1
|
Cui L, Lin S, Yang X, Xie X, Wang X, He N, Yang J, Zhang X, Lu X, Yan X, Guo Y, Zhang B, Li R, Miao H, Ji M, Zhang R, Yu L, Xiao Z, Wei Y, Guo J. Spatial transcriptomic characterization of a Carnegie stage 7 human embryo. Nat Cell Biol 2025:10.1038/s41556-024-01597-3. [PMID: 39794460 DOI: 10.1038/s41556-024-01597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025]
Abstract
Gastrulation marks a pivotal stage in mammalian embryonic development, establishing the three germ layers and body axis through lineage diversification and morphogenetic movements. However, studying human gastrulating embryos is challenging due to limited access to early tissues. Here we show the use of spatial transcriptomics to analyse a fully intact Carnegie stage 7 human embryo at single-cell resolution, along with immunofluorescence validations in a second embryo. Employing 82 serial cryosections and Stereo-seq technology, we reconstructed a three-dimensional model of the embryo. Our findings reveal early specification of distinct mesoderm subtypes and the presence of the anterior visceral endoderm. Notably, primordial germ cells were located in the connecting stalk, and haematopoietic stem cell-independent haematopoiesis was observed in the yolk sac. This study advances our understanding of human gastrulation and provides a valuable dataset for future research in early human development.
Collapse
Affiliation(s)
- Lina Cui
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Sirui Lin
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaolong Yang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xinwei Xie
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xiaoyan Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Nannan He
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingyu Yang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xin Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaojian Lu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xiaodi Yan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yifei Guo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Bailing Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ran Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Hefan Miao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Mei Ji
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Runzhao Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Leqian Yu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| | - Zhenyu Xiao
- School of Life Science, Beijing Institute of Technology, Beijing, China.
| | - Yulei Wei
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China.
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
| | - Jingtao Guo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Dominguez MH, Muncie-Vasic JM, Bruneau BG. 4D light sheet imaging, computational reconstruction, and cell tracking in mouse embryos. STAR Protoc 2025; 6:103515. [PMID: 39754721 PMCID: PMC11754511 DOI: 10.1016/j.xpro.2024.103515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/30/2024] [Accepted: 11/19/2024] [Indexed: 01/06/2025] Open
Abstract
As light sheet fluorescence microscopy (LSFM) becomes widely available, reconstruction of time-lapse imaging will further our understanding of complex biological processes at cellular resolution. Here, we present a comprehensive workflow for in toto capture, processing, and analysis of multi-view LSFM experiments using the ex vivo mouse embryo as a model system of development. Our protocol describes imaging on a commercial LSFM instrument followed by computational analysis in discrete segments, using open-source software. Quantification of migration and morphodynamics is included. For complete details on the use and execution of this protocol, please refer to Dominguez et al.1.
Collapse
Affiliation(s)
- Martin H Dominguez
- Gladstone Institutes, San Francisco, CA, USA; Department of Medicine, Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA.
| | | | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA; Department of Pediatrics, Cardiovascular Research Institute, Institute for Human Genetics, and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
3
|
Gantner CW, Weatherbee BAT, Wang Y, Zernicka-Goetz M. Assembly of a stem cell-derived human postimplantation embryo model. Nat Protoc 2025; 20:67-91. [PMID: 39261744 DOI: 10.1038/s41596-024-01042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 06/24/2024] [Indexed: 09/13/2024]
Abstract
The embryonic and extraembryonic tissue interactions underlying human embryogenesis at implantation stages are not currently understood. We have generated a pluripotent stem cell-derived model that mimics aspects of peri-implantation development, allowing tractable experimentation otherwise impossible in the human embryo. Activation of the extraembryonic lineage-specific transcription factors GATA6 and SOX17 (hypoblast factors) or GATA3 and TFAP2C (encoding AP2γ; trophoblast factors) in human embryonic stem (ES) cells drive conversion to extraembryonic-like cells. When combined with wild-type ES cells, self-organized embryo-like structures form in the absence of exogenous factors, termed human inducible embryoids (hiEmbryoids). The epiblast-like domain of hiEmbryoids polarizes and differentiates in response to extraembryonic-secreted extracellular matrix and morphogen cues. Extraembryonic mesenchyme, amnion and primordial germ cells are specified in hiEmbryoids in a stepwise fashion. After establishing stable inducible ES lines and converting ES cells to RSeT culture media, the protocol takes 7-10 d to generate hiEmbryoids. Generation of hiEmbryoids can be performed by researchers with basic expertise in stem cell culture.
Collapse
Affiliation(s)
- Carlos W Gantner
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Bailey A T Weatherbee
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Yuntao Wang
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Stem Cell Embryo Models Group, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
4
|
Lancaster MA. Pluripotent stem cell-derived organoids: A brief history of curiosity-led discoveries. Bioessays 2024; 46:e2400105. [PMID: 39101295 PMCID: PMC11589667 DOI: 10.1002/bies.202400105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024]
Abstract
Organoids are quickly becoming an accepted model for understanding human biology and disease. Pluripotent stem cells (PSC) provide a starting point for many organs and enable modeling of the embryonic development and maturation of such organs. The foundation of PSC-derived organoids can be found in elegant developmental studies demonstrating the remarkable ability of immature cells to undergo histogenesis even when taken out of the embryo context. PSC-organoids are an evolution of earlier methods such as embryoid bodies, taken to a new level with finer control and in some cases going beyond tissue histogenesis to organ-like morphogenesis. But many of the discoveries that led to organoids were not necessarily planned, but rather the result of inquisitive minds with freedom to explore. Protecting such curiosity-led research through flexible funding will be important going forward if we are to see further ground-breaking discoveries.
Collapse
|
5
|
Turner DA, Martinez Arias A. Three-dimensional stem cell models of mammalian gastrulation. Bioessays 2024; 46:e2400123. [PMID: 39194406 PMCID: PMC11589689 DOI: 10.1002/bies.202400123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Gastrulation is a key milestone in the development of an organism. It is a period of cell proliferation and coordinated cellular rearrangement, that creates an outline of the body plan. Our current understanding of mammalian gastrulation has been improved by embryo culture, but there are still many open questions that are difficult to address because of the intrauterine development of the embryos and the low number of specimens. In the case of humans, there are additional difficulties associated with technical and ethical challenges. Over the last few years, pluripotent stem cell models are being developed that have the potential to become useful tools to understand the mammalian gastrulation. Here we review these models with a special emphasis on gastruloids and provide a survey of the methods to produce them robustly, their uses, relationship to embryos, and their prospects as well as their limitations.
Collapse
Affiliation(s)
- David A. Turner
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | | |
Collapse
|
6
|
Kim H, Kim E. Current Status of Synthetic Mammalian Embryo Models. Int J Mol Sci 2024; 25:12862. [PMID: 39684574 PMCID: PMC11641582 DOI: 10.3390/ijms252312862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Advances in three-dimensional culture technologies have facilitated the development of synthetic embryo models, such as blastoids, through the co-culturing of diverse stem cell types. These in vitro models enable precise investigation of developmental processes, including gastrulation, neurulation, and lineage specification, thereby advancing our understanding of early embryogenesis. By providing controllable, ethically viable platforms, they help circumvent the limitations of in vivo mammalian embryo studies and contribute to developing regenerative medicine strategies. Nonetheless, ethical challenges, particularly regarding human applications, persist. Comparative studies across various species-such as mice, humans, non-human primates, and ungulates, like pigs and cattle-offer crucial insights into both species-specific and conserved developmental mechanisms. In this review, we outline the species-specific differences in embryonic development and discuss recent advancements in stem cell and synthetic embryo models. Specifically, we focus on the latest stem cell research involving ungulates, such as pigs and cattle, and provide a comprehensive overview of the improvements in synthetic embryo technology. These insights contribute to our understanding of species-specific developmental biology, help improve model efficiency, and guide the development of new models.
Collapse
Affiliation(s)
| | - Eunhye Kim
- Laboratory of Molecular Diagnostics and Cell Biology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea;
| |
Collapse
|
7
|
Zhang P, Tian Z, Jin K, Yang K, Collyer W, Rufo J, Upreti N, Dong X, Lee LP, Huang TJ. Automating life science labs at the single-cell level through precise ultrasonic liquid sample ejection: PULSE. MICROSYSTEMS & NANOENGINEERING 2024; 10:172. [PMID: 39567484 PMCID: PMC11579414 DOI: 10.1038/s41378-024-00798-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/30/2024] [Accepted: 08/17/2024] [Indexed: 11/22/2024]
Abstract
Laboratory automation technologies have revolutionized biomedical research. However, the availability of automation solutions at the single-cell level remains scarce, primarily owing to the inherent challenges of handling cells with such small dimensions in a precise, biocompatible manner. Here, we present a single-cell-level laboratory automation solution that configures various experiments onto standardized, microscale test-tube matrices via our precise ultrasonic liquid sample ejection technology, known as PULSE. PULSE enables the transformation of titer plates into microdroplet arrays by printing nanodrops and single cells acoustically in a programmable, scalable, and biocompatible manner. Unlike pipetting robots, PULSE enables researchers to conduct biological experiments using single cells as anchoring points (e.g., 1 cell vs. 1000 cells per "tube"), achieving higher resolution and potentially more relevant data for modeling and downstream analyses. We demonstrate the ability of PULSE to perform biofabrication, precision gating, and deterministic array barcoding via preallocated droplet-addressable primers. Single cells can be gently printed at a speed range of 5-20 cell⋅s-1 with an accuracy of 90.5-97.7%, which can then adhere to the substrate and grow for up to 72 h while preserving cell integrity. In the deterministic barcoding experiment, 95.6% barcoding accuracy and 2.7% barcode hopping were observed by comparing the phenotypic data with known genotypic data from two types of single cells. Our PULSE platform allows for precise and dynamic analyses by automating experiments at the single-cell level, offering researchers a powerful tool in biomedical research.
Collapse
Affiliation(s)
- Peiran Zhang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Ke Jin
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Kaichun Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Wesley Collyer
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Joseph Rufo
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Neil Upreti
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Xianjun Dong
- Genomics and Bioinformatics Hub, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Luke P Lee
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA, USA.
