1
|
Lombardozzi DL, Wieder WR, Keppel-Aleks G, Lai J, Luo Z, Sun Y, Simpson IR, Lawrence DM, Bonan GB, Lin X, Koven CD, Friedlingstein P, Lindsay K. Agricultural fertilization significantly enhances amplitude of land-atmosphere CO 2 exchange. Nat Commun 2025; 16:1742. [PMID: 39966342 PMCID: PMC11836379 DOI: 10.1038/s41467-025-56730-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/29/2025] [Indexed: 02/20/2025] Open
Abstract
Observations show an increase in the seasonal cycle amplitude of CO2 in northern latitudes over the past half century. Although multiple drivers contribute, observations and inversion models cannot quantitatively account for the factors contributing to the increased CO2 amplitude and older versions of Earth System Models (ESMs) do not simulate it. Here we show that several current generation ESMs are closer to the observed CO2 amplitude and highlight that in the Community Earth System Model (CESM) agricultural nitrogen (N) fertilization increases CO2 amplitude by 1-3 ppm throughout the Northern Hemisphere and up to 9 ppm in agricultural hotspots. While agricultural N fertilization is the largest contributor to the enhanced amplitude (45%) in Northern Hemisphere land-atmosphere carbon fluxes in CESM, higher CO2 concentrations and warmer temperatures also contribute, though to a lesser extent (40% and 18% respectively). Our results emphasize the fundamental role of agricultural management in Northern Hemisphere carbon cycle feedbacks and illustrate that agricultural N fertilization should be considered in future carbon cycle simulations.
Collapse
Affiliation(s)
- Danica L Lombardozzi
- Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, USA.
- Climate and Global Dynamics Laboratory, NSF National Center for Atmospheric Research, Boulder, CO, USA.
| | - William R Wieder
- Climate and Global Dynamics Laboratory, NSF National Center for Atmospheric Research, Boulder, CO, USA
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA
| | - Gretchen Keppel-Aleks
- Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jiameng Lai
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, NY, USA
| | - Zhenqi Luo
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, NY, USA
| | - Ying Sun
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, NY, USA
| | - Isla R Simpson
- Climate and Global Dynamics Laboratory, NSF National Center for Atmospheric Research, Boulder, CO, USA
| | - David M Lawrence
- Climate and Global Dynamics Laboratory, NSF National Center for Atmospheric Research, Boulder, CO, USA
| | - Gordon B Bonan
- Climate and Global Dynamics Laboratory, NSF National Center for Atmospheric Research, Boulder, CO, USA
| | - Xin Lin
- Laboratoire des Sciences du Climat et de l'Environment, Gif sur Yvette Cedex, France
| | - Charles D Koven
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Pierre Friedlingstein
- Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, UK
- Laboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace, CNRS, Ecole Normale Supérieure, Université PSL, Sorbonne Université, Ecole Polytechnique, Paris, France
| | - Keith Lindsay
- Climate and Global Dynamics Laboratory, NSF National Center for Atmospheric Research, Boulder, CO, USA
| |
Collapse
|
2
|
Neigh CSR, Montesano PM, Sexton JO, Wooten M, Wagner W, Feng M, Carvalhais N, Calle L, Carroll ML. Russian forests show strong potential for young forest growth. COMMUNICATIONS EARTH & ENVIRONMENT 2025; 6:71. [PMID: 39897659 PMCID: PMC11782080 DOI: 10.1038/s43247-025-02006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
Climate warming has improved conditions for boreal forest growth, yet the region's fate as a carbon sink of aboveground biomass remains uncertain. Forest height is a powerful predictor of aboveground forest biomass, and access to spatially detailed height-age relationships could improve the understanding of carbon dynamics in this ecosystem. The capacity of land to grow trees, defined in forestry as site index, was estimated by analyzing recent measurements of canopy height against a chronosequence of forest stand age derived from the historical satellite record. Forest-height estimates were then subtracted from the predicted site index to estimate height-age growth potential across the region. Russia, which comprised 73% of the forest change domain, had strong departures from model expectation of 2.4-4.8 ± 3.8 m for the 75th and 90th percentiles. Combining satellite observations revealed a large young forest growth sink if allowed to recover from disturbance.
Collapse
Affiliation(s)
| | - Paul M. Montesano
- NASA Goddard Space Flight Center, Greenbelt, MD USA
- ADNET Systems Inc., Bethesda, MD USA
| | | | - Margaret Wooten
- NASA Goddard Space Flight Center, Greenbelt, MD USA
- Science Systems Applications Inc., Lanham, MD USA
| | - William Wagner
- NASA Goddard Space Flight Center, Greenbelt, MD USA
- Science Systems Applications Inc., Lanham, MD USA
| | - Min Feng
- terraPulse Inc., North Potomac, MD USA
| | | | - Leonardo Calle
- NASA Goddard Space Flight Center, Greenbelt, MD USA
- University of Maryland, College Park, MD USA
| | | |
Collapse
|
3
|
Blanc-Betes E, Welker JM, Gomez-Casanovas N, DeLucia EH, Peñuelas J, de Oliveira ED, Gonzalez-Meler MA. Strong legacies of emerging trends in winter precipitation on the carbon-climate feedback from Arctic tundra. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178246. [PMID: 39808895 DOI: 10.1016/j.scitotenv.2024.178246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/27/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025]
Abstract
Changes in winter precipitation accompanying emerging climate trends lead to a major carbon-climate feedback from Arctic tundra. However, the mechanisms driving the direction, magnitude, and form (CO2 and CH4) of C fluxes and derived climate forcing (i.e. GWP, global warming potential) from Arctic tundra under future precipitation scenarios remain unresolved. Here, we investigated the impacts of 18 years of shallow (SS, -15-30 %) and deeper (IS, +20-45 %; DS, +70-100 %) snow depth on ecosystem C fluxes and GWP in moist acidic tundra over the growing season. The response of Arctic tundra C fluxes to snow accumulation was markedly non-linear. Both shallow- and deeper- winter snow decreased Arctic tundra CO2 emissions relative to ambient (AS), ultimately reducing ecosystem C losses over the growing season. Gross primary productivity (GPP) increased with moderate increases in snow depth and decreased with further snow accumulation closely following transitions in shrub abundance. Photosynthetic uptake, however, was tightly regulated by canopy structure and plant respiration (Raut) to GPP ratio was highly conserved despite substantial transformations of plant community across snow treatments revealing a prominent role of heterotrophic respiration (Rhet) in driving net ecosystem exchange. Consistently, ecosystem C gains responded to constraints on Rhet by temperature limitation within colder soils at SS, and by snow- and thaw-induced increases in soil-water content (SWC) that promoted anaerobic decomposition and dampened the temperature sensitivity of Rhet at IS and DS. Greater CH4 emissions from wetter soils, however, increased the global warming potential (GWP) of Arctic tundra emissions at IS and DS despite decreases in C losses. Overall, our findings indicate the potential of Arctic tussock tundra to reduce C losses over the growing season but also to significantly contribute to the ecosystem GWP under emerging trends in winter precipitation.
Collapse
Affiliation(s)
- Elena Blanc-Betes
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Jeffrey M Welker
- UArctic, Ecology and Genetics Research Unit, University of Oulu, Finland; Department of Biological Sciences, University of Alaska, Anchorage, Anchorage, AK 99501, USA
| | - Nuria Gomez-Casanovas
- Texas A&M AgriLife Research Center, Vernon, Texas A&M University, TX 76384, USA; Rangeland, Wildlife & Fisheries Management Department, Texas A&M University, TX 77843, USA
| | - Evan H DeLucia
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CEAB-UAB, Cerdanyola del Vallès, 08193, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | | | - Miquel A Gonzalez-Meler
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
4
|
An R, Jin H, Zhao H, Wei D, Zhao W, Wang X. Productivity experienced a more rapid enhancement trend than greenness across the Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176666. [PMID: 39378950 DOI: 10.1016/j.scitotenv.2024.176666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Satellite-derived products and field measurements verify that Tibetan Plateau (TP) has been experiencing continuous vegetation greening and productivity increase; however, it remains unclear how this greening translates into productivity and how long-term productivity variations depend on greenness across the TP. Moreover, ignoring the accuracy evaluation of satellite-derived greenness and productivity products may mislead the understanding of TP vegetation changes. Thus, we initially assessed the accuracy of three widely used leaf area index (LAI, proxy of greenness) products (i.e., MODIS, GLASS and GEOV2 LAI) and three gross primary productivity (GPP, proxy of productivity) products (i.e., MODIS, GLASS and PML-V2 GPP) to selected robust products to represent greenness and productivity respectively. Then, we explored the dependence of spatiotemporal GPP dynamics on greenness variations during 2000-2020. Results indicated that PML-V2 GPP and MODIS LAI were more robust and reliable than other satellite-derived products when compared to the reference values. They revealed a prevailing increase in GPP over the past two decades, with a regional average of 71 % higher than that of LAI. Notably, the area proportion of significant productivity enhancement was 31.6 % higher than that of significant greening. About 24.7 % of the TP displayed significantly inconsistent trends. The dependency of GPP on LAI gradually decreased with the increasing water availability, the complexity of vegetation structures, and dense canopy community. By calculating leaf photosynthetic capacity, we found that this indicator greatly regulated the velocity discrepancy between GPP and LAI, and the contribution of only greening to productivity is limited, only occupying 11.9 % of the TP, which was helpful in understanding the inter-annual changes of vegetation dynamics under varying environment conditions. We therefore reveal an unexpected rapid increase in productivity than greening during 2000-2020 on the TP, as well as highlight the caution of only using satellite-derived greenness indicators for assessing long-term changes in vegetation productivity dynamics, especially over mesic ecosystems with complex vegetation structures and dense canopies of TP.
Collapse
Affiliation(s)
- Ruzhi An
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaan Jin
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China.
| | - Hui Zhao
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
| | - Da Wei
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
| | - Wei Zhao
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
| | - Xiaodan Wang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
| |
Collapse
|
5
|
Zhang Y, Peng J, Zhang G, Zhang X, Zhang S, Li Q, Tian G, Wang X, Wu P, Chen XL. Tuning structures and catalysis performance of two-dimensional covalent organic frameworks based on copper phthalocyanine building block and phenyl connector. Sci Rep 2024; 14:28300. [PMID: 39550466 PMCID: PMC11569124 DOI: 10.1038/s41598-024-79563-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
Based on the experimentally reported stable and conductive two-dimensional covalent organic frameworks with copper phthalocyanine (CuPc) as building block and cyan substituted phenyl as connector (CuCOF-CN) as an electrocatalyst for CO2 reduction reaction (RR), first principle calculations were performed on CuCOF-CN and its analog with the CN being replaced by H (CuCOF). Comparatively studied on the crystal structures, electronic properties, and CO2RR performance of the two catalysts found that CuCOF has reduced crystal unit size, more positive charge on Cu and CuPc segments, smaller band gap, and lower reaction barrier for CO2 RR than CuCOF-CN. CuCOF is proposed to be good potential electrocatalyst with good environment friendliness. The substituent effect and structure-property-performance relationship would help for designing and fabricating new electrocatalysts.
Collapse
Affiliation(s)
- Yuexing Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, P. R. China.
| | - Junhao Peng
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, P. R. China
| | - Guangsong Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, P. R. China
| | - Xingguo Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, P. R. China
| | - Shuai Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, P. R. China
| | - Qing Li
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, P. R. China
| | - Guanfeng Tian
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, P. R. China
| | - Xiaoli Wang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, P. R. China
| | - Ping Wu
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, P. R. China
| | - Xue-Li Chen
- Jiangxi Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China.
| |
Collapse
|
6
|
Li X, Black TA, Zha T, Jassal RS, Nesic Z, Lee SC, Bourque CPA, Hao S, Jin C, Liu P, Jia X, Tian Y. Long-term trend and interannual variation in evapotranspiration of a young temperate Douglas-fir stand over 2002-2022 reveals the impacts of climate change. PLANT, CELL & ENVIRONMENT 2024; 47:3966-3978. [PMID: 38863246 DOI: 10.1111/pce.15000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
The shortage of decades-long continuous measurements of ecosystem processes limits our understanding of how changing climate impacts forest ecosystems. We used continuous eddy-covariance and hydrometeorological data over 2002-2022 from a young Douglas-fir stand on Vancouver Island, Canada to assess the long-term trend and interannual variability in evapotranspiration (ET) and transpiration (T). Collectively, annual T displayed a decreasing trend over the 21 years with a rate of 1% yr-1, which is attributed to the stomatal downregulation induced by rising atmospheric CO2 concentration. Similarly, annual ET also showed a decreasing trend since evaporation stayed relatively constant. Variability in detrended annual ET was mostly controlled by the average soil water storage during the growing season (May-October). Though the duration and intensity of the drought did not increase, the drought-induced decreases in T and ET showed an increasing trend. This pattern may reflect the changes in forest structure, related to the decline in the deciduous understory cover during the stand development. These results suggest that the water-saving effect of stomatal regulation and water-related factors mostly determined the trend and variability in ET, respectively. This may also imply an increase in the limitation of water availability on ET in young forests, associated with the structural and compositional changes related to forest growth.
