1
|
Lei Y, Liu Q, Chen B, Wu F, Li Y, Dong X, Ma N, Wu Z, Zhu Y, Wang L, Fu Y, Liu Y, Song Y, Du M, Zhang H, Zhu J, Lyons TJ, Wang T, Hu J, Xu H, Chen M, Yan H, Wang X. Protein O-GlcNAcylation coupled to Hippo signaling drives vascular dysfunction in diabetic retinopathy. Nat Commun 2024; 15:9334. [PMID: 39472558 PMCID: PMC11522279 DOI: 10.1038/s41467-024-53601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Metabolic disorder significantly contributes to diabetic vascular complications, including diabetic retinopathy, the leading cause of blindness in the working-age population. However, the molecular mechanisms by which disturbed metabolic homeostasis causes vascular dysfunction in diabetic retinopathy remain unclear. O-GlcNAcylation modification acts as a nutrient sensor particularly sensitive to ambient glucose. Here, we observe pronounced O-GlcNAc elevation in retina endothelial cells of diabetic retinopathy patients and mouse models. Endothelial-specific depletion or pharmacological inhibition of O-GlcNAc transferase effectively mitigates vascular dysfunction. Mechanistically, we find that Yes-associated protein (YAP) and Transcriptional co-activator with PDZ-binding motif (TAZ), key effectors of the Hippo pathway, are O-GlcNAcylated in diabetic retinopathy. We identify threonine 383 as an O-GlcNAc site on YAP, which inhibits its phosphorylation at serine 397, leading to its stabilization and activation, thereby promoting vascular dysfunction by inducing a pro-angiogenic and glucose metabolic transcriptional program. This work emphasizes the critical role of the O-GlcNAc-Hippo axis in the pathogenesis of diabetic retinopathy and suggests its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yi Lei
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiangyun Liu
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Binggui Chen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Fangfang Wu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yiming Li
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue Dong
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Nina Ma
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ziru Wu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yanfang Zhu
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Lu Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuxin Fu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuming Liu
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Yinting Song
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Mei Du
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Heng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jidong Zhu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Timothy J Lyons
- Division of Endocrinology, Diabetes and Metabolic Diseases at the Medical University of South Carolina, Charleston, SC, USA
| | - Ting Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Junhao Hu
- Laboratory of Vascular Biology and Organ Homeostasis, Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Heping Xu
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Mei Chen
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Hua Yan
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, Tianjin, China.
- School of Medicine, Nankai University, Tianjin, China.
| | - Xiaohong Wang
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, Tianjin, China.
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
2
|
Shan L, Tao M, Zhang W, Zhao JD, Liu XC, Fang ZH, Gao JR. Comprehensive analysis of the m 6A demethylase FTO in endothelial dysfunction by MeRIP sequencing. Exp Cell Res 2024; 442:114268. [PMID: 39343042 DOI: 10.1016/j.yexcr.2024.114268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
N6-methyladenosine (m6A) is the most general post-transcriptional modification of eukaryotic mRNAs and long-stranded non-coding RNAs. In this process, It has been shown that FTO associates with the m6A mRNA demethylase and plays a role in diabetic vascular endothelial dysfunction. In the present study, we detected FTO protein expression in HUVECs by Western blot and found that FTO was highly expressed in all disease groups relative to the control group. To explore the mechanism of FTO in T2DM vasculopathy, we performed an analysis by methylated RNA immunoprecipitation sequencing (MeRIP-seq) to elucidate the role of aberrant m6A modification and mRNA expression in endothelial dysfunction. The results showed 202 overlapping genes with varying m6A modifications and varied mRNA expression, and GO and KEGG enrichment analysis revealed that these genes were predominantly enriched in pathways associated with T2DM complications and endothelial dysfunction. By an integrated analysis of MeRIP-seq and RNA-seq results, the IGV plots showed elevated kurtosis of downstream candidate gene modifications, which may be downstream targets for FTO to exercise biological functions. HOXA9 and PLAU mRNA expression levels were significantly down after FTO inhibition. In the current work, we set up a typological profile of the m6A genes among HUVECs as well as uncovered a hidden relationship between RNA methylation modifications for T2DM vasculopathy-associated genes. Taken together, this study indicates that endothelial functional impairment is present in T2DM patients and may be related to aberrant expression of FTO.
Collapse
Affiliation(s)
- Li Shan
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Meng Tao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230011, Anhui, China
| | - Wei Zhang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230011, Anhui, China
| | - Jin-Dong Zhao
- The Key Laboratory of Xin'an Medicine, Hefei, 230012, China
| | - Xiao-Chuang Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Zhao-Hui Fang
- The Key Laboratory of Xin'an Medicine, Hefei, 230012, China
| | - Jia-Rong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China.
| |
Collapse
|
3
|
Zhou W, Ghersi JJ, Ristori E, Semanchik N, Prendergast A, Zhang R, Carneiro P, Baldissera G, Sessa WC, Nicoli S. Akt is a mediator of artery specification during zebrafish development. Development 2024; 151:dev202727. [PMID: 39101673 PMCID: PMC11441982 DOI: 10.1242/dev.202727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
The dorsal aorta (DA) is the first major blood vessel to develop in the embryonic cardiovascular system. Its formation is governed by a coordinated process involving the migration, specification, and arrangement of angioblasts into arterial and venous lineages, a process conserved across species. Although vascular endothelial growth factor a (VEGF-A) is known to drive DA specification and formation, the kinases involved in this process remain ambiguous. Thus, we investigated the role of protein kinase B (Akt) in zebrafish by generating a quadruple mutant (aktΔ/Δ), in which expression and activity of all Akt genes - akt1, -2, -3a and -3b - are strongly decreased. Live imaging of developing aktΔ/Δ DA uncovers early arteriovenous malformations. Single-cell RNA-sequencing analysis of aktΔ/Δ endothelial cells corroborates the impairment of arterial, yet not venous, cell specification. Notably, endothelial specific expression of ligand-independent activation of Notch or constitutively active Akt1 were sufficient to re-establish normal arterial specification in aktΔ/Δ. The Akt loss-of-function mutant unveils that Akt kinase can act upstream of Notch in arterial endothelial cells, and is involved in proper embryonic artery specification. This sheds light on cardiovascular development, revealing a mechanism behind congenital malformations.
