1
|
Liu C, Zhang C, Glatt SJ. Psychiatric Genomics 2025: State of the Art and the Path Forward. Psychiatr Clin North Am 2025; 48:217-240. [PMID: 40348414 DOI: 10.1016/j.psc.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Psychiatric genetics has evolved from candidate-gene studies to whole-genome sequencing efforts. With hundreds of disease-associated loci now identified, functional interpretation of the associated loci becomes the critical next step toward translational applications. The article discusses achievements, challenges, and opportunities in psychiatric genomics associated with complexity and heterogeneity. Brain expression quantitative trait loci, single-cell ribonucleic acid-sequence, and functional genomics technologies are highlighted. It also covers newly developed techniques with improved spatiotemporal resolution, quality and sensitivity, coupled with advanced analytical methods and artificial intelligence. The power of collaborative research and inclusion of diverse populations will ensure a bright future for precision psychiatry.
Collapse
Affiliation(s)
- Chunyu Liu
- Department of Psychiatry, SUNY Upstate Medical University, 505 Irving Avenue, Syracuse, NY 13210, USA.
| | - Chunling Zhang
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, 505 Irving Avenue, Syracuse, NY 13210, USA
| | - Stephen J Glatt
- Department of Psychiatry, SUNY Upstate Medical University, 505 Irving Avenue, Syracuse, NY 13210, USA
| |
Collapse
|
2
|
Xu WT, An XB, Chen MJ, Ma J, Wang XQ, Yang JN, Wang Q, Wang DY, Wu Y, Zeng L, Qu Y, Zhao B, Ai J. A Gene Cluster of Mitochondrial Complexes Contributes to the Cognitive Decline of COVID-19 Infection. Mol Neurobiol 2025; 62:6869-6883. [PMID: 39271627 DOI: 10.1007/s12035-024-04471-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
"Brain fog," a persistent cognitive impairment syndrome, stands out as a significant neurological aftermath of coronavirus disease 2019 (COVID-19). Yet, the underlying mechanisms by which COVID-19 induces cognitive deficits remain elusive. In our study, we observed an upregulation in the expression of genes linked to the inflammatory response and oxidative stress, whereas genes associated with cognitive function were downregulated in the brains of patients infected with COVID-19. Through single-nucleus RNA sequencing (snRNA-seq) analysis, we found that COVID-19 infection triggers the immune responses in microglia and astrocytes and exacerbates oxidative stress in oligodendrocytes, oligodendrocyte progenitors (OPCs), and neurons. Further investigations revealed that COVID-19 infection elevates LUC7L2 expression, which inhibits mitochondrial oxidative phosphorylation (OXPHOS) and suppresses the expression of mitochondrial complex genes such as MT-ND1, MT-ND2, MT-ND3, MT-ND4L, MT-CYB, MT-CO3, and MT-ATP6. A holistic approach to protect mitochondrial complex function, rather than targeting a single molecular, should be an effective therapeutic strategy to prevent and treat the long-term consequences of "long COVID."
Collapse
Affiliation(s)
- Wen-Tao Xu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Xiao-Bin An
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Mei-Jie Chen
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Jing Ma
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Xu-Qiao Wang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Ji-Nan Yang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Qin Wang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Dong-Yang Wang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Yan Wu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Lu Zeng
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Yang Qu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Bowen Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jing Ai
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China.
| |
Collapse
|
3
|
Zheng M, Bao N, Wang Z, Song C, Jin Y. Alternative splicing in autism spectrum disorder: Recent insights from mechanisms to therapy. Asian J Psychiatr 2025; 108:104501. [PMID: 40273800 DOI: 10.1016/j.ajp.2025.104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025]
Abstract
Alternative splicing (AS) is a vital and highly dynamic RNA regulatory mechanism that allows a single gene to generate multiple mRNA and protein isoforms. Dysregulation of AS has been identified as a key contributor to the pathogenesis of autism spectrum disorders (ASD). A comprehensive understanding of aberrant splicing mechanisms and their functional consequences in ASD can help uncover the molecular basis of the disorder and facilitate the development of therapeutic strategies. This review focuses on the major aberrant splicing events and key splicing regulators associated with ASD, highlighting their roles in linking defective splicing to ASD pathogenesis. In addition, a discussion of how emerging technologies, such as long-read sequencing, single-cell sequencing, spatial transcriptomics and CRISPR-Cas systems are offering novel insights into the role and mechanisms of AS in ASD is presented. Finally, the RNA splicing-based therapeutic strategies are evaluated, emphasizing their potential to address unmet clinical needs in ASD treatment.
Collapse
Affiliation(s)
- Mixue Zheng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Nengcheng Bao
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zhechao Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Chao Song
- Department of Developmental and Behavioral Pediatrics, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou 310052, China.
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Duy PQ, Dylik B, Deniz E. Precision medicine in the pediatric and neonatal intensive care units through genomics. Curr Opin Pediatr 2025; 37:211-215. [PMID: 40298123 PMCID: PMC12055474 DOI: 10.1097/mop.0000000000001471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
PURPOSE OF REVIEW Genome-wide sequencing technologies have revolutionized the understanding of human disorders and advanced precision medicine, especially for pediatric disorders. Here, we discuss the utility of genomic technologies in advancing the care of children admitted to the pediatric and neonatal intensive care units. RECENT FINDINGS Rapid molecular diagnosis permitted by genomic medicine has yielded clinically actionable findings that influence decision-making and facilitate timely therapeutic interventions. Identifying a genetic association provides a causal anchor to understanding disease biology at the single nucleotide resolution, revealing hidden biological heterogeneity that may be obscured by traditional imaging, laboratory, and pathological workup. The importance of a genetic diagnosis is further highlighted by the promise of gene therapy to correct the underlying genetic perturbation, as evidenced by the recent emergence of FDA-approved gene therapies for childhood genetic conditions. SUMMARY We predict that whole-genome sequencing, in conjunction with other omic technologies, will become critical diagnostic adjuncts in the clinical workup of critically ill children.
Collapse
Affiliation(s)
- Phan Q. Duy
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Benjamin Dylik
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Engin Deniz
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
5
|
He J, Phan BN, Kerkhoff WG, Alikaya A, Hong T, Brull OR, Fredericks JM, Sedorovitz M, Srinivasan C, Leone MJ, Wirfel OM, Brown A, Dauby S, Tittle RK, Lin MK, Hooks BM, Bostan AC, Gharbawie OA, Byrne LC, Pfenning AR, Stauffer WR. Machine learning identification of enhancers in the rhesus macaque genome. Neuron 2025; 113:1548-1561.e8. [PMID: 40403706 DOI: 10.1016/j.neuron.2025.04.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/28/2025] [Accepted: 04/28/2025] [Indexed: 05/24/2025]
Abstract
Nonhuman primate (NHP) neuroanatomy and cognitive complexity make NHPs ideal models to study human neurobiology and disease. However, NHP circuit-function investigations are limited by the availability of molecular reagents that are effective in NHPs. This calls for reagent development approaches that prioritize NHPs. Therefore, we derived enhancers from the NHP genome. We defined cell-type-specific open chromatin regions (OCRs) in single-cell data from rhesus macaques. We trained machine-learning models to rank those OCRs according to their potential as cell-type-specific enhancers for cells in the dorsolateral prefrontal cortex (DLPFC). We packaged the top-ranked layer-3-pyramidal-neuron enhancer into AAV and injected it into the macaque DLPFC. Expression was mostly restricted to layers 2 and 3 and confirmed with light-driven activation of channelrhodopsin. These results provide a crucial tool for studying the causal functions of DLPFC and provide a roadmap for optimized gene delivery in primates.
Collapse
Affiliation(s)
- Jing He
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - BaDoi N Phan
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; University of Pittsburgh-Carnegie Mellon University Medical Scientist Training Program, Pittsburgh, PA 15213, USA
| | - Willa G Kerkhoff
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Aydin Alikaya
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tao Hong
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Program in Neural Computation, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Olivia R Brull
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - J Megan Fredericks
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Morgan Sedorovitz
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Chaitanya Srinivasan
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Michael J Leone
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; University of Pittsburgh-Carnegie Mellon University Medical Scientist Training Program, Pittsburgh, PA 15213, USA
| | - Olivia M Wirfel
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ashley Brown
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Samuel Dauby
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rachel K Tittle
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Meng K Lin
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bryan M Hooks
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Andreea C Bostan
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Omar A Gharbawie
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Leah C Byrne
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Andreas R Pfenning
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - William R Stauffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
6
|
Teng T, Wu Q, Yin B, Zhang J, Li X, Zhang L, Zhou X, Xie P. Single-Nucleus Transcriptomics of the Nucleus Accumbens Reveals Cell-Type-Specific Dysregulation in Adolescent Macaques with Depressive-Like Behaviors. Neurosci Bull 2025:10.1007/s12264-025-01412-5. [PMID: 40399551 DOI: 10.1007/s12264-025-01412-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/08/2025] [Indexed: 05/23/2025] Open
Abstract
Adolescent depression is increasingly recognized as a serious mental health disorder with distinct clinical and molecular features. Using single-nucleus RNA sequencing, we identified cell-specific transcriptomic changes in the nucleus accumbens (NAc), particularly in astrocytes, of adolescent macaques exhibiting depressive-like behaviors. The level of diacylglycerol kinase beta was significantly reduced in neurons and glial cells of depressed macaques, while FKBP5 levels increased in glial cells. Disruption of GABAergic synapses and disruption of D-glutamine and D-glutamate metabolism were linked to depressive phenotypes in medium spiny neurons (MSNs) and subtypes of astrocytes. Communication pathways between astrocytes and D1/D2-MSNs were also disrupted, involving factors like bone morphogenetic protein-6 and Erb-B2 receptor tyrosine kinase-4. Bulk transcriptomic and proteomic analyses corroborated these findings, and FKBP5 upregulation was confirmed by qRT-PCR, western blotting, and immunofluorescence in the NAc of rats and macaques with chronic unpredictable mild stress. Our results highlight the specific roles of different cell types in adolescent depression in the NAc, offering potential targets for new antidepressant therapies.
Collapse
Affiliation(s)
- Teng Teng
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Qingyuan Wu
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, 404000, China
| | - Bangmin Yin
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Jushuang Zhang
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Xuemei Li
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Lige Zhang
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Xinyu Zhou
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China.
| | - Peng Xie
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
7
|
Wang F, Gao Y, Liu Z, Cheng Z, Liu S, Zhang Y, Jiang Y, Zhang M, Yang X, Zou M, Sun C. Boosting 2-arachidonoylglycerol, but not N-acylethanolamine, ameliorates autism symptoms in VPA-exposed rats by modulating abnormal neuroinflammation. Neuropharmacology 2025; 276:110501. [PMID: 40348332 DOI: 10.1016/j.neuropharm.2025.110501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 05/04/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Research has implicated endocannabinoids (eCBs) as significant regulators of neuroinflammation that may contribute to autism spectrum disorder (ASD). This study investigated the effect of the main eCBs, namely N-acylethanolamine (NAE) and 2-arachidonoylglycerol (2-AG), on ASD and their underlying mechanisms through in vivo and in vitro experiments. Results showed that elevating NAE or 2-AG ameliorated social deficits and restricted and repetitive behaviors and corrected neuropathological damage. Additionally, enhancing 2-AG protected valproic acid (VPA)-exposed rats against nerve damage by modulating abnormal neuroinflammation, as evidenced by the fact that 2-AG decreased microglial reactivity with reduced pro-inflammatory responses and increased anti-inflammatory responses. While, NAE only had a subtle effect on regulating neuroinflammation. Collectively, these findings suggested that elevating both NAE and 2-AG could improve ASD symptoms. Elevating 2-AG may play a neuroprotective role by generating a reparative milieu reactive to abnormal neuroinflammation, but NAE does not. Therefore, eCBs may be a promising therapeutic target for ASD.