Collapse
Affiliation(s)
- Xinhao Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Beijing Engineering Research Center of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - T Andrew Black
- Biometeorology and Soil Physics Group, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tianshan Zha
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Beijing Engineering Research Center of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Rachhpal S Jassal
- Biometeorology and Soil Physics Group, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zoran Nesic
- Biometeorology and Soil Physics Group, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sung-Ching Lee
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Charles P-A Bourque
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Shaorong Hao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Beijing Engineering Research Center of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Chuan Jin
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, China
| | - Peng Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Beijing Engineering Research Center of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Xin Jia
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Beijing Engineering Research Center of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Yun Tian
- School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Beijing Engineering Research Center of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
7
|
Zhao T, Wang S, Ouyang C, Chen M, Liu C, Zhang J, Yu L, Wang F, Xie Y, Li J, Wang F, Grunwald S, Wong BM, Zhang F, Qian Z, Xu Y, Yu C, Han W, Sun T, Shao Z, Qian T, Chen Z, Zeng J, Zhang H, Letu H, Zhang B, Wang L, Luo L, Shi C, Su H, Zhang H, Yin S, Huang N, Zhao W, Li N, Zheng C, Zhou Y, Huang C, Feng D, Xu Q, Wu Y, Hong D, Wang Z, Lin Y, Zhang T, Kumar P, Plaza A, Chanussot J, Zhang J, Shi J, Wang L. Artificial intelligence for geoscience: Progress, challenges, and perspectives. Innovation (N Y) 2024; 5:100691. [PMID: 39285902 PMCID: PMC11404188 DOI: 10.1016/j.xinn.2024.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/17/2024] [Indexed: 09/19/2024] Open
Abstract
This paper explores the evolution of geoscientific inquiry, tracing the progression from traditional physics-based models to modern data-driven approaches facilitated by significant advancements in artificial intelligence (AI) and data collection techniques. Traditional models, which are grounded in physical and numerical frameworks, provide robust explanations by explicitly reconstructing underlying physical processes. However, their limitations in comprehensively capturing Earth's complexities and uncertainties pose challenges in optimization and real-world applicability. In contrast, contemporary data-driven models, particularly those utilizing machine learning (ML) and deep learning (DL), leverage extensive geoscience data to glean insights without requiring exhaustive theoretical knowledge. ML techniques have shown promise in addressing Earth science-related questions. Nevertheless, challenges such as data scarcity, computational demands, data privacy concerns, and the "black-box" nature of AI models hinder their seamless integration into geoscience. The integration of physics-based and data-driven methodologies into hybrid models presents an alternative paradigm. These models, which incorporate domain knowledge to guide AI methodologies, demonstrate enhanced efficiency and performance with reduced training data requirements. This review provides a comprehensive overview of geoscientific research paradigms, emphasizing untapped opportunities at the intersection of advanced AI techniques and geoscience. It examines major methodologies, showcases advances in large-scale models, and discusses the challenges and prospects that will shape the future landscape of AI in geoscience. The paper outlines a dynamic field ripe with possibilities, poised to unlock new understandings of Earth's complexities and further advance geoscience exploration.
Collapse
Affiliation(s)
- Tianjie Zhao
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Sheng Wang
- School of Computer Science, China University of Geosciences, Wuhan 430078, China
| | - Chaojun Ouyang
- State Key Laboratory of Mountain Hazards and Engineering Resilience, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Chen
- Key Laboratory of Virtual Geographic Environment (Ministry of Education of PRC), Nanjing Normal University, Nanjing 210023, China
| | - Chenying Liu
- Data Science in Earth Observation, Technical University of Munich, 80333 Munich, Germany
| | - Jin Zhang
- The National Key Laboratory of Water Disaster Prevention, Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China
| | - Long Yu
- School of Computer Science, China University of Geosciences, Wuhan 430078, China
| | - Fei Wang
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Xie
- School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jun Li
- School of Computer Science, China University of Geosciences, Wuhan 430078, China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Chemistry, Technical University of Munich, 85748 Munich, Germany
| | - Sabine Grunwald
- Soil, Water and Ecosystem Sciences Department, University of Florida, PO Box 110290, Gainesville, FL, USA
| | - Bryan M Wong
- Materials Science Engineering Program Cooperating Faculty Member in the Department of Chemistry and Department of Physics Astronomy, University of California, California, Riverside, CA 92521, USA
| | - Fan Zhang
- Institute of Remote Sensing and Geographical Information System, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Zhen Qian
- Key Laboratory of Virtual Geographic Environment (Ministry of Education of PRC), Nanjing Normal University, Nanjing 210023, China
| | - Yongjun Xu
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengqing Yu
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Han
- School of Computer Science, China University of Geosciences, Wuhan 430078, China
| | - Tao Sun
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Zezhi Shao
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tangwen Qian
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Chen
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiangyuan Zeng
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Huai Zhang
- Key Laboratory of Computational Geodynamics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Husi Letu
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Bing Zhang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Li Wang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Lei Luo
- International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
| | - Chong Shi
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Hongjun Su
- College of Geography and Remote Sensing, Hohai University, Nanjing 211100, China
| | - Hongsheng Zhang
- Department of Geography, The University of Hong Kong, Hong Kong 999077, SAR, China
| | - Shuai Yin
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Ni Huang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Wei Zhao
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Nan Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing 210044, China
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chaolei Zheng
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Yang Zhou
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Changping Huang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Defeng Feng
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingsong Xu
- Data Science in Earth Observation, Technical University of Munich, 80333 Munich, Germany
| | - Yan Wu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danfeng Hong
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenyu Wang
- Department of Catchment Hydrology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale) 06108, Germany
| | - Yinyi Lin
- Department of Geography, The University of Hong Kong, Hong Kong 999077, SAR, China
| | - Tangtang Zhang
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK
- Institute for Sustainability, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | - Antonio Plaza
- Hyperspectral Computing Laboratory, University of Extremadura, 10003 Caceres, Spain
| | - Jocelyn Chanussot
- University Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiancheng Shi
- National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Lizhe Wang
- School of Computer Science, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
8
|
Guo W, Liu M, Zhang Q, Deng Y, Chu Z, Qin H, Li Y, Liu YR, Zhang H, Zhang W, Tao S, Wang X. Warming-Induced Vegetation Greening May Aggravate Soil Mercury Levels Worldwide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39140482 DOI: 10.1021/acs.est.4c01923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Mercury, a neurotoxic substance, circulates globally, significantly stored in soils through atmospheric deposition and plant decay. Despite being deposited, mercury can be remobilized and released into the atmosphere and water, enhancing its global cycle. Recent research suggests that climate warming may amplify the remobilization of soil mercury, facilitating its incorporation into food webs that humans exploit. However, the potential geospatial feedback of soil mercury levels in response to warming remains unclear. By leveraging up-to-date soil measurements and observation-driven models, we determined the amount of mercury stored in global 0-100 cm soils to be 4.3 Tg (interquartile range: 2.5-6.3 Tg). Furthermore, our analysis indicates that warming likely aggravates global soil mercury levels, particularly in many temperate areas in East Asia, North Europe, and North America (>20 ng g-1 increase by 2100) due to warming-induced vegetation greening. Critically, observation-driven models raise the possibility that implementing ambitious mercury-emission-control schemes alone may be insufficient to counterbalance the positive feedback of soil mercury concentration, while process-based biogeochemical modeling demonstrates consistent patterns that reinforce this concern. These findings hold broad implications; for example, such feedback may catalyze mercury remobilization in land-ocean continuums and exacerbate human risks, stressing the necessity for continued reductions in greenhouse gas and mercury emissions.
Collapse
Affiliation(s)
- Wenzhe Guo
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Maodian Liu
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- School of the Environment, Yale University, New Haven, Connecticut 06511, United States
| | - Qianru Zhang
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Yidan Deng
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhaohan Chu
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hehao Qin
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yangmingkai Li
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yu-Rong Liu
- College of Resources and Environment and State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Haoran Zhang
- The Bartlett School of Sustainable Construction, University College London, London WC1E 7HB, U.K
| | - Wei Zhang
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shu Tao
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xuejun Wang
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Montesano PM, Frost M, Li J, Carroll M, Neigh CSR, Macander MJ, Sexton JO, Frost GV. A shift in transitional forests of the North American boreal will persist through 2100. COMMUNICATIONS EARTH & ENVIRONMENT 2024; 5:290. [PMID: 38826489 PMCID: PMC11142915 DOI: 10.1038/s43247-024-01454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024]
Abstract
High northern latitude changes with Arctic amplification across a latitudinal forest gradient suggest a shift towards an increased presence of trees and shrubs. The persistence of change may depend on the future scenarios of climate and on the current state, and site history, of forest structure. Here, we explore the persistence of a gradient-based shift in the boreal by connecting current forest patterns to recent tree cover trends and future modeled estimates of canopy height through 2100. Results show variation in the predicted potential height changes across the structural gradient from the boreal forest through the taiga-tundra ecotone. Positive potential changes in height are concentrated in transitional forests, where recent positive changes in cover prevail, while potential change in boreal forest is highly variable. Results are consistent across climate scenarios, revealing a persistent biome shift through 2100 in North America concentrated in transitional landscapes regardless of climate scenario.
Collapse
Affiliation(s)
- Paul M. Montesano
- NASA Goddard Space Flight Center, Greenbelt, MD USA
- ADNET Systems, Inc., Bethesda, MD USA
| | - Melanie Frost
- NASA Goddard Space Flight Center, Greenbelt, MD USA
- ASRC Federal InuTeq, Beltsville, MD USA
| | - Jian Li
- NASA Goddard Space Flight Center, Greenbelt, MD USA
- ASRC Federal InuTeq, Beltsville, MD USA
| | - Mark Carroll
- NASA Goddard Space Flight Center, Greenbelt, MD USA
| | | | | | | | | |
Collapse
|
10
|
Wang Z, Shang Y, Li Z, Song K. Analysis of taiga and tundra lake browning trends from 2002 to 2021 using MODIS data. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120576. [PMID: 38513585 DOI: 10.1016/j.jenvman.2024.120576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/22/2023] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
Lakes in taiga and tundra regions may be silently undergoing changes due to global warming. One of those changes is browning in lake color. The browning interacts with the carbon cycle, ecosystem dynamics, and water quality in freshwater systems. However, spatiotemporal variabilities of browning in these regions have not been well documented. Using MODIS remote sensing reflectance at near ultraviolet wavelengths from 2002 to 2021 on the Google Earth Engine platform, we quantified long-term browning trends across 7616 lakes (larger than 10 km2) in taiga and tundra biomes. These lakes showed an overall decreased trend in browning (Theil-Sen Slope = 0.00015), with ∼36% of these lakes showing browning trends, and ∼1% of these lakes showing statistically significant (p-value <0.05) browning trends. The browning trends more likely occurred in small lakes in high latitude, low ground ice content regions, where air temperature increased and precipitation decreased. While temperature is projected to increase in response to climate change, our results provide one means to understand how biogeochemical cycles and ecological dynamics respond to climate change.
Collapse
Affiliation(s)
- Zijin Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingxin Shang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; State Key Laboratory of Black Soils Conservation and Utilization, China
| | - Zuchuan Li
- Division of Natural and Applied Sciences, Duke Kunshan University, Suzhou, 215316, China
| | - Kaishan Song
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; State Key Laboratory of Black Soils Conservation and Utilization, China; School of Environment and Planning, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
11
|
Zhou Z, Su P, Yang J, Shi R, Ding X. Warming affects leaf light use efficiency and functional traits in alpine plants: evidence from a 4-year in-situ field experiment. FRONTIERS IN PLANT SCIENCE 2024; 15:1353762. [PMID: 38567127 PMCID: PMC10985207 DOI: 10.3389/fpls.2024.1353762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Introduction Light use efficiency (LUE) is a crucial determinant of plant productivity, while leaf functional traits directly affect ecosystem functions. However, it remains unclear how climate warming affects LUE and leaf functional traits of dominant species in alpine meadows. Methods We conducted a 4-year in-situ field warming experiment to investigate the eco-physiological characteristics for a dominant species (Elymus nutans) and a common species (Potentilla anserina) on the Tibetan Plateau. The leaf traits, photosynthesis and fluorescence characteristics were measured, along with the soil physical-chemical properties associated with the two species. Results and discussions Experimental warming increased the leaf LUE, maximum photochemical efficiency, non-photochemical quenching, relative water content and specific leaf area for both species. However, there was a decrease in leaf and soil element content. Different species exhibit varying adaptability to warming. Increasing temperature significantly increased the photosynthetic rate, stomatal conductance, transpiration rate, total water content, and specific leaf volume of E. nutans; however, all these traits exhibited an opposite trend in P. anserina. Warming has a direct negative impact on leaf LUE and an indirectly enhances LUE through its effects on leaf traits. The impact of warming on plant photosynthetic capacity is primarily mediated by soil nutrients and leaf traits. These results indicate that the two different species employ distinct adaptive strategies in response to climate change, which are related to their species-specific variations. Such changes can confer an adaptive advantage for plant to cope with environmental change and potentially lead to alterations to ecosystem structure and functioning.
