1
|
Akkoyunlu M. State of pneumococcal vaccine immunity. Hum Vaccin Immunother 2024; 20:2336358. [PMID: 38567485 PMCID: PMC10993918 DOI: 10.1080/21645515.2024.2336358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Like the other invasive encapsulated bacteria, Streptococcus pneumoniae is also covered with a polysaccharide structure. Infants and elderly are most vulnerable to the invasive and noninvasive diseases caused by S. pneumoniae. Although antibodies against polysaccharide capsule are efficient in eliminating S. pneumoniae, the T cell independent nature of the immune response against polysaccharide vaccines renders them weakly antigenic. The introduction of protein conjugated capsular polysaccharide vaccines helped overcome the weak immunogenicity of pneumococcal polysaccharides and decreased the incidence of pneumococcal diseases, especially in pediatric population. Conjugate vaccines elicit T cell dependent response which involve the interaction of specialized CD4+ T cells, called follicular helper T cells (Tfh) with germinal center B cells in secondary lymphoid organs. Despite their improved immunogenicity, conjugate vaccines still need to be administered three to four times in infants during the first 15 month of their life because they mount poor Tfh response. Recent studies revealed fundamental differences in the generation of Tfh cells between neonates and adults. As the portfolio of pneumococcal conjugate vaccines continues to increase, better understanding of the mechanisms of antibody development in different age groups will help in the development of pneumococcal vaccines tailored for different ages.
Collapse
Affiliation(s)
- Mustafa Akkoyunlu
- Division of Bacterial Allergenic and Parasitic Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
2
|
Wessel RE, Dolatshahi S. Regulators of placental antibody transfer through a modeling lens. Nat Immunol 2024; 25:2024-2036. [PMID: 39379658 DOI: 10.1038/s41590-024-01971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024]
Abstract
Infants are vulnerable to infections owing to a limited ability to mount a humoral immune response and their tolerogenic immune phenotype, which has impeded the success of newborn vaccination. Transplacental transfer of IgG from mother to fetus provides crucial protection in the first weeks of life, and maternal immunization has recently been implemented as a public health strategy to protect newborns against serious infections. Despite their early success, current maternal vaccines do not provide comparable protection across pregnancies with varying gestational lengths and placental and maternal immune features, and they do not account for the dynamic interplay between the maternal immune response and placental transfer. Moreover, progress toward the rational design of maternal vaccines has been hindered by inadequacies of existing experimental models and safety challenges of investigating longitudinal dynamics of IgG transfer in pregnant humans. Alternatively, in silico mechanistic models are a logical framework to disentangle the processes regulating placental antibody transfer. This Review synthesizes current literature through a mechanistic modeling lens to identify placental and maternal regulators of antibody transfer, their clinical covariates, and knowledge gaps to guide future research. We also describe opportunities to use integrated modeling and experimental approaches toward the rational design of vaccines against existing and emerging neonatal pathogen threats.
Collapse
Affiliation(s)
- Remziye E Wessel
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Virginia, Charlottesville, VA, USA
| | - Sepideh Dolatshahi
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Virginia, Charlottesville, VA, USA.
- Carter Immunology Center, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Liu X, Li Z, Li X, Wu W, Jiang H, Zheng Y, Zhou J, Ye X, Lu J, Wang W, Yu L, Li Y, Qu L, Wang J, Li F, Chen L, Wu L, Feng L. A single-dose circular RNA vaccine prevents Zika virus infection without enhancing dengue severity in mice. Nat Commun 2024; 15:8932. [PMID: 39414822 PMCID: PMC11484855 DOI: 10.1038/s41467-024-53242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
Antibody-dependent enhancement (ADE) is a potential concern for the development of Zika virus (ZIKV) vaccines. Cross-reactive but poorly neutralizing antibodies, usually targeting viral pre-membrane or envelope (E) proteins, can potentially enhance dengue virus (DENV) infection. Although E domain III (EDIII) contains ZIKV-specific epitopes, its immunogenicity is poor. Here, we show that dimeric EDIII, fused to human IgG1 Fc fragment (EDIII-Fc) and encoded by circular RNA (circRNA), induces better germinal center reactions and higher neutralizing antibodies compared to circRNAs encoding monomeric or trimeric EDIII. Two doses of circRNAs encoding EDIII-Fc and ZIKV nonstructural protein NS1, another protective antigen, prevent lethal ZIKV infection in neonates born to immunized C57BL/6 mice and in interferon-α/β receptor knockout adult C57BL/6 mice. Importantly, a single-dose optimized circRNA vaccine with improved antigen expression confers potent and durable protection without inducing obvious DENV ADE in mice, laying the groundwork for developing flavivirus vaccines based on circRNAs encoding EDIII-Fc and NS1.
Collapse
Affiliation(s)
- Xinglong Liu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengfeng Li
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiaoxia Li
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weixuan Wu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huadong Jiang
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- School of Life Science, University of Science and Technology of China, Hefei, 230026, China
| | - Yufen Zheng
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junjie Zhou
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xianmiao Ye
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Junnan Lu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wei Wang
- Bioland Laboratory, Guangzhou, 510005, China
| | - Lei Yu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Yiping Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 501180, China
| | - Linbing Qu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jianhua Wang
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Feng Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Guangzhou National Laboratory, Guangzhou, 510005, China.
| | - Linping Wu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Tain YL, Hsu CN. Preterm Birth and Kidney Health: From the Womb to the Rest of Life. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1213. [PMID: 39457178 PMCID: PMC11506578 DOI: 10.3390/children11101213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024]
Abstract
Chronic kidney disease (CKD) is a widespread condition often resulting from multiple factors, including maternal influences. These risk factors not only heighten the likelihood of developing CKD but increase the risk of a preterm birth. Adverse events during nephrogenesis can disrupt kidney development, leading to a reduced number of nephrons. As survival rates for preterm infants improve, more individuals are living into adulthood, thereby elevating their risk of CKD later in life. This review aims to explore the connections between preterm birth, kidney development, and the increased risk of CKD, while proposing practical solutions for the future through a multidisciplinary approach. We examine human studies linking preterm birth to negative kidney outcomes, summarize animal models demonstrating kidney programming and reduced nephron numbers, and consolidate knowledge on common mechanisms driving kidney programming. Additionally, we discuss factors in the postnatal care environment that may act as secondary insults contributing to CKD risk, such as acute kidney injury (AKI), the use of nephrotoxic drugs, preterm nutrition, and catch-up growth. Finally, we outline recommendations for action, emphasizing the importance of avoiding modifiable risk factors and implementing early CKD screening for children born preterm. Together, we can ensure that advancements in kidney health keep pace with improvements in preterm care.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
5
|
Giannoni E, Sanchez Sanchez G, Verdebout I, Papadopoulou M, Rezwani M, Ahmed R, Ladell K, Miners KL, McLaren JE, Fraser DJ, Price DA, Eberl M, Agyeman PKA, Schlapbach LJ, Vermijlen D. Sepsis shapes the human γδ TCR repertoire in an age- and pathogen-dependent manner. Eur J Immunol 2024; 54:e2451190. [PMID: 39072722 DOI: 10.1002/eji.202451190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
Sepsis affects 25 million children per year globally, leading to 2.9 million deaths and substantial disability in survivors. Extensive characterization of interactions between the host and bacteria in children is required to design novel preventive and therapeutic strategies tailored to this age group. Vγ9Vδ2 T cells are the first T cells generated in humans. These cells are defined by the expression of Vγ9Vδ2 T-cell receptors (TCRs, using the TRGV9 and TRDV2 gene segments), which react strongly against the prototypical bacterial phosphoantigen HMBPP. We investigated this reactivity by analyzing the TCR δ (TRD) repertoire in the blood of 76 children (0-16 years) with blood culture-proven bacterial sepsis caused by HMBPP-positive Escherichia coli or by HMBPP-negative Staphylococcus aureus or by HMBPP-negative Streptococcus pneumoniae. Strikingly, we found that S. aureus, and to a lesser extent E. coli but not S. pneumoniae, shaped the TRDV2 repertoire in young children (<2 years) but not in older children or adults. This dichotomy was due to the selective expansion of a fetal TRDV2 repertoire. Thus, young children possess fetal-derived Vγ9Vδ2 T cells that are highly responsive toward specific bacterial pathogens.
Collapse
Affiliation(s)
- Eric Giannoni
- Clinic of Neonatology, Department Mother-Woman-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Guillem Sanchez Sanchez
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Isoline Verdebout
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Moosa Rezwani
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Raya Ahmed
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Kristin Ladell
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Kelly L Miners
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - James E McLaren
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Donald J Fraser
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
- Wales Kidney Research Unit, Heath Park Campus, Cardiff, UK
- Directorate of Nephrology and Transplantation, Cardiff and Vale University Health Board, University Hospital of Wales, Cardiff, UK
| | - David A Price
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Philipp K A Agyeman
- Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luregn J Schlapbach
- Department of Intensive Care and Neonatology, and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
6
|
Verhasselt V, Marchant A, Kollmann TR. Per Os to Protection - Targeting the Oral Route to Enhance Immune-mediated Protection from Disease of the Human Newborn. J Mol Biol 2024; 436:168718. [PMID: 39094783 DOI: 10.1016/j.jmb.2024.168718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Affiliation(s)
- Valerie Verhasselt
- Larsson-Rosenquist Foundation Centre for Immunology and Breastfeeding, School of Medicine, University of Western Australia, Perth, WA, Australia; Immunology and Breastfeeding Team, Telethon Kids Institute, Perth, WA, Australia
| | - Arnaud Marchant
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Tobias R Kollmann
- Dalhousie University, Department of Microbiology & Immunology, Pediatric Infectious Diseases, Canada.
| |
Collapse
|
7
|
Martino D, Kresoje N, Amenyogbe N, Ben-Othman R, Cai B, Lo M, Idoko O, Odumade OA, Falsafi R, Blimkie TM, An A, Shannon CP, Montante S, Dhillon BK, Diray-Arce J, Ozonoff A, Smolen KK, Brinkman RR, McEnaney K, Angelidou A, Richmond P, Tebbutt SJ, Kampmann B, Levy O, Hancock REW, Lee AHY, Kollmann TR. DNA Methylation signatures underpinning blood neutrophil to lymphocyte ratio during first week of human life. Nat Commun 2024; 15:8167. [PMID: 39289350 PMCID: PMC11408723 DOI: 10.1038/s41467-024-52283-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Understanding of newborn immune ontogeny in the first week of life will enable age-appropriate strategies for safeguarding vulnerable newborns against infectious diseases. Here we conducted an observational study exploring the immunological profile of infants longitudinally throughout their first week of life. Our Expanded Program on Immunization - Human Immunology Project Consortium (EPIC-HIPC) studies the epigenetic regulation of systemic immunity using small volumes of peripheral blood samples collected from West African neonates on days of life (DOL) 0, 1, 3, and 7. Genome-wide DNA methylation and single nucleotide polymorphism markers are examined alongside matched transcriptomic and flow cytometric data. Integrative analysis reveals that a core network of transcription factors mediates dynamic shifts in neutrophil-to-lymphocyte ratios (NLR), which are underpinned by cell-type specific methylation patterns in the two cell types. Genetic variants are associated with lower NLRs at birth, and healthy newborns with lower NLRs at birth are more likely to subsequently develop sepsis. These findings provide valuable insights into the early-life determinants of immune system development.
Collapse
Affiliation(s)
- David Martino
- The Kids Research Institute Australia, Perth, WA, Australia.
- University of Western Australia, Crawley, WA, Australia.
| | - Nina Kresoje
- The Kids Research Institute Australia, Perth, WA, Australia
| | - Nelly Amenyogbe
- The Kids Research Institute Australia, Perth, WA, Australia
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Bing Cai
- BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Mandy Lo
- BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Olubukola Idoko
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Banjul, Gambia
| | - Oludare A Odumade
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Reza Falsafi
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Travis M Blimkie
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Andy An
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Casey P Shannon
- PROOF Centre of Excellence, Providence Research, Vancouver, BC, Canada
- UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | | | - Bhavjinder K Dhillon
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Joann Diray-Arce
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Al Ozonoff
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kinga K Smolen
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Kerry McEnaney
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Asimenia Angelidou
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Neonatology, Beth Israel Deaconess Medical Centre, Boston, MA, USA
| | - Peter Richmond
- The Kids Research Institute Australia, Perth, WA, Australia
- University of Western Australia, Crawley, WA, Australia
| | - Scott J Tebbutt
- PROOF Centre of Excellence, Providence Research, Vancouver, BC, Canada
- UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Beate Kampmann
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Banjul, Gambia
- Centre for Global Health and Institute for International Health, Charite Universitatsmedizin, Berlin, Germany
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robert E W Hancock
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Amy H Y Lee
- Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Tobias R Kollmann
- The Kids Research Institute Australia, Perth, WA, Australia
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
8
|
Singh A, Boggiano C, Yin DE, Polakowski L, Majji SP, Leitner WW, Levy O, De Paris K. Precision adjuvants for pediatric vaccines. Sci Transl Med 2024; 16:eabq7378. [PMID: 39231242 DOI: 10.1126/scitranslmed.abq7378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
Elucidating optimal vaccine adjuvants for harnessing age-specific immune pathways to enhance magnitude, breadth, and durability of immunogenicity remains a key gap area in pediatric vaccine design. A better understanding of age-specific adjuvants will inform precision discovery and development of safe and effective vaccines for protecting children from preventable infectious diseases.
Collapse
Affiliation(s)
- Anjali Singh
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - César Boggiano
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Dwight E Yin
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Laura Polakowski
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Sai P Majji
- Maternal and Pediatric Infectious Disease Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20817, USA
| | - Wolfgang W Leitner
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
9
|
Bæk O, Schaltz-Buchholzer F, Campbell A, Amenyogbe N, Campbell J, Aaby P, Benn CS, Kollmann TR. The mark of success: The role of vaccine-induced skin scar formation for BCG and smallpox vaccine-associated clinical benefits. Semin Immunopathol 2024; 46:13. [PMID: 39186134 PMCID: PMC11347488 DOI: 10.1007/s00281-024-01022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
Skin scar formation following Bacille Calmette-Guérin (BCG) or smallpox (Vaccinia) vaccination is an established marker of successful vaccination and 'vaccine take'. Potent pathogen-specific (tuberculosis; smallpox) and pathogen-agnostic (protection from diseases unrelated to the intentionally targeted pathogen) effects of BCG and smallpox vaccines hold significant translational potential. Yet despite their use for centuries, how scar formation occurs and how local skin-based events relate to systemic effects that allow these two vaccines to deliver powerful health promoting effects has not yet been determined. We review here what is known about the events occurring in the skin and place this knowledge in the context of the overall impact of these two vaccines on human health with a particular focus on maternal-child health.
