1
|
Wei H, Yang Z, Liu H, Ying W, Gao Y, Zhu L, Liu X, Sun L. Structural basis of cytokinin transport by the Arabidopsis AZG2. Nat Commun 2025; 16:3475. [PMID: 40216803 PMCID: PMC11992111 DOI: 10.1038/s41467-025-58802-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Cytokinins are adenine derivatives serving as phytohormones, which are essential regulators of plant growth, development, and response to environmental factors. The transport process of cytokinins determines their spatial distributions and is critical to their functions. The AZA-GUANINE RESISTANT (AZG) family member AZG2 in Arabidopsis thaliana has been identified as a cytokinin and purine transporter. Here, we characterize the binding and transport of AZG2 towards the natural cytokinin, trans-zeatin (tZ), as well as adenine. AZG2 structures are determined in both the substrate-unbound, adenine-bound, and tZ-bound states, under both acidic and neutral pH. Key residues involved in substrate binding are identified. Two distinct conformations are observed in the tZ-bound state of AZG2 in the neutral pH. Structural analysis reveals the structural dynamics of AZG2 during cytokinin transport, which fit into the elevator-type transport model. These results provide insights into the molecular mechanism of cytokinin transport in plants.
Collapse
Affiliation(s)
- Hong Wei
- Department of Neurology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Zhisen Yang
- Department of Neurology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Huihui Liu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| | - Wei Ying
- Department of Neurology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Yongxiang Gao
- Department of Neurology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China.
| | - Xin Liu
- Department of Neurology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| | - Linfeng Sun
- Department of Neurology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
2
|
Huang Y, Zhang Y, Cai X, Wang S. PURINE PERMEASE 4 regulates plant height in maize. J Genet Genomics 2025; 52:446-448. [PMID: 38723745 DOI: 10.1016/j.jgg.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/01/2024]
Affiliation(s)
- Yuchen Huang
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yuehui Zhang
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiaofeng Cai
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Shui Wang
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
3
|
Lutter F, Brenner W, Krajinski-Barth F, Safavi-Rizi V. Nitric oxide and cytokinin cross-talk and their role in plant hypoxia response. PLANT SIGNALING & BEHAVIOR 2024; 19:2329841. [PMID: 38521996 PMCID: PMC10962617 DOI: 10.1080/15592324.2024.2329841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024]
Abstract
Nitric oxide (NO) and cytokinins (CKs) are known for their crucial contributions to plant development, growth, senescence, and stress response. Despite the importance of both signals in stress responses, their interaction remains largely unexplored. The interplay between NO and CKs emerges as particularly significant not only regarding plant growth and development but also in addressing plant stress response, particularly in the context of extreme weather events leading to yield loss. In this review, we summarize NO and CKs metabolism and signaling. Additionally, we emphasize the crosstalk between NO and CKs, underscoring its potential impact on stress response, with a focus on hypoxia tolerance. Finally, we address the most urgent questions that demand answers and offer recommendations for future research endeavors.
Collapse
Affiliation(s)
- Felix Lutter
- Institute of Biology, Department of General and Applied Botany, University of Leipzig, Leipzig, Germany
| | - Wolfram Brenner
- Institute of Biology, Department of General and Applied Botany, University of Leipzig, Leipzig, Germany
| | - Franziska Krajinski-Barth
- Institute of Biology, Department of General and Applied Botany, University of Leipzig, Leipzig, Germany
| | - Vajiheh Safavi-Rizi
- Institute of Biology, Department of General and Applied Botany, University of Leipzig, Leipzig, Germany
- Institute of Biology, Department of Plant physiology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
4
|
Uragami T, Kiba T, Kojima M, Takebayashi Y, Tozawa Y, Hayashi Y, Kinoshita T, Sakakibara H. The cytokinin efflux transporter ABCC4 participates in Arabidopsis root system development. PLANT PHYSIOLOGY 2024; 197:kiae628. [PMID: 39719052 PMCID: PMC11668331 DOI: 10.1093/plphys/kiae628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/30/2024] [Indexed: 12/26/2024]
Abstract
The directional and sequential flow of cytokinin in plants is organized by a complex network of transporters. Genes involved in several aspects of cytokinin transport have been characterized; however, much of the elaborate system remains elusive. In this study, we used a transient expression system in tobacco (Nicotiana benthamiana) leaves to screen Arabidopsis (Arabidopsis thaliana) transporter genes and isolated ATP-BINDING CASSETTE TRANSPORTER C4 (ABCC4). Validation through drug-induced expression in Arabidopsis and heterologous expression in budding yeast revealed that ABCC4 effluxes the active form of cytokinins. During the seedling stage, ABCC4 was highly expressed in roots, and its expression was upregulated in response to cytokinin application. Loss-of-function mutants of ABCC4 displayed enhanced primary root elongation, similar to mutants impaired in cytokinin biosynthesis or signaling, that was suppressed by exogenous trans-zeatin treatment. In contrast, overexpression of the gene led to suppression of root elongation. These results suggest that ABCC4 plays a role in the efflux of active cytokinin, thereby contributing to root growth regulation. Additionally, cytokinin-dependent enlargement of stomatal aperture was impaired in the loss-of-function and overexpression lines. Our findings contribute to unraveling the many complexities of cytokinin flow and enhance our understanding of the regulatory mechanisms underlying root system development and stomatal opening in plants.
Collapse
Affiliation(s)
- Takuya Uragami
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Takatoshi Kiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Yuki Hayashi
- Graduate School of Science and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Toshinori Kinoshita
- Graduate School of Science and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Hitoshi Sakakibara
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
5
|
Witte CP, Herde M. Nucleotides and nucleotide derivatives as signal molecules in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6918-6938. [PMID: 39252595 DOI: 10.1093/jxb/erae377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
In reaction to a stimulus, signaling molecules are made, generate a response, and are then degraded. Nucleotides are classically associated with central metabolism and nucleic acid biosynthesis, but there are a number of nucleotides and nucleotide derivatives in plants to which this simple definition of a signaling molecule applies in whole or at least in part. These include cytokinins and chloroplast guanosine tetraposphate (ppGpp), as well as extracellular canonical nucleotides such as extracellular ATP (eATP) and NAD+ (eNAD+). In addition, there is a whole series of compounds derived from NAD+ such as ADP ribose (ADPR), and ATP-ADPR dinucleotides and their hydrolysis products (e.g. pRib-AMP) together with different variants of cyclic ADPR (cADPR, 2´-cADPR, 3´-cADPR), and also cyclic nucleotides such as 3´,5´-cAMP and 2´,3´-cyclic nucleoside monophosphates. Interestingly, some of these compounds have recently been shown to play a central role in pathogen defense. In this review, we highlight these exciting new developments. We also review nucleotide derivatives that are considered as candidates for signaling molecules, for example purine deoxynucleosides, and discuss more controversial cases.
Collapse
Affiliation(s)
- Claus-Peter Witte
- Molecular Nutrition and Biochemistry of Plants, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Marco Herde
- Molecular Nutrition and Biochemistry of Plants, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| |
Collapse
|
6
|
Chen L, Zhang Y, Bu Y, Zhou J, Man Y, Wu X, Yang H, Lin J, Wang X, Jing Y. Imaging the spatial distribution of structurally diverse plant hormones. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6980-6997. [PMID: 39269320 DOI: 10.1093/jxb/erae384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Plant hormones are essential and structurally diverse molecules that regulate various aspects of plant growth, development, and stress responses. However, the precise analysis of plant hormones in complex biological samples poses a challenge due to their low concentrations, dynamic levels, and intricate spatial distribution. Moreover, the complexity and interconnectedness of hormone signaling networks make it difficult to simultaneously trace multiple hormone spatial distributions. In this review, we provide an overview of currently recognized small-molecule plant hormones, signal peptide hormones, and plant growth regulators, along with the analytical methods employed for their analysis. We delve into the latest advancements in mass spectrometry imaging and in situ fluorescence techniques, which enable the examination of the spatial distribution of plant hormones. The advantages and disadvantages of these imaging techniques are further discussed. Finally, we propose potential avenues in imaging techniques to further enhance our understanding of plant hormone biology.
Collapse
Affiliation(s)
- Lulu Chen
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Yue Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Yufen Bu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Junhui Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Yi Man
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Xinyuan Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Haobo Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Jinxing Lin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Xiaodong Wang
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Yanping Jing
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
7
|
Tessi TM, Maurino VG. AZGs: a new family of cytokinin transporters. Biochem Soc Trans 2024; 52:1841-1848. [PMID: 38979638 DOI: 10.1042/bst20231537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
Cytokinins (CKs) are phytohormones structurally similar to purines that play important roles in various aspects of plant physiology and development. The local and long-distance distribution of CKs is very important to control their action throughout the plant body. Over the past decade, several novel CK transporters have been described, many of which have been linked to a physiological function rather than simply their ability to transport the hormone in vitro. Purine permeases, equilibrative nucleotide transporters and ATP-binding cassette transporters are involved in the local and long-range distribution of CK. In addition, members of the Arabidopsis AZA-GUANINE RESISTANT (AZG) protein family, AZG1 and AZG2, have recently been shown to mediate CK uptake at the plasma membrane and endoplasmic reticulum. Despite sharing ∼50% homology, AZG1 and AZG2 have unique transport mechanisms, tissue-specific expression patterns, and subcellular localizations that underlie their distinct physiological functions. AZG2 is expressed in a small group of cells in the overlying tissue around the lateral root primordia, where its expression is induced by auxins and it is involved in the regulation of lateral root growth. AZG1 is ubiquitously expressed, with high levels in the division zone of the root apical meristem. Here, it binds and stabilises the auxin efflux carrier PIN1, thereby shaping root architecture, particularly under salt stress. This review highlights the latest findings on the protein properties, transport mechanisms and cellular functions of this new family of CK transporters and discusses perspectives for future research in this field.
Collapse
Affiliation(s)
- Tomas M Tessi
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg 69120, Germany
| | - Veronica G Maurino
- Molecular Plant Physiology, Institute of Cellular Molecular Botany (IZMB), University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| |
Collapse
|
8
|
Zhao J, Wang J, Liu J, Zhang P, Kudoyarova G, Liu CJ, Zhang K. Spatially distributed cytokinins: Metabolism, signaling, and transport. PLANT COMMUNICATIONS 2024; 5:100936. [PMID: 38689499 PMCID: PMC11287186 DOI: 10.1016/j.xplc.2024.100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/02/2024]
Abstract
Cytokinins are mobile phytohormones that regulate plant growth, development, and environmental adaptability. The major cytokinin species include isopentenyl adenine (iP), trans-zeatin (tZ), cis-zeatin (cZ), and dihydrozeatin (DZ). The spatial distributions of different cytokinin species in different organelles, cells, tissues, and organs are primarily shaped by biosynthesis via isopentenyltransferases (IPT), cytochrome P450 monooxygenase, and 5'-ribonucleotide phosphohydrolase and by conjugation or catabolism via glycosyltransferase or cytokinin oxidase/dehydrogenase. Cytokinins bind to histidine receptor kinases in the endoplasmic reticulum or plasma membrane and relay signals to response regulators in the nucleus via shuttle proteins known as histidine phosphotransfer proteins. The movements of cytokinins from sites of biosynthesis to sites of signal perception usually require long-distance, intercellular, and intracellular transport. In the past decade, ATP-binding cassette (ABC) transporters, purine permeases (PUP), AZA-GUANINE RESISTANT (AZG) transporters, equilibrative nucleoside transporters (ENT), and Sugars Will Eventually Be Exported transporters (SWEET) have been characterized as involved in cytokinin transport processes. This review begins by introducing the spatial distributions of various cytokinins and the subcellular localizations of the proteins involved in their metabolism and signaling. Highlights focus on an inventory of the characterized transporters involved in cytokinin compartmentalization, including long-distance, intercellular, and intracellular transport, and the regulation of the spatial distributions of cytokinins by environmental cues. Future directions for cytokinin research are also discussed.