Collapse
Affiliation(s)
- Zijuan Zhou
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Peixi Su
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Jianping Yang
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Rui Shi
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xinjing Ding
- School of Geography, Liaoning Normal University, Dalian, China
| |
Collapse
|
12
|
Liu J, Wennberg PO. An emergent constraint on the thermal sensitivity of photosynthesis and greenness in the high latitude northern forests. Sci Rep 2024; 14:6189. [PMID: 38485968 PMCID: PMC11319809 DOI: 10.1038/s41598-024-56362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Despite the general consensus that the warming over the high latitudes northern forests (HLNF) has led to enhanced photosynthetic activity and contributed to the greening trend, isolating the impact of temperature increase on photosynthesis and greenness has been difficult due to the concurring influence of the CO2 fertilization effect. Here, using an ensemble of simulations from biogeochemical models that have contributed to the Trends in Net Land Atmosphere Carbon Exchange project (TRENDY), we identify an emergent relationship between the simulation of the climate-driven temporal changes in both gross primary productivity (GPP) and greenness (Leaf Area Index, LAI) and the model's spatial sensitivity of these quantities to growing-season (GS) temperature. Combined with spatially-resolved observations of LAI and GPP, we estimate that GS-LAI and GS-GPP increase by 17.0 ± 2.4% and 24.0 ± 3.0% per degree of warming, respectively. The observationally-derived sensitivities of LAI and GPP to temperature are about 40% and 71% higher, respectively, than the mean of the ensemble of simulations from TRENDY, primarily due to the model underestimation of the sensitivity of light use efficiency to temperature. We estimate that the regional mean GS-GPP increased 28.2 ± 5.1% between 1983-1986 and 2013-2016, much larger than the 5.8 ± 1.4% increase from the CO2 fertilization effect implied by Wenzel et al. This suggests that warming, not CO2 fertilization, is primarily responsible for the observed dramatic changes in the HLNF biosphere over the last century.
Collapse
Affiliation(s)
- Junjie Liu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA.
- California Institute of Technology, Pasadena, USA.
| | | |
Collapse
|
13
|
Lian X, Peñuelas J, Ryu Y, Piao S, Keenan TF, Fang J, Yu K, Chen A, Zhang Y, Gentine P. Diminishing carryover benefits of earlier spring vegetation growth. Nat Ecol Evol 2024; 8:218-228. [PMID: 38172284 DOI: 10.1038/s41559-023-02272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024]
Abstract
Spring vegetation growth can benefit summer growth by increasing foliage area and carbon sequestration potential, or impair it by consuming additional resources needed for sustaining subsequent growth. However, the prevalent driving mechanism and its temporal changes remain unknown. Using satellite observations and long-term atmospheric CO2 records, here we show a weakening trend of the linkage between spring and summer vegetation growth/productivity in the Northern Hemisphere during 1982-2021. This weakening is driven by warmer and more extreme hot weather that becomes unfavourable for peak-season growth, shifting peak plant functioning away from earlier periods. This is further exacerbated by seasonally growing ecosystem water stress due to reduced water supply and enhanced water demand. Our finding suggests that beneficial carryover effects of spring growth on summer growth are diminishing or even reversing, acting as an early warning sign of the ongoing shift of climatic effects from stimulating to suppressing plant photosynthesis during the early to peak seasons.
Collapse
Affiliation(s)
- Xu Lian
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA.
| | - Josep Peñuelas
- CREAF, Barcelona, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
| | - Youngryel Ryu
- Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, Seoul, South Korea
| | - Shilong Piao
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Trevor F Keenan
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Environmental Science Policy and Management, UC Berkeley, Berkeley, CA, USA
| | - Jianing Fang
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA
| | - Kailiang Yu
- Department of Ecology & Evolutionary Biology, High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA
| | - Anping Chen
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Yao Zhang
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA
- Center for Learning the Earth with Artificial intelligence and Physics (LEAP), Columbia University, New York, NY, USA
| |
Collapse
|
14
|
Rhimi B, Zhou M, Yan Z, Cai X, Jiang Z. Cu-Based Materials for Enhanced C 2+ Product Selectivity in Photo-/Electro-Catalytic CO 2 Reduction: Challenges and Prospects. NANO-MICRO LETTERS 2024; 16:64. [PMID: 38175306 PMCID: PMC10766933 DOI: 10.1007/s40820-023-01276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 01/05/2024]
Abstract
Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for catalytic reduction of CO2, Cu-based materials are highly advantageous owing to their widespread availability, cost-effectiveness, and environmental sustainability. Furthermore, Cu-based materials demonstrate interesting abilities in the adsorption and activation of carbon dioxide, allowing the formation of C2+ compounds through C-C coupling process. Herein, the basic principles of photocatalytic CO2 reduction reactions (PCO2RR) and electrocatalytic CO2 reduction reaction (ECO2RR) and the pathways for the generation C2+ products are introduced. This review categorizes Cu-based materials into different groups including Cu metal, Cu oxides, Cu alloys, and Cu SACs, Cu heterojunctions based on their catalytic applications. The relationship between the Cu surfaces and their efficiency in both PCO2RR and ECO2RR is emphasized. Through a review of recent studies on PCO2RR and ECO2RR using Cu-based catalysts, the focus is on understanding the underlying reasons for the enhanced selectivity toward C2+ products. Finally, the opportunities and challenges associated with Cu-based materials in the CO2 catalytic reduction applications are presented, along with research directions that can guide for the design of highly active and selective Cu-based materials for CO2 reduction processes in the future.
Collapse
Affiliation(s)
- Baker Rhimi
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Min Zhou
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Zaoxue Yan
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Xiaoyan Cai
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, People's Republic of China.
| | - Zhifeng Jiang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
15
|
Kim JE, Wang JA, Li Y, Czimczik CI, Randerson JT. Wildfire-induced increases in photosynthesis in boreal forest ecosystems of North America. GLOBAL CHANGE BIOLOGY 2024; 30:e17151. [PMID: 38273511 DOI: 10.1111/gcb.17151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/11/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024]
Abstract
Observations of the annual cycle of atmospheric CO2 in high northern latitudes provide evidence for an increase in terrestrial metabolism in Arctic tundra and boreal forest ecosystems. However, the mechanisms driving these changes are not yet fully understood. One proposed hypothesis is that ecological change from disturbance, such as wildfire, could increase the magnitude and change the phase of net ecosystem exchange through shifts in plant community composition. Yet, little quantitative work has evaluated this potential mechanism at a regional scale. Here we investigate how fire disturbance influences landscape-level patterns of photosynthesis across western boreal North America. We use Alaska and Canadian large fire databases to identify the perimeters of wildfires, a Landsat-derived land cover time series to characterize plant functional types (PFTs), and solar-induced fluorescence (SIF) from the Orbiting Carbon Observatory-2 (OCO-2) as a proxy for photosynthesis. We analyze these datasets to characterize post-fire changes in plant succession and photosynthetic activity using a space-for-time approach. We find that increases in herbaceous and sparse vegetation, shrub, and deciduous broadleaf forest PFTs during mid-succession yield enhancements in SIF by 8-40% during June and July for 2- to 59-year stands relative to pre-fire controls. From the analysis of post-fire land cover changes within individual ecoregions and modeling, we identify two mechanisms by which fires contribute to long-term trends in SIF. First, increases in annual burning are shifting the stand age distribution, leading to increases in the abundance of shrubs and deciduous broadleaf forests that have considerably higher SIF during early- and mid-summer. Second, fire appears to facilitate a long-term shift from evergreen conifer to broadleaf deciduous forest in the Boreal Plain ecoregion. These findings suggest that increasing fire can contribute substantially to positive trends in seasonal CO2 exchange without a close coupling to long-term increases in carbon storage.
Collapse
Affiliation(s)
- Jinhyuk E Kim
- Department of Earth System Science, University of California, Irvine, California, USA
| | - Jonathan A Wang
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Yue Li
- Department of Geography, University of California, Los Angeles, California, USA
| | - Claudia I Czimczik
- Department of Earth System Science, University of California, Irvine, California, USA
| | - James T Randerson
- Department of Earth System Science, University of California, Irvine, California, USA
| |
Collapse
|
16
|
Zhu D, Wang Y, Ciais P, Chevallier F, Peng S, Zhang Y, Wang X. Temperature dependence of spring carbon uptake in northern high latitudes during the past four decades. GLOBAL CHANGE BIOLOGY 2024; 30:e17043. [PMID: 37988234 DOI: 10.1111/gcb.17043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
In the northern high latitudes, warmer spring temperatures generally lead to earlier leaf onsets, higher vegetation production, and enhanced spring carbon uptake. Yet, whether this positive linkage has diminished under climate change remains debated. Here, we used atmospheric CO2 measurements at Barrow (Alaska) during 1979-2020 to investigate the strength of temperature dependence of spring carbon uptake reflected by two indicators, spring zero-crossing date (SZC) and CO2 drawdown (SCC). We found a fall and rise in the interannual correlation of temperature with SZC and SCC (RSZC-T and RSCC-T ), showing a recent reversal of the previously reported weakening trend of RSZC-T and RSCC-T . We used a terrestrial biosphere model coupled with an atmospheric transport model to reproduce this fall and rise phenomenon and conducted factorial simulations to explore its potential causes. We found that a strong-weak-strong spatial synchrony of spring temperature anomalies per se has contributed to the fall and rise trend in RSZC-T and RSCC-T , despite an overall unbroken temperature control on net ecosystem CO2 fluxes at local scale. Our results provide an alternative explanation for the apparent drop of RSZC-T and RSCC-T during the late 1990s and 2000s, and suggest a continued positive linkage between spring carbon uptake and temperature during the past four decades. We thus caution the interpretation of apparent climate sensitivities of carbon cycle retrieved from spatially aggregated signals.
Collapse
Affiliation(s)
- Dan Zhu
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Institute of Carbon Neutrality, Peking University, Beijing, China
| | - Yilong Wang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Frédéric Chevallier
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Shushi Peng
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Institute of Carbon Neutrality, Peking University, Beijing, China
| | - Yao Zhang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Institute of Carbon Neutrality, Peking University, Beijing, China
| | - Xuhui Wang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Institute of Carbon Neutrality, Peking University, Beijing, China
| |
Collapse
|
17
|
Park T, Gumma MK, Wang W, Panjala P, Dubey SK, Nemani RR. Greening of human-dominated ecosystems in India. COMMUNICATIONS EARTH & ENVIRONMENT 2023; 4:419. [PMID: 38665186 PMCID: PMC11041707 DOI: 10.1038/s43247-023-01078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/31/2023] [Indexed: 04/28/2024]
Abstract
Satellite data show the Earth has been greening and identify croplands in India as one of the most prominent greening hotspots. Though India's agriculture has been dependent on irrigation enhancement to reduce crop water stress and increase production, the spatiotemporal dynamics of how irrigation influenced the satellite observed greenness remains unclear. Here, we use satellite-derived leaf area data and survey-based agricultural statistics together with results from state-of-the-art Land Surface Models (LSM) to investigate the role of irrigation in the greening of India's croplands. We find that satellite observations provide multiple lines of evidence showing strong contributions of irrigation to significant greening during dry season and in drier environments. The national statistics support irrigation-driven yield enhancement and increased dry season cropping intensity. These suggest a continuous shift in India's agriculture toward an irrigation-driven dry season cropping system and confirm the importance of land management in the greening phenomenon. However, the LSMs identify CO2 fertilization as a primary driver of greening whereas land use and management have marginal impacts on the simulated leaf area changes. This finding urges a closer collaboration of the modeling, Earth observation, and land system science communities to improve representation of land management in the Earth system modeling.
