1
|
Blanfuné A, Boudouresque CF, Verlaque M, Thibaut T. Severe decline of Gongolaria Barbata (Fucales) along most of the French Mediterranean coast. Sci Rep 2025; 15:5701. [PMID: 39962211 PMCID: PMC11832745 DOI: 10.1038/s41598-025-89958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
In the Mediterranean Sea, seaweed marine forests, one of the most important benthic assemblages for the coastal ecosystem functioning, are shaping the rocky reefs. Among the Fucales, Gongolaria barbata (syn. Cystoseira barbata) is a several years living species usually growing in very shallow, sheltered and well-lit marine reef habitats and in coastal lagoons. The long-term change in its distribution in relation to a variety of disturbances has been assessed along the French Mediterranean coast, including Corsica and brackish lagoons, thanks to historical data dating back to the 19th century. The current distribution was established through an extensive survey conducted by snorkelling, encompassing approximately 3 000 km of coastline. A GIS analysis indicates that Gongolaria barbata can currently be considered as regionally extinct in French Catalonia and Western Provence and functionally extinct in the French Riviera. In Languedoc, the species is extinct in the open sea and only present in certain brackish lagoons despite severe repeated anoxic crises (malaïgues) and competition with a rich exotic flora introduced from the NE Atlantic and NW Pacific, especially the invasive Sargassum muticum. In contrast, the populations of G. barbata have remained stable in Eastern Provence and Corsica. The main possible causes of decline are uprooting, overgrazing by herbivores, habitat destruction and competition with introduced seaweeds. The relevance of ecological restoration of G. barbata populations was assessed.
Collapse
Affiliation(s)
- Aurélie Blanfuné
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO (Mediterranean Institute of Oceanography), Marseille, France.
| | - Charles-François Boudouresque
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO (Mediterranean Institute of Oceanography), Marseille, France
| | - Marc Verlaque
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO (Mediterranean Institute of Oceanography), Marseille, France
| | - Thierry Thibaut
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO (Mediterranean Institute of Oceanography), Marseille, France
| |
Collapse
|
2
|
Galobart C, Sitjà C, de Caralt S, Santamaría J, Vergés A, Boada J, Cebrian E. Oxygen and pH fluxes in shallow bay habitats: Evaluating the effectiveness of a macroalgal forest restoration. JOURNAL OF PHYCOLOGY 2025; 61:20-33. [PMID: 39558537 PMCID: PMC11914953 DOI: 10.1111/jpy.13520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/03/2024] [Accepted: 10/13/2024] [Indexed: 11/20/2024]
Abstract
Marine macroalgae are important primary producers in coastal ecosystems. Within sheltered and shallow bays in the Mediterranean, various Fucalean macroalgae and seagrasses coexist, creating habitats of high ecological importance. These habitats have historically suffered from various disturbances, and on this basis, active restoration actions have been proposed as potential solutions for their recovery. Here, we assessed the restoration success of a 10-year restored macroalgal forest by evaluating the recovery in terms of oxygen and pH fluxes and comparing those data with those of a healthy marine forest and a degraded habitat counterpart. We estimated the overall changes in dissolved oxygen and pH using light and dark community in situ incubations. We also determined the biomass and composition of macroalgal and macroinvertebrate compartments of each assemblage. During light incubations, the healthy and restored forest assemblages showed similar average net oxygen production, 5.7 times higher than in the degraded one, and a greater increase in pH. More than 95% of the incubated biomass corresponded to macroalgal and seagrass species. The restored forest showed a six-fold increase in biomass, most likely being responsible for the recovery of primary production. This work provides empirical evidence that the restoration of a single structural species, once successful in the early stages, can yield positive results by recovering processes such as primary production and dark respiration. Moreover, these results showcase differences in ecosystem functions between healthy (either mature or restored) and degraded habitats, highlighting the importance of protecting and preserving coastal marine forests.
Collapse
Grants
- The European Union - NextGeneration EU - as part of the MITECO program for the Spanish Recovery, Transformation and Resilience Plan (Recovery and Resilience Facility of the European Union established by the Regulation (EU) 2020/2094), and was entrusted to CSIC, AZTI, SOCIB, and the Universities of Vigo and Cadiz
- Nº 869300 European Union's Horizon 2020 research and innovation program (FuturMARES)
- PCI2022-135070-2 European Biodiversity Partnership under the 2021-2022 BiodivProtect joint call, co-funded by the European Commission (GA N°101052342) and with the funding organisations, Agencia Estatal de Investigación AEI/10.13039/501100011033/NextGenerationEU/PRTR (FoRescue)
- PCI2022-135052-2 European Biodiversity Partnership under the 2021-2022 BiodivProtect joint call, co-funded by the European Commission (GA N°101052342) and with the funding organisations, Agencia Estatal de Investigación AEI/10.13039/501100011033/NextGenerationEU/PRTR (FoRescue)
- N° PID2020-112985GB-I00 Spanish Ministry of Science and Innovation under the grant FORESTA, funded by MCIN/AEI/10.13039/501100011033 (European Union)
Collapse
Affiliation(s)
| | - Cèlia Sitjà
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Blanes, Spain
| | - Sònia de Caralt
- Institut d'Ecologia Aquàtica (IEA), Universitat de Girona (UdG), Girona, Spain
| | | | - Alba Vergés
- Institut d'Ecologia Aquàtica (IEA), Universitat de Girona (UdG), Girona, Spain
| | - Jordi Boada
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Blanes, Spain
| | - Emma Cebrian
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Blanes, Spain
| |
Collapse
|
3
|
Peddle SD, Hodgson RJ, Borrett RJ, Brachmann S, Davies TC, Erickson TE, Liddicoat C, Muñoz‐Rojas M, Robinson JM, Watson CD, Krauss SL, Breed MF. Practical applications of soil microbiota to improve ecosystem restoration: current knowledge and future directions. Biol Rev Camb Philos Soc 2025; 100:1-18. [PMID: 39075839 PMCID: PMC11718600 DOI: 10.1111/brv.13124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
Soil microbiota are important components of healthy ecosystems. Greater consideration of soil microbiota in the restoration of biodiverse, functional, and resilient ecosystems is required to address the twin global crises of biodiversity decline and climate change. In this review, we discuss available and emerging practical applications of soil microbiota into (i) restoration planning, (ii) direct interventions for shaping soil biodiversity, and (iii) strategies for monitoring and predicting restoration trajectories. We show how better planning of restoration activities to account for soil microbiota can help improve progress towards restoration targets. We show how planning to embed soil microbiota experiments into restoration projects will permit a more rigorous assessment of the effectiveness of different restoration methods, especially when complemented by statistical modelling approaches that capitalise on existing data sets to improve causal understandings and prioritise research strategies where appropriate. In addition to recovering belowground microbiota, restoration strategies that include soil microbiota can improve the resilience of whole ecosystems. Fundamentally, restoration planning should identify appropriate reference target ecosystem attributes and - from the perspective of soil microbiota - comprehensibly consider potential physical, chemical and biological influences on recovery. We identify that inoculating ecologically appropriate soil microbiota into degraded environments can support a range of restoration interventions (e.g. targeted, broad-spectrum and cultured inoculations) with promising results. Such inoculations however are currently underutilised and knowledge gaps persist surrounding successful establishment in light of community dynamics, including priority effects and community coalescence. We show how the ecological trajectories of restoration sites can be assessed by characterising microbial diversity, composition, and functions in the soil. Ultimately, we highlight practical ways to apply the soil microbiota toolbox across the planning, intervention, and monitoring stages of ecosystem restoration and address persistent open questions at each stage. With continued collaborations between researchers and practitioners to address knowledge gaps, these approaches can improve current restoration practices and ecological outcomes.
Collapse
Affiliation(s)
- Shawn D. Peddle
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Riley J. Hodgson
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Ryan J. Borrett
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures InstituteMurdoch University90 South StreetMurdochWestern Australia6150Australia
| | - Stella Brachmann
- University of Waikato Te Whare Wananga o Waikato Gate 1Knighton RoadHamilton3240New Zealand
| | - Tarryn C. Davies
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Todd E. Erickson
- Department of Biodiversity, Conservation and AttractionsKings Park ScienceKattidj CloseKings ParkWestern Australia6005Australia
- Centre for Engineering Innovation, School of Agriculture and EnvironmentThe University of Western AustraliaStirling HighwayCrawleyWestern Australia6009Australia
| | - Craig Liddicoat
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Miriam Muñoz‐Rojas
- Department of Plant Biology and EcologyUniversity of SevilleC. San FernandoSevillaSpain
- School of Biological, Earth and Environmental Sciences, Centre for Ecosystem ScienceUniversity of New South WalesSydneyNew South Wales2052Australia
| | - Jake M. Robinson
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Carl D. Watson
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Siegfried L. Krauss
- Department of Biodiversity, Conservation and AttractionsKings Park ScienceKattidj CloseKings ParkWestern Australia6005Australia
- School of Biological SciencesThe University of Western AustraliaStirling HighwayCrawleyWestern Australia6009Australia
| | - Martin F. Breed
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| |
Collapse
|
4
|
Dong Z, Bladon AJ, Jaworski CC, Pywell RF, Woodcock BA, Meek WR, Nuttall P, Dicks LV. Species-habitat networks reveal conservation implications that other community analyses do not detect. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2025; 35:e3073. [PMID: 39829221 PMCID: PMC11744225 DOI: 10.1002/eap.3073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 09/17/2024] [Accepted: 10/22/2024] [Indexed: 01/22/2025]
Abstract
Grassland restoration is an important conservation intervention supporting declining insect pollinators in threatened calcareous grassland landscapes. While the success of restoration is often quantified using simple measures of diversity or similarity to target communities, these measures do not capture all fundamental aspects of community reconstruction. Here, we develop species-habitat networks that aim to define habitat-level foraging dependencies of pollinators across restored grassland landscapes and compare their value to these more conventional measures of community restoration. We assessed this across Salisbury Plain (UK), which represents the largest area of chalk grassland in northwestern Europe, encompassing six distinct management types aimed at the restoration and maintenance of species-rich calcareous grassland. Sites that were previously disturbed or reverting from arable agriculture were comparable with those of ancient grasslands in terms of pollinator abundance and species richness. However, intensively managed grasslands exhibited notably lower values across nearly all measured indicators, including flower and pollinator richness and abundance, than ancient grasslands, with unmanaged grasslands following closely behind. This underscores the need for caution with both long-term neglect and highly intensive management. Applying our species-habitat network approach, we found that pollinator communities in grasslands recovering from past military disturbance showed stronger modular associations with those in ancient grasslands than areas recovering from intensive agriculture. This highlights the importance of habitat history in shaping restoration trajectories. We propose that species-habitat networks should be part of the standard analytical toolkit assessing the effectiveness of restoration at landscape scale, particularly for mobile species such as insects.
Collapse
Affiliation(s)
- Zhaoke Dong
- College of Plant Health and MedicineQingdao Agriculture UniversityQingdaoChina
- Department of ZoologyUniversity of CambridgeCambridgeUK
| | - Andrew J. Bladon
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Ecology and Evolutionary Biology DivisionSchool of Biological Sciences, University of ReadingReadingUK
| | - Coline C. Jaworski
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Institut Sophia Agrobiotech (ISA)Université Côte d'Azur/INRAESophia‐AntipolisFrance
| | | | | | | | | | - Lynn V. Dicks
- Department of ZoologyUniversity of CambridgeCambridgeUK
- School of Biological SciencesUniversity of East AngliaNorwichUK
| |
Collapse
|
5
|
Fahey PS, Dimon RJ, van der Merwe MM, Bragg JG, Rossetto M. Floristic classifications and bioregionalizations are not predictors of intra-specific evolutionary patterns. Nat Commun 2024; 15:10770. [PMID: 39737937 DOI: 10.1038/s41467-024-54930-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/22/2024] [Indexed: 01/01/2025] Open
Abstract
The relationship between intra-specific and inter-specific patterns and processes over evolutionary time is key to ecological investigations. We examine this relationship taking an approach of focussing on the association between vegetation and floristic classifications, summaries of inter-specific processes, and intra-specific genetic structuring. Applying an innovative, multispecies, and standardised population genomic approach, we test the relationship between vegetation mapping schemes and structuring of genetic variation across a large, environmentally heterogenous region in eastern Australia. We show that intra-specific genetic variation shows limited correspondence to vegetation and floristic classifications and is better explained by distance between sampled populations and the location of biogeographical features which limit gene flow. Mapping schemes with contiguous mapping classes, particularly larger ones, were more predictive of genetic lineages, whether based on environmental factors or not, than geographically non-contiguous schemes. We conclude that vegetation and floristic classifications are not closely correlated with intra-specific genetic patterns, showing that intra-specific processes are not recapitulated by inter-specific floristic assembly processes. This study showcases the need to implement landscape level evolutionary patterns, based on species specific datasets, in restoration and conservation activities.