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, Korea.
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, Korea.
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
8
|
Onesto MM, Kim JI, Pasca SP. Assembloid models of cell-cell interaction to study tissue and disease biology. Cell Stem Cell 2024; 31:1563-1573. [PMID: 39454582 DOI: 10.1016/j.stem.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/26/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024]
Abstract
Neurodevelopment involves the migration, projection, and integration of various cell types across different regions of the nervous system. Assembloids are self-organizing systems formed by the integration of multiple organoids or cell types. Here, we outline the generation and application of assembloids. We illustrate how assembloids recapitulate critical neurodevelopmental steps, like migration, axon projection, and circuit formation, and how they are starting to provide biological insights into neuropsychiatric disorders. Additionally, we review how assembloids can be used to study properties emerging from cell-cell interactions within non-neural tissues. Overall, assembloid platforms represent a powerful tool for discovering human biology and developing therapeutics.
Collapse
Affiliation(s)
- Massimo M Onesto
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute and Bio-X, Stanford University, Stanford, CA, USA
| | - Ji-Il Kim
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute and Bio-X, Stanford University, Stanford, CA, USA
| | - Sergiu P Pasca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute and Bio-X, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
Chu SL, Abe K, Yokota H, Cho D, Hayashi Y, Tsai MD. Deep learning for quantifying spatial patterning and formation process of early differentiated human-induced pluripotent stem cells with micropattern images. J Microsc 2024; 296:79-93. [PMID: 38994744 DOI: 10.1111/jmi.13346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/13/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Micropatterning is reliable method for quantifying pluripotency of human-induced pluripotent stem cells (hiPSCs) that differentiate to form a spatial pattern of sorted, ordered and nonoverlapped three germ layers on the micropattern. In this study, we propose a deep learning method to quantify spatial patterning of the germ layers in the early differentiation stage of hiPSCs using micropattern images. We propose decoding and encoding U-net structures learning labelled Hoechst (DNA-stained) hiPSC regions with corresponding Hoechst and bright-field micropattern images to segment hiPSCs on Hoechst or bright-field images. We also propose a U-net structure to extract extraembryonic regions on a micropattern, and an algorithm to compares intensities of the fluorescence images staining respective germ-layer cells and extract their regions. The proposed method thus can quantify the pluripotency of a hiPSC line with spatial patterning including cell numbers, areas and distributions of germ-layer and extraembryonic cells on a micropattern, and reveal the formation process of hiPSCs and germ layers in the early differentiation stage by segmenting live-cell bright-field images. In our assay, the cell-number accuracy achieved 86% and 85%, and the cell region accuracy 89% and 81% for segmenting Hoechst and bright-field micropattern images, respectively. Applications to micropattern images of multiple hiPSC lines, micropattern sizes, groups of markers, living and fixed cells show the proposed method can be expected to be a useful protocol and tool to quantify pluripotency of a new hiPSC line before providing it to the scientific community.
Collapse
Affiliation(s)
- Slo-Li Chu
- Department of Information and Computer Engineering, Chung-Yuan Christian University, Chung-Li, Taoyuan, Taiwan
| | - Kuniya Abe
- BioResource Research Center, RIKEN, Tsukuba, Ibaraki, Japan
| | - Hideo Yokota
- Center for Advanced Photonics, RIKEN, Wako, Saitama, Japan
| | - Dooseon Cho
- BioResource Research Center, RIKEN, Tsukuba, Ibaraki, Japan
| | - Yohei Hayashi
- BioResource Research Center, RIKEN, Tsukuba, Ibaraki, Japan
| | - Ming-Dar Tsai
- Department of Information and Computer Engineering, Chung-Yuan Christian University, Chung-Li, Taoyuan, Taiwan
| |
Collapse
|
10
|
Zhu T, Hu Y, Cui H, Cui H. 3D Multispheroid Assembly Strategies towards Tissue Engineering and Disease Modeling. Adv Healthc Mater 2024; 13:e2400957. [PMID: 38924326 DOI: 10.1002/adhm.202400957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Cell spheroids (esp. organoids) as 3D culture platforms are popular models for representing cell-cell and cell-extracellular matrix (ECM) interactions, bridging the gap between 2D cell cultures and natural tissues. 3D cell models with spatially organized multiple cell types are preferred for gaining comprehensive insights into tissue pathophysiology and constructing in vitro tissues and disease models because of the complexities of natural tissues. In recent years, an assembly strategy using cell spheroids (or organoids) as living building blocks has been developed to construct complex 3D tissue models with spatial organization. Here, a comprehensive overview of recent advances in multispheroid assembly studies is provided. The different mechanisms of the multispheroid assembly techniques, i.e., automated directed assembly, noncontact remote assembly, and programmed self-assembly, are introduced. The processing steps, advantages, and technical limitations of the existing methodologies are summarized. Applications of the multispheroid assembly strategies in disease modeling, drug screening, tissue engineering, and organogenesis are reviewed. Finally, this review concludes by emphasizing persistent issues and future perspectives, encouraging researchers to adopt multispheroid assembly techniques for generating advanced 3D cell models that better resemble real tissues.
Collapse
Affiliation(s)
- Tong Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Haitao Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Haijun Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
11
|
Huang B, Peng X, Zhai X, Hu J, Chen J, Yang S, Huang Q, Deng E, Li H, Barakat TS, Chen J, Pei D, Fan X, Chambers I, Zhang M. Inhibition of HDAC activity directly reprograms murine embryonic stem cells to trophoblast stem cells. Dev Cell 2024; 59:2101-2117.e8. [PMID: 38823394 DOI: 10.1016/j.devcel.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/23/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Embryonic stem cells (ESCs) can differentiate into all cell types of the embryonic germ layers. ESCs can also generate totipotent 2C-like cells and trophectodermal cells. However, these latter transitions occur at low frequency due to epigenetic barriers, the nature of which is not fully understood. Here, we show that treating mouse ESCs with sodium butyrate (NaB) increases the population of 2C-like cells and enables direct reprogramming of ESCs into trophoblast stem cells (TSCs) without a transition through a 2C-like state. Mechanistically, NaB inhibits histone deacetylase activities in the LSD1-HDAC1/2 corepressor complex. This increases acetylation levels in the regulatory regions of both 2C- and TSC-specific genes, promoting their expression. In addition, NaB-treated cells acquire the capacity to generate blastocyst-like structures that can develop beyond the implantation stage in vitro and form deciduae in vivo. These results identify how epigenetics restrict the totipotent and trophectoderm fate in mouse ESCs.
Collapse
Affiliation(s)
- Boyan Huang
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China; Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou, China
| | - Xing Peng
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China
| | - Xuzhao Zhai
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China; Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jie Hu
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China; Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou, China
| | - Junyu Chen
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou, China; School of Life Science, South China Normal University, Guangzhou 510005, China
| | - Suming Yang
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China; Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou, China
| | - Qingpei Huang
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China
| | - Enze Deng
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China
| | - Huanhuan Li
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China; Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou, China
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510525, China; Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou, China
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510525, China
| | - Xiaoying Fan
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China.
| | - Ian Chambers
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, Scotland.
| | - Man Zhang
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China; Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou, China.
| |
Collapse
|
12
|
Tan JP, Liu X, Polo JM. Reprogramming fibroblast into human iBlastoids. Nat Protoc 2024; 19:2298-2316. [PMID: 38632379 DOI: 10.1038/s41596-024-00984-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 02/12/2024] [Indexed: 04/19/2024]
Abstract
The study of early human embryogenesis has relied on the use of blastocysts donated to research or simple stem cell culture systems such as pluripotent and trophoblast stem cells, which have been seminal in shedding light on many key developmental processes. However, simple culture systems lack the necessary complexity to adequately model the spatiotemporal, cellular and molecular dynamics occurring during the early phases of embryonic development. As such, an in vitro model of the human blastocyst is advantageous in many aspects to decipher human embryogenesis. Here we describe a step-by-step protocol for the generation of induced blastoids (iBlastoids), an in vitro integrated model of the human blastocyst derived via somatic reprogramming. This protocol details the workflow for reprogramming of human dermal fibroblasts and subsequent generation of iBlastoids using the reprogramming intermediates, which together takes ~27 days (21 days for reprogramming and 6 days for iBlastoid generation). We also discuss several characterization/functional assays that can be used on the iBlastoids. We believe that a person trained in cell culture with ~1 year of experience with human somatic cell and reprogramming/cell differentiation assays would be able to perform this protocol. In short, the iBlastoids present an alternative tool as a model to the blastocyst to facilitate the scientific community in the exploration of early human development.
Collapse
Affiliation(s)
- Jia Ping Tan
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Xiaodong Liu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia.
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.
- Adelaide Centre for Epigenetics, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
- The South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
13
|
Liberali P, Schier AF. The evolution of developmental biology through conceptual and technological revolutions. Cell 2024; 187:3461-3495. [PMID: 38906136 DOI: 10.1016/j.cell.2024.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Developmental biology-the study of the processes by which cells, tissues, and organisms develop and change over time-has entered a new golden age. After the molecular genetics revolution in the 80s and 90s and the diversification of the field in the early 21st century, we have entered a phase when powerful technologies provide new approaches and open unexplored avenues. Progress in the field has been accelerated by advances in genomics, imaging, engineering, and computational biology and by emerging model systems ranging from tardigrades to organoids. We summarize how revolutionary technologies have led to remarkable progress in understanding animal development. We describe how classic questions in gene regulation, pattern formation, morphogenesis, organogenesis, and stem cell biology are being revisited. We discuss the connections of development with evolution, self-organization, metabolism, time, and ecology. We speculate how developmental biology might evolve in an era of synthetic biology, artificial intelligence, and human engineering.