Collapse
Affiliation(s)
- Wenping Zhou
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Joey J Ghersi
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- Pathologies Foetomaternelles et Néonatales, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H3T 1C5, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Emma Ristori
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Nicole Semanchik
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Andrew Prendergast
- Department of Comparative Medicine, Yale zebrafish Research Core, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Rong Zhang
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Paola Carneiro
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Gabriel Baldissera
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - William C Sessa
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stefania Nicoli
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
4
|
Xie Y, Liu X, Zhao C, Chen S, Wang S, Lin Z, Robison FM, George BM, Flynn RA, Lebrilla CB, Garcia BA. Development and application of GlycanDIA workflow for glycomic analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584702. [PMID: 38559279 PMCID: PMC10980037 DOI: 10.1101/2024.03.12.584702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Glycans modify protein, lipid, and even RNA molecules to form the regulatory outer coat on cells called the glycocalyx. The changes in glycosylation have been linked to the initiation and progression of many diseases. Thus, while the significance of glycosylation is well established, a lack of accessible methods to characterize glycans has hindered the ability to understand their biological functions. Mass spectrometry (MS)-based methods have generally been at the core of most glycan profiling efforts; however, modern data-independent acquisition (DIA), which could increase sensitivity and simplify workflows, has not been benchmarked for analyzing glycans. Herein, we developed a DIA-based glycomic workflow, termed GlycanDIA, to identify and quantify glycans with high sensitivity and accuracy. The GlycanDIA workflow combined higher energy collisional dissociation (HCD)-MS/MS and staggered windows for glycomic analysis, which facilitates the sensitivity in identification and the accuracy in quantification compared to conventional data-dependent acquisition (DDA)-based glycomics. To facilitate its use, we also developed a generic search engine, GlycanDIA Finder, incorporating an iterative decoy searching for confident glycan identification and quantification from DIA data. The results showed that GlycanDIA can distinguish glycan composition and isomers from N-glycans, O-glycans, and human milk oligosaccharides (HMOs), while it also reveals information on low-abundant modified glycans. With the improved sensitivity, we performed experiments to profile N-glycans from RNA samples, which have been underrepresented due to their low abundance. Using this integrative workflow to unravel the N-glycan profile in cellular and tissue glycoRNA samples, we found that RNA-glycans have specific forms as compared to protein-glycans and are also tissue-specific differences, suggesting distinct functions in biological processes. Overall, GlycanDIA can provide comprehensive information for glycan identification and quantification, enabling researchers to obtain in-depth and refined details on the biological roles of glycosylation.
Collapse
Affiliation(s)
- Yixuan Xie
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Chemistry, University of California, Davis, Davis, California, United States
| | - Xingyu Liu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Chenfeng Zhao
- Department of Computer Science & Engineering, Washington University, St. Louis, Missouri, United States
| | - Siyu Chen
- Department of Chemistry, University of California, Davis, Davis, California, United States
| | - Shunyang Wang
- Department of Chemistry, University of California, Davis, Davis, California, United States
| | - Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Faith M Robison
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Benson M George
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States
| | - Ryan A Flynn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, Davis, California, United States
- Department of Biochemistry, University of California, Davis, Davis, California, United States
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
5
|
Furtado J, Eichmann A. Vascular development, remodeling and maturation. Curr Top Dev Biol 2024; 159:344-370. [PMID: 38729681 DOI: 10.1016/bs.ctdb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The development of the vascular system is crucial in supporting the growth and health of all other organs in the body, and vascular system dysfunction is the major cause of human morbidity and mortality. This chapter discusses three successive processes that govern vascular system development, starting with the differentiation of the primitive vascular system in early embryonic development, followed by its remodeling into a functional circulatory system composed of arteries and veins, and its final maturation and acquisition of an organ specific semi-permeable barrier that controls nutrient uptake into tissues and hence controls organ physiology. Along these steps, endothelial cells forming the inner lining of all blood vessels acquire extensive heterogeneity in terms of gene expression patterns and function, that we are only beginning to understand. These advances contribute to overall knowledge of vascular biology and are predicted to unlock the unprecedented therapeutic potential of the endothelium as an avenue for treatment of diseases associated with dysfunctional vasculature.
Collapse
Affiliation(s)
- Jessica Furtado
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, United States; Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Anne Eichmann
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, United States; Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States; Paris Cardiovascular Research Center, Inserm U970, Université Paris, Paris, France.
| |
Collapse
|
6
|
Ma Z, Sugimura R, Lui KO. The role of m6A mRNA modification in normal and malignant hematopoiesis. J Leukoc Biol 2024; 115:100-115. [PMID: 37195903 DOI: 10.1093/jleuko/qiad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/04/2023] [Accepted: 05/01/2023] [Indexed: 05/19/2023] Open
Abstract
Hematopoiesis is a highly orchestrated biological process sustaining the supply of leukocytes involved in the maintenance of immunity, O2 and CO2 exchange, and wound healing throughout the lifetime of an animal, including humans. During early hematopoietic cell development, several waves of hematopoiesis require the precise regulation of hematopoietic ontogeny as well as the maintenance of hematopoietic stem and progenitor cells in the hematopoietic tissues, such as the fetal liver and bone marrow. Recently, emerging evidence has suggested the critical role of m6A messenger RNA (mRNA) modification, an epigenetic modification dynamically regulated by its effector proteins, in the generation and maintenance of hematopoietic cells during embryogenesis. In the adulthood, m6A has also been demonstrated to be involved in the functional maintenance of hematopoietic stem and progenitor cells in the bone marrow and umbilical cord blood, as well as the progression of malignant hematopoiesis. In this review, we focus on recent progress in identifying the biological functions of m6A mRNA modification, its regulators, and downstream gene targets during normal and pathological hematopoiesis. We propose that targeting m6A mRNA modification could offer novel insights into therapeutic development against abnormal and malignant hematopoietic cell development in the future.