Collapse
Affiliation(s)
- Taejin Park
- NASA Ames Research Center, Moffett Field, California USA
- Bay Area Environmental Research Institute, Moffett Field, California USA
| | - Murali K. Gumma
- International Crop Research Institute for Semi-Arid Tropics, Patancheru, Telangana India
| | - Weile Wang
- NASA Ames Research Center, Moffett Field, California USA
| | - Pranay Panjala
- International Crop Research Institute for Semi-Arid Tropics, Patancheru, Telangana India
| | | | - Ramakrishna R. Nemani
- NASA Ames Research Center, Moffett Field, California USA
- Bay Area Environmental Research Institute, Moffett Field, California USA
| |
Collapse
|
18
|
Knauer J, Cuntz M, Smith B, Canadell JG, Medlyn BE, Bennett AC, Caldararu S, Haverd V. Higher global gross primary productivity under future climate with more advanced representations of photosynthesis. SCIENCE ADVANCES 2023; 9:eadh9444. [PMID: 37976364 PMCID: PMC10656065 DOI: 10.1126/sciadv.adh9444] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
Gross primary productivity (GPP) is the key determinant of land carbon uptake, but its representation in terrestrial biosphere models (TBMs) does not reflect our latest physiological understanding. We implemented three empirically well supported but often omitted mechanisms into the TBM CABLE-POP: photosynthetic temperature acclimation, explicit mesophyll conductance, and photosynthetic optimization through redistribution of leaf nitrogen. We used the RCP8.5 climate scenario to conduct factorial model simulations characterizing the individual and combined effects of the three mechanisms on projections of GPP. Simulated global GPP increased more strongly (up to 20% by 2070-2099) in more comprehensive representations of photosynthesis compared to the model lacking the three mechanisms. The experiments revealed non-additive interactions among the mechanisms as combined effects were stronger than the sum of the individual effects. The modeled responses are explained by changes in the photosynthetic sensitivity to temperature and CO2 caused by the added mechanisms. Our results suggest that current TBMs underestimate GPP responses to future CO2 and climate conditions.
Collapse
Affiliation(s)
- Jürgen Knauer
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- CSIRO Environment, Canberra, ACT, Australia
| | - Matthias Cuntz
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, Nancy, France
| | - Benjamin Smith
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | | | - Belinda E. Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Alison C. Bennett
- School of Ecosystem and Forest Science, University of Melbourne, Richmond, VIC, Australia
| | - Silvia Caldararu
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
- iCRAG SFI Research Centre in Applied Geosciences
| | | |
Collapse
|
19
|
Ge Y, Li L, Xi S, Ma L, Luan Z, Zhang X. Raman spectral characteristics of 12CO 2/ 13CO 2 and quantitative measurements of carbon isotopic compositions from 50 to 450 °C and 50 to 400 bar. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122651. [PMID: 37060650 DOI: 10.1016/j.saa.2023.122651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/27/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
The carbon isotopic composition of CO2 is traced to its different origins and widely used in the fields of geology, biology, and chemistry. Raman spectroscopy can be performed in situ, is nondestructive, and requires no sample preparation; these characteristics enable Raman spectroscopy to be considered a new alternative method to measure the carbon isotopic composition of CO2. In this work, Raman spectra of high-purity 13CO2, 12CO2, and six 12CO2-13CO2 binary mixtures with known mixing ratios were collected using a High Pressure Optical Cell (HPOC) at 50-450 °C and 50-400 bar. The results showed that the characteristic peak positions of both 13CO2 and 12CO2 shift to lower wavenumbers with increasing temperature and decreasing pressure, but the peak positions of 13CO2 show a larger shift. The peak position difference of the corresponding characteristic peaks between 13CO2 and 12CO2 is greater than 15 cm-1 under the above temperatures and pressures, and the peaks can be distinguished. However, ν-13 overlays νH.B.12 near 1265 cm-1, ν+12 overlaps νH.B.13 near 1288 cm-1. The existence of 13CO2 can cause a change in the Fermi diad splitting of 12CO2 and affect the establishment of CO2 Raman densimeters. The positive correlation obtained between the peak intensity ratio and the content ratio is affected by temperature, pressure, and 13CO2 content. I+13/I+12 and I-13/I-12 were selected as the quantitative indices to establish Raman quantitative analysis models for the determination of the carbon isotopic composition of CO2, which can be applied to in-situ measurements of high-temperature and high-pressure systems.
Collapse
Affiliation(s)
- Yuzhou Ge
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Geology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianfu Li
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shichuan Xi
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Ma
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhendong Luan
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Geology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhang
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Geology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266061, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
20
|
Sun Y, Wen J, Gu L, Joiner J, Chang CY, van der Tol C, Porcar-Castell A, Magney T, Wang L, Hu L, Rascher U, Zarco-Tejada P, Barrett CB, Lai J, Han J, Luo Z. From remotely-sensed solar-induced chlorophyll fluorescence to ecosystem structure, function, and service: Part II-Harnessing data. GLOBAL CHANGE BIOLOGY 2023; 29:2893-2925. [PMID: 36802124 DOI: 10.1111/gcb.16646] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 05/03/2023]
Abstract
Although our observing capabilities of solar-induced chlorophyll fluorescence (SIF) have been growing rapidly, the quality and consistency of SIF datasets are still in an active stage of research and development. As a result, there are considerable inconsistencies among diverse SIF datasets at all scales and the widespread applications of them have led to contradictory findings. The present review is the second of the two companion reviews, and data oriented. It aims to (1) synthesize the variety, scale, and uncertainty of existing SIF datasets, (2) synthesize the diverse applications in the sector of ecology, agriculture, hydrology, climate, and socioeconomics, and (3) clarify how such data inconsistency superimposed with the theoretical complexities laid out in (Sun et al., 2023) may impact process interpretation of various applications and contribute to inconsistent findings. We emphasize that accurate interpretation of the functional relationships between SIF and other ecological indicators is contingent upon complete understanding of SIF data quality and uncertainty. Biases and uncertainties in SIF observations can significantly confound interpretation of their relationships and how such relationships respond to environmental variations. Built upon our syntheses, we summarize existing gaps and uncertainties in current SIF observations. Further, we offer our perspectives on innovations needed to help improve informing ecosystem structure, function, and service under climate change, including enhancing in-situ SIF observing capability especially in "data desert" regions, improving cross-instrument data standardization and network coordination, and advancing applications by fully harnessing theory and data.
Collapse
Affiliation(s)
- Ying Sun
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Jiaming Wen
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Lianhong Gu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Joanna Joiner
- National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), Greenbelt, Maryland, USA
| | - Christine Y Chang
- US Department of Agriculture, Agricultural Research Service, Adaptive Cropping Systems Laboratory, Beltsville, Maryland, USA
| | - Christiaan van der Tol
- Affiliation Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, The Netherlands
| | - Albert Porcar-Castell
- Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Center (ViPS), University of Helsinki, Helsinki, Finland
| | - Troy Magney
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Lixin Wang
- Department of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, USA
| | - Leiqiu Hu
- Department of Atmospheric and Earth Science, University of Alabama in Huntsville, Huntsville, Alabama, USA
| | - Uwe Rascher
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Pablo Zarco-Tejada
- School of Agriculture and Food (SAF-FVAS) and Faculty of Engineering and Information Technology (IE-FEIT), University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher B Barrett
- Charles H. Dyson School of Applied Economics and Management, Cornell University, Ithaca, New York, USA
| | - Jiameng Lai
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Jimei Han
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Zhenqi Luo
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| |
Collapse
|
21
|
Li G, Wu C, Chen Y, Huang C, Zhao Y, Wang Y, Ma M, Ding Z, Yu P, Tang X. Increasing temperature regulates the advance of peak photosynthesis timing in the boreal ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163587. [PMID: 37087004 DOI: 10.1016/j.scitotenv.2023.163587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
The shift in vegetation phenology is an essential indicator of global climate change. Numerous researches based on reflectance-based vegetation index data have explored the changes in the start (SOS) and end (EOS) of vegetation life events at long time scales, while a huge discrepancy existed between the phenological metrics of vegetation structure and function. The peak photosynthesis timing (PPT), which is crucial in regulating terrestrial ecosystem carbon balance, has not received much attention. Using two global reconstructed solar-induced chlorophyll fluorescence data (CSIF and GOSIF) directly associated with vegetation photosynthesis, the spatio-temporal dynamics in PPT as well as the key environmental controls across the boreal ecosystem during 2001-2019 were systematically explored. Multi-year mean pattern showed that PPT mainly appeared in the first half of July. Compared to the northern Eurasia, later PPT appeared in the northern North America continent for about 4-5 days. Meanwhile, spatial trend in PPT exhibited an advanced trend during the last two decades. Especially, shrubland and grassland were obvious among all biomes. Spatial partial correlation analysis revealed that preseason temperature was the dominant environmental driver of PPT trends, occupying 81.32% and 78.04% of the total pixels of PPTCSIF and PPTGOSIF, respectively. Attribution analysis by ridge regression again emphasized the largest contribution of temperature to PPT dynamics in the boreal ecosystem by 52.22% (PPTCSIF) and 46.59% (PPTGOSIF), followed by radiation (PPTCSIF: 24.44%; PPTGOSIF: 28.66%) and precipitation (PPTCSIF: 23.34%; PPTGOSIF: 24.75%). These results have significant implications for deepening our understanding between vegetation photosynthetic phenology and carbon cycling with respect to future climate change in the boreal ecosystem.
Collapse
Affiliation(s)
- Guo Li
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Chaoyang Wu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanan Chen
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Changping Huang
- National Engineering Laboratory for Satellite Remote Sensing Applications, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Yan Zhao
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Yanan Wang
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Mingguo Ma
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Zhi Ding
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Pujia Yu
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Xuguang Tang
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
22
|
Akrami S, Ishihara T, Fuji M, Edalati K. Advanced Photocatalysts for CO 2 Conversion by Severe Plastic Deformation (SPD). MATERIALS (BASEL, SWITZERLAND) 2023; 16:1081. [PMID: 36770088 PMCID: PMC9919025 DOI: 10.3390/ma16031081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Excessive CO2 emission from fossil fuel usage has resulted in global warming and environmental crises. To solve this problem, the photocatalytic conversion of CO2 to CO or useful components is a new strategy that has received significant attention. The main challenge in this regard is exploring photocatalysts with high efficiency for CO2 photoreduction. Severe plastic deformation (SPD) through the high-pressure torsion (HPT) process has been effectively used in recent years to develop novel active catalysts for CO2 conversion. These active photocatalysts have been designed based on four main strategies: (i) oxygen vacancy and strain engineering, (ii) stabilization of high-pressure phases, (iii) synthesis of defective high-entropy oxides, and (iv) synthesis of low-bandgap high-entropy oxynitrides. These strategies can enhance the photocatalytic efficiency compared with conventional and benchmark photocatalysts by improving CO2 adsorption, increasing light absorbance, aligning the band structure, narrowing the bandgap, accelerating the charge carrier migration, suppressing the recombination rate of electrons and holes, and providing active sites for photocatalytic reactions. This article reviews recent progress in the application of SPD to develop functional ceramics for photocatalytic CO2 conversion.
Collapse
Affiliation(s)
- Saeid Akrami
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Tajimi 507-0071, Japan
| | - Tatsumi Ishihara
- WPI International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
- Mitsui Chemicals, Inc.—Carbon Neutral Research Center (MCI-CNRC), Kyushu University, Fukuoka 819-0395, Japan
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Masayoshi Fuji
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Tajimi 507-0071, Japan
- Advanced Ceramics Research Center, Nagoya Institute of Technology, Tajimi 507-0071, Japan
| | - Kaveh Edalati
- WPI International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
- Mitsui Chemicals, Inc.—Carbon Neutral Research Center (MCI-CNRC), Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
23
|
Das R, Paul R, Parui A, Shrotri A, Atzori C, Lomachenko KA, Singh AK, Mondal J, Peter SC. Engineering the Charge Density on an In 2.77S 4/Porous Organic Polymer Hybrid Photocatalyst for CO 2-to-Ethylene Conversion Reaction. J Am Chem Soc 2023; 145:422-435. [PMID: 36537351 DOI: 10.1021/jacs.2c10351] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of an efficient photocatalyst for C2 product formation from CO2 is of urgent importance toward the deployment of solar-fuel production. Here, we report a template-free, cost-effective synthetic strategy to develop a carbazole-derived porous organic polymer (POP)-based composite catalyst. The composite catalyst is comprised of In2.77S4 and porous organic polymer (POP) and is held together by induced-polarity-driven electrostatic interaction. Utilizing the synergy of the catalytically active In centers and light-harvesting POPs, the catalyst showed 98.9% selectivity toward the generation of C2H4, with a formation rate of 67.65 μmol g-1 h-1. Two different oxidation states of the In2.77S4 spinel were exploited for the C-C coupling process, and this was investigated by X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and density functional theory (DFT) calculations. The role of POP was elucidated via several photophysical and photoelectrochemical studies. The electron transfer was mapped by several correlated approaches, which assisted in establishing the Z-scheme mechanism. Furthermore, the mechanism of C2H4 formation was extensively investigated using density functional theory (DFT) calculations from multiple possible pathways.
