1
|
Wang Q, Zhu H, Deng L, Xu S, Xie W, Li M, Wang R, Tie L, Zhan L, Yu G. Spatial Transcriptomics: Biotechnologies, Computational Tools, and Neuroscience Applications. SMALL METHODS 2025:e2401107. [PMID: 39760243 DOI: 10.1002/smtd.202401107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/22/2024] [Indexed: 01/07/2025]
Abstract
Spatial transcriptomics (ST) represents a revolutionary approach in molecular biology, providing unprecedented insights into the spatial organization of gene expression within tissues. This review aims to elucidate advancements in ST technologies, their computational tools, and their pivotal applications in neuroscience. It is begun with a historical overview, tracing the evolution from early image-based techniques to contemporary sequence-based methods. Subsequently, the computational methods essential for ST data analysis, including preprocessing, cell type annotation, spatial clustering, detection of spatially variable genes, cell-cell interaction analysis, and 3D multi-slices integration are discussed. The central focus of this review is the application of ST in neuroscience, where it has significantly contributed to understanding the brain's complexity. Through ST, researchers advance brain atlas projects, gain insights into brain development, and explore neuroimmune dysfunctions, particularly in brain tumors. Additionally, ST enhances understanding of neuronal vulnerability in neurodegenerative diseases like Alzheimer's and neuropsychiatric disorders such as schizophrenia. In conclusion, while ST has already profoundly impacted neuroscience, challenges remain issues such as enhancing sequencing technologies and developing robust computational tools. This review underscores the transformative potential of ST in neuroscience, paving the way for new therapeutic insights and advancements in brain research.
Collapse
Affiliation(s)
- Qianwen Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hongyuan Zhu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lin Deng
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuangbin Xu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenqin Xie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ming Li
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Rui Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Liang Tie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Li Zhan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Guangchuang Yu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
2
|
Sun F, Li H, Sun D, Fu S, Gu L, Shao X, Wang Q, Dong X, Duan B, Xing F, Wu J, Xiao M, Zhao F, Han JDJ, Liu Q, Fan X, Li C, Wang C, Shi T. Single-cell omics: experimental workflow, data analyses and applications. SCIENCE CHINA. LIFE SCIENCES 2025; 68:5-102. [PMID: 39060615 DOI: 10.1007/s11427-023-2561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/18/2024] [Indexed: 07/28/2024]
Abstract
Cells are the fundamental units of biological systems and exhibit unique development trajectories and molecular features. Our exploration of how the genomes orchestrate the formation and maintenance of each cell, and control the cellular phenotypes of various organismsis, is both captivating and intricate. Since the inception of the first single-cell RNA technology, technologies related to single-cell sequencing have experienced rapid advancements in recent years. These technologies have expanded horizontally to include single-cell genome, epigenome, proteome, and metabolome, while vertically, they have progressed to integrate multiple omics data and incorporate additional information such as spatial scRNA-seq and CRISPR screening. Single-cell omics represent a groundbreaking advancement in the biomedical field, offering profound insights into the understanding of complex diseases, including cancers. Here, we comprehensively summarize recent advances in single-cell omics technologies, with a specific focus on the methodology section. This overview aims to guide researchers in selecting appropriate methods for single-cell sequencing and related data analysis.
Collapse
Affiliation(s)
- Fengying Sun
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China
| | - Haoyan Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dongqing Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shaliu Fu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Lei Gu
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China
| | - Qinqin Wang
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bin Duan
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Feiyang Xing
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jun Wu
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Minmin Xiao
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Qi Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China.
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Chen Li
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Tieliu Shi
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, School of Statistics, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
3
|
Bouvier G, Sanzeni A, Hamada E, Brunel N, Scanziani M. Inter- and Intrahemispheric Sources of Vestibular Signals to V1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624137. [PMID: 39605728 PMCID: PMC11601413 DOI: 10.1101/2024.11.18.624137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Head movements are sensed by the vestibular organs. Unlike classical senses, signals from vestibular organs are not conveyed to a dedicated cortical area but are broadcast throughout the cortex. Surprisingly, the routes taken by vestibular signals to reach the cortex are still largely uncharted. Here we show that the primary visual cortex (V1) receives real-time head movement signals - direction, velocity, and acceleration - from the ipsilateral pulvinar and contralateral visual cortex. The ipsilateral pulvinar provides the main head movement signal, with a bias toward contraversive movements (e.g. clockwise movements in left V1). Conversely, the contralateral visual cortex provides head movement signals during ipsiversive movements. Crucially, head movement variables encoded in V1 are already encoded in the pulvinar, suggesting that those variables are computed subcortically. Thus, the convergence of inter- and intrahemispheric signals endows V1 with a rich representation of the animal's head movements.