Collapse
Affiliation(s)
- Zhangjing Ma
- Department of Chemical Pathology, and Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Rio Sugimura
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam , Hong Kong, China
| | - Kathy O Lui
- Department of Chemical Pathology, and Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Nanshan District, Shenzhen, China
| |
Collapse
|
7
|
Zhang Y, Liu F. The evolving views of hematopoiesis: from embryo to adulthood and from in vivo to in vitro. J Genet Genomics 2024; 51:3-15. [PMID: 37734711 DOI: 10.1016/j.jgg.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
The hematopoietic system composed of hematopoietic stem and progenitor cells (HSPCs) and their differentiated lineages serves as an ideal model to uncover generic principles of cell fate transitions. From gastrulation onwards, there successively emerge primitive hematopoiesis (that produces specialized hematopoietic cells), pro-definitive hematopoiesis (that produces lineage-restricted progenitor cells), and definitive hematopoiesis (that produces multipotent HSPCs). These nascent lineages develop in several transient hematopoietic sites and finally colonize into lifelong hematopoietic sites. The development and maintenance of hematopoietic lineages are orchestrated by cell-intrinsic gene regulatory networks and cell-extrinsic microenvironmental cues. Owing to the progressive methodology (e.g., high-throughput lineage tracing and single-cell functional and omics analyses), our understanding of the developmental origin of hematopoietic lineages and functional properties of certain hematopoietic organs has been updated; meanwhile, new paradigms to characterize rare cell types, cell heterogeneity and its causes, and comprehensive regulatory landscapes have been provided. Here, we review the evolving views of HSPC biology during developmental and postnatal hematopoiesis. Moreover, we discuss recent advances in the in vitro induction and expansion of HSPCs, with a focus on the implications for clinical applications.
Collapse
Affiliation(s)
- Yifan Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Feng Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China; State Key Laboratory of Membrane Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
8
|
Cao J, Jin L, Yan ZQ, Wang XK, Li YY, Wang Z, Liu YW, Li HM, Guan Z, He ZH, Gong JS, Liu JH, Yin H, Tan YJ, Hong CG, Feng SK, Zhang Y, Wang YY, Qi LY, Chen CY, Liu ZZ, Wang ZX, Xie H. Reassessing endothelial-to-mesenchymal transition in mouse bone marrow: insights from lineage tracing models. Nat Commun 2023; 14:8461. [PMID: 38123537 PMCID: PMC10733381 DOI: 10.1038/s41467-023-44312-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Endothelial cells (ECs) and bone marrow stromal cells (BMSCs) play crucial roles in supporting hematopoiesis and hematopoietic regeneration. However, whether ECs are a source of BMSCs remains unclear. Here, we evaluate the contribution of endothelial-to-mesenchymal transition to BMSC generation in postnatal mice. Single-cell RNA sequencing identifies ECs expressing BMSC markers Prrx1 and Lepr; however, this could not be validated using Prrx1-Cre and Lepr-Cre transgenic mice. Additionally, only a minority of BMSCs are marked by EC lineage tracing models using Cdh5-rtTA-tetO-Cre or Tek-CreERT2. Moreover, Cdh5+ BMSCs and Tek+ BMSCs show distinct spatial distributions and characteristic mesenchymal markers, suggestive of their origination from different progenitors rather than CDH5+ TEK+ ECs. Furthermore, myeloablation induced by 5-fluorouracil treatment does not increase Cdh5+ BMSCs. Our findings indicate that ECs hardly convert to BMSCs during homeostasis and myeloablation-induced hematopoietic regeneration, highlighting the importance of using appropriate genetic models and conducting careful data interpretation in studies concerning endothelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Jia Cao
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ling Jin
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Zi-Qi Yan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiao-Kai Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - You-You Li
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Zun Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yi-Wei Liu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Hong-Ming Li
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Zhe Guan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Ze-Hui He
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Jiang-Shan Gong
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Jiang-Hua Liu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hao Yin
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Yi-Juan Tan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Chun-Gu Hong
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Shi-Kai Feng
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yan Zhang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yi-Yi Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Lu-Yue Qi
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Chun-Yuan Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zheng-Zhao Liu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhen-Xing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
9
|
Dijkhuis L, Johns A, Ragusa D, van den Brink SC, Pina C. Haematopoietic development and HSC formation in vitro: promise and limitations of gastruloid models. Emerg Top Life Sci 2023; 7:439-454. [PMID: 38095554 PMCID: PMC10754337 DOI: 10.1042/etls20230091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Haematopoietic stem cells (HSCs) are the most extensively studied adult stem cells. Yet, six decades after their first description, reproducible and translatable generation of HSC in vitro remains an unmet challenge. HSC production in vitro is confounded by the multi-stage nature of blood production during development. Specification of HSC is a late event in embryonic blood production and depends on physical and chemical cues which remain incompletely characterised. The precise molecular composition of the HSC themselves is incompletely understood, limiting approaches to track their origin in situ in the appropriate cellular, chemical and mechanical context. Embryonic material at the point of HSC emergence is limiting, highlighting the need for an in vitro model of embryonic haematopoietic development in which current knowledge gaps can be addressed and exploited to enable HSC production. Gastruloids are pluripotent stem cell-derived 3-dimensional (3D) cellular aggregates which recapitulate developmental events in gastrulation and early organogenesis with spatial and temporal precision. Gastruloids self-organise multi-tissue structures upon minimal and controlled external cues, and are amenable to live imaging, screening, scaling and physicochemical manipulation to understand and translate tissue formation. In this review, we consider the haematopoietic potential of gastruloids and review early strategies to enhance blood progenitor and HSC production. We highlight possible strategies to achieve HSC production from gastruloids, and discuss the potential of gastruloid systems in illuminating current knowledge gaps in HSC specification.
Collapse
Affiliation(s)
- Liza Dijkhuis
- Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands
| | - Ayona Johns
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, U.K
- Centre for Genome Engineering and Maintenance, Brunel University London, Uxbridge UB8 3PH, U.K
| | - Denise Ragusa
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, U.K
- Centre for Genome Engineering and Maintenance, Brunel University London, Uxbridge UB8 3PH, U.K
| | | | - Cristina Pina
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, U.K
- Centre for Genome Engineering and Maintenance, Brunel University London, Uxbridge UB8 3PH, U.K
| |
Collapse
|
10
|
Bobrovskikh AV, Zubairova US, Doroshkov AV. Fishing Innate Immune System Properties through the Transcriptomic Single-Cell Data of Teleostei. BIOLOGY 2023; 12:1516. [PMID: 38132342 PMCID: PMC10740722 DOI: 10.3390/biology12121516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
The innate immune system is the first line of defense in multicellular organisms. Danio rerio is widely considered a promising model for IIS-related research, with the most amount of scRNAseq data available among Teleostei. We summarized the scRNAseq and spatial transcriptomics experiments related to the IIS for zebrafish and other Teleostei from the GEO NCBI and the Single-Cell Expression Atlas. We found a considerable number of scRNAseq experiments at different stages of zebrafish development in organs such as the kidney, liver, stomach, heart, and brain. These datasets could be further used to conduct large-scale meta-analyses and to compare the IIS of zebrafish with the mammalian one. However, only a small number of scRNAseq datasets are available for other fish (turbot, salmon, cavefish, and dark sleeper). Since fish biology is very diverse, it would be a major mistake to use zebrafish alone in fish immunology studies. In particular, there is a special need for new scRNAseq experiments involving nonmodel Teleostei, e.g., long-lived species, cancer-resistant fish, and various fish ecotypes.