Collapse
Affiliation(s)
- Risov Das
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore560064, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore560064, India
| | - Ratul Paul
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Arko Parui
- Materials Research Centre, Indian Institute of Science, Bangalore560012, India
| | - Abhijit Shrotri
- Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-Ku, Sapporo001-0021, Japan
| | - Cesare Atzori
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043Grenoble Cedex 9, France
| | - Kirill A Lomachenko
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043Grenoble Cedex 9, France
| | | | - John Mondal
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Sebastian C Peter
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore560064, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore560064, India
| |
Collapse
|
24
|
Yun J, Jeong S, Gruber N, Gregor L, Ho CH, Piao S, Ciais P, Schimel D, Kwon EY. Enhance seasonal amplitude of atmospheric CO 2 by the changing Southern Ocean carbon sink. SCIENCE ADVANCES 2022; 8:eabq0220. [PMID: 36223458 PMCID: PMC9555781 DOI: 10.1126/sciadv.abq0220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
The enhanced seasonal amplitude of atmospheric CO2 has been viewed so far primarily as a Northern Hemisphere phenomenon. Yet, analyses of atmospheric CO2 records from 49 stations between 1980 and 2018 reveal substantial trends and variations in this amplitude globally. While no significant trends can be discerned before 2000 in most places, strong positive trends emerge after 2000 in the southern high latitudes. Using factorial simulations with an atmospheric transport model and analyses of surface ocean Pco2 observations, we show that the increase is best explained by the onset of increasing seasonality of air-sea CO2 exchange over the Southern Ocean around 2000. Underlying these changes is the long-term ocean acidification trend that tends to enhance the seasonality of the air-sea fluxes, but this trend is modified by the decadal variability of the Southern Ocean carbon sink. The seasonal variations of atmospheric CO2 thus emerge as a sensitive recorder of the variations of the Southern Ocean carbon sink.
Collapse
Affiliation(s)
- Jeongmin Yun
- Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Seoul, Republic of Korea
- Environmental Planning Institute, Seoul National University, Seoul, Republic of Korea
| | - Sujong Jeong
- Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Seoul, Republic of Korea
- Environmental Planning Institute, Seoul National University, Seoul, Republic of Korea
| | - Nicolas Gruber
- Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| | - Luke Gregor
- Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| | - Chang-Hoi Ho
- School of Earth and Environmental Sciences, Seoul National University, Seoul, Republic of Korea
| | - Shilong Piao
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l’Environnement, CEA CNRS UVSQ, Gif-sur-Yvette, France
| | - David Schimel
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91101, USA
| | - Eun Young Kwon
- Center for Climate Physics, Institute for Basic Science, Busan, Republic of Korea
- Pusan National University, Busan, Republic of Korea
| |
Collapse
|
25
|
Liu Z, Kimball JS, Ballantyne AP, Parazoo NC, Wang WJ, Bastos A, Madani N, Natali SM, Watts JD, Rogers BM, Ciais P, Yu K, Virkkala AM, Chevallier F, Peters W, Patra PK, Chandra N. Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions. Nat Commun 2022; 13:5626. [PMID: 36163194 PMCID: PMC9512808 DOI: 10.1038/s41467-022-33293-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022] Open
Abstract
Warming of northern high latitude regions (NHL, > 50 °N) has increased both photosynthesis and respiration which results in considerable uncertainty regarding the net carbon dioxide (CO2) balance of NHL ecosystems. Using estimates constrained from atmospheric observations from 1980 to 2017, we find that the increasing trends of net CO2 uptake in the early-growing season are of similar magnitude across the tree cover gradient in the NHL. However, the trend of respiratory CO2 loss during late-growing season increases significantly with increasing tree cover, offsetting a larger fraction of photosynthetic CO2 uptake, and thus resulting in a slower rate of increasing annual net CO2 uptake in areas with higher tree cover, especially in central and southern boreal forest regions. The magnitude of this seasonal compensation effect explains the difference in net CO2 uptake trends along the NHL vegetation- permafrost gradient. Such seasonal compensation dynamics are not captured by dynamic global vegetation models, which simulate weaker respiration control on carbon exchange during the late-growing season, and thus calls into question projections of increasing net CO2 uptake as high latitude ecosystems respond to warming climate conditions. The northern high latitude permafrost region has been an important contributor to the carbon sink since the 1980s. A new study finds that as tree cover increases, respiratory CO2 loss during late-growing season offsets photosynthetic CO2 uptake and leads to a slower rate of increasing annual net CO2 uptake.
Collapse
Affiliation(s)
- Zhihua Liu
- Numerical Terradynamic Simulation Group, WA Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA. .,CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China.
| | - John S Kimball
- Numerical Terradynamic Simulation Group, WA Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA. .,Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT, USA.
| | - Ashley P Ballantyne
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT, USA. .,Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France.
| | - Nicholas C Parazoo
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Wen J Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Changchun, Jilin, China.
| | - Ana Bastos
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Integration, Jena, Germany
| | - Nima Madani
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Kailiang Yu
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Frederic Chevallier
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Wouter Peters
- Meteorology and Air Quality Group, Wageningen University and Research, Wageningen, the Netherlands.,University, Centre for Isotope Research, Groningen, the Netherlands
| | - Prabir K Patra
- Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Japan
| | - Naveen Chandra
- Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Japan
| |
Collapse
|
26
|
Zhang X, Zhang Q, Sun S, Xu Z, Jian Y, Yang Y, Tian Y, Sa R, Wang B, Wang F. Carbon exchange characteristics and their environmental effects in the northern forest ecosystem of the Greater Khingan Mountains in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156056. [PMID: 35605849 DOI: 10.1016/j.scitotenv.2022.156056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Measurement and analysis of CO2 concentration at the ecosystem scale is the basis for studying ecosystem feedback to global climate change, and it is particularly useful for understanding the processes and mechanisms of ecosystem C exchange. Through observation of CO2 concentration at different heights, this study examined whether a CO2 lake phenomenon exists in the Larix gmelinii ecosystem of the Greater Khingan Mountains (China), and how it might be changed and what might represent its driving factors if such a phenomenon were found to exist. Plants and soils were sampled regularly to determine δ13C and to quantify the proportion of C released by each component of the ecosystem. The main path of C release and the main source of CO2 lake formation were investigated. Statistical analysis revealed that a CO2 lake phenomenon does exist in the L. gmelinii ecosystem. Comparative analysis showed that on the daily scale, when the ecosystem was a C source, the CO2 lake phenomenon often occurred. On the scale of the growing season, the strongest CO2 lake was accompanied by emergence of the peak respiratory flux. Stepwise regression analysis showed that environmental factors could explain 74.87% of the CO2 lake phenomenon. The occurrence and strength of the CO2 lakes were found to mainly respond to changes in temperature. Linear model analysis revealed that the rate of C release from autotrophic respiration in the forest was 51.18%; the rate of C release from heterotrophic respiration during litter decomposition was 51.78%. Therefore, the C release of the L. gmelinii ecosystem is mainly from autotrophic respiration. The CO2 released during decomposition of litter represented the main source for the formation of CO2 lakes. The CO2 lake effect has substantial impact on the net C flux and plays an important role in the C source/sink effect of the ecosystem.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Forest Management, College of Forestry, Inner Mongolia Agricultural University, Hohhot 010019, China; National Field Scientific Observation and Research Station of Greater Khingan Forest Ecosystem, Inner Mongolia, Genhe 022350, China
| | - Qiuliang Zhang
- Department of Forest Management, College of Forestry, Inner Mongolia Agricultural University, Hohhot 010019, China; National Field Scientific Observation and Research Station of Greater Khingan Forest Ecosystem, Inner Mongolia, Genhe 022350, China.
| | - Shoujia Sun
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Zhihong Xu
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Yanan Jian
- Department of Forest Management, College of Forestry, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Yue Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuan Tian
- College of Life and Environmental Science, Huangshan University, Huangshan 245041, China
| | - Rula Sa
- Department of Forest Management, College of Forestry, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Bing Wang
- Department of Forest Management, College of Forestry, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Fei Wang
- Department of Forest Management, College of Forestry, Inner Mongolia Agricultural University, Hohhot 010019, China
| |
Collapse
|
27
|
Kuai L, Parazoo NC, Shi M, Miller CE, Baker I, Bloom AA, Bowman K, Lee M, Zeng Z, Commane R, Montzka SA, Berry J, Sweeney C, Miller JB, Yung YL. Quantifying Northern High Latitude Gross Primary Productivity (GPP) Using Carbonyl Sulfide (OCS). GLOBAL BIOGEOCHEMICAL CYCLES 2022; 36:e2021GB007216. [PMID: 36590828 PMCID: PMC9787914 DOI: 10.1029/2021gb007216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 06/17/2023]
Abstract
The northern high latitude (NHL, 40°N to 90°N) is where the second peak region of gross primary productivity (GPP) other than the tropics. The summer NHL GPP is about 80% of the tropical peak, but both regions are still highly uncertain (Norton et al. 2019, https://doi.org/10.5194/bg-16-3069-2019). Carbonyl sulfide (OCS) provides an important proxy for photosynthetic carbon uptake. Here we optimize the OCS plant uptake fluxes across the NHL by fitting atmospheric concentration simulation with the GEOS-CHEM global transport model to the aircraft profiles acquired over Alaska during NASA's Carbon in Arctic Reservoirs Vulnerability Experiment (2012-2015). We use the empirical biome-specific linear relationship between OCS plant uptake flux and GPP to derive the six plant uptake OCS fluxes from different GPP data. Such GPP-based fluxes are used to drive the concentration simulations. We evaluate the simulations against the independent observations at two ground sites of Alaska. The optimized OCS fluxes suggest the NHL plant uptake OCS flux of -247 Gg S year-1, about 25% stronger than the ensemble mean of the six GPP-based OCS fluxes. GPP-based OCS fluxes systematically underestimate the peak growing season across the NHL, while a subset of models predict early start of season in Alaska, consistent with previous studies of net ecosystem exchange. The OCS optimized GPP of 34 PgC yr-1 for NHL is also about 25% more than the ensembles mean from six GPP data. Further work is needed to fully understand the environmental and biotic drivers and quantify their rate of photosynthetic carbon uptake in Arctic ecosystems.
Collapse
Affiliation(s)
- Le Kuai
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | | | - Mingjie Shi
- Pacific Northwest National LaboratoryRichlandWAUSA
| | - Charles E. Miller
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Ian Baker
- Colorado State UniversityFort CollinsCOUSA
| | - Anthony A. Bloom
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Kevin Bowman
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Meemong Lee
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Zhao‐Cheng Zeng
- University of California Los AngelesJIFRESSELos AngelesCAUSA
| | - Roisin Commane
- Lamont‐Doherty Earth Observatory at Columbia UniversityPalisadesNYUSA
| | | | | | | | | | - Yuk L. Yung
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
- California Institute of TechnologyPasadenaCAUSA
| |
Collapse
|
28
|
O'Sullivan M, Friedlingstein P, Sitch S, Anthoni P, Arneth A, Arora VK, Bastrikov V, Delire C, Goll DS, Jain A, Kato E, Kennedy D, Knauer J, Lienert S, Lombardozzi D, McGuire PC, Melton JR, Nabel JEMS, Pongratz J, Poulter B, Séférian R, Tian H, Vuichard N, Walker AP, Yuan W, Yue X, Zaehle S. Process-oriented analysis of dominant sources of uncertainty in the land carbon sink. Nat Commun 2022; 13:4781. [PMID: 35970991 PMCID: PMC9378641 DOI: 10.1038/s41467-022-32416-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/28/2022] [Indexed: 11/12/2022] Open
Abstract
The observed global net land carbon sink is captured by current land models. All models agree that atmospheric CO2 and nitrogen deposition driven gains in carbon stocks are partially offset by climate and land-use and land-cover change (LULCC) losses. However, there is a lack of consensus in the partitioning of the sink between vegetation and soil, where models do not even agree on the direction of change in carbon stocks over the past 60 years. This uncertainty is driven by plant productivity, allocation, and turnover response to atmospheric CO2 (and to a smaller extent to LULCC), and the response of soil to LULCC (and to a lesser extent climate). Overall, differences in turnover explain ~70% of model spread in both vegetation and soil carbon changes. Further analysis of internal plant and soil (individual pools) cycling is needed to reduce uncertainty in the controlling processes behind the global land carbon sink. The global net land sink is relatively well constrained. However, the responsible drivers and above/below-ground partitioning are highly uncertain. Model issues regarding turnover of individual plant and soil components are responsible.