Collapse
Affiliation(s)
- Ole Bæk
- University of Copenhagen, Copenhagen, Denmark
| | | | | | - Nelly Amenyogbe
- Telethon Kids Institute, Perth, Australia
- Dalhousie University, 5980 University Ave #5850, 4th floor Goldbloom Pavilion, Halifax, NS, B3K 6R8, Canada
- Bandim Health Project, Bissau, Guinea-Bissau
| | | | - Peter Aaby
- Bandim Health Project, Bissau, Guinea-Bissau
| | - Christine Stabell Benn
- University of Southern Denmark, Copenhagen, Denmark
- Bandim Health Project, Bissau, Guinea-Bissau
| | - Tobias R Kollmann
- Telethon Kids Institute, Perth, Australia.
- Dalhousie University, 5980 University Ave #5850, 4th floor Goldbloom Pavilion, Halifax, NS, B3K 6R8, Canada.
- Bandim Health Project, Bissau, Guinea-Bissau.
| |
Collapse
|
10
|
Plank AC, Maschke J, Mestermann S, Janson-Schmitt J, Sturmbauer S, Eichler A, Rohleder N. Association of perinatal characteristics with biomarkers of stress and inflammation in young adults: An exploratory study. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2024; 19:100249. [PMID: 39100802 PMCID: PMC11296062 DOI: 10.1016/j.cpnec.2024.100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
General peri- and postnatal characteristics may serve as markers linking pre- or early postnatal events to later health outcomes, which in turn are associated with altered stress- and immune system activity. Our exploratory study investigated whether A) the common perinatal measures "birth weight" and "birth mode" and B) the postnatal characteristics "breastfeeding" and "vaccination status" are associated with markers of stress systems - the hypothalamic-pituitary-adrenal (HPA) axis and autonomous nervous system (ANS) - and inflammation in healthy young adults (n = 68, females: 70.6 %, mean age: 24.21 years, SD = 4.38) exposed to psychosocial challenge, the 'Trier Social Stress Test' (TSST). Salivary cortisol, alpha-amylase (sAA) and plasma interleukin-6 (IL-6) were assessed before, during and after the TSST. Participants provided information on peri- and postnatal characteristics. Linear regressions were performed to determine whether peri-/postnatal variables predict basal and stress-response-related biomarker levels. Controlling for sex and sex hormone use as relevant confounders, we found a significant association between birth weight and cortisol recovery (p = 0.032), with higher birth weight predicting higher cortisol recovery values. There were no other significant associations between predictor and outcome variables. Our results show that, in healthy young adults of mixed gender, normal-ranged birth weight is related to the cortisol response to psychosocial stress, indicating a long-term association of this perinatal marker with HPA axis function. In contrast, birth weight was not associated with markers of the ANS stress response or inflammation in adulthood. Our results further suggest that the measures birth mode, duration of breastfeeding, and vaccination status at 4 months of age do not relate to markers of the inflammatory and stress systems in adulthood.
Collapse
Affiliation(s)
- Anne-Christine Plank
- Department of Child and Adolescent Mental Health, Faculty of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Janina Maschke
- Department of Child and Adolescent Mental Health, Faculty of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Mestermann
- Department of Child and Adolescent Mental Health, Faculty of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Johanna Janson-Schmitt
- Chair of Health Psychology, Institute of Psychology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Sarah Sturmbauer
- Chair of Health Psychology, Institute of Psychology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Eichler
- Department of Child and Adolescent Mental Health, Faculty of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Nicolas Rohleder
- Chair of Health Psychology, Institute of Psychology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
11
|
Montante S, Ben-Othman R, Amenyogbe N, Angelidou A, van den Biggelaar A, Cai B, Chen Y, Darboe A, Diray-Arce J, Ford R, Idoko O, Lee A, Lo M, McEnaney K, Malek M, Martino D, Masiria G, Odumade OA, Pomat W, Shannon C, Smolen K, Consortium TEPIC, Ozonoff A, Richmond P, Tebbutt S, Levy O, Kampmann B, Brinkman R, Kollmann T. Breastfeeding and Neonatal Age Influence Neutrophil-Driven Ontogeny of Blood Cell Populations in the First Week of Human Life. J Immunol Res 2024; 2024:1117796. [PMID: 39081632 PMCID: PMC11288693 DOI: 10.1155/2024/1117796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/16/2024] [Accepted: 06/13/2024] [Indexed: 08/02/2024] Open
Abstract
The first few days of life are characterized by rapid external and internal changes that require substantial immune system adaptations. Despite growing evidence of the impact of this period on lifelong immune health, this period remains largely uncharted. To identify factors that may impact the trajectory of immune development, we conducted stringently standardized, high-throughput phenotyping of peripheral white blood cell (WBC) populations from 796 newborns across two distinct cohorts (The Gambia, West Africa; Papua New Guinea, Melanesia) in the framework of a Human Immunology Project Consortium (HIPC) study. Samples were collected twice from each newborn during the first week of life, first at Day of Life 0 (at birth) and then subsequently at Day of Life 1, 3, or 7 depending on the randomization group the newborn belongs to. The subsequent analysis was conducted at an unprecedented level of detail using flow cytometry and an unbiased automated gating algorithm. The results showed that WBC composition in peripheral blood changes along patterns highly conserved across populations and environments. Changes across days of life were most pronounced in the innate myeloid compartment. Breastfeeding, and at a smaller scale neonatal vaccination, were associated with changes in peripheral blood neutrophil and monocyte cell counts. Our results suggest a common trajectory of immune development in newborns and possible association with timing of breastfeeding initiation, which may contribute to immune-mediated protection from infection in early life. These data begin to outline a specific window of opportunity for interventions that could deliberately direct WBC composition, and with that, immune trajectory and thus ontogeny in early life. This trial is registered with NCT03246230.
Collapse
Affiliation(s)
| | - Rym Ben-Othman
- Telethon Kids InstitutePerth Children's Hospital, 15 Hospital Avenue, Nedlands 6009, WA, Australia
- RAN BioLinks Ltd., 10212 Yonge Street, 202, Richmond Hill L4C 3B6, Ontario, Canada
| | - Nelly Amenyogbe
- Telethon Kids InstitutePerth Children's Hospital, 15 Hospital Avenue, Nedlands 6009, WA, Australia
- Department of Microbiology and ImmunologyDepartment of Pediatrics;Dalhousie University, 6299 South Street, Halifax B3H 4R2, Canada
| | - Asimenia Angelidou
- Precision Vaccines ProgramDepartment of PediatricsBoston Children's Hospital, Boston, MA, USA
- Department of NeonatologyBeth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA, USA
| | - Anita van den Biggelaar
- Wesfarmers Centre of Vaccines and Infectious DiseasesTelethon Kids InstituteUniversity of Western Australia Perth, 15 Hospital Avenue, Nedlands, WA 6009, Australia
| | - Bing Cai
- Department of PediatricsBC Children's HospitalUniversity of British Columbia, 4480 Oak Street, Vancouver V6H 3V4, BC, Canada
| | - Yixuan Chen
- BC Cancer Agency, 675 West 10th Avenue, Vancouver V5Z 1G1, BC, Canada
| | - Alansana Darboe
- Vaccines and Immunity ThemeMedical Research Council UnitThe Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Banjul P.O. Box 273, Gambia
| | - Joann Diray-Arce
- Precision Vaccines ProgramDepartment of PediatricsBoston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rebecca Ford
- Papua New Guinea Institute of Medical Research, Homate Street, 441, Goroka, Eastern Highlands Province, Papua New Guinea
| | - Olubukola Idoko
- Department of Clinical ResearchFaculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Amy Lee
- Department of Molecular Biology and BiochemistrySimon Fraser University, 8888 University Dr. Burnaby V5A1S6, Burnaby, British Columbia, Canada
| | - Mandy Lo
- Telethon Kids InstitutePerth Children's Hospital, 15 Hospital Avenue, Nedlands 6009, WA, Australia
| | - Kerry McEnaney
- Precision Vaccines ProgramDepartment of PediatricsBoston Children's Hospital, Boston, MA, USA
| | - Mehrnoush Malek
- BC Cancer Agency, 675 West 10th Avenue, Vancouver V5Z 1G1, BC, Canada
| | - David Martino
- Wal-yan Respiratory Research CentreTelethon Kids InstituteUniversity of Western Australia, Perth, Australia
| | - Geraldine Masiria
- Papua New Guinea Institute of Medical Research, Homate Street, 441, Goroka, Eastern Highlands Province, Papua New Guinea
| | - Oludare A. Odumade
- Precision Vaccines ProgramDepartment of PediatricsBoston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - William Pomat
- Papua New Guinea Institute of Medical Research, Homate Street, 441, Goroka, Eastern Highlands Province, Papua New Guinea
| | - Casey Shannon
- PROOF Centre of Excellence, 10th floor, 1190 Hornby Street, Vancouver V6Z 2K5, British Columbia, Canada
- UBC Centre for Heart Lung InnovationSt. Paul's Hospital, 1081 Burrard Street, Vancouver, British Columbia V6Z 1Y6, Canada
| | - Kinga Smolen
- Precision Vaccines ProgramDepartment of PediatricsBoston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Al Ozonoff
- Precision Vaccines ProgramDepartment of PediatricsBoston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Peter Richmond
- Telethon Kids InstitutePerth Children's Hospital, 15 Hospital Avenue, Nedlands 6009, WA, Australia
- Division of PediatricsSchool of MedicineUniversity of Western Australia, 35 Stirling Highway, Crawley 6009, WA, Australia
| | - Scott Tebbutt
- PROOF Centre of Excellence, 10th floor, 1190 Hornby Street, Vancouver V6Z 2K5, British Columbia, Canada
- UBC Centre for Heart Lung InnovationSt. Paul's Hospital, 1081 Burrard Street, Vancouver, British Columbia V6Z 1Y6, Canada
| | - Ofer Levy
- Precision Vaccines ProgramDepartment of PediatricsBoston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Beate Kampmann
- Vaccines and Immunity ThemeMedical Research Council UnitThe Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Banjul P.O. Box 273, Gambia
- Centre for Global Health and Institute for International HealthCharite Universitatsmedizin, Berlin, Germany
| | - Ryan Brinkman
- BC Cancer Agency, 675 West 10th Avenue, Vancouver V5Z 1G1, BC, Canada
- Department of Medical GeneticsUniversity of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia V6T1Z4, Canada
| | - Tobias Kollmann
- Telethon Kids InstitutePerth Children's Hospital, 15 Hospital Avenue, Nedlands 6009, WA, Australia
- Department of PediatricsBC Children's HospitalUniversity of British Columbia, 4480 Oak Street, Vancouver V6H 3V4, BC, Canada
- Microbiology and ImmunologyPediatric Infectious DiseasesDalhousie University, CEO, Born, Strong Initiative, Halifax, Nova Scotia, Canada
| |
Collapse
|
12
|
Chen Y, Li H, Zhou J. Early life vaccination reprograms the metabolism and function of myeloid cells in neonates. Immunology 2024; 172:252-268. [PMID: 38424694 DOI: 10.1111/imm.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Vaccination after birth provides protection against pathogen infection and immune related disorders in healthy children. The detailed effects of vaccination on neonatal immunity, however, remain largely unknown. Here, we reported that vaccination using Bacillus Calmette-Guérin (BCG) diminished the immunosuppressive function of myeloid-derived suppressor cells in neonatal mice, an immature myeloid population. A combination of single-cell transcriptome, metabolite profiling, and functional analysis demonstrated that upregulation of mTOR/HIF1a signalling and the enhanced glycolysis explained the effects of BCG on neonatal myeloid cells. Pharmalogical inhibition of glycolysis or mTOR signalling efficiently rescued the effects of BCG on neonatal myeloid cells. These observations suggest that BCG facilitates the maturation of myeloid cells in early life, which may contribute to its beneficial effects against immune disorders later in life.
Collapse
Affiliation(s)
- Yingying Chen
- Institute of Pediatric Health and Disease, Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Clinical Laboratory, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Hui Li
- Institute of Pediatric Health and Disease, Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Zhou
- Institute of Pediatric Health and Disease, Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
13
|
Choi Y, Kim IK, Kim SJ, Kim HS, Kang YA, Song JS. Predictors of positive tuberculin skin test in neonates exposed to pulmonary tuberculosis. PLoS One 2024; 19:e0303050. [PMID: 38722990 PMCID: PMC11081389 DOI: 10.1371/journal.pone.0303050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Neonates are at risk of nosocomial tuberculosis (TB) infection from health care workers (HCWs) in neonatal care facilities, which can progress to severe TB diseases. Tuberculin skin test (TST) is commonly used for TB diagnosis, but its accuracy in neonates is influenced by various factors, including bacilli Calmette-Guérin (BCG) vaccination. This study aimed to identify predictors of positive TSTs in neonates exposed to HCWs with pulmonary TB. METHODS A retrospective observational study was conducted to compare the frequency of predictors between TST-positive and TST-negative neonates. Demographic, epidemiological, and clinical data of neonates exposed to TB, along with that of HCW and household contacts, were collected retrospectively through contact investigations with the Korean National TB Surveillance System (KNTSS) database. TSTs using 2 tuberculin units of purified protein derivative RT23 were performed on exposed neonates at the end of preventive TB treatment. Firth logistic regression was performed to identify predictors of TST positivity. RESULTS Contact investigations revealed that 152 neonates and 54 HCWs were exposed to infectious TB index cases in 3 neonatal care facilities. Of 152 exposed neonates, 8 (5.3%) had positive TST results. Age of 6 days or more at the initial exposure is a statistically significant predictor of positive TST (Firth coefficient 2.1, 95% confidence interval 0.3-3.9, P = 0.024); BCG vaccination showed no statistical significance in both univariable and multivariable analysis. Sex, prematurity, exposure duration, duration from initial exposure to contact investigation, and isoniazid preventive treatment duration were not significant predictors. CONCLUSION Age at the initial exposure is a significant predictor of positive TST in neonates exposed to active pulmonary TB. Given the complexities of TST interpretation, including false positives due to BCG vaccination, careful risk assessment is necessary for appropriate decision-making and resource allocation in the management of neonatal TB exposure.