Collapse
Affiliation(s)
- Guy Bouvier
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Alessandro Sanzeni
- Department of Computing Sciences, Bocconi University, 20100 Milan, Italy
- Center for Theoretical Neuroscience and Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Elizabeth Hamada
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Nicolas Brunel
- Department of Computing Sciences, Bocconi University, 20100 Milan, Italy
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Massimo Scanziani
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Cai XY, Wang XT, Guo JW, Xu FX, Ma KY, Wang ZX, Zhao Y, Xie W, Schonewille M, De Zeeuw C, Chen W, Shen Y. Aberrant outputs of cerebellar nuclei and targeted rescue of social deficits in an autism mouse model. Protein Cell 2024; 15:872-888. [PMID: 39066574 PMCID: PMC11637611 DOI: 10.1093/procel/pwae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The cerebellum is heavily connected with other brain regions, sub-serving not only motor but also nonmotor functions. Genetic mutations leading to cerebellar dysfunction are associated with mental diseases, but cerebellar outputs have not been systematically studied in this context. Here, we present three dimensional distributions of 50,168 target neurons of cerebellar nuclei (CN) from wild-type mice and Nlgn3R451C mutant mice, a mouse model for autism. Our results derived from 36 target nuclei show that the projections from CN to thalamus, midbrain and brainstem are differentially affected by Nlgn3R451C mutation. Importantly, Nlgn3R451C mutation altered the innervation power of CN→zona incerta (ZI) pathway, and chemogenetic inhibition of a neuronal subpopulation in the ZI that receives inputs from the CN rescues social defects in Nlgn3R451C mice. Our study highlights potential role of cerebellar outputs in the pathogenesis of autism and provides potential new therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Xin-Yu Cai
- Center for Brain Health, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xin-Tai Wang
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jing-Wen Guo
- Center for Brain Health, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fang-Xiao Xu
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kuang-Yi Ma
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | | | - Yue Zhao
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease of the Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Martijn Schonewille
- Department of Neuroscience, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Chris De Zeeuw
- Department of Neuroscience, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
- The Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts & Science, 1105 BA Amsterdam, The Netherlands
| | - Wei Chen
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ying Shen
- Center for Brain Health, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
5
|
Pyenson BC, Huisken JL, Gupta N, Rehan SM. The brain atlas of a subsocial bee reflects that of eusocial Hymenoptera. GENES, BRAIN, AND BEHAVIOR 2024; 23:e70007. [PMID: 39513483 PMCID: PMC11544451 DOI: 10.1111/gbb.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/18/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024]
Abstract
The evolutionary transition from solitary life to group-living in a society with cooperative brood care, reproductive division of labor and morphological castes is associated with increased cognitive demands for task-specialization. Associated with these demands, the brains of eusocial Hymenoptera divide transcriptomic signatures associated with foraging and reproduction to different populations of cells and also show diverse astrocyte and Kenyon cell types compared with solitary non-hymenopteran insects. The neural architecture of subsocial bees, which represent evolutionary antecedent states to eusocial Hymenoptera, could then show how widely this eusocial brain is conserved across aculeate Hymenoptera. Using single-nucleus transcriptomics, we have created an atlas of neuron and glial cell types from the brain of a subsocial insect, the small carpenter bee (Ceratina calcarata). The proportion of C. calcarata neurons related to the metabolism of classes of neurotransmitters is similar to that of other insects, whereas astrocyte and Kenyon cell types show highly similar gene expression patterns to those of eusocial Hymenoptera. In the winter, the transcriptomic signature across the brain reflected diapause. When the bee was active in the summer, however, genes upregulated in neurons reflected foraging, while the gene expression signature of glia associated with reproductive functions. Like eusocial Hymenoptera, we conclude that neural components for foraging and reproduction in C. calcarata are compartmentalized to different parts of its brain. Cellular examination of the brains of other solitary and subsocial insects can show the extent of neurobiological conservation across levels of social complexity.
Collapse
Affiliation(s)
| | | | - Nandini Gupta
- Department of BiologyYork UniversityTorontoOntarioCanada
| | | |
Collapse
|
6
|
Fanning A, Kuo SH. Clinical Heterogeneity of Essential Tremor: Understanding Neural Substrates of Action Tremor Subtypes. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2497-2510. [PMID: 37022657 PMCID: PMC10556200 DOI: 10.1007/s12311-023-01551-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
Essential tremor (ET) is a common movement disorder affecting millions of people. Studies of ET patients and perturbations in animal models have provided a foundation for the neural networks involved in its pathophysiology. However, ET encompasses a wide variability of phenotypic expression, and this may be the consequence of dysfunction in distinct subcircuits in the brain. The cerebello-thalamo-cortical circuit is a common substrate for the multiple subtypes of action tremor. Within the cerebellum, three sets of cerebellar cortex-deep cerebellar nuclei connections are important for tremor. The lateral hemispheres and dentate nuclei may be involved in intention, postural and isometric tremor. The intermediate zone and interposed nuclei could be involved in intention tremor. The vermis and fastigial nuclei could be involved in head and proximal upper extremity tremor. Studying distinct cerebellar circuitry will provide important framework for understanding the clinical heterogeneity of ET.
Collapse
Affiliation(s)
- Alexander Fanning
- Department of Neurology, Columbia University, New York, NY, 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, 10032, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, NY, 10032, USA.
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
7
|
Colonna M, Konopka G, Liddelow SA, Nowakowski T, Awatramani R, Bateup HS, Cadwell CR, Caglayan E, Chen JL, Gillis J, Kampmann M, Krienen F, Marsh SE, Monje M, O'Dea MR, Patani R, Pollen AA, Quintana FJ, Scavuzzo M, Schmitz M, Sloan SA, Tesar PJ, Tollkuhn J, Tosches MA, Urbanek ME, Werner JM, Bayraktar OA, Gokce O, Habib N. Implementation and validation of single-cell genomics experiments in neuroscience. Nat Neurosci 2024; 27:2310-2325. [PMID: 39627589 DOI: 10.1038/s41593-024-01814-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 10/15/2024] [Indexed: 12/13/2024]
Abstract
Single-cell or single-nucleus transcriptomics is a powerful tool for identifying cell types and cell states. However, hypotheses derived from these assays, including gene expression information, require validation, and their functional relevance needs to be established. The choice of validation depends on numerous factors. Here, we present types of orthogonal and functional validation experiment to strengthen preliminary findings obtained using single-cell and single-nucleus transcriptomics as well as the challenges and limitations of these approaches.
Collapse
Affiliation(s)
- Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| | - Genevieve Konopka
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA.