Collapse
Affiliation(s)
- Jiangzhe Zhao
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Jingqi Wang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Jie Liu
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Penghong Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Center, RAS, Prospekt Oktyabrya 69, Ufa 450054, Russia
| | - Chang-Jun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Kewei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China.
| |
Collapse
|
9
|
Argueso CT, Kieber JJ. Cytokinin: From autoclaved DNA to two-component signaling. THE PLANT CELL 2024; 36:1429-1450. [PMID: 38163638 PMCID: PMC11062471 DOI: 10.1093/plcell/koad327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 01/03/2024]
Abstract
Since its first identification in the 1950s as a regulator of cell division, cytokinin has been linked to many physiological processes in plants, spanning growth and development and various responses to the environment. Studies from the last two and one-half decades have revealed the pathways underlying the biosynthesis and metabolism of cytokinin and have elucidated the mechanisms of its perception and signaling, which reflects an ancient signaling system evolved from two-component elements in bacteria. Mutants in the genes encoding elements involved in these processes have helped refine our understanding of cytokinin functions in plants. Further, recent advances have provided insight into the mechanisms of intracellular and long-distance cytokinin transport and the identification of several proteins that operate downstream of cytokinin signaling. Here, we review these processes through a historical lens, providing an overview of cytokinin metabolism, transport, signaling, and functions in higher plants.
Collapse
Affiliation(s)
- Cristiana T Argueso
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Rong C, Zhang R, Liu Y, Chang Z, Liu Z, Ding Y, Ding C. Purine permease (PUP) family gene PUP11 positively regulates the rice seed setting rate by influencing seed development. PLANT CELL REPORTS 2024; 43:112. [PMID: 38568250 DOI: 10.1007/s00299-024-03193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
KEY MESSAGE Purine permease PUP11 is essential for rice seed development, regulates the seed setting rate, and influences the cytokinin content, sugar transport, and starch biosynthesis during grain development. The distribution of cytokinins in plant tissues determines plant growth and development and is regulated by several cytokinin transporters, including purine permease (PUP). Thirteen PUP genes have been identified within the rice genome; however, the functions of most of these genes remain poorly understood. We found that pup11 mutants showed extremely low seed setting rates and a unique filled seed distribution. Moreover, seed formation arrest in these mutants was associated with the disappearance of accumulated starch 10 days after flowering. PUP11 has two major transcripts with different expression patterns and subcellular locations, and further studies revealed that they have redundant positive roles in regulating the seed setting rate. We also found that type-A Response Regulator (RR) genes were upregulated in the developing grains of the pup11 mutant compared with those in the wild type. The results also showed that PUP11 altered the expression of several sucrose transporters and significantly upregulated certain starch biosynthesis genes. In summary, our results indicate that PUP11 influences the rice seed setting rate by regulating sucrose transport and starch accumulation during grain filling. This research provides new insights into the relationship between cytokinins and seed development, which may help improve cereal yield.
Collapse
Affiliation(s)
- Chenyu Rong
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Renren Zhang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yuexin Liu
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhongyuan Chang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ziyu Liu
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095, People's Republic of China.
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored By Province and Ministry, Nanjing, 210095, People's Republic of China.
| | - Chengqiang Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095, People's Republic of China.
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored By Province and Ministry, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
11
|
Amirbekov A, Vrchovecka S, Riha J, Petrik I, Friedecky D, Novak O, Cernik M, Hrabak P, Sevcu A. Assessing HCH isomer uptake in Alnus glutinosa: implications for phytoremediation and microbial response. Sci Rep 2024; 14:4187. [PMID: 38378833 PMCID: PMC10879209 DOI: 10.1038/s41598-024-54235-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/10/2024] [Indexed: 02/22/2024] Open
Abstract
Although the pesticide hexachlorocyclohexane (HCH) and its isomers have long been banned, their presence in the environment is still reported worldwide. In this study, we investigated the bioaccumulation potential of α, β, and δ hexachlorocyclohexane (HCH) isomers in black alder saplings (Alnus glutinosa) to assess their environmental impact. Each isomer, at a concentration of 50 mg/kg, was individually mixed with soil, and triplicate setups, including a control without HCH, were monitored for three months with access to water. Gas chromatography-mass spectrometry revealed the highest concentrations of HCH isomers in roots, decreasing towards branches and leaves, with δ-HCH exhibiting the highest uptake (roots-14.7 µg/g, trunk-7.2 µg/g, branches-1.53 µg/g, leaves-1.88 µg/g). Interestingly, α-HCH was detected in high concentrations in β-HCH polluted soil. Phytohormone analysis indicated altered cytokinin, jasmonate, abscisate, and gibberellin levels in A. glutinosa in response to HCH contamination. In addition, amplicon 16S rRNA sequencing was used to study the rhizosphere and soil microbial community. While rhizosphere microbial populations were generally similar in all HCH isomer samples, Pseudomonas spp. decreased across all HCH-amended samples, and Tomentella dominated in β-HCH and control rhizosphere samples but was lowest in δ-HCH samples.
Collapse
Affiliation(s)
- Aday Amirbekov
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 460 01, Liberec, Czech Republic
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, 461 17, Liberec, Czech Republic
| | - Stanislava Vrchovecka
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 460 01, Liberec, Czech Republic
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, 461 17, Liberec, Czech Republic
| | - Jakub Riha
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 460 01, Liberec, Czech Republic
| | - Ivan Petrik
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, 78371, Olomouc, Czech Republic
| | - David Friedecky
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, 775 20, Olomouc, Czech Republic
| | - Ondrej Novak
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, 78371, Olomouc, Czech Republic
| | - Miroslav Cernik
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 460 01, Liberec, Czech Republic
| | - Pavel Hrabak
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 460 01, Liberec, Czech Republic.
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, 461 17, Liberec, Czech Republic.
| | - Alena Sevcu
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 460 01, Liberec, Czech Republic.
- Faculty of Science, Humanities and Education, Technical University of Liberec, 460 01, Liberec, Czech Republic.
| |
Collapse
|
12
|
Yuan D, Wu X, Jiang X, Gong B, Gao H. Types of Membrane Transporters and the Mechanisms of Interaction between Them and Reactive Oxygen Species in Plants. Antioxidants (Basel) 2024; 13:221. [PMID: 38397819 PMCID: PMC10886204 DOI: 10.3390/antiox13020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Membrane transporters are proteins that mediate the entry and exit of substances through the plasma membrane and organellar membranes and are capable of recognizing and binding to specific substances, thereby facilitating substance transport. Membrane transporters are divided into different types, e.g., ion transporters, sugar transporters, amino acid transporters, and aquaporins, based on the substances they transport. These membrane transporters inhibit reactive oxygen species (ROS) generation through ion regulation, sugar and amino acid transport, hormone induction, and other mechanisms. They can also promote enzymatic and nonenzymatic reactions in plants, activate antioxidant enzyme activity, and promote ROS scavenging. Moreover, membrane transporters can transport plant growth regulators, solute proteins, redox potential regulators, and other substances involved in ROS metabolism through corresponding metabolic pathways, ultimately achieving ROS homeostasis in plants. In turn, ROS, as signaling molecules, can affect the activity of membrane transporters under abiotic stress through collaboration with ions and involvement in hormone metabolic pathways. The research described in this review provides a theoretical basis for improving plant stress resistance, promoting plant growth and development, and breeding high-quality plant varieties.
Collapse
Affiliation(s)
| | | | | | | | - Hongbo Gao
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (D.Y.); (X.W.); (X.J.); (B.G.)
| |
Collapse
|
13
|
Xu L, Jia W, Tao X, Ye F, Zhang Y, Ding ZJ, Zheng SJ, Qiao S, Su N, Zhang Y, Wu S, Guo J. Structures and mechanisms of the Arabidopsis cytokinin transporter AZG1. NATURE PLANTS 2024; 10:180-191. [PMID: 38172575 DOI: 10.1038/s41477-023-01590-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/10/2023] [Indexed: 01/05/2024]
Abstract
Cytokinins are essential for plant growth and development, and their tissue distributions are regulated by transmembrane transport. Recent studies have revealed that members of the 'Aza-Guanine Resistant' (AZG) protein family from Arabidopsis thaliana can mediate cytokinin uptake in roots. Here we present 2.7 to 3.3 Å cryo-electron microscopy structures of Arabidopsis AZG1 in the apo state and in complex with its substrates trans-zeatin (tZ), 6-benzyleaminopurine (6-BAP) or kinetin. AZG1 forms a homodimer and each subunit shares a similar topology and domain arrangement with the proteins of the nucleobase/ascorbate transporter (NAT) family. These structures, along with functional analyses, reveal the molecular basis for cytokinin recognition. Comparison of the AZG1 structures determined in inward-facing conformations and predicted by AlphaFold2 in the occluded conformation allowed us to propose that AZG1 may carry cytokinins across the membrane through an elevator mechanism.
