and paired spatial transcriptome sequencing (stRNA) data from 32 WT specimens. Our findings identified a distinct elevation of RNF34 expression within WT samples, which correlated with unfavourable prognostic outcomes. Leveraging the Genomics of Drug Sensitivity in Cancer (GDSC), we simultaneously revealed that patients with high expression of RNF34 have higher sensitivity to commonly used chemotherapy drugs for WT. Furthermore, our analysis of snRNA and stRNA data unveiled a reduced proportion of RNF34 expression in neoplastic cells after chemotherapy. Moreover, stRNA data delineated a significant association between a higher proportion of RNF34 expression in cancer cells and adverse features such as anaplastic histology and tumour recurrence. Intriguingly, we also observed a close association between elevated RNF34 expression and a characteristic exhausted tumour immune microenvironment. Collectively, our findings underscore the pivotal role of RNF34 in the prognostic prediction potential and treatment sensitivity of WT. This comprehensive analysis can potentially inform and refine clinical decision-making for WT patients and guide future studies towards the development of optimized, rational therapeutic strategies.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Fengling Liu
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinwei Tuo
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Siyu Chen
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jinxia Su
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiuyi Ou
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Min Ding
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Haoran Chen
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Bo Shi
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yong Li
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xun Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| | - Congjun Wang
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| | - Cheng Su
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
30
|
Chen Z, Xia X, Yao M, Yang Y, Ao X, Zhang Z, Guo L, Xu X. The dual role of mesenchymal stem cells in apoptosis regulation. Cell Death Dis 2024; 15:250. [PMID: 38582754 PMCID: PMC10998921 DOI: 10.1038/s41419-024-06620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Mesenchymal stem cells (MSCs) are widely distributed pluripotent stem cells with powerful immunomodulatory capacity. MSCs transplantation therapy (MSCT) is widely used in the fields of tissue regeneration and repair, and treatment of inflammatory diseases. Apoptosis is an important way for tissues to maintain cell renewal, but it also plays an important role in various diseases. And many studies have shown that MSCs improves the diseases by regulating cell apoptosis. The regulation of MSCs on apoptosis is double-sided. On the one hand, MSCs significantly inhibit the apoptosis of diseased cells. On the other hand, MSCs also promote the apoptosis of tumor cells and excessive immune cells. Furthermore, MSCs regulate apoptosis through multiple molecules and pathways, including three classical apoptotic signaling pathways and other pathways. In this review, we summarize the current evidence on the regulation of apoptosis by MSCs.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Department of General Surgery, The 906th Hospital of PLA, Ningbo, 315040, Zhejiang, China
| | - Xuewei Xia
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400042, China
| | - Mengwei Yao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yi Yang
- Department of Rheumatology and Immunology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiang Ao
- Department of orthopedics, The 953th Hospital of PLA, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse, 857000, China
| | - Zhaoqi Zhang
- Department of Neurosurgery, The 906th Hospital of PLA, Ningbo, 315040, Zhejiang, China
| | - Li Guo
- Endocrinology Department, First Affiliated Hospital, Army Medical University, Chongqing, 400038, China.
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
31
|
Dar NJ, John U, Bano N, Khan S, Bhat SA. Oxytosis/Ferroptosis in Neurodegeneration: the Underlying Role of Master Regulator Glutathione Peroxidase 4 (GPX4). Mol Neurobiol 2024; 61:1507-1526. [PMID: 37725216 DOI: 10.1007/s12035-023-03646-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Oxytosis/ferroptosis is an iron-dependent oxidative form of cell death triggered by lethal accumulation of phospholipid hydroperoxides (PLOOHs) in membranes. Failure of the intricate PLOOH repair system is a principle cause of ferroptotic cell death. Glutathione peroxidase 4 (GPX4) is distinctly vital for converting PLOOHs in membranes to non-toxic alcohols. As such, GPX4 is known as the master regulator of oxytosis/ferroptosis. Ferroptosis has been implicated in a number of disorders such as neurodegenerative diseases (amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), etc.), ischemia/reperfusion injury, and kidney degeneration. Reduced function of GPX4 is frequently observed in degenerative disorders. In this study, we examine how diminished GPX4 function may be a critical event in triggering oxytosis/ferroptosis to perpetuate or initiate the neurodegenerative diseases and assess the possible therapeutic importance of oxytosis/ferroptosis in neurodegenerative disorders. These discoveries are important for advancing our understanding of neurodegenerative diseases because oxytosis/ferroptosis may provide a new target to slow the course of the disease.
Collapse
Affiliation(s)
- Nawab John Dar
- School of Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| | - Urmilla John
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India
- School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nargis Bano
- Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh, U.P, India
| | - Sameera Khan
- Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh, U.P, India
| | - Shahnawaz Ali Bhat
- Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh, U.P, India.
| |
Collapse
|
32
|
Li F, Liu J, Liu C, Liu Z, Peng X, Huang Y, Chen X, Sun X, Wang S, Chen W, Xiong D, Diao X, Wang S, Zhuang J, Wu C, Wu D. Cyclic peptides discriminate BCL-2 and its clinical mutants from BCL-X L by engaging a single-residue discrepancy. Nat Commun 2024; 15:1476. [PMID: 38368459 PMCID: PMC10874388 DOI: 10.1038/s41467-024-45848-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/06/2024] [Indexed: 02/19/2024] Open
Abstract
Overexpressed pro-survival B-cell lymphoma-2 (BCL-2) family proteins BCL-2 and BCL-XL can render tumor cells malignant. Leukemia drug venetoclax is currently the only approved selective BCL-2 inhibitor. However, its application has led to an emergence of resistant mutations, calling for drugs with an innovative mechanism of action. Herein we present cyclic peptides (CPs) with nanomolar-level binding affinities to BCL-2 or BCL-XL, and further reveal the structural and functional mechanisms of how these CPs target two proteins in a fashion that is remarkably different from traditional small-molecule inhibitors. In addition, these CPs can bind to the venetoclax-resistant clinical BCL-2 mutants with similar affinities as to the wild-type protein. Furthermore, we identify a single-residue discrepancy between BCL-2 D111 and BCL-XL A104 as a molecular "switch" that can differently engage CPs. Our study suggests that CPs may inhibit BCL-2 or BCL-XL by delicately modulating protein-protein interactions, potentially benefiting the development of next-generation therapeutics.