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
| | - Tomasz Nowakowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
| | - Rajeshwar Awatramani
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL, USA
| | - Helen S Bateup
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Cathryn R Cadwell
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Emre Caglayan
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jerry L Chen
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Center for Neurophotonics, Boston University, Boston, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Jesse Gillis
- Department of Physiology and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Fenna Krienen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Samuel E Marsh
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Michael R O'Dea
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Rickie Patani
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, Human Stem Cells and Neurodegeneration Laboratory, London, UK
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marissa Scavuzzo
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, OH, USA
- Institute for Glial Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Matthew Schmitz
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, OH, USA
- Institute for Glial Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | | - Madeleine E Urbanek
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan M Werner
- Department of Physiology and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Ozgun Gokce
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, Bonn, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Naomi Habib
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
8
|
Coleman RT, Morantte I, Koreman GT, Cheng ML, Ding Y, Ruta V. A modular circuit coordinates the diversification of courtship strategies. Nature 2024; 635:142-150. [PMID: 39385031 PMCID: PMC11540906 DOI: 10.1038/s41586-024-08028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 09/06/2024] [Indexed: 10/11/2024]
Abstract
Mate recognition systems evolve rapidly to reinforce the reproductive boundaries between species, but the underlying neural mechanisms remain enigmatic. Here we leveraged the rapid coevolution of female pheromone production and male pheromone perception in Drosophila1,2 to gain insight into how the architecture of mate recognition circuits facilitates their diversification. While in some Drosophila species females produce unique pheromones that act to arouse their conspecific males, the pheromones of most species are sexually monomorphic such that females possess no distinguishing chemosensory signatures that males can use for mate recognition3. We show that Drosophila yakuba males evolved the ability to use a sexually monomorphic pheromone, 7-tricosene, as an excitatory cue to promote courtship. By comparing key nodes in the pheromone circuits across multiple Drosophila species, we reveal that this sensory innovation arises from coordinated peripheral and central circuit adaptations: a distinct subpopulation of sensory neurons has acquired sensitivity to 7-tricosene and, in turn, selectively signals to a distinct subset of P1 neurons in the central brain to trigger courtship. Such a modular circuit organization, in which different sensory inputs can independently couple to parallel courtship control nodes, may facilitate the evolution of mate recognition systems by allowing novel sensory modalities to become linked to male arousal. Together, our findings suggest how peripheral and central circuit adaptations can be flexibly coordinated to underlie the rapid evolution of mate recognition strategies across species.
Collapse
Affiliation(s)
- Rory T Coleman
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Ianessa Morantte
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Gabriel T Koreman
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Megan L Cheng
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Yun Ding
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Vanessa Ruta
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
9
|
Roth RH, Muniak MA, Huang CJ, Hwang FJ, Sun Y, Min C, Mao T, Ding JB. Thalamic integration of basal ganglia and cerebellar circuits during motor learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621388. [PMID: 39554076 PMCID: PMC11565971 DOI: 10.1101/2024.10.31.621388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The ability to control movement and learn new motor skills is one of the fundamental functions of the brain. The basal ganglia (BG) and the cerebellum (CB) are two key brain regions involved in controlling movement, and neuronal plasticity within these two regions is crucial for acquiring new motor skills. However, how these regions interact to produce a cohesive unified motor output remains elusive. Here, we discovered that a subset of neurons in the motor thalamus receive converging synaptic inputs from both BG and CB. By performing multi-site fiber photometry in mice learning motor tasks, we found that motor thalamus neurons integrate BG and CB signals and show distinct movement-related activity. Lastly, we found a critical role of these thalamic neurons and their BG and CB inputs in motor learning and control. These results identify the thalamic convergence of BG and CB and its crucial role in integrating movement signals.
Collapse
Affiliation(s)
- Richard H Roth
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Michael A Muniak
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Charles J Huang
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Fuu-Jiun Hwang
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Yue Sun
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Cierra Min
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Tianyi Mao
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
- Lead contact
| |
Collapse
|
10
|
Roychaudhury A, Lee YR, Choi TI, Thomas MG, Khan TN, Yousaf H, Skinner C, Maconachie G, Crosier M, Horak H, Constantinescu CS, Kim TY, Lee KH, Kyung JJ, Wang T, Ku B, Chodirker BN, Hammer MF, Gottlob I, Norton WHJ, Gerlai R, Kim HG, Graziano C, Pippucci T, Iovino E, Montanari F, Severi G, Toro C, Boerkoel CF, Cha HS, Choi CY, Kim S, Yoon JH, Gilmore K, Vora NL, Davis EE, Chudley AE, Schwartz CE, Kim CH. SRPK3 Is Essential for Cognitive and Ocular Development in Humans and Zebrafish, Explaining X-Linked Intellectual Disability. Ann Neurol 2024; 96:914-931. [PMID: 39073169 PMCID: PMC11496011 DOI: 10.1002/ana.27037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE Intellectual disability is often the outcome of neurodevelopmental disorders and is characterized by significant impairments in intellectual and adaptive functioning. X-linked intellectual disability (XLID) is a subset of these disorders caused by genetic defects on the X chromosome, affecting about 2 out of 1,000 males. In syndromic form, it leads to a broad range of cognitive, behavioral, ocular, and physical disabilities. METHODS Employing exome or genome sequencing, here we identified 4 missense variants (c.475C > G; p.H159D, c.1373C > A; p.T458N, and c.1585G > A; p.E529K, c.953C > T; p.S318L) and a putative truncating variant (c.1413_1414del; p.Y471*) in the SRPK3 gene in 9 XLID patients from 5 unrelated families. To validate SRPK3 as a novel XLID gene, we established a knockout (KO) model of the SRPK3 orthologue in zebrafish. RESULTS The 8 patients ascertained postnatally shared common clinical features including intellectual disability, agenesis of the corpus callosum, abnormal eye movement, and ataxia. A ninth case, ascertained prenatally, had a complex structural brain phenotype. Together, these data indicate a pathological role of SRPK3 in neurodevelopmental disorders. In post-fertilization day 5 larvae (free swimming stage), KO zebrafish exhibited severe deficits in eye movement and swim bladder inflation, mimicking uncontrolled ocular movement and physical clumsiness observed in human patients. In adult KO zebrafish, cerebellar agenesis and behavioral abnormalities were observed, recapitulating human phenotypes of cerebellar atrophy and intellectual disability. INTERPRETATION Overall, these results suggest a crucial role of SRPK3 in the pathogenesis of syndromic X-linked intellectual disability and provide new insights into brain development, cognitive and ocular dysfunction in both humans and zebrafish. ANN NEUROL 2024;96:914-931.