Collapse
Affiliation(s)
- Yun Choi
- Division of Infectious Disease Response, Capital Regional Center for Disease Control and Prevention, Korea Disease Control and Prevention Agency, Seoul, Republic of Korea
| | - In Kyoung Kim
- Division of Infectious Disease Response, Capital Regional Center for Disease Control and Prevention, Korea Disease Control and Prevention Agency, Seoul, Republic of Korea
| | - So Jung Kim
- Division of Infectious Disease Response, Capital Regional Center for Disease Control and Prevention, Korea Disease Control and Prevention Agency, Seoul, Republic of Korea
| | - Hye Sung Kim
- Division of Infectious Disease Response, Capital Regional Center for Disease Control and Prevention, Korea Disease Control and Prevention Agency, Seoul, Republic of Korea
| | - Young Ae Kang
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Su Song
- Graduate School of Global Development and Entrepreneurship, Handong Global University, Pohang, Republic of Korea
- Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
14
|
Cangiano LR, Lamers K, Olmeda MF, Villot C, Hodgins DC, Mallard BA, Steele MA. Developmental adaptations of γδ T cells and B cells in blood and intestinal mucosa from birth until weaning in Holstein bull calves. J Dairy Sci 2024; 107:1734-1750. [PMID: 37806632 DOI: 10.3168/jds.2023-23943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023]
Abstract
This study aimed to characterize the development of systemic and colon tissue resident B and γδ T cells in newborn calves from birth until weaning. At birth, calves have limited capacity to initiate immune responses, and the immune system gradually matures over time. Gamma delta (γδ) T cells are an important lymphocyte subset in neonatal calves that confer protection and promote immune tolerance. A total of 36 newborn calves were enrolled in a longitudinal study to characterize how systemic and colon tissue resident B and γδ T cells develop from birth until weaning. Blood and colon biopsy samples were collected on d 2, 28, and 42 to determine the proportions of various B and γδ T cell subsets by flow cytometry. We classified γδ T cells into different functional subsets according to the level of expression intensity of the coreceptors WC1.1 (effector function) and WC1.2 (regulatory function). Furthermore, naive B cells were classified based on the expression IgM receptor, and activation state was determined based on expression of CD21 and CD32, 2 receptors with opposing signals involved in B cell activation in early life. Additional colon biopsy samples were used for 16S sequencing, and microbial diversity data are reported. At birth, γδ T cells were the most abundant lymphocyte population in blood, accounting for 58.5% of the lymphocyte pool, after which the proportions of these cells declined to 38.2% after weaning. The proportion of γδ T cells expressing WC1.1 decreased by 50% from d 2 to d 28, whereas no change was observed in the expression of WC1.2. In the colon, there was a 50% increase of γδ T cells after weaning and the proportion of WC1.2+ γδ T cells doubled from d 28 to 42. The proportion of IgM+ B lymphocytes in blood increased from 23.6% at birth to 30% after weaning, were the proportion of B cells expressing CD21 increased by 25%, while the proportion of B cells expressing CD32 decreased by 30%. While no changes were observed for the overall proportion of IgM+ B lymphocytes in the colon, there was a 6-fold increase in the proportion of CD21+ B cells from pre- (d 28) to postweaning (d 42). Microbial diversity increased from d 2 of life to 28 and declined abruptly after weaning. The reduction in microbial diversity during weaning was negatively correlated with the increase in all γδ T cell subsets and CD21+ B cells. These data suggest that developmental adaptations after birth coordinate expansion of γδ T cells to provide early systemic protection, as well as to steer immune tolerance, while B cells mature over time. Additionally, the increase of colonic γδ T cells on d 42 suggests a protective role of these cells during weaning.
Collapse
Affiliation(s)
- L R Cangiano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706; Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - K Lamers
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - M F Olmeda
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - C Villot
- Lallemand Animal Nutrition, F-31702 Blagnac, France, and Milwaukee, WI 53218
| | - D C Hodgins
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph ON, N1G-2W1 Canada
| | - B A Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph ON, N1G-2W1 Canada
| | - M A Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
15
|
Rubio-Casillas A, Rodriguez-Quintero CM, Redwan EM, Gupta MN, Uversky VN, Raszek M. Do vaccines increase or decrease susceptibility to diseases other than those they protect against? Vaccine 2024; 42:426-440. [PMID: 38158298 DOI: 10.1016/j.vaccine.2023.12.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/16/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Contrary to the long-held belief that the effects of vaccines are specific for the disease they were created; compelling evidence has demonstrated that vaccines can exert positive or deleterious non-specific effects (NSEs). In this review, we compiled research reports from the last 40 years, which were found based on the PubMed search for the epidemiological and immunological studies on the non-specific effects (NSEs) of the most common human vaccines. Analysis of information showed that live vaccines induce positive NSEs, whereas non-live vaccines induce several negative NSEs, including increased female mortality associated with enhanced susceptibility to other infectious diseases, especially in developing countries. These negative NSEs are determined by the vaccination sequence, the antigen concentration in vaccines, the type of vaccine used (live vs. non-live), and also by repeated vaccination. We do not recommend stopping using non-live vaccines, as they have demonstrated to protect against their target disease, so the suggestion is that their detrimental NSEs can be minimized simply by changing the current vaccination sequence. High IgG4 antibody levels generated in response to repeated inoculation with mRNA COVID-19 vaccines could be associated with a higher mortality rate from unrelated diseases and infections by suppressing the immune system. Since most COVID-19 vaccinated countries are reporting high percentages of excess mortality not directly attributable to deaths from such disease, the NSEs of mRNA vaccines on overall mortality should be studied in depth.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan 48900, Jalisco, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan 48900, Jalisco, Mexico.
| | | | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt.
| | - Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Mikolaj Raszek
- Merogenomics (Genomic Sequencing Consulting), Edmonton, AB T5J 3R8, Canada.
| |
Collapse
|
16
|
Weil-Olivier C, Salisbury D, Navarro-Alonso JA, Tzialla C, Zhang Y, Esposito S, Midulla F, Tenenbaum T. Immunization technologies: Time to consider new preventative solutions for respiratory syncytial virus infections. Hum Vaccin Immunother 2023; 19:2209000. [PMID: 37193673 DOI: 10.1080/21645515.2023.2209000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023] Open
Abstract
New technologies for the prevention of infectious diseases are emerging to address unmet medical needs, in particular, the use of long-acting monoclonal antibodies (mAb) to prevent Respiratory Syncytial Virus (RSV) lower respiratory tract disease in infants during their first RSV season. The lack of precedent for mAbs for broad population protection creates challenges in the assessment of upcoming prophylactic long-acting mAbs for RSV, with associated consequences in legislative and registration categorization, as well as in recommendation, funding, and implementation pathways. We suggest that the legislative and regulatory categorization of preventative solutions should be decided by the effect of the product in terms of its impact on the population and health-care systems rather than by the technology used or its mechanism of action. Immunization can be passive and active, both having the same objective of prevention of infectious diseases. Long-acting prophylactic mAbs work as passive immunization, as such, their recommendations for use should fall under the remit of National Immunization Technical Advisory Groups or other relevant recommending bodies for inclusion into National Immunization Programs. Current regulations, policy, and legislative frameworks need to evolve to embrace such innovative preventative technologies and acknowledge them as one of key immunization and public health tools.
Collapse
Affiliation(s)
| | - David Salisbury
- Programme for Global Health, Royal Institute of International Affairs, Chatham House, London, UK
| | | | - Chryssoula Tzialla
- Infectious Diseases Working Group, Italian Society of Neonatology, Neonatal and Pediatric Unit, P.O Oltrepò - ASST Pavia, Pavia, Italy
| | - Yan Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Diseases Control and Prevention, Beijing, People's Republic of China
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Fabio Midulla
- Department of Maternal Science and Urology, Sapienza University of Rome, Rome, Italy
| | - Tobias Tenenbaum
- Sana Klinikum Lichtenberg, Clinic for Child and Adolescent Medicine, Academic Teaching Hospital Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
17
|
Giles ML, Cole S, O’Bryan J, Krishnaswamy S, Ben-Othman R, Amenyogbe N, Davey MA, Kollmann T. The PRotective Effect of Maternal Immunisation on preTerm birth: characterising the Underlying mechanisms and Role in newborn immune function: the PREMITUR study protocol. Front Immunol 2023; 14:1212320. [PMID: 38187392 PMCID: PMC10771328 DOI: 10.3389/fimmu.2023.1212320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Maternal immunisation, a low cost and high efficacy intervention is recommended for its pathogen specific protection. Evidence suggests that maternal immunisation has another significant impact: reduction of preterm birth (PTB), the single greatest cause of childhood morbidity and mortality globally. Our overarching question is: how does maternal immunisation modify the immune system in pregnant women and/or their newborn to reduce adverse pregnancy outcomes and enhance the newborn infant's capacity to protect itself from infectious diseases during early childhood? To answer this question we are conducting a multi-site, prospective observational cohort study collecting maternal and infant biological samples at defined time points during pregnancy and post-partum from nulliparous women. We aim to enrol 400 women and determine the immune trajectory in pregnancy and the impact of maternal immunisation (including influenza, pertussis and/or COVID-19 vaccines) on this trajectory. The results are expected to identify areas that can be targeted for future intervention studies.
Collapse
Affiliation(s)
- Michelle L. Giles
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- Department of Infectious Diseases, University of Melbourne, Melbourne, VIC, Australia
- Department of Obstetric Medicine and Maternal Fetal Medicine, Royal Women’s Hospital, Melbourne, VIC, Australia
| | - Stephen Cole
- Department of Obstetrics and Gynaecology, Epworth Healthcare, Melbourne, VIC, Australia
| | - Jessica O’Bryan
- Department of Infectious Diseases, Monash Health, Melbourne, VIC, Australia
| | - Sushena Krishnaswamy
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- Department of Infectious Diseases, Monash Health, Melbourne, VIC, Australia
| | - Rym Ben-Othman
- Department of Paediatrics, Telethon Kids, Perth, WA, Australia
| | - Nelly Amenyogbe
- Department of Paediatrics, Telethon Kids, Perth, WA, Australia
| | - Mary-Ann Davey
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Tobias Kollmann
- Department of Paediatrics, Telethon Kids, Perth, WA, Australia
| |
Collapse
|
18
|
Chen J, Lin R, Guo G, Wu W, Ke M, Ke C, Huang P, Lin C. Physiologically-Based Pharmacokinetic Modeling of Anti-Tumor Necrosis Factor Agents for Inflammatory Bowel Disease Patients to Predict the Withdrawal Time in Pregnancy and Vaccine Time in Infants. Clin Pharmacol Ther 2023; 114:1254-1263. [PMID: 37620249 DOI: 10.1002/cpt.3031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
Anti-tumor necrosis factor (anti-TNF) agents are widely applied for patients with inflammatory bowel disease (IBD); however, the timing of the last dosing for IBD pregnancy and time to elimination in anti-TNF agent-exposed infants is controversial. This study aimed to determine the optimal timing for the last dosing of anti-TNF agents (infliximab, adalimumab, and golimumab) in pregnant women with IBD, as well as to investigate the recommended vaccine schedules for infants exposed to these drugs. A physiologically-based pharmacokinetic (PBPK) model of anti-TNF agents was built for adults and extrapolated to pregnant patients, fetuses, and infants. The PBPK models successfully predicted and verified the pharmacokinetics (PKs) of infliximab, adalimumab, and golimumab in pregnancy, fetuses, and infants. The predicted PK data were within two-fold of the observed data. The simulated results were used as timing advice. According to the dose of administration, the suggested timing of the last dosing for infliximab, adalimumab, and golimumab is successfully provided based on PBPK predictions. PBPK models indicated that, for infants, the advocated timing of vaccination is 12, 8, and 5 months after birth for infliximab, adalimumab, and golimumab, respectively. Our study illustrated that PBPK models can provide a valuable tool to predict the PKs of large macromolecules in pregnant women, fetuses, and infants, ultimately informing drug-treatment decisions for pregnancy and vaccination regimens for infants.
Collapse
Affiliation(s)
- Jiarui Chen
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Rongfang Lin
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Guimu Guo
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wanhong Wu
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Meng Ke
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chengjie Ke
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Pinfang Huang
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Cuihong Lin
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
19
|
Parvathaneni S, Yang J, Lotspeich-Cole L, Sakai J, Lee RC, Akkoyunlu M. IL6 suppresses vaccine responses in neonates by enhancing IL2 activity on T follicular helper cells. NPJ Vaccines 2023; 8:173. [PMID: 37938563 PMCID: PMC10632457 DOI: 10.1038/s41541-023-00764-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 10/17/2023] [Indexed: 11/09/2023] Open
Abstract
The inability of neonates to develop CD4+FoxP3-CXCR5hiPD-1hi T follicular helper (TFH) cells contributes to their weak vaccine responses. In previous studies, we measured diminished IgG responses when IL-6 was co-injected with a pneumococcal conjugate vaccine (PCV) in neonatal mice. This is in sharp contrast to adults, where IL-6 improves vaccine responses by downregulating the expression of IL-2Rβ on TFH cells and protecting them from the inhibitory effect of IL-2. In this study, we found that splenic IL-6 levels rapidly increased in both adult and neonatal mice following immunization, but the increase in neonatal mice was significantly more than that of adult mice. Moreover, immunized neonatal TFH cells expressed significantly more IL-2 as well as its receptors, IL-2Rα and IL-2Rβ, than the adult cells. Remarkably, IL-6 co-injection with PCV vaccine further increased the production of IL-2 and the expression of its receptors by neonatal TFH cells, whereas excess IL-6 had totally opposite effect in immunized adult mice. Underscoring the role of IL-6 in activating the IL-2 mediated suppression of vaccine responses, immunization of IL-6 knock-out neonates led to improved antibody responses accompanied by expanded TFH cells as well as lower levels of IL-2 and IL-2 receptors on TFH cells. Moreover, CpG containing PCV improved TFH response in neonates by suppressing the expression of IL-2 receptors on TFH cells and inhibiting IL-2 activity. These findings unveil age-specific differences in IL-6 mediated vaccine responses and highlight the need to consider age-related immunobiological attributes in designing vaccines.