Collapse
Affiliation(s)
- Michael O'Sullivan
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK.
| | - Pierre Friedlingstein
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK.,Laboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace, CNRS-ENS-UPMC-X, Paris, France
| | - Stephen Sitch
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4RJ, UK
| | - Peter Anthoni
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research/Atmospheric Environmental Research, 82467, Garmisch-Partenkirchen, Germany
| | - Almut Arneth
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research/Atmospheric Environmental Research, 82467, Garmisch-Partenkirchen, Germany
| | - Vivek K Arora
- Canadian Centre for Climate Modelling and Analysis, Climate Research Division, Environment and Climate Change Canada, Victoria, BC, Canada
| | - Vladislav Bastrikov
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91198, Gif-sur-Yvette, France
| | - Christine Delire
- CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
| | - Daniel S Goll
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91198, Gif-sur-Yvette, France
| | - Atul Jain
- Department of Atmospheric Sciences, University of Illinois, Urbana, IL, 61821, USA
| | - Etsushi Kato
- Institute of Applied Energy (IAE), Minato-ku, Tokyo, 105-0003, Japan
| | - Daniel Kennedy
- National Center for Atmospheric Research, Climate and Global Dynamics, Terrestrial Sciences Section, Boulder, CO, 80305, USA
| | - Jürgen Knauer
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.,CSIRO Oceans and Atmosphere, Canberra, ACT, 2101, Australia
| | - Sebastian Lienert
- Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Danica Lombardozzi
- National Center for Atmospheric Research, Climate and Global Dynamics, Terrestrial Sciences Section, Boulder, CO, 80305, USA
| | | | - Joe R Melton
- Canadian Centre for Climate Modelling and Analysis, Climate Research Division, Environment and Climate Change Canada, Victoria, BC, Canada
| | - Julia E M S Nabel
- Max Planck Institute for Meteorology, Bundesstr. 53, 20146, Hamburg, Germany.,Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Julia Pongratz
- Max Planck Institute for Meteorology, Bundesstr. 53, 20146, Hamburg, Germany.,Ludwig-Maximilians-Universität München, Luisenstr. 37, 80333, München, Germany
| | - Benjamin Poulter
- NASA Goddard Space Flight Center, Biospheric Sciences Laboratory, Greenbelt, MD, 20771, USA
| | - Roland Séférian
- CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
| | - Hanqin Tian
- Schiller Institute for Integrated Science and Society, Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA, 02467, USA
| | - Nicolas Vuichard
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91198, Gif-sur-Yvette, France
| | - Anthony P Walker
- Climate Change Science Institute & Environmental Sciences Division, Oak Ridge National Lab, Oak Ridge, TN, 37831, USA
| | - Wenping Yuan
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong, 510245, China
| | - Xu Yue
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology (NUIST), Nanjing, China
| | - Sönke Zaehle
- Max Planck Institute for Biogeochemistry, Jena, Germany
| |
Collapse
|
29
|
Liu P, Barr AG, Zha T, Black TA, Jassal RS, Nesic Z, Helgason WD, Jia X, Tian Y. Re-assessment of the climatic controls on the carbon and water fluxes of a boreal aspen forest over 1996-2016: Changing sensitivity to long-term climatic conditions. GLOBAL CHANGE BIOLOGY 2022; 28:4605-4619. [PMID: 35474386 DOI: 10.1111/gcb.16218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Recent evidence suggests that the relationships between climate and boreal tree growth are generally non-stationary; however, it remains uncertain whether the relationships between climate and carbon (C) fluxes of boreal forests are stationary or have changed over recent decades. In this study, we used continuous eddy-covariance and microclimate data over 21 years (1996-2016) from a 100-year-old trembling aspen stand in central Saskatchewan, Canada to assess the relationships between climate and ecosystem C and water fluxes. Over the study period, the most striking climatic event was a severe, 3-year drought (2001-2003). Gross ecosystem production (GEP) showed larger interannual variability than ecosystem respiration (Re ) over 1996-2016, but Re was the dominant component contributing to the interannual variation in net ecosystem production (NEP) during post-drought years. The interannual variations in evapotranspiration (ET) and C fluxes were primarily driven by temperature and secondarily by water availability. Two-factor linear models combining precipitation and temperature performed well in explaining the interannual variation in C and water fluxes (R2 > .5). The temperature sensitivities of all three C fluxes (NEP, GEP and Re ) declined over the study period (p < .05), and, as a result, the phenological controls on annual NEP weakened. The decreasing temperature sensitivity of the C fluxes may reflect changes in forest structure, related to the over-maturity of the aspen stand at 100 years of age, and exacerbated by high tree mortality following the severe 2001-2003 drought. These results may provide an early warning signal of driver shift or even an abrupt status shift of aspen forest dynamics. They may also imply a universal weakening in the relationship between temperature and GEP as forests become over-mature, associated with the structural and compositional changes that accompany forest ageing.
Collapse
Affiliation(s)
- Peng Liu
- School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Beijing Engineering Research Center of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Alan G Barr
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Tianshan Zha
- School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Beijing Engineering Research Center of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - T Andrew Black
- Biometeorology and Soil Physics Group, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rachhpal S Jassal
- Biometeorology and Soil Physics Group, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zoran Nesic
- Biometeorology and Soil Physics Group, University of British Columbia, Vancouver, British Columbia, Canada
| | - Warren D Helgason
- Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Xin Jia
- School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Beijing Engineering Research Center of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Yun Tian
- School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Beijing Engineering Research Center of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
30
|
Spatiotemporal Changes and Driver Analysis of Ecosystem Respiration in the Tibetan and Inner Mongolian Grasslands. REMOTE SENSING 2022. [DOI: 10.3390/rs14153563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ecosystem respiration (RE) plays a critical role in terrestrial carbon cycles, and quantification of RE is important for understanding the interaction between climate change and carbon dynamics. We used a multi-level attention network, Geoman, to identify the relative importance of environmental factors and to simulate spatiotemporal changes in RE in northern China’s grasslands during 2001–2015, based on 18 flux sites and multi-source spatial data. Results indicate that Geoman performed well (R2 = 0.87, RMSE = 0.39 g C m−2 d−1, MAE = 0.28 g C m−2 d−1), and that grassland type and soil texture are the two most important environmental variables for RE estimation. RE in alpine grasslands showed a decreasing gradient from southeast to northwest, and that of temperate grasslands showed a decreasing gradient from northeast to southwest. This can be explained by the enhanced vegetation index (EVI), and soil factors including soil organic carbon density and soil texture. RE in northern China’s grasslands showed a significant increase (1.81 g C m−2 yr−1) during 2001–2015. The increase rate of RE in alpine grassland (2.36 g C m−2 yr−1) was greater than that in temperate grassland (1.28 g C m−2 yr−1). Temperature and EVI contributed to the interannual change of RE in alpine grassland, and precipitation and EVI were the main contributors in temperate grassland. This study provides a key reference for the application of advanced deep learning models in carbon cycle simulation, to reduce uncertainties and improve understanding of the effects of biotic and climatic factors on spatiotemporal changes in RE.
Collapse
|
31
|
Jin Y, Keeling RF, Rödenbeck C, Patra PK, Piper SC, Schwartzman A. Impact of Changing Winds on the Mauna Loa CO 2 Seasonal Cycle in Relation to the Pacific Decadal Oscillation. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2022; 127:e2021JD035892. [PMID: 35864859 PMCID: PMC9285976 DOI: 10.1029/2021jd035892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/21/2022] [Accepted: 06/16/2022] [Indexed: 05/14/2023]
Abstract
Long-term measurements at the Mauna Loa Observatory (MLO) show that the CO2 seasonal cycle amplitude (SCA) increased from 1959 to 2019 at an overall rate of 0.22 ± 0.034 ppm decade-1 while also varying on interannual to decadal time scales. These SCA changes are a signature of changes in land ecological CO2 fluxes as well as shifting winds. Simulations with the TM3 tracer transport model and CO2 fluxes from the Jena CarboScope CO2 Inversion suggest that shifting winds alone have contributed to a decrease in SCA of -0.10 ± 0.022 ppm decade-1 from 1959 to 2019, partly offsetting the observed long-term SCA increase associated with enhanced ecosystem net primary production. According to these simulations and MIROC-ACTM simulations, the shorter-term variability of MLO SCA is nearly equally driven by varying ecological CO2 fluxes (49%) and varying winds (51%). We also show that the MLO SCA is strongly correlated with the Pacific Decadal Oscillation (PDO) due to varying winds, as well as with a closely related wind index (U-PDO). Since 1980, 44% of the wind-driven SCA decrease has been tied to a secular trend in the U-PDO, which is associated with a progressive weakening of westerly winds at 700 mbar over the central Pacific from 20°N to 40°N. Similar impacts of varying winds on the SCA are seen in simulations at other low-latitude Pacific stations, illustrating the difficulty of constraining trend and variability of land CO2 fluxes using observations from low latitudes due to the complexity of circulation changes.
Collapse
Affiliation(s)
- Yuming Jin
- Scripps Institution of OceanographyUniversity of California, San DiegoLa JollaCAUSA
| | - Ralph F. Keeling
- Scripps Institution of OceanographyUniversity of California, San DiegoLa JollaCAUSA
| | | | - Prabir K. Patra
- Research Institute for Global ChangeJapan Agency for Marine‐Earth Science and TechnologyYokohamaJapan
| | - Stephen C. Piper
- Scripps Institution of OceanographyUniversity of California, San DiegoLa JollaCAUSA
| | - Armin Schwartzman
- Division of BiostatisticsHalıcıoğlu Data Science InstituteUniversity of California, San DiegoLa JollaCAUSA
| |
Collapse
|
32
|
The Sensitivity of Vegetation Dynamics to Climate Change across the Tibetan Plateau. ATMOSPHERE 2022. [DOI: 10.3390/atmos13071112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vegetation dynamics are key processes which present the ecology system’s response to climate change. However, vegetation sensitivity to climate change remains controversial. This study redefined vegetation sensitivity to precipitation (VSP) and vegetation sensitivity to temperature (VST) by the coefficient of determination (R2) obtained by a linear regression analysis between climate and the normalized difference vegetation index (NDVI), as well as by using an analysis of variance to explore the significant differences between them in different seasons from 1982 to 2013, and exploring the general changed rules of VSP/VST on a timescale. Moreover, the variations in VSP and VST across the Tibetan Plateau were plotted by regression analysis. Finally, we used structural equation modeling (SEM) to verify the hypothesis that the respondence of VSP and VST to the NDVI was regulated by the hydrothermal conditions. Our results showed that: (1) the annual VSP increased in both spring and winter (R2 = 0.32, p < 0.001; R2 = 0.25, p < 0.001, respectively), while the annual VST decreased in summer (R2 = 0.21, p < 0.001); (2) the threshold conditions of seasonal VSP and seasonal VST were captured in the 4–12 mm range (monthly precipitation) and at 0 °C (monthly average temperature), respectively; (3) the SEM demonstrated that climate change has significant direct effects on VSP only in spring and winter and on VST only in summer (path coefficient of −0.554, 0.478, and −0.428, respectively). In summary, our findings highlighted that climate change under these threshold conditions would lead to a variation in the sensitivity of the NDVI to seasonal precipitation and temperature.
Collapse
|
33
|
Berner LT, Goetz SJ. Satellite observations document trends consistent with a boreal forest biome shift. GLOBAL CHANGE BIOLOGY 2022; 28:3275-3292. [PMID: 35199413 PMCID: PMC9303657 DOI: 10.1111/gcb.16121] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/13/2022] [Indexed: 05/03/2023]
Abstract
The boreal forest biome is a major component of Earth's biosphere and climate system that is projected to shift northward due to continued climate change over the coming century. Indicators of a biome shift will likely first be evident along the climatic margins of the boreal forest and include changes in vegetation productivity, mortality, and recruitment, as well as overall vegetation greenness. However, the extent to which a biome shift is already underway remains unclear because of the local nature of most field studies, sparsity of systematic ground-based ecological monitoring, and reliance on coarse resolution satellite observations. Here, we evaluated early indicators of a boreal forest biome shift using four decades of moderate resolution (30 m) satellite observations and biogeoclimatic spatial datasets. Specifically, we quantified interannual trends in annual maximum vegetation greenness using an ensemble of vegetation indices derived from Landsat observations at 100,000 sample sites in areas without signs of recent disturbance. We found vegetation greenness increased (greened) at 38 [29, 42] % and 22 [15, 26] % of sample sites from 1985 to 2019 and 2000 to 2019, whereas vegetation greenness decreased (browned) at 13 [9, 15] % and 15 [13, 19] % of sample sites during these respective periods [95% Monte Carlo confidence intervals]. Greening was thus 3.0 [2.6, 3.5] and 1.5 [0.8, 2.0] times more common than browning and primarily occurred in cold sparsely treed areas with high soil nitrogen and moderate summer warming. Conversely, browning primarily occurred in the climatically warmest margins of both the boreal forest biome and major forest types (e.g., evergreen conifer forests), especially in densely treed areas where summers became warmer and drier. These macroecological trends reflect underlying shifts in vegetation productivity, mortality, and recruitment that are consistent with early stages of a boreal biome shift.