Collapse
Affiliation(s)
- Lingyi Xu
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, China.
| | - Wei Jia
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
- Calibra Lab at DIAN Diagnostics, Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Provinces, Hangzhou, Zhejiang, China
| | - Xin Tao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Fan Ye
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Nanhu Brain-computer Interface Institute, Hangzhou, China
| | - Yan Zhang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Nanhu Brain-computer Interface Institute, Hangzhou, China
| | - Zhong Jie Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shuai Qiao
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Nannan Su
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Shan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, China.
| | - Jiangtao Guo
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Azarova DS, Omelyanchuk NA, Mironova VV, Zemlyanskaya EV, Lavrekha VV. DyCeModel: a tool for 1D simulation for distribution of plant hormones controlling tissue patterning. Vavilovskii Zhurnal Genet Selektsii 2023; 27:890-897. [PMID: 38213710 PMCID: PMC10777285 DOI: 10.18699/vjgb-23-103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 01/13/2024] Open
Abstract
To study the mechanisms of growth and development, it is necessary to analyze the dynamics of the tissue patterning regulators in time and space and to take into account their effect on the cellular dynamics within a tissue. Plant hormones are the main regulators of the cell dynamics in plant tissues; they form gradients and maxima and control molecular processes in a concentration-dependent manner. Here, we present DyCeModel, a software tool implemented in MATLAB for one-dimensional simulation of tissue with a dynamic cellular ensemble, where changes in hormone (or other active substance) concentration in the cells are described by ordinary differential equations (ODEs). We applied DyCeModel to simulate cell dynamics in plant meristems with different cellular structures and demonstrated that DyCeModel helps to identify the relationships between hormone concentration and cellular behaviors. The tool visualizes the simulation progress and presents a video obtained during the calculation. Importantly, the tool is capable of automatically adjusting the parameters by fitting the distribution of the substance concentrations predicted in the model to experimental data taken from the microscopic images. Noteworthy, DyCeModel makes it possible to build models for distinct types of plant meristems with the same ODEs, recruiting specific input characteristics for each meristem. We demonstrate the tool's efficiency by simulation of the effect of auxin and cytokinin distributions on tissue patterning in two types of Arabidopsis thaliana stem cell niches: the root and shoot apical meristems. The resulting models represent a promising framework for further study of the role of hormone-controlled gene regulatory networks in cell dynamics.
Collapse
Affiliation(s)
- D S Azarova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N A Omelyanchuk
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V V Mironova
- Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, the Netherlands
| | - E V Zemlyanskaya
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - V V Lavrekha
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
15
|
Wong C, Alabadí D, Blázquez MA. Spatial regulation of plant hormone action. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6089-6103. [PMID: 37401809 PMCID: PMC10575700 DOI: 10.1093/jxb/erad244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Although many plant cell types are capable of producing hormones, and plant hormones can in most cases act in the same cells in which they are produced, they also act as signaling molecules that coordinate physiological responses between different parts of the plant, indicating that their action is subject to spatial regulation. Numerous publications have reported that all levels of plant hormonal pathways, namely metabolism, transport, and perception/signal transduction, can help determine the spatial ranges of hormone action. For example, polar auxin transport or localized auxin biosynthesis contribute to creating a differential hormone accumulation across tissues that is instrumental for specific growth and developmental responses. On the other hand, tissue specificity of cytokinin actions has been proposed to be regulated by mechanisms operating at the signaling stages. Here, we review and discuss current knowledge about the contribution of the three levels mentioned above in providing spatial specificity to plant hormone action. We also explore how new technological developments, such as plant hormone sensors based on FRET (fluorescence resonance energy transfer) or single-cell RNA-seq, can provide an unprecedented level of resolution in defining the spatial domains of plant hormone action and its dynamics.
Collapse
Affiliation(s)
- Cynthia Wong
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022-Valencia, Spain
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022-Valencia, Spain
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022-Valencia, Spain
| |
Collapse
|
16
|
Berrios L, Yeam J, Holm L, Robinson W, Pellitier PT, Chin ML, Henkel TW, Peay KG. Positive interactions between mycorrhizal fungi and bacteria are widespread and benefit plant growth. Curr Biol 2023:S0960-9822(23)00760-1. [PMID: 37369208 DOI: 10.1016/j.cub.2023.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/05/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Bacteria, ectomycorrhizal (EcM) fungi, and land plants have been coevolving for nearly 200 million years, and their interactions presumably contribute to the function of terrestrial ecosystems. The direction, stability, and strength of bacteria-EcM fungi interactions across landscapes and across a single plant host, however, remains unclear. Moreover, the genetic mechanisms that govern them have not been addressed. To these ends, we collected soil samples from Bishop pine forests across a climate-latitude gradient spanning coastal California, fractionated the soil samples based on their proximity to EcM-colonized roots, characterized the microbial communities using amplicon sequencing, and generated linear regression models showing the impact that select bacterial taxa have on EcM fungal abundance. In addition, we paired greenhouse experiments with transcriptomic analyses to determine the directionality of these relationships and identify which genes EcM-synergist bacteria express during tripartite symbioses. Our data reveal that ectomycorrhizas (i.e., EcM-colonized roots) enrich conserved bacterial taxa across climatically heterogeneous regions. We also show that phylogenetically diverse EcM synergists are positively associated with plant and fungal growth and have unique gene expression profiles compared with EcM-antagonist bacteria. In sum, we identify common mechanisms that facilitate widespread and diverse multipartite symbioses, which inform our understanding of how plants develop in complex environments.
Collapse
Affiliation(s)
- Louis Berrios
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Jay Yeam
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Wallis Robinson
- Forestry and Forest Health Program, University of California Cooperative Extension Humboldt and Del Norte Counties, Eureka, CA 95503, USA
| | | | - Mei Lin Chin
- Department of Biological Sciences, California State Polytechnic University, Humboldt, Arcata, CA 95521, USA
| | - Terry W Henkel
- Department of Biological Sciences, California State Polytechnic University, Humboldt, Arcata, CA 95521, USA
| | - Kabir G Peay
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
17
|
Abualia R, Riegler S, Benkova E. Nitrate, Auxin and Cytokinin-A Trio to Tango. Cells 2023; 12:1613. [PMID: 37371083 DOI: 10.3390/cells12121613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Nitrogen is an important macronutrient required for plant growth and development, thus directly impacting agricultural productivity. In recent years, numerous studies have shown that nitrogen-driven growth depends on pathways that control nitrate/nitrogen homeostasis and hormonal networks that act both locally and systemically to coordinate growth and development of plant organs. In this review, we will focus on recent advances in understanding the role of the plant hormones auxin and cytokinin and their crosstalk in nitrate-regulated growth and discuss the significance of novel findings and possible missing links.
Collapse
Affiliation(s)
- Rashed Abualia
- School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Stefan Riegler
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Eva Benkova
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
18
|
Tessi TM, Maurino VG, Shahriari M, Meissner E, Novak O, Pasternak T, Schumacher BS, Ditengou F, Li Z, Duerr J, Flubacher NS, Nautscher M, Williams A, Kazimierczak Z, Strnad M, Thumfart JO, Palme K, Desimone M, Teale WD. AZG1 is a cytokinin transporter that interacts with auxin transporter PIN1 and regulates the root stress response. THE NEW PHYTOLOGIST 2023; 238:1924-1941. [PMID: 36918499 DOI: 10.1111/nph.18879] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/29/2023] [Indexed: 05/04/2023]
Abstract
An environmentally responsive root system is crucial for plant growth and crop yield, especially in suboptimal soil conditions. This responsiveness enables the plant to exploit regions of high nutrient density while simultaneously minimizing abiotic stress. Despite the vital importance of root systems in regulating plant growth, significant gaps of knowledge exist in the mechanisms that regulate their architecture. Auxin defines both the frequency of lateral root (LR) initiation and the rate of LR outgrowth. Here, we describe a search for proteins that regulate root system architecture (RSA) by interacting directly with a key auxin transporter, PIN1. The native separation of Arabidopsis plasma membrane protein complexes identified several PIN1 co-purifying proteins. Among them, AZG1 was subsequently confirmed as a PIN1 interactor. Here, we show that, in Arabidopsis, AZG1 is a cytokinin (CK) import protein that co-localizes with and stabilizes PIN1, linking auxin and CK transport streams. AZG1 expression in LR primordia is sensitive to NaCl, and the frequency of LRs is AZG1-dependent under salt stress. This report therefore identifies a potential point for auxin:cytokinin crosstalk, which shapes RSA in response to NaCl.
Collapse
Affiliation(s)
- Tomás M Tessi
- Instituto Multidisciplinario de Biología Vegetal, Velez Sarsfield 249, 5000, Córdoba, Argentina
| | - Veronica G Maurino
- Molecular Plant Physiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Mojgan Shahriari
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Esther Meissner
- Conservation Ecology, Department Biology, Philipps-Universität Marburg, Karl-von-Frisch-Straße 8, 35032, Marburg, Germany
| | - Ondrej Novak
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR and Palacky, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Taras Pasternak
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Benjamin S Schumacher
- Zentrum für Molekularbiologie der Pflanzen, Universität Tübingen, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Franck Ditengou
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Zenglin Li
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Jasmin Duerr
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Noemi S Flubacher
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Moritz Nautscher
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Alyssa Williams
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Zuzanna Kazimierczak
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR and Palacky, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Jörg-Oliver Thumfart
- Faculty of Medicine, Institute of Physiology II, University of Freiburg, Hermann-Herder-Strasse 7, 79104, Freiburg, Germany
- Labormedizinisches Zentrum Ostschweiz, Lagerstrasse 30, 9470, Buchs, SG, Switzerland
| | - Klaus Palme
- Molecular Plant Physiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
- Centre of Biological Systems Analysis, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Marcelo Desimone
- Instituto Multidisciplinario de Biología Vegetal, Velez Sarsfield 249, 5000, Córdoba, Argentina
| | - William D Teale
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| |
Collapse
|
19
|
Radchuk V, Belew ZM, Gündel A, Mayer S, Hilo A, Hensel G, Sharma R, Neumann K, Ortleb S, Wagner S, Muszynska A, Crocoll C, Xu D, Hoffie I, Kumlehn J, Fuchs J, Peleke FF, Szymanski JJ, Rolletschek H, Nour-Eldin HH, Borisjuk L. SWEET11b transports both sugar and cytokinin in developing barley grains. THE PLANT CELL 2023; 35:2186-2207. [PMID: 36857316 DOI: 10.1093/plcell/koad055] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 02/17/2023] [Indexed: 05/30/2023]
Abstract
Even though Sugars Will Eventually be Exported Transporters (SWEETs) have been found in every sequenced plant genome, a comprehensive understanding of their functionality is lacking. In this study, we focused on the SWEET family of barley (Hordeum vulgare). A radiotracer assay revealed that expressing HvSWEET11b in African clawed frog (Xenopus laevis) oocytes facilitated the bidirectional transfer of not only just sucrose and glucose, but also cytokinin. Barley plants harboring a loss-of-function mutation of HvSWEET11b could not set viable grains, while the distribution of sucrose and cytokinin was altered in developing grains of plants in which the gene was knocked down. Sucrose allocation within transgenic grains was disrupted, which is consistent with the changes to the cytokinin gradient across grains, as visualized by magnetic resonance imaging and Fourier transform infrared spectroscopy microimaging. Decreasing HvSWEET11b expression in developing grains reduced overall grain size, sink strength, the number of endopolyploid endosperm cells, and the contents of starch and protein. The control exerted by HvSWEET11b over sugars and cytokinins likely predetermines their synergy, resulting in adjustments to the grain's biochemistry and transcriptome.