Collapse
Affiliation(s)
- Arkaprava Roychaudhury
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
- These authors contributed equally: Arkaprava Roychaudhury, Yu-Ri Lee, Tae-Ik Choi, Mervyn G. Thomas
| | - Yu-Ri Lee
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
- These authors contributed equally: Arkaprava Roychaudhury, Yu-Ri Lee, Tae-Ik Choi, Mervyn G. Thomas
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
- These authors contributed equally: Arkaprava Roychaudhury, Yu-Ri Lee, Tae-Ik Choi, Mervyn G. Thomas
| | - Mervyn G. Thomas
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, UK
- These authors contributed equally: Arkaprava Roychaudhury, Yu-Ri Lee, Tae-Ik Choi, Mervyn G. Thomas
| | - Tahir N. Khan
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Hammad Yousaf
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | | | - Gail Maconachie
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, UK
- Division of Ophthalmology and Orthoptics, Health Science School, University of Sheffield, UK
| | - Moira Crosier
- Human Developmental Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 4EP, UK
| | - Holli Horak
- Department of Neurology, University of Arizona, Tucson, AZ 85724, USA
| | - Cris S. Constantinescu
- Academic Unit of Mental Health and Clinical Neuroscience, University of Nottingham, NG7 2UH, UK
- Cooper Neurological Institute and Cooper Medical School of Rowan University, Camden, NJ 08013, USA
| | - Tae-Yoon Kim
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Kang-Han Lee
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Jae-Jun Kyung
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Tao Wang
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
| | - Bernard N. Chodirker
- Department of Pediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3A 1R9, Canada
| | | | - Irene Gottlob
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, UK
- Cooper Neurological Institute and Cooper Medical School of Rowan University, Camden, NJ 08013, USA
| | - William H. J. Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Tommaso Pippucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Emanuela Iovino
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | | | - Giulia Severi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Camilo Toro
- NIH Undiagnosed Diseases Program, NIH Office of Rare Diseases Research and NHGRI, Bethesda, Maryland, USA
| | - Cornelius F. Boerkoel
- NIH Undiagnosed Diseases Program, NIH Office of Rare Diseases Research and NHGRI, Bethesda, Maryland, USA
| | - Hyo Sun Cha
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea
| | - Sungjin Kim
- Department of Microbiology & Molecular Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Je-Hyun Yoon
- Department of Oncology Science, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Kelly Gilmore
- Department of Ob/Gyn, Division of Maternal Fetal Medicine, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Neeta L. Vora
- Department of Ob/Gyn, Division of Maternal Fetal Medicine, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erica E. Davis
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Albert E. Chudley
- Department of Pediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3A 1R9, Canada
| | - Charles E. Schwartz
- Greenwood Genetic Center, Greenwood, SC 29646, USA
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| |
Collapse
|
11
|
Ansai S, Hiraki-Kajiyama T, Ueda R, Seki T, Yokoi S, Katsumura T, Takeuchi H. The Medaka approach to evolutionary social neuroscience. Neurosci Res 2024:S0168-0102(24)00125-1. [PMID: 39481546 DOI: 10.1016/j.neures.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Previously, the integration of comparative biological and neuroscientific approaches has led to significant advancements in social neuroscience. This review highlights the potential and future directions of evolutionary social neuroscience research utilizing medaka fishes (the family Adrianichthyidae) including Japanese medaka (Oryzias latipes). We focus on medaka social cognitive capabilities and mate choice behavior, particularly emphasizing mate preference using visual cues. Medaka fishes are also advantageous due to their abundant genetic resources, extensive genomic information, and the relative ease of laboratory breeding and genetic manipulation. Here we present some research examples of both the conventional neuroscience approach and evolutionary approach involving medaka fishes and other species. We also discuss the prospects of uncovering the molecular and cellular mechanisms underlying the diversity of visual mate preference among species. Especially, we introduce that the single-cell transcriptome technology, particularly in conjunction with 'Adaptive Circuitry Census', is an innovative tool that bridges comparative biological methods and neuroscientific approaches. Evolutionary social neuroscience research using medaka has the potential to unveil fundamental principles in neuroscience and elucidate the mechanisms responsible for generating diversity in mating strategies.
Collapse
Affiliation(s)
- Satoshi Ansai
- Ushimado Marine Institute, Okayama University, 701-4303, Japan.
| | | | - Ryutaro Ueda
- Graduate School of Life Sciences, Tohoku University, 980-8577, Japan
| | - Takahide Seki
- Graduate School of Life Sciences, Tohoku University, 980-8577, Japan
| | - Saori Yokoi
- School of Pharmaceutical Sciences, Hokkaido University, 060-0808, Japan
| | | | - Hideaki Takeuchi
- Graduate School of Life Sciences, Tohoku University, 980-8577, Japan.
| |
Collapse
|
12
|
Keijser J, Hertäg L, Sprekeler H. Transcriptomic Correlates of State Modulation in GABAergic Interneurons: A Cross-Species Analysis. J Neurosci 2024; 44:e2371232024. [PMID: 39299800 PMCID: PMC11529809 DOI: 10.1523/jneurosci.2371-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/06/2024] [Accepted: 08/13/2024] [Indexed: 09/22/2024] Open
Abstract
GABAergic inhibitory interneurons comprise many subtypes that differ in their molecular, anatomical, and functional properties. In mouse visual cortex, they also differ in their modulation with an animal's behavioral state, and this state modulation can be predicted from the first principal component (PC) of the gene expression matrix. Here, we ask whether this link between transcriptome and state-dependent processing generalizes across species. To this end, we analysed seven single-cell and single-nucleus RNA sequencing datasets from mouse, human, songbird, and turtle forebrains. Despite homology at the level of cell types, we found clear differences between transcriptomic PCs, with greater dissimilarities between evolutionarily distant species. These dissimilarities arise from two factors: divergence in gene expression within homologous cell types and divergence in cell-type abundance. We also compare the expression of cholinergic receptors, which are thought to causally link transcriptome and state modulation. Several cholinergic receptors predictive of state modulation in mouse interneurons are differentially expressed between species. Circuit modelling and mathematical analyses suggest conditions under which these expression differences could translate into functional differences.