Collapse
Affiliation(s)
- Fengwei Li
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Junjie Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chao Liu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Ziyan Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiangda Peng
- Shanghai Zelixir Biotech Company Ltd., Shanghai, 200030, China
| | - Yinyue Huang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiaoyu Chen
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiangnan Sun
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Sen Wang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Wei Chen
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, 200127, China
| | - Dan Xiong
- Xiamen Lifeint Technology Company Ltd., Xiamen, 361005, China
| | - Xiaotong Diao
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd., Shanghai, 200030, China
| | - Jingjing Zhuang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- Marine College, Shandong University, Weihai, 264209, China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Dalei Wu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
33
|
Lei Z, Yu J, Wu Y, Shen J, Lin S, Xue W, Mao C, Tang R, Sun H, Qi X, Wang X, Xu L, Wei C, Wang X, Chen H, Hao P, Yin W, Zhu J, Li Y, Wu Y, Liu S, Liang H, Chen X, Su C, Zhou S. CD1d protects against hepatocyte apoptosis in non-alcoholic steatohepatitis. J Hepatol 2024; 80:194-208. [PMID: 38438948 DOI: 10.1016/j.jhep.2023.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 03/06/2024]
Abstract
BACKGROUND & AIMS Hepatocyte apoptosis, a well-defined form of cell death in non-alcoholic steatohepatitis (NASH), is considered the primary cause of liver inflammation and fibrosis. However, the mechanisms underlying the regulation of hepatocyte apoptosis in NASH remain largely unclear. We explored the anti-apoptotic effect of hepatocyte CD1d in NASH. METHODS Hepatocyte CD1d expression was analyzed in patients with NASH and mouse models. Hepatocyte-specific gene overexpression or knockdown and anti-CD1d crosslinking were used to investigate the anti-apoptotic effect of hepatocyte CD1d on lipotoxicity-, Fas-, and concanavalin (ConA)-mediated liver injuries. A high-fat diet, a methionine-choline-deficient diet, a Fas agonist, and ConA were used to induce lipotoxic and/or apoptotic liver injuries. Palmitic acid was used to mimic lipotoxicity-induced apoptosis in vitro. RESULTS We identified a dramatic decrease in CD1d expression in hepatocytes of patients with NASH and mouse models. Hepatocyte-specific CD1d overexpression and knockdown experiments collectively demonstrated that hepatocyte CD1d protected against hepatocyte apoptosis and alleviated hepatic inflammation and injuries in NASH mice. Furthermore, decreased JAK2-STAT3 signaling was observed in NASH patient livers. Mechanistically, anti-CD1d crosslinking on hepatocytes induced tyrosine phosphorylation of the CD1d cytoplasmic tail, leading to the recruitment and phosphorylation of JAK2. Phosphorylated JAK2 activated STAT3 and subsequently reduced apoptosis in hepatocytes, which was associated with an increase in anti-apoptotic effectors (Bcl-xL and Mcl-1) and a decrease in pro-apoptotic effectors (cleaved-caspase 3/7). Moreover, anti-CD1d crosslinking effectively protected against Fas- or ConA-mediated hepatocyte apoptosis and liver injury in mice. CONCLUSIONS Our study uncovered a previously unrecognized anti-apoptotic CD1d-JAK2-STAT3 axis in hepatocytes that conferred hepatoprotection and highlighted the potential of hepatocyte CD1d-directed therapy for liver injury and fibrosis in NASH, as well as in other liver diseases associated with hepatocyte apoptosis. IMPACT AND IMPLICATIONS Excessive and/or sustained hepatocyte apoptosis is critical in driving liver inflammation and injury. The mechanisms underlying the regulation of hepatocyte apoptosis in non-alcoholic steatohepatitis (NASH) remain largely unclear. Here, we found that CD1d expression in hepatocytes substantially decreases and negatively correlates with the severity of liver injury in patients with NASH. We further revealed a previously unrecognized anti-apoptotic CD1d-JAK2-STAT3 signaling axis in hepatocytes, which confers significant protection against liver injury in NASH and acute liver diseases. Thus, hepatocyte CD1d-targeted therapy could be a promising strategy to manipulate liver injury in both NASH and other hepatocyte apoptosis-related liver diseases.