Collapse
Affiliation(s)
- Volodymyr Radchuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Zeinu M Belew
- Faculty of Science, Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Andre Gündel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Simon Mayer
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexander Hilo
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Goetz Hensel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371 Olomouc, Czech Republic
| | - Rajiv Sharma
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JGUK
| | - Kerstin Neumann
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Stefan Ortleb
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Steffen Wagner
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Aleksandra Muszynska
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Christoph Crocoll
- Faculty of Science, Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Deyang Xu
- Faculty of Science, Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Iris Hoffie
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Jochen Kumlehn
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Joerg Fuchs
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Fritz F Peleke
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Jedrzej J Szymanski
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
- IBG-4 Bioinformatics, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Hussam H Nour-Eldin
- Faculty of Science, Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| |
Collapse
|
20
|
Hu Y, Shani E. Cytokinin activity - transport and homeostasis at the whole plant, cell, and subcellular levels. THE NEW PHYTOLOGIST 2023. [PMID: 37243527 DOI: 10.1111/nph.19001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/25/2023] [Indexed: 05/29/2023]
Abstract
Cytokinins (CKs) are important plant hormones that regulate a variety of biological processes implicated in plant development and stress responses. Here, we summarize the most recent advances in discovering and characterizing the membrane transporters involved in long- and short-distance translocation of CKs and their significance in CK signal activity. We highlight the discovery of PUP7 and PUP21 tonoplast-localized transporters and propose potential mechanisms for CK subcellular homeostasis. Finally, we discuss the importance of subcellular hormone transport in light of the localization of histidine kinase receptors of CKs at the endoplasmic reticulum and plasma membrane.
Collapse
Affiliation(s)
- Yangjie Hu
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Eilon Shani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
21
|
Hu Y, Patra P, Pisanty O, Shafir A, Belew ZM, Binenbaum J, Ben Yaakov S, Shi B, Charrier L, Hyams G, Zhang Y, Trabulsky M, Caldararu O, Weiss D, Crocoll C, Avni A, Vernoux T, Geisler M, Nour-Eldin HH, Mayrose I, Shani E. Multi-Knock-a multi-targeted genome-scale CRISPR toolbox to overcome functional redundancy in plants. NATURE PLANTS 2023; 9:572-587. [PMID: 36973414 PMCID: PMC7615256 DOI: 10.1038/s41477-023-01374-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Plant genomes are characterized by large and complex gene families that often result in similar and partially overlapping functions. This genetic redundancy severely hampers current efforts to uncover novel phenotypes, delaying basic genetic research and breeding programmes. Here we describe the development and validation of Multi-Knock, a genome-scale clustered regularly interspaced short palindromic repeat toolbox that overcomes functional redundancy in Arabidopsis by simultaneously targeting multiple gene-family members, thus identifying genetically hidden components. We computationally designed 59,129 optimal single-guide RNAs that each target two to ten genes within a family at once. Furthermore, partitioning the library into ten sublibraries directed towards a different functional group allows flexible and targeted genetic screens. From the 5,635 single-guide RNAs targeting the plant transportome, we generated over 3,500 independent Arabidopsis lines that allowed us to identify and characterize the first known cytokinin tonoplast-localized transporters in plants. With the ability to overcome functional redundancy in plants at the genome-scale level, the developed strategy can be readily deployed by scientists and breeders for basic research and to expedite breeding efforts.
Collapse
Affiliation(s)
- Yangjie Hu
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Priyanka Patra
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, Lyon, France
| | - Odelia Pisanty
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Anat Shafir
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Zeinu Mussa Belew
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jenia Binenbaum
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Shir Ben Yaakov
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Bihai Shi
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, Lyon, France
| | - Laurence Charrier
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Gal Hyams
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Yuqin Zhang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Maor Trabulsky
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Omer Caldararu
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Daniela Weiss
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Christoph Crocoll
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Adi Avni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, Lyon, France
| | - Markus Geisler
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Hussam Hassan Nour-Eldin
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Itay Mayrose
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel.
| | - Eilon Shani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
22
|
Zhao J, Deng X, Qian J, Liu T, Ju M, Li J, Yang Q, Zhu X, Li W, Liu CJ, Jin Z, Zhang K. Arabidopsis ABCG14 forms a homodimeric transporter for multiple cytokinins and mediates long-distance transport of isopentenyladenine-type cytokinins. PLANT COMMUNICATIONS 2023; 4:100468. [PMID: 36307987 PMCID: PMC10030318 DOI: 10.1016/j.xplc.2022.100468] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/29/2022] [Accepted: 10/23/2022] [Indexed: 05/04/2023]
Abstract
Cytokinins (CKs), primarily trans-zeatin (tZ) and isopentenyladenine (iP) types, play critical roles in plant growth, development, and various stress responses. Long-distance transport of tZ-type CKs meidated by Arabidopsis ATP-binding cassette transporter subfamily G14 (AtABCG14) has been well studied; however, less is known about the biochemical properties of AtABCG14 and its transporter activity toward iP-type CKs. Here we reveal the biochemical properties of AtABCG14 and provide evidence that it is also required for long-distance transport of iP-type CKs. AtABCG14 formed homodimers in human (Homo sapiens) HEK293T, tobacco (Nicotiana tabacum), and Arabidopsis cells. Transporter activity assays of AtABCG14 in Arabidopsis, tobacco, and yeast (Saccharomyces cerevisiae) showed that AtABCG14 may directly transport multiple CKs, including iP- and tZ-type species. AtABCG14 expression was induced by iP in a tZ-type CK-deficient double mutant (cypDM) of CYP735A1 and CYP735A2. The atabcg14 cypDM triple mutant exhibited stronger CK-deficiency phenotypes than cypDM. Hormone profiling, reciprocal grafting, and 2H6-iP isotope tracer experiments showed that root-to-shoot and shoot-to-root long-distance transport of iP-type CKs were suppressed in atabcg14 cypDM and atabcg14. These results suggest that AtABCG14 participates in three steps of the circular long-distance transport of iP-type CKs: xylem loading in the root for shootward transport, phloem unloading in the shoot for shoot distribution, and phloem unloading in the root for root distribution. We found that AtABCG14 displays transporter activity toward multiple CK species and revealed its versatile roles in circular long-distance transport of iP-type CKs. These findings provide new insights into the transport mechanisms of CKs and other plant hormones.
Collapse
Affiliation(s)
- Jiangzhe Zhao
- Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Xiaojuan Deng
- Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Jiayun Qian
- Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Ting Liu
- Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Min Ju
- Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Juan Li
- Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Qin Yang
- Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Xiaoxian Zhu
- Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Weiqiang Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No. 4888 Shengbei Street, Changchun 130102, China
| | - Chang-Jun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Zhigang Jin
- Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Kewei Zhang
- Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China.
| |
Collapse
|
23
|
Li L, Zheng Q, Jiang W, Xiao N, Zeng F, Chen G, Mak M, Chen ZH, Deng F. Molecular Regulation and Evolution of Cytokinin Signaling in Plant Abiotic Stresses. PLANT & CELL PHYSIOLOGY 2023; 63:1787-1805. [PMID: 35639886 DOI: 10.1093/pcp/pcac071] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/04/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The sustainable production of crops faces increasing challenges from global climate change and human activities, which leads to increasing instances of many abiotic stressors to plants. Among the abiotic stressors, drought, salinity and excessive levels of toxic metals cause reductions in global agricultural productivity and serious health risks for humans. Cytokinins (CKs) are key phytohormones functioning in both normal development and stress responses in plants. Here, we summarize the molecular mechanisms on the biosynthesis, metabolism, transport and signaling transduction pathways of CKs. CKs act as negative regulators of both root system architecture plasticity and root sodium exclusion in response to salt stress. The functions of CKs in mineral-toxicity tolerance and their detoxification in plants are reviewed. Comparative genomic analyses were performed to trace the origin, evolution and diversification of the critical regulatory networks linking CK signaling and abiotic stress. We found that the production of CKs and their derivatives, pathways of signal transduction and drought-response root growth regulation are evolutionarily conserved in land plants. In addition, the mechanisms of CK-mediated sodium exclusion under salt stress are suggested for further investigations. In summary, we propose that the manipulation of CK levels and their signaling pathways is important for plant abiotic stress and is, therefore, a potential strategy for meeting the increasing demand for global food production under changing climatic conditions.
Collapse
Affiliation(s)
- Lijun Li
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Qingfeng Zheng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Wei Jiang
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Nayun Xiao
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Fanrong Zeng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Michelle Mak
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Fenglin Deng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
24
|
Liu SY, Zuo DP, Zhang ZY, Wang Y, Han CG. Identification and Functional Analyses of Host Proteins Interacting with the P3a Protein of Brassica Yellows Virus. BIOLOGY 2023; 12:biology12020202. [PMID: 36829481 PMCID: PMC9952887 DOI: 10.3390/biology12020202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Viruses are obligate parasites that only undergo genomic replication in their host organisms. ORF3a, a newly identified non-AUG-initiated ORF encoded by members of the genus Polerovirus, is required for long-distance movement in plants. However, its interactions with host proteins still remain unclear. Here, we used Brassica yellows virus (BrYV)-P3a as bait to screen a plant split-ubiquitin-based membrane yeast two-hybrid (MYTH) cDNA library to explain the functional role of P3a in viral infections. In total, 138 genes with annotations were obtained. Bioinformatics analyses revealed that the genes from carbon fixation in photosynthetic, photosynthesis pathways, and MAPK signaling were affected. Furthermore, Arabidopsis thaliana purine permease 14 (AtPUP14), glucosinolate transporter 1 (AtGTR1), and nitrate transporter 1.7 (AtNRT1.7) were verified to interact with P3a in vivo. P3a and these three interacting proteins mainly co-localized in the cytoplasm. Expression levels of AtPUP14, AtGTR1, and AtNRT1.7 were significantly reduced in response to BrYV during the late stages of viral infection. In addition, we characterized the roles of AtPUP14, AtGTR1, and AtNRT1.7 in BrYV infection in A. thaliana using T-DNA insertion mutants, and the pup14, gtr1, and nrt1.7 mutants influenced BrYV infection to different degrees.
Collapse
|
25
|
Navarro-Cartagena S, Micol JL. Is auxin enough? Cytokinins and margin patterning in simple leaves. TRENDS IN PLANT SCIENCE 2023; 28:54-73. [PMID: 36180378 DOI: 10.1016/j.tplants.2022.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
The interplay between auxin and cytokinins affects facets of plant development as different as ovule formation and lateral root initiation. Moreover, cytokinins favor complexity in the development of Solanum lycopersicum and Cardamine hirsuta compound leaves. Nevertheless, no role has been proposed for cytokinins in patterning the margins of the simple leaves of Arabidopsis thaliana, a process that is assumed to be sufficiently explained by auxin localization. Here, we discuss evidence supporting the hypothesis that cytokinins play a role in simple leaf margin morphogenesis via crosstalk with auxin, as occurs in other plant developmental events. Indeed, mutant or transgenic arabidopsis plants defective in cytokinin biosynthesis or signaling, or with increased cytokinin degradation have leaf margins less serrated than the wild type.