Collapse
Affiliation(s)
- Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | | |
Collapse
|
14
|
Kidder BL, Ruden X, Singh A, Marben TA, Rass L, Chakravarty A, Xie Y, Puscheck EE, Awonuga AO, Harris S, Ruden DM, Rappolee DA. Novel high throughput screen reports that benzo(a)pyrene overrides mouse trophoblast stem cell multipotency, inducing SAPK activity, HAND1 and differentiated trophoblast giant cells. Placenta 2024; 152:72-85. [PMID: 38245404 DOI: 10.1016/j.placenta.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
INTRODUCTION Cultured mouse trophoblast stem cells (mTSC) maintain proliferation/normal stemness (NS) under FGF4, which when removed, causes normal differentiation (ND). Hypoxic, or hyperosmotic stress forces trophoblast giant cells (TGC) differentiate. Hypoxic, hyperosmotic, and genotoxic benzo(a)pyrene (BaP), which is found in tobacco smoke, force down-regulation of inhibitor of differentiation (Id)2, enabling TGC differentiation. Hypoxic and hyperosmotic stress induce TGC by SAPK-dependent HAND1 increase. Here we test whether BaP forces mTSC-to-TGC while inducing SAPK and HAND1. METHODS Hand1 and SAPK activity were assayed by immunoblot, mTSC-to-TGC growth and differentiation were assayed at Tfinal after 72hr exposure of BaP, NS, ND, Retinoic acid (RA), or sorbitol. Nuclear-stained cells were micrographed automatically by a live imager, and assayed by ImageJ/FIJI, Biotek Gen 5, AIVIA proprietary artificial intelligence (AI) software or open source, CellPose artificial intelligence/AI software. RESULTS BaP (0.05-1μM) activated SAPK and HAND1 without diminishing growth. TSC-to-TGC differentiation was assayed with increasingly accuracy for 2-4 N cycling nuclei and >4 N differentiating TGC nuclei, using ImageJ/FIJI, Gen 5, AIVIA, or CellPose AI software. The AIVIA and Cellpose AI software matches human accuracy. The lowest BaP effects on SAPK activation/HAND1 increase are >10-fold more sensitive than similar effects for mESC. RA induces 44-47% 1st lineage TGC differentiation, but the same RA dose induces only 1% 1st lineage mESC differentiation. DISCUSSION First, these pilot data suggest that mTSC can be used in high throughput screens (HTS) to predict toxicant exposures that force TGC differentiation. Second, mTSC differentiated more cells than mESC for similar stress exposures, Third, open source AI can replace human micrograph quantitation and enable a miscarriage-predicting HTS.
Collapse
Affiliation(s)
- B L Kidder
- Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, USA
| | - X Ruden
- CS Mott Center/WSU Ob/gyn Department, USA; Reproductive Stress Inc, Grosse Pointe Farms, MI, USA
| | - A Singh
- CS Mott Center/WSU Ob/gyn Department, USA; WSU CMMG, USA
| | - T A Marben
- University of Detroit, Mercy (NIH Build Fellow), USA
| | - L Rass
- Barber Foundation Fellows/WSU, USA
| | | | - Y Xie
- Western Fertility, Los Angeles, CA, USA
| | - E E Puscheck
- CS Mott Center/WSU Ob/gyn Department, USA; Invia Infertility, Chicago, IL, USA
| | | | - S Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - D M Ruden
- CS Mott Center/WSU Ob/gyn Department, USA; IEHS, WSU, USA
| | - D A Rappolee
- CS Mott Center/WSU Ob/gyn Department, USA; Reproductive Stress Inc, Grosse Pointe Farms, MI, USA; Dept of Physiology, WSU, USA.
| |
Collapse
|
15
|
Wu J, Fu J. Toward developing human organs via embryo models and chimeras. Cell 2024; 187:3194-3219. [PMID: 38906095 PMCID: PMC11239105 DOI: 10.1016/j.cell.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 02/02/2024] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Developing functional organs from stem cells remains a challenging goal in regenerative medicine. Existing methodologies, such as tissue engineering, bioprinting, and organoids, only offer partial solutions. This perspective focuses on two promising approaches emerging for engineering human organs from stem cells: stem cell-based embryo models and interspecies organogenesis. Both approaches exploit the premise of guiding stem cells to mimic natural development. We begin by summarizing what is known about early human development as a blueprint for recapitulating organogenesis in both embryo models and interspecies chimeras. The latest advances in both fields are discussed before highlighting the technological and knowledge gaps to be addressed before the goal of developing human organs could be achieved using the two approaches. We conclude by discussing challenges facing embryo modeling and interspecies organogenesis and outlining future prospects for advancing both fields toward the generation of human tissues and organs for basic research and translational applications.
Collapse
Affiliation(s)
- Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
16
|
Nishimura T, Takebe T. Synthetic human gonadal tissues for toxicology. Reprod Toxicol 2024; 126:108598. [PMID: 38657700 DOI: 10.1016/j.reprotox.2024.108598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
The process of mammalian reproduction involves the development of fertile germ cells in the testis and ovary, supported by the surrounders. Fertilization leads to embryo development and ultimately the birth of offspring inheriting parental genome information. Any disruption in this process can result in disorders such as infertility and cancer. Chemical toxicity affecting the reproductive system and embryogenesis can impact birth rates, overall health, and fertility, highlighting the need for animal toxicity studies during drug development. However, the translation of animal data to human health remains challenging due to interspecies differences. In vitro culture systems offer a promising solution to bridge this gap, allowing the study of mammalian cells in an environment that mimics the physiology of the human body. Current advances on in vitro culture systems, such as organoids, enable the development of biomaterials that recapitulate the physiological state of reproductive organs. Application of these technologies to human gonadal cells would provide effective tools for drug screening and toxicity testing, and these models would be a powerful tool to study reproductive biology and pathology. This review focuses on the 2D/3D culture systems of human primary testicular and ovarian cells, highlighting the novel approaches for in vitro study of human reproductive toxicology, specifically in the context of testis and ovary.
Collapse
Affiliation(s)
- Toshiya Nishimura
- WPI Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka 565-0871, Japan.
| | - Takanori Takebe
- WPI Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka 565-0871, Japan; Division of Stem Cell and Organoid Medicine, Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Communication Design Center, Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan.
| |
Collapse
|
17
|
Sato N, Rosa VS, Makhlouf A, Kretzmer H, Sampath Kumar A, Grosswendt S, Mattei AL, Courbot O, Wolf S, Boulanger J, Langevin F, Wiacek M, Karpinski D, Elosegui-Artola A, Meissner A, Zernicka-Goetz M, Shahbazi MN. Basal delamination during mouse gastrulation primes pluripotent cells for differentiation. Dev Cell 2024; 59:1252-1268.e13. [PMID: 38579720 PMCID: PMC7616279 DOI: 10.1016/j.devcel.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/05/2023] [Accepted: 03/08/2024] [Indexed: 04/07/2024]
Abstract
The blueprint of the mammalian body plan is laid out during gastrulation, when a trilaminar embryo is formed. This process entails a burst of proliferation, the ingression of embryonic epiblast cells at the primitive streak, and their priming toward primitive streak fates. How these different events are coordinated remains unknown. Here, we developed and characterized a 3D culture of self-renewing mouse embryonic cells that captures the main transcriptional and architectural features of the early gastrulating mouse epiblast. Using this system in combination with microfabrication and in vivo experiments, we found that proliferation-induced crowding triggers delamination of cells that express high levels of the apical polarity protein aPKC. Upon delamination, cells become more sensitive to Wnt signaling and upregulate the expression of primitive streak markers such as Brachyury. This mechanistic coupling between ingression and differentiation ensures that the right cell types become specified at the right place during embryonic development.
Collapse
Affiliation(s)
- Nanami Sato
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Viviane S Rosa
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Aly Makhlouf
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Helene Kretzmer
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | | | - Stefanie Grosswendt
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Max Delbruck Center for Molecular Medicine, 13125 Berlin, Germany; Berlin Institute of Health (BIH) at Charité-Universitätsmedizin, Berlin, Germany
| | | | - Olivia Courbot
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Physics, King's College London, London WC2R 2LS, UK
| | - Steffen Wolf
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | - Michal Wiacek
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Alberto Elosegui-Artola
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Physics, King's College London, London WC2R 2LS, UK
| | | | - Magdalena Zernicka-Goetz
- University of Cambridge, Cambridge CB2 3EL, UK; California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
18
|
Azagury M, Buganim Y. Unlocking trophectoderm mysteries: In vivo and in vitro perspectives on human and mouse trophoblast fate induction. Dev Cell 2024; 59:941-960. [PMID: 38653193 DOI: 10.1016/j.devcel.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/10/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
In recent years, the pursuit of inducing the trophoblast stem cell (TSC) state has gained prominence as a compelling research objective, illuminating the establishment of the trophoblast lineage and unlocking insights into early embryogenesis. In this review, we examine how advancements in diverse technologies, including in vivo time course transcriptomics, cellular reprogramming to TSC state, chemical induction of totipotent stem-cell-like state, and stem-cell-based embryo-like structures, have enriched our insights into the intricate molecular mechanisms and signaling pathways that define the mouse and human trophectoderm/TSC states. We delve into disparities between mouse and human trophectoderm/TSC fate establishment, with a special emphasis on the intriguing role of pluripotency in this context. Additionally, we re-evaluate recent findings concerning the potential of totipotent-stem-like cells and embryo-like structures to fully manifest the trophectoderm/trophoblast lineage's capabilities. Lastly, we briefly discuss the potential applications of induced TSCs in pregnancy-related disease modeling.
Collapse
Affiliation(s)
- Meir Azagury
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
19
|
Dupont C. A comprehensive review: synergizing stem cell and embryonic development knowledge in mouse and human integrated stem cell-based embryo models. Front Cell Dev Biol 2024; 12:1386739. [PMID: 38715920 PMCID: PMC11074781 DOI: 10.3389/fcell.2024.1386739] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/05/2024] [Indexed: 01/06/2025] Open
Abstract
Mammalian stem cell-based embryo models have emerged as innovative tools for investigating early embryogenesis in both mice and primates. They not only reduce the need for sacrificing mice but also overcome ethical limitations associated with human embryo research. Furthermore, they provide a platform to address scientific questions that are otherwise challenging to explore in vivo. The usefulness of a stem cell-based embryo model depends on its fidelity in replicating development, efficiency and reproducibility; all essential for addressing biological queries in a quantitative manner, enabling statistical analysis. Achieving such fidelity and efficiency requires robust systems that demand extensive optimization efforts. A profound understanding of pre- and post-implantation development, cellular plasticity, lineage specification, and existing models is imperative for making informed decisions in constructing these models. This review aims to highlight essential differences in embryo development and stem cell biology between mice and humans, assess how these variances influence the formation of partially and fully integrated stem cell models, and identify critical challenges in the field.