Collapse
Affiliation(s)
- Joram Keijser
- Modelling of Cognitive Processes, Technical University of Berlin, 10587 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany
| | - Loreen Hertäg
- Modelling of Cognitive Processes, Technical University of Berlin, 10587 Berlin, Germany
| | - Henning Sprekeler
- Modelling of Cognitive Processes, Technical University of Berlin, 10587 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
| |
Collapse
|
13
|
Isko EC, Harpole CE, Zheng XM, Zhan H, Davis MB, Zador AM, Banerjee A. Selective expansion of motor cortical projections in the evolution of vocal novelty. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612752. [PMID: 39484467 PMCID: PMC11526862 DOI: 10.1101/2024.09.13.612752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Deciphering how cortical architecture evolves to drive behavioral innovations is a long-standing challenge in neuroscience and evolutionary biology. Here, we leverage a striking behavioral novelty in the Alston's singing mouse (Scotinomys teguina), compared to the laboratory mouse (Mus musculus), to quantitatively test models of motor cortical evolution. We used bulk tracing, serial two-photon tomography, and high-throughput DNA sequencing of over 76,000 barcoded neurons to discover a specific and substantial expansion (200%) of orofacial motor cortical (OMC) projections to the auditory cortical region (AudR) and the midbrain periaqueductal gray (PAG), both implicated in vocal behaviors. Moreover, analysis of individual OMC neurons' projection motifs revealed preferential expansion of exclusive projections to AudR. Our results imply that selective expansion of ancestral motor cortical projections can underlie behavioral divergence over short evolutionary timescales, suggesting potential mechanisms for the evolution of enhanced cortical control over vocalizations-a crucial preadaptation for human language.
Collapse
Affiliation(s)
- Emily C Isko
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
- Cold Spring Harbor Laboratory School for Biological Sciences, Cold Spring Harbor, NY
| | | | - Xiaoyue Mike Zheng
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
- Cold Spring Harbor Laboratory School for Biological Sciences, Cold Spring Harbor, NY
| | - Huiqing Zhan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | | | - Anthony M Zador
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
- Cold Spring Harbor Laboratory School for Biological Sciences, Cold Spring Harbor, NY
| | - Arkarup Banerjee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
- Cold Spring Harbor Laboratory School for Biological Sciences, Cold Spring Harbor, NY
| |
Collapse
|
14
|
Yang G, Xie W, Li B, Zhao G, Li J, Xiao W, Li Y. Casual associations between brain structure and sarcopenia: A large-scale genetic correlation and mendelian randomization study. Aging Cell 2024; 23:e14252. [PMID: 38881464 PMCID: PMC11464103 DOI: 10.1111/acel.14252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Sarcopenia presenting a critical challenge in population-aging healthcare. The elucidation of the interplay between brain structure and sarcopenia necessitates further research. The aim of this study is to explore the casual association between brain structure and sarcopenia. Linkage disequilibrium score regression (LDSC) was conducted to estimate the genetic correlations; MR was then performed to explore the causal relationship between Brain imaging-derived phenotypes (BIDPs) and three sarcopenia-related traits: handgrip strength, walking pace, and appendicular lean mass (ALM). The main analyses were conducted using the inverse-variance weighted method. Moreover, weighted median and MR-Egger were conducted as sensitivity analyses. Genetic association between 6.41% of BIDPs and ALM was observed, and 4.68% of BIDPs exhibited causal MR association with handgrip strength, 2.11% of BIDPs were causally associated with walking pace, and 2.04% of BIDPs showed causal association with ALM. Volume of ventromedial hypothalamus was associated with increased odds of handgrip strength (OR: 1.18, 95% CI: 1.02 to 1.37) and ALM (OR: 1.05, 95% CI: 1.01 to 1.09). Mean thickness of G-pariet-inf-Angular was associated with decreased odds of handgrip strength (OR: 0.83, 95% CI: 0.70 to 0.97) and walking pace (OR: 0.97, 95% CI: 0.93 to 0.99). As part of the brain structure forward causally influences sarcopenia, which may provide new perspectives for the prevention of sarcopenia and offer valuable insights for further research on the brain-muscle axis.
Collapse
Affiliation(s)
- Guang Yang
- Department of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Wenqing Xie
- Department of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Bin Li
- Bioinformatics CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Department of NeurologyXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Guihu Zhao
- Bioinformatics CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Department of NeurologyXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Jinchen Li
- Bioinformatics CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Department of NeurologyXiangya Hospital, Central South UniversityChangshaHunanChina
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life SciencesCentral South UniversityChangshaHunanChina
| | - Wenfeng Xiao
- Department of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yusheng Li
- Department of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
15
|
van der Heijden ME. Converging and Diverging Cerebellar Pathways for Motor and Social Behaviors in Mice. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1754-1767. [PMID: 38780757 PMCID: PMC11489171 DOI: 10.1007/s12311-024-01706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Evidence from clinical and preclinical studies has shown that the cerebellum contributes to cognitive functions, including social behaviors. Now that the cerebellum's role in a wider range of behaviors has been confirmed, the question arises whether the cerebellum contributes to social behaviors via the same mechanisms with which it modulates movements. This review seeks to answer whether the cerebellum guides motor and social behaviors through identical pathways. It focuses on studies in which cerebellar cells, synapses, or genes are manipulated in a cell-type specific manner followed by testing of the effects on social and motor behaviors. These studies show that both anatomically restricted and cerebellar cortex-wide manipulations can lead to social impairments without abnormal motor control, and vice versa. These studies suggest that the cerebellum employs different cellular, synaptic, and molecular pathways for social and motor behaviors. Future studies warrant a focus on the diverging mechanisms by which the cerebellum contributes to a wide range of neural functions.
Collapse
Affiliation(s)
- Meike E van der Heijden
- Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, USA.
- Center for Neurobiology Research, Virginia Tech Carilion, Roanoke, VA, USA.