Collapse
Affiliation(s)
- Sergio Navarro-Cartagena
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain.
| |
Collapse
|
26
|
Zhang Y, Wei K, Guo L, Lei Y, Cheng H, Chen C, Wang L. Functional identification of purine permeases reveals their roles in caffeine transport in tea plants ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:1033316. [PMID: 36589051 PMCID: PMC9798130 DOI: 10.3389/fpls.2022.1033316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Caffeine is a characteristic secondary metabolite in tea plants. It confers tea beverage with unique flavor and excitation effect on human body. The pathway of caffeine biosynthesis has been generally established, but the mechanism of caffeine transport remains unclear. Here, eight members of purine permeases (PUPs) were identified in tea plants. They had diverse expression patterns in different tissues, suggesting their broad roles in caffeine metabolism. In this study, F1 strains of "Longjing43" ♂ × "Baihaozao" ♀ and different tea cultivars were used as materials to explore the correlation between caffeine content and gene expression. The heterologous expression systems of yeast and Arabidopsis were applied to explore the function of CsPUPs. Correlation analysis showed that the expressions of CsPUP1, CsPUP3.1, and CsPUP10.1 were significantly negatively correlated with caffeine content in tea leaves of eight strains and six cultivars. Furthermore, subcellular localization revealed that the three CsPUPs were not only located in plasma membrane but also widely distributed as circular organelles in cells. Functional complementation assays in yeast showed that the three CsPUPs could partly or completely rescue the defective function of fcy2 mutant in caffeine transport. Among them, transgenic yeast of CsPUP10.1 exhibited the strongest transport capacity for caffeine. Consistent phenotypes and functions were further identified in the CsPUP10.1-over-expression Arabidopsis lines. Taken together, it suggested that CsPUPs were involved in caffeine transport in tea plants. Potential roles of CsPUPs in the intracellular transport of caffeine among different subcellular organelles were proposed. This study provides a theoretical basis for further research on the PUP genes and new insights for caffeine metabolism in tea plants.
Collapse
Affiliation(s)
- Yazhen Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, China
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Kang Wei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, China
| | - Lingling Guo
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, China
| | - Yuping Lei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, China
| | - Hao Cheng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, China
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Liyuan Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, China
| |
Collapse
|
27
|
Avilez-Montalvo JR, Quintana-Escobar AO, Méndez-Hernández HA, Aguilar-Hernández V, Brito-Argáez L, Galaz-Ávalos RM, Uc-Chuc MA, Loyola-Vargas VM. Auxin-Cytokinin Cross Talk in Somatic Embryogenesis of Coffea canephora. PLANTS 2022; 11:plants11152013. [PMID: 35956493 PMCID: PMC9370429 DOI: 10.3390/plants11152013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/01/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022]
Abstract
Cytokinins (CK) are plant growth regulators involved in multiple physiological processes in plants. One less studied aspect is CK homeostasis (HM). The primary genes related to HM are involved in biosynthesis (IPT), degradation (CKX), and signaling (ARR). This paper demonstrates the effect of auxin (Aux) and CK and their cross talk in a Coffea canephora embryogenic system. The transcriptome and RT-qPCR suggest that Aux in pre-treatment represses biosynthesis, degradation, and signal CK genes. However, in the induction, there is an increase of genes implicated in the CK perception/signal, indicating perhaps, as in other species, Aux is repressing CK, and CK are inducing per se genes involved in its HM. This is reflected in the endogenous concentration of CK; pharmacology experiments helped study the effect of each plant growth regulator in our SE system. We conclude that the Aux–CK balance is crucial to directing somatic embryogenesis in C. canephora.
Collapse
Affiliation(s)
- Johny R. Avilez-Montalvo
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Ana O. Quintana-Escobar
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Hugo A. Méndez-Hernández
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Víctor Aguilar-Hernández
- Catedrático CONACYT, Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida 97205, Mexico;
| | - Ligia Brito-Argáez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Rosa M. Galaz-Ávalos
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Miguel A. Uc-Chuc
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Víctor M. Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
- Correspondence: ; Tel.: +52-999-942-83-30 (ext. 243)
| |
Collapse
|
28
|
Halkier BA, Xu D. The ins and outs of transporters at plasma membrane and tonoplast in plant specialized metabolism. Nat Prod Rep 2022; 39:1483-1491. [PMID: 35481602 DOI: 10.1039/d2np00016d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to 2022Plants are organic chemists par excellence and produce an amazing array of diverse chemical structures. Whereas primary metabolites are essential for all living organisms and highly conserved, the specialized metabolites constitute the taxonomy-specific chemical languages that are key for fitness and survival. Allocation of plants' wide array of specialized metabolites in patterns that are fine-tuned spatiotemporally is essential for adaptation to the ever-changing environment and requires transport processes. Thus advancing our knowledge about transporters is important as also evidenced by the increasing number of transporters that control key quality traits in agriculture. In this review, we will highlight recently identified transporters and new insights related to already known transporters of plant specialized metabolites. Focus will be on the transport mechanism revealed by the biochemical characterization and how that links to its function in planta.
Collapse
Affiliation(s)
- Barbara Ann Halkier
- DynaMo Center of Excellence, Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Denmark.
| | - Deyang Xu
- DynaMo Center of Excellence, Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
29
|
Okooboh GO, Haferkamp I, Valifard M, Pommerrenig B, Kelly A, Feussner I, Neuhaus HE. Overexpression of the vacuolar sugar importer BvTST1 from sugar beet in Camelina improves seed properties and leads to altered root characteristics. PHYSIOLOGIA PLANTARUM 2022; 174:e13653. [PMID: 35187664 DOI: 10.1111/ppl.13653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Overexpression of the vacuolar sugar transporter TST1 in Arabidopsis leads to higher seed lipid levels and higher total seed yield per plant. However, effects on fruit biomass have not been observed in crop plants like melon, strawberry, cotton, apple, or tomato with increased tonoplast sugar transporter (TST) activity. Thus, it was unclear whether overexpression of TST in selected crops might lead to increased fruit yield, as observed in Arabidopsis. Here, we report that constitutive overexpression of TST1 from sugar beet in the important crop species Camelina sativa (false flax) resembles the seed characteristics observed for Arabidopsis upon increased TST activity. These effects go along with a stimulation of sugar export from source leaves and not only provoke optimised seed properties like higher lipid levels and increased overall seed yield per plant, but also modify the root architecture of BvTST1 overexpressing Camelina lines. Such mutants grew longer primary roots and showed an increased number of lateral roots, especially when developed under conditions of limited water supply. These changes in root properties result in a stabilisation of total seed yield under drought conditions. In summary, we demonstrate that increased vacuolar TST activity may lead to optimised yield of an oil-seed crop species with high levels of healthy ω3 fatty acids in storage lipids. Moreover, since BvTST1 overexpressing Camelina mutants, in addition, exhibit optimised yield under limited water availability, we might devise a strategy to create crops with improved tolerance against drought, representing one of the most challenging environmental cues today and in future.
Collapse
Affiliation(s)
- Gloria O Okooboh
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Kaiserslautern
| | - Ilka Haferkamp
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Kaiserslautern
| | - Marzieh Valifard
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Kaiserslautern
| | - Benjamin Pommerrenig
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Kaiserslautern
| | - Amélie Kelly
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Ivo Feussner
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
30
|
Liu D, Zhao H, Xiao Y, Zhang G, Cao S, Yin W, Qian Y, Yin Y, Zhang J, Chen S, Chu C, Tong H. A cryptic inhibitor of cytokinin phosphorelay controls rice grain size. MOLECULAR PLANT 2022; 15:293-307. [PMID: 34562665 DOI: 10.1016/j.molp.2021.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/21/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Plant hormone cytokinin signals through histidine-aspartic acid (H-D) phosphorelay to regulate plant growth and development. While it is well known that the phosphorelay involves histidine kinases, histidine phosphotransfer proteins (HPs), and response regulators (RRs), how this process is regulated by external components remains unknown. Here we demonstrate that protein phosphatase with kelch-like domains (PPKL1), known as a signaling component of steroid hormone brassinosteroid, is actually a cryptic inhibitor of cytokinin phosphorelay in rice (Oryza sativa). Mutation at a specific amino acid D364 of PPKL1 activates cytokinin response and thus enlarges grain size in a semi-dominant mutant named s48. Overexpression of PPKL1 containing D364, either with the deletion of the phosphatase domain or not, rescues the s48 mutant phenotype. PPKL1 interacts with OsAHP2, one of authentic HPs, and D364 resides in a region resembling the receiver domain of RRs. Accordingly, PPKL1 can utilize D364 to suppress OsAHP2-to-RR phosphorelay, whereas mutation of D364 abolishes the effect. This function of PPKL1 is independent of the phosphatase domain that is required for brassinosteroid signaling. Importantly, editing of the D364-residential region produces a diversity of semi-dominant mutations associated with variously increased grain sizes. Further screening of the edited plants enables the identification of two genotypes that confer significantly improved grain yield. Collectively, our study uncovers a noncanonical cytokinin signaling suppressor and provides a robust tool for seed rational design.
Collapse
Affiliation(s)
- Dapu Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - He Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunhua Xiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shouyun Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenchao Yin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yangwen Qian
- Biogle Genome Editing Center, Changzhou, Jiangsu Province 213125, China
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Jinsong Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shouyi Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| | - Hongning Tong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
31
|
Shi B, Vernoux T. Hormonal control of cell identity and growth in the shoot apical meristem. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102111. [PMID: 34543915 DOI: 10.1016/j.pbi.2021.102111] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
How cells acquire their identities and grow coordinately within a tissue is a fundamental question to understand plant development. In angiosperms, the shoot apical meristem (SAM) is a multicellular tissue containing a stem cell niche, which activity allows for a dynamic equilibrium between maintenance of stem cells and production of differentiated cells that are incorporated in new aerial tissues and lateral organs produced in the SAM. Plant hormones are small-molecule signals controlling many aspects of plant development and physiology. Several hormones are essential regulators of SAM activities. This review highlights current advances that are starting to decipher the complex mechanisms underlying the hormonal control of cell identity and growth in the SAM.