Collapse
Affiliation(s)
- Feng Wang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China; Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China; Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Ya Gao
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China; Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China; Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Zehui Liu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China; Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China; Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, China
| | - Zeyu Cheng
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China; Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China; Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Shidan Liu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China; Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China; Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Yuting Zhang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China; Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China; Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Yi Jiang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China; Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China; Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Mengyuan Zhang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China; Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China; Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Xiaolei Yang
- Department of Preventive Medicine, School of Public Health, Qiqihar Medical University, Qiqihar, China
| | - Mingyang Zou
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China; Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China; Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China.
| | - Caihong Sun
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China; Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China; Department of Developmental Behavioral Pediatrics, The Sixth Affiliated Hospital of Harbin Medical University, China.
| |
Collapse
|
8
|
Rynard KM, Han K, Wainberg M, Calarco JA, Lee HO, Lipshitz HD, Smibert CA, Tripathy SJ. ASiDentify (ASiD): a machine learning model to predict new autism spectrum disorder risk genes. Genetics 2025; 230:iyaf040. [PMID: 40088463 DOI: 10.1093/genetics/iyaf040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects nearly 3% of children and has a strong genetic component. While hundreds of ASD risk genes have been identified through sequencing studies, the genetic heterogeneity of ASD makes identifying additional risk genes using these methods challenging. To predict candidate ASD risk genes, we developed a simple machine learning model, ASiDentify (ASiD), using human genomic, RNA- and protein-based features. ASiD identified over 1,300 candidate ASD risk genes, over 300 of which have not been previously predicted. ASiD made accurate predictions of ASD risk genes using 6 features predictive of ASD risk gene status, including mutational constraint, synapse localization and gene expression in neurons, astrocytes and non-brain tissues. Particular functional groups of proteins found to be strongly implicated in ASD include RNA-binding proteins (RBPs) and chromatin regulators. We constructed additional logistic regression models to make predictions and assess informative features specific to RBPs, including mutational constraint, or chromatin regulators, for which both expression level in excitatory neurons and mutational constraint were informative. The fact that RBPs and chromatin regulators had informative features distinct from all protein-coding genes suggests that specific biological pathways connect risk genes with different molecular functions to ASD.
Collapse
Affiliation(s)
- Katherine M Rynard
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kara Han
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Krembil Institute for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Michael Wainberg
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Krembil Institute for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - John A Calarco
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Craig A Smibert
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shreejoy J Tripathy
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Krembil Institute for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
9
|
Duan L, Yin H, Liu J, Wang W, Huang P, Liu L, Shen J, Wang Z. Maternal COVID-19 infection associated with offspring neurodevelopmental disorders. Mol Psychiatry 2025; 30:2108-2118. [PMID: 39521839 DOI: 10.1038/s41380-024-02822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/20/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Maternal COVID-19 infection increases the incidence of neurodevelopmental disorders (NDDs) in offspring, although the underlying mechanisms have not been elucidated. This study demonstrated that COVID-19 infection during pregnancy disrupted the balance of maternal and fetal immune environments, driving alterations in astrocytes, endothelial cells, and excitatory neurons. A risk score was established using 47 unique genes in the single-cell transcriptome of gestational mothers. The high risk score in CD4 proliferating T cell level served as an indicator for increased risk of offspring NDDs. Summary-based Mendelian randomization and phenome-wide association study analyses were conducted to identify the causal association of the transcriptional changes with the increased risk of offspring NDDs. Additionally, 10 drugs were identified as potential therapeutic candidates. Our findings support a model where the maternal COVID-19 infection changed the levels of CD4 proliferating T cells, leading to the alterations of astrocytes, endothelial cells, and excitatory neurons in offspring, contributing to the increased risk of NDDs in these individuals.
Collapse
Affiliation(s)
- Lian Duan
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Huamin Yin
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Jiaxin Liu
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Wenhang Wang
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Peijun Huang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Li Liu
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Jingling Shen
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China.
| | - Zhendong Wang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
10
|
Spitzer A, Johnson KC, Nomura M, Garofano L, Nehar-Belaid D, Darnell NG, Greenwald AC, Bussema L, Oh YT, Varn FS, D'Angelo F, Gritsch S, Anderson KJ, Migliozzi S, Gonzalez Castro LN, Chowdhury T, Robine N, Reeves C, Park JB, Lipsa A, Hertel F, Golebiewska A, Niclou SP, Nusrat L, Kellet S, Das S, Moon HE, Paek SH, Bielle F, Laurenge A, Di Stefano AL, Mathon B, Picca A, Sanson M, Tanaka S, Saito N, Ashley DM, Keir ST, Ligon KL, Huse JT, Yung WKA, Lasorella A, Iavarone A, Verhaak RGW, Tirosh I, Suvà ML. Deciphering the longitudinal trajectories of glioblastoma ecosystems by integrative single-cell genomics. Nat Genet 2025; 57:1168-1178. [PMID: 40346362 PMCID: PMC12081298 DOI: 10.1038/s41588-025-02168-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 03/17/2025] [Indexed: 05/11/2025]
Abstract
The evolution of isocitrate dehydrogenase (IDH)-wildtype glioblastoma (GBM) after standard-of-care therapy remains poorly understood. Here we analyzed matched primary and recurrent GBMs from 59 patients using single-nucleus RNA sequencing and bulk DNA sequencing, assessing the longitudinal evolution of the GBM ecosystem across layers of cellular and molecular heterogeneity. The most consistent change was a lower malignant cell fraction at recurrence and a reciprocal increase in glial and neuronal cell types in the tumor microenvironment (TME). The predominant malignant cell state differed between most matched pairs, but no states were exclusive or highly enriched in either time point, nor was there a consistent longitudinal trajectory across the cohort. Nevertheless, specific trajectories were enriched in subsets of patients. Changes in malignant state abundances mirrored changes in TME composition and baseline profiles, reflecting the co-evolution of the GBM ecosystem. Our study provides a blueprint of GBM's diverse longitudinal trajectories and highlights the treatment and TME modifiers that shape them.
Collapse
Affiliation(s)
- Avishay Spitzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kevin C Johnson
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Masashi Nomura
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Luciano Garofano
- Department of Public Health Sciences, Division of Biostatistics and Bioinformatics, University of Miami, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | | | - Noam Galili Darnell
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alissa C Greenwald
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lillian Bussema
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Young Taek Oh
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Frederick S Varn
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Fulvio D'Angelo
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
- Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Simon Gritsch
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin J Anderson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Simona Migliozzi
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - L Nicolas Gonzalez Castro
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tamrin Chowdhury
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Nicolas Robine
- Department of Computational Biology, New York Genome Center, New York City, NY, USA
| | - Catherine Reeves
- Department of Sequencing Operations, New York Genome Center, New York City, NY, USA
| | - Jong Bae Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Anuja Lipsa
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Frank Hertel
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- University of Luxembourg Faculty of Science, Technology and Medicine, Luxembourg, Luxembourg
| | - Labeeba Nusrat
- Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Sorcha Kellet
- Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Sunit Das
- Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Hyo-Eun Moon
- Department of Neurosurgery, Cancer Research Institute, Hypoxia/Ischemia Disease Institute, Seoul National University, Seoul, Republic of Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Cancer Research Institute, Hypoxia/Ischemia Disease Institute, Seoul National University, Seoul, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon-si, Republic of Korea
| | - Franck Bielle
- Sorbonne Université, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM-Paris Brain Institute, Equipe labellisée LNCC, Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Neuropathology, Paris, France
| | - Alice Laurenge
- Sorbonne Université, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM-Paris Brain Institute, Equipe labellisée LNCC, Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Neuro-oncology, Paris, France
| | - Anna Luisa Di Stefano
- Neurology Department, Foch Hospital, Suresnes, France
- Neurosurgery Unit, Ospedali Riuniti di Livorno, Livorno, Italy
| | - Bertrand Mathon
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Neurosurgery, Paris, France
| | - Alberto Picca
- Sorbonne Université, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM-Paris Brain Institute, Equipe labellisée LNCC, Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Neuro-oncology, Paris, France
| | - Marc Sanson
- Sorbonne Université, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM-Paris Brain Institute, Equipe labellisée LNCC, Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Neuro-oncology, Paris, France
- Brain Tumor Bank Onconeurotek (ONT), AP-HP, Paris, France
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - David M Ashley
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
| | - Stephen T Keir
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
| | - Keith L Ligon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jason T Huse
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W K Alfred Yung
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna Lasorella
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA.
| | - Antonio Iavarone
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
- Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA.
| | - Roel G W Verhaak
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Amsterdam University Medical Center, Amsterdam, the Netherlands.
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Mario L Suvà
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
11
|
Nomura M, Spitzer A, Johnson KC, Garofano L, Nehar-Belaid D, Galili Darnell N, Greenwald AC, Bussema L, Oh YT, Varn FS, D'Angelo F, Gritsch S, Anderson KJ, Migliozzi S, Gonzalez Castro LN, ChowdhFury T, Robine N, Reeves C, Park JB, Lipsa A, Hertel F, Golebiewska A, Niclou SP, Nusrat L, Kellet S, Das S, Moon HE, Paek SH, Bielle F, Laurenge A, Di Stefano AL, Mathon B, Picca A, Sanson M, Tanaka S, Saito N, Ashley DM, Keir ST, Ligon KL, Huse JT, Yung WKA, Lasorella A, Verhaak RGW, Iavarone A, Suvà ML, Tirosh I. The multilayered transcriptional architecture of glioblastoma ecosystems. Nat Genet 2025; 57:1155-1167. [PMID: 40346361 PMCID: PMC12081307 DOI: 10.1038/s41588-025-02167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 03/17/2025] [Indexed: 05/11/2025]
Abstract
In isocitrate dehydrogenase wildtype glioblastoma (GBM), cellular heterogeneity across and within tumors may drive therapeutic resistance. Here we analyzed 121 primary and recurrent GBM samples from 59 patients using single-nucleus RNA sequencing and bulk tumor DNA sequencing to characterize GBM transcriptional heterogeneity. First, GBMs can be classified by their broad cellular composition, encompassing malignant and nonmalignant cell types. Second, in each cell type we describe the diversity of cellular states and their pathway activation, particularly an expanded set of malignant cell states, including glial progenitor cell-like, neuronal-like and cilia-like. Third, the remaining variation between GBMs highlights three baseline gene expression programs. These three layers of heterogeneity are interrelated and partially associated with specific genetic aberrations, thereby defining three stereotypic GBM ecosystems. This work provides an unparalleled view of the multilayered transcriptional architecture of GBM. How this architecture evolves during disease progression is addressed in the companion manuscript by Spitzer et al.
Collapse
Affiliation(s)
- Masashi Nomura
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Avishay Spitzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kevin C Johnson
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Luciano Garofano
- Department of Public Health Sciences, Division of Biostatistics and Bioinformatics, University of Miami, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | | | - Noam Galili Darnell
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alissa C Greenwald
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lillian Bussema
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Young Taek Oh
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Frederick S Varn
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Fulvio D'Angelo
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
- Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Simon Gritsch
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin J Anderson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Simona Migliozzi
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - L Nicolas Gonzalez Castro
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tamrin ChowdhFury
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Nicolas Robine
- Department of Computational Biology, New York Genome Center, New York, NY, USA
| | - Catherine Reeves
- Department of Sequencing Operations, New York Genome Center, New York, NY, USA
| | - Jong Bae Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Anuja Lipsa
- NORLUX Neuro-Oncology laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Frank Hertel
- NORLUX Neuro-Oncology laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Anna Golebiewska
- NORLUX Neuro-Oncology laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Simone P Niclou
- NORLUX Neuro-Oncology laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- University of Luxembourg; Faculty of Science, Technology and Medicine, Esch-sur-Alzette, Luxembourg
| | - Labeeba Nusrat
- Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Sorcha Kellet
- Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Sunit Das
- Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Hyo Eun Moon
- Department of Neurosurgery, Cancer Research Institute, Hypoxia Ischemia Disease Institute, Seoul National University, Seoul, Republic of Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Cancer Research Institute, Hypoxia Ischemia Disease Institute, Seoul National University, Seoul, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon-si, Republic of Korea
| | - Franck Bielle
- Sorbonne Université, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM-Paris Brain Institute, Equipe Labellisée LNCC, Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Neuropathology, Paris, France
| | - Alice Laurenge
- Sorbonne Université, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM-Paris Brain Institute, Equipe Labellisée LNCC, Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Neuro-oncology, Paris, France
| | - Anna Luisa Di Stefano
- Neurology Department, Foch Hospital, Suresnes, France
- Neurosurgery Unit, Ospedali Riuniti di Livorno, Livorno, Italy
| | - Bertrand Mathon
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Neurosurgery, Paris, France
| | - Alberto Picca
- Sorbonne Université, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM-Paris Brain Institute, Equipe Labellisée LNCC, Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Neuro-oncology, Paris, France
| | - Marc Sanson
- Sorbonne Université, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM-Paris Brain Institute, Equipe Labellisée LNCC, Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Neuro-oncology, Paris, France
- AP-HP, Brain Tumor Bank Onconeurotek (ONT), Paris, France
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - David M Ashley
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
| | - Stephen T Keir
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
| | - Keith L Ligon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jason T Huse
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W K Alfred Yung
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna Lasorella
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA.
| | - Roel G W Verhaak
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Amsterdam University Medical Center, Amsterdam, the Netherlands.
| | - Antonio Iavarone
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
- Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA.
| | - Mario L Suvà
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
12
|
Hayakawa Y, Ozaki H. A practical guide for single-cell transcriptome data analysis in neuroscience. Neurosci Res 2025; 214:9-15. [PMID: 40164433 DOI: 10.1016/j.neures.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/03/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Single-cell RNA sequencing (scRNA-seq) has revolutionized our ability to analyze gene expression at the single-cell level, providing unprecedented insights into cellular heterogeneity, rare cell populations, and dynamic cellular processes. In neuroscience, scRNA-seq has enabled the identification of diverse brain cell types, elucidation of developmental pathways, and discovery of mechanisms underlying neurological diseases. This tutorial provides a practical guide to scRNA-seq data analysis in neuroscience, focusing on the essential workflows and theoretical foundations. Key steps covered include quality control, data preprocessing, integration, cell clustering, and differential expression analysis. Using the Seurat R package, the tutorial demonstrates a comparative analysis approach for identifying differentially expressed genes between conditions, emphasizing the biological interpretation of results. By addressing the unique challenges of scRNA-seq data and illustrating methods for robust analysis, this work aims to enhance the reliability and reproducibility of scRNA-seq studies in neuroscience, supporting the exploration of cellular mechanisms and advancing research into brain function and disease.