Collapse
Affiliation(s)
- Zhigang Lei
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaojiao Yu
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Wu
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junyao Shen
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shibo Lin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weijie Xue
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenxu Mao
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Tang
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haoran Sun
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Qi
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaohong Wang
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Xu
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuan Wei
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaowei Wang
- Department of Blood Transfusion, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongbing Chen
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Hao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wen Yin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jifeng Zhu
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yalin Li
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shouguo Liu
- Center for Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Liang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaojun Chen
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Chuan Su
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Sha Zhou
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
34
|
Umesh SG, Malaiappan S. Caspase-3 Levels Alter With Non-surgical Periodontal Therapy in Patients With Periodontitis. Cureus 2024; 16:e54119. [PMID: 38487123 PMCID: PMC10939044 DOI: 10.7759/cureus.54119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
Background This study aims to evaluate the levels of caspase-3 in the gingival crevicular fluid (GCF) of chronic periodontitis patients before and after phase I treatment and compare it with those of healthy controls. Methodology The study involved 40 participants who were divided into two groups. Group 1 consisted of 30 chronic periodontitis patients, and group 2 consisted of 10 healthy controls. GCF was collected at baseline for both groups and at three months for group 1. Periodontal parameters and caspase-3 levels were analyzed before and after non-surgical therapy. Results Caspase-3 levels were higher in patients with chronic periodontitis compared with healthy controls. However, comparing baseline and postoperative levels, there was a statistically significant reduction in periodontal parameters and caspase-3 levels, with 0.80 ± 0.03 at baseline and 0.44 ± 0.02 at three months after non-surgical periodontal therapy. Conclusions Caspase-3, being the key molecule in apoptosis, was found to be at lower concentrations in healthy gingiva and was increased in the presence of periodontal disease. However, with non-surgical periodontal therapy, caspase-3 levels decreased, proving that non-surgical periodontal therapy affects host immune mechanisms and reduces apoptosis, thereby preventing disease progression.
Collapse
Affiliation(s)
- Santo G Umesh
- Periodontics, SRM Dental College Ramapuram, Chennai, IND
| | - Sankari Malaiappan
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
35
|
Kim J, Yoo ID, Lim J, Moon JS. Pathological phenotypes of astrocytes in Alzheimer's disease. Exp Mol Med 2024; 56:95-99. [PMID: 38172603 PMCID: PMC10834520 DOI: 10.1038/s12276-023-01148-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 01/05/2024] Open
Abstract
Astrocytes are involved in various processes in the central nervous system (CNS). As the most abundant cell type in the CNS, astrocytes play an essential role in neuronal maintenance and support, synaptic activity, neuronal metabolism, and amyloid-beta (Aβ) clearance. Alzheimer's disease (AD) is a neurodegenerative disorder associated with cognitive and behavioral impairment. The transformation of astrocytes is involved in various neurodegenerative diseases, such as AD. Since astrocytes have functional diversity and morphological and physiological heterogeneity in the CNS, AD-related astrocytes might show various pathological phenotypes during AD. Astrocytes developing pathological phenotypes could contribute to AD progression. In this review, we provide an overview of the pathological phenotypes of astrocytes in the context of AD, highlighting recent findings in human and mouse AD.
Collapse
Affiliation(s)
- Junhyung Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, South Korea
| | - Ik Dong Yoo
- Department of Nuclear Medicine, Soonchunhyang University Hospital Cheonan, Cheonan, 31151, Chungcheongnam-do, South Korea
| | - Jaejoon Lim
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University, Yatap-dong 59, Seongnam, 13496, South Korea.
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, South Korea.
| |
Collapse
|
36
|
El-Sayed ASA, Shindia A, Ammar H, Seadawy MG, Khashana SA. Bioprocessing of Epothilone B from Aspergillus fumigatus under solid state fermentation: Antiproliferative activity, tubulin polymerization and cell cycle analysis. BMC Microbiol 2024; 24:43. [PMID: 38291363 PMCID: PMC10829302 DOI: 10.1186/s12866-024-03184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Epothilone derivatives have been recognized as one of the most powerful anticancer drugs towards solid tumors, for their unique affinity to bind with β-tubulin microtubule arrays, stabilizing their disassembly, causing cell death. Sornagium cellulosum is the main source for Epothilone, however, the fermentation bioprocessing of this myxobacteria is the main challenge for commercial production of Epothilone. The metabolic biosynthetic potency of epothilone by Aspergillus fumigatus, an endophyte of Catharanthus roseus, raises the hope for commercial epothilone production, for their fast growth rate and feasibility of manipulating their secondary metabolites. Thus, nutritional optimization of A. fumigatus for maximizing their epothilone productivity under solid state fermentation process is the objective. The highest yield of epothilone was obtained by growing A. fumigatus on orange peels under solid state fermentation (2.2 μg/g), bioprocessed by the Plackett-Burman design. The chemical structure of the extracted epothilone was resolved from the HPLC and LC-MS/MS analysis, with molecular mass 507.2 m/z and identical molecular fragmentation pattern of epothilone B of S. cellulosum. The purified A. fumigatus epothilone had a significant activity towards HepG2 (IC50 0.98 μg/ml), Pancl (IC50 1.5 μg/ml), MCF7 (IC50 3.7 μg/ml) and WI38 (IC50 4.6 μg/ml), as well as a strong anti-tubulin polymerization activity (IC50 0.52 μg/ml) compared to Paclitaxel (2.0 μg/ml). The effect of A. fumigatus epothilone on the immigration ability of HepG2 cells was assessed, as revealed from the wound closure of the monolayer cells that was estimated by ~ 63.7 and 72.5%, in response to the sample and doxorubicin, respectively, compared to negative control. From the Annexin V-PI flow cytometry results, a significant shift of the normal cells to the apoptosis was observed in response to A. fumigatus epothilone by ~ 20 folds compared to control cells, with the highest growth arrest of the HepG2 cells at the G0-G1 stage.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Ahmed Shindia