Collapse
Affiliation(s)
- Patrick S Fahey
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, 4072, Australia.
- Research Centre for Ecosystem Resilience, Botanic Gardens of Sydney, Sydney, New South Wales, 2000, Australia.
- Queensland Herbarium & Biodiversity Science, Department of the Environment, Tourism, Science & Innovation, Toowong, Queensland, 4066, Australia.
| | - Richard J Dimon
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, 4072, Australia
- Research Centre for Ecosystem Resilience, Botanic Gardens of Sydney, Sydney, New South Wales, 2000, Australia
| | - Marlien M van der Merwe
- Research Centre for Ecosystem Resilience, Botanic Gardens of Sydney, Sydney, New South Wales, 2000, Australia
| | - Jason G Bragg
- Research Centre for Ecosystem Resilience, Botanic Gardens of Sydney, Sydney, New South Wales, 2000, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, 2033, Australia
| | - Maurizio Rossetto
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, 4072, Australia.
- Research Centre for Ecosystem Resilience, Botanic Gardens of Sydney, Sydney, New South Wales, 2000, Australia.
| |
Collapse
|
6
|
Neuenkamp L, García de León D, Hamer U, Hölzel N, McGale E, Hannula SE. Comprehensive tools for ecological restoration of soils foster sustainable use and resilience of agricultural land. Commun Biol 2024; 7:1577. [PMID: 39592854 PMCID: PMC11599581 DOI: 10.1038/s42003-024-07275-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Soils are the backbone of terrestrial ecosystems, underpinning their biodiversity and functioning. They are also key to agricultural production and ecosystem development. Although focus on effective and profitable food production has led to severely degraded soils, the tools and standards for restoration strategies in agricultural soils are still largely underdeveloped. In this review, we summarize recent developments in ecological restoration practice for soils, evaluate whether these are in line with ecological theory, identify where they could be improved, and contextualize these to agricultural soil restoration. We identify restoration actions and success indicators that may best foster sustainable use of agricultural soils while also increasing their multifunctionality, that is their ability to simultaneously supply multiple ecosystem services including provisioning food and feed. Lastly, we explore actions available to improve soil health and focus on tool and indicator implementation. Calls for reductions in provisioning services, such as yield production, commonly used in ecological restoration practices conflict most directly with wider soil-ecosystem-service-focused restoration actions, including supporting and regulating services. Comprehensive restoration actions harnessing the interdependence of multiple soil properties, including contribution to vegetative yield, appear to be most efficient in agricultural settings with a central role of soil biodiversity in ecosystem service provisioning.
Collapse
Affiliation(s)
- L Neuenkamp
- University of Münster, Münster, Germany.
- University of Alicante, Alicante, Spain.
| | | | - U Hamer
- University of Münster, Münster, Germany
| | - N Hölzel
- University of Münster, Münster, Germany
| | - E McGale
- University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
7
|
Struckhoff MA, Grabner KW, Albers JL, Hooper MJ. Vegetation community recovery on restored bottomland hardwood forests in northeast Indiana, USA. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1917-1938. [PMID: 39329319 DOI: 10.1002/ieam.4993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/18/2024] [Accepted: 08/07/2024] [Indexed: 09/28/2024]
Abstract
Vegetation communities in restored bottomland hardwood forests in northeast Indiana were studied 6-21 years after restoration to assess progress toward restoration objectives. The study focused on four sites that were restored to compensate for resource injuries after contaminant releases. The restored sites were compared with four reference-site conditions, including crops (prerestoration condition), old field communities representing a no-management alternative, locally sampled second-growth mature forests, and forest community types described by the US National Vegetation Classification (USNVC), which represent ideal or defining conditions of recognized vegetation communities. Fixed-area plots provided data on field-sampled environmental variables, vegetation, soil, and hydrological conditions for crops, old fields, restored areas, and mature forests. The USNVC database provided quantitative data for three historically and geographically relevant reference forest community types for comparison with the sampled communities. Results of nonmetric multidimensional scaling based on species cover revealed clear gradients relating to site age and canopy development. Along those gradients, restored areas demonstrated increasing similarity to mature forest reference communities in terms of floristic composition. Specifically, the floristic quality of restored areas was significantly greater than that of crops and old fields. Furthermore, soil health measurements of physical, chemical, and hydrological conditions indicated significant improvements in restored site soils compared with prerestoration conditions represented by cropland soils. Descriptions and data from the USNVC provided ecological context for restoration target conditions and facilitated the assessment of restoration recovery along a trajectory from starting conditions to those target conditions. Descriptions by USNVC also helped identify deviations from the intended restoration objectives (e.g., invasive species recruitment) and potential adaptive management actions to return sites to their intended trajectories. Integr Environ Assess Manag 2024;20:1917-1938. Published 2024. This article is a U.S. Government work and is in the public domain in the USA. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Matthew A Struckhoff
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Keith W Grabner
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Janice L Albers
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Michael J Hooper
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| |
Collapse
|
8
|
Hooper MJ, Struckhoff MA, Isanhart JP, Albers JL, Grabner KW, Green NS, Kunz BK, Victoria McDonald M, West BM. Studies to assess natural resource recovery and evaluate monitoring methods for restored bottomland hardwood forests. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1912-1916. [PMID: 39347614 DOI: 10.1002/ieam.4996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024]
Abstract
The Natural Resource Damage Assessment and Restoration process assesses natural resource injury due to oil or chemical spills and calculates the damages to compensate the public for those injuries. Ecological restoration provides a means for recovering resources injured or lost due to contamination from oil or chemical spills by restoring the injured site after remediation, or acquiring or reconstructing equivalent resources off site to replace those lost due to the spill. In the case of restored forests, once restoration is implemented, monitoring of forest ecology helps keep recovery on track, with the maturation of forest vegetation, recovered soil conditions, and development of microbial, fungal, and faunal communities, necessary for ecologically functioning forests. This series of papers focuses on applying methods for monitoring restoration progress in forest vegetation and soils, and amphibian, avian, and mammalian communities, assessing strengths and weaknesses of different methods, and evaluating levels of effort needed to obtain accurate indications of forest ecological condition. Integr Environ Assess Manag 2024;20:1912-1916. © 2024 The Author(s). Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC). This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Michael J Hooper
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, USA
| | - Matthew A Struckhoff
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, USA
| | - John P Isanhart
- US Department of the Interior, Office of Restoration and Damage Assessment, Restoration Support Unit, Fayetteville, Arkansas, USA
| | - Janice L Albers
- US Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin, USA
| | - Keith W Grabner
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, USA
| | - Nicholas S Green
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, Georgia, USA
| | - Bethany K Kunz
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, USA
| | - M Victoria McDonald
- Department of Biology, University of Central Arkansas, Conway, Arkansas, USA
| | - Benjamin M West
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, USA
| |
Collapse
|
9
|
Reed DC, Schroeter SC, Huang D, Weisman D, Beheshti KM, Smith RS. The ecology of giant kelp colonization and its implications for kelp forest restoration. JOURNAL OF PHYCOLOGY 2024; 60:1121-1138. [PMID: 39072751 DOI: 10.1111/jpy.13487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
The success and cost-effectiveness of kelp forest restoration hinges on understanding the colonization ecology of kelps, particularly with respect to dispersal potential, recruitment success, and subsequent establishment. To gain needed insight into these processes we examined spatial patterns and temporal trajectories of the colonization of a large artificial reef by the giant kelp Macrocystis pyrifera. The 151 ha artificial reef complex was constructed in three phases over 21 years, enabling dispersal, recruitment, and subsequent establishment to be examined for a wide range of environmental conditions, dispersal distances, and source population sizes. Natural colonization of all phases of the artificial reef by giant kelp was rapid (within 1 year) and extended across the entire 7-km-long reef complex. Colonization density declined with distance from the nearest source population, but only during the first phase when the distance from the nearest source population was ≤3.5 km. Despite this decline, recruitment on artificial reef modules farthest from the source population was sufficient to produce dense stands of kelp within a couple of years. Experimental outplanting of the artificial reef with laboratory-reared kelp embryos was largely successful but proved unnecessary, as the standing biomass of kelp resulting from natural recruitment exceeded that observed on nearby natural reefs within 2-3 years of artificial reef construction for all three phases. Such high potential for natural colonization following disturbance has important implications for kelp forest restoration efforts that employ costly and logistically difficult methods to mimic this process by active seeding and transplanting.
Collapse
Affiliation(s)
- Daniel C Reed
- Marine Science Institute, University of California, Santa Barbara, California, USA
| | - Stephen C Schroeter
- Marine Science Institute, University of California, Santa Barbara, California, USA
| | - David Huang
- Marine Science Institute, University of California, Santa Barbara, California, USA
| | - Denise Weisman
- Marine Science Institute, University of California, Santa Barbara, California, USA
| | - Kathryn M Beheshti
- Marine Science Institute, University of California, Santa Barbara, California, USA
| | - Rachel S Smith
- Marine Science Institute, University of California, Santa Barbara, California, USA
| |
Collapse
|
10
|
Franchini M. The debatable notion of "novelty deficiency" in significant conservation domains. Integr Zool 2024; 19:1009-1013. [PMID: 38627893 DOI: 10.1111/1749-4877.12828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
In significant conservation domains, rejecting papers to prioritize novelty, may impede scientific and social progress as these studies carry crucial policy and practical implications. The research's rigor (rather than novelty) should be the primary criterion for evaluating the works' robustness and suitability for publication. Innovation is essential, but science requires a balanced approach, encompassing both conceptual innovation and practical research.
Collapse
Affiliation(s)
- Marcello Franchini
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
11
|
Hagazi N, Brhan A, Birhane E, Gebrekirstos A, Bräuning A. Survival and plasticity in Acacia saligna growth across Contrasting management practices and growing niches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121941. [PMID: 39068785 DOI: 10.1016/j.jenvman.2024.121941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Reforestation and afforestation either through natural regeneration, tree planting or both methods have been globally promoted to motivate ecological restoration of degraded lands and to improve livelihoods. However, moisture stress and infertile soils limit the survival and growth of trees planted for restoration in drier areas. Hence, understanding the factors that determine the restoration success of drylands through tree planting is critical. We conducted a factorial experiment in Tigray, Ethiopia to evaluate the survival, growth performance and biomass of planted seedlings of the multipurpose agroforestry tree species Acacia saligna over 24 months. The treatments were application of watering (W), mulching (M) and compost (C) separately and in combinations (WM, WMC). We established experimental plots on farmland and on a nearby hillside-exclosure to examine the role of planting niches on seedling performance. Seedlings treated with watering, mulching, and compost (WMC) revealed significantly greater height, root collar diameter (RCD), and dry biomass compared to the other treatments. Seedlings planted in farmland showed significantly greater height, RCD, and total dry biomass compared to those planted at the hillside-exclosure. Although the survival rate was slightly higher in farmland, we also found sufficient survival rates in the hillside-exclosures. Therefore, post-planting care and activities including mulching, watering and fertilization are crucial to enhance the survival and growth performance of A. saligna or other tree species so that efforts in reversing land degradation and restoration of drylands will be successful.