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
16
|
Casoni F, Croci L, Marroni F, Demenego G, Marullo C, Cremona O, Codazzi F, Consalez GG. A spatial-temporal map of glutamatergic neurogenesis in the murine embryonic cerebellar nuclei uncovers a high degree of cellular heterogeneity. J Anat 2024; 245:560-571. [PMID: 38970393 PMCID: PMC11424815 DOI: 10.1111/joa.14107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/23/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024] Open
Abstract
The nuclei are the main output structures of the cerebellum. Each and every cerebellar cortical computation reaches several areas of the brain by means of cerebellar nuclei processing and integration. Nevertheless, our knowledge of these structures is still limited compared to the cerebellar cortex. Here, we present a mouse genetic inducible fate-mapping study characterizing rhombic lip-derived glutamatergic neurons of the nuclei, the most conspicuous family of long-range cerebellar efferent neurons. Glutamatergic neurons mainly occupy dorsal and lateral territories of the lateral and interposed nuclei, as well as the entire medial nucleus. In mice, they are born starting from about embryonic day 9.5, with a peak between 10.5 and 12.5, and invade the nuclei with a lateral-to-medial progression. While some markers label a heterogeneous population of neurons sharing a common location (BRN2), others appear to be lineage specific (TBR1, LMX1a, and MEIS2). A comparative analysis of TBR1 and LMX1a distributions reveals an incomplete overlap in their expression domains, in keeping with the existence of separate efferent subpopulations. Finally, some tagged glutamatergic progenitors are not labeled by any of the markers used in this study, disclosing further complexity. Taken together, our results obtained in late embryonic nuclei shed light on the heterogeneity of the excitatory neuron pool, underlying the diversity in connectivity and functions of this largely unexplored cerebellar territory. Our findings contribute to laying the groundwork for a comprehensive functional analysis of nuclear neuron subpopulations.
Collapse
Affiliation(s)
- Filippo Casoni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Laura Croci
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Marroni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Giulia Demenego
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Chiara Marullo
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ottavio Cremona
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Franca Codazzi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - G Giacomo Consalez
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
17
|
Hao S, Zhu X, Huang Z, Yang Q, Liu H, Wu Y, Zhan Y, Dong Y, Li C, Wang H, Haasdijk E, Wu Z, Li S, Yan H, Zhu L, Guo S, Wang Z, Ye A, Lin Y, Cui L, Tan X, Liu H, Wang M, Chen J, Zhong Y, Du W, Wang G, Lai T, Cao M, Yang T, Xu Y, Li L, Yu Q, Zhuang Z, Xia Y, Lei Y, An Y, Cheng M, Zhao Y, Han L, Yuan Y, Song X, Song Y, Gu L, Liu C, Lin X, Wang R, Wang Z, Wang Y, Li S, Li H, Song J, Chen M, Zhou W, Yuan N, Sun S, Wang S, Chen Y, Zheng M, Fang J, Zhang R, Zhang S, Chai Q, Liu J, Wei W, He J, Zhou H, Sun Y, Liu Z, Liu C, Yao J, Liang Z, Xu X, Poo M, Li C, De Zeeuw CI, Shen Z, Liu Z, Liu L, Liu S, Sun Y, Liu C. Cross-species single-cell spatial transcriptomic atlases of the cerebellar cortex. Science 2024; 385:eado3927. [PMID: 39325889 DOI: 10.1126/science.ado3927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/14/2024] [Indexed: 09/28/2024]
Abstract
The molecular and cellular organization of the primate cerebellum remains poorly characterized. We obtained single-cell spatial transcriptomic atlases of macaque, marmoset, and mouse cerebella and identified primate-specific cell subtypes, including Purkinje cells and molecular-layer interneurons, that show different expression of the glutamate ionotropic receptor Delta type subunit 2 (GRID2) gene. Distinct gene expression profiles were found in anterior, posterior, and vestibular regions in all species, whereas region-selective gene expression was predominantly observed in the granular layer of primates and in the Purkinje layer of mice. Gene expression gradients in the cerebellar cortex matched well with functional connectivity gradients revealed with awake functional magnetic resonance imaging, with more lobule-specific differences between primates and mice than between two primate species. These comprehensive atlases and comparative analyses provide the basis for understanding cerebellar evolution and function.
Collapse
Affiliation(s)
| | - Xiaojia Zhu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhi Huang
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Qianqian Yang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hean Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Wu
- BGI Research, Hangzhou 310030, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yafeng Zhan
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Dong
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- Lingang Laboratory, Shanghai 200031, China
| | - Chao Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - He Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Elize Haasdijk
- Department of Neuroscience, Erasmus MC, 3015 GE Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, 1105 BA Amsterdam, Netherlands
| | - Zihan Wu
- Tencent AI Lab, Shenzhen 518057, China
| | - Shenglong Li
- BGI Research, Hangzhou 310030, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Haotian Yan
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lijing Zhu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | - Zefang Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aojun Ye
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Luman Cui
- BGI Research, Shenzhen 518083, China
| | - Xing Tan
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | - Mingli Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- Lingang Laboratory, Shanghai 200031, China
| | - Jing Chen
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | - Yanqing Zhong
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wensi Du
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | - Guangling Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tingting Lai
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | - Mengdi Cao
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | - Yuanfang Xu
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ling Li
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | - Qian Yu
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | - Ying Xia
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ying Lei
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yingjie An
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengnan Cheng
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yun Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lei Han
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yue Yuan
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xinxiang Song
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yumo Song
- BGI Research, Shenzhen 518083, China
| | - Liqin Gu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chang Liu
- BGI Research, Shenzhen 518083, China
| | | | - Ruiqi Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | - Yang Wang
- BGI Research, Shenzhen 518083, China
| | - Shenyu Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Huanhuan Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jingjing Song
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengni Chen
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wanqiu Zhou
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Nini Yuan
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Suhong Sun
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shiwen Wang
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mingyuan Zheng
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jiao Fang
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ruiyi Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuzhen Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qinwen Chai
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jiabing Liu
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wu Wei
- Lingang Laboratory, Shanghai 200031, China
| | - Jie He
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haibo Zhou
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangang Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanyu Liu
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
| | | | - Zhifeng Liang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Xu
- BGI Research, Hangzhou 310030, China
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Muming Poo
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Chengyu Li
- Lingang Laboratory, Shanghai 200031, China
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3015 GE Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, 1105 BA Amsterdam, Netherlands
| | - Zhiming Shen
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Zhiyong Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longqi Liu
- BGI Research, Hangzhou 310030, China
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Shiping Liu
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| | - Yidi Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cirong Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
18
|
Yu H, Liu Y, Xu F, Fu Y, Yang M, Ding L, Wu Y, Tang F, Qiao J, Wen L. A human fetal cerebellar map of the late second trimester reveals developmental molecular characteristics and abnormality in trisomy 21. Cell Rep 2024; 43:114586. [PMID: 39137113 DOI: 10.1016/j.celrep.2024.114586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/29/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
Our understanding of human fetal cerebellum development during the late second trimester, a critical period for the generation of astrocytes, oligodendrocytes, and unipolar brush cells (UBCs), remains limited. Here, we performed single-cell RNA sequencing (scRNA-seq) in human fetal cerebellum samples from gestational weeks (GWs) 18-25. We find that proliferating UBC progenitors distribute in the subventricular zone of the rhombic lip (RLSVZ) near white matter (WM), forming a layer structure. We also delineate two trajectories from astrogenic radial glia (ARGs) to Bergmann glial progenitors (BGPs) and recognize oligodendrogenic radial glia (ORGs) as one source of primitive oligodendrocyte progenitor cells (PriOPCs). Additionally, our scRNA-seq analysis of the trisomy 21 fetal cerebellum at this stage reveals abnormal upregulated genes in pathways such as the cell adhesion pathway and focal adhesion pathway, which potentially promote neuronal differentiation. Overall, our research provides valuable insights into normal and abnormal development of the human fetal cerebellum.