Collapse
Affiliation(s)
- Aleksandr V. Bobrovskikh
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (U.S.Z.); (A.V.D.)
| | - Ulyana S. Zubairova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (U.S.Z.); (A.V.D.)
- Department of Information Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alexey V. Doroshkov
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (U.S.Z.); (A.V.D.)
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia
| |
Collapse
|
11
|
Ghersi JJ, Baldissera G, Hintzen J, Luff SA, Cheng S, Xia IF, Sturgeon CM, Nicoli S. Haematopoietic stem and progenitor cell heterogeneity is inherited from the embryonic endothelium. Nat Cell Biol 2023; 25:1135-1145. [PMID: 37460694 PMCID: PMC10415179 DOI: 10.1038/s41556-023-01187-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 06/09/2023] [Indexed: 08/12/2023]
Abstract
Definitive haematopoietic stem and progenitor cells (HSPCs) generate erythroid, lymphoid and myeloid lineages. HSPCs are produced in the embryo via transdifferentiation of haemogenic endothelial cells in the aorta-gonad-mesonephros (AGM). HSPCs in the AGM are heterogeneous in differentiation and proliferative output, but how these intrinsic differences are acquired remains unanswered. Here we discovered that loss of microRNA (miR)-128 in zebrafish leads to an expansion of HSPCs in the AGM with different cell cycle states and a skew towards erythroid and lymphoid progenitors. Manipulating miR-128 in differentiating haemogenic endothelial cells, before their transition to HSPCs, recapitulated the lineage skewing in both zebrafish and human pluripotent stem cells. miR-128 promotes Wnt and Notch signalling in the AGM via post-transcriptional repression of the Wnt inhibitor csnk1a1 and the Notch ligand jag1b. De-repression of cskn1a1 resulted in replicative and erythroid-biased HSPCs, whereas de-repression of jag1b resulted in G2/M and lymphoid-biased HSPCs with long-term consequence on the respective blood lineages. We propose that HSPC heterogeneity arises in the AGM endothelium and is programmed in part by Wnt and Notch signalling.
Collapse
Affiliation(s)
- Joey J Ghersi
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Gabriel Baldissera
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Jared Hintzen
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Stephanie A Luff
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Siyuan Cheng
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Ivan Fan Xia
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher M Sturgeon
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stefania Nicoli
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
12
|
Wu Y, Paila U, Genet G, Hirschi KK. MicroRNA-223 limits murine hemogenic endothelial cell specification and myelopoiesis. Dev Cell 2023; 58:1237-1249.e5. [PMID: 37295435 PMCID: PMC10424725 DOI: 10.1016/j.devcel.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 01/04/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
Embryonic definitive hematopoiesis generates hematopoietic stem and progenitor cells (HSPCs) that are essential for the establishment and maintenance of the adult blood system. This process requires the specification of a subset of vascular endothelial cells (ECs) to become hemogenic ECs and to have subsequent endothelial-to-hematopoietic transition (EHT), and the underlying mechanisms are largely undefined. We identified microRNA (miR)-223 as a negative regulator of murine hemogenic EC specification and EHT. Loss of miR-223 leads to increased formation of hemogenic ECs and HSPCs, which is associated with increased retinoic acid signaling, which we previously showed as promoting hemogenic EC specification. Additionally, loss of miR-223 leads to the generation of myeloid-biased hemogenic ECs and HSPCs, which results in an increased proportion of myeloid cells throughout embryonic and postnatal life. Our findings identify a negative regulator of hemogenic EC specification and highlight the importance of this process for the establishment of the adult blood system.
Collapse
Affiliation(s)
- Yinyu Wu
- Departments of Genetics, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Cell Biology, Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Umadevi Paila
- Department of Cell Biology, Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Gael Genet
- Department of Cell Biology, Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Karen K Hirschi
- Departments of Genetics, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Cell Biology, Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
13
|
Xia J, Liu M, Zhu C, Liu S, Ai L, Ma D, Zhu P, Wang L, Liu F. Activation of lineage competence in hemogenic endothelium precedes the formation of hematopoietic stem cell heterogeneity. Cell Res 2023; 33:448-463. [PMID: 37016019 PMCID: PMC10235423 DOI: 10.1038/s41422-023-00797-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/01/2023] [Indexed: 04/06/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are considered as a heterogeneous population, but precisely when, where and how HSPC heterogeneity arises remain largely unclear. Here, using a combination of single-cell multi-omics, lineage tracing and functional assays, we show that embryonic HSPCs originate from heterogeneous hemogenic endothelial cells (HECs) during zebrafish embryogenesis. Integrated single-cell transcriptome and chromatin accessibility analysis demonstrates transcriptional heterogeneity and regulatory programs that prime lymphoid/myeloid fates at the HEC level. Importantly, spi2+ HECs give rise to lymphoid/myeloid-primed HSPCs (L/M-HSPCs) and display a stress-responsive function under acute inflammation. Moreover, we uncover that Spi2 is required for the formation of L/M-HSPCs through tightly controlling the endothelial-to-hematopoietic transition program. Finally, single-cell transcriptional comparison of zebrafish and human HECs and human induced pluripotent stem cell-based hematopoietic differentiation results support the evolutionary conservation of L/M-HECs and a conserved role of SPI1 (spi2 homolog in mammals) in humans. These results unveil the lineage origin, biological function and molecular determinant of HSPC heterogeneity and lay the foundation for new strategies for induction of transplantable lineage-primed HSPCs in vitro.