Collapse
Affiliation(s)
- Bihai Shi
- College of Agriculture, South China Agricultural University, 510642, Guangzhou, China; Guangdong Laboratory for Lingnan Modern Agriculture, 510642, Guangzhou, China; Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, F-69342, Lyon, France
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, F-69342, Lyon, France.
| |
Collapse
|
32
|
Yang Q, Zhang J, Kojima M, Takebayashi Y, Uragami T, Kiba T, Sakakibara H, Lee Y. ABCG11 modulates cytokinin responses in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:976267. [PMID: 35958217 PMCID: PMC9358225 DOI: 10.3389/fpls.2022.976267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 05/20/2023]
Abstract
The Arabidopsis ABC transporter ABCG11 transports lipidic precursors of surface coating polymers at the plasma membrane of epidermal cells. Mutants in ABCG11 exhibit severe developmental defects, suggesting that ABCG11 might also participate in phytohormone-mediated development. Here, we report that ABCG11 is involved in cytokinin-mediated development. The roots of abcg11 mutant seedlings failed to respond to cytokinins and accumulated more cytokinins than wild-type roots. When grown under short-day conditions, abcg11 exhibited longer roots and shorter hypocotyls compared to wild type, similar to abcg14, a knockout mutant in a cytokinin transporter. Treatment with exogenous trans-zeatin, which inhibits primary root elongation in the wild type, enhanced abcg11 primary root elongation. It also increased the expression of cytokinin-responsive Arabidopsis response regulator (ARR) genes, and the signal of the TCS::GFP reporter in abcg11 roots compared to wild-type roots, suggesting that cytokinin signaling was enhanced in abcg11 roots. When we treated only the roots of abcg11 with trans-zeatin, their shoots showed lower ARR induction than the wild type. The abcg14 abcg11 double mutant did not have additional root phenotypes compared to abcg11. Together, these results suggest that ABCG11 is necessary for normal cytokinin-mediated root development, likely because it contributes to cytokinin transport, either directly or indirectly.
Collapse
Affiliation(s)
- Qianying Yang
- Department of Life Sciences, POSTECH, Pohang, South Korea
| | - Jie Zhang
- Department of Life Sciences, POSTECH, Pohang, South Korea
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Takuya Uragami
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takatoshi Kiba
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Youngsook Lee
- Department of Life Sciences, POSTECH, Pohang, South Korea
- *Correspondence: Youngsook Lee,
| |
Collapse
|
33
|
Guo T, Weber H, Niemann MCE, Theisl L, Leonte G, Novák O, Werner T. Arabidopsis HIPP proteins regulate endoplasmic reticulum-associated degradation of CKX proteins and cytokinin responses. MOLECULAR PLANT 2021; 14:1918-1934. [PMID: 34314894 DOI: 10.1016/j.molp.2021.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/18/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Eukaryotic organisms are equipped with quality-control mechanisms that survey protein folding in the endoplasmic reticulum (ER) and remove non-native proteins by ER-associated degradation (ERAD). Recent research has shown that cytokinin-degrading CKX proteins are subjected to ERAD during plant development. The mechanisms of plant ERAD, including the export of substrate proteins from the ER, are not fully understood, and the molecular components involved in the ERAD of CKX are unknown. Here, we show that heavy metal-associated isoprenylated plant proteins (HIPPs) interact specifically with CKX proteins synthesized in the ER and processed by ERAD. CKX-HIPP protein complexes were detected at the ER as well as in the cytosol, suggesting that the complexes involve retrotranslocated CKX protein species. Altered CKX levels in HIPP-overexpressing and higher-order hipp mutant plants suggest that the studied HIPPs control the ERAD of CKX. Deregulation of CKX proteins caused corresponding changes in the cytokinin signaling activity and triggered typical morphological cytokinin responses. Notably, transcriptional repression of HIPP genes by cytokinin indicates a feedback regulatory mechanism of cytokinin homeostasis and signaling responses. Moreover, loss of function of HIPP genes constitutively activates the unfolded protein response and compromises the ER stress tolerance. Collectively, these results suggests that HIPPs represent novel functional components of plant ERAD.
Collapse
Affiliation(s)
- Tianqi Guo
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany; Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Science of Jiaying University, 514015 Mei Zhou, China
| | - Henriette Weber
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Michael C E Niemann
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Lisa Theisl
- Institute of Biology, University of Graz, Schubertstraße 51, 8010 Graz, Austria
| | - Georgeta Leonte
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany ASCR, 78371 Olomouc, Czech Republic
| | - Tomáš Werner
- Institute of Biology, University of Graz, Schubertstraße 51, 8010 Graz, Austria.
| |
Collapse
|
34
|
Nogia P, Pati PK. Plant Secondary Metabolite Transporters: Diversity, Functionality, and Their Modulation. FRONTIERS IN PLANT SCIENCE 2021; 12:758202. [PMID: 34777438 PMCID: PMC8580416 DOI: 10.3389/fpls.2021.758202] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/01/2021] [Indexed: 05/04/2023]
Abstract
Secondary metabolites (SMs) play crucial roles in the vital functioning of plants such as growth, development, defense, and survival via their transportation and accumulation at the required site. However, unlike primary metabolites, the transport mechanisms of SMs are not yet well explored. There exists a huge gap between the abundant presence of SM transporters, their identification, and functional characterization. A better understanding of plant SM transporters will surely be a step forward to fulfill the steeply increasing demand for bioactive compounds for the formulation of herbal medicines. Thus, the engineering of transporters by modulating their expression is emerging as the most viable option to achieve the long-term goal of systemic metabolic engineering for enhanced metabolite production at minimum cost. In this review article, we are updating the understanding of recent advancements in the field of plant SM transporters, particularly those discovered in the past two decades. Herein, we provide notable insights about various types of fully or partially characterized transporters from the ABC, MATE, PUP, and NPF families including their diverse functionalities, structural information, potential approaches for their identification and characterization, several regulatory parameters, and their modulation. A novel perspective to the concept of "Transporter Engineering" has also been unveiled by highlighting its potential applications particularly in plant stress (biotic and abiotic) tolerance, SM accumulation, and removal of anti-nutritional compounds, which will be of great value for the crop improvement program. The present study creates a roadmap for easy identification and a better understanding of various transporters, which can be utilized as suitable targets for transporter engineering in future research.
Collapse
Affiliation(s)
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
35
|
Zhang Y, Kilambi HV, Liu J, Bar H, Lazary S, Egbaria A, Ripper D, Charrier L, Belew ZM, Wulff N, Damodaran S, Nour-Eldin HH, Aharoni A, Ragni L, Strader L, Sade N, Weinstain R, Geisler M, Shani E. ABA homeostasis and long-distance translocation are redundantly regulated by ABCG ABA importers. SCIENCE ADVANCES 2021; 7:eabf6069. [PMID: 34669479 PMCID: PMC8528425 DOI: 10.1126/sciadv.abf6069] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The effects of abscisic acid (ABA) on plant growth, development, and response to the environment depend on local ABA concentrations. Here, we show that in Arabidopsis, ABA homeostasis is regulated by two previously unknown ABA transporters. Adenosine triphosphate–binding cassette subfamily G member 17 (ABCG17) and ABCG18 are localized to the plasma membranes of leaf mesophyll and cortex cells to redundantly promote ABA import, leading to conjugated inactive ABA sinks, thus restricting stomatal closure. ABCG17 and ABCG18 double knockdown revealed that the transporters encoded by these genes not only limit stomatal aperture size, conductance, and transpiration while increasing water use efficiency but also control ABA translocation from the shoot to the root to regulate lateral root emergence. Under abiotic stress conditions, ABCG17 and ABCG18 are transcriptionally repressed, promoting active ABA movement and response. The transport mechanism mediated by ABCG17 and ABCG18 allows plants to maintain ABA homeostasis under normal growth conditions.
Collapse
Affiliation(s)
- Yuqin Zhang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Himabindu Vasuki Kilambi
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jie Liu
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Hamutal Bar
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Shani Lazary
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Aiman Egbaria
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Dagmar Ripper
- ZMBP-Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Laurence Charrier
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Zeinu Mussa Belew
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Nikolai Wulff
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
| | | | - Hussam Hassan Nour-Eldin
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Laura Ragni
- ZMBP-Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Lucia Strader
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Nir Sade
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Roy Weinstain
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Markus Geisler
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Eilon Shani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel
- Corresponding author.
| |
Collapse
|
36
|
Anfang M, Shani E. Transport mechanisms of plant hormones. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102055. [PMID: 34102450 PMCID: PMC7615258 DOI: 10.1016/j.pbi.2021.102055] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 05/27/2023]
Abstract
Plant growth, development, and response to the environment are mediated by a group of small signaling molecules named hormones. Plants regulate hormone response pathways at multiple levels, including biosynthesis, metabolism, perception, and signaling. In addition, plants exhibit the unique ability to spatially control hormone distribution. In recent years, multiple transporters have been identified for most of the plant hormones. Here we present an updated snapshot of the known transporters for the hormones abscisic acid, auxin, brassinosteroid, cytokinin, ethylene, gibberellin, jasmonic acid, salicylic acid, and strigolactone. We also describe new findings regarding hormone movement and elaborate on hormone substrate specificity and possible genetic redundancy in hormone transport and distribution. Finally, we discuss subcellular, cell-to-cell, and long-distance hormone movement and local hormone sinks that trigger or prevent hormone-mediated responses.
Collapse
Affiliation(s)
- Moran Anfang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Eilon Shani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
37
|
Polko JK, Potter KC, Burr CA, Schaller GE, Kieber JJ. Meta-analysis of transcriptomic studies of cytokinin-treated rice roots defines a core set of cytokinin response genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1387-1402. [PMID: 34165836 DOI: 10.1111/tpj.15386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/06/2021] [Accepted: 06/19/2021] [Indexed: 05/25/2023]
Abstract
Cytokinins regulate diverse aspects of plant growth and development, primarily through modulation of gene expression. The cytokinin-responsive transcriptome has been thoroughly described in dicots, especially Arabidopsis, but much less so in monocots. Here, we present a meta-analysis of five different transcriptomic analyses of rice (Oryza sativa) roots treated with cytokinin, including three previously unpublished experiments. We developed a treatment method in which hormone is added to the media of rice seedlings grown in sterile hydroponic culture under a continuous airflow, which resulted in minimal perturbation of the seedlings, thus greatly reducing changes in gene expression in the absence of exogenous hormone. We defined a core set of 205 upregulated and 86 downregulated genes that were differentially expressed in at least three of the transcriptomic datasets. This core set includes genes encoding the type-A response regulators (RRs) and cytokinin oxidases/dehydrogenases, which have been shown to be primary cytokinin response genes. GO analysis revealed that the upregulated genes were enriched for terms related to cytokinin/hormone signaling and metabolism, while the downregulated genes were significantly enriched for genes encoding transporters. Variations of type-B RR binding motifs were significantly enriched in the promoters of the upregulated genes, as were binding sites for other potential partner transcription factors. The promoters of the downregulated genes were generally enriched for distinct cis-acting motifs and did not include the type-B RR binding motif. This analysis provides insight into the molecular mechanisms underlying cytokinin action in a monocot and provides a useful foundation for future studies of this hormone in rice and other cereals.