Collapse
Affiliation(s)
| | - Jiyeon Yang
- US FDA/CBER/OVRR/DBPAP, 10903, New Hampshire Ave., Silver Spring, MD, USA
| | | | - Jiro Sakai
- US FDA/CBER/OVRR/DBPAP, 10903, New Hampshire Ave., Silver Spring, MD, USA
| | - Robert C Lee
- US FDA/CBER/OVRR/DBPAP, 10903, New Hampshire Ave., Silver Spring, MD, USA
| | - Mustafa Akkoyunlu
- US FDA/CBER/OVRR/DBPAP, 10903, New Hampshire Ave., Silver Spring, MD, USA.
| |
Collapse
|
20
|
Kigel A, Vanetik S, Mangel L, Friedman G, Nozik C, Terracina C, Taussig D, Dror Y, Samra H, Mandel D, Lubetzky R, Wine Y. Maternal Immunization During the Second Trimester with BNT162b2 mRNA Vaccine Induces a Robust IgA Response in Human Milk: A Prospective Cohort Study. Am J Clin Nutr 2023; 118:572-578. [PMID: 37479184 DOI: 10.1016/j.ajcnut.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND The human milk antibody response following maternal immunization with the BNT162b2 mRNA vaccine is important for the protection of the infant during infancy. The vaccine-specific antibody response is still unclear at different stages of human milk production, as are the effects of maternal immunization timing on the robustness of the antibody response. OBJECTIVES The study aimed to assess the antibody response (IgG/IgA/IgM) during various lactation stages and identify the best vaccination timing during pregnancy. METHODS A prospective cohort study of 73 postpartum women who were administered the BNT162b2 COVID-19 mRNA vaccine during the second or third trimester of pregnancy were recruited. Statistical comparison was conducted using 16 human milk samples from a prepandemic control group. RESULTS Excluding 11 women, the study included 62 lactating women who were administered the mRNA vaccine during the second or third trimester of pregnancy. A total of 149 samples of human milk were collected at different lactation stages. Our findings reveal that colostrum exhibits significantly higher levels of IgG (95% confidence interval [CI]: 1.3, 9.0; P = 0.023), IgA (95% CI: 55.98, 100.2; P = 0.0034), and IgM (95% CI: 0.03, 0.62; P < 0.0001) compared with mature milk IgG (95% CI: 0.25, 0.43), IgA (95% CI: 9.65, 13.74), IgM (95% CI: 0.03, 0.04). The timing of maternal immunization affected the antibody response. The level of IgA in mature milk was higher when immunization occurred in the second trimester (95% CI: 11.14, 19.66; P = 0.006) than in the third trimester (95% CI: 7.16, 11.49). Conversely, IgG levels in mature milk were higher when immunization occurred during the third trimester (95% CI: 0.36, 0.65; P < 0.0001) than in the second trimester (95% CI: 0.09, 0.38). CONCLUSIONS Our study provides evidence that administering the mRNA vaccine to pregnant women during the second trimester increases vaccine-specific IgA levels during lactation. Considering the significance of human milk IgA in mucosal tissues and its prevalence throughout lactation, it is reasonable to recommend maternal immunization with the BNT162b2 mRNA vaccine during the second trimester. This trial was registered at the Helsinki Committee of the Tel Aviv Medical Center as clinical trial number 0172-TLV.
Collapse
Affiliation(s)
- Aya Kigel
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; The Center for Combating Pandemics, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Vanetik
- Department of Neonatology, Dana Dwek Children's Hospital, Tel Aviv Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Laurence Mangel
- Department of Neonatology, Dana Dwek Children's Hospital, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Gal Friedman
- Department of Neonatology, Dana Dwek Children's Hospital, Tel Aviv Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Nozik
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Pediatrics, Dana Dwek Children's Hospital, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Camilla Terracina
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - David Taussig
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yael Dror
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hadar Samra
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dror Mandel
- Department of Neonatology, Dana Dwek Children's Hospital, Tel Aviv Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Lubetzky
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Pediatrics, Dana Dwek Children's Hospital, Tel Aviv Medical Center, Tel Aviv, Israel.
| | - Yariv Wine
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; The Center for Combating Pandemics, Tel Aviv University, Tel Aviv, Israel; The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
21
|
Brunton JS, Theiler RN, Mehta R, Branda ME, Enninga EAL, Torbenson VE. Efficacy of Rubella Vaccination after Co-Inoculation with Rhogam. Viruses 2023; 15:1782. [PMID: 37766189 PMCID: PMC10534676 DOI: 10.3390/v15091782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
Congenital rubella syndrome is a constellation of birth defects that can have devastating consequences, impacting approximately 100,000 births worldwide each year. The incidence is much lower in countries that routinely vaccinate their population. In the US, postnatal immunization of susceptible women is an important epidemiological strategy for the prevention of rubella as the Center for Disease Control (CDC) does not recommend administering this vaccine during pregnancy due to its nature as a live attenuated virus vaccine. However, concerns that the co-administration of rubella vaccine with other immunoglobins (i.e., Rhogam) could compromise vaccine efficacy has produced warnings that can delay the administration of rubella vaccination postpartum, leaving women susceptible to the disease in subsequent pregnancies. We aimed to address whether the co-administration of the measles, mumps, and rubella (MMR) vaccine and Rhogam decreased antibody responses compared to those receiving only MMR vaccination. This retrospective cohort study utilized clinical data from 78 subjects who received the MMR vaccine and Rhogam after delivery and 45 subjects who received the MMR vaccine alone. Maternal demographics, pregnancy complications and rubella status at the start of a subsequent pregnancy were recorded for analysis. Overall, the two cohorts had similar baseline characteristics; however, lower parity was noted in the participants that received both MMR vaccination and Rhogam. Making assessments based on maternal antibody IgG index for rubella during the next pregnancy, we observed that 88% of the Rhogam + MMR vaccine group had positive serology scores, which was not significantly different from the 80% rate in the MMR-vaccine-only cohort (p = 0.2). In conclusion, no differences were observed in rubella immunity status in subsequent pregnancies in those mothers given both the MMR vaccine and Rhogam concurrently. Given these findings, warnings against co-administration of vaccines in combination with Rhogam appear unwarranted.
Collapse
Affiliation(s)
- Joshua S. Brunton
- Obstetrics Division, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA; (J.S.B.); (R.N.T.)
| | - Regan N. Theiler
- Obstetrics Division, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA; (J.S.B.); (R.N.T.)
| | - Ramila Mehta
- Division of Quantitative Health Sciences, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; (R.M.); (M.E.B.)
| | - Megan E. Branda
- Division of Quantitative Health Sciences, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; (R.M.); (M.E.B.)
| | - Elizabeth Ann L. Enninga
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA;
| | - Vanessa E. Torbenson
- Obstetrics Division, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA; (J.S.B.); (R.N.T.)
| |
Collapse
|
22
|
Andualem H, Hollams E, Kollmann TR, Amenyogbe N. BCG-Induced Immune Training: Interplay between Trained Immunity and Emergency Granulopoiesis. J Mol Biol 2023; 435:168169. [PMID: 37263392 DOI: 10.1016/j.jmb.2023.168169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
Bacille Calmette-Guérin (BCG) is the most commonly administered vaccine in human history. The medical application of BCG extends far beyond the fight against tuberculosis. Despite its stellar medical record over 100 years, insight into how BCG provides this vast range of benefits is largely limited, both for its pathogen-specific (tuberculosis) as well as pathogen-agnostic (other infections, autoimmunity, allergies, and cancer) effects. Trained immunity and emergency granulopoiesis have been identified as mediating BCG's pathogen-agnostic effects, for which some of the molecular mechanisms have been delineated. Upon review of the existing evidence, we postulate that emergency granulopoiesis and trained immunity are a continuum of the same effect cascade. In this context, we highlight that BCG's pathogen-agnostic benefits could be optimized by taking advantage of the age of the recipient and route of BCG administration.
Collapse
Affiliation(s)
- Henok Andualem
- Department of Medical Laboratory Science, College of Health Science, Debre Tabor University, Ethiopia.
| | - Elysia Hollams
- Telethon Kids Institute, Perth, Western Australia, Australia
| | | | - Nelly Amenyogbe
- Telethon Kids Institute, Perth, Western Australia, Australia
| |
Collapse
|
23
|
Giles ML, Way SS, Marchant A, Aghaepour N, James T, Schaltz-Buchholzer F, Zazara D, Arck P, Kollmann TR. Maternal Vaccination to Prevent Adverse Pregnancy Outcomes: An Underutilized Molecular Immunological Intervention? J Mol Biol 2023; 435:168097. [PMID: 37080422 PMCID: PMC11533213 DOI: 10.1016/j.jmb.2023.168097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023]
Abstract
Adverse pregnancy outcomes including maternal mortality, stillbirth, preterm birth, intrauterine growth restriction cause millions of deaths each year. More effective interventions are urgently needed. Maternal immunization could be one such intervention protecting the mother and newborn from infection through its pathogen-specific effects. However, many adverse pregnancy outcomes are not directly linked to the infectious pathogens targeted by existing maternal vaccines but rather are linked to pathological inflammation unfolding during pregnancy. The underlying pathogenesis driving such unfavourable outcomes have only partially been elucidated but appear to relate to altered immune regulation by innate as well as adaptive immune responses, ultimately leading to aberrant maternal immune activation. Maternal immunization, like all immunization, impacts the immune system beyond pathogen-specific immunity. This raises the possibility that maternal vaccination could potentially be utilised as a pathogen-agnostic immune modulatory intervention to redirect abnormal immune trajectories towards a more favourable phenotype providing pregnancy protection. In this review we describe the epidemiological evidence surrounding this hypothesis, along with the mechanistic plausibility and present a possible path forward to accelerate addressing the urgent need of adverse pregnancy outcomes.
Collapse
Affiliation(s)
| | - Sing Sing Way
- Center for Inflammation and Tolerance; Cincinnati Children's Hospital, Cincinnati, USA
| | | | - Nima Aghaepour
- Stanford University School of Medicine, Stanford, CA, USA
| | - Tomin James
- Stanford University School of Medicine, Stanford, CA, USA
| | | | - Dimitra Zazara
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg, Hamburg, Germany
| | - Petra Arck
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg, Hamburg, Germany
| | | |
Collapse
|
24
|
Torow N, Li R, Hitch TCA, Mingels C, Al Bounny S, van Best N, Stange EL, Simons B, Maié T, Rüttger L, Gubbi NMKP, Abbott DA, Benabid A, Gadermayr M, Runge S, Treichel N, Merhof D, Rosshart SP, Jehmlich N, Hand TW, von Bergen M, Heymann F, Pabst O, Clavel T, Tacke F, Lelouard H, Costa IG, Hornef MW. M cell maturation and cDC activation determine the onset of adaptive immune priming in the neonatal Peyer's patch. Immunity 2023; 56:1220-1238.e7. [PMID: 37130522 PMCID: PMC10262694 DOI: 10.1016/j.immuni.2023.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/03/2023] [Accepted: 04/06/2023] [Indexed: 05/04/2023]
Abstract
Early-life immune development is critical to long-term host health. However, the mechanisms that determine the pace of postnatal immune maturation are not fully resolved. Here, we analyzed mononuclear phagocytes (MNPs) in small intestinal Peyer's patches (PPs), the primary inductive site of intestinal immunity. Conventional type 1 and 2 dendritic cells (cDC1 and cDC2) and RORgt+ antigen-presenting cells (RORgt+ APC) exhibited significant age-dependent changes in subset composition, tissue distribution, and reduced cell maturation, subsequently resulting in a lack in CD4+ T cell priming during the postnatal period. Microbial cues contributed but could not fully explain the discrepancies in MNP maturation. Type I interferon (IFN) accelerated MNP maturation but IFN signaling did not represent the physiological stimulus. Instead, follicle-associated epithelium (FAE) M cell differentiation was required and sufficient to drive postweaning PP MNP maturation. Together, our results highlight the role of FAE M cell differentiation and MNP maturation in postnatal immune development.
Collapse
Affiliation(s)
- Natalia Torow
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - Ronghui Li
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Thomas Charles Adrian Hitch
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Clemens Mingels
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Shahed Al Bounny
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Niels van Best
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany; Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht 6200, the Netherlands
| | - Eva-Lena Stange
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Britta Simons
- Institute of Molecular Medicine, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Tiago Maié
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Lennart Rüttger
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | | | - Darryl Adelaide Abbott
- Pediatrics Department, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Adam Benabid
- Institute for Cell and Tumor Biology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Michael Gadermayr
- Institute of Imaging & Computer Vision, RWTH Aachen University, Aachen 52056, Germany
| | - Solveig Runge
- Department of Microbiome Research, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91054, Germany; Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Nicole Treichel
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Dorit Merhof
- Institute of Imaging & Computer Vision, RWTH Aachen University, Aachen 52056, Germany
| | - Stephan Patrick Rosshart
- Department of Microbiome Research, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91054, Germany; Department of Medicine II, University of Freiburg, Freiburg im Breisgau, Germany
| | - Nico Jehmlich
- Helmholtz-Centre for Environmental Research GmbH - UFZ, Department of Molecular Systems Biology, Leipzig 04318, Germany
| | - Timothy Wesley Hand
- Pediatrics Department, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Martin von Bergen
- Helmholtz-Centre for Environmental Research GmbH - UFZ, Department of Molecular Systems Biology, Leipzig 04318, Germany; German Centre for Integrative Biodiversity Research (iDiv), Leipzig 04103, Germany; University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Leipzig 04103, Germany
| | - Felix Heymann
- Department of Hepatology & Gastroenterology, Charité University Hospital, Berlin 13353, Germany
| | - Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité University Hospital, Berlin 13353, Germany
| | - Hugues Lelouard
- Aix Marseille University, CNRS, INSERM, CIML, Marseille 13288, France
| | - Ivan Gesteira Costa
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Mathias Walter Hornef
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany.
| |
Collapse
|
25
|
Ait Djebbara S, Mcheik S, Percier P, Segueni N, Poncelet A, Truyens C. The macrophage infectivity potentiator of Trypanosoma cruzi induces innate IFN-γ and TNF-α production by human neonatal and adult blood cells through TLR2/1 and TLR4. Front Immunol 2023; 14:1180900. [PMID: 37304288 PMCID: PMC10250606 DOI: 10.3389/fimmu.2023.1180900] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
We previously identified the recombinant (r) macrophage (M) infectivity (I) potentiator (P) of the protozoan parasite Trypanosoma cruzi (Tc) (rTcMIP) as an immuno-stimulatory protein that induces the release of IFN-γ, CCL2 and CCL3 by human cord blood cells. These cytokines and chemokines are important to direct a type 1 adaptive immune response. rTcMIP also increased the Ab response and favored the production of the Th1-related isotype IgG2a in mouse models of neonatal vaccination, indicating that rTcMIP could be used as a vaccine adjuvant to enhance T and B cell responses. In the present study, we used cord and adult blood cells, and isolated NK cells and human monocytes to investigate the pathways and to decipher the mechanism of action of the recombinant rTcMIP. We found that rTcMIP engaged TLR1/2 and TLR4 independently of CD14 and activated the MyD88, but not the TRIF, pathway to induce IFN-γ production by IL-15-primed NK cells, and TNF-α secretion by monocytes and myeloid dendritic cells. Our results also indicated that TNF-α boosted IFN-γ expression. Though cord blood cells displayed lower responses than adult cells, our results allow to consider rTcMIP as a potential pro-type 1 adjuvant that might be associated to vaccines administered in early life or later.