Collapse
Affiliation(s)
- Jun Xia
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengyao Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Caiying Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shicheng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lanlan Ai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Dongyuan Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
14
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
15
|
Lemerle E, Trompouki E. Hematopoietic heterogeneity starts at the hemogenic endothelium. Cell Res 2023; 33:413-414. [PMID: 37055594 PMCID: PMC10235036 DOI: 10.1038/s41422-023-00806-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Affiliation(s)
- Eline Lemerle
- IRCAN Institute for Research on Cancer and Aging, INSERM Unité 1081, CNRS UMR 7284, Université Côte d'Azur, Nice, France
| | - Eirini Trompouki
- IRCAN Institute for Research on Cancer and Aging, INSERM Unité 1081, CNRS UMR 7284, Université Côte d'Azur, Nice, France.
| |
Collapse
|
16
|
Liao S, Lin Y, Liu L, Yang S, Lin Y, He J, Shao Y. ADAM10-a "multitasker" in sepsis: focus on its posttranslational target. Inflamm Res 2023; 72:395-423. [PMID: 36565333 PMCID: PMC9789377 DOI: 10.1007/s00011-022-01673-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 07/25/2022] [Accepted: 11/30/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Sepsis has a complex pathogenesis in which the uncontrolled systemic inflammatory response triggered by infection leads to vascular barrier disruption, microcirculation dysfunction and multiple organ dysfunction syndrome. Numerous recent studies reveal that a disintegrin and metalloproteinase 10 (ADAM10) acts as a "molecular scissor" playing a pivotal role in the inflammatory response during sepsis by regulating proteolysis by cleaving various membrane protein substrates, including proinflammatory cytokines, cadherins and Notch, which are involved in intercellular communication. ADAM10 can also act as the cellular receptor for Staphylococcus aureus α-toxin, leading to lethal sepsis. However, its substrate-specific modulation and precise targets in sepsis have not yet to be elucidated. METHODS We performed a computer-based online search using PubMed and Google Scholar for published articles concerning ADAM10 and sepsis. CONCLUSIONS In this review, we focus on the functions of ADAM10 in sepsis-related complex endothelium-immune cell interactions and microcirculation dysfunction through the diversity of its substrates and its enzymatic activity. In addition, we highlight the posttranslational mechanisms of ADAM10 at specific subcellular sites, or in multimolecular complexes, which will provide the insight to intervene in the pathophysiological process of sepsis caused by ADAM10 dysregulation.
Collapse
Affiliation(s)
- Shuanglin Liao
- grid.410560.60000 0004 1760 3078The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Jiaoping Road 42, Tangxia Town, Dongguan, 523710 Guangdong China
| | - Yao Lin
- The Key Laboratory of Organ Dysfunction and Protection Translational Medicine, Jieyang Medical Research Center, Jieyang People’s Hospital, Tianfu Road 107, Rongcheng District, Jieyang, 522000 Guangdong China
| | - Lizhen Liu
- grid.410560.60000 0004 1760 3078The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Jiaoping Road 42, Tangxia Town, Dongguan, 523710 Guangdong China
| | - Shuai Yang
- grid.410560.60000 0004 1760 3078The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Jiaoping Road 42, Tangxia Town, Dongguan, 523710 Guangdong China
| | - YingYing Lin
- The Key Laboratory of Organ Dysfunction and Protection Translational Medicine, Jieyang Medical Research Center, Jieyang People’s Hospital, Tianfu Road 107, Rongcheng District, Jieyang, 522000 Guangdong China
| | - Junbing He
- The Key Laboratory of Organ Dysfunction and Protection Translational Medicine, Jieyang Medical Research Center, Jieyang People’s Hospital, Tianfu Road 107, Rongcheng District, Jieyang, 522000 Guangdong China
| | - Yiming Shao
- grid.410560.60000 0004 1760 3078The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Jiaoping Road 42, Tangxia Town, Dongguan, 523710 Guangdong China
- grid.410560.60000 0004 1760 3078The Key Laboratory of Sepsis Translational Medicine, Guangdong Medical University, Zhanjiang, Guangdong China
| |
Collapse
|
17
|
Deng ZH, Ma LY, Chen Q, Liu Y. Dynamic crosstalk between hematopoietic stem cells and their niche from emergence to aging. Bioessays 2023; 45:e2200121. [PMID: 36707486 DOI: 10.1002/bies.202200121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 01/29/2023]
Abstract
The behavior of somatic stem cells is regulated by their niche. Interaction between hematopoietic stem cells (HSCs) and their niches are a representative model to understand stem cell-niche interplay. Here, we provide an overview of crosstalk between HSCs and their niches in bone marrow and extramedullary organs following the life journey of HSCs from emergence, development, maturation until aging. We highlight the unique differences of HSC niches in different life stages within various organs focusing on recent literature to propose new speculations and hypotheses.
Collapse
Affiliation(s)
- Zhao-Hua Deng
- Center for cell lineage and development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Lan-Yue Ma
- Center for cell lineage and development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qi Chen
- Center for cell lineage and development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Yang Liu
- School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
18
|
Ding J, Li Y, Larochelle A. De Novo Generation of Human Hematopoietic Stem Cells from Pluripotent Stem Cells for Cellular Therapy. Cells 2023; 12:321. [PMID: 36672255 PMCID: PMC9857267 DOI: 10.3390/cells12020321] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The ability to manufacture human hematopoietic stem cells (HSCs) in the laboratory holds enormous promise for cellular therapy of human blood diseases. Several differentiation protocols have been developed to facilitate the emergence of HSCs from human pluripotent stem cells (PSCs). Most approaches employ a stepwise addition of cytokines and morphogens to recapitulate the natural developmental process. However, these protocols globally lack clinical relevance and uniformly induce PSCs to produce hematopoietic progenitors with embryonic features and limited engraftment and differentiation capabilities. This review examines how key intrinsic cues and extrinsic environmental inputs have been integrated within human PSC differentiation protocols to enhance the emergence of definitive hematopoiesis and how advances in genomics set the stage for imminent breakthroughs in this field.
Collapse
Affiliation(s)
| | | | - Andre Larochelle
- Cellular and Molecular Therapeutics Branch, National Heart Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Jame-Chenarboo F, Ng HH, Macdonald D, Mahal LK. High-Throughput Analysis Reveals miRNA Upregulating α-2,6-Sialic Acid through Direct miRNA-mRNA Interactions. ACS CENTRAL SCIENCE 2022; 8:1527-1536. [PMID: 36439307 PMCID: PMC9686205 DOI: 10.1021/acscentsci.2c00748] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 05/12/2023]
Abstract
Chemical biology has revealed the importance of sialic acids as a major signal in physiology and disease. The terminal modification α-2,6-sialic acid is controlled by the enzymes ST6GAL1 and ST6GAL2. Dysregulation of this glycan impacts immunological recognition and cancer development. microRNAs (miRNA, miR), noncoding RNAs that downregulate protein expression, are important regulators of glycosylation. Using our recently developed high-throughput fluorescence assay (miRFluR), we comprehensively mapped the miRNA regulatory landscape of α-2,6-sialyltransferases ST6GAL1 and ST6GAL2. We found, contrary to expectations, the majority of miRNAs upregulate ST6GAL1 and α-2,6-sialylation in a variety of cancer cells. In contrast, miRNAs that regulate ST6GAL2 were predominantly downregulatory. Mutational analysis identified direct binding sites in the 3'-untranslated region (UTR) responsible for upregulation, confirming it is a direct effect. The miRNA binding proteins AGO2 and FXR1 were required for upregulation. Our results upend common assumptions surrounding miRNA, arguing that upregulation by these noncoding RNA is common. Indeed, for some proteins, upregulation may be the dominant function of miRNA. Our work also suggests that upregulatory miRNAs enhance overexpression of ST6GAL1 and α-2,6-sialylation, providing another potential pathway to explain the dysregulation observed in cancer and other disease states.