Collapse
Affiliation(s)
- Hongmin Yu
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Yun Liu
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China; Changping Laboratory, Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| | - Fanqing Xu
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Yuanyuan Fu
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Ming Yang
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Ling Ding
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Yixuan Wu
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China; Changping Laboratory, Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| | - Jie Qiao
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China.
| | - Lu Wen
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China; Changping Laboratory, Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China.
| |
Collapse
|
19
|
Liu L, Chen A, Li Y, Mulder J, Heyn H, Xu X. Spatiotemporal omics for biology and medicine. Cell 2024; 187:4488-4519. [PMID: 39178830 DOI: 10.1016/j.cell.2024.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024]
Abstract
The completion of the Human Genome Project has provided a foundational blueprint for understanding human life. Nonetheless, understanding the intricate mechanisms through which our genetic blueprint is involved in disease or orchestrates development across temporal and spatial dimensions remains a profound scientific challenge. Recent breakthroughs in cellular omics technologies have paved new pathways for understanding the regulation of genomic elements and the relationship between gene expression, cellular functions, and cell fate determination. The advent of spatial omics technologies, encompassing both imaging and sequencing-based methodologies, has enabled a comprehensive understanding of biological processes from a cellular ecosystem perspective. This review offers an updated overview of how spatial omics has advanced our understanding of the translation of genetic information into cellular heterogeneity and tissue structural organization and their dynamic changes over time. It emphasizes the discovery of various biological phenomena, related to organ functionality, embryogenesis, species evolution, and the pathogenesis of diseases.
Collapse
Affiliation(s)
| | - Ao Chen
- BGI Research, Shenzhen 518083, China
| | | | - Jan Mulder
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Holger Heyn
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Xun Xu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China.
| |
Collapse
|
20
|
Garcia-Garcia MG, Kapoor A, Akinwale O, Takemaru L, Kim TH, Paton C, Litwin-Kumar A, Schnitzer MJ, Luo L, Wagner MJ. A cerebellar granule cell-climbing fiber computation to learn to track long time intervals. Neuron 2024; 112:2749-2764.e7. [PMID: 38870929 PMCID: PMC11343686 DOI: 10.1016/j.neuron.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/31/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024]
Abstract
In classical cerebellar learning, Purkinje cells (PkCs) associate climbing fiber (CF) error signals with predictive granule cells (GrCs) that were active just prior (∼150 ms). The cerebellum also contributes to behaviors characterized by longer timescales. To investigate how GrC-CF-PkC circuits might learn seconds-long predictions, we imaged simultaneous GrC-CF activity over days of forelimb operant conditioning for delayed water reward. As mice learned reward timing, numerous GrCs developed anticipatory activity ramping at different rates until reward delivery, followed by widespread time-locked CF spiking. Relearning longer delays further lengthened GrC activations. We computed CF-dependent GrC→PkC plasticity rules, demonstrating that reward-evoked CF spikes sufficed to grade many GrC synapses by anticipatory timing. We predicted and confirmed that PkCs could thereby continuously ramp across seconds-long intervals from movement to reward. Learning thus leads to new GrC temporal bases linking predictors to remote CF reward signals-a strategy well suited for learning to track the long intervals common in cognitive domains.
Collapse
Affiliation(s)
- Martha G Garcia-Garcia
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD 20894, USA
| | - Akash Kapoor
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD 20894, USA
| | - Oluwatobi Akinwale
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD 20894, USA
| | - Lina Takemaru
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD 20894, USA
| | - Tony Hyun Kim
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Casey Paton
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD 20894, USA
| | - Ashok Litwin-Kumar
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Mark J Schnitzer
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Mark J Wagner
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
21
|
Endepols H, Apetz N, Vieth L, Lesser C, Schulte-Holtey L, Neumaier B, Drzezga A. Cerebellar Metabolic Connectivity during Treadmill Walking before and after Unilateral Dopamine Depletion in Rats. Int J Mol Sci 2024; 25:8617. [PMID: 39201305 PMCID: PMC11354914 DOI: 10.3390/ijms25168617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Compensatory changes in brain connectivity keep motor symptoms mild in prodromal Parkinson's disease. Studying compensation in patients is hampered by the steady progression of the disease and a lack of individual baseline controls. Furthermore, combining fMRI with walking is intricate. We therefore used a seed-based metabolic connectivity analysis based on 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) uptake in a unilateral 6-OHDA rat model. At baseline and in the chronic phase 6-7 months after lesion, rats received an intraperitoneal injection of [18F]FDG and spent 50 min walking on a horizontal treadmill, followed by a brain PET-scan under anesthesia. High activity was found in the cerebellar anterior vermis in both conditions. At baseline, the anterior vermis showed hardly any stable connections to the rest of the brain. The (future) ipsilesional cerebellar hemisphere was not particularly active during walking but was extensively connected to many brain areas. After unilateral dopamine depletion, rats still walked normally without obvious impairments. The ipsilesional cerebellar hemisphere increased its activity, but narrowed its connections down to the vestibulocerebellum, probably aiding lateral stability. The anterior vermis established a network involving the motor cortex, hippocampus and thalamus. Adding those regions to the vermis network of (previously) automatic control of locomotion suggests that after unilateral dopamine depletion considerable conscious and cognitive effort has to be provided to achieve stable walking.