- Enzymology and Fungal Biotechnology lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Hala Ammar
- Enzymology and Fungal Biotechnology lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed G Seadawy
- Biological Prevention Department, Egyptian Ministry of Defense, Cairo, Egypt
| | - Samar A Khashana
- Enzymology and Fungal Biotechnology lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
37
|
Sever AIM, Alderson TR, Rennella E, Aramini JM, Liu ZH, Harkness RW, Kay LE. Activation of caspase-9 on the apoptosome as studied by methyl-TROSY NMR. Proc Natl Acad Sci U S A 2023; 120:e2310944120. [PMID: 38085782 PMCID: PMC10743466 DOI: 10.1073/pnas.2310944120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
Mitochondrial apoptotic signaling cascades lead to the formation of the apoptosome, a 1.1-MDa heptameric protein scaffold that recruits and activates the caspase-9 protease. Once activated, caspase-9 cleaves and activates downstream effector caspases, triggering the onset of cell death through caspase-mediated proteolysis of cellular proteins. Failure to activate caspase-9 enables the evasion of programmed cell death, which occurs in various forms of cancer. Despite the critical apoptotic function of caspase-9, the structural mechanism by which it is activated on the apoptosome has remained elusive. Here, we used a combination of methyl-transverse relaxation-optimized NMR spectroscopy, protein engineering, and biochemical assays to study the activation of caspase-9 bound to the apoptosome. In the absence of peptide substrate, we observed that both caspase-9 and its isolated protease domain (PD) only very weakly dimerize with dissociation constants in the millimolar range. Methyl-NMR spectra of isotope-labeled caspase-9, within the 1.3-MDa native apoptosome complex or an engineered 480-kDa apoptosome mimic, reveal that the caspase-9 PD remains monomeric after recruitment to the scaffold. Binding to the apoptosome, therefore, organizes caspase-9 PDs so that they can rapidly and extensively dimerize only when substrate is present, providing an important layer in the regulation of caspase-9 activation. Our work highlights the unique role of NMR spectroscopy to structurally characterize protein domains that are flexibly tethered to large scaffolds, even in cases where the molecular targets are in excess of 1 MDa, as in the present example.
Collapse
Affiliation(s)
- Alexander I. M. Sever
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
| | - T. Reid Alderson
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Enrico Rennella
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - James M. Aramini
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Zi Hao Liu
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Robert W. Harkness
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Lewis E. Kay
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| |
Collapse
|
38
|
Li S, Tao G. Perish in the Attempt: Regulated Cell Death in Regenerative and Nonregenerative Tissue. Antioxid Redox Signal 2023; 39:1053-1069. [PMID: 37218435 PMCID: PMC10715443 DOI: 10.1089/ars.2022.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
Significance: A cell plays its roles throughout its life span, even during its demise. Regulated cell death (RCD) is one of the key topics in modern biomedical studies. It is considered the main approach for removing stressed and/or damaged cells. Research during the past two decades revealed more roles of RCD, such as coordinating tissue development and driving compensatory proliferation during tissue repair. Recent Advances: Compensatory proliferation, initially identified in primitive organisms during the regeneration of lost tissue, is an evolutionarily conserved process that also functions in mammals. Among various types of RCD, apoptosis is considered the top candidate to induce compensatory proliferation in damaged tissue. Critical Issues: The roles of apoptosis in the recovery of nonregenerative tissue are still vague. The roles of other types of RCD, such as necroptosis and ferroptosis, have not been well characterized in the context of tissue regeneration. Future Directions: In this review article, we attempt to summarize the recent insights on the role of RCD in tissue repair. We focus on apoptosis, with expansion to ferroptosis and necroptosis, in primitive organisms with significant regenerative capacity as well as common mammalian research models. After gathering hints from regenerative tissue, in the second half of the review, we take a notoriously nonregenerative tissue, the myocardium, as an example to discuss the role of RCD in terminally differentiated quiescent cells. Antioxid. Redox Signal. 39, 1053-1069.
Collapse
Affiliation(s)
- Shuang Li
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ge Tao
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
39
|
Ruseva N, Atanasova M, Sbirkova-Dimitrova H, Marković A, Šmelcerović Ž, Šmelcerović A, Cherneva E, Bakalova A. Chloro-substituted pyridine squaramates as new DNase I inhibitors: Synthesis, structural characterization, in vitro evaluation and molecular docking studies. Chem Biol Interact 2023; 386:110772. [PMID: 37898285 DOI: 10.1016/j.cbi.2023.110772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023]
Abstract
Having continued our recent study on the synthesis and DNase I inhibition of several monosquaramides, two new chloro-substituted pyridine squaramates were synthesized and their structure was identified by X-ray. Their inhibitory properties towards deoxyribonuclease I (DNase I) and xanthine oxidase (XO) were evaluated in vitro. 3-(((6-Chloropyridin-3-yl)methyl)amino)-4-ethoxycyclobut-3-ene-1,2-dione (compound 3a) inhibited DNase I with an IC50 value of 43.82 ± 6.51 μM, thus standing out as one of the most potent small organic DNase I inhibitors tested to date. No cytotoxicity to human tumor cell lines (HL-60, MDA-MB-231 and MCF-7) was observed for the tested compounds. In order to investigate the drug-likeness of the squaramates, the ADME profile and pharmacokinetic properties were evaluated. Molecular docking was performed to reveal the binding mode of the studied compounds on DNase I.