Collapse
Affiliation(s)
- Sarra Ait Djebbara
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Saria Mcheik
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pauline Percier
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Service Immune Response, Sciensano, Brussels, Belgium
| | - Noria Segueni
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Antoine Poncelet
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Carine Truyens
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
26
|
Guo K, Chen D, Ren S, Younis MR, Teng Z, Zhang L, Wang Z, Tian Y. Reversing Immune Suppression and Potentiating Photothermal Immunotherapy via Bispecific Immune Checkpoint Inhibitor Loaded Hollow Polydopamine Nanospheres. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36881613 DOI: 10.1021/acsami.2c19790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Despite the great achievements of immune checkpoint blockade (ICB) therapy on programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) axis, ICB monotherapy still faces obstacles in eradicating solid tumors due to the lack of tumor-associated antigens or tumor-specific cytotoxicity. Photothermal therapy (PTT) is a potential therapeutic modality because it can noninvasively kill tumor cells by thermal ablation and generate both tumor-specific cytotoxicity and immunogenicity, which holds great feasibility to improve the efficiency of ICB by providing complementary immunomodulation. Except for the PD-1/PD-L1 axis, the cluster of differentiation 47 (CD47)/signal regulatory protein alpha (SIRPα) pathway has been considered as a novel strategy of tumor cells to evade the surveillance of macrophages and inactivate the immune response of PD-L1 blockade therapy. Therefore, it is necessary to synergize the antitumor effect of dual-targeting PD-L1 and CD47. Although promising, the application of PD-L1/CD47 bispecific antibodies, especially in combination with PTT, remains a formidable problem, due to the low objective response, activity loss at relatively high temperature, or nonvisualization. Herein, instead of using antibodies, we use MK-8628 (MK) to down-regulate both PD-L1 and CD47 simultaneously through halting the active transcription of oncogene c-MYC, leading to elicitation of the immune response. The hollow polydopamine (HPDA) nanospheres are introduced as a biocompatible nanoplatform with high loading capacity and magnetic resonance imaging (MRI) ability to deliver MK and induce PTT (HPDA@MK). Compared to preinjection, HPDA@MK exhibits the strongest MRI signal at 6 h postintravenous injection to guide the precise combined treatment time. However, due to the local delivery and controlled release of inhibitors, HPDA@MK down-regulates c-MYC/PD-L1/CD47, promotes the activation and recruitment of cytotoxic T cells, regulates the M2 macrophages polarization in tumor sites, and especially boosts the combined therapeutic efficacy. Collectively, our work presents a simple but distinctive approach for c-MYC/PD-L1/CD47-targeted immunotherapy combined with PTT that may provide a desirable and feasible strategy for the treatment of other clinical solid tumors.
Collapse
Affiliation(s)
- Kai Guo
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Dong Chen
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Shuai Ren
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Muhammad Rizwan Younis
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Longjiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Ying Tian
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
27
|
Paiola M, Dimitrakopoulou D, Pavelka MS, Robert J. Amphibians as a model to study the role of immune cell heterogeneity in host and mycobacterial interactions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104594. [PMID: 36403788 DOI: 10.1016/j.dci.2022.104594] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Mycobacterial infections represent major concerns for aquatic and terrestrial vertebrates including humans. Although our current knowledge is mostly restricted to Mycobacterium tuberculosis and mammalian host interactions, increasing evidence suggests common features in endo- and ectothermic animals infected with non-tuberculous mycobacteria (NTMs) like those described for M. tuberculosis. Importantly, most of the pathogenic and non-pathogenic NTMs detected in amphibians from wild, farmed, and research facilities represent, in addition to the potential economic loss, a rising concern for human health. Upon mycobacterial infection in mammals, the protective immune responses involving the innate and adaptive immune systems are highly complex and therefore not fully understood. This complexity results from the versatility and resilience of mycobacteria to hostile conditions as well as from the immune cell heterogeneity arising from the distinct developmental origins according with the concept of layered immunity. Similar to the differing responses of neonates versus adults during tuberculosis development, the pathogenesis and inflammatory responses are stage-specific in Xenopus laevis during infection by the NTM M. marinum. That is, both in human fetal and neonatal development and in tadpole development, responses are characterized by hypo-responsiveness and a lower capacity to contain mycobacterial infections. Similar to a mammalian fetus and neonates, T cells and myeloid cells in Xenopus tadpoles and axolotls are different from the adult immune cells. Fetal and amphibian larval T cells, which are characterized by a lower T cell receptor (TCR) repertoire diversity, are biased toward regulatory function, and they have distinct progenitor origins from those of the adult immune cells. Some early developing T cells and likely macrophage subpopulations are conserved in adult anurans and mammals, and therefore, they likely play an important role in the host-pathogen interactions from early stages of development to adulthood. Thus, we propose the use of developing amphibians, which have the advantage of being free-living early in their development, as an alternative and complementary model to study the role of immune cell heterogeneity in host-mycobacteria interactions.
Collapse
Affiliation(s)
- Matthieu Paiola
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Dionysia Dimitrakopoulou
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Martin S Pavelka
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
28
|
Radwanska M, de Lemos Esteves F, Linsen L, Coltel N, Cencig S, Widart J, Massart AC, Colson S, Di Paolo A, Percier P, Ait Djebbara S, Guillonneau F, Flamand V, De Pauw E, Frère JM, Carlier Y, Truyens C. Macrophage-infectivity potentiator of Trypanosoma cruzi (TcMIP) is a new pro-type 1 immuno-stimulating protein for neonatal human cells and vaccines in mice. Front Immunol 2023; 14:1138526. [PMID: 37033946 PMCID: PMC10077492 DOI: 10.3389/fimmu.2023.1138526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
This work identifies the protein "macrophage infectivity potentiator" of Trypanosoma cruzi trypomastigotes, as supporting a new property, namely a pro-type 1 immunostimulatory activity on neonatal cells. In its recombinant form (rTcMIP), this protein triggers the secretion of the chemokines CCL2 and CCL3 by human umbilical cord blood cells from healthy newborns, after 24h in vitro culture. Further stimulation for 72h results in secretion of IFN-γ, provided cultures are supplemented with IL-2 and IL-18. rTcMIP activity is totally abolished by protease treatment and is not associated with its peptidyl-prolyl cis-trans isomerase enzymatic activity. The ability of rTcMIP to act as adjuvant was studied in vivo in neonatal mouse immunization models, using acellular diphtheria-tetanus-pertussis-vaccine (DTPa) or ovalbumin, and compared to the classical alum adjuvant. As compared to the latter, rTcMIP increases the IgG antibody response towards several antigens meanwhile skewing antibody production towards the Th-1 dependent IgG2a isotype. The amplitude of the rTcMIP adjuvant effect varied depending on the antigen and the co-presence of alum. rTcMIP did by contrast not increase the IgE response to OVA combined with alum. The discovery of the rTcMIP immunostimulatory effect on neonatal cells opens new possibilities for potential use as pro-type 1 adjuvant for neonatal vaccines. This, in turn, may facilitate the development of more efficient vaccines that can be given at birth, reducing infection associated morbidity and mortality which are the highest in the first weeks after birth.
Collapse
Affiliation(s)
- Magdalena Radwanska
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Loes Linsen
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nicolas Coltel
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sabrina Cencig
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Joelle Widart
- Laboratory of Mass Spectrometry (LSM), Department of Chemistry, Université de Liège, Liège, Belgium
| | - Anne-Cécile Massart
- Laboratory of Mass Spectrometry (LSM), Department of Chemistry, Université de Liège, Liège, Belgium
| | - Séverine Colson
- Center for Protein Engineering (CIP), Université de Liège (ULg), Liège, Belgium
| | - Alexandre Di Paolo
- Center for Protein Engineering (CIP), Université de Liège (ULg), Liège, Belgium
| | - Pauline Percier
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sarra Ait Djebbara
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - François Guillonneau
- Laboratory of Mass Spectrometry (LSM), Department of Chemistry, Université de Liège, Liège, Belgium
| | - Véronique Flamand
- Institute for Medical Immunology (IMI), and ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Edwin De Pauw
- Laboratory of Mass Spectrometry (LSM), Department of Chemistry, Université de Liège, Liège, Belgium
| | - Jean-Marie Frère
- Center for Protein Engineering (CIP), Université de Liège (ULg), Liège, Belgium
| | - Yves Carlier
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, MA, United States
| | - Carine Truyens
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- *Correspondence: Carine Truyens,
| |
Collapse
|
29
|
Pieren DKJ, Boer MC, de Wit J. The adaptive immune system in early life: The shift makes it count. Front Immunol 2022; 13:1031924. [PMID: 36466865 PMCID: PMC9712958 DOI: 10.3389/fimmu.2022.1031924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 10/13/2023] Open
Abstract
Respiratory infectious diseases encountered early in life may result in life-threatening disease in neonates, which is primarily explained by the relatively naive neonatal immune system. Whereas vaccines are not readily available for all infectious diseases, vaccinations have greatly reduced childhood mortality. However, repeated vaccinations are required to reach protective immunity in infants and not all vaccinations are effective at young age. Moreover, protective adaptive immunity elicited by vaccination wanes more rapidly at young age compared to adulthood. The infant adaptive immune system has previously been considered immature but this paradigm has changed during the past years. Recent evidence shows that the early life adaptive immune system is equipped with a strong innate-like effector function to eliminate acute pathogenic threats. These strong innate-like effector capacities are in turn kept in check by a tolerogenic counterpart of the adaptive system that may have evolved to maintain balance and to reduce collateral damage. In this review, we provide insight into these aspects of the early life's adaptive immune system by addressing recent literature. Moreover, we speculate that this shift from innate-like and tolerogenic adaptive immune features towards formation of immune memory may underlie different efficacy of infant vaccination in these different phases of immune development. Therefore, presence of innate-like and tolerogenic features of the adaptive immune system may be used as a biomarker to improve vaccination strategies against respiratory and other infections in early life.
Collapse
Affiliation(s)
| | | | - Jelle de Wit
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
30
|
Tomasi L, Thiriard A, Heyndrickx L, Georges D, Van den Wijngaert S, Olislagers V, Sharma S, Matagne A, Ackerman ME, Ariën KK, Goetghebuer T, Marchant A. Younger Children Develop Higher Effector Antibody Responses to SARS-CoV-2 Infection. Open Forum Infect Dis 2022; 9:ofac554. [PMCID: PMC9709628 DOI: 10.1093/ofid/ofac554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/18/2022] [Indexed: 12/02/2022] Open
Abstract
Abstract
Background
The basis of the less severe clinical presentation of coronavirus disease 2019 (COVID-19) in children as compared with adults remains incompletely understood. Studies have suggested that a more potent boosting of immunity to endemic common cold coronaviruses (HCoVs) may protect children.
Methods
To test this hypothesis, we conducted a detailed analysis of antibodies induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children aged 2 months to 14 years.
Results
Younger children had higher titers of antibodies to SARS-CoV-2 receptor binding domain (RBD), S1 but not S2 domain, and total spike (S) protein, higher avidity RBD immunoglobulin G, and higher titers of neutralizing and complement-activating antibodies as compared with older children. In contrast, older children had higher titers of antibodies to HCoVs, which correlated with antibodies to the SARS-CoV-2 S2 domain but not with neutralizing or complement-activating antibodies.
Conclusions
These results reveal a unique capacity of young children to develop effector antibody responses to SARS-CoV-2 infection independently of their immunity to HCoVs.
Collapse
Affiliation(s)
- Lisa Tomasi
- Pediatric Department, Saint-Pierre Hospital , Brussels , Belgium
| | - Anais Thiriard
- Institute for Medical Immunology, and ULB-Center for Research in Immunology, Université Libre de Bruxelles , Charleroi , Belgium
| | - Leo Heyndrickx
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp , Antwerp , Belgium
| | - Daphnée Georges
- Institute for Medical Immunology, and ULB-Center for Research in Immunology, Université Libre de Bruxelles , Charleroi , Belgium
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège , Liège , Belgium
| | | | - Véronique Olislagers
- Institute for Medical Immunology, and ULB-Center for Research in Immunology, Université Libre de Bruxelles , Charleroi , Belgium
| | - Shilpee Sharma
- Institute for Medical Immunology, and ULB-Center for Research in Immunology, Université Libre de Bruxelles , Charleroi , Belgium
| | - André Matagne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège , Liège , Belgium
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College , Hanover, New Hampshire , USA
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp , Antwerp , Belgium
- Department of Biomedical Sciences, University of Antwerp , Antwerp , Belgium
| | - Tessa Goetghebuer
- Pediatric Department, Saint-Pierre Hospital , Brussels , Belgium
- Institute for Medical Immunology, and ULB-Center for Research in Immunology, Université Libre de Bruxelles , Charleroi , Belgium
| | - Arnaud Marchant
- Institute for Medical Immunology, and ULB-Center for Research in Immunology, Université Libre de Bruxelles , Charleroi , Belgium
| |
Collapse
|
31
|
Fortmann MI, Dirks J, Goedicke-Fritz S, Liese J, Zemlin M, Morbach H, Härtel C. Immunization of preterm infants: current evidence and future strategies to individualized approaches. Semin Immunopathol 2022; 44:767-784. [PMID: 35922638 PMCID: PMC9362650 DOI: 10.1007/s00281-022-00957-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/08/2022] [Indexed: 12/15/2022]
Abstract
Preterm infants are at particularly high risk for infectious diseases. As this vulnerability extends beyond the neonatal period into childhood and adolescence, preterm infants benefit greatly from infection-preventive measures such as immunizations. However, there is an ongoing discussion about vaccine safety and efficacy due to preterm infants' distinct immunological features. A significant proportion of infants remains un- or under-immunized when discharged from primary hospital stay. Educating health care professionals and parents, promoting maternal immunization and evaluating the potential of new vaccination tools are important means to reduce the overall burden from infectious diseases in preterm infants. In this narrative review, we summarize the current knowledge about vaccinations in premature infants. We discuss the specificities of early life immunity and memory function, including the role of polyreactive B cells, restricted B cell receptor diversity and heterologous immunity mediated by a cross-reactive T cell repertoire. Recently, mechanistic studies indicated that tissue-resident memory (Trm) cell populations including T cells, B cells and macrophages are already established in the fetus. Their role in human early life immunity, however, is not yet understood. Tissue-resident memory T cells, for example, are diminished in airway tissues in neonates as compared to older children or adults. Hence, the ability to make specific recall responses after secondary infectious stimulus is hampered, a phenomenon that is transcriptionally regulated by enhanced expression of T-bet. Furthermore, the microbiome establishment is a dominant factor to shape resident immunity at mucosal surfaces, but it is often disturbed in the context of preterm birth. The proposed function of Trm T cells to remember benign interactions with the microbiome might therefore be reduced which would contribute to an increased risk for sustained inflammation. An improved understanding of Trm interactions may determine novel targets of vaccination, e.g., modulation of T-bet responses and facilitate more individualized approaches to protect preterm babies in the future.