Collapse
Affiliation(s)
- Cathérine Dupont
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
20
|
Pennarossa G, Arcuri S, Gandolfi F, Brevini TAL. Generation of Artificial Blastoids Combining miR-200-Mediated Reprogramming and Mechanical Cues. Cells 2024; 13:628. [PMID: 38607067 PMCID: PMC11011911 DOI: 10.3390/cells13070628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
In vitro-generated blastocyst-like structures are of great importance since they recapitulate specific features or processes of early embryogenesis, thus avoiding ethical concerns as well as increasing scalability and accessibility compared to the use of natural embryos. Here, we combine cell reprogramming and mechanical stimuli to create 3D spherical aggregates that are phenotypically similar to those of natural embryos. Specifically, dermal fibroblasts are reprogrammed, exploiting the miR-200 family property to induce a high plasticity state in somatic cells. Subsequently, miR-200-reprogrammed cells are either driven towards the trophectoderm (TR) lineage using an ad hoc induction protocol or encapsulated into polytetrafluoroethylene micro-bioreactors to maintain and promote pluripotency, generating inner cell mass (ICM)-like spheroids. The obtained TR-like cells and ICM-like spheroids are then co-cultured in the same micro-bioreactor and, subsequently, transferred to microwells to encourage blastoid formation. Notably, the above protocol was applied to fibroblasts obtained from young as well as aged donors, with results that highlighted miR-200's ability to successfully reprogram young and aged cells with comparable blastoid rates, regardless of the donor's cell age. Overall, the approach here described represents a novel strategy for the creation of artificial blastoids to be used in the field of assisted reproduction technologies for the study of peri- and early post-implantation mechanisms.
Collapse
Affiliation(s)
- Georgia Pennarossa
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Sharon Arcuri
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Tiziana A. L. Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, 20133 Milan, Italy;
| |
Collapse
|
21
|
Rodriguez-Polo I, Moris N. Using Embryo Models to Understand the Development and Progression of Embryonic Lineages: A Focus on Primordial Germ Cell Development. Cells Tissues Organs 2024; 213:503-522. [PMID: 38479364 PMCID: PMC7616515 DOI: 10.1159/000538275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/05/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Recapitulating mammalian cell type differentiation in vitro promises to improve our understanding of how these processes happen in vivo, while bringing additional prospects for biomedical applications. The establishment of stem cell-derived embryo models and embryonic organoids, which have experienced explosive growth over the last few years, opens new avenues for research due to their scale, reproducibility, and accessibility. Embryo models mimic various developmental stages, exhibit different degrees of complexity, and can be established across species. Since embryo models exhibit multiple lineages organized spatially and temporally, they are likely to provide cellular niches that, to some degree, recapitulate the embryonic setting and enable "co-development" between cell types and neighbouring populations. One example where this is already apparent is in the case of primordial germ cell-like cells (PGCLCs). SUMMARY While directed differentiation protocols enable the efficient generation of high PGCLC numbers, embryo models provide an attractive alternative as they enable the study of interactions of PGCLCs with neighbouring cells, alongside the regulatory molecular and biophysical mechanisms of PGC competency. Additionally, some embryo models can recapitulate post-specification stages of PGC development (including migration or gametogenesis), mimicking the inductive signals pushing PGCLCs to mature and differentiate and enabling the study of PGCLC development across stages. Therefore, in vitro models may allow us to address questions of cell type differentiation, and PGC development specifically, that have hitherto been out of reach with existing systems. KEY MESSAGE This review evaluates the current advances in stem cell-based embryo models, with a focus on their potential to model cell type-specific differentiation in general and in particular to address open questions in PGC development and gametogenesis.
Collapse
Affiliation(s)
| | - Naomi Moris
- The Francis Crick Institute, 1 Midland Road, Somers Town, London, NW1 1AT, UK
| |
Collapse
|
22
|
Liu X, Polo JM. Human blastoid as an in vitro model of human blastocysts. Curr Opin Genet Dev 2024; 84:102135. [PMID: 38052115 DOI: 10.1016/j.gde.2023.102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023]
Abstract
Human development is a highly coordinated process, with any abnormalities during the early embryonic stages that can often have detrimental consequences. The complexity and nuances of human development underpin its significance in embryo research. However, this research is often hindered by limited availability and ethical considerations associated with the use of donated blastocysts from in vitro fertilization (IVF) surplus. Human blastoids offer promising alternatives as they can be easily generated and manipulated in the laboratory while preserving key characteristics of human blastocysts. In this way, they hold the potential to serve as a scalable and ethically permissible resource in embryology research. By utilizing such human embryo models, we can establish a transformative platform that complements the study with IVF embryos, ultimately enhancing our understanding of human embryogenesis.
Collapse
Affiliation(s)
- Xiaodong Liu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Jose M Polo
- Adelaide Centre for Epigenetics, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia; The South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia; Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Victoria, Australia.
| |
Collapse
|
23
|
Pinzón-Arteaga CA, Yu L. From clones to synthetic embryos. LIFE MEDICINE 2024; 3:lnad038. [PMID: 39872396 PMCID: PMC11749477 DOI: 10.1093/lifemedi/lnad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 03/14/2024] [Indexed: 01/30/2025]
Affiliation(s)
- Carlos A Pinzón-Arteaga
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Leqian Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
24
|
Handford CE, Junyent S, Jorgensen V, Zernicka-Goetz M. Topical section: embryonic models (2023) for Current Opinion in Genetics & Development. Curr Opin Genet Dev 2024; 84:102134. [PMID: 38052116 PMCID: PMC11556421 DOI: 10.1016/j.gde.2023.102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023]
Abstract
Stem cell-based mammalian embryo models facilitate the discovery of developmental mechanisms because they are more amenable to genetic and epigenetic perturbations than natural embryos. Here, we highlight exciting recent advances that have yielded a plethora of models of embryonic development. Imperfections in these models highlight gaps in our current understanding and outline future research directions, ushering in an exciting new era for embryology.
Collapse
Affiliation(s)
- Charlotte E Handford
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA. https://twitter.com/@CEHandford
| | - Sergi Junyent
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA. https://twitter.com/@JunyentSergi
| | - Victoria Jorgensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Magdalena Zernicka-Goetz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
25
|
Transitions in development - an interview with Berna Sozen. Development 2024; 151:dev202656. [PMID: 38231011 DOI: 10.1242/dev.202656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Berna Sozen is an Assistant Professor in the Department of Genetics at Yale University, USA. Berna's lab studies early mammalian development, metabolism, and maternal-fetal interactions using mouse and human embryos, as well as stem cell-derived embryo-like models. In 2022, Berna received the NIH Director's New Innovator Award. We spoke to Berna over Zoom to learn more about her journey to becoming a group leader and the importance of making science careers accessible.
Collapse
|
26
|
Arcuri S, Pennarossa G, Ledda S, Gandolfi F, Brevini TAL. Use of Epigenetic Cues and Mechanical Stimuli to Generate Blastocyst-Like Structures from Mammalian Skin Dermal Fibroblasts. Methods Mol Biol 2024; 2767:161-173. [PMID: 37199907 DOI: 10.1007/7651_2023_486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Mammalian embryogenesis is characterized by complex interactions between embryonic and extra-embryonic tissues that coordinate morphogenesis, coupling bio-mechanical and bio-chemical cues, to regulate gene expression and influence cell fate. Deciphering such mechanisms is essential to understand early embryogenesis, as well as to harness differentiation disorders. Currently, several early developmental events remain unclear, mainly due to ethical and technical limitations related to the use of natural embryos.Here, we describe a three-step approach to generate 3D spherical structures, arbitrarily defined "epiBlastoids," whose phenotype is remarkably similar to natural embryos. In the first step, adult dermal fibroblasts are converted into trophoblast-like cells, combining the use of 5-azacytidine, to erase the original cell phenotype, with an ad hoc induction protocol, to drive erased cells into the trophoblast lineage. In the second step, once again epigenetic erasing is applied, in combination with mechanosensing-related cues, to generate inner cell mass (ICM)-like spheroids. More specifically, erased cells are encapsulated in micro-bioreactors to promote 3D cell rearrangement and boost pluripotency. In the third step, chemically induced trophoblast-like cells and ICM-like spheroids are co-cultured in the same micro-bioreactors. The newly generated embryoids are then transferred to microwells, to encourage further differentiation and favor epiBlastoid formation. The procedure here described is a novel strategy for in vitro generation of 3D spherical structures, phenotypically similar to natural embryos. The use of easily accessible dermal fibroblasts and the lack of retroviral gene transfection make this protocol a promising strategy to study early embryogenesis as well as embryo disorders.
Collapse
Affiliation(s)
- Sharon Arcuri
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Centre for Stem Cell Research, Università degli Studi di Milano, Lodi, Italy
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Centre for Stem Cell Research, Università degli Studi di Milano, Lodi, Italy
| | - Sergio Ledda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Centre for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Centre for Stem Cell Research, Università degli Studi di Milano, Lodi, Italy
| |
Collapse
|
27
|
Xu J, Zhang L, Ye Z, Chang B, Tu Z, Du X, Wen X, Teng Y. A 3D "sandwich" co-culture system with vascular niche supports mouse embryo development from E3.5 to E7.5 in vitro. Stem Cell Res Ther 2023; 14:349. [PMID: 38072932 PMCID: PMC10712047 DOI: 10.1186/s13287-023-03583-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Various methods for ex utero culture systems have been explored. However, limitations remain regarding the in vitro culture platforms used before implanting mouse embryos and the normal development of mouse blastocysts in vitro. Furthermore, vascular niche support during mouse embryo development from embryonic day (E) 3.5 to E7.5 is unknown in vitro. METHODS This study established a three-dimensional (3D) "sandwich" vascular niche culture system with in vitro culture medium (IVCM) using human placenta perivascular stem cells (hPPSCs) and human umbilical vein endothelial cells (hUVECs) as supportive cells (which were seeded into the bottom layer of Matrigel) to test mouse embryos from E3.5 to E7.5 in vitro. The development rates and greatest diameters of mouse embryos from E3.5 to E7.5 were quantitatively determined using SPSS software statistics. Pluripotent markers and embryo transplantation were used to monitor mouse embryo quality and function in vivo. RESULTS Embryos in the IVCM + Cells (hPPSCs + hUVECs) group showed higher development rates and greater diameters at each stage than those in the IVCM group. Embryos in the IVCM + Cells group cultured to E5.5 morphologically resembled natural egg cylinders and expressed specific embryonic cell markers, including Oct4 and Nanog. These features were similar to those of embryos developed in vivo. After transplantation, the embryos were re-implanted in the internal uterus and continued to develop to a particular stage. CONCLUSIONS The 3D in vitro culture system enabled embryo development from E3.5 to E7.5, and the vascularization microenvironment constructed by Matrigel, hPPSCs, and hUVECs significantly promoted the development of implanted embryos. This system allowed us to further study the physical and molecular mechanisms of embryo implantation in vitro.