Collapse
Affiliation(s)
- Niguse Hagazi
- World Agroforestry (ICRAF), C/O ILRI Campus, Gurd Shola, P.O. Box 5689, Addis Ababa, Ethiopia; Institute of Geography, Friedrich-Alexander-University Erlangen-Nuremberg, Wetterkreuz 15, 91058, Erlangen, Germany.
| | - Abrha Brhan
- Mekelle University, College of Dryland Agriculture and Natural Resources, Department of Land Resource Management and Environmental Protection, P.O. Box, 231, Mekelle, Ethiopia
| | - Emiru Birhane
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Oslo, Norway; Institute of Climate and Society, Mekelle University, P.O. Box 231, Mekelle, Ethiopia; Mekelle University, College of Dryland Agriculture and Natural Resources, Department of Land Resource Management and Environmental Protection, P.O. Box, 231, Mekelle, Ethiopia
| | - Aster Gebrekirstos
- World Agroforestry (ICRAF), United Nations Avenue, P.O. Box 30677-00100, Nairobi, Kenya
| | - Achim Bräuning
- Institute of Geography, Friedrich-Alexander-University Erlangen-Nuremberg, Wetterkreuz 15, 91058, Erlangen, Germany
| |
Collapse
|
12
|
Suding KN, Collins CG, Hallett LM, Larios L, Brigham LM, Dudney J, Farrer EC, Larson JE, Shackelford N, Spasojevic MJ. Biodiversity in changing environments: An external-driver internal-topology framework to guide intervention. Ecology 2024; 105:e4322. [PMID: 39014865 DOI: 10.1002/ecy.4322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/15/2024] [Accepted: 03/08/2024] [Indexed: 07/18/2024]
Abstract
Accompanying the climate crisis is the more enigmatic biodiversity crisis. Rapid reorganization of biodiversity due to global environmental change has defied prediction and tested the basic tenets of conservation and restoration. Conceptual and practical innovation is needed to support decision making in the face of these unprecedented shifts. Critical questions include: How can we generalize biodiversity change at the community level? When are systems able to reorganize and maintain integrity, and when does abiotic change result in collapse or restructuring? How does this understanding provide a template to guide when and how to intervene in conservation and restoration? To this end, we frame changes in community organization as the modulation of external abiotic drivers on the internal topology of species interactions, using plant-plant interactions in terrestrial communities as a starting point. We then explore how this framing can help translate available data on species abundance and trait distributions to corresponding decisions in management. Given the expectation that community response and reorganization are highly complex, the external-driver internal-topology (EDIT) framework offers a way to capture general patterns of biodiversity that can help guide resilience and adaptation in changing environments.
Collapse
Affiliation(s)
- Katharine N Suding
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
| | - Courtney G Collins
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Biodiversity Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lauren M Hallett
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Department of Biology and Environmental Studies Program, University of Oregon, Eugene, Oregon, USA
| | - Loralee Larios
- Department of Botany & Plant Sciences, University of California Riverside, Riverside, California, USA
| | - Laurel M Brigham
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Joan Dudney
- Environmental Studies Program, Santa Barbara, California, USA
- Bren School of Environmental Science & Management, UC Santa Barbara, Santa Barbara, California, USA
| | - Emily C Farrer
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, USA
| | - Julie E Larson
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- USDA Agricultural Research Service, Eastern Oregon Agricultural Research Center, Burns, Oregon, USA
| | - Nancy Shackelford
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| | - Marko J Spasojevic
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, California, USA
| |
Collapse
|
13
|
Zhang X, Wang H, Zhang W, Lv H, Lin X. Study on the purification mechanism for ammonia nitrogen in micro-polluted rivers by herbaceous plant - Rumex japonicus Houtt. CHEMOSPHERE 2024; 358:142154. [PMID: 38679183 DOI: 10.1016/j.chemosphere.2024.142154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Water eutrophication caused by nitrogen pollution is an urgent global issue that requires attention. The Qingyi River is a typical micro-polluted river in China. In this study, we took this river as the research object to investigate the nitrogen pollution purification capacity of a herbaceous plant, Rumex japonicus Houtt. (RJH). Compared to nitrate nitrogen (NO3--N) and nitrite nitrogen (NO2--N), RJH showed better purification performance on total nitrogen (TN), total phosphorus (TP) and ammonia nitrogen (NH4+-N), with a highest removal rate of 37.22%, 52.13%, and 100%, respectively. RJH could completely remove ammonia nitrogen and exhibit excellent resistance to pollutant interference when the initial concentration of ammonia nitrogen in the cultivation devices increased from 1 mg/L to 10 mg/L or in the actual river. This indicated the great application potential of RJH in ammonia nitrogen removal from natural micro-polluted rivers. In addition, combined effects of nitrification of roots, absorption of self-growth, stripping, and others contributed to nitrogen removal by RJH. Particularly, the nitrification of roots played a dominant role, accounting for 73.85% ± 8.79%. High-throughput sequencing results indicate that nitrifying bacteria accounted for over 75% of all bacterial species in RJH. Furthermore, RJH showed good growth status and strong adaptability. The correlation coefficients of its relative growth rate with chlorophyll A and the degradation rate of absorption were 0.9677 and 0.9594, respectively. Our research demonstrates that RJH is one of the excellent varieties for ammonia removal. This provides a very promising and sustainable method for purifying micro-polluted rivers.
Collapse
Affiliation(s)
- Xiangyang Zhang
- School of Water Conservancy and Transportation, Zhengzhou University, Henan, 450001, China
| | - Huiliang Wang
- School of Water Conservancy and Transportation, Zhengzhou University, Henan, 450001, China
| | - Wei Zhang
- School of Ecology and Environment, Zhengzhou University, Henan, 450001, China
| | - Hong Lv
- Yellow River Engineering Consulting Co., Ltd., Zhengzhou, 450003, China
| | - Xiaoying Lin
- School of Water Conservancy and Transportation, Zhengzhou University, Henan, 450001, China.
| |
Collapse
|
14
|
Prakash A, Capblancq T, Shallows K, Saville D, Landau D, Landress C, Jacobs T, Keller S. Bringing genomics to the field: An integrative approach to seed sourcing for forest restoration. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11600. [PMID: 38912128 PMCID: PMC11192164 DOI: 10.1002/aps3.11600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 06/25/2024]
Abstract
Premise Global anthropogenic change threatens the health and productivity of forest ecosystems. Assisted migration and reforestation are tools to help mitigate these impacts. However, questions remain about how to approach sourcing seeds to ensure high establishment and future adaptability. Methods Using exome-capture sequencing, we demonstrate a computational approach to finding the best n-sets from a candidate list of seed sources that collectively achieve high genetic diversity (GD) and minimal genetic load (GL), while also increasing evolvability in quantitative traits. The benefits of this three-part strategy (diversity-load-evolvability) are to increase near-term establishment success while also boosting evolutionary potential to respond to future stressors. Members of The Nature Conservancy and the Central Appalachian Spruce Restoration Initiative planted 58,000 seedlings across 255 acres. A subset of seedlings was monitored for establishment success and variation in growth. Results The results show gains in GD relative to GL and increases in quantitative genetic variation in seedling growth for pooled vs. single-source restoration. No single "super source" was observed across planting sites; rather, monitoring results demonstrate that pooling of multiple sources helps achieve higher GD:GL and evolvability. Discussion Our study shows the potential for integrating genomics into local-scale restoration and the importance of building partnerships between academic researchers and applied conservation managers.
Collapse
Affiliation(s)
- Anoob Prakash
- Department of Plant BiologyUniversity of VermontBurlingtonVermontUSA
| | - Thibaut Capblancq
- Department of Plant BiologyUniversity of VermontBurlingtonVermontUSA
- Laboratoire d'Écologie Alpine, Université Grenoble‐Alpes, Université Savoie Mont Blanc, CNRSGrenobleFrance
| | - Kathryn Shallows
- Central Appalachians Program, The Nature ConservancyElkinsWest VirginiaUSA
| | - David Saville
- Appalachian Forest Restoration LLCMorgantownWest VirginiaUSA
| | - Deborah Landau
- Maryland/DC Chapter, The Nature ConservancyBethesdaMarylandUSA
| | - Chad Landress
- USDA Forest Service, Monongahela National ForestElkinsWest VirginiaUSA
| | - Tal Jacobs
- Clinch Valley Program, The Nature ConservancyAbingdonVirginiaUSA
| | - Stephen Keller
- Department of Plant BiologyUniversity of VermontBurlingtonVermontUSA
| |
Collapse
|
15
|
Sun C, Yao J, Xu H, Zhou C, Zang R. Assessing the functional vulnerability of woody plant communities within a large scale tropical rainforest dynamics plot. FRONTIERS IN PLANT SCIENCE 2024; 15:1372122. [PMID: 38693923 PMCID: PMC11061514 DOI: 10.3389/fpls.2024.1372122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/04/2024] [Indexed: 05/03/2024]
Abstract
Introduction Tropical forests are characterized by intricate mosaics of species-rich and structurally complex forest communities. Evaluating the functional vulnerability of distinct community patches is of significant importance in establishing conservation priorities within tropical forests. However, previous assessments of functional vulnerability in tropical forests have often focused solely on isolated factors or individual disturbance events, with limited consideration for a broad spectrum of disturbances and the responses of diverse species. Methods We assessed the functional vulnerability of woody plant communities in a 60-ha dynamic plot within a tropical montane rainforest by conducting in silico simulations of a wide range disturbances. These simulations combined plant functional traits and community properties, including the distribution of functional redundancy across the entire trait space, the distribution of abundance across species, and the relationship between species trait distinctiveness and species abundance. We also investigated the spatial distribution patterns of functional vulnerability and their scale effects, and employed a spatial autoregressive model to examine the relationships between both biotic and abiotic factors and functional vulnerability at different scales. Results The functional vulnerability of tropical montane rainforest woody plant communities was generally high (the functional vulnerability of observed communities was very close to that of the most vulnerable virtual community, with a value of 72.41% on average at the 20m×20m quadrat scale), and they exhibited significant spatial heterogeneity. Functional vulnerability decreased with increasing spatial scale and the influence of both biotic and abiotic factors on functional vulnerability was regulated by spatial scale, with soil properties playing a dominant role. Discussion Our study provides new specific insights into the comprehensive assessment of functional vulnerability in the tropical rainforest. We highlighted that functional vulnerabilities of woody plant communities and their sensitivity to environmental factors varied significantly within and across spatial scales in the tropical rainforest landscape. Preserving and maintaining the functionality of tropical ecosystems should take into consideration the variations in functional vulnerability among different plant communities and their sensitivity to environmental factors.
Collapse
Affiliation(s)
- Cheng Sun
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jie Yao
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Han Xu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Chaofan Zhou
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Runguo Zang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
16
|
Velusamy A, Afraj SN, Guo YS, Ni JS, Huang HL, Su TY, Ezhumalai Y, Liu CL, Chiang CH, Chen MC, Wu CG. Bicyclopentadithiophene-Based Organic Semiconductor for Stable and High-Performance Perovskite Solar Cells Exceeding 22. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6162-6175. [PMID: 38277509 PMCID: PMC10859901 DOI: 10.1021/acsami.3c15774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
Well-performing organic-inorganic halide perovskites are susceptible to poor efficiency and instability due to their various defects at the interphases, grain boundaries (GBs), and surfaces. In this study, an in situ method is utilized for effectively passivating the under-coordinated Pb2+ defects of perovskite with new non-fullerene acceptors (NFAs) (INXBCDT; X = H, Cl, and Br) through their carbonyl and cyano functional groups during the antisolvent dripping process. It reveals that the bicyclopentadithiophene (BCDT) core with highly electron-withdrawing end-capping groups passivates GBs and boosts perovskite grain growth. This effective defect passivation decreases the trap density to increase the carrier recombination lifetime of the perovskite film. As a result, bromo-substituted dicyanomethylene indanone (INBr)-end-capped BCDT (INBrBCDT-b8; 3a)-passivated devices exhibit the highest power conversion efficiency (PCE) of 22.20% (vs those of 18.09% obtained for perovskite films without passivation) upon an optimized film preparation process. Note that devices treated with more soluble 2-ethylhexyl-substituted compounds (1a, 2a, and 3a) exhibit higher PCE than those treated with less soluble octyl-substituted compounds (1b, 2b, and 3b). It is also worth noting that BCDT is a cost-effective six-ring core that is easier to synthesize with a higher yield and therefore much cheaper than those with highly fused-ring cores. In addition, a long-term stability test in a glovebox for 1500 h reveals that the perovskite solar cells (PSCs) based on a perovskite absorber treated with compound 3a maintain ∼90% of their initial PCE. This is the first example of the simplest high-conjugation additive for perovskite film to achieve a PCE greater than 22% of the corresponding lead-based PSCs.