Collapse
Affiliation(s)
- Mats Ingmar Fortmann
- Department of Pediatrics, University Lübeck, University Hospital Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Johannes Dirks
- Department of Pediatrics, University Hospital of Würzburg, Würzburg, Germany
| | - Sybelle Goedicke-Fritz
- Department of General Pediatrics and Neonatology, Faculty of Medicine, Saarland University Hospital and Saarland University, Homburg, Germany
| | - Johannes Liese
- Department of Pediatrics, University Hospital of Würzburg, Würzburg, Germany
| | - Michael Zemlin
- Department of General Pediatrics and Neonatology, Faculty of Medicine, Saarland University Hospital and Saarland University, Homburg, Germany
| | - Henner Morbach
- Department of General Pediatrics and Neonatology, Faculty of Medicine, Saarland University Hospital and Saarland University, Homburg, Germany
| | - Christoph Härtel
- Department of Pediatrics, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
32
|
Liu S, Zhao Y, Guo L, Yu Q. Amoeba-inspired magnetic microgel assembly assisted by engineered dextran-binding protein for vaccination against life-threatening systemic infection. NANO RESEARCH 2022; 16:938-950. [PMID: 36090612 PMCID: PMC9438890 DOI: 10.1007/s12274-022-4809-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Vaccination is critical for population protection from pathogenic infections. However, its efficiency is frequently compromised by a failure of antigen retention and presentation. Herein, we designed a dextran-binding protein DexBP, which is composed of the carbohydrate-binding domains of Trichoderma reesei cellobiohydrolases Cel6A and Cel7A, together with the sequence of the fluorescent protein mCherry. DexBP was further prepared by engineered Escherichia coli cells and grafted to magnetic nanoparticles. The magnetic nanoparticles were integrated with a dextran/poly(vinyl alcohol) framework and a reactive oxygen species-responsive linker, obtaining magnetic polymeric microgels for carrying pathogen antigen. Similar to amoeba aggregation, the microgels self-assembled to form aggregates and further induced dendritic cell aggregation. This step-by-step assembly retained antigens at lymph nodes, promoted antigen presentation, stimulated humoral immunity, and protected the mice from life-threatening systemic infections. This study developed a magnetic microgel-assembling platform for dynamically regulating immune response during protection of the body from dangerous infections. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (AFM image and zeta potential of MG; TEM, FT-IR, DLS, and zeta potential of MNP-DexBP; zeta potential of MG+CaAg and MG+MNP-DexBP+CaAg; antigen release profile of MG+CaAg and MG+MNP-DexBP+CaAg; aggregation and dispersion of dendritic cells induced by MG+MNP-DexBP+CaAg; uptake of FITC-labeled CaAg (fCaAg) and intracellular distribution of fCaAg in the dendritic cells; antigen retention and dendritic cell activation in lymph nodes; and serum anti-CaAg antibody levels on day 3 after C. albicans infection in the mice pre-immunized by PBS (control), CaAg, MG+CaAg, and MG+MNP-DexBP+CaAg) is available in the online version of this article at 10.1007/s12274-022-4809-1.
Collapse
Affiliation(s)
- Shuo Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071 China
- Research Center for Infectious Diseases, Nankai University, Tianjin, 300350 China
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300350 China
| | - Yan Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Linpei Guo
- Department of Urology, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi, 214002 China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071 China
- Research Center for Infectious Diseases, Nankai University, Tianjin, 300350 China
| |
Collapse
|
33
|
Semmes EC, Miller IG, Wimberly CE, Phan CT, Jenks JA, Harnois MJ, Berendam SJ, Webster H, Hurst JH, Kurtzberg J, Fouda GG, Walsh KM, Permar SR. Maternal Fc-mediated non-neutralizing antibody responses correlate with protection against congenital human cytomegalovirus infection. J Clin Invest 2022; 132:e156827. [PMID: 35763348 PMCID: PMC9374380 DOI: 10.1172/jci156827] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/24/2022] [Indexed: 01/05/2023] Open
Abstract
Human cytomegalovirus (HCMV) is the most common congenital infection and a leading cause of stillbirth, neurodevelopmental impairment, and pediatric hearing loss worldwide. Development of a maternal vaccine or therapeutic to prevent congenital HCMV has been hindered by limited knowledge of the immune responses that protect against HCMV transmission in utero. To identify protective antibody responses, we measured HCMV-specific IgG binding and antiviral functions in paired maternal and cord blood sera from HCMV-seropositive transmitting (n = 41) and non-transmitting (n = 40) mother-infant dyads identified via a large, US-based, public cord blood bank. We found that high-avidity IgG binding to HCMV and antibody-dependent cellular phagocytosis (ADCP) were associated with reduced risk of congenital HCMV infection. We also determined that HCMV-specific IgG activation of FcγRI and FcγRII was enhanced in non-transmitting dyads and that increased ADCP responses were mediated through both FcγRI and FcγRIIA expressed on human monocytes. These findings suggest that engagement of FcγRI/FcγRIIA and Fc effector functions including ADCP may protect against congenital HCMV infection. Taken together, these data can guide future prospective studies on immune correlates against congenital HCMV transmission and inform HCMV vaccine and immunotherapeutic development.
Collapse
Affiliation(s)
- Eleanor C. Semmes
- Medical Scientist Training Program, Department of Molecular Genetics and Microbiology and
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Duke Children’s Health & Discovery Initiative, Duke University, Durham, North Carolina, USA
| | - Itzayana G. Miller
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Weill Cornell School of Medicine, New York, New York, USA
| | - Courtney E. Wimberly
- Duke Children’s Health & Discovery Initiative, Duke University, Durham, North Carolina, USA
- Department of Neurosurgery and
| | - Caroline T. Phan
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Jennifer A. Jenks
- Medical Scientist Training Program, Department of Molecular Genetics and Microbiology and
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Melissa J. Harnois
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Stella J. Berendam
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Helen Webster
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Jillian H. Hurst
- Duke Children’s Health & Discovery Initiative, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Joanne Kurtzberg
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
- Carolinas Cord Blood Bank, Duke University Medical Center, Durham, North Carolina, USA
| | - Genevieve G. Fouda
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Duke Children’s Health & Discovery Initiative, Duke University, Durham, North Carolina, USA
| | - Kyle M. Walsh
- Duke Children’s Health & Discovery Initiative, Duke University, Durham, North Carolina, USA
- Department of Neurosurgery and
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Duke Children’s Health & Discovery Initiative, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Weill Cornell School of Medicine, New York, New York, USA
| |
Collapse
|
34
|
Olearo F, Radmanesh LS, Felber N, von Possel R, Emmerich P, Pekarek N, Pfefferle S, Nörz D, Hansen G, Diemert A, Aepfelbacher M, Hecher K, Lütgehetmann M, Arck PC, Tallarek AC. Anti-SARS-CoV-2 antibodies in breast milk during lactation after infection or vaccination: a cohort study. J Reprod Immunol 2022; 153:103685. [PMID: 36029724 PMCID: PMC9349337 DOI: 10.1016/j.jri.2022.103685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/24/2022] [Accepted: 08/02/2022] [Indexed: 11/15/2022]
Affiliation(s)
- Flaminia Olearo
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Laura-Sophie Radmanesh
- Department of Obstetrics and Fetal Medicine, Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Nadine Felber
- Department of Obstetrics and Fetal Medicine, Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald von Possel
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, Rostock, Germany
| | - Petra Emmerich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, Rostock, Germany
| | - Neele Pekarek
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Susanne Pfefferle
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Dominik Nörz
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Gudula Hansen
- Department of Obstetrics and Fetal Medicine, Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Diemert
- Department of Obstetrics and Fetal Medicine, Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Kurt Hecher
- Department of Obstetrics and Fetal Medicine, Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Lütgehetmann
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Petra Clara Arck
- Department of Obstetrics and Fetal Medicine, Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Ann-Christin Tallarek
- Department of Obstetrics and Fetal Medicine, Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
35
|
Huang Z, Callmann CE, Wang S, Vasher MK, Evangelopoulos M, Petrosko SH, Mirkin CA. Rational Vaccinology: Harnessing Nanoscale Chemical Design for Cancer Immunotherapy. ACS CENTRAL SCIENCE 2022; 8:692-704. [PMID: 35756370 PMCID: PMC9228553 DOI: 10.1021/acscentsci.2c00227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 05/12/2023]
Abstract
Cancer immunotherapy is a powerful treatment strategy that mobilizes the immune system to fight disease. Cancer vaccination is one form of cancer immunotherapy, where spatiotemporal control of the delivery of tumor-specific antigens, adjuvants, and/or cytokines has been key to successfully activating the immune system. Nanoscale materials that take advantage of chemistry to control the nanoscale structural arrangement, composition, and release of immunostimulatory components have shown significant promise in this regard. In this Outlook, we examine how the nanoscale structure, chemistry, and composition of immunostimulatory compounds can be modulated to maximize immune response and mitigate off-target effects, focusing on spherical nucleic acids as a model system. Furthermore, we emphasize how chemistry and materials science are driving the rational design and development of next-generation cancer vaccines. Finally, we identify gaps in the field that should be addressed moving forward and outline future directions to galvanize researchers from multiple disciplines to help realize the full potential of this form of cancer immunotherapy through chemistry and rational vaccinology.
Collapse
Affiliation(s)
- Ziyin Huang
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Cassandra E. Callmann
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Shuya Wang
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew K. Vasher
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael Evangelopoulos
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Sarah Hurst Petrosko
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A. Mirkin
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
36
|
Erickson JJ, Archer-Hartmann S, Yarawsky AE, Miller JLC, Seveau S, Shao TY, Severance AL, Miller-Handley H, Wu Y, Pham G, Wasik BR, Parrish CR, Hu YC, Lau JTY, Azadi P, Herr AB, Way SS. Pregnancy enables antibody protection against intracellular infection. Nature 2022; 606:769-775. [PMID: 35676476 PMCID: PMC9233044 DOI: 10.1038/s41586-022-04816-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 04/27/2022] [Indexed: 12/17/2022]
Abstract
Adaptive immune components are thought to exert non-overlapping roles in antimicrobial host defence, with antibodies targeting pathogens in the extracellular environment and T cells eliminating infection inside cells1,2. Reliance on antibodies for vertically transferred immunity from mothers to babies may explain neonatal susceptibility to intracellular infections3,4. Here we show that pregnancy-induced post-translational antibody modification enables protection against the prototypical intracellular pathogen Listeria monocytogenes. Infection susceptibility was reversed in neonatal mice born to preconceptually primed mothers possessing L. monocytogenes-specific IgG or after passive transfer of antibodies from primed pregnant, but not virgin, mice. Although maternal B cells were essential for producing IgGs that mediate vertically transferred protection, they were dispensable for antibody acquisition of protective function, which instead required sialic acid acetyl esterase5 to deacetylate terminal sialic acid residues on IgG variable-region N-linked glycans. Deacetylated L. monocytogenes-specific IgG protected neonates through the sialic acid receptor CD226,7, which suppressed IL-10 production by B cells leading to antibody-mediated protection. Consideration of the maternal-fetal dyad as a joined immunological unit reveals protective roles for antibodies against intracellular infection and fine-tuned adaptations to enhance host defence during pregnancy and early life.
Collapse
Affiliation(s)
- John J Erickson
- Department of Pediatrics, Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, Division of Neonatology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | | | - Alexander E Yarawsky
- Department of Pediatrics, Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Jeanette L C Miller
- Department of Pediatrics, Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Stephanie Seveau
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Tzu-Yu Shao
- Department of Pediatrics, Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Ashley L Severance
- Department of Pediatrics, Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Hilary Miller-Handley
- Department of Pediatrics, Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
- Department of Internal Medicine, Division of Infectious Diseases, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Yuehong Wu
- Department of Pediatrics, Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Giang Pham
- Department of Pediatrics, Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Brian R Wasik
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Colin R Parrish
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Yueh-Chiang Hu
- Department of Pediatrics, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Joseph T Y Lau
- Department of Molecular and Cell Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Andrew B Herr
- Department of Pediatrics, Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Sing Sing Way
- Department of Pediatrics, Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
37
|
Honda A, Hoeksema MA, Sakai M, Lund SJ, Lakhdari O, Butcher LD, Rambaldo TC, Sekiya NM, Nasamran CA, Fisch KM, Sajti E, Glass CK, Prince LS. The Lung Microenvironment Instructs Gene Transcription in Neonatal and Adult Alveolar Macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1947-1959. [PMID: 35354612 PMCID: PMC9012679 DOI: 10.4049/jimmunol.2101192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022]
Abstract
Immaturity of alveolar macrophages (AMs) around birth contributes to the susceptibility of newborns to lung disease. However, the molecular features differentiating neonatal and mature, adult AMs are poorly understood. In this study, we identify the unique transcriptomes and enhancer landscapes of neonatal and adult AMs in mice. Although the core AM signature was similar, murine adult AMs expressed higher levels of genes involved in lipid metabolism, whereas neonatal AMs expressed a largely proinflammatory gene profile. Open enhancer regions identified by an assay for transposase-accessible chromatin followed by high-throughput sequencing (ATAC-seq) contained motifs for nuclear receptors, MITF, and STAT in adult AMs and AP-1 and NF-κB in neonatal AMs. Intranasal LPS activated a similar innate immune response in both neonatal and adult mice, with higher basal expression of inflammatory genes in neonates. The lung microenvironment drove many of the distinguishing gene expression and open chromatin characteristics of neonatal and adult AMs. Neonatal mouse AMs retained high expression of some proinflammatory genes, suggesting that the differences in neonatal AMs result from both inherent cell properties and environmental influences.
Collapse
Affiliation(s)
- Asami Honda
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
- Rady Children's Hospital, San Diego, CA
| | - Marten A Hoeksema
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Mashito Sakai
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Sean J Lund
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
- Rady Children's Hospital, San Diego, CA
| | - Omar Lakhdari
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
- Rady Children's Hospital, San Diego, CA
| | - Lindsay D Butcher
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA
| | | | | | - Chanond A Nasamran
- Center for Computational Biology and Bioinformatics, University of California, San Diego, La Jolla, CA
| | - Kathleen M Fisch
- Center for Computational Biology and Bioinformatics, University of California, San Diego, La Jolla, CA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA; and
| | - Eniko Sajti
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
- Rady Children's Hospital, San Diego, CA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Lawrence S Prince
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA;
| |
Collapse
|
38
|
Barman S, Soni D, Brook B, Nanishi E, Dowling DJ. Precision Vaccine Development: Cues From Natural Immunity. Front Immunol 2022; 12:662218. [PMID: 35222350 PMCID: PMC8866702 DOI: 10.3389/fimmu.2021.662218] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022] Open
Abstract
Traditional vaccine development against infectious diseases has been guided by the overarching aim to generate efficacious vaccines normally indicated by an antibody and/or cellular response that correlates with protection. However, this approach has been shown to be only a partially effective measure, since vaccine- and pathogen-specific immunity may not perfectly overlap. Thus, some vaccine development strategies, normally focused on targeted generation of both antigen specific antibody and T cell responses, resulting in a long-lived heterogenous and stable pool of memory lymphocytes, may benefit from better mimicking the immune response of a natural infection. However, challenges to achieving this goal remain unattended, due to gaps in our understanding of human immunity and full elucidation of infectious pathogenesis. In this review, we describe recent advances in the development of effective vaccines, focusing on how understanding the differences in the immunizing and non-immunizing immune responses to natural infections and corresponding shifts in immune ontogeny are crucial to inform the next generation of infectious disease vaccines.