Collapse
Affiliation(s)
- Junjun Xu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325015, China.
| | - Linye Zhang
- The First School of Medicine, School of Information and Engineering, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
| | - Zihui Ye
- The First School of Medicine, School of Information and Engineering, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
| | - Binwen Chang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
| | - Zheng Tu
- Renji College, Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
| | - Xuguang Du
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xi Wen
- Department of Gynecology and Obstetrics, Xuanwu Hospital, Capital Medical University, Xicheng District, Beijing, 100053, China.
| | - Yili Teng
- Reproductive Medicine Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China.
| |
Collapse
|
28
|
Lau KYC, Amadei G, Zernicka-Goetz M. Assembly of complete mouse embryo models from embryonic and induced stem cell types in vitro. Nat Protoc 2023; 18:3662-3689. [PMID: 37821625 PMCID: PMC11293611 DOI: 10.1038/s41596-023-00891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/18/2023] [Indexed: 10/13/2023]
Abstract
The interaction between embryonic and extraembryonic tissues is critical in natural mouse embryogenesis. Here, to enable such interaction in vitro, we describe a protocol to assemble a complete mouse embryo model using mouse embryonic stem cells and induced embryonic stem cells to express Cdx2 (or trophoblast stem cells) and Gata4 to reconstitute the epiblast, extraembryonic ectoderm and visceral endoderm lineages, respectively. The resulting complete embryo models recapitulate development from embryonic day 5.0 to 8.5, generating advanced embryonic and extraembryonic tissues that develop through gastrulation to initiate organogenesis to form a head and a beating heart structure as well as a yolk sac and chorion. Once the required stem cell lines are stably maintained in culture, the protocol requires 1 day to assemble complete embryo models and a further 8 days to culture them until headfold stages, although structures can be collected at earlier developmental stages as required. This protocol can be easily performed by researchers with experience in mouse stem cell culture, although they will benefit from knowledge of natural mouse embryos at early postimplantation stages.
Collapse
Affiliation(s)
- Kasey Y C Lau
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Gianluca Amadei
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Department of Biology, University of Padua, Padua, Italy
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
29
|
Affiliation(s)
- Magdalena Zernicka-Goetz
- Division of Biology, California Institute of Technology, Pasadena, CA, USA.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
30
|
Li H, Chang L, Wu J, Huang J, Guan W, Bates LE, Stuart HT, Guo M, Zhang P, Huang B, Chen C, Zhang M, Chen J, Min M, Wu G, Hutchins AP, Silva JCR. In vitro generation of mouse morula-like cells. Dev Cell 2023; 58:2510-2527.e7. [PMID: 37875119 DOI: 10.1016/j.devcel.2023.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 04/21/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023]
Abstract
Generating cells with the molecular and functional properties of embryo cells and with full developmental potential is an aim with fundamental biological significance. Here we report the in vitro generation of mouse transient morula-like cells (MLCs) via the manipulation of signaling pathways. MLCs are molecularly distinct from embryonic stem cells (ESCs) and cluster instead with embryo 8- to 16-cell stage cells. A single MLC can generate a blastoid, and the efficiency increases to 80% when 8-10 MLCs are used. MLCs make embryoids directly, efficiently, and within 4 days. Transcriptomic analysis shows that day 4-5 MLC-derived embryoids contain the cell types found in natural embryos at early gastrulation. Furthermore, MLCs introduced into morulae segregate into epiblast (EPI), primitive endoderm (PrE), and trophectoderm (TE) fates in blastocyst chimeras and have a molecular signature indistinguishable from that of host embryo cells. These findings represent the generation of cells that are molecularly and functionally similar to the precursors of the first three cell lineages of the embryo.
Collapse
Affiliation(s)
- Huanhuan Li
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province 510005, China; Bioland Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province 510005, China.
| | - Litao Chang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province 510005, China; Guangzhou Medical University, Panyu District, Guangzhou, Guangdong Province 511495, China
| | - Jinyi Wu
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province 510005, China; Guangzhou Medical University, Panyu District, Guangzhou, Guangdong Province 511495, China
| | - Jiahui Huang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province 510005, China
| | - Wei Guan
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province 510005, China
| | - Lawrence E Bates
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Hannah T Stuart
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Mingyue Guo
- Bioland Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province 510005, China; Guangzhou Medical University, Panyu District, Guangzhou, Guangdong Province 511495, China
| | - Pengfei Zhang
- Bioland Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province 510005, China
| | - Boyan Huang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province 510005, China; Bioland Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province 510005, China
| | - Chuanxin Chen
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province 510005, China; Bioland Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province 510005, China
| | - Man Zhang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province 510005, China; Bioland Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province 510005, China
| | - Jiekai Chen
- Bioland Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province 510005, China; CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Mingwei Min
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province 510005, China; Bioland Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province 510005, China
| | - Guangming Wu
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province 510005, China; Bioland Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province 510005, China
| | - Andrew P Hutchins
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
| | - José C R Silva
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province 510005, China; Bioland Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province 510005, China.
| |
Collapse
|
31
|
van Loo B, Ten Den SA, Araújo-Gomes N, de Jong V, Snabel RR, Schot M, Rivera-Arbeláez JM, Veenstra GJC, Passier R, Kamperman T, Leijten J. Mass production of lumenogenic human embryoid bodies and functional cardiospheres using in-air-generated microcapsules. Nat Commun 2023; 14:6685. [PMID: 37865642 PMCID: PMC10590445 DOI: 10.1038/s41467-023-42297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/05/2023] [Indexed: 10/23/2023] Open
Abstract
Organoids are engineered 3D miniature tissues that are defined by their organ-like structures, which drive a fundamental understanding of human development. However, current organoid generation methods are associated with low production throughputs and poor control over size and function including due to organoid merging, which limits their clinical and industrial translation. Here, we present a microfluidic platform for the mass production of lumenogenic embryoid bodies and functional cardiospheres. Specifically, we apply triple-jet in-air microfluidics for the ultra-high-throughput generation of hollow, thin-shelled, hydrogel microcapsules that can act as spheroid-forming bioreactors in a cytocompatible, oil-free, surfactant-free, and size-controlled manner. Uniquely, we show that microcapsules generated by in-air microfluidics provide a lumenogenic microenvironment with near 100% efficient cavitation of spheroids. We demonstrate that upon chemical stimulation, human pluripotent stem cell-derived spheroids undergo cardiomyogenic differentiation, effectively resulting in the mass production of homogeneous and functional cardiospheres that are responsive to external electrical stimulation. These findings drive clinical and industrial adaption of stem cell technology in tissue engineering and drug testing.
Collapse
Affiliation(s)
- Bas van Loo
- University of Twente, TechMed Centre, Department of Developmental BioEngineering, Enschede, The Netherlands
| | - Simone A Ten Den
- University of Twente, TechMed Centre, Department of Applied Stem Cell Technology, Enschede, The Netherlands
| | - Nuno Araújo-Gomes
- University of Twente, TechMed Centre, Department of Developmental BioEngineering, Enschede, The Netherlands
| | - Vincent de Jong
- University of Twente, TechMed Centre, Department of Developmental BioEngineering, Enschede, The Netherlands
| | - Rebecca R Snabel
- Radboud University, Radboud Institute for Molecular Life Sciences, Faculty of Science, Department of Molecular Developmental Biology, Nijmegen, The Netherlands
| | - Maik Schot
- University of Twente, TechMed Centre, Department of Developmental BioEngineering, Enschede, The Netherlands
| | - José M Rivera-Arbeláez
- University of Twente, TechMed Centre, Department of Applied Stem Cell Technology, Enschede, The Netherlands
- University of Twente, TechMed Centre, Max Planck Center for Complex Fluid Dynamics, BIOS Lab-on-a-Chip Group, Enschede, The Netherlands
| | - Gert Jan C Veenstra
- Radboud University, Radboud Institute for Molecular Life Sciences, Faculty of Science, Department of Molecular Developmental Biology, Nijmegen, The Netherlands
| | - Robert Passier
- University of Twente, TechMed Centre, Department of Applied Stem Cell Technology, Enschede, The Netherlands
- Leiden University Medical Centre, Department of Anatomy and Embryology, Leiden, Netherlands
| | - Tom Kamperman
- University of Twente, TechMed Centre, Department of Developmental BioEngineering, Enschede, The Netherlands
- IamFluidics B.V., De Veldmaat 17, 7522NM, Enschede, The Netherlands
| | - Jeroen Leijten
- University of Twente, TechMed Centre, Department of Developmental BioEngineering, Enschede, The Netherlands.
| |
Collapse
|
32
|
Kim Y, Kim I, Shin K. A new era of stem cell and developmental biology: from blastoids to synthetic embryos and beyond. Exp Mol Med 2023; 55:2127-2137. [PMID: 37779144 PMCID: PMC10618288 DOI: 10.1038/s12276-023-01097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 10/03/2023] Open
Abstract
Recent discoveries in stem cell and developmental biology have introduced a new era marked by the generation of in vitro models that recapitulate early mammalian development, providing unprecedented opportunities for extensive research in embryogenesis. Here, we present an overview of current techniques that model early mammalian embryogenesis, specifically noting models created from stem cells derived from two significant species: Homo sapiens, for its high relevance, and Mus musculus, a historically common and technically advanced model organism. We aim to provide a holistic understanding of these in vitro models by tracing the historical background of the progress made in stem cell biology and discussing the fundamental underlying principles. At each developmental stage, we present corresponding in vitro models that recapitulate the in vivo embryo and further discuss how these models may be used to model diseases. Through a discussion of these models as well as their potential applications and future challenges, we hope to demonstrate how these innovative advances in stem cell research may be further developed to actualize a model to be used in clinical practice.