Collapse
Affiliation(s)
- Yoshinori Hayakawa
- Bioinformatics Laboratory, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Haruka Ozaki
- Bioinformatics Laboratory, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; Center for Artificial Intelligence Research, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
13
|
Fiorenzani C, Mossa A, De Rubeis S. DEAD/DEAH-box RNA helicases shape the risk of neurodevelopmental disorders. Trends Genet 2025; 41:437-449. [PMID: 39828505 PMCID: PMC12055483 DOI: 10.1016/j.tig.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025]
Abstract
The DEAD/DEAH-box family of RNA helicases (RHs) is among the most abundant and conserved in eukaryotes. These proteins catalyze the remodeling of RNAs to regulate their splicing, stability, localization, and translation. Rare genetic variants in DEAD/DEAH-box proteins have recently emerged as being associated with neurodevelopmental disorders (NDDs). Analyses in cellular and animal models have uncovered fundamental roles for these proteins during brain development. We discuss the genetic and functional evidence that implicates DEAD/DEAH-box proteins in brain development and NDDs, with a focus on how structural insights from paralogous genes can be leveraged to advance our understanding of the pathogenic mechanisms at play.
Collapse
Affiliation(s)
- Chiara Fiorenzani
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adele Mossa
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
14
|
Baldassari S, Klingler E, Teijeiro LG, Doladilhe M, Raoux C, Roig-Puiggros S, Bizzotto S, Couturier J, Gilbert A, Sami L, Ribierre T, Aronica E, Adle-Biassette H, Chipaux M, Jabaudon D, Baulac S. Single-cell genotyping and transcriptomic profiling of mosaic focal cortical dysplasia. Nat Neurosci 2025; 28:964-972. [PMID: 40307383 DOI: 10.1038/s41593-025-01936-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 02/27/2025] [Indexed: 05/02/2025]
Abstract
Focal cortical dysplasia type II (FCDII) is a cortical malformation causing refractory epilepsy. FCDII arises from developmental somatic activating mutations in mTOR pathway genes, leading to focal cortical dyslamination and abnormal cytomegalic cells. Which cell types carry pathogenic mutations and how they affect cell-type-specific transcriptional programs remain unknown. In the present study, we combined several single-nucleus genotyping and transcriptomics approaches with spatial resolution in surgical cortical specimens from patients with genetically mosaic FCDII. Mutations were detected in distinct cell types, including glutamatergic neurons and astrocytes, and a small fraction of mutated cells exhibited cytomegalic features. Moreover, we identified cell-type-specific transcriptional dysregulations in both mutated and nonmutated FCDII cells, including synapse- and neurodevelopment-related pathways, that may account for epilepsy and dysregulation of mitochondrial metabolism pathways in cytomegalic cells. Together, these findings reveal cell-autonomous and non-cell-autonomous features of FCDII that may be leveraged for precision medicine.
Collapse
Affiliation(s)
- Sara Baldassari
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Esther Klingler
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
- KU Leuven Institute for Single Cell Omics, Leuven, Belgium
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | | | - Marion Doladilhe
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Corentin Raoux
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Sergi Roig-Puiggros
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Sara Bizzotto
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Jeanne Couturier
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Alice Gilbert
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Lina Sami
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Théo Ribierre
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- Fondation Campus Biotech Geneva, Geneva, Switzerland
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Homa Adle-Biassette
- Université Paris Cité, Inserm, NeuroDiderot, Paris, France
- Department of Pathology, AP-HP, Lariboisière Hospital, Paris, France
| | - Mathilde Chipaux
- Pediatric Neurosurgery Department, CCMR Epilepsies Rares, European Reference Network EpiCare Member, Rothschild Foundation Hospital, Paris, France
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- Clinic of Neurology, Geneva University Hospital, Geneva, Switzerland
| | - Stéphanie Baulac
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France.
| |
Collapse
|
15
|
Dai Z, Yu Y, Chen R, Zhu H, Fong H, Kuang J, Jiang Y, Chen Y, Niu Y, Chen T, Shi L. Selenium promotes neural development through the regulation of GPX4 and SEPP1 in an iPSC-derived neuronal model. Biomaterials 2025; 316:123011. [PMID: 39708777 DOI: 10.1016/j.biomaterials.2024.123011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Selenium (Se) is incorporated into selenoproteins in the form of selenocysteine, which has biological functions associated with neural development. Unfortunately, the specific roles and mechanisms of selenoproteins at different stages of neuronal development are still unclear. Therefore, in this study, we successfully established a neuronal model derived from induced pluripotent stem cells (iPSC-iNeuron) and used Se nanoparticles (SeNPs@LNT) with high bioavailability to intervene at different stages of neural development in iPSC-iNeuron model. Interestingly, our results showed that SeNPs@LNT could not only accelerate the proliferation of neural progenitor cells (NPCs) by upregulating glutathione peroxidase 4 (GPX4) during the NPC stage, but also can promote neuronal differentiation by increasing selenoprotein P (SEPP1) during the neuronal stage, resulting in efficient and rapid neural development. In addition, further mechanistic studies showed that SeNPs@LNT can regulate selenoproteins by activating the PI3K/Akt/Nrf2 signaling pathway, thereby affecting neuronal development. Notably, Further analysis of ASD patients in National Center for Biotechnology Information single-cell RNA-seq datasets also revealed significantly lower GPX4 expression within NRGN-expressing neurons in ASD patients, and GO enrichment analysis of genes in NRGN-expressing neurons from ASD patients showed that the downregulation of selenoproteins due to aberrant selenoprotein synthesis may be closely associated with decreased ATP synthesis resulting from abnormal mitochondrial and respiratory chain signaling pathways. Taken together, this study provides evidence that SeNPs@LNT exerts a beneficial effect on early neural development through the regulation of selenoproteins.
Collapse
Affiliation(s)
- Zhenzhu Dai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Yanzi Yu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Ruhai Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Hongyao Zhu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Hin Fong
- Faculty of Medicine, International School, Jinan University, Guangzhou, 510632, China
| | - Junxin Kuang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Yunbo Jiang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Yalan Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Yimei Niu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China; Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.
| | - Lingling Shi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China; Department of Psychiatry, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China; Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570100, China.
| |
Collapse
|
16
|
Li W, Qiu X, Chen J, Chen K, Chen M, Wang Y, Sun W, Su J, Chen Y, Liu X, Chu C, Wang J. Disentangling the Switching Behavior in Functional Connectivity Dynamics in Autism Spectrum Disorder: Insights from Developmental Cohort Analysis and Molecular-Cellular Associations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2403801. [PMID: 40344520 PMCID: PMC12120798 DOI: 10.1002/advs.202403801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/21/2025] [Indexed: 05/11/2025]
Abstract
Characterizing the transition or switching behavior between multistable brain states in functional connectivity dynamics (FCD) holds promise for uncovering the underlying neuropathology of Autism Spectrum Disorder (ASD). However, whether and how switching behaviors in FCD change in patients with developmental ASD, as well as their cellular and molecular basis, remains unexplored. This study develops a region-wise FCD switching index (RFSI) to investigate the drivers of FCD. This work finds that brain regions within the salience, default mode, and frontoparietal networks serve as abnormal drivers of FCD in ASD across different developmental stages. Additionally, changes in RFSI at different developmental stages of ASD correlated with transcriptomic profiles and neurotransmitter density maps. Importantly, the abnormal RFSI identifies in humans has also been observed in genetically edited ASD monkeys. Finally, single-nucleus RNA sequencing data from patients with developmental ASD are analyzed and aberrant switching behaviors in FCD may be mediated by somatostatin-expressing interneurons and altered differentiation patterns in astrocyte State2. In conclusion, this study provides the first evidence of abnormal drivers of FCD across different stages of ASD and their associated cellular and molecular mechanisms. These findings deepen the understanding of ASD neuropathology and offer valuable insights into treatment strategies.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunming650500China
- Faculty of Mechanical and Electrical EngineeringKunming University of Science and TechnologyKunming650500China
| | - Xia Qiu
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunming650500China
| | - Jin Chen
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunming650500China
| | - Kexuan Chen
- Medical SchoolKunming University of Science and TechnologyKunming650500China
| | - Meiling Chen
- Department of Clinical Psychologythe First People's Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunming650500China
| | - Yinyan Wang
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
| | - Wenjie Sun
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunming650500China
| | - Jing Su
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunming650500China
| | - Yongchang Chen
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunming650500China
| | - Xiaobao Liu
- Faculty of Mechanical and Electrical EngineeringKunming University of Science and TechnologyKunming650500China
| | - Congying Chu
- Brainnetome Center & National Laboratory of Pattern RecognitionInstitute of AutomationChinese Academy of SciencesBeijing100190China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunming650500China
- Yunnan Key Laboratory of Primate Biomedical ResearchKunming650500China
| |
Collapse
|
17
|
Wang YM, Wang WC, Pan Y, Zeng L, Wu J, Wang ZB, Zhuang XL, Li ML, Cooper DN, Wang S, Shao Y, Wang LM, Fan YY, He Y, Hu XT, Wu DD. Regional and aging-specific cellular architecture of non-human primate brains. Genome Med 2025; 17:41. [PMID: 40296047 PMCID: PMC12038948 DOI: 10.1186/s13073-025-01469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Deciphering the functionality and dynamics of brain networks across different regions and age groups in non-human primates (NHPs) is crucial for understanding the evolution of human cognition as well as the processes underlying brain pathogenesis. However, systemic delineation of the cellular composition and molecular connections among multiple brain regions and their alterations induced by aging in NHPs remain largely unresolved. METHODS In this study, we performed single-nucleus RNA sequencing on 39 samples collected from 10 brain regions of two young and two aged rhesus macaques using the DNBelab C4 system. Validation of protein expression of signatures specific to particular cell types, brain regions, and aging was conducted through a series of immunofluorescence and immunohistochemistry staining experiments. Loss-of-function experiments mediated by short hairpin RNA (shRNA) targeting two age-related genes (i.e., VSNL1 and HPCAL4) were performed in U251 glioma cells to verify their aging effects. Senescence-associated beta-galactosidase (SA-β-gal) staining and quantitative PCR (qPCR) of senescence marker genes were employed to assess cellular senescence in U251 cells. RESULTS We have established a large-scale cell atlas encompassing over 330,000 cells for the rhesus macaque brain. Our analysis identified numerous gene expression signatures that were specific to particular cell types, subtypes, brain regions, and aging. These datasets greatly expand our knowledge of primate brain organization and highlight the potential involvement of specific molecular and cellular components in both the regionalization and functional integrity of the brain. Our analysis also disclosed extensive transcriptional alterations and cell-cell connections across brain regions in the aging macaques. Finally, by examining the heritability enrichment of human complex traits and diseases, we determined that neurological traits were significantly enriched in neuronal cells and multiple regions with aging-relevant gene expression signatures, while immune-related traits exhibited pronounced enrichment in microglia. CONCLUSIONS Taken together, our study presents a valuable resource for investigating the cellular and molecular architecture of the primate nervous system, thereby expanding our understanding of the mechanisms underlying brain function, aging, and disease.