Collapse
Affiliation(s)
- Soumik Barman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Dheeraj Soni
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Byron Brook
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - David J Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
39
|
Brook B, Schaltz-Buchholzer F, Ben-Othman R, Kollmann T, Amenyogbe N. A place for neutrophils in the beneficial pathogen-agnostic effects of the BCG vaccine. Vaccine 2022; 40:1534-1539. [PMID: 33863572 DOI: 10.1016/j.vaccine.2021.03.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/25/2021] [Accepted: 03/26/2021] [Indexed: 12/20/2022]
Abstract
The BCG vaccine has long been recognized for reducing the risk to suffer from infectious diseases unrelated to its target disease, tuberculosis. Evidence from human trials demonstrate substantial reductions in all-cause mortality, especially in the first week of life. Observational studies have identified an association between BCG vaccination and reduced risk of respiratory infectious disease and clinical malaria later in childhood. The mechanistic basis for these pathogen-agnostic benefits, also known as beneficial non-specific effects (NSE) of BCG have been attributed to trained immunity, or epigenetic reprogramming of hematopoietic cells that give rise to innate immune cells responding more efficiently to a broad range of pathogens. Furthermore, within trained immunity, the focus so far has been on enhanced monocyte function. However, polymorphonuclear cells, namely neutrophils, are not only major constituents of the hematopoietic compartment but functionally as well as numerically represent a prominent component of the immune system. The beneficial NSEs of the BCG vaccine on newborn sepsis was recently demonstrated to be driven by a BCG-mediated numeric increase of neutrophils (emergency granulopoiesis (EG)). And experimental evidence in animal models suggest that BCG can modulate neutrophil function as well. Together, these findings suggest that neutrophils are crucial to at least the immediate beneficial NSE of the BCG vaccine. Efforts to uncover the full gamut of mechanisms underpinning the broad beneficial effects of BCG should therefore include neutrophils at the forefront.
Collapse
Affiliation(s)
- Byron Brook
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Frederick Schaltz-Buchholzer
- Institute of Clinical Research, University of Southern Denmark and Odense University Hospital, Odense, Denmark; Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau
| | - Rym Ben-Othman
- Telethon Kids Institute, Perth, Western Australia, Australia
| | - Tobias Kollmann
- Telethon Kids Institute, Perth, Western Australia, Australia
| | - Nelly Amenyogbe
- Telethon Kids Institute, Perth, Western Australia, Australia.
| |
Collapse
|
40
|
Lee J, Cho K, Kook H, Kang S, Lee Y, Lee J. The Different Immune Responses by Age Are due to the Ability of the Fetal Immune System to Secrete Primal Immunoglobulins Responding to Unexperienced Antigens. Int J Biol Sci 2022; 18:617-636. [PMID: 35002513 PMCID: PMC8741860 DOI: 10.7150/ijbs.67203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 12/23/2022] Open
Abstract
Among numerous studies on coronavirus 2019 (COVID-19), we noted that the infection and mortality rates of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) increased with age and that fetuses known to be particularly susceptible to infection were better protected despite various mutations. Hence, we established the hypothesis that a new immune system exists that forms before birth and decreases with aging. Methods: To prove this hypothesis, we established new ex-vivo culture conditions simulating the critical environmental factors of fetal stem cells (FSCs) in early pregnancy. Then, we analyzed the components from FSCs cultivated newly developed ex-vivo culture conditions and compared them from FSCs cultured in a normal condition. Results: We demonstrated that immunoglobulin M (IgM), a natural antibody (NAb) produced only in early B-1 cells, immunoglobulins (Igs) including IgG3, which has a wide range of antigen-binding capacity and affinity, complement proteins, and antiviral proteins are induced in FSCs only cultured in newly developed ex-vivo culture conditions. Particularly we confirmed that their extracellular vesicles (EVs) contained NAbs, Igs, various complement proteins, and antiviral proteins, as well as human leukocyte antigen G (HLA-G), responsible for immune tolerance. Conclusion: Our results suggest that FSCs in early pregnancy can form an independent immune system responding to unlearned antigens as a self-defense mechanism before establishing mature immune systems. Moreover, we propose the possibility of new solutions to cope with various infectious diseases based on the factors in NAbs-containing EVs, especially not causing unnecessary immune reaction due to HLA-G.
Collapse
Affiliation(s)
- Jangho Lee
- R&D Center of Stemmedicare Ltd, Seoul, 06095, Republic of Korea
| | - Kyoungshik Cho
- R&D Center of Stemmedicare Ltd, Seoul, 06095, Republic of Korea
| | - Hyejin Kook
- R&D Center of Stemmedicare Ltd, Seoul, 06095, Republic of Korea
| | - Suman Kang
- R&D Center of Stemmedicare Ltd, Seoul, 06095, Republic of Korea
| | - Yunsung Lee
- R&D Center of Stemmedicare Ltd, Seoul, 06095, Republic of Korea
| | - Jiwon Lee
- R&D Center of Stemmedicare Ltd, Seoul, 06095, Republic of Korea
| |
Collapse
|
41
|
Ucciferri CC, Dunn SE. Effect of puberty on the immune system: Relevance to multiple sclerosis. Front Pediatr 2022; 10:1059083. [PMID: 36533239 PMCID: PMC9755749 DOI: 10.3389/fped.2022.1059083] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
Puberty is a dynamic period marked by changing levels of sex hormones, the development of secondary sexual characteristics and reproductive maturity. This period has profound effects on various organ systems, including the immune system. The critical changes that occur in the immune system during pubertal onset have been shown to have implications for autoimmune conditions, including Multiple Sclerosis (MS). MS is rare prior to puberty but can manifest in children after puberty. This disease also has a clear female preponderance that only arises following pubertal onset, highlighting a potential role for sex hormones in autoimmunity. Early onset of puberty has also been shown to be a risk factor for MS. The purpose of this review is to overview the evidence that puberty regulates MS susceptibility and disease activity. Given that there is a paucity of studies that directly evaluate the effects of puberty on the immune system, we also discuss how the immune system is different in children and mice of pre- vs. post-pubertal ages and describe how gonadal hormones may regulate these immune mechanisms. We present evidence that puberty enhances the expression of co-stimulatory molecules and cytokine production by type 2 dendritic cells (DC2s) and plasmacytoid dendritic cells (pDCs), increases T helper 1 (Th1), Th17, and T follicular helper immunity, and promotes immunoglobulin (Ig)G antibody production. Overall, this review highlights how the immune system undergoes a functional maturation during puberty, which has the potential to explain the higher prevalence of MS and other autoimmune diseases seen in adolescence.
Collapse
Affiliation(s)
- Carmen C Ucciferri
- Department of Immunology, The University of Toronto, Toronto, ON, Canada
| | - Shannon E Dunn
- Department of Immunology, The University of Toronto, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada.,Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada
| |
Collapse
|
42
|
Feyaerts D, Urbschat C, Gaudillière B, Stelzer IA. Establishment of tissue-resident immune populations in the fetus. Semin Immunopathol 2022; 44:747-766. [PMID: 35508672 PMCID: PMC9067556 DOI: 10.1007/s00281-022-00931-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/17/2022] [Indexed: 12/15/2022]
Abstract
The immune system establishes during the prenatal period from distinct waves of stem and progenitor cells and continuously adapts to the needs and challenges of early postnatal and adult life. Fetal immune development not only lays the foundation for postnatal immunity but establishes functional populations of tissue-resident immune cells that are instrumental for fetal immune responses amidst organ growth and maturation. This review aims to discuss current knowledge about the development and function of tissue-resident immune populations during fetal life, focusing on the brain, lung, and gastrointestinal tract as sites with distinct developmental trajectories. While recent progress using system-level approaches has shed light on the fetal immune landscape, further work is required to describe precise roles of prenatal immune populations and their migration and adaptation to respective organ environments. Defining points of prenatal susceptibility to environmental challenges will support the search for potential therapeutic targets to positively impact postnatal health.
Collapse
Affiliation(s)
- Dorien Feyaerts
- grid.168010.e0000000419368956Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA USA
| | - Christopher Urbschat
- grid.13648.380000 0001 2180 3484Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg, Hamburg, Germany
| | - Brice Gaudillière
- grid.168010.e0000000419368956Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA USA ,grid.168010.e0000000419368956Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA USA
| | - Ina A. Stelzer
- grid.168010.e0000000419368956Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA USA
| |
Collapse
|
43
|
Schaltz-Buchholzer F, Bjerregård Øland C, Berendsen M, Bjerregaard-Andersen M, Stjernholm EB, Golding CN, Monteiro I, Aaby P, Benn CS. Does maternal BCG prime for enhanced beneficial effects of neonatal BCG in the offspring? J Infect 2021; 84:321-328. [PMID: 34958808 DOI: 10.1016/j.jinf.2021.12.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/22/2021] [Accepted: 12/15/2021] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Bacille Calmette-Guérin (BCG) vaccination lowers the risk of severe infection; we tested whether effects are modulated by maternal BCG in a large cohort of BCG-vaccinated newborns from Guinea-Bissau. METHODS Maternal BCG scar status were inspected at enrolment in a BCG trial conducted from 2014-17 in Bissau, Guinea-Bissau. We tested associations with background factors for potential confounding; maternal age affected effect estimates >5% and accordingly, all analyses were adjusted for maternal age. Hospitalization data was collected prospectively and assessed in Cox-models providing adjusted Incidence Rate Ratios (aIRRs). In-hospital risk of death (case-fatality) risk was assessed using binomial regression providing adjusted Risk Ratios (aRRs). RESULTS 60% (6,309/10,598) of mothers had a scar. The maternal-scar/no-scar admission aIRR was 0.96 (0.81-1.14) from 0-6 weeks and 1.12 (0.97-1.28) for 6 weeks-3 years. The 6-week in-hospital case-fatality infection aRR was 0.59 (0.34-1.05); 0.40 (0.17-0.91) for males and 0.86 (0.38-1.94) for females. Protection was especially evident against sepsis, the overall 6-week aRR=0.49 (0.26-0.91); no effect was observed for non-infectious deaths or after 6 weeks of age. Effects were similar across BCG strains and multivariate models adjusted for socioeconomic status did not affect estimates. CONCLUSION Among BCG-vaccinated newborns, there was a trend for fewer in-hospital deaths from infection associated with maternal BCG priming, especially for males. Providing BCG to adults without a vaccination scar might enhance their offspring's capacity to handle severe infections.
Collapse
Affiliation(s)
- Frederik Schaltz-Buchholzer
- Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau; Bandim Health Project, OPEN, Institute of Clinical Research, Uni. Southern Denmark and Odense University Hospital, Odense, Denmark.
| | | | - Mike Berendsen
- Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau; Bandim Health Project, OPEN, Institute of Clinical Research, Uni. Southern Denmark and Odense University Hospital, Odense, Denmark; Department of Internal Medicine, Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | | | | - Ivan Monteiro
- Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau
| | - Peter Aaby
- Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau
| | - Christine Stabell Benn
- Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau; Bandim Health Project, OPEN, Institute of Clinical Research, Uni. Southern Denmark and Odense University Hospital, Odense, Denmark; Danish Institute of Advanced Science, Uni. Southern Denmark, Odense, Denmark.
| |
Collapse
|
44
|
Aevermann BD, Shannon CP, Novotny M, Ben-Othman R, Cai B, Zhang Y, Ye JC, Kobor MS, Gladish N, Lee AHY, Blimkie TM, Hancock RE, Llibre A, Duffy D, Koff WC, Sadarangani M, Tebbutt SJ, Kollmann TR, Scheuermann RH. Machine Learning-Based Single Cell and Integrative Analysis Reveals That Baseline mDC Predisposition Correlates With Hepatitis B Vaccine Antibody Response. Front Immunol 2021; 12:690470. [PMID: 34777332 PMCID: PMC8588842 DOI: 10.3389/fimmu.2021.690470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/25/2021] [Indexed: 01/23/2023] Open
Abstract
Vaccination to prevent infectious disease is one of the most successful public health interventions ever developed. And yet, variability in individual vaccine effectiveness suggests that a better mechanistic understanding of vaccine-induced immune responses could improve vaccine design and efficacy. We have previously shown that protective antibody levels could be elicited in a subset of recipients with only a single dose of the hepatitis B virus (HBV) vaccine and that a wide range of antibody levels were elicited after three doses. The immune mechanisms responsible for this vaccine response variability is unclear. Using single cell RNA sequencing of sorted innate immune cell subsets, we identified two distinct myeloid dendritic cell subsets (NDRG1-expressing mDC2 and CDKN1C-expressing mDC4), the ratio of which at baseline (pre-vaccination) correlated with the immune response to a single dose of HBV vaccine. Our results suggest that the participants in our vaccine study were in one of two different dendritic cell dispositional states at baseline – an NDRG2-mDC2 state in which the vaccine elicited an antibody response after a single immunization or a CDKN1C-mDC4 state in which the vaccine required two or three doses for induction of antibody responses. To explore this correlation further, genes expressed in these mDC subsets were used for feature selection prior to the construction of predictive models using supervised canonical correlation machine learning. The resulting models showed an improved correlation with serum antibody titers in response to full vaccination. Taken together, these results suggest that the propensity of circulating dendritic cells toward either activation or suppression, their “dispositional endotype” at pre-vaccination baseline, could dictate response to vaccination.