Collapse
Affiliation(s)
- Nina Ruseva
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000, Sofia, Bulgaria
| | - Mariyana Atanasova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000, Sofia, Bulgaria
| | - Hristina Sbirkova-Dimitrova
- Institute of Mineralogy and Crystallography "Akad. Ivan Kostov", Bulgarian Academy of Sciences, Acad. G. Bonchev Bl. 107, 1113, Sofia, Bulgaria
| | - Ana Marković
- Department of Pharmacy, Faculty of Medicine, University of Niš, Bulevar Zorana Ðindića 81, 18000, Niš, Serbia
| | - Žaklina Šmelcerović
- Center for Biomedicinal Science, Faculty of Medicine, University of Niš, Bulevar Zorana Ðindića 81, 18000, Niš, Serbia
| | - Andrija Šmelcerović
- Department of Chemistry, Faculty of Medicine, University of Niš, Bulevar Zorana Ðindića 81, 18000, Niš, Serbia.
| | - Emiliya Cherneva
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000, Sofia, Bulgaria; Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Build. 9, 1113, Sofia, Bulgaria
| | - Adriana Bakalova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000, Sofia, Bulgaria.
| |
Collapse
|
40
|
Sun Y, Lian T, Huang Q, Chang Y, Li Y, Guo X, Kong W, Yang Y, Zhang K, Wang P, Wang X. Nanomedicine-mediated regulated cell death in cancer immunotherapy. J Control Release 2023; 364:174-194. [PMID: 37871752 DOI: 10.1016/j.jconrel.2023.10.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Immunotherapy has attracted widespread attention in cancer treatment and has achieved considerable success in the clinical treatment of some tumors, but it has a low response rate in most tumors. To achieve sufficient activation of the immune response, significant efforts using nanotechnology have been made to enhance cancer immune response. In recent years, the induction of various regulated cell death (RCD) has emerged as a potential antitumor immuno-strategy, including processes related to apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis. In particular, damage-associated molecular patterns (DAMPs) released from the damaged membrane of dying cells act as in situ adjuvants to trigger antigen-specific immune responses by the exposure of an increased antigenicity. Thus, RCD-based immunotherapy offers a new approach for enhancing cancer treatment efficacy. Furthermore, incorporation with multimodal auxiliary therapies in cell death-based immunotherapy can trigger stronger immune responses, resulting in more efficient therapeutic outcome. This review discusses different RCD modalities and summarizes recent nanotechnology-mediated RCDs in cancer immunotherapy.
Collapse
Affiliation(s)
- Yue Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China; The Xi'an key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Ting Lian
- Research Center for Prevention and Treatment of Respiratory Disease, School of Clinical Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Qichao Huang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yawei Chang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuan Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaoyu Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Weirong Kong
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yifang Yang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Kun Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
41
|
Leśniak M, Lipniarska J, Majka P, Lejman M, Zawitkowska J. Recent Updates in Venetoclax Combination Therapies in Pediatric Hematological Malignancies. Int J Mol Sci 2023; 24:16708. [PMID: 38069030 PMCID: PMC10706781 DOI: 10.3390/ijms242316708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Venetoclax is a strongly effective B-cell lymphoma-2 inhibitor (BCL-2) with an ability to selectively restore the apoptotic potential of cancerous cells. It has been proven that in combination with immunotherapy, targeted therapies, and lower-intensity therapies such as hypomethylating agents (HMAs) or low-dose cytarabine (LDAC), the drug can improve overall outcomes for adult patients with acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), and multiple myeloma (MM), amongst other hematological malignancies, but its benefit in pediatric hematology remains unclear. With a number of preclinical and clinical trials emerging, the newest findings suggest that in many cases of younger patients, venetoclax combination treatment can be well-tolerated, with a safety profile similar to that in adults, despite often leading to severe infections. Studies aim to determine the activity of BCL-2 inhibitor in the treatment of both primary and refractory acute leukemias in combination with standard and high-dose chemotherapy. Although more research is required to identify the optimal venetoclax-based regimen for the pediatric population and its long-term effects on patients' outcomes, it can become a potential therapeutic agent for pediatric oncology.
Collapse
Affiliation(s)
- Maria Leśniak
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Justyna Lipniarska
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Patrycja Majka
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
42
|
Duszyc K, von Pein JB, Ramnath D, Currin-Ross D, Verma S, Lim F, Sweet MJ, Schroder K, Yap AS. Apical extrusion prevents apoptosis from activating an acute inflammatory program in epithelia. Dev Cell 2023; 58:2235-2248.e6. [PMID: 37647898 DOI: 10.1016/j.devcel.2023.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/20/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023]
Abstract
Apoptosis is traditionally considered to be an immunologically silent form of cell death. Multiple mechanisms exist to ensure that apoptosis does not stimulate the immune system to cause inflammation or autoimmunity. Against this expectation, we now report that epithelia are programmed to provoke, rather than suppress, inflammation in response to apoptosis. We found that an acute inflammatory response led by neutrophils occurs in zebrafish and cell culture when apoptotic epithelial cells cannot be expelled from the monolayer by apical extrusion. This reflects an intrinsic circuit where ATP released from apoptotic cells stimulates epithelial cells in the immediate vicinity to produce interleukin-8 (IL-8). Apical extrusion therefore prevents inappropriate epithelial inflammation by physically eliminating apoptotic cells before they can activate this pro-inflammatory circuit. This carries the implication that epithelia may be predisposed to inflammation, elicited by sporadic or induced apoptosis, if apical extrusion is compromised.