Collapse
Affiliation(s)
- Yun-Mei Wang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wen-Chao Wang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yongzhang Pan
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Zeng
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jing Wu
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Zheng-Bo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Yunnan Key Laboratory of Primate Biomedical Research, Kunming, 650107, China
| | - Xiao-Lin Zhuang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ming-Li Li
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Sheng Wang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yong Shao
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Li-Min Wang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Ying-Yin Fan
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yonghan He
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xin-Tian Hu
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| |
Collapse
|
18
|
Lammert DB, Fernandez RF, Liu X, Chen J, Koehler RC, Scafidi S, Scafidi J. Proteomic analysis of hippocampus reveals metabolic reprogramming in a piglet model of mild hypoxic ischemic encephalopathy. PLoS One 2025; 20:e0320869. [PMID: 40273072 PMCID: PMC12021231 DOI: 10.1371/journal.pone.0320869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 02/26/2025] [Indexed: 04/26/2025] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) remains a leading cause of long-term neurologic morbidity. Fifty percent of HIE cases are mild and do not have clearly defined therapeutic interventions. Emergent evidence now demonstrates that up to 25% of children with mild HIE suffer motor and developmental delay by 18 months and 35% have cognitive impairments by age 5 years. Interestingly, the hippocampus, which is responsible for learning and memory, does not show overt injury but does demonstrate volume changes on imaging that correlate with cognitive and behavioral outcomes. Although there is extensive data regarding pathophysiological changes following moderate and severe HIE, there is a paucity of understanding regarding the extent, duration, and compensatory adaptations in the mild neonatal HIE brain. We performed hippocampal proteomic analysis using a swine model of mild neonatal hypoxia-asphyxia. Hippocampi were collected at 24 or 72 hours after injury, and proteomics was performed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Pathway analysis demonstrated that several metabolic pathways are temporally regulated after mild HIE. Specifically, amino acid, carbohydrate, and one-carbon metabolism increased at 24 hours while fat metabolism and oxidative phosphorylation decreased at 24 hours. Downregulation of oxidative phosphorylation was more pronounced at 72 hours. Our data demonstrate that metabolic reprogramming occurs after mild HIE, and these changes persist up to 72 hours after injury. These results provide new evidence that mild HIE disrupts brain metabolism, emphasizing the need for a better understanding of the underlying pathophysiology of mild HIE and development of targeted therapeutic interventions for this population.
Collapse
Affiliation(s)
- Dawn B. Lammert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Regina F. Fernandez
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Michael V. Johnston Center for Developmental Neuroscience, Kennedy Krieger Institute, Baltimore, Maryland, United States of America
| | - Xiuyun Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Tianjin University, Tianjin, China
| | - Jingyao Chen
- The Michael V. Johnston Center for Developmental Neuroscience, Kennedy Krieger Institute, Baltimore, Maryland, United States of America
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Raymond C. Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Joseph Scafidi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Michael V. Johnston Center for Developmental Neuroscience, Kennedy Krieger Institute, Baltimore, Maryland, United States of America
| |
Collapse
|
19
|
Li CV, Knoblich JA. Advancing autism research: Insights from brain organoid modeling. Curr Opin Neurobiol 2025; 92:103030. [PMID: 40279814 DOI: 10.1016/j.conb.2025.103030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025]
Abstract
Autism Spectrum Disorders (ASD) are characterized by a variety of behavioral symptoms and a complex genetic architecture, posing significant challenges in understanding the mechanistic processes underlying their pathology. Despite extensive research, the mechanisms linking genetic variations to the phenotypic outcomes associated with ASD remain elusive. Consistent evidence indicates disruptions in early brain development among individuals with ASD. The advent of brain organoids offers a unique opportunity for uncovering, how brain development changes in ASD patients. Brain organoids are three-dimensional in vitro model systems derived from pluripotent stem cells that recapitulate early human brain development across multiple biological levels. They have become an invaluable tool for studying human-specific brain development processes and neurodevelopmental disorders. In this review, we discuss recent findings using brain organoid technologies to model ASD and discuss, how these new technologies can enhance our understanding of ASD genetics and pathology at the molecular, cellular, and tissue levels.
Collapse
Affiliation(s)
- Chong V Li
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna, Austria; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China; Chinese Institute for Brain Research, Beijing, PR China.
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna, Austria; Department of Neurology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
20
|
Kondo R, Kimura H, Ikeda M. Genetic association between gene expression profiles in oligodendrocyte precursor cells and psychiatric disorders. Front Psychiatry 2025; 16:1566155. [PMID: 40330652 PMCID: PMC12054250 DOI: 10.3389/fpsyt.2025.1566155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/19/2025] [Indexed: 05/08/2025] Open
Abstract
Background Although neuronal dysfunction has been the focus of many studies on psychiatric disorders, accumulating evidence suggests that white matter abnormalities and oligodendrocyte lineage cells, including oligodendrocyte precursor cells (OPCs), play an important role. Beyond their established contribution to myelination, synaptic genes in OPCs form connections to neurons and influence neuronal circuits and plasticity, thereby potentially contributing to psychiatric pathology. Methods We analyzed publicly available single-nucleus RNA sequencing (snRNA-seq) data from white matter cells of healthy donors with SCZ genome-wide association study (GWAS) summary statistics. We assessed cell-type-specific enrichment of SCZ-associated genetic variants and performed weighted gene co-expression network analysis (WGCNA) to identify disease-related gene modules in implicated cell types. Results OPCs exhibited significant enrichment of SCZ-associated genetic risk variants and showed pronounced specificity in gene expression patterns. Through WGCNA, we identified a distinct co-expression module in OPCs that was enriched for synaptic genes associated with SCZ. Conclusion The present results highlight the previously underappreciated role of OPCs in psychiatric disorders, suggesting that OPC-involved synaptic interactions may contribute to the pathophysiology of SCZ. This work underscores the importance of considering OPCs as active players in neural network dysfunction, with potential implications for future therapeutic strategies.
Collapse
Affiliation(s)
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | |
Collapse
|
21
|
Binan L, Jiang A, Danquah SA, Valakh V, Simonton B, Bezney J, Manguso RT, Yates KB, Nehme R, Cleary B, Farhi SL. Simultaneous CRISPR screening and spatial transcriptomics reveal intracellular, intercellular, and functional transcriptional circuits. Cell 2025; 188:2141-2158.e18. [PMID: 40081369 DOI: 10.1016/j.cell.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 10/24/2024] [Accepted: 02/14/2025] [Indexed: 03/16/2025]
Abstract
Pooled optical screens have enabled the study of cellular interactions, morphology, or dynamics at massive scale, but they have not yet leveraged the power of highly plexed single-cell resolved transcriptomic readouts to inform molecular pathways. Here, we present a combination of imaging spatial transcriptomics with parallel optical detection of in situ amplified guide RNAs (Perturb-FISH). Perturb-FISH recovers intracellular effects that are consistent with single-cell RNA-sequencing-based readouts of perturbation effects (Perturb-seq) in a screen of lipopolysaccharide response in cultured monocytes, and it uncovers intercellular and density-dependent regulation of the innate immune response. Similarly, in three-dimensional xenograft models, Perturb-FISH identifies tumor-immune interactions altered by genetic knockout. When paired with a functional readout in a separate screen of autism spectrum disorder risk genes in human-induced pluripotent stem cell (hIPSC) astrocytes, Perturb-FISH shows common calcium activity phenotypes and their associated genetic interactions and dysregulated molecular pathways. Perturb-FISH is thus a general method for studying the genetic and molecular associations of spatial and functional biology at single-cell resolution.
Collapse
Affiliation(s)
- Loϊc Binan
- Spatial Technology Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Aiping Jiang
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02144, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Serwah A Danquah
- Spatial Technology Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vera Valakh
- Spatial Technology Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brooke Simonton
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jon Bezney
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Robert T Manguso
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02144, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kathleen B Yates
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02144, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brian Cleary
- Faculty of Computing and Data Sciences, Boston University, Boston, MA 02215, USA; Department of Biology, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Program in Bioinformatics, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA.
| | - Samouil L Farhi
- Spatial Technology Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
22
|
Xu J, Yan Z, Bang S, Velmeshev D, Ji RR. GPR37L1 identifies spinal cord astrocytes and protects neuropathic pain after nerve injury. Neuron 2025; 113:1206-1222.e6. [PMID: 39952243 PMCID: PMC12005970 DOI: 10.1016/j.neuron.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/10/2024] [Accepted: 01/16/2025] [Indexed: 02/17/2025]
Abstract
Astrocytes in the spinal cord dorsal horn (SDH) play a pivotal role in synaptic transmission and neuropathic pain. However, the precise classification of SDH astrocytes in health and disease remains elusive. Here, we reveal Gpr37l1 as a marker and functional regulator of spinal astrocytes. Through single-nucleus RNA sequencing, we identified Gpr37l1 as a selective G-protein-coupled receptor (GPCR) marker for spinal cord astrocytes. Notably, SDH displayed reactive astrocyte phenotypes and exacerbated neuropathic pain following nerve injury combined with Gpr37l1 deficiency. In naive animals, Gpr37l1 knockdown in SDH astrocytes induces astrogliosis and pain hypersensitivity, while Gpr37l1-/- mice fail to recover from neuropathic pain. GPR37L1 activation by maresin 1 increased astrocyte glutamate transporter 1 (GLT-1) activity and reduced spinal EPSCs and neuropathic pain. Selective overexpression of Gpr37l1 in SDH astrocytes reversed neuropathic pain and astrogliosis after nerve injury. Our findings illuminate astrocyte GPR37l1 as an essential negative regulator of pain, which protects against neuropathic pain through astrocyte signaling in SDH.
Collapse
Affiliation(s)
- Jing Xu
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Zihan Yan
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sangsu Bang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Dmitry Velmeshev
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
23
|
Balasubramanian R, Saha D, Arun A, Vinod PK. Hypometabolism in Autism Spectrum Disorder: Insights from Brain and Blood Transcriptomics. Mol Neurobiol 2025:10.1007/s12035-025-04941-2. [PMID: 40232643 DOI: 10.1007/s12035-025-04941-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by challenges in social communication, repetitive behaviors, and restricted interests. Recent research has emphasized the importance of metabolic dysfunctions in the pathophysiology of ASD. This study investigates metabolic alterations associated with ASD by analyzing transcriptomic data obtained from the prefrontal cortex (bulk tissue and single-nucleus) and data from peripheral blood mononuclear cells (PBMC). We assessed the metabolic activity of each patient based on gene expression profiles, revealing significant downregulation of vital metabolic pathways, including glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation, indicative of hypometabolism. Our analysis also highlighted dysregulation in lipid, vitamin, amino acid, and heme metabolism, which may contribute to the neurodevelopmental delays associated with ASD. Cell-specific metabolic activities in the ASD brain showed altered pathways in astrocytes, oligodendrocytes, excitatory neurons, and interneurons. Furthermore, we identified critical metabolic pathways and genes from PBMC gene expression data that distinguish ASD patients from typically developing individuals. Our findings demonstrate a consistent pattern of metabolic dysfunction across brain and blood samples. This research provides a comprehensive understanding of metabolic alterations in ASD, paving the way for exploring potential therapeutic strategies targeting metabolic dysregulation.
Collapse
Affiliation(s)
- Rami Balasubramanian
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Debayan Saha
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Ananya Arun
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Palakkad Krishnanunni Vinod
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India.
| |
Collapse
|
24
|
Yao L, Shah SR, Ozer A, Zhang J, Pan X, Xia T, Fangal VD, Leung AKY, Wei M, Lis JT, Yu H. High-resolution reconstruction of cell-type specific transcriptional regulatory processes from bulk sequencing samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646189. [PMID: 40291712 PMCID: PMC12026507 DOI: 10.1101/2025.04.02.646189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Biological systems exhibit remarkable heterogeneity, characterized by intricate interplay among diverse cell types. Resolving the regulatory processes of specific cell types is crucial for delineating developmental mechanisms and disease etiologies. While single-cell sequencing methods such as scRNA-seq and scATAC-seq have revolutionized our understanding of individual cellular functions, adapting bulk genome-wide assays to achieve single-cell resolution of other genomic features remains a significant technical challenge. Here, we introduce Deep-learning-based DEconvolution of Tissue profiles with Accurate Interpretation of Locus-specific Signals (DeepDETAILS), a novel quasi-supervised framework to reconstruct cell-type-specific genomic signals with base-pair precision. DeepDETAILS' core innovation lies in its ability to perform cross-modality deconvolution using scATAC-seq reference libraries for other bulk datasets, benefiting from the affordability and availability of scATAC-seq data. DeepDETAILS enables high-resolution mapping of genomic signals across diverse cell types, with great versatility for various omics datasets, including nascent transcript sequencing (such as PRO-cap and PRO-seq) and ChIP-seq for chromatin modifications. Our results demonstrate that DeepDETAILS significantly outperformed traditional statistical deconvolution methods. Using DeepDETAILS, we developed a comprehensive compendium of high-resolution nascent transcription and histone modification signals across 39 diverse human tissues and 86 distinct cell types. Furthermore, we applied our compendium to fine-map risk variants associated with Primary Sclerosing Cholangitis (PSC), a progressive cholestatic liver disorder, and revealed a potential etiology of the disease. Our tool and compendium provide invaluable insights into cellular complexity, opening new avenues for studying biological processes in various contexts.