Collapse
Affiliation(s)
| | - Hoi Hei Ng
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Dawn Macdonald
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Lara K. Mahal
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
20
|
Yan XR, Shi T, Xiao JY, Liu YF, Zheng HL. In vitro transdifferentiated signatures of goat preadipocytes into mammary epithelial cells revealed by DNA methylation and transcriptome profiling. J Biol Chem 2022; 298:102604. [PMID: 36257406 PMCID: PMC9668736 DOI: 10.1016/j.jbc.2022.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
During mammary development, the transdifferentiation of mammary preadipocytes is one of the important sources for lactating mammary epithelial cells (MECs). However, there is limited knowledge about the mechanisms of dynamic regulation of transcriptome and genome-wide DNA methylation in the preadipocyte transdifferentiation process. Here, to gain more insight into these mechanisms, preadipocytes were isolated from adipose tissues from around the goat mammary gland (GM-preadipocytes). The GM-preadipocytes were cultured on Matrigel in conditioned media made from goat MECs to induce GM-preadipocyte-to-MEC transdifferentiation. The transdifferentiated GM-preadipocytes showed high abundance of keratin 18, which is a marker protein of MECs, and formed mammary acinar-like structures after 8 days of induction. Then, we performed transcriptome and DNA methylome profiling of the GM-preadipocytes and transdifferentiated GM-preadipocytes, respectively, and the differentially expressed genes and differentially methylated genes that play underlying roles in the process of transdifferentiation were obtained. Subsequently, we identified the candidate transcription factors in regulating the GM-preadipocyte-to-MEC transdifferentiation by transcription factor-binding motif enrichment analysis of differentially expressed genes and differentially methylated genes. Meanwhile, the secretory proteome of GM-preadipocytes cultured in conditioned media was also detected. By integrating the transcriptome, DNA methylome, and proteome, three candidate genes, four proteins, and several epigenetic regulatory axes were further identified, which are involved in regulation of the cell cycle, cell polarity establishment, cell adhesion, cell reprogramming, and adipocyte plasticity. These findings provide novel insights into the molecular mechanism of preadipocyte transdifferentiation and mammary development.
Collapse
|
21
|
Abstract
Formation of the vasculature is a critical step within the developing embryo and its disruption causes early embryonic lethality. This complex process is driven by a cascade of signaling events that controls differentiation of mesodermal progenitors into primordial endothelial cells and their further specification into distinct subtypes (arterial, venous, hemogenic) that are needed to generate a blood circulatory network. Hemogenic endothelial cells give rise to hematopoietic stem and progenitor cells that generate all blood cells in the body during embryogenesis and postnatally. We focus our discussion on the regulation of endothelial cell differentiation, and subsequent hemogenic specification, and highlight many of the signaling pathways involved in these processes, which are conserved across vertebrates. Gaining a better understanding of the regulation of these processes will yield insights needed to optimize the treatment of vascular and hematopoietic disease and generate human stem cell-derived vascular and hematopoietic cells for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jordon W Aragon
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
- Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Karen K Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
- Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Departments of Medicine and Genetics, Yale University School of Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut 06520, USA
| |
Collapse
|
22
|
Xu H, Winnink J, Pang H, Wen S, Chen L. Breakthrough potential of emerging research topics based on citation diffusion features. J Inf Sci 2022. [DOI: 10.1177/01655515211061219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article uses the characteristics of citation curves in emerging research topics (ERTs) and combines them with the ERTs’ knowledge bases to draw conclusions by comparing their development patterns. The goal of this study is to enrich the toolset for predicting breakthroughs in scientific research. A set of multidimensional and practical bibliometric indicators is used to identify ERTs, to further identify the knowledge bases of ERTs and construct citation curves for both ERTs and their knowledge bases. The development trends of the citation curves of ERTs and their knowledge bases in different time periods are compared and analysed from two dimensions: knowledge transition and continuous growth. We use the field of stem cell research to test our method. Based on the outcome of the analysis, we can assess the breakthrough potential of ERTs. The stratification, transition and recent changes of the citation curve can be used as a basis for analysing and assessing the ERTs’ breakthrough potential. The combination of different citation diffusion patterns of ERTs and their knowledge bases can improve the effectiveness of identifying ERTs that can become breakthrough innovations.