Collapse
Affiliation(s)
- Kinga Duszyc
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
| | - Jessica B von Pein
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Divya Ramnath
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Denni Currin-Ross
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Suzie Verma
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Fayth Lim
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Matthew J Sweet
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Kate Schroder
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Alpha S Yap
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
43
|
Zhu ZH, Zhang D, Chen J, Zou HH, Ni Z, Yang Y, Hu Y, Liu R, Feng G, Tang BZ. A biocompatible pure organic porous nanocage for enhanced photodynamic therapy. MATERIALS HORIZONS 2023; 10:4868-4881. [PMID: 37772470 DOI: 10.1039/d3mh01263h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Porphyrin-based photosensitizers have been widely utilized in photodynamic therapy (PDT), but they suffer from deteriorating fluorescence and reactive oxygen species (ROS) due to their close π-π stacking. Herein, a biocompatible pure organic porphyrin nanocage (Py-Cage) with enhanced both type I and type II ROS generation is reported for PDT. The porphyrin skeleton within the Py-Cage is spatially separated by four biphenyls to avoid the close π-π stacking within the nanocage. The Py-Cage showed a large cavity and high porosity with a Brunauer-Emmett-Teller surface area of over 300 m2 g-1, facilitating a close contact between the Py-Cage and oxygen, as well as the fast release of ROS to the surrounding microenvironment. The Py-Cage shows superb ROS generation performance over its precursors and commercial ones such as Chlorin E6 and Rose Bengal. Intriguingly, the cationic π-conjugated Py-Cage also shows promising type I ROS (superoxide and hydroxyl radicals) generation that is more promising for hypoxic tumor treatment. Both in vitro cell and in vivo animal experiments further confirm the excellent antitumor activity of the Py-Cage. As compared to conventional metal coordination approaches to improve PDT efficacy of porphyrin derivatives, the pure organic porous Py-Cage demonstrates excellent biocompatibility, which is further verified in both mice and rats. This work of an organic porous nanocage shall provide a new paradigm for the design of novel, biocompatible and effective photosensitizers for PDT.
Collapse
Affiliation(s)
- Zhong-Hong Zhu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Di Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Jian Chen
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.
| | - Hua-Hong Zou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Zhiqiang Ni
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Yutong Yang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Yating Hu
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Ruiyuan Liu
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.
| | - Guangxue Feng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
44
|
Rajalingam A, Sekar K, Ganjiwale A. Identification of Potential Genes and Critical Pathways in Postoperative Recurrence of Crohn's Disease by Machine Learning And WGCNA Network Analysis. Curr Genomics 2023; 24:84-99. [PMID: 37994325 PMCID: PMC10662376 DOI: 10.2174/1389202924666230601122334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 11/24/2023] Open
Abstract
Background Crohn's disease (CD) is a chronic idiopathic inflammatory bowel disease affecting the entire gastrointestinal tract from the mouth to the anus. These patients often experience a period of symptomatic relapse and remission. A 20 - 30% symptomatic recurrence rate is reported in the first year after surgery, with a 10% increase each subsequent year. Thus, surgery is done only to relieve symptoms and not for the complete cure of the disease. The determinants and the genetic factors of this disease recurrence are also not well-defined. Therefore, enhanced diagnostic efficiency and prognostic outcome are critical for confronting CD recurrence. Methods We analysed ileal mucosa samples collected from neo-terminal ileum six months after surgery (M6=121 samples) from Crohn's disease dataset (GSE186582). The primary aim of this study is to identify the potential genes and critical pathways in post-operative recurrence of Crohn's disease. We combined the differential gene expression analysis with Recursive feature elimination (RFE), a machine learning approach to get five critical genes for the postoperative recurrence of Crohn's disease. The features (genes) selected by different methods were validated using five binary classifiers for recurrence and remission samples: Logistic Regression (LR), Decision tree classifier (DT), Support Vector Machine (SVM), Random Forest classifier (RF), and K-nearest neighbor (KNN) with 10-fold cross-validation. We also performed weighted gene co-expression network analysis (WGCNA) to select specific modules and feature genes associated with Crohn's disease postoperative recurrence, smoking, and biological sex. Combined with other biological interpretations, including Gene Ontology (GO) analysis, pathway enrichment, and protein-protein interaction (PPI) network analysis, our current study sheds light on the in-depth research of CD diagnosis and prognosis in postoperative recurrence. Results PLOD2, ZNF165, BOK, CX3CR1, and ARMCX4, are the important genes identified from the machine learning approach. These genes are reported to be involved in the viral protein interaction with cytokine and cytokine receptors, lysine degradation, and apoptosis. They are also linked with various cellular and molecular functions such as Peptidyl-lysine hydroxylation, Central nervous system maturation, G protein-coupled chemoattractant receptor activity, BCL-2 homology (BH) domain binding, Gliogenesis and negative regulation of mitochondrial depolarization. WGCNA identified a gene co-expression module that was primarily involved in mitochondrial translational elongation, mitochondrial translational termination, mitochondrial translation, mitochondrial respiratory chain complex, mRNA splicing via spliceosome pathways, etc.; Both the analysis result emphasizes that the mitochondrial depolarization pathway is linked with CD recurrence leading to oxidative stress in promoting inflammation in CD patients. Conclusion These key genes serve as the novel diagnostic biomarker for the postoperative recurrence of Crohn's disease. Thus, among other treatment options present until now, these biomarkers would provide success in both diagnosis and prognosis, aiming for a long-lasting remission to prevent further complications in CD.
Collapse
Affiliation(s)
- Aruna Rajalingam
- Department of Life Sciences, Bangalore University, Bangalore, Karnataka, 560056, India
| | - Kanagaraj Sekar
- Laboratory for Structural Biology and Bio-computing, Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Anjali Ganjiwale
- Department of Life Sciences, Bangalore University, Bangalore, Karnataka, 560056, India
| |
Collapse
|
45
|
Li Y, Wang Z, Dong Y, Yu X, Lu J, Jin N, Shang C, Li X, Fan S. A novel antibody-KSP inhibitor conjugate improves KSP inhibitor efficacy in vitro and in vivo. Biomaterials 2023; 301:122258. [PMID: 37523792 DOI: 10.1016/j.biomaterials.2023.122258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/15/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
Many clinical trials of kinesin spindle protein (KSP) inhibitors have failed due to issues such as high toxicity and a short circulation half-life in vivo. To address the limitations of current KSP inhibitors and thus broad its use in antitumor therapy, this study applied antibody-drug conjugate (ADC) technology to the KSP inhibitor SB-743921, which was coupled with the HER2-specific antibody trastuzumab using a cathepsin B-dependent valine-alanine (Val-Ala, VA) dipeptide-type linker to generate H2-921. Ex vivo and in vivo analyses of H2-921 showed an increased half-life of SB-743921 and prolonged contact time with tumor cells. Furthermore, H2-921 induced apoptosis and incomplete autophagy in HER2-positive cells. In the in vivo analyses, H2-921 had significant tumor-targeting properties, and tumor inhibition by H2-921 was greater than that by traditional KSP inhibitors but similar to that by the positive control drug T-DM1. In conclusion, this study describes a novel application of ADC technology that enhances the antitumor effects of a KSP inhibitor and thus may effectively address the poor clinical efficacy of KSP inhibitors.