Collapse
|
25
|
Fang C, Zhang X, Yang L, Sun L, Lu Y, Liu Y, Guo J, Wang M, Tan Y, Zhang J, Gao X, Zhu L, Liu G, Ren M, Xiao J, Zhang F, Ma S, Zhao R, Mei X, Qi D. Transcriptomic and morphologic vascular aberrations underlying FCDIIb etiology. Nat Commun 2025; 16:3320. [PMID: 40199880 PMCID: PMC11978774 DOI: 10.1038/s41467-025-58535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/25/2025] [Indexed: 04/10/2025] Open
Abstract
Focal cortical dysplasia type II (FCDII) is a major cause of drug-resistant epilepsy, but genetic factors explain only some cases, suggesting other mechanisms. In this study, we conduct a molecular analysis of brain lesions and adjacent areas in FCDIIb patients. By analyzing over 217,506 single-nucleus transcriptional profiles from 15 individuals, we find significant changes in smooth muscle cells (SMCs) and astrocytes. We identify abnormal vascular malformations and a unique type of SMC that we call "Firework cells", which migrate from blood vessels into the brain parenchyma and associate with VIM+ cells. These abnormalities create localized ischemic-hypoxic (I/H) microenvironments, as confirmed by clinical data, further impairing astrocyte function, activating the HIF-1α/mTOR/S6 pathway, and causing neuronal loss. Using zebrafish models, we demonstrate that vascular abnormalities resulting in I/H environments promote seizures. Our results highlight vascular malformations as a factor in FCDIIb pathogenesis, suggesting potential therapeutic avenues.
Collapse
Affiliation(s)
- Chuantao Fang
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
- Shanghai Tenth People's Hospital, Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Xiaodan Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Lin Yang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Licheng Sun
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yujia Lu
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Liu
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, Vigo, Spain
| | - Jingjing Guo
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Min Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Yanfeng Tan
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Jinsen Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Xin Gao
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, China
| | - Li Zhu
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guoping Liu
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Jianbo Xiao
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, Vigo, Spain
| | - Fayong Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Shaojie Ma
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rui Zhao
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China.
- Department of Neurosurgery, Children's Hospital of Shanghai, Shanghai, China.
- Department of Neurosurgery, Hainan Women and Children's Medical Center, Haikou, China.
| | - Xinyu Mei
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Dashi Qi
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Gao S, Shan C, Zhang R, Wang T. Genetic advances in neurodevelopmental disorders. MEDICAL REVIEW (2021) 2025; 5:139-151. [PMID: 40224365 PMCID: PMC11987507 DOI: 10.1515/mr-2024-0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/14/2024] [Indexed: 04/15/2025]
Abstract
Neurodevelopmental disorders (NDDs) are a group of highly heterogeneous diseases that affect children's social, cognitive, and emotional functioning. The etiology is complicated with genetic factors playing an important role. During the past decade, large-scale whole exome sequencing (WES) and whole genome sequencing (WGS) have vastly advanced the genetic findings of NDDs. Various forms of variants have been reported to contribute to NDDs, such as de novo mutations (DNMs), copy number variations (CNVs), rare inherited variants (RIVs), and common variation. By far, over 200 high-risk NDD genes have been identified, which are involved in biological processes including synaptic function, transcriptional and epigenetic regulation. In addition, monogenic, oligogenic, polygenetic, and omnigenic models have been proposed to explain the genetic architecture of NDDs. However, the majority of NDD patients still do not have a definitive genetic diagnosis. In the future, more types of risk factors, as well as noncoding variants, are await to be identified, and including their interplay mechanisms are key to resolving the etiology and heterogeneity of NDDs.
Collapse
Affiliation(s)
- Shilin Gao
- Department of Neuroscience, Neuroscience Research Institute, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China
| | - Chaoyi Shan
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Rong Zhang
- Department of Neuroscience, Neuroscience Research Institute, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China
| | - Tianyun Wang
- Department of Neuroscience, Neuroscience Research Institute, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Autism Research Center, Peking University Health Science Center, Beijing, China
| |
Collapse
|
27
|
Zhao G, Lu Z, Liao Y, Sun Y, Zhang Y, Kang Z, Feng X, Sun J, Yue W. Association of intestinal anti-inflammatory drug target genes with psychiatric Disorders: A Mendelian randomization study. J Adv Res 2025; 70:545-553. [PMID: 38735387 PMCID: PMC11976564 DOI: 10.1016/j.jare.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
INTRODUCTION Psychiatric disorders present a substantial global public health burden with limited drug options. The gut-brain axis connects inflammatory bowel diseases and psychiatric disorders, which often have comorbidities. While some evidence hints at anti-inflammatory drugs aiding in treating psychiatric conditions, the specific effects of intestinal anti-inflammatory drugs remain unclear. OBJECTIVES This study investigates the causal effect of intestinal anti-inflammatory drug targets on psychiatric disorders. We hypothesize that these drug targets may offer new insights into the treatment and prevention of such disorders. Additionally, we explore gut microbiota's mediating role between drug target genes and psychiatric disorders. METHODS We performed two-sample Mendelian randomization (MR) using summary data from existing expression quantitative trait loci (eQTL) and protein QTL in the brain, along with public genome-wide association studies of disease. We also explored gut microbiota's mediating effect. The statistics encompassed six psychiatric disorders involving 9,725-500,199 individuals. Colocalization analysis enhanced the MR evidence. RESULTS We uncovered a causal link between TPMT (a target of olsalazine) expression in the amygdala and bipolar disorder (BD) risk (odds ratio [OR] = 1.08; P = 4.29 × 10-4). This association was observed even when the sigmoid colon and whole blood eQTL were considered as exposures. Colocalization analysis revealed a shared genetic variant (rs11751561) between TPMT expression and BD, with a posterior probability of 61.6 %. Interestingly, this causal effect was influenced by a decrease in the gut microbiota abundance of the genus Roseburia (effect proportion = 10.05 %). Moreover, elevated ACAT1 expression was associated with higher obsessive-compulsive disorder risk (OR = 1.62; P = 3.64 × 10-4; posterior probability = 3.1 %). CONCLUSION These findings provide novel targets for the treatment of psychiatric disorders, underscore the potential of repurposing olsalazine, and emphasize the importance of TPMT and ACAT1 in future drug development.
Collapse
Affiliation(s)
- Guorui Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Zhe Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yundan Liao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yaoyao Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yuyanan Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Zhewei Kang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Xiaoyang Feng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Junyuan Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Weihua Yue
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
28
|
Zhu M, Peng J, Wang M, Lin S, Zhang H, Zhou Y, Dai X, Zhao H, Yu YQ, Shen L, Li XM, Chen J. Transcriptomic and spatial GABAergic neuron subtypes in zona incerta mediate distinct innate behaviors. Nat Commun 2025; 16:3107. [PMID: 40169544 PMCID: PMC11961626 DOI: 10.1038/s41467-025-57896-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Understanding the anatomical connection and behaviors of transcriptomic neuron subtypes is critical to delineating cell type-specific functions in the brain. Here we integrated single-nucleus transcriptomic sequencing, in vivo circuit mapping, optogenetic and chemogenetic approaches to dissect the molecular identity and function of heterogeneous GABAergic neuron populations in the zona incerta (ZI) in mice, a region involved in modulating various behaviors. By microdissecting ZI for transcriptomic and spatial gene expression analyses, our results revealed two non-overlapping Ecel1- and Pde11a-expressing GABAergic neurons with dominant expression in the rostral and medial zona incerta (ZIrEcel1 and ZImPde11a), respectively. The GABAergic projection from ZIrEcel1 to periaqueductal gray mediates self-grooming, while the GABAergic projection from ZImPde11a to the oral part of pontine reticular formation promotes transition from sleep to wakefulness. Together, our results revealed the molecular markers, spatial organization and specific neuronal circuits of two discrete GABAergic projection neuron populations in segregated subregions of the ZI that mediate distinct innate behaviors, advancing our understanding of the functional organization of the brain.
Collapse
Affiliation(s)
- Mengyue Zhu
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jieqiao Peng
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Mi Wang
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shan Lin
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Huiying Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yu Zhou
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xinyue Dai
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Huiying Zhao
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yan-Qin Yu
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China
| | - Li Shen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Ming Li
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Center for Brain Science and Brain-Inspired Intelligence, Research Units for Emotion and Emotion Disorders, Chinese Academy of Medical Sciences, Hangzhou, China.
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 311305, China.
| | - Jiadong Chen
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
29
|
Sorelli M, Di Meo D, Bradley S, Cheli F, Ramazzotti J, Perego L, Destrieux C, Hof PR, Pavone FS, Mazzamuto G, Costantini I. Myelinated fiber labeling and orientation mapping of the human brain with light-sheet fluorescence microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.645981. [PMID: 40236238 PMCID: PMC11996332 DOI: 10.1101/2025.03.31.645981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The convoluted network of myelinated fibers that supports behavior, cognition, and sensory processing in the human brain is the source of its extraordinary complexity. Advancements in tissue optical clearing, 3D fluorescence microscopy, and automated image analysis have enabled unprecedented insights into the architecture of these networks. Here, we investigate the multiscale organization of myelinated fibers in human brain tissue from the brainstem, Broca's area, hippocampus, and primary visual cortex by exploiting a specific fiber staining method, light-sheet fluorescence microscopy (LSFM), and an advanced spatial orientation analysis tool. Using an optimized protocol that integrates tissue clearing with the lipophilic DiD probe to achieve uniform and deep myelinated fiber labeling, we generate micrometerresolution volumetric reconstructions of multiple brain regions through an inverted LSFM. Automated image processing, employing unsupervised 3D multiscale Frangi filters, provides orientation distribution functions and local orientation dispersion maps. This enables precise characterization of the directionality of white matter bundles, linking mesoscopic structural properties to orientation details computed at the native micrometric resolution of the LSFM apparatus. The presented workflow illustrates a robust platform for large-scale, high-resolution brain mapping, which may facilitate the investigation of pathological alterations with unparalleled spatial resolution and, furthermore, the validation of other neuroimaging modalities.
Collapse
|
30
|
Cha J, Lee I. Single-cell network biology enabling cell-type-resolved disease genetics. Genomics Inform 2025; 23:10. [PMID: 40148916 PMCID: PMC11951680 DOI: 10.1186/s44342-025-00042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Gene network models provide a foundation for graph theory approaches, aiding in the novel discovery of drug targets, disease genes, and genetic mechanisms for various biological functions. Disease genetics must be interpreted within the cellular context of disease-associated cell types, which cannot be achieved with datasets consisting solely of organism-level samples. Single-cell RNA sequencing (scRNA-seq) technology allows computational distinction of cell states which provides a unique opportunity to understand cellular biology that drives disease processes. Importantly, the abundance of cell samples with their transcriptome-wide profile allows the modeling of systemic cell-type-specific gene networks (CGNs), offering insights into gene-cell-disease relationships. In this review, we present reference-based and de novo inference of gene functional interaction networks that we have recently developed using scRNA-seq datasets. We also introduce a compendium of CGNs as a useful resource for cell-type-resolved disease genetics. By leveraging these advances, we envision single-cell network biology as the key approach for mapping the gene-cell-disease axis.
Collapse
Affiliation(s)
- Junha Cha
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
31
|
Pham K, Malachowski T, Zhou L, Kim JH, Su C, Phillips-Cremins JE. Mosaic H3K9me3 at BREACHes predicts synaptic gene expression associated with fragile X syndrome cognitive severity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644148. [PMID: 40166285 PMCID: PMC11957133 DOI: 10.1101/2025.03.19.644148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Diseases vary in clinical presentation across individuals despite the same molecular diagnosis. In fragile X syndrome (FXS), mutation-length expansion of a CGG short tandem repeat (STR) in FMR1 causes reduced gene expression and FMRP loss. Nevertheless, FMR1 and FMRP are limited predictors of adaptive functioning and cognition in FXS patients, suggesting that molecular correlates of clinical measures would add diagnostic value. We recently uncovered Megabase-scale domains of heterochromatin (BREACHes) in FXS patient-derived iPSCs. Here, we identify BREACHes in FXS brain tissue (N=4) and absent from sex/age-matched neurotypical controls (N=4). BREACHes span >250 genes and exhibit patient-specific H3K9me3 variation. Using N=4 FXS iPSC lines and N=7 single-cell isogenic FXS iPSC subclones, we observe a strong correlation between inter-sample H3K9me3 variation and heterogeneous BREACH gene repression. We demonstrate improved prediction of cognitive metrics in FXS patients with an additive model of blood FMRP and mRNA levels of H3K9me3-mosaic, but not H3K9me3-invariant, BREACH genes. Our results highlight the utility of H3K9me3 variation at BREACHes for identifying genes associated with FXS clinical metrics.