Collapse
Affiliation(s)
- Yunhee Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Inha Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kunyoo Shin
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
33
|
Amel A, Rabeling A, Rossouw S, Goolam M. Wnt and BMP signalling direct anterior-posterior differentiation in aggregates of mouse embryonic stem cells. Biol Open 2023; 12:bio059981. [PMID: 37622734 PMCID: PMC10508691 DOI: 10.1242/bio.059981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023] Open
Abstract
Stem-cell-based embryo models have allowed greater insight into peri-implantation mammalian developmental events that are otherwise difficult to manipulate due to the inaccessibility of the early embryo. The rapid development of this field has resulted in the precise roles of frequently used supplements such as N2, B27 and Chiron in driving stem cell lineage commitment not being clearly defined. Here, we investigate the effects of these supplements on embryoid bodies to better understand their roles in stem cell differentiation. We show that Wnt signalling has a general posteriorising effect on stem cell aggregates and directs differentiation towards the mesoderm, as confirmed through the upregulation of posterior and mesodermal markers. N2 and B27 can mitigate these effects and upregulate the expression of anterior markers. To control the Wnt gradient and the subsequent anterior versus posterior fate, we make use of a BMP4 signalling centre and show that aggregates in these conditions express cephalic markers. These findings indicate that there is an intricate balance between various culture supplements and their ability to guide differentiation in stem cell embryo models.
Collapse
Affiliation(s)
- Atoosa Amel
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| | - Alexa Rabeling
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| | - Simoné Rossouw
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| | - Mubeen Goolam
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
- UCT Neuroscience Institute, Cape Town, South Africa
| |
Collapse
|
34
|
Karvas RM, Zemke JE, Ali SS, Upton E, Sane E, Fischer LA, Dong C, Park KM, Wang F, Park K, Hao S, Chew B, Meyer B, Zhou C, Dietmann S, Theunissen TW. 3D-cultured blastoids model human embryogenesis from pre-implantation to early gastrulation stages. Cell Stem Cell 2023; 30:1148-1165.e7. [PMID: 37683602 DOI: 10.1016/j.stem.2023.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
Naive human pluripotent stem cells have the remarkable ability to self-organize into blastocyst-like structures ("blastoids") that model lineage segregation in the pre-implantation embryo. However, the extent to which blastoids can recapitulate the defining features of human post-implantation development remains unexplored. Here, we report that blastoids cultured on thick three-dimensional (3D) extracellular matrices capture hallmarks of early post-implantation development, including epiblast lumenogenesis, rapid expansion and diversification of trophoblast lineages, and robust invasion of extravillous trophoblast cells by day 14. Extended blastoid culture results in the localized activation of primitive streak marker TBXT and the emergence of embryonic germ layers by day 21. We also show that the modulation of WNT signaling alters the balance between epiblast and trophoblast fates in post-implantation blastoids. This work demonstrates that 3D-cultured blastoids offer a continuous and integrated in vitro model system of human embryonic and extraembryonic development from pre-implantation to early gastrulation stages.
Collapse
Affiliation(s)
- Rowan M Karvas
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph E Zemke
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Syed Shahzaib Ali
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Institute for Informatics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric Upton
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eshan Sane
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura A Fischer
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chen Dong
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kyoung-Mi Park
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fei Wang
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Kibeom Park
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Senyue Hao
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Brian Chew
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brittany Meyer
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chao Zhou
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Sabine Dietmann
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Institute for Informatics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Thorold W Theunissen
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
35
|
Oh SY, Na SB, Kang YK, Do JT. In Vitro Embryogenesis and Gastrulation Using Stem Cells in Mice and Humans. Int J Mol Sci 2023; 24:13655. [PMID: 37686459 PMCID: PMC10563085 DOI: 10.3390/ijms241713655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
During early mammalian embryonic development, fertilized one-cell embryos develop into pre-implantation blastocysts and subsequently establish three germ layers through gastrulation during post-implantation development. In recent years, stem cells have emerged as a powerful tool to study embryogenesis and gastrulation without the need for eggs, allowing for the generation of embryo-like structures known as synthetic embryos or embryoids. These in vitro models closely resemble early embryos in terms of morphology and gene expression and provide a faithful recapitulation of early pre- and post-implantation embryonic development. Synthetic embryos can be generated through a combinatorial culture of three blastocyst-derived stem cell types, such as embryonic stem cells, trophoblast stem cells, and extraembryonic endoderm cells, or totipotent-like stem cells alone. This review provides an overview of the progress and various approaches in studying in vitro embryogenesis and gastrulation in mice and humans using stem cells. Furthermore, recent findings and breakthroughs in synthetic embryos and gastruloids are outlined. Despite ethical considerations, synthetic embryo models hold promise for understanding mammalian (including humans) embryonic development and have potential implications for regenerative medicine and developmental research.
Collapse
Affiliation(s)
| | | | | | - Jeong Tae Do
- Department of Stem Cell Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea; (S.Y.O.); (S.B.N.); (Y.K.K.)
| |
Collapse
|
36
|
Rabeling A, Goolam M. Cerebral organoids as an in vitro model to study autism spectrum disorders. Gene Ther 2023; 30:659-669. [PMID: 35790793 DOI: 10.1038/s41434-022-00356-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/01/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022]
Abstract
Autism spectrum disorders (ASDs) are a set of disorders characterised by social and communication deficits caused by numerous genetic lesions affecting brain development. Progress in ASD research has been hampered by the lack of appropriate models, as both 2D cell culture as well as animal models cannot fully recapitulate the developing human brain or the pathogenesis of ASD. Recently, cerebral organoids have been developed to provide a more accurate, 3D in vitro model of human brain development. Cerebral organoids have been shown to recapitulate the foetal brain gene expression profile, transcriptome, epigenome, as well as disease dynamics of both idiopathic and syndromic ASDs. They are thus an excellent tool to investigate development of foetal stage ASDs, as well as interventions that can reverse or rescue the altered phenotypes observed. In this review, we discuss the development of cerebral organoids, their recent applications in the study of both syndromic and idiopathic ASDs, their use as an ASD drug development platform, as well as limitations of their use in ASD research.
Collapse
Affiliation(s)
- Alexa Rabeling
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Mubeen Goolam
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.
- UCT Neuroscience Institute, Cape Town, South Africa.
| |
Collapse
|
37
|
Liu L, Oura S, Markham Z, Hamilton JN, Skory RM, Li L, Sakurai M, Wang L, Pinzon-Arteaga CA, Plachta N, Hon GC, Wu J. Modeling post-implantation stages of human development into early organogenesis with stem-cell-derived peri-gastruloids. Cell 2023; 186:3776-3792.e16. [PMID: 37478861 DOI: 10.1016/j.cell.2023.07.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
In vitro stem cell models that replicate human gastrulation have been generated, but they lack the essential extraembryonic cells needed for embryonic development, morphogenesis, and patterning. Here, we describe a robust and efficient method that prompts human extended pluripotent stem cells to self-organize into embryo-like structures, termed peri-gastruloids, which encompass both embryonic (epiblast) and extraembryonic (hypoblast) tissues. Although peri-gastruloids are not viable due to the exclusion of trophoblasts, they recapitulate critical stages of human peri-gastrulation development, such as forming amniotic and yolk sac cavities, developing bilaminar and trilaminar embryonic discs, specifying primordial germ cells, initiating gastrulation, and undergoing early neurulation and organogenesis. Single-cell RNA-sequencing unveiled transcriptomic similarities between advanced human peri-gastruloids and primary peri-gastrulation cell types found in humans and non-human primates. This peri-gastruloid platform allows for further exploration beyond gastrulation and may potentially aid in the development of human fetal tissues for use in regenerative medicine.
Collapse
Affiliation(s)
- Lizhong Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Seiya Oura
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zachary Markham
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James N Hamilton
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robin M Skory
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leijie Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Masahiro Sakurai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carlos A Pinzon-Arteaga
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicolas Plachta
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
38
|
Abel A, Sozen B. Shifting early embryology paradigms: Applications of stem cell-based embryo models in bioengineering. Curr Opin Genet Dev 2023; 81:102069. [PMID: 37392541 PMCID: PMC10530566 DOI: 10.1016/j.gde.2023.102069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 07/03/2023]
Abstract
Technologies to reproduce specific aspects of early mammalian embryogenesis in vitro using stem cells have skyrocketed over the last several years. With these advances, we have gained new perspectives on how embryonic and extraembryonic cells self-organize to form the embryo. These reductionist approaches hold promise for the future implementation of precise environmental and genetic controls to understand variables affecting embryo development. Our review discusses recent progress in cellular models of early mammalian embryo development and bioengineering advancements that can be leveraged to study the embryo-maternal interface. We summarize current gaps in the field, emphasizing the importance of understanding how intercellular interactions at this interface contribute to reproductive and developmental health.
Collapse
Affiliation(s)
- Ashley Abel
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06520, USA. https://twitter.com/@caitrionacunn
| | - Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
39
|
Muniyandi P, O’Hern C, Popa MA, Aguirre A. Biotechnological advances and applications of human pluripotent stem cell-derived heart models. Front Bioeng Biotechnol 2023; 11:1214431. [PMID: 37560538 PMCID: PMC10407810 DOI: 10.3389/fbioe.2023.1214431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/12/2023] [Indexed: 08/11/2023] Open
Abstract
In recent years, significant biotechnological advancements have been made in engineering human cardiac tissues and organ-like models. This field of research is crucial for both basic and translational research due to cardiovascular disease being the leading cause of death in the developed world. Additionally, drug-associated cardiotoxicity poses a major challenge for drug development in the pharmaceutical and biotechnological industries. Progress in three-dimensional cell culture and microfluidic devices has enabled the generation of human cardiac models that faithfully recapitulate key aspects of human physiology. In this review, we will discuss 3D pluripotent stem cell (PSC)-models of the human heart, such as engineered heart tissues and organoids, and their applications in disease modeling and drug screening.