Collapse
Affiliation(s)
- Yiquan Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Zihao Wang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuchao Dong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiaoyang Yu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jing Lu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ningyi Jin
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Chao Shang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Xiao Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Shiyong Fan
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| |
Collapse
|
46
|
Baker MR, Fan G, Arige V, Yule DI, Serysheva II. Understanding IP 3R channels: From structural underpinnings to ligand-dependent conformational landscape. Cell Calcium 2023; 114:102770. [PMID: 37393815 PMCID: PMC10529787 DOI: 10.1016/j.ceca.2023.102770] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ubiquitously expressed large-conductance Ca2+-permeable channels predominantly localized to the endoplasmic reticulum (ER) membranes of virtually all eukaryotic cell types. IP3Rs work as Ca2+ signaling hubs through which diverse extracellular stimuli and intracellular inputs are processed and then integrated to result in delivery of Ca2+ from the ER lumen to generate cytosolic Ca2+ signals with precise temporal and spatial properties. IP3R-mediated Ca2+ signals control a vast repertoire of cellular functions ranging from gene transcription and secretion to the more enigmatic brain activities such as learning and memory. IP3Rs open and release Ca2+ when they bind both IP3 and Ca2+, the primary channel agonists. Despite overwhelming evidence supporting functional interplay between IP3 and Ca2+ in activation and inhibition of IP3Rs, the mechanistic understanding of how IP3R channels convey their gating through the interplay of two primary agonists remains one of the major puzzles in the field. The last decade has seen much progress in the use of cryogenic electron microscopy to elucidate the molecular mechanisms of ligand binding, ion permeation, ion selectivity and gating of the IP3R channels. The results of these studies, summarized in this review, provide a prospective view of what the future holds in structural and functional research of IP3Rs.
Collapse
Affiliation(s)
- Mariah R Baker
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Guizhen Fan
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Vikas Arige
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - David I Yule
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
47
|
Morelli C, Chiodo C, Nocito MC, Cormace A, Catalano S, Sisci D, Sirianni R, Casaburi I, Andò S, Lanzino M. Androgens Modulate Bcl-2 Agonist of Cell Death (BAD) Expression and Function in Breast Cancer Cells. Int J Mol Sci 2023; 24:13464. [PMID: 37686282 PMCID: PMC10487823 DOI: 10.3390/ijms241713464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Androgen receptor (AR) expression in estrogen receptor-positive (ER+) breast cancer (BC) correlates with lower tumor grade and a better clinical outcome. Additionally, in normal mammary epithelium or ER+ BC preclinical models, androgens counteract basal/ER-dependent proliferation. Here, we report an additional mechanism, underlining the protective role exerted by AR. Specifically, the activation of intracellular AR upregulates the Bcl-2-family protein BAD, and TCGA database analyses show that in ER+ BC, BAD expression is associated with better disease-free survival. Ligand-activated AR influences its own and BAD cellular compartmentalization by enhancing levels in the nucleus, as well as in mitochondrial fractions. In both compartments, BAD exerts unconventional functions. In the nucleus, BAD and AR physically interact and, upon androgen stimulation, are recruited at the AP-1 and ARE sites within the cyclin D1 promoter region, contributing to explaining the anti-proliferative effect of androgens in BC cells. Androgens cause an enrichment in BAD and AR content in the mitochondria, correlated with a decrease in mitochondrial function. Thus, we have defined a novel mechanism by which androgens modulate BAD expression, its mitochondria localization, and nuclear content to force its ability to act as a cell cycle inhibitor, strengthening the protective role of androgen signaling in estrogen-responsive BCs.
Collapse
Affiliation(s)
- Catia Morelli
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata Di Rende, CS, Italy; (C.C.); (A.C.)
| | - Chiara Chiodo
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata Di Rende, CS, Italy; (C.C.); (A.C.)
| | - Marta Claudia Nocito
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
| | - Alessandro Cormace
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata Di Rende, CS, Italy; (C.C.); (A.C.)
| | - Stefania Catalano
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata Di Rende, CS, Italy; (C.C.); (A.C.)
| | - Diego Sisci
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata Di Rende, CS, Italy; (C.C.); (A.C.)
| | - Rosa Sirianni
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
| | - Ivan Casaburi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
| | - Sebastiano Andò
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata Di Rende, CS, Italy; (C.C.); (A.C.)
| | - Marilena Lanzino
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata Di Rende, CS, Italy; (C.C.); (A.C.)