Collapse
Affiliation(s)
- Kenneth Pham
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Malachowski
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Linda Zhou
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ji Hun Kim
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chuanbin Su
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer E. Phillips-Cremins
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
Andrade AX, Nguyen S, Montillo A. scMEDAL for the interpretable analysis of single-cell transcriptomics data with batch effect visualization using a deep mixed effects autoencoder. RESEARCH SQUARE 2025:rs.3.rs-6081478. [PMID: 40166015 PMCID: PMC11957221 DOI: 10.21203/rs.3.rs-6081478/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
scRNA-seq data has the potential to provide new insights into cellular heterogeneity and data acquisition; however, a major challenge is unraveling confounding from technical and biological batch effects. Existing batch correction algorithms suppress and discard these effects, rather than quantifying and modeling them. Here, we present scMEDAL, a framework for s ingle- c ell M ixed E ffects D eep A utoencoder L earning, which separately models batch-invariant and batch-specific effects using two complementary autoencoder networks. One network is trained through adversarial learning to capture a batch-invariant representation, while a Bayesian autoencoder learns a batch-specific representation. Comprehensive evaluations spanning conditions (e.g., autism, leukemia, and cardiovascular), cell types, and technical and biological effects demonstrate that scMEDAL suppresses batch effects while modeling batch-specific variation, enhancing accuracy and interpretability. Unlike prior approaches, the framework's fixed- and random-effects autoencoders enable retrospective analyses, including predicting a cell's expression as if it had been acquired in a different batch via genomap projections at the cellular level, revealing the impact of biological (e.g., diagnosis) and technical (e.g., acquisition) effects. By combining scMEDAL's batch-agnostic and batch-specific latent spaces, it enables more accurate predictions of disease status, donor group, and cell type, making scMEDAL a valuable framework for gaining deeper insight into data acquisition and cellular heterogeneity.
Collapse
Affiliation(s)
- Aixa X. Andrade
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Son Nguyen
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Albert Montillo
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
33
|
Tamada K, Takumi T. Neurodevelopmental impact of CNV models in ASD: Recent advances and future directions. Curr Opin Neurobiol 2025; 92:103001. [PMID: 40090136 DOI: 10.1016/j.conb.2025.103001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/18/2025]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social communication impairments and restricted, repetitive behaviors. ASD exhibits a strong genetic basis, with rare and common genetic variants contributing to its etiology. Copy number variations (CNVs), deletions or duplications of chromosomal segments, have emerged as key contributors to ASD risk. Rare CNVs often demonstrate large effect sizes and can directly cause ASD, while common variants collectively exert subtle influences. Recent advances have identified numerous ASD-associated CNVs, including recurrent loci such as 1q21.1, 2p16.3, 7q11.23, 15q11.2, 15q11-q13, 16p11.2 and 22q11.2. Mouse models carrying these CNVs have provided profound insights into the underlying neurobiological mechanisms. Recent studies integrating transcriptomic, proteomic, and functional imaging approaches have revealed alterations in synaptic function, neuronal differentiation, myelination, metabolic pathways, and circuit connectivity. Notably, investigations leveraging conditional knockout models, high magnetic field MRI, and single-cell analyses highlight disruptions in excitatory-inhibitory balance, white matter integrity, and dynamic gene regulatory networks. Parallel human-based approaches, including iPSC-derived neurons, cerebral organoids, and large-scale single-nucleus sequencing, are combined with animal model data. These integrative strategies promise to refine our understanding of ASD's genetic architecture, bridging the gap between fundamental discoveries in model organisms and clinically relevant biomarkers, subtypes, and therapeutic targets in humans. This review summarizes key findings from recent CNV mouse model studies and highlights emerging technologies applied to human ASD samples. Finally, we outline prospects for translating findings from mouse studies to humans. By illuminating both unique and convergent genetic mechanisms, these advances offer a critical framework for unraveling etiological complexity in ASD.
Collapse
Affiliation(s)
- Kota Tamada
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan.
| | - Toru Takumi
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan.
| |
Collapse
|
34
|
Andrade AX, Nguyen S, Montillo A. scMEDAL for the interpretable analysis of single-cell transcriptomics data with batch effect visualization using a deep mixed effects autoencoder. ARXIV 2025:arXiv:2411.06635v3. [PMID: 39606715 PMCID: PMC11601787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
scRNA-seq data has the potential to provide new insights into cellular heterogeneity and data acquisition; however, a major challenge is unraveling confounding from technical and biological batch effects. Existing batch correction algorithms suppress and discard these effects, rather than quantifying and modeling them. Here, we present scMEDAL, a framework for single-cell Mixed Effects Deep Autoencoder Learning, which separately models batch-invariant and batch-specific effects using two complementary autoencoder networks. One network is trained through adversarial learning to capture a batch-invariant representation, while a Bayesian autoencoder learns a batch-specific representation. Comprehensive evaluations spanning conditions (e.g., autism, leukemia, and cardiovascular), cell types, and technical and biological effects demonstrate that scMEDAL suppresses batch effects while modeling batch-specific variation, enhancing accuracy and interpretability. Unlike prior approaches, the framework's fixed- and random-effects autoencoders enable retrospective analyses, including predicting a cell's expression as if it had been acquired in a different batch via genomap projections at the cellular level, revealing the impact of biological (e.g., diagnosis) and technical (e.g., acquisition) effects. By combining scMEDAL's batch-agnostic and batch-specific latent spaces, it enables more accurate predictions of disease status, donor group, and cell type, making scMEDAL a valuable framework for gaining deeper insight into data acquisition and cellular heterogeneity.
Collapse
|
35
|
Qin Q, Fan L, Zeng X, Zheng D, Wang H, Li M, Jiang Y, Wang H, Liu H, Liang S, Wu L, Liang S. Mesenchymal stem cell-derived extracellular vesicles alleviate autism by regulating microglial glucose metabolism reprogramming and neuroinflammation through PD-1/PD-L1 interaction. J Nanobiotechnology 2025; 23:201. [PMID: 40069859 PMCID: PMC11895333 DOI: 10.1186/s12951-025-03250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
Neuroinflammation triggered by microglia activation is hallmark of autism spectrum disorder (ASD), and this process includes crucial metabolic reprogramming from oxidative phosphorylation to glycolysis, which may cause neuron loss and functional impairment. The inhibitory immune checkpoint programmed cell death protein 1 (PD-1) on immune cells is an important target for tumor immunotherapy. However, the immunomodulatory effects of PD-1 in ASD remains to be elusive. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) exhibit immunomodulatory capabilities in a range of neurological diseases. Our findings indicated the expression of PD-L1 on MSC-EVs, potentially facilitating signaling to PD-1-expressing microglia. Here, we showed how MSC-EVs activated of PD-L1/PD-1 axis and ameliorated glycolysis, neuroinflammation and autism-like behaviors. After first detecting elevated glycolysis and neuroinflammation in prefrontal cortex (PFC) tissue from the maternal immune activation (MIA) mice, we also demonstrated that PD-1 expression level was upregulated in microglia. Following given MSC-EVs carried PD-L1 into adult MIA offspring mice via intranasal administration, which bound with PD-1 on microglia and then the autism-like behaviors were alleviated as well. Further experiments verified that MSC-EVs could decreased the level of glycolysis and neuroinflammation by PD-1/ERK/HIF-1α pathway in the primary microglia in PFC of MIA offspring mice. Pharmacological blockade and genetic inhibition of PD-1 could weaken the effect of MSC-EVs and aggravate microglial dysfunction, glycolysis and autism-like behaviors in MIA offspring mice. Futhermore, PD-L1 deficient weakened the effect of MSC-EVs on neuroinflammation, glycolysis and autism-like behaviors in MIA offspring mice. Our research indicated the significant immunomodulatory capabilities of MSC-EVs, which play an important role in reprogramming microglial glucose metabolism and suppressing neuroinflammation in ASD. By activating the PD-L1/PD-1 axis and inhibiting the downstream ERK/HIF-1α pathway, MSC-EVs were found to alleviate autism-like behaviors, which revealing a novel pathological mechanism and offering promising therapeutic insights into ASD.
Collapse
Affiliation(s)
- Qian Qin
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Linlin Fan
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Xin Zeng
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Danyang Zheng
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Han Wang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Mengyue Li
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yutong Jiang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Hui Wang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Hao Liu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Shengjun Liang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China.
| | - Shuang Liang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
36
|
Yang R, Wang X, Yang J, Zhou X, Wu Y, Li Y, Huang Y, Zhang J, Liu P, Yuan M, Tan X, Zheng P, Wu J. Perturbations in the microbiota-gut-brain axis shaped by social status loss. Commun Biol 2025; 8:401. [PMID: 40057654 PMCID: PMC11890786 DOI: 10.1038/s42003-025-07850-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/28/2025] [Indexed: 05/13/2025] Open
Abstract
Social status is closely linked to physiological and psychological states. Loss of social dominance can lead to brain disorders such as depression, but the underlying mechanisms remain unclear. The gut microbiota can sense stress and contribute to brain disorders via the microbiota-gut-brain axis (MGBA). Here, using a forced loss paradigm to demote dominant mice to subordinate ranks, we find that stress alters the composition and function of the gut microbiota, increasing Muribaculaceae abundance and enhancing butanoate metabolism, and gut microbial depletion resists forced loss-induced hierarchical demotion and behavioral alteration. Single-nucleus transcriptomic analysis of the prefrontal cortex (PFC) indicates that social status loss primarily affected interneurons, altering GABAergic synaptic transmission. Weighted gene co-expression network analysis (WGCNA) reveals modules linked to forced loss in the gut microbiota, colon, PFC, and PFC interneurons, suggesting changes in the PI3K-Akt signaling pathway and the glutamatergic synapse. Our findings provide evidence for MGBA perturbations induced by social status loss, offering potential intervention targets for related brain disorders.
Collapse
Grants
- 2024MD754023 China Postdoctoral Science Foundation
- 82201688 National Natural Science Foundation of China (National Science Foundation of China)
- 82171523 National Natural Science Foundation of China (National Science Foundation of China)
- 82471545 National Natural Science Foundation of China (National Science Foundation of China)
- The National Natural Science Foundation Project of China (82401784, 32400850, 82401523),the National Key R&D Program of China (STI2030-Major Projects 2021ZD0202400, STI2030-Major Projects 2021ZD0200600), National Reserve Talent Project in the Health and Wellness Sector of Chongqing (HBRC202410, HBRC202417), the Program for Youth Innovation in Future Medicine of Chongqing Medical University, Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJZD-K202400404), the Key Project of the Natural Science Foundation of Chongqing (Chongqing Science and Technology Development Foundation) under Grant No. 2024NSCQ-KJFZZDX0005, the New Chongqing Youth Innovation Talent Project (Life and Health) under Grant No. 2024NSCQ-qncxX0029, Joint Project of Chongqing Health Commission and Science and Technology Bureau (2024QNXM046).
Collapse
Affiliation(s)
- Ruijing Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Xin Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Jie Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Xingyu Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Yiyuan Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Yifan Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Yu Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Jianping Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Ping Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Minghao Yuan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Xunmin Tan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China.
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China.
| | - Jing Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China.
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
37
|
Gerstner N, Fröhlich AS, Matosin N, Gagliardi M, Cruceanu C, Ködel M, Rex-Haffner M, Tu X, Mostafavi S, Ziller MJ, Binder EB, Knauer-Arloth J. Contrasting genetic predisposition and diagnosis in psychiatric disorders: A multi-omic single-nucleus analysis of the human OFC. SCIENCE ADVANCES 2025; 11:eadq2290. [PMID: 40053590 PMCID: PMC11887846 DOI: 10.1126/sciadv.adq2290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025]
Abstract
Psychiatric disorders like schizophrenia, bipolar disorder, and major depressive disorder exhibit substantial genetic and clinical overlap. However, their molecular architecture remains elusive due to their polygenic nature and complex brain cell interactions. We integrated clinical data with genetic susceptibility to investigate gene expression and chromatin accessibility in the orbitofrontal cortex of 92 postmortem human brain samples at the single-nucleus (sn) level. Using snRNA-seq and snATAC-seq, we analyzed ~800,000 and 400,000 nuclei, respectively. We observed cell-type-specific dysregulation related to clinical diagnosis and genetic risk. Dysregulation in gene expression and chromatin accessibility associated with diagnosis was pronounced in excitatory neurons. Conversely, genetic risk predominantly affected glial and endothelial cells. Notably, INO80E and HCN2 genes exhibited dysregulation in excitatory neurons' superficial layers 2/3 influenced by schizophrenia polygenic risk. This study unveils the complex genetic and epigenetic landscape of psychiatric disorders, emphasizing the importance of cell-type-specific analyses in understanding their pathogenesis and contrasting genetic predisposition with clinical diagnosis.