Collapse
Affiliation(s)
- Arulmozhi Velusamy
- Department
of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Shakil N. Afraj
- Department
of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Yu-Sheng Guo
- Department
of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Jen-Shyang Ni
- Department
of Chemical and Materials Engineering, National
Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Hung-Lin Huang
- Department
of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Ting-Yu Su
- Department
of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Yamuna Ezhumalai
- Department
of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Cheng-Liang Liu
- Department
of Materials Science and Engineering, National
Taiwan University, Taipei 10617, Taiwan
| | - Chien-Hung Chiang
- Department
of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Ming-Chou Chen
- Department
of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Chun-Guey Wu
- Department
of Chemistry, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
17
|
Qian K, Ma X, Yan W, Li J, Xu S, Liu Y, Luo C, Yu W, Yu X, Wang Y, Zhou L, Wang Y. Trade-offs and synergies among ecosystem services in Inland River Basins under the influence of ecological water transfer project: A case study on the Tarim River basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168248. [PMID: 37918740 DOI: 10.1016/j.scitotenv.2023.168248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/29/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
Ecosystem services (ESs) are the largest benefits that humans derive directly or indirectly from ecosystems. Inland river basins in arid zones have a variety of key ecosystem functions. At present, inland river basins are experiencing a decline in ESs, such as shrinking lakes, land degradation, and rapid biodiversity loss. In order to address these problems, several ecological restoration projects (ERPs) have been implemented. Therefore, this study selected the Tarim River Basin (TRB), which is highly affected by the ecological water transfer project (EWTP), as the study area, and quantified the differences in ESs caused by the implementation of the EWTP through different scenarios of simulation, and discussed the impact of the EWTP in changing the ESs of the basin. Compared to the pre-EWTP period (1990-1999), the major ESs within the basin showed varying degrees of improvement. Water yield increased by 18 %, carbon sequestration increased by 2 %, wind prevention and sand fixation increased by 13 %, habitat quality increased by 8 %, and food production increased by 35 %. EWTP has shown positive impacts by directly or indirectly affecting runoff, vegetation, evapotranspiration, and landscape patterns, which in turn improves the comprehensive benefits of ESs in the TRB. The implementation of EWTP plays an important role in restoring ESs in inland river basins, and this study provides a key reference for the restoration of ESs in inland river basins in arid zones.
Collapse
Affiliation(s)
- Kaixuan Qian
- College of Geographic Science and Tourism, Xinjiang Normal University, Urumqi 830054, China; Xinjiang Arid Area Lake Environment and Resources Laboratory, Key Laboratory of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830054, China; Xinjiang Key Laboratory of Water Cycle and Utilization in Arid Zone, Urumqi 830011, China
| | - Xiaofei Ma
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Xinjiang Key Laboratory of Water Cycle and Utilization in Arid Zone, Urumqi 830011, China
| | - Wei Yan
- School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Jiaxin Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China
| | - Shixian Xu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Xinjiang Key Laboratory of Water Cycle and Utilization in Arid Zone, Urumqi 830011, China
| | - Yuan Liu
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China
| | - Chun Luo
- College of Geographic Science and Tourism, Xinjiang Normal University, Urumqi 830054, China; Xinjiang Arid Area Lake Environment and Resources Laboratory, Key Laboratory of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830054, China
| | - Wei Yu
- College of Geographic Science and Tourism, Xinjiang Normal University, Urumqi 830054, China; Xinjiang Arid Area Lake Environment and Resources Laboratory, Key Laboratory of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830054, China
| | - Xiaotong Yu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China
| | - Yahui Wang
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Limin Zhou
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, China
| | - Yonghui Wang
- College of Geographic Science and Tourism, Xinjiang Normal University, Urumqi 830054, China; Xinjiang Arid Area Lake Environment and Resources Laboratory, Key Laboratory of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830054, China.
| |
Collapse
|
18
|
Djiofack BY, Beeckman H, Bourland N, Belanganayi BL, Laurent F, Ilondea BA, Nsenga L, Huart A, Longwwango MM, Deklerck V, Lejeune G, Verbiest WWM, Van den Bulcke J, Van Acker J, De Mil T, Hubau W. Protecting an artificial savanna as a nature-based solution to restore carbon and biodiversity in the Democratic Republic of the Congo. GLOBAL CHANGE BIOLOGY 2024; 30:e17154. [PMID: 38273529 DOI: 10.1111/gcb.17154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
A large share of the global forest restoration potential is situated in artificial 'unstable' mesic African savannas, which could be restored to higher carbon and biodiversity states if protected from human-induced burning. However, uncertainty on recovery rates in protected unstable savannas impedes science-informed forest restoration initiatives. Here, we quantify the forest restoration success of anthropogenic fire exclusion within an 88-ha mesic artificial savanna patch in the Kongo Central province of the Democratic Republic of the Congo (DR Congo). We found that aboveground carbon recovery after 17 years was on average 11.40 ± 0.85 Mg C ha-1 . Using a statistical model, we found that aboveground carbon stocks take 112 ± 3 years to recover to 90% of aboveground carbon stocks in old-growth forests. Assuming that this recovery trajectory would be representative for all unstable savannas, we estimate that they could have a total carbon uptake potential of 12.13 ± 2.25 Gt C by 2100 across DR Congo, Congo and Angola. Species richness recovered to 33.17% after 17 years, and we predicted a 90% recovery at 54 ± 2 years. In contrast, we predicted that species composition would recover to 90% of old-growth forest composition only after 124 ± 3 years. We conclude that the relatively simple and cost-efficient measure of fire exclusion in artificial savannas is an effective nature-based solution to climate change and biodiversity loss. However, more long-term and in situ monitoring efforts are needed to quantify variation in long-term carbon and diversity recovery pathways. Particular uncertainties are spatial variability in socio-economics and growing conditions as well as the effects of projected climate change.
Collapse
Affiliation(s)
- Brice Yannick Djiofack
- Royal Museum for Central Africa, Service of Wood Biology, Tervuren, Belgium
- Faculty of Bioscience Engineering, Department of Environment, Laboratory of Wood Technology (UGent-Woodlab), Ghent University, Gent, Belgium
- Wood Laboratory of Yangambi, Yangambi, DR Congo
| | - Hans Beeckman
- Royal Museum for Central Africa, Service of Wood Biology, Tervuren, Belgium
- Wood Laboratory of Yangambi, Yangambi, DR Congo
| | - Nils Bourland
- Royal Museum for Central Africa, Service of Wood Biology, Tervuren, Belgium
- Wood Laboratory of Yangambi, Yangambi, DR Congo
| | - Basile Luse Belanganayi
- Royal Museum for Central Africa, Service of Wood Biology, Tervuren, Belgium
- Wood Laboratory of Yangambi, Yangambi, DR Congo
- Forest is Life, TERRA Teaching and Research Centre, Gembloux Agro Bio-Tech, University of Liège, Gembloux, Belgium
| | - Félix Laurent
- Royal Museum for Central Africa, Service of Wood Biology, Tervuren, Belgium
- Faculty of Bioscience Engineering, Department of Environment, Laboratory of Wood Technology (UGent-Woodlab), Ghent University, Gent, Belgium
- Wood Laboratory of Yangambi, Yangambi, DR Congo
| | | | | | | | | | - Victor Deklerck
- Royal Botanic Gardens Kew, Richmond, UK
- Meise Botanic Garden, Meise, Belgium
| | | | - William W M Verbiest
- Faculty of Bioscience Engineering, Department of Environment, Laboratory of Wood Technology (UGent-Woodlab), Ghent University, Gent, Belgium
| | - Jan Van den Bulcke
- Faculty of Bioscience Engineering, Department of Environment, Laboratory of Wood Technology (UGent-Woodlab), Ghent University, Gent, Belgium
| | - Joris Van Acker
- Faculty of Bioscience Engineering, Department of Environment, Laboratory of Wood Technology (UGent-Woodlab), Ghent University, Gent, Belgium
| | - Tom De Mil
- Forest is Life, TERRA Teaching and Research Centre, Gembloux Agro Bio-Tech, University of Liège, Gembloux, Belgium
| | - Wannes Hubau
- Royal Museum for Central Africa, Service of Wood Biology, Tervuren, Belgium
- Faculty of Bioscience Engineering, Department of Environment, Laboratory of Wood Technology (UGent-Woodlab), Ghent University, Gent, Belgium
- Wood Laboratory of Yangambi, Yangambi, DR Congo
| |
Collapse
|
19
|
Bhatia U, Dubey S, Gouhier TC, Ganguly AR. Network-based restoration strategies maximize ecosystem recovery. Commun Biol 2023; 6:1256. [PMID: 38086885 PMCID: PMC10716433 DOI: 10.1038/s42003-023-05622-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Redressing global patterns of biodiversity loss requires quantitative frameworks that can predict ecosystem collapse and inform restoration strategies. By applying a network-based dynamical approach to synthetic and real-world mutualistic ecosystems, we show that biodiversity recovery following collapse is maximized when extirpated species are reintroduced based solely on their total number of connections in the original interaction network. More complex network-based strategies that prioritize the reintroduction of species that improve 'higher order' topological features such as compartmentalization do not provide meaningful performance improvements. These results suggest that it is possible to design nearly optimal restoration strategies that maximize biodiversity recovery for data-poor ecosystems in order to ensure the delivery of critical natural services that fuel economic development, food security, and human health around the globe.
Collapse
Affiliation(s)
- Udit Bhatia
- Discipline of Civil Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India.
- Sustainability and Data Sciences Lab, Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA.
| | - Sarth Dubey
- Discipline of Computer Science and Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India
| | - Tarik C Gouhier
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, MA, 01908, USA
| | - Auroop R Ganguly
- Sustainability and Data Sciences Lab, Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
20
|
Robinson JM, Hodgson R, Krauss SL, Liddicoat C, Malik AA, Martin BC, Mohr JJ, Moreno-Mateos D, Muñoz-Rojas M, Peddle SD, Breed MF. Opportunities and challenges for microbiomics in ecosystem restoration. Trends Ecol Evol 2023; 38:1189-1202. [PMID: 37648570 DOI: 10.1016/j.tree.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
Microbiomics is the science of characterizing microbial community structure, function, and dynamics. It has great potential to advance our understanding of plant-soil-microbe processes and interaction networks which can be applied to improve ecosystem restoration. However, microbiomics may be perceived as complex and the technology is not accessible to all. The opportunities of microbiomics in restoration ecology are considerable, but so are the practical challenges. Applying microbiomics in restoration must move beyond compositional assessments to incorporate tools to study the complexity of ecosystem recovery. Advances in metaomic tools provide unprecedented possibilities to aid restoration interventions. Moreover, complementary non-omic applications, such as microbial inoculants and biopriming, have the potential to improve restoration objectives by enhancing the establishment and health of vegetation communities.
Collapse
Affiliation(s)
- Jake M Robinson
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia; The Aerobiome Innovation & Research Hub, Flinders University, Bedford Park, SA 5042, Australia.
| | - Riley Hodgson
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Siegfried L Krauss
- Kings Park Science, Department of Biodiversity, Conservation, and Attractions, Fraser Avenue, Kings Park, WA 6005, Australia; Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; Biological Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Craig Liddicoat
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia; School of Public Health, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Ashish A Malik
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK
| | - Belinda C Martin
- School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia; Ooid Scientific, North Lake, WA 6162, Australia
| | - Jakki J Mohr
- College of Business, University of Montana, Missoula, MT, USA
| | - David Moreno-Mateos
- School of Geography and the Environment, University of Oxford, South Parks Road. Oxford OX1 3QY, UK; Department of Landscape Architecture, Graduate School of Design, Harvard University, Quincy Street. Cambridge, MA 02138, USA; Basque Center for Climate Change - BC3, Ikerbasque Foundation for Science. Edificio Sede 1, Parque Cientifico UPV, 04940 Leioa, Spain
| | - Miriam Muñoz-Rojas
- Departamento de Biologia Vegetal y Ecologia. Universidad de Sevilla, 41004 Sevilla, Spain; Centre for Ecosystem Science, School of Biological, Earth, and Environmental Sciences, University of New South Wales (UNSW) Sydney, Sydney, NSW 2052, Australia
| | - Shawn D Peddle
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
21
|
Temmink RJM, Angelini C, Verkuijl M, van der Heide T. Restoration ecology meets design-engineering: Mimicking emergent traits to restore feedback-driven ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166460. [PMID: 37611724 DOI: 10.1016/j.scitotenv.2023.166460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Ecosystems shaped by habitat-modifying organisms such as reefs, vegetated coastal systems and peatlands, provide valuable ecosystem services, such as carbon storage and coastal protection. However, they are declining worldwide. Ecosystem restoration is a key tool for mitigating these losses but has proven failure-prone, because ecosystem stability often hinges on self-facilitation generated by emergent traits from habitat modifiers. Emergent traits are not expressed by the single individual, but emerge at the level of an aggregation: a minimum patch-size or density-threshold must be exceeded to generate self-facilitation. Self-facilitation has been successfully harnessed for restoration by clumping transplanted organisms, but requires large amounts of often-limiting and costly donor material. Recent advancements highlight that kickstarting self-facilitation by mimicking emergent traits can similarly increase restoration success. Here, we provide a framework for combining expertise from ecologists, engineers and industrial product designers to transition from trial-and-error to emergent trait design-based, cost-efficient approaches to support large-scale restoration.