Collapse
Affiliation(s)
- Priyadharshni Muniyandi
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| | - Colin O’Hern
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| | - Mirel Adrian Popa
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
- Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Aitor Aguirre
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
40
|
Hislop J, Alavi A, Song Q, Schoenberger R, Kamyar KF, LeGraw R, Velazquez J, Mokhtari T, Taheri MN, Rytel M, de Sousa Lopes SMC, Watkins S, Stolz D, Kiani S, Sozen B, Bar-Joseph Z, Ebrahimkhani MR. Modelling Human Post-Implantation Development via Extra-Embryonic Niche Engineering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545118. [PMID: 37398391 PMCID: PMC10312773 DOI: 10.1101/2023.06.15.545118] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Implantation of the human embryo commences a critical developmental stage that comprises profound morphogenetic alteration of embryonic and extra-embryonic tissues, axis formation, and gastrulation events. Our mechanistic knowledge of this window of human life remains limited due to restricted access to in vivo samples for both technical and ethical reasons. Additionally, human stem cell models of early post-implantation development with both embryonic and extra-embryonic tissue morphogenesis are lacking. Here, we present iDiscoid, produced from human induced pluripotent stem cells via an engineered a synthetic gene circuit. iDiscoids exhibit reciprocal co-development of human embryonic tissue and engineered extra-embryonic niche in a model of human post-implantation. They exhibit unanticipated self-organization and tissue boundary formation that recapitulates yolk sac-like tissue specification with extra-embryonic mesoderm and hematopoietic characteristics, the formation of bilaminar disc-like embryonic morphology, the development of an amniotic-like cavity, and acquisition of an anterior-like hypoblast pole and posterior-like axis. iDiscoids offer an easy-to-use, high-throughput, reproducible, and scalable platform to probe multifaceted aspects of human early post-implantation development. Thus, they have the potential to provide a tractable human model for drug testing, developmental toxicology, and disease modeling.
Collapse
Affiliation(s)
- Joshua Hislop
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Amir Alavi
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Qi Song
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Rayna Schoenberger
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Keshavarz F. Kamyar
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ryan LeGraw
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jeremy Velazquez
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tahere Mokhtari
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mohammad Nasser Taheri
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Matthew Rytel
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg, 2333 ZC Leiden, the Netherlands
| | - Simon Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology and Molecular Physiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Donna Stolz
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology and Molecular Physiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samira Kiani
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Mo R. Ebrahimkhani
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
41
|
Girgin M, Broguiere N, Mattolini L, Lutolf M. A New Approach to Generate Gastruloids to Develop Anterior Neural Tissues. Bio Protoc 2023; 13:e4722. [PMID: 37497450 PMCID: PMC10366998 DOI: 10.21769/bioprotoc.4722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/16/2023] [Accepted: 05/04/2023] [Indexed: 07/28/2023] Open
Abstract
Embryonic development is a complex process integrating cell fate decisions and morphogenesis in a spatiotemporally controlled manner. Previous studies with model organisms laid the foundation of our knowledge on post-implantation development; however, studying mammalian embryos at this stage is a difficult and laborious process. Early attempts to recapitulate mammalian development in vitro begun with embryoid bodies (EBs), in which aggregates of mouse embryonic stem cells (mESCs) were shown to differentiate into spatially arranged germ layers. A more revised version of EBs, gastruloids, improved the germ layer differentiation efficiency and demonstrated cell fate patterning on multiple axes. However, gastruloids lack anterior neural progenitors that give rise to brain tissues in the embryo. Here, we report a novel culture protocol to coax mESCs into post-implantation epiblast-like (EPI) aggregates in high throughput on bioengineered microwell arrays. We show that upon inhibition of the Wnt signaling pathway, EPI aggregates establish an extended axial patterning, leading to co-derivation of anterior neural progenitors and posterior tissues. Our approach is amenable to large-scale studies aimed at identifying novel regulators of gastrulation and anterior neural development that is currently out of reach with existing embryoid models. This work should contribute to the advancement of the nascent field of synthetic embryology, opening up exciting perspectives for various applications of pluripotent stem cells in disease modeling and tissue engineering. Key features A new gastruloid culture system to model post-implantation mouse embryonic development in vitro High-throughput formation of epiblast-like aggregates on hydrogel microwells Builds upon conventional gastruloid cultures and provides insight into the role of Wnt signaling for the formation of anterior neural tissues Graphical overview.
Collapse
Affiliation(s)
- Mehmet Girgin
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Basel, Switzerland
| | - Nicolas Broguiere
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lorenzo Mattolini
- Laboratory of Bioengineering and Morphogenesis, Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Matthias Lutolf
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Basel, Switzerland
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
42
|
Repina NA, Johnson HJ, Bao X, Zimmermann JA, Joy DA, Bi SZ, Kane RS, Schaffer DV. Optogenetic control of Wnt signaling models cell-intrinsic embryogenic patterning using 2D human pluripotent stem cell culture. Development 2023; 150:dev201386. [PMID: 37401411 PMCID: PMC10399980 DOI: 10.1242/dev.201386] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
In embryonic stem cell (ESC) models for early development, spatially and temporally varying patterns of signaling and cell types emerge spontaneously. However, mechanistic insight into this dynamic self-organization is limited by a lack of methods for spatiotemporal control of signaling, and the relevance of signal dynamics and cell-to-cell variability to pattern emergence remains unknown. Here, we combine optogenetic stimulation, imaging and transcriptomic approaches to study self-organization of human ESCs (hESC) in two-dimensional (2D) culture. Morphogen dynamics were controlled via optogenetic activation of canonical Wnt/β-catenin signaling (optoWnt), which drove broad transcriptional changes and mesendoderm differentiation at high efficiency (>99% cells). When activated within cell subpopulations, optoWnt induced cell self-organization into distinct epithelial and mesenchymal domains, mediated by changes in cell migration, an epithelial to mesenchymal-like transition and TGFβ signaling. Furthermore, we demonstrate that such optogenetic control of cell subpopulations can be used to uncover signaling feedback mechanisms between neighboring cell types. These findings reveal that cell-to-cell variability in Wnt signaling is sufficient to generate tissue-scale patterning and establish a hESC model system for investigating feedback mechanisms relevant to early human embryogenesis.
Collapse
Affiliation(s)
- Nicole A. Repina
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA 94720, USA
| | - Hunter J. Johnson
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA 94720, USA
| | - Xiaoping Bao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Joshua A. Zimmermann
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - David A. Joy
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA 94720, USA
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Shirley Z. Bi
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Ravi S. Kane
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David V. Schaffer
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
43
|
Emig AA, Williams MLK. Gastrulation morphogenesis in synthetic systems. Semin Cell Dev Biol 2023; 141:3-13. [PMID: 35817656 PMCID: PMC9825685 DOI: 10.1016/j.semcdb.2022.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/19/2022] [Accepted: 07/04/2022] [Indexed: 01/11/2023]
Abstract
Recent advances in pluripotent stem cell culture allow researchers to generate not only most embryonic cell types, but also morphologies of many embryonic structures, entirely in vitro. This recreation of embryonic form from naïve cells, known as synthetic morphogenesis, has important implications for both developmental biology and regenerative medicine. However, the capacity of stem cell-based models to recapitulate the morphogenetic cell behaviors that shape natural embryos remains unclear. In this review, we explore several examples of synthetic morphogenesis, with a focus on models of gastrulation and surrounding stages. By varying cell types, source species, and culture conditions, researchers have recreated aspects of primitive streak formation, emergence and elongation of the primary embryonic axis, neural tube closure, and more. Here, we describe cell behaviors within in vitro/ex vivo systems that mimic in vivo morphogenesis and highlight opportunities for more complete models of early development.
Collapse
Affiliation(s)
- Alyssa A Emig
- Center for Precision Environmental Health & Department of Molecular and Cellular Biology, Baylor College of Medicine, USA
| | - Margot L K Williams
- Center for Precision Environmental Health & Department of Molecular and Cellular Biology, Baylor College of Medicine, USA.
| |
Collapse
|
44
|
Zhang M, Reis AH, Simunovic M. Human embryoids: A new strategy of recreating the first steps of embryonic development in vitro. Semin Cell Dev Biol 2023; 141:14-22. [PMID: 35871155 DOI: 10.1016/j.semcdb.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/05/2022] [Accepted: 07/04/2022] [Indexed: 01/24/2023]
Abstract
Molecular mechanisms surrounding early human embryonic events such as blastocyst formation, implantation, and the specification of the body axes are some of the most attractive research questions of developmental biology today. A knowledge on the detailed signaling landscape underlying these critical events in the human could impact the way we treat early pregnancy disorders and infertility, and considerably advance our abilities to make precise human tissues in a lab. However, owing to ethical, technical, and policy restrictions, research on early human embryo development historically stalled behind animal models. The rapid progress in 3D culture of human embryonic stem cells over the past years created an opportunity to overcome this critical challenge. We review recently developed strategies of making 3D models of the human embryo built from embryonic stem cells, which we refer to as embryoids. We focus on models aimed at reconstituting the 3D epithelial characteristics of the early human embryo, namely the intra/extraembryonic signaling crosstalk, tissue polarity, and embryonic cavities. We identify distinct classes of embryoids based on whether they explicitly include extraembryonic tissues and we argue for the merit of compromising on certain aspects of embryo mimicry in balancing the experimental feasibility with ethical considerations. Human embryoids open gates toward a new field of synthetic human embryology, allowing to study the long inaccessible stages of early human development at unprecedented detail.