Collapse
Affiliation(s)
- Nathalie Gerstner
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anna S. Fröhlich
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Natalie Matosin
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Miriam Gagliardi
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Cristiana Cruceanu
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maik Ködel
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Monika Rex-Haffner
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Xinming Tu
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Sara Mostafavi
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | | | - Elisabeth B. Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Janine Knauer-Arloth
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
38
|
Ge Q, Yang J, Huang F, Dai X, Chen C, Guo J, Wang M, Zhu M, Shao Y, Xia Y, Zhou Y, Peng J, Deng S, Shi J, Hu Y, Zhang H, Wang Y, Wang X, Li XM, Chen Z, Shu Y, Zhu JM, Zhang J, Shen Y, Duan S, Xu S, Shen L, Chen J. Multimodal single-cell analyses reveal molecular markers of neuronal senescence in human drug-resistant epilepsy. J Clin Invest 2025; 135:e188942. [PMID: 40026248 PMCID: PMC11870744 DOI: 10.1172/jci188942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/10/2024] [Indexed: 03/05/2025] Open
Abstract
The histopathological neurons in the brain tissue of drug-resistant epilepsy exhibit aberrant cytoarchitecture and imbalanced synaptic circuit function. However, the gene expression changes of these neurons remain unknown, making it difficult to determine the diagnosis or to dissect the mechanism of drug-resistant epilepsy. By integrating whole-cell patch clamp recording and single-cell RNA-seq approaches, we identified a transcriptionally distinct subset of cortical pyramidal neurons. These neurons highly expressed genes CDKN1A (P21), CCL2, and NFKBIA, which associate with mTOR pathway, inflammatory response, and cellular senescence. We confirmed the expression of senescent marker genes in a subpopulation of cortical pyramidal neurons with enlarged soma size in the brain tissue of drug-resistant epilepsy. We further revealed the expression of senescent cell markers P21, P53, COX2, γ-H2AX, and β-Gal, and reduction of nuclear integrity marker Lamin B1 in histopathological neurons in the brain tissue of patients with drug-resistant epilepsy with different pathologies, but not in control brain tissue with no history of epilepsy. Additionally, chronic, but not acute, epileptic seizures induced senescent marker expression in cortical neurons in mouse models of drug-resistant epilepsy. These results provide important molecular markers for histopathological neurons and what we believe to be new insights into the pathophysiological mechanisms of drug-resistant epilepsy.
Collapse
Affiliation(s)
- Qianqian Ge
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Jiachao Yang
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Fei Huang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xinyue Dai
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Chao Chen
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingxin Guo
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Mi Wang
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Mengyue Zhu
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Yijie Shao
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuxian Xia
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Yu Zhou
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Jieqiao Peng
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Suixin Deng
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jiachen Shi
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Yiqi Hu
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Huiying Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoqun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiao-Ming Li
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Center for Brain Science and Brain-inspired Intelligence, Research Units for Emotion and Emotion Disorders, Chinese Academy of Medical Sciences, Hangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
- Nanhu Brain-computer Interface Institute, Hangzhou, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yousheng Shu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jun-Ming Zhu
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Shen
- Brain Health Center, the Fourth Affiliated Hospital, Zhejiang University, Yiwu, China
| | - Shumin Duan
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Shengjin Xu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Shen
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
| | - Jiadong Chen
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
39
|
Liu C, Li X, Hu Q, Jia Z, Ye Q, Wang X, Zhao K, Liu L, Wang M. Decoding the blueprints of embryo development with single-cell and spatial omics. Semin Cell Dev Biol 2025; 167:22-39. [PMID: 39889540 DOI: 10.1016/j.semcdb.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/18/2025] [Accepted: 01/18/2025] [Indexed: 02/03/2025]
Abstract
Embryonic development is a complex and intricately regulated process that encompasses precise control over cell differentiation, morphogenesis, and the underlying gene expression changes. Recent years have witnessed a remarkable acceleration in the development of single-cell and spatial omic technologies, enabling high-throughput profiling of transcriptomic and other multi-omic information at the individual cell level. These innovations offer fresh and multifaceted perspectives for investigating the intricate cellular and molecular mechanisms that govern embryonic development. In this review, we provide an in-depth exploration of the latest technical advancements in single-cell and spatial multi-omic methodologies and compile a systematic catalog of their applications in the field of embryonic development. We deconstruct the research strategies employed by recent studies that leverage single-cell sequencing techniques and underscore the unique advantages of spatial transcriptomics. Furthermore, we delve into both the current applications, data analysis algorithms and the untapped potential of these technologies in advancing our understanding of embryonic development. With the continuous evolution of multi-omic technologies, we anticipate their widespread adoption and profound contributions to unraveling the intricate molecular foundations underpinning embryo development in the foreseeable future.
Collapse
Affiliation(s)
- Chang Liu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China; Shenzhen Proof-of-Concept Center of Digital Cytopathology, BGI Research, Shenzhen 518083, China
| | | | - Qinan Hu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China
| | - Zihan Jia
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Ye
- BGI Research, Hangzhou 310030, China; China Jiliang University, Hangzhou 310018, China
| | | | - Kaichen Zhao
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Longqi Liu
- BGI Research, Hangzhou 310030, China; Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China.
| | - Mingyue Wang
- BGI Research, Hangzhou 310030, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China.
| |
Collapse
|
40
|
Lai J, Demirbas D, Phillips K, Zhao B, Wallace H, Seferian M, Nakayama T, Harris H, Chatzipli A, Lee EA, Yu TW. Multi-omic analysis of the ciliogenic transcription factor RFX3 reveals a role in promoting activity-dependent responses via enhancing CREB binding in human neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640588. [PMID: 40060598 PMCID: PMC11888390 DOI: 10.1101/2025.02.27.640588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Heterozygous loss-of-function (LoF) variants in RFX3, a transcription factor known to play key roles in ciliogenesis, result in autism spectrum disorder (ASD) and neurodevelopmental delay. RFX binding motifs are also enriched upstream of genes found to be commonly dysregulated in transcriptomic analyses of brain tissue from individuals with idiopathic ASD. Still, the precise functions of RFX3 in the human brain is unknown. Here, we studied the impact of RFX3 deficiency using human iPSC-derived neurons and forebrain organoids. Biallelic loss of RFX3 disrupted ciliary gene expression and delayed neuronal differentiation, while monoallelic loss of RFX3 did not. Instead, transcriptomic and DNA binding analyses demonstrated that monoallelic RFX3 loss disrupted synaptic target gene expression and diminished neuronal activity-dependent gene expression. RFX3 binding sites co-localized with CREB binding sites near activity-dependent genes, and RFX3 deficiency led to decreased CREB binding and impaired induction of CREB targets in response to neuronal depolarization. This study demonstrates a novel role of the ASD-associated gene RFX3 in shaping neuronal synaptic development and plasticity.
Collapse
Affiliation(s)
- Jenny Lai
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Program in Neuroscience, Harvard University, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Didem Demirbas
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Kaitlyn Phillips
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Boxun Zhao
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Harrison Wallace
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Megan Seferian
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Tojo Nakayama
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Holly Harris
- Department of Pediatrics, Baylor College of Medicine and Meyer Center for Developmental Pediatrics, Texas Children's Hospital, Houston, Texas, 77054, USA
| | - Aikaterini Chatzipli
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Timothy W Yu
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
41
|
İş Ö, Min Y, Wang X, Oatman SR, Abraham Daniel A, Ertekin‐Taner N. Multi Layered Omics Approaches Reveal Glia Specific Alterations in Alzheimer's Disease: A Systematic Review and Future Prospects. Glia 2025; 73:539-573. [PMID: 39652363 PMCID: PMC11784841 DOI: 10.1002/glia.24652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 02/01/2025]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative dementia with multi-layered complexity in its molecular etiology. Multiple omics-based approaches, such as genomics, epigenomics, transcriptomics, proteomics, metabolomics, and lipidomics are enabling researchers to dissect this molecular complexity, and to uncover a plethora of alterations yielding insights into the pathophysiology of this disease. These approaches reveal multi-omics alterations essentially in all cell types of the brain, including glia. In this systematic review, we screen the literature for human studies implementing any omics approach within the last 10 years, to discover AD-associated molecular perturbations in brain glial cells. The findings from over 200 AD-related studies are reviewed under four different glial cell categories: microglia, oligodendrocytes, astrocytes and brain vascular cells. Under each category, we summarize the shared and unique molecular alterations identified in glial cells through complementary omics approaches. We discuss the implications of these findings for the development, progression and ultimately treatment of this complex disease as well as directions for future omics studies in glia cells.
Collapse
Affiliation(s)
- Özkan İş
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Yuhao Min
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Xue Wang
- Department of Quantitative Health SciencesMayo ClinicJacksonvilleFloridaUSA
| | | | | | - Nilüfer Ertekin‐Taner
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Department of NeurologyMayo ClinicJacksonvilleFloridaUSA
| |
Collapse
|
42
|
Jiang L, Dalgarno C, Papalexi E, Mascio I, Wessels HH, Yun H, Iremadze N, Lithwick-Yanai G, Lipson D, Satija R. Systematic reconstruction of molecular pathway signatures using scalable single-cell perturbation screens. Nat Cell Biol 2025; 27:505-517. [PMID: 40011560 PMCID: PMC12083445 DOI: 10.1038/s41556-025-01622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 01/21/2025] [Indexed: 02/28/2025]
Abstract
Recent advancements in functional genomics have provided an unprecedented ability to measure diverse molecular modalities, but predicting causal regulatory relationships from observational data remains challenging. Here, we leverage pooled genetic screens and single-cell sequencing (Perturb-seq) to systematically identify the targets of signalling regulators in diverse biological contexts. We demonstrate how Perturb-seq is compatible with recent and commercially available advances in combinatorial indexing and next-generation sequencing, and perform more than 1,500 perturbations split across six cell lines and five biological signalling contexts. We introduce an improved computational framework (Mixscale) to address cellular variation in perturbation efficiency, alongside optimized statistical methods to learn differentially expressed gene lists and conserved molecular signatures. Finally, we demonstrate how our Perturb-seq derived gene lists can be used to precisely infer changes in signalling pathway activation for in vivo and in situ samples. Our work enhances our understanding of signalling regulators and their targets, and lays a computational framework towards the data-driven inference of an 'atlas' of perturbation signatures.
Collapse
Affiliation(s)
| | | | - Efthymia Papalexi
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Isabella Mascio
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | | | | | | | | | | | - Rahul Satija
- New York Genome Center, New York, NY, USA.
- Center for Genomics and Systems Biology, New York University, New York, NY, USA.
| |
Collapse
|
43
|
Mattingly Z, Chetty S. Untangling the Molecular Mechanisms Contributing to Autism Spectrum Disorder Using Stem Cells. Autism Res 2025; 18:476-485. [PMID: 39989339 DOI: 10.1002/aur.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/25/2025]
Abstract
Autism spectrum disorder (ASD) is a complex neuro developmental condition characterized by significant genetic and phenotypic variability, making diagnosis and treatment challenging. The heterogeneity of ASD-associated genetic variants and the absence of clear causal factors in many cases complicate personalized care. Traditional models, such as postmortem brain tissue and animal studies, have provided valuable insights but are limited in capturing the dynamic processes and human-specific aspects of ASD pathology. Recent advances in human induced pluripotent stem cell (iPSC) technology have transformed ASD research by enabling the generation of patient-derived neural cells in both two-dimensional cultures and three-dimensional brain organoid models. These models retain the donor's genetic background, allowing researchers to investigate disease-specific cellular and molecular mechanisms while identifying potential therapeutic targets tailored to individual patients. This commentary highlights how stem cell-based approaches are advancing our understanding of ASD and paving the way for more personalized diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Zoe Mattingly
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sundari Chetty
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Lurie Center for Autism, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
44
|
Kooistra SM, Schirmer L. Multiple Sclerosis: Glial Cell Diversity in Time and Space. Glia 2025; 73:574-590. [PMID: 39719685 PMCID: PMC11784844 DOI: 10.1002/glia.24655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024]
Abstract
Multiple sclerosis (MS) is the most prevalent human inflammatory disease of the central nervous system with demyelination and glial scar formation as pathological hallmarks. Glial cells are key drivers of lesion progression in MS with roles in both tissue damage and repair depending on the surrounding microenvironment and the functional state of the individual glial subtype. In this review, we describe recent developments in the context of glial cell diversity in MS summarizing key findings with respect to pathological and maladaptive functions related to disease-associated glial subtypes. A particular focus is on the spatial and temporal dynamics of glial cells including subtypes of microglia, oligodendrocytes, and astrocytes. We contextualize recent high-dimensional findings suggesting that glial cells dynamically change with respect to epigenomic, transcriptomic, and metabolic features across the inflamed rim and during the progression of MS lesions. In summary, detailed knowledge of spatially restricted glial subtype functions is critical for a better understanding of MS pathology and its pathogenesis as well as the development of novel MS therapies targeting specific glial cell types.