Collapse
Affiliation(s)
- Haiyun Xu
- Business School, Shandong University of Technology, China
| | - Jos Winnink
- Centre for Science and Technology Studies (CWTS), Leiden University, The Netherlands
| | | | - Shuhao Wen
- School of Public Administration, Sichuan University, China
| | - Liang Chen
- Institute of Scientific and Technical Information of China (ISTIC), China
| |
Collapse
|
23
|
Crisafulli L, Ficara F. Micro-RNAs: A safety net to protect hematopoietic stem cell self-renewal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1693. [PMID: 34532984 PMCID: PMC9285953 DOI: 10.1002/wrna.1693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/05/2022]
Abstract
The hematopoietic system is sustained over time by a small pool of hematopoietic stem cells (HSCs). They reside at the apex of a complex hierarchy composed of cells with progressively more restricted lineage potential, regenerative capacity, and with different proliferation characteristics. Like other somatic stem cells, HSCs are endowed with long-term self-renewal and multipotent differentiation ability, to sustain the high turnover of mature cells such as erythrocytes or granulocytes, and to rapidly respond to acute peripheral stresses including bleeding, infections, or inflammation. Maintenance of both attributes over time, and of the proper balance between these opposite features, is crucial to ensure the homeostasis of the hematopoietic system. Micro-RNAs (miRNAs) are short non-coding RNAs that regulate gene expression posttranscriptionally upon binding to specific mRNA targets. In the past 10 years they have emerged as important players for preserving the HSC pool by acting on several biological mechanisms, such as maintenance of the quiescent state while preserving proliferation ability, prevention of apoptosis, premature differentiation, lineage skewing, excessive expansion, or retention within the BM niche. miRNA-mediated posttranscriptional fine-tuning of all these processes constitutes a safety mechanism to protect HSCs, by complementing the action of transcription factors and of other regulators and avoiding unwanted expansion or aplasia. The current knowledge of miRNAs function in different aspects of HSC biology, including consequences of aberrant miRNA expression, will be reviewed; yet unsolved issues will be discussed. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Laura Crisafulli
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNRMilanItaly
- IRCCS Humanitas Research HospitalMilanItaly
| | - Francesca Ficara
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNRMilanItaly
- IRCCS Humanitas Research HospitalMilanItaly
| |
Collapse
|
24
|
Liu Y, Chen Q, Jeong HW, Koh BI, Watson EC, Xu C, Stehling M, Zhou B, Adams RH. A specialized bone marrow microenvironment for fetal haematopoiesis. Nat Commun 2022; 13:1327. [PMID: 35288551 PMCID: PMC8921288 DOI: 10.1038/s41467-022-28775-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/09/2022] [Indexed: 12/19/2022] Open
Abstract
In adult mammalian bone marrow (BM), vascular endothelial cells and perivascular reticular cells control the function of haematopoietic stem and progenitor cells (HSPCs). During fetal development, the mechanisms regulating the de novo haematopoietic cell colonization of BM remain largely unknown. Here, we show that fetal and adult BM exhibit fundamental differences in cellular composition and molecular interactions by single cell RNA sequencing. While fetal femur is largely devoid of leptin receptor-expressing cells, arterial endothelial cells (AECs) provide Wnt ligand to control the initial HSPC expansion. Haematopoietic stem cells and c-Kit+ HSPCs are reduced when Wnt secretion by AECs is genetically blocked. We identify Wnt2 as AEC-derived signal that activates β-catenin-dependent proliferation of fetal HSPCs. Treatment of HSPCs with Wnt2 promotes their proliferation and improves engraftment after transplantation. Our work reveals a fundamental switch in the cellular organization and molecular regulation of BM niches in the embryonic and adult organism. The colonization of bone marrow by haematopoietic stem and progenitor cells is critical for lifelong blood cell formation. Here the authors report distinct features of fetal bone marrow and show that artery-derived signals promote haematopoietic colonization.
Collapse
|
25
|
Fang JS, Hultgren NW, Hughes CCW. Regulation of Partial and Reversible Endothelial-to-Mesenchymal Transition in Angiogenesis. Front Cell Dev Biol 2021; 9:702021. [PMID: 34692672 PMCID: PMC8529039 DOI: 10.3389/fcell.2021.702021] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022] Open
Abstract
During development and in several diseases, endothelial cells (EC) can undergo complete endothelial-to-mesenchymal transition (EndoMT or EndMT) to generate endothelial-derived mesenchymal cells. Emerging evidence suggests that ECs can also undergo a partial EndoMT to generate cells with intermediate endothelial- and mesenchymal-character. This partial EndoMT event is transient, reversible, and supports both developmental and pathological angiogenesis. Here, we discuss possible regulatory mechanisms that may control the EndoMT program to dictate whether cells undergo complete or partial mesenchymal transition, and we further consider how these pathways might be targeted therapeutically in cancer.
Collapse
Affiliation(s)
- Jennifer S. Fang
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Nan W. Hultgren
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Christopher C. W. Hughes
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
26
|
Sugden WW, North TE. Making Blood from the Vessel: Extrinsic and Environmental Cues Guiding the Endothelial-to-Hematopoietic Transition. Life (Basel) 2021; 11:life11101027. [PMID: 34685398 PMCID: PMC8539454 DOI: 10.3390/life11101027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 01/10/2023] Open
Abstract
It is increasingly recognized that specialized subsets of endothelial cells carry out unique functions in specific organs and regions of the vascular tree. Perhaps the most striking example of this specialization is the ability to contribute to the generation of the blood system, in which a distinct population of “hemogenic” endothelial cells in the embryo transforms irreversibly into hematopoietic stem and progenitor cells that produce circulating erythroid, myeloid and lymphoid cells for the lifetime of an animal. This review will focus on recent advances made in the zebrafish model organism uncovering the extrinsic and environmental factors that facilitate hemogenic commitment and the process of endothelial-to-hematopoietic transition that produces blood stem cells. We highlight in particular biomechanical influences of hemodynamic forces and the extracellular matrix, metabolic and sterile inflammatory cues present during this developmental stage, and outline new avenues opened by transcriptomic-based approaches to decipher cell–cell communication mechanisms as examples of key signals in the embryonic niche that regulate hematopoiesis.
Collapse
Affiliation(s)
- Wade W. Sugden
- Stem Cell Program, Department of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA 02115, USA
| | - Trista E. North
- Stem Cell Program, Department of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
27
|
Ulloa BA, Habbsa SS, Potts KS, Lewis A, McKinstry M, Payne SG, Flores JC, Nizhnik A, Feliz Norberto M, Mosimann C, Bowman TV. Definitive hematopoietic stem cells minimally contribute to embryonic hematopoiesis. Cell Rep 2021; 36:109703. [PMID: 34525360 PMCID: PMC8928453 DOI: 10.1016/j.celrep.2021.109703] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/29/2021] [Accepted: 08/20/2021] [Indexed: 01/23/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are rare cells that arise in the embryo and sustain adult hematopoiesis. Although the functional potential of nascent HSCs is detectable by transplantation, their native contribution during development is unknown, in part due to the overlapping genesis and marker gene expression with other embryonic blood progenitors. Using single-cell transcriptomics, we define gene signatures that distinguish nascent HSCs from embryonic blood progenitors. Applying a lineage-tracing approach to selectively track HSC output in situ, we find significantly delayed lymphomyeloid contribution. An inducible HSC injury model demonstrates a negligible impact on larval lymphomyelopoiesis following HSC depletion. HSCs are not merely dormant at this developmental stage, as they showed robust regeneration after injury. Combined, our findings illuminate that nascent HSCs self-renew but display differentiation latency, while HSC-independent embryonic progenitors sustain developmental hematopoiesis. Understanding these differences could improve de novo generation and expansion of functional HSCs.