Collapse
Affiliation(s)
- Ralph J M Temmink
- Environmental Sciences, Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands.
| | - Christine Angelini
- Department of Environmental Engineering Sciences, Engineering School for Sustainable Infrastructure and Environment, University of Florida, PO Box 116580, Gainesville, FL 32611, USA
| | - Martijn Verkuijl
- Department of Industrial Design Engineering, Windesheim University of Applied Sciences, Koestraat 3, 8011NG Zwolle, the Netherlands
| | - Tjisse van der Heide
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, 1790 AB Den Burg, the Netherlands; Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, the Netherlands
| |
Collapse
|
22
|
Bertuol-Garcia D, Ladouceur E, Brudvig LA, Laughlin DC, Munson SM, Curran MF, Davies KW, Svejcar LN, Shackelford N. Testing the hierarchy of predictability in grassland restoration across a gradient of environmental severity. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2922. [PMID: 37776043 DOI: 10.1002/eap.2922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/07/2023] [Accepted: 08/18/2023] [Indexed: 10/01/2023]
Abstract
Ecological restoration is critical for recovering degraded ecosystems but is challenged by variable success and low predictability. Understanding which outcomes are more predictable and less variable following restoration can improve restoration effectiveness. Recent theory asserts that the predictability of outcomes would follow an order from most to least predictable from coarse to fine community properties (physical structure > taxonomic diversity > functional composition > taxonomic composition) and that predictability would increase with more severe environmental conditions constraining species establishment. We tested this "hierarchy of predictability" hypothesis by synthesizing outcomes along an aridity gradient with 11 grassland restoration projects across the United States. We used 1829 vegetation monitoring plots from 227 restoration treatments, spread across 52 sites. We fit generalized linear mixed-effects models to predict six indicators of restoration outcomes as a function of restoration characteristics (i.e., seed mixes, disturbance, management actions, time since restoration) and used variance explained by models and model residuals as proxies for restoration predictability. We did not find consistent support for our hypotheses. Physical structure was among the most predictable outcomes when the response variable was relative abundance of grasses, but unpredictable for total canopy cover. Similarly, one dimension of taxonomic composition related to species identities was unpredictable, but another dimension of taxonomic composition indicating whether exotic or native species dominated the community was highly predictable. Taxonomic diversity (i.e., species richness) and functional composition (i.e., mean trait values) were intermittently predictable. Predictability also did not increase consistently with aridity. The dimension of taxonomic composition related to the identity of species in restored communities was more predictable (i.e., smaller residuals) in more arid sites, but functional composition was less predictable (i.e., larger residuals), and other outcomes showed no significant trend. Restoration outcomes were most predictable when they related to variation in dominant species, while those responding to rare species were harder to predict, indicating a potential role of scale in restoration predictability. Overall, our results highlight additional factors that might influence restoration predictability and add support to the importance of continuous monitoring and active management beyond one-time seed addition for successful grassland restoration in the United States.
Collapse
Affiliation(s)
- Diana Bertuol-Garcia
- School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| | - Emma Ladouceur
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Leipzig-Halle-Jena, Leipzig, Germany
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Lars A Brudvig
- Department of Plant Biology and Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, Michigan, USA
| | | | - Seth M Munson
- US Geological Survey, Southwest Biological Science Center, Flagstaff, Arizona, USA
| | | | - Kirk W Davies
- USDA, Agricultural Research Service, Burns, Oregon, USA
| | | | - Nancy Shackelford
- School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
23
|
Frias-Torres S, Reveret C, Henri K, Shah N, Montoya Maya PH. A low-tech method for monitoring survival and growth of coral transplants at a boutique restoration site. PeerJ 2023; 11:e15062. [PMID: 37250710 PMCID: PMC10224673 DOI: 10.7717/peerj.15062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/22/2023] [Indexed: 05/31/2023] Open
Abstract
Background Coral reef restoration projects are becoming a popular corporate environmental responsibility activity at hotel resorts. Such involvement of private businesses offers the potential to expand restoration into a new socioeconomic sector. However, the scarcity of user-friendly monitoring methods for hotel staff, but robust enough to detect changes over time, hinders the ability to quantify the success or failure of the restoration activity. Here, we present a monitoring method of easy application by hotel staff, without scientific training, using the standard resources available at a hotel resort. Methods Survival and growth of coral transplants were evaluated over 1 year at a boutique coral reef restoration site. The restoration was tailored to the needs of a hotel resort in Seychelles, Indian Ocean. A total of 2,015 nursery-grown corals of branching (four genera, 15 species), massive (16 genera, 23 species), and encrusting (seven genera, seven species) growth types were transplanted to a 1-3 m deep degraded patch reef. A unique cement mix was used to transplant corals onto the hard substrate. On the north side of each coral selected for monitoring, we attached an 8.2 cm × 8.2 cm reflective tile. We used reflective tiles instead of numbered tags due to the expected amount of biofouling growing on the tag surface. Every coral was recorded with top view photography (perpendicular to the plane of coral attachment), with the reflective square in the field of view. We drafted a map of the site to facilitate navigation and re-sighting of the monitored colonies. Then, we developed a simple monitoring protocol for hotel staff. Using the map, and the reflective tiles, the divers located the coral colonies, recorded status (alive, dead, bleaching), and took a photograph. We measured the two-dimensional coral planar area and the change in colony size over time using contour tissue measurements of photographs. Results The monitoring method was robust enough to detect the expected survival of coral transplants, with encrusting and massive corals outperforming branching corals. Survival of encrusting and massive corals was higher (50%-100%) than branching corals (16.6%-83.3%). The change in colony size was 10.1 cm2 ± 8.8 (SE). Branching coral survivors grew faster than massive/encrusting corals. A comprehensive approach to the boutique restoration monitoring experiment would have included comparisons with a control patch reef with a similar species composition to the coral transplants. However, the ability to monitor such a control site, in addition to the restoration site, was beyond the logistic capabilities of the hotel staff, and we were limited to monitoring survival and growth within the restoration site. We conclude that science-based boutique coral reef restoration, tailored to the needs of a hotel resort, combined with a simple monitoring method, can provide a framework for involving hotels as partners in coral reef restoration worldwide.
Collapse
Affiliation(s)
- Sarah Frias-Torres
- Nature Seychelles, Island Conservation Centre, Praslin, Republic of Seychelles
- Smithsonian Marine Station, Fort Pierce, FL, USA
| | - Claude Reveret
- Nature Seychelles, Island Conservation Centre, Praslin, Republic of Seychelles
- CREOCEAN, La Rochelle, France
| | - Kerstin Henri
- Nature Seychelles, Island Conservation Centre, Praslin, Republic of Seychelles
| | - Nirmal Shah
- Nature Seychelles, Island Conservation Centre, Praslin, Republic of Seychelles
| | - Phanor Hernando Montoya Maya
- Nature Seychelles, Island Conservation Centre, Praslin, Republic of Seychelles
- Corales de Paz, Santiago de Cali, Colombia
| |
Collapse
|
24
|
López-Cubillos S, McDonald-Madden E, Mayfield MM, Runting RK. Optimal restoration for pollination services increases forest cover while doubling agricultural profits. PLoS Biol 2023; 21:e3002107. [PMID: 37220120 DOI: 10.1371/journal.pbio.3002107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 04/04/2023] [Indexed: 05/25/2023] Open
Abstract
Pollinators are currently facing dramatic declines in abundance and richness across the globe. This can have profound impacts on agriculture, as 75% of globally common food crops benefit from pollination services. As many native bee species require natural areas for nesting, restoration efforts within croplands may be beneficial to support pollinators and enhance agricultural yields. Yet, restoration can be challenging to implement due to large upfront costs and the removal of land from production. Designing sustainable landscapes will require planning approaches that include the complex spatiotemporal dynamics of pollination services flowing from (restored) vegetation into crops. We present a novel planning framework to determine the best spatial arrangement for restoration in agricultural landscapes while accounting for yield improvements over 40 years following restoration. We explored a range of production and conservation goals using a coffee production landscape in Costa Rica as a case study. Our results show that strategic restoration can increase forest cover by approximately 20% while doubling collective landholder profits over 40 years, even when accounting for land taken out of production. We show that restoration can provide immense economic benefits in the long run, which may be pivotal to motivating local landholders to undertake conservation endeavours in pollinator-dependent croplands.
Collapse
Affiliation(s)
- Sofía López-Cubillos
- School of Earth and Environmental Science and Centre for Biodiversity and Conservation Science, University of Queensland, St Lucia, Brisbane, Queensland, Australia
- School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - Eve McDonald-Madden
- School of Earth and Environmental Science and Centre for Biodiversity and Conservation Science, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Margaret M Mayfield
- School of BioSciences, University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - Rebecca K Runting
- School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Parkville, Melbourne, Victoria, Australia
| |
Collapse
|
25
|
Frietsch M, Loos J, Löhr K, Sieber S, Fischer J. Future-proofing ecosystem restoration through enhancing adaptive capacity. Commun Biol 2023; 6:377. [PMID: 37029278 PMCID: PMC10082013 DOI: 10.1038/s42003-023-04736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 03/21/2023] [Indexed: 04/09/2023] Open
Abstract
Social-ecological ecosystem restoration involves interacting challenges, including climate change, resource overexploitation and political instability. To prepare for these and other emerging threats, we synthesized key restoration and social-ecological systems literature and derived three guiding themes that can help to enhance the adaptive capacity of restoration sites: (i) work with the existing system, (ii) create self-sustaining, adaptive systems, and (iii) foster diversity and participation. We propose a two-step approach and provide an example from Rwanda detailing the application of these principles. While site-specific activities have to be designed and implemented by local practitioners, our synthesis can guide forward-thinking restoration practice.
Collapse
Affiliation(s)
- Marina Frietsch
- Leuphana University, Social-Ecological Systems Institute, Faculty of Sustainability, Universitätsallee 1, 21335, Lüneburg, Germany.
- University of Rwanda, Center of Excellence in Biodiversity and Natural Resource Management, KN 7 Ave, Kigali, Rwanda.
| | - Jacqueline Loos
- Leuphana University, Social-Ecological Systems Institute, Faculty of Sustainability, Universitätsallee 1, 21335, Lüneburg, Germany
- Leuphana University, Institute of Ecology, Faculty of Sustainability, Universitätsallee 1, 21335, Lüneburg, Germany
| | - Katharina Löhr
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 85, 15374, Müncheberg, Germany
- Humboldt Universität zu Berlin, Thaer-Institute of Agricultural and Horticultural Sciences, Urban Plant Ecophysiology, Lentzeallee 55/57, 14195, Berlin, Germany
| | - Stefan Sieber
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 85, 15374, Müncheberg, Germany
- Humboldt Universität zu Berlin, Thaer-Institute of Agricultural and Horticultural Sciences, Resource Economics, Unter den Linden 6, 10099, Berlin, Germany
| | - Joern Fischer
- Leuphana University, Social-Ecological Systems Institute, Faculty of Sustainability, Universitätsallee 1, 21335, Lüneburg, Germany
| |
Collapse
|
26
|
Putra AR, Yen JDL, Fournier-Level A. Forecasting trait responses in novel environments to aid seed provenancing under climate change. Mol Ecol Resour 2023; 23:565-580. [PMID: 36308465 DOI: 10.1111/1755-0998.13728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 11/28/2022]
Abstract
Revegetation projects face the major challenge of sourcing optimal plant material. This is often done with limited information about plant performance and increasingly requires factoring resilience to climate change. Functional traits can be used as quantitative indices of plant performance and guide seed provenancing, but trait values expected under novel conditions are often unknown. To support climate-resilient provenancing efforts, we develop a trait prediction model that integrates the effect of genetic variation with fine-scale temperature variation. We train our model on multiple field plantings of Arabidopsis thaliana and predict two relevant fitness traits-days-to-bolting and fecundity-across the species' European range. Prediction accuracy was high for days-to-bolting and moderate for fecundity, with the majority of trait variation explained by temperature differences between plantings. Projection under future climate predicted a decline in fecundity, although this response was heterogeneous across the range. In response, we identified novel genotypes that could be introduced to genetically offset the fitness decay. Our study highlights the value of predictive models to aid seed provenancing and improve the success of revegetation projects.