Collapse
Affiliation(s)
- Brian D Aevermann
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA, United States
| | - Casey P Shannon
- Prevention of Organ Failure (PROOF) Centre of Excellence, St. Paul's Hospital, Vancouver, BC, Canada.,The University of British Columbia (UBC) Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Mark Novotny
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA, United States
| | - Rym Ben-Othman
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Telethon Kids Institute, Perth Children's Hospital, University of Western Australia, Nedlands, WA, Australia
| | - Bing Cai
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Yun Zhang
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA, United States
| | - Jamie C Ye
- Prevention of Organ Failure (PROOF) Centre of Excellence, St. Paul's Hospital, Vancouver, BC, Canada.,The University of British Columbia (UBC) Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Michael S Kobor
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Nicole Gladish
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Amy Huei-Yi Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Travis M Blimkie
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Robert E Hancock
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Alba Llibre
- Translational Immunology Lab, Institut Pasteur, Paris, France
| | - Darragh Duffy
- Translational Immunology Lab, Institut Pasteur, Paris, France
| | - Wayne C Koff
- Human Vaccines Project, New York, NY, United States
| | - Manish Sadarangani
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Scott J Tebbutt
- Prevention of Organ Failure (PROOF) Centre of Excellence, St. Paul's Hospital, Vancouver, BC, Canada.,The University of British Columbia (UBC) Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tobias R Kollmann
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Telethon Kids Institute, Perth Children's Hospital, University of Western Australia, Nedlands, WA, Australia
| | - Richard H Scheuermann
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA, United States.,Department of Pathology, University of California, San Diego, San Diego, CA, United States.,Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| |
Collapse
|
45
|
Hsu CN, Tain YL. The First Thousand Days: Kidney Health and Beyond. Healthcare (Basel) 2021; 9:1332. [PMID: 34683012 PMCID: PMC8544398 DOI: 10.3390/healthcare9101332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/25/2021] [Accepted: 10/03/2021] [Indexed: 12/12/2022] Open
Abstract
The global burden of chronic kidney disease (CKD) is rising. A superior strategy to advance global kidney health is required to prevent and treat CKD early. Kidney development can be impacted during the first 1000 days of life by numerous factors, including malnutrition, maternal illness, exposure to chemicals, substance abuse, medication use, infection, and exogenous stress. In the current review, we summarize environmental risk factors reported thus far in clinical and experimental studies relating to the programming of kidney disease, and systematize the knowledge on common mechanisms underlying renal programming. The aim of this review is to discuss the primary and secondary prevention actions for enhancing kidney health from pregnancy to age 2. The final task is to address the potential interventions to target renal programming through updating animal studies. Together, we can enhance the future of global kidney health in the first 1000 days of life.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
46
|
Giles ML, Davey MA, Wallace EM. Associations Between Maternal Immunisation and Reduced Rates of Preterm Birth and Stillbirth: A Population Based Retrospective Cohort Study. Front Immunol 2021; 12:704254. [PMID: 34557193 PMCID: PMC8454544 DOI: 10.3389/fimmu.2021.704254] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Stillbirth and preterm birth (PTB) remain two of the most important, unresolved challenges in modern pregnancy care. Approximately 10% of all births are preterm with nearly one million children dying each year due to PTB. It remains the most common cause of death among children under five years of age. The numbers for stillbirth are no less shocking with 2.6 million babies stillborn each year. With minimal impact on the rate of these adverse birth outcomes over the past decade there is an urgent need to identify more effective interventions to tackle these problems. In this retrospective cohort study, we used whole-of-population data, to determine if maternal immunization during pregnancy against influenza and/or pertussis, is associated with a lower risk of PTB, delivering a small-for-gestational age (SGA) infant, developing preeclampsia or stillbirth. Women with a singleton pregnancy at 28 or more weeks' gestation delivering in Victoria, Australia from July 2015 to December 2018 were included in the analysis. Log-binomial regression was used to measure the relationship between vaccination during pregnancy against influenza and against pertussis, with preterm birth, SGA, preeclampsia and stillbirth. Variables included in the adjusted model were maternal age, body mass index, first or subsequent birth, maternal Indigenous status, socio-economic quintile, smoking, public or private maternity care and metropolitan or rural location of the hospital. Women who received influenza vaccine were 75% less likely to have a stillbirth (aRR 025; 95% CI 0.20, 0.31), and 31% less likely to birth <37 weeks (aRR 0.69; 95% CI 0.66, 0.72). Women who received pertussis vaccine were 77% less likely to have a stillbirth (aOR 0.23; 95% CI 0.18, 0.28) and 32% less likely to birth <37 weeks gestation (aRR 0.68; 95% CI 0.66, 0.71). Vaccination also reduced the odds of small for gestational age by 13% and reduced the odds of pre-eclampsia when restricted to primiparous women. This association was seen over four different influenza seasons and independent of the time of year suggesting that any protective effect on obstetric outcomes afforded by maternal vaccination may not be due to a pathogen-specific response but rather due to pathogen-agnostic immune-modulatory effects.
Collapse
Affiliation(s)
- Michelle L. Giles
- The Ritchie Centre, Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | | | | |
Collapse
|
47
|
Breiman RF, Blau DM, Mutevedzi P, Akelo V, Mandomando I, Ogbuanu IU, Sow SO, Madrid L, El Arifeen S, Garel M, Thwala NB, Onyango D, Sitoe A, Bassey IA, Keita AM, Alemu A, Alam M, Mahtab S, Gethi D, Varo R, Ojulong J, Samura S, Mehta A, Ibrahim AM, Rahman A, Vitorino P, Baillie VL, Agaya J, Tapia MD, Assefa N, Chowdhury AI, Scott JAG, Gurley ES, Kotloff KL, Jambai A, Bassat Q, Tippett-Barr BA, Madhi SA, Whitney CG. Postmortem investigations and identification of multiple causes of child deaths: An analysis of findings from the Child Health and Mortality Prevention Surveillance (CHAMPS) network. PLoS Med 2021; 18:e1003814. [PMID: 34591862 PMCID: PMC8516282 DOI: 10.1371/journal.pmed.1003814] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 10/14/2021] [Accepted: 09/14/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The current burden of >5 million deaths yearly is the focus of the Sustainable Development Goal (SDG) to end preventable deaths of newborns and children under 5 years old by 2030. To accelerate progression toward this goal, data are needed that accurately quantify the leading causes of death, so that interventions can target the common causes. By adding postmortem pathology and microbiology studies to other available data, the Child Health and Mortality Prevention Surveillance (CHAMPS) network provides comprehensive evaluations of conditions leading to death, in contrast to standard methods that rely on data from medical records and verbal autopsy and report only a single underlying condition. We analyzed CHAMPS data to characterize the value of considering multiple causes of death. METHODS AND FINDINGS We examined deaths identified from December 2016 through November 2020 from 7 CHAMPS sites (in Bangladesh, Ethiopia, Kenya, Mali, Mozambique, Sierra Leone, and South Africa), including 741 neonatal, 278 infant, and 241 child <5 years deaths for which results from Determination of Cause of Death (DeCoDe) panels were complete. DeCoDe panelists included all conditions in the causal chain according to the ICD-10 guidelines and assessed if prevention or effective management of the condition would have prevented the death. We analyzed the distribution of all conditions listed as causal, including underlying, antecedent, and immediate causes of death. Among 1,232 deaths with an underlying condition determined, we found a range of 0 to 6 (mean 1.5, IQR 0 to 2) additional conditions in the causal chain leading to death. While pathology provides very helpful clues, we cannot always be certain that conditions identified led to death or occurred in an agonal stage of death. For neonates, preterm birth complications (most commonly respiratory distress syndrome) were the most common underlying condition (n = 282, 38%); among those with preterm birth complications, 256 (91%) had additional conditions in causal chains, including 184 (65%) with a different preterm birth complication, 128 (45%) with neonatal sepsis, 69 (24%) with lower respiratory infection (LRI), 60 (21%) with meningitis, and 25 (9%) with perinatal asphyxia/hypoxia. Of the 278 infant deaths, 212 (79%) had ≥1 additional cause of death (CoD) beyond the underlying cause. The 2 most common underlying conditions in infants were malnutrition and congenital birth defects; LRI and sepsis were the most common additional conditions in causal chains, each accounting for approximately half of deaths with either underlying condition. Of the 241 child deaths, 178 (75%) had ≥1 additional condition. Among 46 child deaths with malnutrition as the underlying condition, all had ≥1 other condition in the causal chain, most commonly sepsis, followed by LRI, malaria, and diarrheal disease. Including all positions in the causal chain for neonatal deaths resulted in 19-fold and 11-fold increases in attributable roles for meningitis and LRI, respectively. For infant deaths, the proportion caused by meningitis and sepsis increased by 16-fold and 11-fold, respectively; for child deaths, sepsis and LRI are increased 12-fold and 10-fold, respectively. While comprehensive CoD determinations were done for a substantial number of deaths, there is potential for bias regarding which deaths in surveillance areas underwent minimally invasive tissue sampling (MITS), potentially reducing representativeness of findings. CONCLUSIONS Including conditions that appear anywhere in the causal chain, rather than considering underlying condition alone, markedly changed the proportion of deaths attributed to various diagnoses, especially LRI, sepsis, and meningitis. While CHAMPS methods cannot determine when 2 conditions cause death independently or may be synergistic, our findings suggest that considering the chain of events leading to death can better guide research and prevention priorities aimed at reducing child deaths.
Collapse
Affiliation(s)
- Robert F. Breiman
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
- Emory Global Health Institute, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| | - Dianna M. Blau
- Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Portia Mutevedzi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Department of Science and Innovation/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand Faculty of Health Sciences, Johannesburg, South Africa
| | - Victor Akelo
- US Centers for Disease Control and Prevention-Kenya, Kisumu, Kenya
| | - Inacio Mandomando
- Centro de Investigação em Saúde de Manhiça [CISM], Manhica, Mozambique
- Instituto Nacional de Saúde [INS], Manhiça, Mozambique
| | | | - Samba O. Sow
- Centre pour le Développement des Vaccins (CVD-Mali), Ministère de la Santé, Bamako, Mali
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Lola Madrid
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Shams El Arifeen
- International Center for Diarrhoeal Diseases Research (icddr,b), Dhaka, Bangladesh
| | - Mischka Garel
- Emory Global Health Institute, Emory University, Atlanta, Georgia, United States of America
| | - Nana Bukiwe Thwala
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Department of Science and Innovation/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand Faculty of Health Sciences, Johannesburg, South Africa
| | | | - Antonio Sitoe
- Centro de Investigação em Saúde de Manhiça [CISM], Manhica, Mozambique
| | | | - Adama Mamby Keita
- Centre pour le Développement des Vaccins (CVD-Mali), Ministère de la Santé, Bamako, Mali
| | - Addisu Alemu
- College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Muntasir Alam
- International Center for Diarrhoeal Diseases Research (icddr,b), Dhaka, Bangladesh
| | - Sana Mahtab
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Department of Science and Innovation/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand Faculty of Health Sciences, Johannesburg, South Africa
| | - Dickson Gethi
- Kenya Medical Research Institute (KEMRI) Center for Global Health Research, Kisumu, Kenya
| | - Rosauro Varo
- Centro de Investigação em Saúde de Manhiça [CISM], Manhica, Mozambique
- Universitat de Barcelona, Barcelona, Spain
| | | | | | - Ashka Mehta
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | | | - Afruna Rahman
- International Center for Diarrhoeal Diseases Research (icddr,b), Dhaka, Bangladesh
| | - Pio Vitorino
- Centro de Investigação em Saúde de Manhiça [CISM], Manhica, Mozambique
| | - Vicky L. Baillie
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Janet Agaya
- Kenya Medical Research Institute (KEMRI) Center for Global Health Research, Kisumu, Kenya
| | - Milagritos D. Tapia
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Nega Assefa
- College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | | | - J. Anthony G. Scott
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Emily S. Gurley
- International Center for Diarrhoeal Diseases Research (icddr,b), Dhaka, Bangladesh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Karen L. Kotloff
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Division of Infectious Disease and Tropical Pediatrics, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Amara Jambai
- Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Quique Bassat
- Centro de Investigação em Saúde de Manhiça [CISM], Manhica, Mozambique
- ISGlobal, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital de Sant Joan de Deu, University of Barcelona, Barcelona, Spain
- Consorcio de Investigacion Biomedica en Red de Epidemiologia y Salud Publica (CIBERESP), Madrid, Spain
| | | | - Shabir A. Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Department of Science and Innovation/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand Faculty of Health Sciences, Johannesburg, South Africa
| | - Cynthia G. Whitney
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
- Emory Global Health Institute, Emory University, Atlanta, Georgia, United States of America
| | | |
Collapse
|
48
|
Vertically transferred maternal immune cells promote neonatal immunity against early life infections. Nat Commun 2021; 12:4706. [PMID: 34349112 PMCID: PMC8338998 DOI: 10.1038/s41467-021-24719-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/26/2021] [Indexed: 11/17/2022] Open
Abstract
During mammalian pregnancy, immune cells are vertically transferred from mother to fetus. The functional role of these maternal microchimeric cells (MMc) in the offspring is mostly unknown. Here we show a mouse model in which MMc numbers are either normal or low, which enables functional assessment of MMc. We report a functional role of MMc in promoting fetal immune development. MMc induces preferential differentiation of hematopoietic stem cells in fetal bone marrow towards monocytes within the myeloid compartment. Neonatal mice with higher numbers of MMc and monocytes show enhanced resilience against cytomegalovirus infection. Similarly, higher numbers of MMc in human cord blood are linked to a lower number of respiratory infections during the first year of life. Our data highlight the importance of MMc in promoting fetal immune development, potentially averting the threats caused by early life exposure to pathogens. Maternal immune cells seed into the foetus during mammalian pregnancy, yet the functional role of these cells is unclear. Here the authors show that maternal immune cells in foetal bone marrow stimulate immune development, subsequently reducing the risk or severity of infections in newborns.
Collapse
|
49
|
Maternal and neonatal immunization in the Americas: The benefits, the hurdles, and the way forward. Vaccine 2021; 39 Suppl 2:B1-B2. [PMID: 34130884 PMCID: PMC8196310 DOI: 10.1016/j.vaccine.2021.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Franza L, Cianci R. Pollution, Inflammation, and Vaccines: A Complex Crosstalk. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126330. [PMID: 34208042 PMCID: PMC8296132 DOI: 10.3390/ijerph18126330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/21/2022]
Abstract
The importance of pollution in determining human health is becoming increasingly clear, also given the dramatic consequences it has had on recent geopolitical events. Yet, the consequences of contamination are not always straightforward. In this paper, we will discuss the effects of different pollutants on different aspects of human health, in particular on the immune system and inflammation. Different environmental pollutants can have different effects on the immune system, which can then promote complex pathologies, such as autoimmune disorders and cancer. The interaction with the microbiota also further helps to determine the consequences of contamination on wellbeing. The pollution can affect vaccination efficacy, given the widespread effects of vaccination on immunity. At the same time, some vaccinations also can exert protective effects against some forms of pollution.
Collapse
Affiliation(s)
- Laura Franza
- Emergency Medicine, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli, 8-00168 Rome, Italy;
| | - Rossella Cianci
- Dipartimento di Medicina e Chirurgia Traslazionale, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli, 8-00168 Rome, Italy
- Correspondence: ; Tel.: +39-06-3015-7597; Fax: +39-06-3550-2775
| |
Collapse
|