Collapse
Affiliation(s)
- Bianca A Ulloa
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, NY, USA; Albert Einstein College of Medicine, Gottesman Institute of Stem Cell Biology and Regenerative Medicine, Bronx, NY, USA
| | - Samima S Habbsa
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, NY, USA; Albert Einstein College of Medicine, Gottesman Institute of Stem Cell Biology and Regenerative Medicine, Bronx, NY, USA
| | - Kathryn S Potts
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, NY, USA; Albert Einstein College of Medicine, Gottesman Institute of Stem Cell Biology and Regenerative Medicine, Bronx, NY, USA
| | - Alana Lewis
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, NY, USA; Albert Einstein College of Medicine, Gottesman Institute of Stem Cell Biology and Regenerative Medicine, Bronx, NY, USA
| | - Mia McKinstry
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, NY, USA; Albert Einstein College of Medicine, Gottesman Institute of Stem Cell Biology and Regenerative Medicine, Bronx, NY, USA
| | - Sara G Payne
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, NY, USA; Albert Einstein College of Medicine, Gottesman Institute of Stem Cell Biology and Regenerative Medicine, Bronx, NY, USA
| | - Julio C Flores
- Albert Einstein College of Medicine, Gottesman Institute of Stem Cell Biology and Regenerative Medicine, Bronx, NY, USA
| | - Anastasia Nizhnik
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, NY, USA; Albert Einstein College of Medicine, Gottesman Institute of Stem Cell Biology and Regenerative Medicine, Bronx, NY, USA
| | - Maria Feliz Norberto
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, NY, USA; Albert Einstein College of Medicine, Gottesman Institute of Stem Cell Biology and Regenerative Medicine, Bronx, NY, USA
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine and Children's Hospital Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Teresa V Bowman
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, NY, USA; Albert Einstein College of Medicine, Gottesman Institute of Stem Cell Biology and Regenerative Medicine, Bronx, NY, USA; Albert Einstein College of Medicine and Montefiore Medical Center, Department of Medicine (Oncology), Bronx, NY, USA.
| |
Collapse
|
28
|
Shen J, Xu Y, Zhang S, Lyu S, Huo Y, Zhu Y, Tang K, Mou J, Li X, Hoyle DL, Wang M, Wang J, Li X, Wang ZZ, Cheng T. Single-cell transcriptome of early hematopoiesis guides arterial endothelial-enhanced functional T cell generation from human PSCs. SCIENCE ADVANCES 2021; 7:eabi9787. [PMID: 34516916 PMCID: PMC8442917 DOI: 10.1126/sciadv.abi9787] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/14/2021] [Indexed: 05/10/2023]
Abstract
Hematopoietic differentiation of human pluripotent stem cells (hPSCs) requires orchestration of dynamic cell and gene regulatory networks but often generates blood cells that lack natural function. Here, we performed extensive single-cell transcriptomic analyses to map fate choices and gene expression patterns during hematopoietic differentiation of hPSCs and showed that oxidative metabolism was dysregulated during in vitro directed differentiation. Applying hypoxic conditions at the stage of endothelial-to-hematopoietic transition in vitro effectively promoted the development of arterial specification programs that governed the generation of hematopoietic progenitor cells (HPCs) with functional T cell potential. Following engineered expression of the anti-CD19 chimeric antigen receptor, the T cells generated from arterial endothelium-primed HPCs inhibited tumor growth both in vitro and in vivo. Collectively, our study provides benchmark datasets as a resource to further understand the origins of human hematopoiesis and represents an advance in guiding in vitro generation of functional T cells for clinical applications.
Collapse
Affiliation(s)
- Jun Shen
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yingxi Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Key Laboratory of Blood Disease Cell Therapy, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Shuo Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Shuzhen Lyu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yingying Huo
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yaoyao Zhu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Department of Laboratory, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Kejing Tang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Key Laboratory of Blood Disease Cell Therapy, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Junli Mou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Key Laboratory of Blood Disease Cell Therapy, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Xinjie Li
- School of Medicine, Sun Yat-sen University, Guangzhou 510006, China
| | - Dixie L. Hoyle
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Min Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Key Laboratory of Blood Disease Cell Therapy, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300020, China
| | - Xin Li
- School of Medicine, Sun Yat-sen University, Guangzhou 510006, China
| | - Zack Z. Wang
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin 300020, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
29
|
Mathiesen A, Hamilton T, Carter N, Brown M, McPheat W, Dobrian A. Endothelial Extracellular Vesicles: From Keepers of Health to Messengers of Disease. Int J Mol Sci 2021; 22:ijms22094640. [PMID: 33924982 PMCID: PMC8125116 DOI: 10.3390/ijms22094640] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023] Open
Abstract
Endothelium has a rich vesicular network that allows the exchange of macromolecules between blood and parenchymal cells. This feature of endothelial cells, along with their polarized secretory machinery, makes them the second major contributor, after platelets, to the particulate secretome in circulation. Extracellular vesicles (EVs) produced by the endothelial cells mirror the remarkable molecular heterogeneity of their parent cells. Cargo molecules carried by EVs were shown to contribute to the physiological functions of endothelium and may support the plasticity and adaptation of endothelial cells in a paracrine manner. Endothelium-derived vesicles can also contribute to the pathogenesis of cardiovascular disease or can serve as prognostic or diagnostic biomarkers. Finally, endothelium-derived EVs can be used as therapeutic tools to target endothelium for drug delivery or target stromal cells via the endothelial cells. In this review we revisit the recent evidence on the heterogeneity and plasticity of endothelial cells and their EVs. We discuss the role of endothelial EVs in the maintenance of vascular homeostasis along with their contributions to endothelial adaptation and dysfunction. Finally, we evaluate the potential of endothelial EVs as disease biomarkers and their leverage as therapeutic tools.
Collapse
|
30
|
Abstract
Embryonic definitive hematopoiesis generates hematopoietic stem and progenitor cells (HSPCs) essential for establishment and maintenance of the adult blood system. This process requires the specification of a subset of vascular endothelial cells to become blood-forming, or hemogenic, and the subsequent endothelial-to-hematopoietic transition to generate HSPCs therefrom. The mechanisms that regulate these processes are under intensive investigation, as their recapitulation in vitro from human pluripotent stem cells has the potential to generate autologous HSPCs for clinical applications. In this review, we provide an overview of hemogenic endothelial cell development and highlight the molecular events that govern hemogenic specification of vascular endothelial cells and the generation of multilineage HSPCs from hemogenic endothelium. We also discuss the impact of hemogenic endothelial cell development on adult hematopoiesis.
Collapse
Affiliation(s)
- Yinyu Wu
- Departments of Medicine and Genetics, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA;
| | - Karen K Hirschi
- Departments of Medicine and Genetics, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA; .,Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA;
| |
Collapse
|