Collapse
Affiliation(s)
- Logan T. Berner
- School of Informatics, Computing, and Cyber SystemsNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Scott J. Goetz
- School of Informatics, Computing, and Cyber SystemsNorthern Arizona UniversityFlagstaffArizonaUSA
| |
Collapse
|
34
|
Outlier Reconstruction of NDVI for Vegetation-Cover Dynamic Analyses. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The normalized difference vegetation index (NDVI) contains important data for providing vegetation-cover information and supporting environmental analyses. However, understanding long-term vegetation cover dynamics remains challenging due to data outliers that are found in cloudy regions. In this article, we propose a sliding-window-based tensor stream analysis algorithm (SWTSA) for reconstructing outliers in NDVI from multitemporal optical remote-sensing images. First, we constructed a tensor stream of NDVI that was calculated from clear-sky optical remote-sensing images corresponding to seasons on the basis of the acquired date. Second, we conducted tensor decomposition and reconstruction by SWTSA. Landsat series remote-sensing images were used in experiments to demonstrate the applicability of the SWTSA. Experiments were carried out successfully on the basis of data from the estuary area of Salween River in Southeast Asia. Compared with random forest regression (RFR), SWTSA has higher accuracy and better reconstruction capabilities. Results show that SWTSA is reliable and suitable for reconstructing outliers of NDVI from multitemporal optical remote-sensing images.
Collapse
|
35
|
Global monthly gridded atmospheric carbon dioxide concentrations under the historical and future scenarios. Sci Data 2022; 9:83. [PMID: 35277521 PMCID: PMC8917170 DOI: 10.1038/s41597-022-01196-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/07/2022] [Indexed: 11/08/2022] Open
Abstract
Increases in atmospheric carbon dioxide (CO2) concentrations is the main driver of global warming due to fossil fuel combustion. Satellite observations provide continuous global CO2 retrieval products, that reveal the nonuniform distributions of atmospheric CO2 concentrations. However, climate simulation studies are almost based on a globally uniform mean or latitudinally resolved CO2 concentrations assumption. In this study, we reconstructed the historical global monthly distributions of atmospheric CO2 concentrations with 1° resolution from 1850 to 2013 which are based on the historical monthly and latitudinally resolved CO2 concentrations accounting longitudinal features retrieved from fossil-fuel CO2 emissions from Carbon Dioxide Information Analysis Center. And the spatial distributions of nonuniform CO2 under Shared Socio-economic Pathways and Representative Concentration Pathways scenarios were generated based on the spatial, seasonal and interannual scales of the current CO2 concentrations from 2015 to 2150. Including the heterogenous CO2 distributions could enhance the realism of global climate modeling, to better anticipate the potential socio-economic implications, adaptation practices, and mitigation of climate change.
Collapse
|
36
|
Rogers A, Serbin SP, Way DA. Reducing model uncertainty of climate change impacts on high latitude carbon assimilation. GLOBAL CHANGE BIOLOGY 2022; 28:1222-1247. [PMID: 34689389 DOI: 10.1111/gcb.15958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
The Arctic-Boreal Region (ABR) has a large impact on global vegetation-atmosphere interactions and is experiencing markedly greater warming than the rest of the planet, a trend that is projected to continue with anticipated future emissions of CO2 . The ABR is a significant source of uncertainty in estimates of carbon uptake in terrestrial biosphere models such that reducing this uncertainty is critical for more accurately estimating global carbon cycling and understanding the response of the region to global change. Process representation and parameterization associated with gross primary productivity (GPP) drives a large amount of this model uncertainty, particularly within the next 50 years, where the response of existing vegetation to climate change will dominate estimates of GPP for the region. Here we review our current understanding and model representation of GPP in northern latitudes, focusing on vegetation composition, phenology, and physiology, and consider how climate change alters these three components. We highlight challenges in the ABR for predicting GPP, but also focus on the unique opportunities for advancing knowledge and model representation, particularly through the combination of remote sensing and traditional boots-on-the-ground science.
Collapse
Affiliation(s)
- Alistair Rogers
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Shawn P Serbin
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Danielle A Way
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, USA
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| |
Collapse
|
37
|
Keenan TF, Luo X, De Kauwe MG, Medlyn BE, Prentice IC, Stocker BD, Smith NG, Terrer C, Wang H, Zhang Y, Zhou S. A constraint on historic growth in global photosynthesis due to increasing CO 2. Nature 2021; 600:253-258. [PMID: 34880429 DOI: 10.1038/s41586-021-04096-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/05/2021] [Indexed: 11/09/2022]
Abstract
The global terrestrial carbon sink is increasing1-3, offsetting roughly a third of anthropogenic CO2 released into the atmosphere each decade1, and thus serving to slow4 the growth of atmospheric CO2. It has been suggested that a CO2-induced long-term increase in global photosynthesis, a process known as CO2 fertilization, is responsible for a large proportion of the current terrestrial carbon sink4-7. The estimated magnitude of the historic increase in photosynthesis as result of increasing atmospheric CO2 concentrations, however, differs by an order of magnitude between long-term proxies and terrestrial biosphere models7-13. Here we quantify the historic effect of CO2 on global photosynthesis by identifying an emergent constraint14-16 that combines terrestrial biosphere models with global carbon budget estimates. Our analysis suggests that CO2 fertilization increased global annual photosynthesis by 11.85 ± 1.4%, or 13.98 ± 1.63 petagrams carbon (mean ± 95% confidence interval) between 1981 and 2020. Our results help resolve conflicting estimates of the historic sensitivity of global photosynthesis to CO2, and highlight the large impact anthropogenic emissions have had on ecosystems worldwide.
Collapse
Affiliation(s)
- T F Keenan
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA, USA. .,Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - X Luo
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA, USA.,Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Geography, National University of, Singapore, Singapore
| | - M G De Kauwe
- ARC Centre of Excellence for Climate Extremes, Sydney, New South Wales, Australia.,Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia.,School of Biological Sciences, University of Bristol, Bristol, UK
| | - B E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - I C Prentice
- Department of Life Sciences, Imperial College London, Ascot, UK.,Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia.,Department of Earth System Science, Tsinghua University, Haidian, Beijing, China
| | - B D Stocker
- Department of Environmental Systems Science, ETH, Zurich, Switzerland.,Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - N G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - C Terrer
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Boston, MA, USA
| | - H Wang
- Department of Earth System Science, Tsinghua University, Haidian, Beijing, China
| | - Y Zhang
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA, USA.,Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - S Zhou
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA, USA.,Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA.,Earth Institute, Columbia University, New York, NY, USA.,Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA.,State Key Laboratory of Earth Surface Processes and Resources Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| |
Collapse
|
38
|
Tang X, Shi Y, Luo X, Liu L, Jian J, Bond-Lamberty B, Hao D, Olchev A, Zhang W, Gao S, Li J. A decreasing carbon allocation to belowground autotrophic respiration in global forest ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149273. [PMID: 34378544 DOI: 10.1016/j.scitotenv.2021.149273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Belowground autotrophic respiration (RAsoil) depends on carbohydrates from photosynthesis flowing to roots and rhizospheres, and is one of the most important but least understood components in forest carbon cycling. Carbon allocation plays an important role in forest carbon cycling and reflects forest adaptation to changing environmental conditions. However, carbon allocation to RAsoil has not been fully examined at the global scale. To fill this knowledge gap, we first used a Random Forest algorithm to predict the spatio-temporal patterns of RAsoil from 1981 to 2017 based on the most updated Global Soil Respiration Database (v5) with global environmental variables; calculated carbon allocation from photosynthesis to RAsoil (CAB) as a fraction of gross primary production; and assessed its temporal and spatial patterns in global forest ecosystems. Globally, mean RAsoil from forests was 8.9 ± 0.08 Pg C yr-1 (mean ± standard deviation) from 1981 to 2017 and increased significantly at a rate of 0.006 Pg C yr-2, paralleling broader soil respiration changes and suggesting increasing carbon respired by roots. Mean CAB was 0.243 ± 0.016 and decreased over time. The temporal trend of CAB varied greatly in space, reflecting uneven responses of CAB to environmental changes. Combined with carbon use efficiency, our CAB results offer a completely independent approach to quantify global aboveground autotropic respiration spatially and temporally, and could provide crucial insights into carbon flux partitioning and global carbon cycling under climate change.
Collapse
Affiliation(s)
- Xiaolu Tang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & WaterPollution, Chengdu University of Technology, Chengdu 610059, China.
| | - Yuehong Shi
- College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Xinruo Luo
- College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Liang Liu
- College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Jinshi Jian
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China; Pacific Northwest National Laboratory, Joint Global Change Research Institute at the University of Maryland-College Park, 5825 University Research Court, Suite 3500, College Park, MD 20740, USA
| | - Ben Bond-Lamberty
- Pacific Northwest National Laboratory, Joint Global Change Research Institute at the University of Maryland-College Park, 5825 University Research Court, Suite 3500, College Park, MD 20740, USA
| | - Dalei Hao
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Alexander Olchev
- Department of Meteorology and Climatology, Faculty of Geography, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
| | - Wenjie Zhang
- School of Geographical Sciences, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
| | - Sicong Gao
- CSIRO Land and Water, PMB 2, Glen Osmond, SA 5064, Australia; Centre for Applied Water Science, University of Canberra, Canberra, Australia
| | - Jingji Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & WaterPollution, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|
39
|
Liberati D, Guidolotti G, de Dato G, De Angelis P. Enhancement of ecosystem carbon uptake in a dry shrubland under moderate warming: The role of nitrogen-driven changes in plant morphology. GLOBAL CHANGE BIOLOGY 2021; 27:5629-5642. [PMID: 34363286 PMCID: PMC9290483 DOI: 10.1111/gcb.15823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Net ecosystem CO2 exchange is the result of net carbon uptake by plant photosynthesis and carbon loss by soil and plant respiration. Temperature increases due to climate change can modify the equilibrium between these fluxes and trigger ecosystem-climate feedbacks that can accelerate climate warming. As these dynamics have not been well studied in dry shrublands, we subjected a Mediterranean shrubland to a 10-year night-time temperature manipulation experiment that analyzed ecosystem carbon fluxes associated with dominant shrub species, together with several plant parameters related to leaf photosynthesis, leaf morphology, and canopy structure. Under moderate night-time warming (+0.9°C minimum daily temperature, no significant reduction in soil moisture), Cistus monspeliensis formed shoots with more leaves that were relatively larger and denser canopies that supported higher plant-level photosynthesis rates. Given that ecosystem respiration was not affected, this change in canopy morphology led to a significant enhancement in net ecosystem exchange (+47% at midday). The observed changes in shoot and canopy morphology were attributed to the improved nutritional state of the warmed plants, primarily due to changes in nitrogen cycling and higher nitrogen resorption efficiency in senescent leaves. Our results show that modifications in plant morphology triggered by moderate warming affected ecosystem CO2 fluxes, providing the first evidence for enhanced daytime carbon uptake in a dry shrubland ecosystem under experimental warming.
Collapse
Affiliation(s)
- Dario Liberati
- Department for Innovation in Biological, Agro‐Food and Forest Systems (DIBAF)University of TusciaViterboItaly
| | - Gabriele Guidolotti
- Department for Innovation in Biological, Agro‐Food and Forest Systems (DIBAF)University of TusciaViterboItaly
- Present address:
Institute of Research on Terrestrial Ecosystems (IRET)National Research Council (CNR)PoranoTRItaly
| | - Giovanbattista de Dato
- Department for Innovation in Biological, Agro‐Food and Forest Systems (DIBAF)University of TusciaViterboItaly
- Present address:
Council for Agricultural Research and Economics (CREA) – Research Centre for Forestry and WoodArezzoItaly
| | - Paolo De Angelis
- Department for Innovation in Biological, Agro‐Food and Forest Systems (DIBAF)University of TusciaViterboItaly
| |
Collapse
|
40
|
Growth-defense trade-offs shape population genetic composition in an iconic forest tree species. Proc Natl Acad Sci U S A 2021; 118:2103162118. [PMID: 34507992 DOI: 10.1073/pnas.2103162118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2021] [Indexed: 12/30/2022] Open
Abstract
All organisms experience fundamental conflicts between divergent metabolic processes. In plants, a pivotal conflict occurs between allocation to growth, which accelerates resource acquisition, and to defense, which protects existing tissue against herbivory. Trade-offs between growth and defense traits are not universally observed, and a central prediction of plant evolutionary ecology is that context-dependence of these trade-offs contributes to the maintenance of intraspecific variation in defense [Züst and Agrawal, Annu. Rev. Plant Biol., 68, 513-534 (2017)]. This prediction has rarely been tested, however, and the evolutionary consequences of growth-defense trade-offs in different environments are poorly understood, especially in long-lived species [Cipollini et al., Annual Plant Reviews (Wiley, 2014), pp. 263-307]. Here we show that intraspecific trait trade-offs, even when fixed across divergent environments, interact with competition to drive natural selection of tree genotypes corresponding to their growth-defense phenotypes. Our results show that a functional trait trade-off, when coupled with environmental variation, causes real-time divergence in the genetic architecture of tree populations in an experimental setting. Specifically, competitive selection for faster growth resulted in dominance by fast-growing tree genotypes that were poorly defended against natural enemies. This outcome is a signature example of eco-evolutionary dynamics: Competitive interactions affected microevolutionary trajectories on a timescale relevant to subsequent ecological interactions [Brunner et al., Funct. Ecol. 33, 7-12 (2019)]. Eco-evolutionary drivers of tree growth and defense are thus critical to stand-level trait variation, which structures communities and ecosystems over expansive spatiotemporal scales.