Collapse
Affiliation(s)
- Miaoci Zhang
- Department of Chemical Engineering, Fu Foundation School of Engineering and Applied Sciences, Columbia University, New York 10027, USA; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York 10032, USA
| | - Alice H Reis
- Department of Chemical Engineering, Fu Foundation School of Engineering and Applied Sciences, Columbia University, New York 10027, USA; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York 10032, USA
| | - Mijo Simunovic
- Department of Chemical Engineering, Fu Foundation School of Engineering and Applied Sciences, Columbia University, New York 10027, USA; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York 10032, USA; Department of Genetics and Development, Columbia Irving Medical Center, New York 10032, USA.
| |
Collapse
|
45
|
Ietto G, Iori V, Gritti M, Inversini D, Costantino A, Izunza Barba S, Jiang ZG, Carcano G, Dalla Gasperina D, Pettinato G. Multicellular Liver Organoids: Generation and Importance of Diverse Specialized Cellular Components. Cells 2023; 12:1429. [PMID: 37408262 PMCID: PMC10217024 DOI: 10.3390/cells12101429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
Over 40,000 patients in the United States are estimated to suffer from end-stage liver disease and acute hepatic failure, for which liver transplantation is the only available therapy. Human primary hepatocytes (HPH) have not been employed as a therapeutic tool due to the difficulty in growing and expanding them in vitro, their sensitivity to cold temperatures, and tendency to dedifferentiate following two-dimensional culture. The differentiation of human-induced pluripotent stem cells (hiPSCs) into liver organoids (LO) has emerged as a potential alternative to orthotropic liver transplantation (OLT). However, several factors limit the efficiency of liver differentiation from hiPSCs, including a low proportion of differentiated cells capable of reaching a mature phenotype, the poor reproducibility of existing differentiation protocols, and insufficient long-term viability in vitro and in vivo. This review will analyze various methodologies being developed to improve hepatic differentiation from hiPSCs into liver organoids, paying particular attention to the use of endothelial cells as supportive cells for their further maturation. Here, we demonstrate why differentiated liver organoids can be used as a research tool for drug testing and disease modeling, or employed as a bridge for liver transplantation following liver failure.
Collapse
Affiliation(s)
- Giuseppe Ietto
- General, Emergency and Transplant Surgery Department, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Innovation Technology (DiMIT), University of Insubria, 21100 Varese, Italy
| | - Valentina Iori
- General, Emergency and Transplant Surgery Department, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Innovation Technology (DiMIT), University of Insubria, 21100 Varese, Italy
| | - Mattia Gritti
- Department of General Surgery, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy
| | - Davide Inversini
- General, Emergency and Transplant Surgery Department, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Innovation Technology (DiMIT), University of Insubria, 21100 Varese, Italy
| | - Angelita Costantino
- Department of Drug and Health Sciences, University of Catania, 95124 Catania, Italy;
| | - Sofia Izunza Barba
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Z. Gordon Jiang
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Giulio Carcano
- General, Emergency and Transplant Surgery Department, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Innovation Technology (DiMIT), University of Insubria, 21100 Varese, Italy
| | - Daniela Dalla Gasperina
- Department of Medicine and Innovation Technology (DiMIT), University of Insubria, 21100 Varese, Italy
- Department of Infectious Diseases, ASST-Sette Laghi, 21100 Varese, Italy
| | - Giuseppe Pettinato
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
46
|
Daneshpour H, van den Bersselaar P, Chao CH, Fazzio TG, Youk H. Macroscopic quorum sensing sustains differentiating embryonic stem cells. Nat Chem Biol 2023; 19:596-606. [PMID: 36635563 PMCID: PMC10154202 DOI: 10.1038/s41589-022-01225-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/14/2022] [Indexed: 01/14/2023]
Abstract
Cells can secrete molecules that help each other's replication. In cell cultures, chemical signals might diffuse only within a cell colony or between colonies. A chemical signal's interaction length-how far apart interacting cells are-is often assumed to be some value without rigorous justifications because molecules' invisible paths and complex multicellular geometries pose challenges. Here we present an approach, combining mathematical models and experiments, for determining a chemical signal's interaction length. With murine embryonic stem (ES) cells as a testbed, we found that differentiating ES cells secrete FGF4, among others, to communicate over many millimeters in cell culture dishes and, thereby, form a spatially extended, macroscopic entity that grows only if its centimeter-scale population density is above a threshold value. With this 'macroscopic quorum sensing', an isolated macroscopic, but not isolated microscopic, colony can survive differentiation. Our integrated approach can determine chemical signals' interaction lengths in generic multicellular communities.
Collapse
Affiliation(s)
- Hirad Daneshpour
- Kavli Institute of Nanoscience, Delft, The Netherlands
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Pim van den Bersselaar
- Kavli Institute of Nanoscience, Delft, The Netherlands
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Chun-Hao Chao
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hyun Youk
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, ON, Canada.
| |
Collapse
|
47
|
Zhang P, Zhai X, Huang B, Sun S, Wang W, Zhang M. Highly efficient generation of blastocyst-like structures from spliceosomes-repressed mouse totipotent blastomere-like cells. SCIENCE CHINA. LIFE SCIENCES 2023; 66:423-435. [PMID: 36633710 DOI: 10.1007/s11427-022-2209-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/14/2022] [Indexed: 01/13/2023]
Abstract
Mammalian embryogenesis begins with a totipotent zygote. Blastocyst-like structures can be captured by aggregated cells with extended pluripotent properties in a three-dimensional (3D) culture system. However, the efficiency of generating blastoids is low, and it remains unclear whether other reported totipotent-like stem cells retain a similar capacity. In this study, we demonstrated that spliceosomal repression-induced totipotent blastomere-like cells (TBLCs) form blastocyst-like structures within around 80% of all microwells. In addition, we generated blastoids initiating from a single TBLC. TBLC-blastoids express specific markers of constituent cell lineages of a blastocyst and resemble blastocyst in cell-lineage allocation. Moreover, single-cell RNA sequencing revealed that TBLC-blastoids share a similar transcriptional profile to natural embryos, albeit composed of fewer primitive endoderm-like cells. Furthermore, TBLC-blastoids can develop beyond the implantation stage in vitro and induce decidualization in vivo. In summary, our findings provided an alternative cell type to efficiently generate blastoids for the study of early mouse embryogenesis.
Collapse
Affiliation(s)
- Pengfei Zhang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-HongKong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, 510005, China
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Xuzhao Zhai
- GMU-GIBH Joint School of Life Sciences, The Guangdong-HongKong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, 510005, China
| | - Boyan Huang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-HongKong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, 510005, China
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Shu Sun
- GMU-GIBH Joint School of Life Sciences, The Guangdong-HongKong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, 510005, China
| | - WenJing Wang
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Man Zhang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-HongKong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, 510005, China.
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
48
|
Dominguez MH, Krup AL, Muncie JM, Bruneau BG. Graded mesoderm assembly governs cell fate and morphogenesis of the early mammalian heart. Cell 2023; 186:479-496.e23. [PMID: 36736300 PMCID: PMC10091855 DOI: 10.1016/j.cell.2023.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/07/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023]
Abstract
Using four-dimensional whole-embryo light sheet imaging with improved and accessible computational tools, we longitudinally reconstruct early murine cardiac development at single-cell resolution. Nascent mesoderm progenitors form opposing density and motility gradients, converting the temporal birth sequence of gastrulation into a spatial anterolateral-to-posteromedial arrangement. Migrating precardiac mesoderm does not strictly preserve cellular neighbor relationships, and spatial patterns only become solidified as the cardiac crescent emerges. Progenitors undergo a mesenchymal-to-epithelial transition, with a first heart field (FHF) ridge apposing a motile juxta-cardiac field (JCF). Anchored along the ridge, the FHF epithelium rotates the JCF forward to form the initial heart tube, along with push-pull morphodynamics of the second heart field. In Mesp1 mutants that fail to make a cardiac crescent, mesoderm remains highly motile but directionally incoherent, resulting in density gradient inversion. Our practicable live embryo imaging approach defines spatial origins and behaviors of cardiac progenitors and identifies their unanticipated morphological transitions.
Collapse
Affiliation(s)
- Martin H Dominguez
- Gladstone Institutes, San Francisco, CA, USA; Department of Medicine, Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA.
| | - Alexis Leigh Krup
- Gladstone Institutes, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | | | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA; Department of Pediatrics, Cardiovascular Research Institute, Institute for Human Genetics, and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
49
|
Reprogramming of fibroblast cells to totipotent state by DNA demethylation. Sci Rep 2023; 13:1154. [PMID: 36670207 PMCID: PMC9859804 DOI: 10.1038/s41598-023-28457-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Many attempts have been made to induce high-quality embryonic stem cells such as pluripotent stem cells and totipotent stem cells, but challenges remain to be overcome such as appropriate methods and sources. Demethylation of the genome after fertilization is an important step to initiate zygote gene activation, which can lead to the development of new embryos. Here, we tried to induce totipotent stem cells by mimicking DNA demethylation patterns of the embryo. Our data showed, after induction of DNA demethylation via chemicals or knockdown of Dnmts, cells positive for Nanog, and Cdx2 emerged. These cells could differentiate into the pluripotent and trophoblast lineage cells in-vitro. After transferring these cells to the uterus, they can implant and form embryo-like structures. Our study showed the importance of DNA demethylation roles in totipotent stem cell induction and a new and easy way to induce this cell type.
Collapse
|
50
|
Trentesaux C, Yamada T, Klein OD, Lim WA. Harnessing synthetic biology to engineer organoids and tissues. Cell Stem Cell 2023; 30:10-19. [PMID: 36608674 PMCID: PMC11684341 DOI: 10.1016/j.stem.2022.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023]
Abstract
The development of an organism depends on intrinsic genetic programs of progenitor cells and their spatiotemporally complex extrinsic environment. Ex vivo generation of organoids from progenitor cells provides a platform for recapitulating and exploring development. Current approaches rely largely on soluble morphogens or engineered biomaterials to manipulate the physical environment, but the emerging field of synthetic biology provides a powerful toolbox to genetically manipulate cell communication, adhesion, and even cell fate. Applying these modular tools to organoids should lead to a deeper understanding of developmental principles, improved organoid models, and an enhanced capability to design tissues for regenerative purposes.
Collapse
Affiliation(s)
- Coralie Trentesaux
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Toshimichi Yamada
- Cell Design Institute, Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Wendell A Lim
- Cell Design Institute, Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|