Collapse
Affiliation(s)
- Andhika R Putra
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jian D L Yen
- Arthur Rylah Institute for Environmental Research, Heidelberg, Victoria, Australia
| | | |
Collapse
|
27
|
Fernandes MP, Matono P, Almeida E, Pinto-Cruz C, Belo ADF. Sowing wildflower meadows in Mediterranean peri-urban green areas to promote grassland diversity. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1112596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
IntroductionThe increase of urban areas and their infrastructure network is homogenizing the landscape and threatening biodiversity and ecosystems functions and services. Wildflower meadows have a high biodiversity value and can prosper in degraded areas dominated by nitrophilous species, making them suitable to be used in peri-urban and urban areas to promote local flora, create habitat for pollinators and other small fauna, and increase overall biodiversity. Moreover, the application of wildflowers seed mixes suitable for rehabilitating anthropized environments should be restricted to native species of regional origin, and the results properly monitored. However, thorough monitoring of seed mixes evolution is uncommon. This study evaluates the effectiveness of a seed mix of wild native species developed to promote grassland diversity in Mediterranean peri-urban areas.MethodsThe study was divided into two sequential phases. Firstly, a preparatory phase consisted in developing two seed mixes and sowing them (autumn 2016) in ex-situ plots (three plots of 5 × 2 m2 per mix) at an experimental field to choose the one with the best performance. The second phase consisted of the in-situ application (autumn 2018) of the chosen seed mix by sowing 14 plots (10 × 2 m2) in pocket parks distributed along pedestrian trails of South Portugal. All plots were monitored through floristic surveys for two springs (ex-situ trials: 2017 and 2018; in-situ trials: 2019 and 2020).ResultsAll sowed species germinated in the in-situ plots over the first 2 years. The seed mix application positively contributed to the floristic community, generating a significant increase in the total species richness, diversity, evenness, and vegetation cover. The seed mix establishment did not require watering nor soil fertilizing and the mowing frequency was low (once in late spring), contributing to sustainable and low-cost management of these green areas.DiscussionThe tested seed mix promoted native flora diversity rapidly and seems suitable for use in peri-urban context under identical climate conditions. Given the small number of native seed mixes tested in the Mediterranean, this study represents a contribution toward improved management standards of native flora diversity in Mediterranean green urban and peri-urban areas.
Collapse
|
28
|
Tudor EP, Lewandrowski W, Tomlinson S. Integrating animal physiology into the adaptive management of restored landscapes. ENVIRONMENTAL MANAGEMENT 2023:10.1007/s00267-023-01800-5. [PMID: 36781454 PMCID: PMC10372129 DOI: 10.1007/s00267-023-01800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Global-scale ecological changes and intensifying habitat destruction and have caused alarming declines in wildlife populations, resulting in a great need for concerted efforts towards their conservation. Despite this, animals are frequently overlooked in restoration and management initiatives and therefore populations often do not reassemble following disturbance without re-establishing habitat that meets their abiotic and biotic requirements. However, restoration ecologists broadly lack insight into the physiological mechanisms that can govern the responses of fauna to environmental change and management. Therefore, we conducted a literature search for studies reporting a mechanistic understanding of faunal habitat suitability and selection in restored landscapes to deliver an updated perspective on the integration of animal ecophysiology and restoration ecology. Of the 75,442 studies that we identified discussing ecological restoration in the last 50 years, only 8,627 (11.4%) did so in the context of fauna from which 912 studies (1.2%) examined habitat selection, 35 studies (0.05%) integrated physiology and only 15 studies (0.02%) explored thermal biology, despite temperature being one of the most pervasive drivers of physiological functioning. To combat this, we developed a conceptual framework that can guide restoration ecophysiology and promote innovative, multidisciplinary research through an established adaptive management structure. While physiological tools and approaches are currently underutilised in restoration practice, integrating them into ecological restoration, and environmental management more broadly, will offer exciting new opportunities to describe, explain and predict the responses of fauna to environmental change occurring, and that yet to come.
Collapse
Affiliation(s)
- Emily P Tudor
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Kattidj Close, Kings Park, WA, 6005, Australia.
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia.
| | - Wolfgang Lewandrowski
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Kattidj Close, Kings Park, WA, 6005, Australia
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Sean Tomlinson
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Kattidj Close, Kings Park, WA, 6005, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
29
|
Hodgson RJ, Liddicoat C, Cando‐Dumancela C, Blyth C, Watson CD, Breed MF. Local and non‐local soil microbiota impede germination of the endangered
Acacia whibleyana. AUSTRAL ECOL 2023. [DOI: 10.1111/aec.13275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Riley J. Hodgson
- College of Science and Engineering Flinders University Bedford Park South Australia Australia
| | - Craig Liddicoat
- College of Science and Engineering Flinders University Bedford Park South Australia Australia
- School of Public Health University of Adelaide Adelaide South Australia Australia
| | | | - Colette Blyth
- School of Biological Sciences University of Adelaide Adelaide South Australia Australia
| | - Carl D. Watson
- College of Science and Engineering Flinders University Bedford Park South Australia Australia
| | - Martin F. Breed
- College of Science and Engineering Flinders University Bedford Park South Australia Australia
| |
Collapse
|
30
|
Volsi B, Higashi GE, Bordin I, Telles TS. The diversification of species in crop rotation increases the profitability of grain production systems. Sci Rep 2022; 12:19849. [PMID: 36400822 PMCID: PMC9674645 DOI: 10.1038/s41598-022-23718-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022] Open
Abstract
Crop rotation with species diversification contributes to the control of pests, diseases and weeds and improves soil fertility and conservation, which can lead to increased profitability in grain production systems. The objectives of this study were to determine whether grain production systems that employ crop rotation with species diversification are more productive and profitable than double-cropping rotations without diversification and to analyze the revenues and production costs of these cropping systems. An experiment was conducted in a region with subtropical climate between the crop years of 2014-2015 and 2019-2020. The experiment consisted of a randomized block design with six treatments and four replicates. The treatments consisted of six grain production systems, including five rotations with varied levels of species diversification and a corn-soybean rotation without species diversification, all under no-tillage. Productivity, revenue, production cost and profit indicators were analyzed. Productivity was compared by Duncan's test (p ≤ 0.05). The grain production systems with species diversification showed better productivity and profitability than the corn-soybean system. The profit of the systems with species diversification was on average 37% higher than that of the system with corn-soybean rotation. In summary, grain production systems that employ crop rotation with species diversification showed higher productivity and profitability than the corn-soybean rotation without species diversification.
Collapse
Affiliation(s)
- Bruno Volsi
- Department of Agronomy, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná, 86057-970, Brazil
| | - Gabriel Eiji Higashi
- Department of Agronomy, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná, 86057-970, Brazil
| | - Ivan Bordin
- Instituto de Desenvolvimento Rural do Paraná - IAPAR-EMATER, Rodovia Celso Garcia Cid, Km 375, Londrina, Paraná, 86047-902, Brazil
| | - Tiago Santos Telles
- Instituto de Desenvolvimento Rural do Paraná - IAPAR-EMATER, Rodovia Celso Garcia Cid, Km 375, Londrina, Paraná, 86047-902, Brazil.
| |
Collapse
|
31
|
Transitional mire vegetation restoration: changing failure back to success, case study from Slovenia. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2022. [DOI: 10.1007/s12210-022-01110-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Short-Term Vegetation Restoration Enhances the Complexity of Soil Fungal Network and Decreased the Complexity of Bacterial Network. J Fungi (Basel) 2022; 8:jof8111122. [PMID: 36354889 PMCID: PMC9695196 DOI: 10.3390/jof8111122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Different vegetation restoration methods may affect the soil’s physicochemical properties and microbial communities. However, it is not known how the microbial network’s complexity of the bacterial and fungal communities respond to short-term vegetation restoration. We conducted a short-term ecological restoration experiment to reveal the response of the soil’s microbial community and microbial network’s stability to initial vegetation restoration during the restoration of the degraded grassland ecosystem. The two restoration methods (sowing alfalfa (Medicago sativa, AF) and smooth brome (Bromus inermis, SB)) had no significant effect on the alpha diversity of the fungal community, but the SB significantly increased the alpha diversity of the soil surface bacterial community (p < 0.01). The results of NMDS showed that the soil’s fungal and bacterial communities were altered by a short-term vegetation restoration, and they showed that the available phosphorus (AP), available potassium (AK), and nitrate nitrogen (nitrate-N) were closely related to changes in bacterial and fungal communities. Moreover, a short-term vegetation restoration significantly increased the complexity and stability of fungi ecological networks, but the opposite was the case with the bacteria. Our findings confirm that ecological restoration by sowing may be favorable to the amelioration of soil fungi complexity and stability in the short-term. Such findings may have important implications for soil microbial processes in vegetation recovery.
Collapse
|
33
|
Gaiarsa MP, Bascompte J. Hidden effects of habitat restoration on the persistence of pollination networks. Ecol Lett 2022; 25:2132-2141. [PMID: 36006740 PMCID: PMC9804604 DOI: 10.1111/ele.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/23/2022] [Indexed: 01/05/2023]
Abstract
Past and recent studies have focused on the effects of global change drivers such as species invasions on species extinction. However, as we enter the United Nations Decade of Ecosystem Restoration the aim must switch to understanding how invasive-species management affects the persistence of the remaining species in a community. Focusing on plant-pollinator interactions, we test how species persistence is affected by restoration via the removal of invasive plant species. Restoration had a clear positive effect on plant persistence, whereas there was no difference between across treatments for pollinator persistence in the early season, but a clear effect in late season, with higher persistence in unrestored sites. Network structure affected only pollinator persistence, while centrality had a strong positive effect on both plants and pollinators. Our results suggest a hidden effect of invasive plants-although they may compete with native plant species, invasive plants may provide important resources for pollinators, at least in the short term.
Collapse
Affiliation(s)
- Marilia P. Gaiarsa
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- School of Natural SciencesUniversity of California, MercedMercedCaliforniaUSA
| | - Jordi Bascompte
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
34
|
Voicescu SA, Lane J, Cooke SJ, Higgs E, Fisher AC, Rochefort L, Shackelford N, Murphy S. Awareness and Use of SER's International Principles and Standards for the Practice of Ecological Restoration in Canada. Restor Ecol 2022. [DOI: 10.1111/rec.13789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sonia A. Voicescu
- School of Environmental Studies, University of Victoria University House 4 Victoria BC V8W 2Y2 Canada
| | | | - Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science Carleton University Ottawa ON K1S 5B6 Canada
| | - Eric Higgs
- School of Environmental Studies, University of Victoria University House 4 Victoria BC V8W 2Y2 Canada
| | - Alina C. Fisher
- School of Environmental Studies, University of Victoria University House 4 Victoria BC V8W 2Y2 Canada
| | - Line Rochefort
- Department of Plant Sciences Laval University Québec G1V 0A6 Canada
| | - Nancy Shackelford
- School of Environmental Studies, University of Victoria University House 4 Victoria BC V8W 2Y2 Canada
| | - Stephen Murphy
- School of Environment, Resources & Sustainability University of Waterloo Waterloo ON N2L 3G1 Canada
| |
Collapse
|
35
|
Staples TL, Mayfield MM, England JR, Dwyer JM. Drivers of Acacia and Eucalyptus growth rate differ in strength and direction in restoration plantings across Australia. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2636. [PMID: 35404495 PMCID: PMC9539508 DOI: 10.1002/eap.2636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/24/2022] [Accepted: 02/18/2022] [Indexed: 05/31/2023]
Abstract
Functional traits are proxies for a species' ecology and physiology and are often correlated with plant vital rates. As such they have the potential to guide species selection for restoration projects. However, predictive trait-based models often only explain a small proportion of plant performance, suggesting that commonly measured traits do not capture all important ecological differences between species. Some residual variation in vital rates may be evolutionarily conserved and captured using taxonomic groupings alongside common functional traits. We tested this hypothesis using growth rate data for 17,299 trees and shrubs from 80 species of Eucalyptus and 43 species of Acacia, two hyper-diverse and co-occurring genera, collected from 497 neighborhood plots in 137 Australian mixed-species revegetation plantings. We modeled relative growth rates of individual plants as a function of environmental conditions, species-mean functional traits, and neighbor density and diversity, across a moisture availability gradient. We then assessed whether the strength and direction of these relationships differed between the two genera. We found that the inclusion of genus-specific relationships offered a significant but modest improvement to model fit (1.6%-1.7% greater R2 than simpler models). More importantly, almost all correlates of growth rate differed between Eucalyptus and Acacia in strength, direction, or how they changed along the moisture gradient. These differences mapped onto physiological differences between the genera that were not captured solely by measured functional traits. Our findings suggest taxonomic groupings can capture or mediate variation in plant performance missed by common functional traits. The inclusion of taxonomy can provide a more nuanced understanding of how functional traits interact with abiotic and biotic conditions to drive plant performance, which may be important for constructing trait-based frameworks to improve restoration outcomes.