| |
Collapse
|
48
|
Park W, Wei S, Kim BS, Kim B, Bae SJ, Chae YC, Ryu D, Ha KT. Diversity and complexity of cell death: a historical review. Exp Mol Med 2023; 55:1573-1594. [PMID: 37612413 PMCID: PMC10474147 DOI: 10.1038/s12276-023-01078-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/22/2023] [Accepted: 07/11/2023] [Indexed: 08/25/2023] Open
Abstract
Death is the inevitable fate of all living organisms, whether at the individual or cellular level. For a long time, cell death was believed to be an undesirable but unavoidable final outcome of nonfunctioning cells, as inflammation was inevitably triggered in response to damage. However, experimental evidence accumulated over the past few decades has revealed different types of cell death that are genetically programmed to eliminate unnecessary or severely damaged cells that may damage surrounding tissues. Several types of cell death, including apoptosis, necrosis, autophagic cell death, and lysosomal cell death, which are classified as programmed cell death, and pyroptosis, necroptosis, and NETosis, which are classified as inflammatory cell death, have been described over the years. Recently, several novel forms of cell death, namely, mitoptosis, paraptosis, immunogenic cell death, entosis, methuosis, parthanatos, ferroptosis, autosis, alkaliptosis, oxeiptosis, cuproptosis, and erebosis, have been discovered and advanced our understanding of cell death and its complexity. In this review, we provide a historical overview of the discovery and characterization of different forms of cell death and highlight their diversity and complexity. We also briefly discuss the regulatory mechanisms underlying each type of cell death and the implications of cell death in various physiological and pathological contexts. This review provides a comprehensive understanding of different mechanisms of cell death that can be leveraged to develop novel therapeutic strategies for various diseases.
Collapse
Affiliation(s)
- Wonyoung Park
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Shibo Wei
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Bo-Sung Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Bosung Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Sung-Jin Bae
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan, 49267, Republic of Korea
| | - Young Chan Chae
- Department of Biological Sciences, UNIST, Ulsan, 44919, Republic of Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
| |
Collapse
|
49
|
Eto K, Suemoto T. Identification of reactive oxygen species that induce spoptosis, a novel and distinctive mode of regulated cell death. Exp Cell Res 2023; 430:113713. [PMID: 37422059 DOI: 10.1016/j.yexcr.2023.113713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
Using some solutions activated by irradiation with non-thermal atmospheric pressure plasma (NTAPP), we had discovered that a new and distinctive mode of cell death, named spoptosis, exists in cells, the induction of which involves the action of reactive oxygen species (ROS). However, it was unknown what types of ROS and how they trigger the cell death. When cells were treated with a higher dose of Ascorbic acid (AA) generating O2- and H2O2 or Antimycin A (AM) generating O2-, cell death occurred along with cellular shrinkage, Pdcd4 disappearance, and vesicle formation. Only in cells treated with AA, genomic DNA was digested irregularly and membrane permeability increased aberrantly. On the other hand, cells treated with a higher dose of H2O2 displayed cell death and cellular shrinkage but not the other events, and those treated with a lower dose of H2O2 displayed cell death but not the other events. Strikingly, when cells underwent double treatment with AM and H2O2, the events, which had not been observed by their single treatment, became compensated. All the events were suppressed with an antioxidant, confirming that they were mediated by ROS. Thus, the mode of cell death induced by AA or combination of AM and H2O2 was consistent with that of cell death by NTAPP-activated solutions. These results suggested that O2- and H2O2 collaboratively trigger spoptotic cell death with the associated events, and that AA and combination of AM and H2O2 are functionally alternative in place of NTAPP-activated solutions.
Collapse
Affiliation(s)
- Ko Eto
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Japan.
| | - Takuya Suemoto
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Japan
| |
Collapse
|
50
|
Park JE, Lee J, Ok S, Byun S, Chang EJ, Yoon SE, Kim YJ, Kang MJ. Wg/Wnt1 and Erasp link ER stress to proapoptotic signaling in an autosomal dominant retinitis pigmentosa model. Exp Mol Med 2023; 55:1544-1555. [PMID: 37464094 PMCID: PMC10394004 DOI: 10.1038/s12276-023-01044-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 07/20/2023] Open
Abstract
The endoplasmic reticulum (ER) is a subcellular organelle essential for cellular homeostasis. Perturbation of ER functions due to various conditions can induce apoptosis. Chronic ER stress has been implicated in a wide range of diseases, including autosomal dominant retinitis pigmentosa (ADRP), which is characterized by age-dependent retinal degeneration caused by mutant rhodopsin alleles. However, the signaling pathways that mediate apoptosis in response to ER stress remain poorly understood. In this study, we performed an unbiased in vivo RNAi screen with a Drosophila ADRP model and found that Wg/Wnt1 mediated apoptosis. Subsequent transcriptome analysis revealed that ER stress-associated serine protease (Erasp), which has been predicted to show serine-type endopeptidase activity, was a downstream target of Wg/Wnt1 during ER stress. Furthermore, knocking down Erasp via RNAi suppressed apoptosis induced by mutant rhodopsin-1 (Rh-1P37H) toxicity, alleviating retinal degeneration in the Drosophila ADRP model. In contrast, overexpression of Erasp resulted in enhanced caspase activity in Drosophila S2 cells treated with apoptotic inducers and the stabilization of the initiator caspase Dronc (Death regulator Nedd2-like caspase) by stimulating DIAP1 (Drosophila inhibitor of apoptosis protein 1) degradation. These findings helped identify a novel cell death signaling pathway involved in retinal degeneration in an autosomal dominant retinitis pigmentosa model.
Collapse
Affiliation(s)
- Jung-Eun Park
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Jiyoun Lee
- School of Biopharmaceutical and Medical Sciences, Sungshin University, Seoul, 01133, Republic of Korea
| | - Soonhyuck Ok
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Seunghee Byun
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Eun-Ju Chang
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Sung-Eun Yoon
- Korea Drosophila Resource Center, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Min-Ji Kang
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|