Collapse
Affiliation(s)
- Susanne M. Kooistra
- Department of Biomedical Sciences, Section Molecular NeurobiologyUniversity of Groningen and University Medical Center Groningen (UMCG)GroningenThe Netherlands
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Mannheim Center for Translational Neuroscience, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Mannheim Institute for Innate Immunoscience, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Interdisciplinary Center for NeurosciencesHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
45
|
Dick F, Johanson GAS, Tysnes OB, Alves G, Dölle C, Tzoulis C. Brain Proteome Profiling Reveals Common and Divergent Signatures in Parkinson's Disease, Multiple System Atrophy, and Progressive Supranuclear Palsy. Mol Neurobiol 2025; 62:2801-2816. [PMID: 39164482 PMCID: PMC11790761 DOI: 10.1007/s12035-024-04422-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024]
Abstract
The molecular pathogenesis of degenerative parkinsonisms, including Parkinson's disease (PD), progressive supranuclear palsy (PSP), and Multiple system atrophy (MSA), remains largely unknown. To gain novel insight into molecular processes associated with these diseases, we conducted a proteome-wide expression study in prefrontal cortex tissue from a cohort of 181 individuals, comprising PD (N = 73), PSP (N = 18), MSA (N = 17) and healthy control (N = 73). Using marker gene profiles, we first assess the cellular composition of the samples and, subsequently, identify distinct protein signatures for each disease, while correcting for cell composition. Our findings indicate that all three diseases are characterized by a structural and/or functional loss of deep cortical neurons, while PD exhibits an additional decrease in somatostatin-expressing interneurons, as well as in endothelial cells. Differential protein expression analysis identified multiple proteins and pathways with disease-specific expression, some of which have previously been associated with parkinsonism or neurodegeneration in general. Notably, we observed a strong mitochondrial signature which was present in both PD and PSP, albeit of a different composition and most pronounced in PSP, but not in MSA where immunological/inflammation-related pathways dominated. Additionally, we identified protein signatures associated with the severity of α-synuclein pathology in PD and showed that these are highly enriched in an upregulation of mitochondrial processes, specifically related to oxidative phosphorylation and in particular respiratory complexes I and IV. We identify multiple novel signatures of protein expression, associated with PD, PSP, and MSA, as well as with the severity of α-synuclein pathology in the PD brain.
Collapse
Affiliation(s)
- Fiona Dick
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Gard Aasmund Skulstad Johanson
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Ole-Bjørn Tysnes
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Guido Alves
- Centre for Movement Disorders and Department of Neurology, Stavanger University Hospital, Pb 8100, 4068, Stavanger, Norway
- Department of Mathematics and Natural Sciences, University of Stavanger, 4062, Stavanger, Norway
| | - Christian Dölle
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Charalampos Tzoulis
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway.
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway.
- K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Pb 7804, 5020, Bergen, Norway.
| |
Collapse
|
46
|
Zhou R, Zhang T, Sun B. Single-Cell Transcriptional Profiling Reveals Cell Type-Specific Sex-Dependent Molecular Patterns of Schizophrenia. Int J Mol Sci 2025; 26:2227. [PMID: 40076849 PMCID: PMC11900070 DOI: 10.3390/ijms26052227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Schizophrenia (SCZ) is a debilitating psychiatric disorder marked by alterations in cognition and social behavior, resulting in profound impacts on individuals and society. Although sex-dependent disparities in the epidemiology of SCZ are well established, the biological molecular basis of these disparities remains poorly understood. Investigating cell type-specific transcriptomic profiles is critical for identifying regulatory components underlying sex-dependent molecular dysregulation in SCZ, which could serve as targets for sex-specific therapeutic interventions. To address this, we systematically analyzed publicly available single-nucleus RNA sequencing datasets to characterize cell type-specific sex-dependent gene expression profiles in the prefrontal cortex of SCZ cases. Functional enrichment analyses revealed sex-dependent dysregulation patterns of SCZ at the pathway level. Furthermore, we constructed cell type-specific gene regulatory networks for males and females, identifying SCZ-associated transcription factors that interact with sex hormones and their receptors. By incorporating drug screening results from the Connectivity Map, we established disease-gene-drug connections, elucidating sex-dependent molecular mechanisms of SCZ from the single-gene to the regulatory network level. Our findings delineate the molecular patterns of sex-dependent disparities in SCZ, uncover regulatory mechanisms driving SCZ-associated sex-dependent dysregulation, and illustrate the signal flow through which the biological sex influences downstream cellular pathways in SCZ cases. Our study provides significant evidence supporting the neuroprotective role of estrogen in the pathophysiology of female SCZ cases, while also establishing a robust foundation for the development of sex-specific therapeutic approaches for both sexes.
Collapse
Affiliation(s)
| | | | - Baofa Sun
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
47
|
Ji P, Wang N, Yu Y, Zhu J, Zuo Z, Zhang B, Zhao F. Single-cell delineation of the microbiota-gut-brain axis: Probiotic intervention in Chd8 haploinsufficient mice. CELL GENOMICS 2025; 5:100768. [PMID: 39914389 PMCID: PMC11872533 DOI: 10.1016/j.xgen.2025.100768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/02/2024] [Accepted: 01/14/2025] [Indexed: 02/16/2025]
Abstract
Emerging research underscores the gut microbiome's impact on the nervous system via the microbiota-gut-brain axis, yet comprehensive insights remain limited. Using a CHD8-haploinsufficient model for autism spectrum disorder (ASD), we explored host-gut microbiota interactions by constructing a single-cell transcriptome atlas of brain and intestinal tissues in wild-type and mutant mice across three developmental stages. CHD8 haploinsufficiency caused delayed development of radial glial precursors and excitatory neural progenitors in the E14.5 brain, inflammation in the adult brain, immunodeficiency, and abnormal intestinal development. Selective CHD8 knockdown in intestinal epithelial cells generated Chd8ΔIEC mice, which exhibited normal sociability but impaired social novelty recognition. Probiotic intervention with Lactobacillus murinus selectively rescued social deficits in Chd8ΔIEC mice, with single-cell transcriptome analysis revealing underlying mechanisms. This study provides a detailed single-cell transcriptomic dataset of ASD-related neural and intestinal changes, advancing our understanding of the gut-brain axis and offering potential therapeutic strategies for ASD.
Collapse
Affiliation(s)
- Peifeng Ji
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ning Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - You Yu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Junjie Zhu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Zhenqiang Zuo
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bing Zhang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fangqing Zhao
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
48
|
Starr AL, Fraser HB. A general principle of neuronal evolution reveals a human-accelerated neuron type potentially underlying the high prevalence of autism in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.02.606407. [PMID: 39131279 PMCID: PMC11312593 DOI: 10.1101/2024.08.02.606407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The remarkable ability of a single genome sequence to encode a diverse collection of distinct cell types, including the thousands of cell types found in the mammalian brain, is a key characteristic of multicellular life. While it has been observed that some cell types are far more evolutionarily conserved than others, the factors driving these differences in evolutionary rate remain unknown. Here, we hypothesized that highly abundant neuronal cell types may be under greater selective constraint than rarer neuronal types, leading to variation in their rates of evolution. To test this, we leveraged recently published cross-species single-nucleus RNA-sequencing datasets from three distinct regions of the mammalian neocortex. We found a strikingly consistent relationship where more abundant neuronal subtypes show greater gene expression conservation between species, which replicated across three independent datasets covering >106 neurons from six species. Based on this principle, we discovered that the most abundant type of neocortical neurons-layer 2/3 intratelencephalic excitatory neurons-has evolved exceptionally quickly in the human lineage compared to other apes. Surprisingly, this accelerated evolution was accompanied by the dramatic down-regulation of autism-associated genes, which was likely driven by polygenic positive selection specific to the human lineage. In sum, we introduce a general principle governing neuronal evolution and suggest that the exceptionally high prevalence of autism in humans may be a direct result of natural selection for lower expression of a suite of genes that conferred a fitness benefit to our ancestors while also rendering an abundant class of neurons more sensitive to perturbation.
Collapse
Affiliation(s)
| | - Hunter B. Fraser
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
49
|
Nakatsuka N, Adler D, Jiang L, Hartman A, Cheng E, Klann E, Satija R. A Reproducibility Focused Meta-Analysis Method for Single-Cell Transcriptomic Case-Control Studies Uncovers Robust Differentially Expressed Genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.15.618577. [PMID: 39463993 PMCID: PMC11507907 DOI: 10.1101/2024.10.15.618577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
We assessed the reproducibility of differentially expressed genes (DEGs) in previously published Alzheimer's (AD), Parkinson's (PD), Schizophrenia (SCZ), and COVID-19 scRNA-seq studies. While transcriptional scores from DEGs of individual PD and COVID-19 datasets had moderate predictive power for case-control status of other datasets (AUC=0.77 and 0.75), genes from individual AD and SCZ datasets had poor predictive power (AUC=0.68 and 0.55). We developed a non-parametric meta-analysis method, SumRank, based on reproducibility of relative differential expression ranks across datasets, and found DEGs with improved predictive power (AUC=0.88, 0.91, 0.78, and 0.62). By multiple other metrics, specificity and sensitivity of these genes were substantially higher than those discovered by dataset merging and inverse variance weighted p-value aggregation methods. The DEGs revealed known and novel biological pathways, and we validate BCAT1 as down-regulated in AD mouse oligodendrocytes. Lastly, we evaluate factors influencing reproducibility of individual studies as a prospective guide for experimental design.
Collapse
|
50
|
Wu J, Yu H, Dou X, Yin B, Hou L, Xue Y, Qiang B, Shu P, Peng X. Posttranscriptional Control of Neural Progenitors Temporal Dynamics During Neocortical Development by Syncrip. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411732. [PMID: 39776340 PMCID: PMC11848603 DOI: 10.1002/advs.202411732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/12/2024] [Indexed: 01/11/2025]
Abstract
The development of the mammalian neocortex is precisely regulated by temporal gene expression, yet the temporal regulatory mechanisms of cortical neurogenesis, particularly how radial glial cells (RGCs) sequentially generate deep to superficial neurons, remain unclear. Here, the hnRNP family member Syncrip (hnRNP Q) is identified as a key modulator of superficial neuronal differentiation in neocortical neurogenesis. Syncrip knockout in RGCs disrupts differentiation and abnormal neuronal localization, ultimately resulting in superficial cortical layer defects as well as learning and memory impairments in mice. Single-cell RNA sequencing analysis demonstrated that the knockout of Syncrip disrupts the late-stage neurogenesis, stalling transcriptional progression in RGCs. Mechanistically, Syncrip maintains the transcription of temporal process-related transcription factors by recruiting stabilization complexes through phase separation, crucially regulating the Notch signaling pathway that determines the fate of RGCs. Furthermore, pathogenic human mutations in Syncrip weaken its phase-separation capability, failing to form stable complexes normally. Thus, Syncrip acts as a mediator of posttranscriptional regulatory mechanisms, governing the fate progression of RGCs and the advancement of intrinsic temporal programs. This study establishes an intracellular mechanism for posttranscriptional regulation of progressive fate determination in cortical neurogenesis.
Collapse
Affiliation(s)
- Jiarui Wu
- State Key Laboratory of Common Mechanism Research for Major DiseasesDepartment of Biochemistry & Molecular BiologyMedical Primate Research CenterNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Haoyang Yu
- State Key Laboratory of Common Mechanism Research for Major DiseasesDepartment of Biochemistry & Molecular BiologyMedical Primate Research CenterNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Xinyi Dou
- State Key Laboratory of Common Mechanism Research for Major DiseasesDepartment of Biochemistry & Molecular BiologyMedical Primate Research CenterNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Bin Yin
- State Key Laboratory of Common Mechanism Research for Major DiseasesDepartment of Biochemistry & Molecular BiologyMedical Primate Research CenterNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Lin Hou
- State Key Laboratory of Common Mechanism Research for Major DiseasesDepartment of Biochemistry & Molecular BiologyMedical Primate Research CenterNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Yuanchao Xue
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Boqin Qiang
- State Key Laboratory of Common Mechanism Research for Major DiseasesDepartment of Biochemistry & Molecular BiologyMedical Primate Research CenterNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Pengcheng Shu
- State Key Laboratory of Common Mechanism Research for Major DiseasesDepartment of Biochemistry & Molecular BiologyMedical Primate Research CenterNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
- Chinese Institute for Brain ResearchBeijing102206China
| | - Xiaozhong Peng
- State Key Laboratory of Common Mechanism Research for Major DiseasesDepartment of Biochemistry & Molecular BiologyMedical Primate Research CenterNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
- State Key Laboratory of Respiratory Health and MultimorbidityInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100021China
| |
Collapse
|