Collapse
Affiliation(s)
- Timothy L. Staples
- School of Biological SciencesThe University of QueenslandBrisbaneQueenslandAustralia
- CSIRO Land and Water, EcoSciences PrecinctDutton ParkQueenslandAustralia
| | - Margaret M. Mayfield
- School of Biological SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | | | - John M. Dwyer
- School of Biological SciencesThe University of QueenslandBrisbaneQueenslandAustralia
- CSIRO Land and Water, EcoSciences PrecinctDutton ParkQueenslandAustralia
| |
Collapse
|
36
|
Mohr JJ, Harrison PA, Stanhope J, Breed MF. Is the genomics 'cart' before the restoration ecology 'horse'? Insights from qualitative interviews and trends from the literature. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210381. [PMID: 35757881 PMCID: PMC9234818 DOI: 10.1098/rstb.2021.0381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/26/2022] [Indexed: 12/21/2022] Open
Abstract
Harnessing new technologies is vital to achieve global imperatives to restore degraded ecosystems. We explored the potential of genomics as one such tool. We aimed to understand barriers hindering the uptake of genomics, and how to overcome them, via exploratory interviews with leading scholars in both restoration and its sister discipline of conservation-a discipline that has successfully leveraged genomics. We also conducted an examination of research trends to explore some insights that emerged from the interviews, including publication trends that have used genomics to address restoration and conservation questions. Our qualitative findings revealed varied perspectives on harnessing genomics. For example, scholars in restoration without genomics experience felt genomics was over-hyped. Scholars with genomics experience emphatically emphasized the need to proceed cautiously in using genomics in restoration. Both genomics-experienced and less-experienced scholars called for case studies to demonstrate the benefits of genomics in restoration. These qualitative data contrasted with our examination of research trends, which revealed 70 restoration genomics studies, particularly studies using environmental DNA as a monitoring tool. We provide a roadmap to facilitate the uptake of genomics into restoration, to help the restoration sector meet the monumental task of restoring huge areas to biodiverse and functional ecosystems. This article is part of the theme issue 'Ecological complexity and the biosphere: the next 30 years'.
Collapse
Affiliation(s)
- Jakki J. Mohr
- College of Business, Institute on Ecosystems, University of Montana, Missoula, MT 59812, USA
| | - Peter A. Harrison
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Jessica Stanhope
- School of Allied Health Science and Practice, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Martin F. Breed
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
37
|
Cooke SJ, Frempong‐Manso A, Piczak ML, Karathanou E, Clavijo C, Ajagbe SO, Akeredolu E, Strauch AM, Piccolo J. A freshwater perspective on the United Nations decade for ecosystem restoration. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Steven J. Cooke
- Department of Biology and Institute of Environmental and Interdisciplinary Science Carleton University Ottawa Ontario Canada
| | - Acacia Frempong‐Manso
- Department of Biology and Institute of Environmental and Interdisciplinary Science Carleton University Ottawa Ontario Canada
| | - Morgan L. Piczak
- Department of Biology and Institute of Environmental and Interdisciplinary Science Carleton University Ottawa Ontario Canada
| | - Eirini Karathanou
- Biology Department Aristotle University of Thessaloniki Thessaloniki Greece
| | | | - Stephen O. Ajagbe
- Department of Wildlife and Ecotourism Department Forestry Research Institute of Nigeria Ibadan Nigeria
| | | | - Ayron M. Strauch
- Department of Natural Resources and Environmental Management University of Hawai‘i Honolulu Hawaii USA
| | - John Piccolo
- Department of Environmental and Life Sciences, River Ecology and Management Research Group RivEM Karlstad University Karlstad Sweden
| |
Collapse
|
38
|
Buisson E, Archibald S, Fidelis A, Suding KN. Ancient grasslands guide ambitious goals in grassland restoration. Science 2022; 377:594-598. [PMID: 35926035 DOI: 10.1126/science.abo4605] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Grasslands, which constitute almost 40% of the terrestrial biosphere, provide habitat for a great diversity of animals and plants and contribute to the livelihoods of more than 1 billion people worldwide. Whereas the destruction and degradation of grasslands can occur rapidly, recent work indicates that complete recovery of biodiversity and essential functions occurs slowly or not at all. Grassland restoration-interventions to speed or guide this recovery-has received less attention than restoration of forested ecosystems, often due to the prevailing assumption that grasslands are recently formed habitats that can reassemble quickly. Viewing grassland restoration as long-term assembly toward old-growth endpoints, with appreciation of feedbacks and threshold shifts, will be crucial for recognizing when and how restoration can guide recovery of this globally important ecosystem.
Collapse
Affiliation(s)
- Elise Buisson
- Institut Méditerranéen de Biodiversité et d'Ecologie, Avignon Université, CNRS, IRD, Aix Marseille Université, 84911 Avignon, France
| | - Sally Archibald
- Centre for African Ecology, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Alessandra Fidelis
- Instituto de Biociências, Lab of Vegetation Ecology, Universidade Estadual Paulista (UNESP), Rio Claro 13506-900, Brazil
| | - Katharine N Suding
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.,Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA
| |
Collapse
|
39
|
Effects of landscape structure on restoration success in tropical premontane forest. Sci Rep 2022; 12:13452. [PMID: 35927554 PMCID: PMC9352795 DOI: 10.1038/s41598-022-16542-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/12/2022] [Indexed: 11/08/2022] Open
Abstract
Reversing large-scale habitat degradation and deforestation goes beyond what can be achieved by site-level ecological restoration and a landscape ecology perspective is fundamental. Here we assess the relative importance of tree cover and its configuration on forest-dependent birds and late-successional tree seedlings in restoration sites in southern Costa Rica. The abundance and species richness of birds increased in landscapes with more corridors, higher tree cover, and lower levels of fragmentation, highlighting the importance of riparian corridors for connectivity, and continuous tree cover as suitable habitat. Landscape variables affected abundance and species richness of seedlings similarly, but effects were weaker, possibly because seedlings face establishment limitation in addition to dispersal limitation. Moreover, the scale of landscape effects on seedlings was small, likely because proximal individual trees can significantly influence recruitment in restoration plots. Results underscore the importance of incorporating landscape-level metrics to restoration projects, as knowing the extent, and how the landscape may affect restoration outcomes can help to infer what kind of species will arrive to restoration plots.
Collapse
|
40
|
Galatowitsch S. Organizational capacity and ecological restoration. Restor Ecol 2022. [DOI: 10.1111/rec.13757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Susan Galatowitsch
- University of Minnesota, Department of Fisheries, Wildlife and Conservation Biology, 2003 Upper Buford Circle Saint Paul Minnesota 55108
| |
Collapse
|
41
|
Cao X, Liu Z, Li S, Gao Z. Integrating the Ecological Security Pattern and the PLUS Model to Assess the Effects of Regional Ecological Restoration: A Case Study of Hefei City, Anhui Province. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6640. [PMID: 35682224 PMCID: PMC9180353 DOI: 10.3390/ijerph19116640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
Most studies in the field of ecological restoration have only focused on repairing damaged land and have made no attempt to account for the impact of high-intensity land use on future landscape patterns. The purpose of this study was to propose a framework for evaluating the expected effects of ecological restoration based on land-use change and the ecological security pattern. Therefore, we integrated the PLUS model with the ecological security pattern and used Hefei City as a case study to conduct research. The results showed that from 2020 to 2030, land-use changes would occur primarily in the main urban area of Hefei and along the eastern shore of the Chaohu Lake watershed. Under the ecological protection scenario, arable land would be converted to construction land and woodland. Additionally, there would be an increase in ecological sources and pinch points in the area, and the number and area of the barriers would show a certain degree of reduction. The ecosystem quality, ecological integrity, and landscape connectivity of Hefei would be improved. This study offers a novel perspective for evaluating the expected effects of regional ecological restoration and provides an important reference for the dynamic formulation of multilevel ecological restoration policies.
Collapse
Affiliation(s)
| | - Zhaoshun Liu
- College of Earth Sciences, Jilin University, Changchun 130061, China; (X.C.); (S.L.); (Z.G.)
| | | | | |
Collapse
|
42
|
Romanelli JP, Meli P, Santos JPB, Jacob IN, Souza LR, Rodrigues AV, Trevisan DP, Huang C, Almeida DRA, Silva LGM, Lopes Assad MLRC, Cadotte MW, Rodrigues RR. Biodiversity responses to restoration across the Brazilian Atlantic Forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153403. [PMID: 35101503 DOI: 10.1016/j.scitotenv.2022.153403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The UN Decade on Ecosystem Restoration is focussing attention and resources on restoration globally. Nowhere is this more crucial than in tropical forests that harbor immense biodiversity, but have also undergone widespread deforestation over the past few decades. We performed a meta-analysis to investigate how biodiversity features respond to forest restoration across the Brazilian Atlantic Forest (BAF), one of the most threatened biodiversity hotspots in the world. We assembled biodiversity in different metrics of structure and diversity features of three taxonomic groups (vascular plants, soil microorganisms, and invertebrates), generating a dataset with 2370 observations from 76 primary studies. We quantified the incomplete recovery of biodiversity (i.e., the rate of recovery to a pre-disturbance state) occurring during the restoration process, which we called the 'recovery gap'. Our results revealed that forests undergoing restoration in the BAF show a recovery gap of 34% for structure features and 22% for diversity features in comparison to reference reforests, considering all taxonomic groups investigated. For vascular plants, soil microorganisms, and invertebrates the recovery gap ranged between 46 and 47%, 16-26%, and 4-7%, respectively. Overall, the recovery gap was influenced by the interaction of restoration actions (i.e., the past land use, restoration age and restoration approach - active and passive restoration), however, structure features responded more sensitively to the time elapsed since restoration started, while the recovery gap for diversity features depended more on the past land-use. Our study can help guide the prioritization of the aforenamed taxonomic groups in restoration, the regulation of potential biodiversity offsetting policies in the BAF, and understanding how coupled biodiversity features respond to the interaction of environmental conditions and restoration actions in a high fragmented tropical landscape.