Collapse
Affiliation(s)
- Joanna K Polko
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kevin C Potter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Christian A Burr
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - G Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Joseph J Kieber
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
38
|
Integrating the Roles for Cytokinin and Auxin in De Novo Shoot Organogenesis: From Hormone Uptake to Signaling Outputs. Int J Mol Sci 2021; 22:ijms22168554. [PMID: 34445260 PMCID: PMC8395325 DOI: 10.3390/ijms22168554] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/01/2022] Open
Abstract
De novo shoot organogenesis (DNSO) is a procedure commonly used for the in vitro regeneration of shoots from a variety of plant tissues. Shoot regeneration occurs on nutrient media supplemented with the plant hormones cytokinin (CK) and auxin, which play essential roles in this process, and genes involved in their signaling cascades act as master regulators of the different phases of shoot regeneration. In the last 20 years, the genetic regulation of DNSO has been characterized in detail. However, as of today, the CK and auxin signaling events associated with shoot regeneration are often interpreted as a consequence of these hormones simply being present in the regeneration media, whereas the roles for their prior uptake and transport into the cultivated plant tissues are generally overlooked. Additionally, sucrose, commonly added to the regeneration media as a carbon source, plays a signaling role and has been recently shown to interact with CK and auxin and to affect the efficiency of shoot regeneration. In this review, we provide an integrative interpretation of the roles for CK and auxin in the process of DNSO, adding emphasis on their uptake from the regeneration media and their interaction with sucrose present in the media to their complex signaling outputs that mediate shoot regeneration.
Collapse
|
39
|
Zhao J, Ding B, Zhu E, Deng X, Zhang M, Zhang P, Wang L, Dai Y, Xiao S, Zhang C, Liu CJ, Zhang K. Phloem unloading via the apoplastic pathway is essential for shoot distribution of root-synthesized cytokinins. PLANT PHYSIOLOGY 2021; 186:2111-2123. [PMID: 33905524 PMCID: PMC8331157 DOI: 10.1093/plphys/kiab188] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/15/2021] [Indexed: 05/20/2023]
Abstract
Root-synthesized cytokinins are transported to the shoot and regulate the growth, development, and stress responses of aerial tissues. Previous studies have demonstrated that Arabidopsis (Arabidopsis thaliana) ATP binding cassette (ABC) transporter G family member 14 (AtABCG14) participates in xylem loading of root-synthesized cytokinins. However, the mechanism by which these root-derived cytokinins are distributed in the shoot remains unclear. Here, we revealed that AtABCG14-mediated phloem unloading through the apoplastic pathway is required for the appropriate shoot distribution of root-synthesized cytokinins in Arabidopsis. Wild-type rootstocks grafted to atabcg14 scions successfully restored trans-zeatin xylem loading. However, only low levels of root-synthesized cytokinins and induced shoot signaling were rescued. Reciprocal grafting and tissue-specific genetic complementation demonstrated that AtABCG14 disruption in the shoot considerably increased the retention of root-synthesized cytokinins in the phloem and substantially impaired their distribution in the leaf apoplast. The translocation of root-synthesized cytokinins from the xylem to the phloem and the subsequent unloading from the phloem is required for the shoot distribution and long-distance shootward transport of root-synthesized cytokinins. This study revealed a mechanism by which the phloem regulates systemic signaling of xylem-mediated transport of root-synthesized cytokinins from the root to the shoot.
Collapse
Affiliation(s)
- Jiangzhe Zhao
- Institute of Plant Genetics and Developmental Biology, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Bingli Ding
- Institute of Plant Genetics and Developmental Biology, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Engao Zhu
- Institute of Plant Genetics and Developmental Biology, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Xiaojuan Deng
- Institute of Plant Genetics and Developmental Biology, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Mengyuan Zhang
- Institute of Plant Genetics and Developmental Biology, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Penghong Zhang
- Institute of Plant Genetics and Developmental Biology, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Lu Wang
- Institute of Plant Genetics and Developmental Biology, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Yangshuo Dai
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Cankui Zhang
- Department of Agronomy and Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Chang-Jun Liu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Kewei Zhang
- Institute of Plant Genetics and Developmental Biology, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
- Author for communication:
| |
Collapse
|
40
|
Hoang XLT, Prerostova S, Thu NBA, Thao NP, Vankova R, Tran LSP. Histidine Kinases: Diverse Functions in Plant Development and Responses to Environmental Conditions. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:297-323. [PMID: 34143645 DOI: 10.1146/annurev-arplant-080720-093057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The two-component system (TCS), which is one of the most evolutionarily conserved signaling pathway systems, has been known to regulate multiple biological activities and environmental responses in plants. Significant progress has been made in characterizing the biological functions of the TCS components, including signal receptor histidine kinase (HK) proteins, signal transducer histidine-containing phosphotransfer proteins, and effector response regulator proteins. In this review, our scope is focused on the diverse structure, subcellular localization, and interactions of the HK proteins, as well as their signaling functions during development and environmental responses across different plant species. Based on data collected from scientific studies, knowledge about acting mechanisms and regulatory roles of HK proteins is presented. This comprehensive summary ofthe HK-related network provides a panorama of sophisticated modulating activities of HK members and gaps in understanding these activities, as well as the basis for developing biotechnological strategies to enhance the quality of crop plants.
Collapse
Affiliation(s)
- Xuan Lan Thi Hoang
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; , ,
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Sylva Prerostova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| | - Nguyen Binh Anh Thu
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; , ,
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Phuong Thao
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; , ,
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79409, USA;
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
41
|
Lv J, Dai CB, Wang WF, Sun YH. Genome-wide identification of the ARRs gene family in tobacco (Nicotiana tabacum). Genes Genomics 2021; 43:601-612. [PMID: 33772744 DOI: 10.1007/s13258-021-01039-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/04/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND The growth of axillary buds determines the shoot branching and morphology of plants, and its initiation and development are regulated by a series of hormonal signals, such as cytokinin. Arabidopsis response regulators (ARRs) can regulate the growth and development, disease resistance and stress resistance of plants by participating in cytokinin signaling. OBJECTIVE To explore the distribution and expression pattern of ARR members in tobacco. METHODS The identification, isoelectric points, molecular weights, protein subcellular localization prediction, multiple sequence alignment, phylogenetic analysis, protein motifs and structures, chromosome distributions of deduced ARR proteins were conducted. The gene expression profiling of various tissues in response to topping, low temperature and drought were analyzed by RNA-seq and qRT-PCR. RESULTS 59 ARR genes from cultivated tobacco (Nicotiana tabacum) were identified, namely NtARRs, including 21 type A NtARRs and 38 type B NtARRs. The 59 NtARRs were expressed mainly in all organs except the fruits. Some representative NtARRs may participate in axillary bud initiation and development, as well as in stress resistance through cytokinin signal transduction. CONCLUSION Understanding the roles of NtARRs in the molecular mechanisms responsible for axillary bud growth and stress tolerance could aid in targeted breeding in crops.
Collapse
Affiliation(s)
- Jing Lv
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao City, Shandong Province, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chang-Bo Dai
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao City, Shandong Province, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Wei-Feng Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao City, Shandong Province, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Yu-He Sun
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao City, Shandong Province, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China.
| |
Collapse
|
42
|
Effectors of Puccinia striiformis f. sp. tritici Suppressing the Pathogenic-Associated Molecular Pattern-Triggered Immune Response Were Screened by Transient Expression of Wheat Protoplasts. Int J Mol Sci 2021; 22:ijms22094985. [PMID: 34067160 PMCID: PMC8125866 DOI: 10.3390/ijms22094985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022] Open
Abstract
Puccinia striiformis f. sp. tritici (Pst) is an important pathogen of wheat (Triticum aestivum L.) stripe rust, and the effector protein secreted by haustoria is a very important component involved in the pathogenic process. Although the candidate effector proteins secreted by Pst haustoria have been predicted to be abundant, few have been functionally validated. Our study confirmed that chitin and flg22 could be used as elicitors of the pathogenic-associated molecular pattern-triggered immune (PTI) reaction in wheat leaves and that TaPr-1-14 could be used as a marker gene to detect the PTI reaction. In addition, the experimental results were consistent in wheat protoplasts. A rapid and efficient method for screening and identifying the effector proteins of Pst was established by using the wheat protoplast transient expression system. Thirty-nine Pst haustorial effector genes were successfully cloned and screened for expression in the protoplast. We identified three haustorial effector proteins, PSEC2, PSEC17, and PSEC45, that may inhibit the response of wheat to PTI. These proteins are localized in the somatic cytoplasm and nucleus of wheat protoplasts and are highly expressed during the infection and parasitism of wheat.
Collapse
|
43
|
Zakharova EV, Timofeeva GV, Fateev AD, Kovaleva LV. Caspase-like proteases and the phytohormone cytokinin as determinants of S-RNAse-based self-incompatibility-induced PCD in Petunia hybrida L. PROTOPLASMA 2021; 258:573-586. [PMID: 33230626 DOI: 10.1007/s00709-020-01587-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
S-RNAse-based self-incompatibility (SI) in petunia (Petunia hybrida L.) is a self-/non-self-recognition system underlying the pistil rejection of self-pollen. Using different methods, including a TUNEL assay, we have recently shown that programmed cell death (PCD) is a factor of the SI in petunia. Here, we show that the growth of self-incompatible pollen tubes in the style tissues during 4 h after pollination is accompanied by five-sixfold increase in a caspase-like protease (CLP) activity. Exogenous cytokinin (CK) inhibits the pollen tube growth and stimulates the CLP activity in compatible pollen tubes. The actin depolymerization with latrunculin B induces a sharp drop in the CLP activity in self-incompatible pollen tubes and its increase in compatible pollen tubes. Altogether, our results suggest that a CLP is involved in the SI-induced PCD and that CK is a putative activator of the CLP. We assume that CK provokes acidification of the cytosol and thus promotes the activation of a CLP. Thus, our results suggest that CK and CLP are involved in the S-RNAse-based SI-induced PCD in petunia. Potential relations between these components in PCD signaling are discussed.
Collapse
Affiliation(s)
| | - Galina V Timofeeva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Arseny D Fateev
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Lidia V Kovaleva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
44
|
Zhao J, Ju M, Qian J, Zhang M, Liu T, Zhang K. A Tobacco Syringe Agroinfiltration-Based Method for a Phytohormone Transporter Activity Assay Using Endogenous Substrates. FRONTIERS IN PLANT SCIENCE 2021; 12:660966. [PMID: 33889170 PMCID: PMC8056304 DOI: 10.3389/fpls.2021.660966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Phytohormones are a group of small chemical molecules that play vital roles in plant development, metabolism, and stress responses. Phytohormones often have distinct biosynthesis and signaling perception sites, requiring long- or short-distance transportation. Unlike biosynthesis and signal transduction, phytohormone transport across cells and organs is poorly understood. The transporter activity assay is a bottleneck for the functional characterization of novel phytohormone transporters. In the present study, we report a tobacco syringe agroinfiltration and liquid chromatography tandem mass spectrometry (TSAL)-based method for performing a phytohormone transporter activity assay using endogenous hormones present in tobacco (Nicotiana benthamiana) leaves. A transporter activity assay using this method does not require isotope-labeled substrates and can be conveniently performed for screening multiple substrates by using endogenous hormones in tobacco leaves. The transporter activities of three known hormone transporters, namely AtABCG25 for abscisic acid, AtABCG16 for jasmonic acid, and AtPUP14 for cytokinin, were all successfully validated using this method. Using this method, cytokinins were found to be the preferred substrates of an unknown maize (Zea mays) transporter ZmABCG43. ZmABCG43 transporter activities toward cytokinins were confirmed in a cytokinin long-distance transport mutant atabcg14 through gene complementation. Thus, the TSAL method has the potential to be used for basic substrate characterization of novel phytohormone transporters or for the screening of novel transporters for a specific phytohormone on a large scale.