Collapse
|
41
|
Wang Y, Godin R, Durrant JR, Tang J. Efficient Hole Trapping in Carbon Dot/Oxygen-Modified Carbon Nitride Heterojunction Photocatalysts for Enhanced Methanol Production from CO 2 under Neutral Conditions. Angew Chem Int Ed Engl 2021; 60:20811-20816. [PMID: 34288316 PMCID: PMC8519127 DOI: 10.1002/anie.202105570] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/28/2021] [Indexed: 12/04/2022]
Abstract
Artificial photosynthesis of alcohols from CO2 is still unsatisfactory owing to the rapid charge relaxation compared to the sluggish photoreactions and the oxidation of alcohol products. Here, we demonstrate that CO2 is reduced to methanol with 100 % selectivity using water as the only electron donor on a carbon nitride-like polymer (FAT) decorated with carbon dots. The quantum efficiency of 5.9 % (λ=420 nm) is 300 % higher than the previously reported carbon nitride junction. Using transient absorption spectroscopy, we observed that holes in FAT could be extracted by the carbon dots with nearly 75 % efficiency before they become unreactive by trapping. Extraction of holes resulted in a greater density of photoelectrons, indicative of reduced recombination of shorter-lived reactive electrons. This work offers a strategy to promote photocatalysis by increasing the amount of reactive photogenerated charges via structure engineering and extraction before energy losses by deep trapping.
Collapse
Affiliation(s)
- Yiou Wang
- Department of Chemical EngineeringUCLTorrington PlaceLondonWC1E 7JEUK
- Chair for Photonics and Optoelectronics, Nano-Institute MunichLudwig-Maximilians-Universität MünchenKöniginstr. 1080539MunichGermany
| | - Robert Godin
- Department of Chemistry and Center for Plastic ElectronicsImperial College LondonExhibition RoadLondonSW7 2AZUK
- Department of ChemistryThe University of British ColumbiaKelownaBCV1V 1V7Canada
| | - James R. Durrant
- Department of Chemistry and Center for Plastic ElectronicsImperial College LondonExhibition RoadLondonSW7 2AZUK
| | - Junwang Tang
- Department of Chemical EngineeringUCLTorrington PlaceLondonWC1E 7JEUK
| |
Collapse
|
42
|
BVOC Emissions From a Subarctic Ecosystem, as Controlled by Insect Herbivore Pressure and Temperature. Ecosystems 2021. [DOI: 10.1007/s10021-021-00690-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
The biogenic volatile organic compounds, BVOCs have a central role in ecosystem–atmosphere interactions. High-latitude ecosystems are facing increasing temperatures and insect herbivore pressure, which may affect their BVOC emission rates, but evidence and predictions of changes remain scattered. We studied the long-term effects of + 3 °C warming and reduced insect herbivory (achieved through insecticide sprayings) on mid- and late summer BVOC emissions from field layer vegetation, supplemented with birch saplings, and the underlying soil in Subarctic mountain birch forest in Finland in 2017–2018. Reduced insect herbivory decreased leaf damage by 58–67% and total ecosystem BVOC emissions by 44–72%. Of the BVOC groups, total sesquiterpenes had 70–80% lower emissions with reduced herbivory, and in 2017 the decrease was greater in warmed plots (89% decrease) than in ambient plots (34% decrease). While non-standardized total BVOC, monoterpene, sesquiterpene and GLV emissions showed instant positive responses to increasing chamber air temperature in midsummer samplings, the long-term warming treatment effects on standardized emissions mainly appeared as changes in the compound structure of BVOC blends and varied with compounds and sampling times. Our results suggest that the effects of climate warming on the total quantity of BVOC emissions will in Subarctic ecosystems be, over and above the instant temperature effects, mediated through changes in insect herbivore pressure rather than plant growth. If insect herbivore numbers will increase as predicted under climate warming, our results forecast herbivory-induced increases in the quantity of Subarctic BVOC emissions.
Graphic Abstract
Collapse
|
43
|
Wang Y, Godin R, Durrant JR, Tang J. Efficient Hole Trapping in Carbon Dot/Oxygen‐Modified Carbon Nitride Heterojunction Photocatalysts for Enhanced Methanol Production from CO
2
under Neutral Conditions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yiou Wang
- Department of Chemical Engineering UCL Torrington Place London WC1E 7JE UK
- Chair for Photonics and Optoelectronics, Nano-Institute Munich Ludwig-Maximilians-Universität München Königinstr. 10 80539 Munich Germany
| | - Robert Godin
- Department of Chemistry and Center for Plastic Electronics Imperial College London Exhibition Road London SW7 2AZ UK
- Department of Chemistry The University of British Columbia Kelowna BC V1V 1V7 Canada
| | - James R. Durrant
- Department of Chemistry and Center for Plastic Electronics Imperial College London Exhibition Road London SW7 2AZ UK
| | - Junwang Tang
- Department of Chemical Engineering UCL Torrington Place London WC1E 7JE UK
| |
Collapse
|
44
|
COS-derived GPP relationships with temperature and light help explain high-latitude atmospheric CO 2 seasonal cycle amplification. Proc Natl Acad Sci U S A 2021; 118:2103423118. [PMID: 34380737 DOI: 10.1073/pnas.2103423118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the Arctic and Boreal region (ABR) where warming is especially pronounced, the increase of gross primary production (GPP) has been suggested as an important driver for the increase of the atmospheric CO2 seasonal cycle amplitude (SCA). However, the role of GPP relative to changes in ecosystem respiration (ER) remains unclear, largely due to our inability to quantify these gross fluxes on regional scales. Here, we use atmospheric carbonyl sulfide (COS) measurements to provide observation-based estimates of GPP over the North American ABR. Our annual GPP estimate is 3.6 (2.4 to 5.5) PgC · y-1 between 2009 and 2013, the uncertainty of which is smaller than the range of GPP estimated from terrestrial ecosystem models (1.5 to 9.8 PgC · y-1). Our COS-derived monthly GPP shows significant correlations in space and time with satellite-based GPP proxies, solar-induced chlorophyll fluorescence, and near-infrared reflectance of vegetation. Furthermore, the derived monthly GPP displays two different linear relationships with soil temperature in spring versus autumn, whereas the relationship between monthly ER and soil temperature is best described by a single quadratic relationship throughout the year. In spring to midsummer, when GPP is most strongly correlated with soil temperature, our results suggest the warming-induced increases of GPP likely exceeded the increases of ER over the past four decades. In autumn, however, increases of ER were likely greater than GPP due to light limitations on GPP, thereby enhancing autumn net carbon emissions. Both effects have likely contributed to the atmospheric CO2 SCA amplification observed in the ABR.
Collapse
|
45
|
Wang K, Wang X, Piao S, Chevallier F, Mao J, Shi X, Huntingford C, Bastos A, Ciais P, Xu H, Keeling RF, Pacala SW, Chen A. Unusual characteristics of the carbon cycle during the 2015-2016 El Niño. GLOBAL CHANGE BIOLOGY 2021; 27:3798-3809. [PMID: 33934460 DOI: 10.1111/gcb.15669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
The 2015-2016 El Niño was one of the strongest on record, but its influence on the carbon balance is less clear. Using Northern Hemisphere atmospheric CO2 observations, we found both detrended atmospheric CO2 growth rate (CGR) and CO2 seasonal-cycle amplitude (SCA) of 2015-2016 were much higher than that of other El Niño events. The simultaneous high CGR and SCA were unusual, because our analysis of long-term CO2 observations at Mauna Loa revealed a significantly negative correlation between CGR and SCA. Atmospheric inversions and terrestrial ecosystem models indicate strong northern land carbon uptake during spring but substantially reduced carbon uptake (or high emissions) during early autumn, which amplified SCA but also resulted in a small anomaly in annual carbon uptake of northern ecosystems in 2015-2016. This negative ecosystem carbon uptake anomaly in early autumn was primarily due to soil water deficits and more litter decomposition caused by enhanced spring productivity. Our study demonstrates a decoupling between seasonality and annual carbon cycle balance in northern ecosystems over 2015-2016, which is unprecedented in the past five decades of El Niño events.
Collapse
Affiliation(s)
- Kai Wang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xuhui Wang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Shilong Piao
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Tibetan Earth Science, Chinese Academy of Sciences, Beijing, China
| | - Frédéric Chevallier
- Laboratoire des Sciences du Climat et de l'Environnement, CEA CNRS UVSQ, Gif-sur-Yvette, France
| | - Jiafu Mao
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Xiaoying Shi
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Ana Bastos
- Department Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, CEA CNRS UVSQ, Gif-sur-Yvette, France
| | - Hao Xu
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Ralph F Keeling
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Stephen W Pacala
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Anping Chen
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
46
|
High-Resolution Spatio-Temporal Estimation of Net Ecosystem Exchange in Ice-Wedge Polygon Tundra Using In Situ Sensors and Remote Sensing Data. LAND 2021. [DOI: 10.3390/land10070722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Land-atmosphere carbon exchange is known to be extremely heterogeneous in arctic ice-wedge polygonal tundra regions. In this study, a Kalman filter-based method was developed to estimate the spatio-temporal dynamics of daytime average net ecosystem exchange (NEEday) at 0.5-m resolution over a 550 m by 700 m study site. We integrated multi-scale, multi-type datasets, including normalized difference vegetation indices (NDVIs) obtained from a novel automated mobile sensor system (or tram system) and a greenness index map obtained from airborne imagery. We took advantage of the significant correlations between NDVI and NEEday identified based on flux chamber measurements. The weighted average of the estimated NEEday within the flux-tower footprint agreed with the flux tower data in term of its seasonal dynamics. We then evaluated the spatial variability of the growing season average NEEday, as a function of polygon geomorphic classes; i.e., the combination of polygon types—which are known to present different degradation stages associated with permafrost thaw—and microtopographic features (i.e., troughs, centers and rims). Our study suggests the importance of considering microtopographic features and their spatial coverage in computing spatially aggregated carbon exchange.
Collapse
|
47
|
Tang Y, Xu X, Zhou Z, Qu Y, Sun Y. Estimating global maximum gross primary productivity of vegetation based on the combination of MODIS greenness and temperature data. ECOL INFORM 2021. [DOI: 10.1016/j.ecoinf.2021.101307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Majeed MT, Mazhar M, Sabir S. Environmental quality and output volatility: the case of South Asian economies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31276-31288. [PMID: 33604832 DOI: 10.1007/s11356-021-12659-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
This study explores the impact of environmental degradation on output volatility for eight South Asian economies over the time span 1971-2017. Environmental degradation is measured by CO2 emissions, nitrous oxide (N2O), methane emissions (CH4), greenhouse gas emissions (GHG), and environmental pollutants index (EPI), whereas output volatility is constructed using a rolling window of five-year moving standard deviation. The results of cross-sectional dependence (CSD) tests indicate the presence of CSD among South Asian economies. For empirical analysis, second-generation panel time series approaches are employed. Also, the findings of panel unit root tests (URTs) signify that the variables are stationary at the first difference and have a long-run relationship. Westerlund cointegration test is used to assess the long-run relationship among the variables. Moreover, this study has used a fully modified ordinary least square (FMOLS) and dynamic modified ordinary least square (DOLS) methods to examine the relationship between environmental degradation and output volatility. In the long run, all indicators of environmental degradation are positive and significant signaling the harmful effects of environmental degradation on output volatility. However, the impact of nitrous oxide is larger relative to other indicators used in the study. The outcome, therefore, suggests that promoting clean investment in nitric acid plants might help improve the environmental quality in the region which in turn fosters the process of economic stability.
Collapse
Affiliation(s)
| | - Maria Mazhar
- School of Economics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Samina Sabir
- Kashmir Institute of Economics, University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
| |
Collapse
|
49
|
Schinko HAE, Lamprecht B, Schmidt R. Welche Veränderungen kann der Klimawandel für Pollenflug und Pollenbelastung allergener Pflanzen bringen? ALLERGO JOURNAL 2021. [DOI: 10.1007/s15007-021-4797-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Nazarova LB, Frolova LA, Palagushkina OV, Rudaya NA, Syrykh LS, Grekov IM, Solovieva N, Loskutova OA. Recent shift in biological communities: A case study from the Eastern European Russian Arctic (Bol`shezemelskaya Tundra). Polar Biol 2021. [DOI: 10.1007/s00300-021-02876-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|