Collapse
Affiliation(s)
- João Paulo Romanelli
- Laboratory of Ecology and Forest Restoration (LERF), Department of Forest Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil.
| | - Paula Meli
- Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco, Chile; Facultad de Ciencias Forestales, Universidad de Concepción, Chile
| | - João Paulo Bispo Santos
- Postgraduate in Plant Biology, Department of Plant Biology, Institute of Biology, State University of Campinas (UNICAMP), Zeferino Vaz University City, Campinas, SP 13083-970, Brazil
| | - Igor Nogueira Jacob
- Laboratory of Ecology and Forest Restoration (LERF), Department of Forest Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil
| | - Lukas Rodrigues Souza
- Laboratory of Ecology and Forest Restoration (LERF), Department of Forest Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil
| | - André Vieira Rodrigues
- Department of Zoology, Institute of Biosciences, University of São Paulo - USP, Rua do Matão, travessa 14, no 101, 05508-090 São Paulo, SP, Brazil
| | - Diego Peruchi Trevisan
- Department of Environmental Sciences, Federal University of São Carlos (UFSCar), Washington Luiz Road, São Carlos 13565-905, SP, Brazil; Department of Geography, School of Environment, Education and Development, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Chunbo Huang
- Research Center of Spatial Planning and Human-Environmental System Simulation, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Danilo R A Almeida
- Laboratory of Ecology and Forest Restoration (LERF), Department of Forest Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil
| | - Luiz G M Silva
- Stocker Lab, Institute for Environmental Engineering (IfU), Department of Civil, Environmental and Geomatic Engineering (D-BAUG), ETH-Zurich, 8046, Zurich, Switzerland
| | - Maria Leonor R C Lopes Assad
- Department of Natural Resources and Environmental Protection, Federal University of São Carlos, Anhanguera Highway, km 174, 13600-970 Araras, Brazil
| | - Marc W Cadotte
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Ricardo Ribeiro Rodrigues
- Laboratory of Ecology and Forest Restoration (LERF), Department of Forest Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil.
| |
Collapse
|
43
|
Atkinson J, Brudvig LA, Mallen-Cooper M, Nakagawa S, Moles AT, Bonser SP. Terrestrial ecosystem restoration increases biodiversity and reduces its variability, but not to reference levels: A global meta-analysis. Ecol Lett 2022; 25:1725-1737. [PMID: 35559594 PMCID: PMC9320827 DOI: 10.1111/ele.14025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/06/2022] [Accepted: 04/23/2022] [Indexed: 12/01/2022]
Abstract
Ecological restoration projects often have variable and unpredictable outcomes, and these can limit the overall impact on biodiversity. Previous syntheses have investigated restoration effectiveness by comparing average restored conditions to average conditions in unrestored or reference systems. Here, we provide the first quantification of the extent to which restoration affects both the mean and variability of biodiversity outcomes, through a global meta-analysis of 83 terrestrial restoration studies. We found that, relative to unrestored (degraded) sites, restoration actions increased biodiversity by an average of 20%, while decreasing the variability of biodiversity (quantified by the coefficient of variation) by an average of 14%. As restorations aged, mean biodiversity increased and variability decreased relative to unrestored sites. However, restoration sites remained, on average, 13% below the biodiversity of reference (target) ecosystems, and were characterised by higher (20%) variability. The lower mean and higher variability in biodiversity at restored sites relative to reference sites remained consistent over time, suggesting that sources of variation (e.g. prior land use, restoration practices) have an enduring influence on restoration outcomes. Our results point to the need for new research confronting the causes of variability in restoration outcomes, and close variability and biodiversity gaps between restored and reference conditions.
Collapse
Affiliation(s)
- Joe Atkinson
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington, New South Wales, Australia
| | - Lars A Brudvig
- Department of Plant Biology and Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, Michigan, USA
| | - Max Mallen-Cooper
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington, New South Wales, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington, New South Wales, Australia
| | - Angela T Moles
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington, New South Wales, Australia
| | - Stephen P Bonser
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington, New South Wales, Australia
| |
Collapse
|
44
|
Sparks JA. Primer of Ecological Restoration. Karen D.Hall. 2020. Island Press, Washington DC, USA. 202 pp. $35.00 paperback. ISBN: 9781610919722. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Abstract
The principal drivers of Grassland Biome conversion and degradation in South Africa include agricultural intensification, plantation forestry, urban expansion and mining, together with invasive non-native plants and insidious rural sprawl. This biome is poorly conserved and in dire need of restoration, an ecologically centred practice gaining increasing traction given its wide application to people and biodiversity in this emerging culture of renewal. The pioneering proponent of restoration in South Africa is the mining industry, primarily to restore surface stability using vegetation cover. We noticed a historical progression from production-focussed non-native pastures to more diverse suites of native species and habitats in the restoration landscape. This paradigm shift towards the proactive “biodiversity approach” necessitates assisted natural regeneration, mainly through revegetation with grasses, using plugs, sods and/or seeds, together with long-lived perennial forbs. We discuss key management interventions such as ongoing control of invasive non-native plants, the merits of fire and grazing, and the deleterious impacts of fertilisers. We also highlight areas of research requiring further investigation. The “biodiversity approach” has limitations and is best suited to restoring ecological processes rather than attempting to match the original pristine state. We advocate conserving intact grassland ecosystems as the key strategy for protecting grassland biodiversity, including small patches with disproportionately high biodiversity conservation value.
Collapse
|
46
|
Dudney J, D'Antonio C, Hobbs RJ, Shackelford N, Standish RJ, Suding KN. Capacity for change: Three core attributes of adaptive capacity that bolster restoration efficacy. Restor Ecol 2022. [DOI: 10.1111/rec.13647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joan Dudney
- Department of Plant Sciences University of California, Davis Davis California USA
- Environmental Studies Program University of California, Santa Barbara Santa Barbara California USA
| | - Carla D'Antonio
- Environmental Studies Program University of California, Santa Barbara Santa Barbara California USA
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California USA
| | - Richard J. Hobbs
- School of Biological Sciences The University of Western Australia Crawley WA Australia
| | | | | | - Katharine N. Suding
- Department of Ecology and Evolutionary Biology University of Colorado at Boulder USA
- Institute of Arctic and Alpine Research University of Colorado at Boulder Boulder Colorado USA
| |
Collapse
|
47
|
Qiu S, Peng J, Zheng H, Xu Z, Meersmans J. How can massive ecological restoration programs interplay with social-ecological systems? A review of research in the South China karst region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150723. [PMID: 34610410 DOI: 10.1016/j.scitotenv.2021.150723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Exploring the cost-effective pathways for restoring ecosystems is a fundamental aspect for scientific communities and policy-makers aiming for a sustainable future. The South China karst region has experienced severe environmental degradation because of unsustainable management practices in this vulnerable social-ecological context. However, it has also become one of the most stunning areas following its remarkable vegetation recovery over recent decades as a result of large-scale ecological restoration programs. There is an extensive body of literature focusing on how ecological restoration programs have altered the degraded environment in this region. By searching and comparing the published peer-reviewed articles, we reviewed the studies related to the effects of ecological restoration programs from the point of view of ecological, socio-economic, and integrated social-ecological impacts, as well as influencing factors and restoration approaches. We found independent evidence to support that large-scale ecological restoration programs increased biomass and carbon sequestration since 2000 across this region. The farmers' livelihoods have spontaneously transited from agriculture into forestry or non-farming sectors without financial compensation or incentive schemes, which coincided with a positive correlation between the implementation of ecological restoration programs and poverty alleviation. However, due to a lack of clear "before and after" comparisons, many studies have indirectly determined the impacts of ecological restoration with non-negligible uncertainties. In addition, considering the critical interactions between belowground and aboveground processes in karst regions, special attention should be given to the selection of tree species and restoration measures according to different bedrock types. In the future, to better understand the impacts of ecological restoration on social-ecological systems, research could be advanced by considering data access, context-based analysis, measurement-targeted assessment, and cross-scale integration.
Collapse
Affiliation(s)
- Sijing Qiu
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jian Peng
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Huining Zheng
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zihan Xu
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jeroen Meersmans
- TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| |
Collapse
|
48
|
van der Heyde M, Bunce M, Dixon KW, Fernandes K, Majer J, Wardell-Johnson G, White NE, Nevill P. Evaluating restoration trajectories using DNA metabarcoding of ground-dwelling and airborne invertebrates and associated plant communities. Mol Ecol 2022; 31:2172-2188. [PMID: 35092102 PMCID: PMC9304231 DOI: 10.1111/mec.16375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 12/05/2021] [Accepted: 01/19/2022] [Indexed: 11/26/2022]
Abstract
Invertebrates are important for restoration processes as they are key drivers of many landscape‐scale ecosystem functions; including pollination, nutrient cycling and soil formation. However, invertebrates are often overlooked in restoration monitoring because they are highly diverse, poorly described, and time‐consuming to survey, and require increasingly scarce taxonomic expertise to enable identification. DNA metabarcoding is a relatively new tool for rapid survey that is able to address some of these concerns, and provide information about the taxa with which invertebrates are interacting via food webs and habitat. Here, we evaluate how invertebrate communities may be used to determine ecosystem trajectories during restoration. We collected ground‐dwelling and airborne invertebrates across chronosequences of mine‐site restoration in three ecologically disparate locations in Western Australia and identified invertebrate and plant communities using DNA metabarcoding. Ground‐dwelling invertebrates showed the clearest restoration signals, with communities becoming more similar to reference communities over time. These patterns were weaker in airborne invertebrates, which have higher dispersal abilities and therefore less local fidelity to environmental conditions. Although we detected directional changes in community composition indicative of invertebrate recovery, patterns observed were inconsistent between study locations. The inclusion of plant assays allowed identification of plant species, as well as potential food sources and habitat. We demonstrate that DNA metabarcoding of invertebrate communities can be used to evaluate restoration trajectories. Testing and incorporating new monitoring techniques such as DNA metabarcoding is critical to improving restoration outcomes.
Collapse
Affiliation(s)
- M van der Heyde
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, GPP Box U1987, Perth, Western Australia, 6845, Australia.,Trace and Environmental DNA Laboratory, School of Life and Molecular Sciences, Curtin University, GPP Box U1987, Perth, Western Australia, 6845, Australia
| | - M Bunce
- Trace and Environmental DNA Laboratory, School of Life and Molecular Sciences, Curtin University, GPP Box U1987, Perth, Western Australia, 6845, Australia.,Institute of Environmental Science and Research (ESR), Kenepuru, Porirua, 5022, New Zealand
| | - K W Dixon
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, GPP Box U1987, Perth, Western Australia, 6845, Australia
| | - K Fernandes
- Trace and Environmental DNA Laboratory, School of Life and Molecular Sciences, Curtin University, GPP Box U1987, Perth, Western Australia, 6845, Australia
| | - J Majer
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, GPP Box U1987, Perth, Western Australia, 6845, Australia
| | - G Wardell-Johnson
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, GPP Box U1987, Perth, Western Australia, 6845, Australia
| | - N E White
- Trace and Environmental DNA Laboratory, School of Life and Molecular Sciences, Curtin University, GPP Box U1987, Perth, Western Australia, 6845, Australia
| | - P Nevill
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, GPP Box U1987, Perth, Western Australia, 6845, Australia.,Trace and Environmental DNA Laboratory, School of Life and Molecular Sciences, Curtin University, GPP Box U1987, Perth, Western Australia, 6845, Australia
| |
Collapse
|
49
|
Lem AJ, Liddicoat C, Bissett A, Cando‐Dumancela C, Gardner MG, Peddle SD, Watson CD, Breed MF. Does revegetation cause soil microbiota recovery? Evidence from revisiting a revegetation chronosequence six years after initial sampling. Restor Ecol 2022. [DOI: 10.1111/rec.13635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alfie J. Lem
- College of Science and Engineering Flinders University Bedford Park SA 5042 Australia
| | - Craig Liddicoat
- College of Science and Engineering Flinders University Bedford Park SA 5042 Australia
- School of Public Health The University of Adelaide, SA, 5005 Australia
| | - Andrew Bissett
- CSIRO Oceans and Atmosphere Hobart Tasmania 7001 Australia
| | | | - Michael G. Gardner
- College of Science and Engineering Flinders University Bedford Park SA 5042 Australia
- Evolutionary Biology Unit, South Australian Museum, North Terrace Adelaide SA 5000 Australia
| | - Shawn D. Peddle
- College of Science and Engineering Flinders University Bedford Park SA 5042 Australia
| | - Carl D. Watson
- College of Science and Engineering Flinders University Bedford Park SA 5042 Australia
| | - Martin F. Breed
- College of Science and Engineering Flinders University Bedford Park SA 5042 Australia
| |
Collapse
|
50
|
MEDEIROS NATÁLIAF, FERNANDES GERALDOWILSON, RABELLO ANANZAMARA, BAHIA THAÍSEO, SOLAR RICARDOR. Can our current knowledge and practice allow ecological restoration in the Cerrado? AN ACAD BRAS CIENC 2022; 94:e20200665. [DOI: 10.1590/0001-3765202120200665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/13/2021] [Indexed: 11/22/2022] Open
|