Collapse
|
45
|
Jarzyniak K, Banasiak J, Jamruszka T, Pawela A, Di Donato M, Novák O, Geisler M, Jasiński M. Early stages of legume-rhizobia symbiosis are controlled by ABCG-mediated transport of active cytokinins. NATURE PLANTS 2021; 7:428-436. [PMID: 33753904 DOI: 10.1038/s41477-021-00873-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/05/2021] [Indexed: 05/04/2023]
Abstract
Growing evidence has highlighted the essential role of plant hormones, notably, cytokinins (CKs), in nitrogen-fixing symbiosis, both at early and late nodulation stages1,2. Despite numerous studies showing the central role of CK in nodulation, the importance of CK transport in the symbiosis is unknown. Here, we show the role of ABCG56, a full-size ATP-binding cassette (ABC) transporter in the early stages of the nodulation. MtABCG56 is expressed in roots and nodules and its messenger RNA levels increase upon treatment with symbiotic bacteria, isolated Nod factor and CKs, accumulating within the epidermis and root cortex. MtABCG56 exports bioactive CKs in an ATP-dependent manner over the plasma membrane and its disruption results in an impairment of nodulation. Our data indicate that ABCG-mediated cytokinin transport is important for proper establishment of N-fixing nodules.
Collapse
Affiliation(s)
- Karolina Jarzyniak
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Joanna Banasiak
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Tomasz Jamruszka
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Aleksandra Pawela
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Martin Di Donato
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czech Republic
| | - Markus Geisler
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Michał Jasiński
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland.
| |
Collapse
|
46
|
Romanov GA, Schmülling T. Opening Doors for Cytokinin Trafficking at the ER Membrane. TRENDS IN PLANT SCIENCE 2021; 26:305-308. [PMID: 33618985 DOI: 10.1016/j.tplants.2021.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
The recent discovery of cytokinin transporters in the endoplasmic reticulum (ER) membrane provides a missing link to understand cellular cytokinin trafficking and signaling. Along with cytokinin receptors and metabolic enzymes previously found in the ER, these transporters complement the ER-confined infrastructure required for cytokinin signal generation and modulation.
Collapse
Affiliation(s)
- Georgy A Romanov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia.
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
47
|
Umeda M, Ikeuchi M, Ishikawa M, Ito T, Nishihama R, Kyozuka J, Torii KU, Satake A, Goshima G, Sakakibara H. Plant stem cell research is uncovering the secrets of longevity and persistent growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:326-335. [PMID: 33533118 PMCID: PMC8252613 DOI: 10.1111/tpj.15184] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 05/07/2023]
Abstract
Plant stem cells have several extraordinary features: they are generated de novo during development and regeneration, maintain their pluripotency, and produce another stem cell niche in an orderly manner. This enables plants to survive for an extended period and to continuously make new organs, representing a clear difference in their developmental program from animals. To uncover regulatory principles governing plant stem cell characteristics, our research project 'Principles of pluripotent stem cells underlying plant vitality' was launched in 2017, supported by a Grant-in-Aid for Scientific Research on Innovative Areas from the Japanese government. Through a collaboration involving 28 research groups, we aim to identify key factors that trigger epigenetic reprogramming and global changes in gene networks, and thereby contribute to stem cell generation. Pluripotent stem cells in the shoot apical meristem are controlled by cytokinin and auxin, which also play a crucial role in terminating stem cell activity in the floral meristem; therefore, we are focusing on biosynthesis, metabolism, transport, perception, and signaling of these hormones. Besides, we are uncovering the mechanisms of asymmetric cell division and of stem cell death and replenishment under DNA stress, which will illuminate plant-specific features in preserving stemness. Our technology support groups expand single-cell omics to describe stem cell behavior in a spatiotemporal context, and provide correlative light and electron microscopic technology to enable live imaging of cell and subcellular dynamics at high spatiotemporal resolution. In this perspective, we discuss future directions of our ongoing projects and related research fields.
Collapse
Affiliation(s)
- Masaaki Umeda
- Graduate School of Science and TechnologyNara Institute of Science and TechnologyIkoma630‐0192Japan
| | - Momoko Ikeuchi
- Department of BiologyFaculty of ScienceNiigata UniversityNiigata950‐2181Japan
| | - Masaki Ishikawa
- National Institute for Basic BiologyOkazaki444‐8585Japan
- Department of Basic BiologyThe Graduate University for Advanced Studies (SOKENDAI)Okazaki444‐8585Japan
| | - Toshiro Ito
- Graduate School of Science and TechnologyNara Institute of Science and TechnologyIkoma630‐0192Japan
| | | | - Junko Kyozuka
- Graduate School of Life SciencesTohoku UniversitySendai980‐8577Japan
| | - Keiko U. Torii
- Howard Hughes Medical Institute and Department of Molecular BiosciencesThe University of Texas at AustinAustinTX78712USA
- Institute of Transformative Biomolecules (WPI‐ITbM)Nagoya UniversityNagoya464‐8601Japan
| | - Akiko Satake
- Department of BiologyFaculty of ScienceKyushu UniversityFukuoka819‐0395Japan
| | - Gohta Goshima
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoya464‐8602Japan
- Sugashima Marine Biological LaboratoryGraduate School of ScienceNagoya UniversityToba517‐0004Japan
| | - Hitoshi Sakakibara
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoya464‐8601Japan
| |
Collapse
|
48
|
Nedvěd D, Hošek P, Klíma P, Hoyerová K. Differential Subcellular Distribution of Cytokinins: How Does Membrane Transport Fit into the Big Picture? Int J Mol Sci 2021; 22:3428. [PMID: 33810428 PMCID: PMC8037549 DOI: 10.3390/ijms22073428] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/02/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
Cytokinins are a class of phytohormones, signalling molecules specific to plants. They act as regulators of diverse physiological processes in complex signalling pathways. It is necessary for plants to continuously regulate cytokinin distribution among different organs, tissues, cells, and compartments. Such regulatory mechanisms include cytokinin biosynthesis, metabolic conversions and degradation, as well as cytokinin membrane transport. In our review, we aim to provide a thorough picture of the latter. We begin by summarizing cytokinin structures and physicochemical properties. Then, we revise the elementary thermodynamic and kinetic aspects of cytokinin membrane transport. Next, we review which membrane-bound carrier proteins and protein families recognize cytokinins as their substrates. Namely, we discuss the families of "equilibrative nucleoside transporters" and "purine permeases", which translocate diverse purine-related compounds, and proteins AtPUP14, AtABCG14, AtAZG1, and AtAZG2, which are specific to cytokinins. We also address long-distance cytokinin transport. Putting all these pieces together, we finally discuss cytokinin distribution as a net result of these processes, diverse in their physicochemical nature but acting together to promote plant fitness.
Collapse
Affiliation(s)
- Daniel Nedvěd
- The Czech Academy of Sciences, Institute of Experimental Botany, 165 02 Prague, Czech Republic; (D.N.); (P.H.)
- Department of Biochemistry, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Petr Hošek
- The Czech Academy of Sciences, Institute of Experimental Botany, 165 02 Prague, Czech Republic; (D.N.); (P.H.)
| | - Petr Klíma
- The Czech Academy of Sciences, Institute of Experimental Botany, 165 02 Prague, Czech Republic; (D.N.); (P.H.)
| | - Klára Hoyerová
- The Czech Academy of Sciences, Institute of Experimental Botany, 165 02 Prague, Czech Republic; (D.N.); (P.H.)
| |
Collapse
|
49
|
Limitation of Cytokinin Export to the Shoots by Nucleoside Transporter ENT3 and its Linkage with Root Elongation in Arabidopsis. Cells 2021; 10:cells10020350. [PMID: 33567681 PMCID: PMC7914507 DOI: 10.3390/cells10020350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 11/17/2022] Open
Abstract
The trans-membrane carrier AtENT3 is known to transport externally supplied cytokinin ribosides and thus promote uptake by cells. However, its role in distributing either exogenous or endogenous cytokinins within the intact plant has not hitherto been reported. To test this, we used ent3-1 mutant Arabidopsis seedlings in which the gene is not expressed due to a T-DNA insertion, and examined the effect on the concentration and distribution of either endogenous cytokinins or exogenous trans-zeatin riboside applied to the roots. In the mutant, accumulation of endogenous cytokinins in the roots was reduced and capacity to deliver externally supplied trans-zeatin riboside to the shoots was increased suggesting involvement of equilibrative nucleoside (ENT) transporter in the control of cytokinin distribution in the plants. Roots of ent3-1 were longer in the mutant in association with their lower cytokinin concentration. We concluded that the ENT3 transporter participates in partitioning endogenous cytokinins between the apoplast and the symplast by facilitating their uptake by root cells thereby limiting cytokinin export to the shoots through the xylem. Dilution of the mineral nutrient solution lowered endogenous cytokinin concentration in the roots of both wild type (WT) and ent3-1 plants accompanied by promotion of root elongation. Nevertheless, cytokinin content was lower, while roots were longer in the ent3-1 mutant than in the WT under either normal or deficient mineral nutrition suggesting a significant role of ENT3 transporter in the control of cytokinin level in the roots and the rate of their elongation.
Collapse
|
50
|
The Hulks and the Deadpools of the Cytokinin Universe: A Dual Strategy for Cytokinin Production, Translocation, and Signal Transduction. Biomolecules 2021; 11:biom11020209. [PMID: 33546210 PMCID: PMC7913349 DOI: 10.3390/biom11020209] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cytokinins are plant hormones, derivatives of adenine with a side chain at the N6-position. They are involved in many physiological processes. While the metabolism of trans-zeatin and isopentenyladenine, which are considered to be highly active cytokinins, has been extensively studied, there are others with less obvious functions, such as cis-zeatin, dihydrozeatin, and aromatic cytokinins, which have been comparatively neglected. To help explain this duality, we present a novel hypothesis metaphorically comparing various cytokinin forms, enzymes of CK metabolism, and their signalling and transporter functions to the comics superheroes Hulk and Deadpool. Hulk is a powerful but short-lived creation, whilst Deadpool presents a more subtle and enduring force. With this dual framework in mind, this review compares different cytokinin metabolites, and their biosynthesis, translocation, and sensing to illustrate the different mechanisms behind the two CK strategies. This is put together and applied to a plant developmental scale and, beyond plants, to interactions with organisms of other kingdoms, to highlight where future study can benefit the understanding of plant fitness and productivity.
Collapse
|