Collapse
Affiliation(s)
- Heike Endepols
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (L.V.)
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Nadine Apetz
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (L.V.)
| | - Lukas Vieth
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (L.V.)
| | - Christoph Lesser
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (L.V.)
| | - Léon Schulte-Holtey
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (L.V.)
| | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (L.V.)
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Molecular Organization of the Brain (INM-2), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| |
Collapse
|
22
|
Starr AL, Fraser HB. A general principle governing neuronal evolution reveals a human-accelerated neuron type potentially underlying the high prevalence of autism in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606407. [PMID: 39131279 PMCID: PMC11312593 DOI: 10.1101/2024.08.02.606407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The remarkable ability of a single genome sequence to encode a diverse collection of distinct cell types, including the thousands of cell types found in the mammalian brain, is a key characteristic of multicellular life. While it has been observed that some cell types are far more evolutionarily conserved than others, the factors driving these differences in evolutionary rate remain unknown. Here, we hypothesized that highly abundant neuronal cell types may be under greater selective constraint than rarer neuronal types, leading to variation in their rates of evolution. To test this, we leveraged recently published cross-species single-nucleus RNA-sequencing datasets from three distinct regions of the mammalian neocortex. We found a strikingly consistent relationship where more abundant neuronal subtypes show greater gene expression conservation between species, which replicated across three independent datasets covering >106 neurons from six species. Based on this principle, we discovered that the most abundant type of neocortical neurons-layer 2/3 intratelencephalic excitatory neurons-has evolved exceptionally quickly in the human lineage compared to other apes. Surprisingly, this accelerated evolution was accompanied by the dramatic down-regulation of autism-associated genes, which was likely driven by polygenic positive selection specific to the human lineage. In sum, we introduce a general principle governing neuronal evolution and suggest that the exceptionally high prevalence of autism in humans may be a direct result of natural selection for lower expression of a suite of genes that conferred a fitness benefit to our ancestors while also rendering an abundant class of neurons more sensitive to perturbation.
Collapse
Affiliation(s)
| | - Hunter B. Fraser
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
23
|
Krishnamurthy A, Lee AS, Bayin NS, Stephen DN, Nasef O, Lao Z, Joyner AL. Engrailed transcription factors direct excitatory cerebellar neuron diversity and survival. Development 2024; 151:dev202502. [PMID: 38912572 PMCID: PMC11369685 DOI: 10.1242/dev.202502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
The neurons of the three cerebellar nuclei (CN) are the primary output neurons of the cerebellum. The excitatory neurons (e) of the medial (m) CN (eCNm) were recently divided into molecularly defined subdomains in the adult; however, how they are established during development is not known. We define molecular subdomains of the mouse embryonic eCNm using single-cell RNA-sequencing and spatial expression analysis, showing that they evolve during embryogenesis to prefigure the adult. Furthermore, eCNm are transcriptionally divergent from cells in the other nuclei by embryonic day 14.5. We previously showed that loss of the homeobox genes En1 and En2 leads to loss of approximately half of the embryonic eCNm. We demonstrate that mutation of En1/2 in the embryonic eCNm results in death of specific posterior eCNm molecular subdomains and downregulation of TBR2 (EOMES) in an anterior embryonic subdomain, as well as reduced synaptic gene expression. We further reveal a similar function for EN1/2 in mediating TBR2 expression, neuron differentiation and survival in the other excitatory neurons (granule and unipolar brush cells). Thus, our work defines embryonic eCNm molecular diversity and reveals conserved roles for EN1/2 in the cerebellar excitatory neuron lineage.
Collapse
Affiliation(s)
- Anjana Krishnamurthy
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Andrew S. Lee
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - N. Sumru Bayin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Daniel N. Stephen
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Olivia Nasef
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Zhimin Lao
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Alexandra L. Joyner
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| |
Collapse
|
24
|
Gruver KM, Jiao JWY, Fields E, Song S, Sjöström PJ, Watt AJ. Structured connectivity in the output of the cerebellar cortex. Nat Commun 2024; 15:5563. [PMID: 38982047 PMCID: PMC11233638 DOI: 10.1038/s41467-024-49339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/28/2024] [Indexed: 07/11/2024] Open
Abstract
The spatial organization of a neuronal circuit is critically important for its function since the location of neurons is often associated with function. In the cerebellum, the major output of the cerebellar cortex are synapses made from Purkinje cells onto neurons in the cerebellar nuclei, yet little has been known about the spatial organization of these synapses. We explored this question using whole-cell electrophysiology and optogenetics in acute sagittal cerebellar slices to produce spatial connectivity maps of cerebellar cortical output in mice. We observed non-random connectivity where Purkinje cell inputs clustered in cerebellar transverse zones: while many nuclear neurons received inputs from a single zone, several multi-zonal connectivity motifs were also observed. Single neurons receiving input from all four zones were overrepresented in our data. These findings reveal that the output of the cerebellar cortex is spatially structured and represents a locus for multimodal integration in the cerebellum.
Collapse
Affiliation(s)
- Kim M Gruver
- Department of Biology, McGill University, Montréal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jenny W Y Jiao
- Department of Biology, McGill University, Montréal, QC, Canada
| | - Eviatar Fields
- Department of Biology, McGill University, Montréal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
| | - Sen Song
- Laboratory of Brain and Intelligence and Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Per Jesper Sjöström
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Alanna J Watt
- Department of Biology, McGill University, Montréal, QC, Canada.
| |
Collapse
|
25
|
Lee AS, Arefin TM, Gubanova A, Stephen DN, Liu Y, Lao Z, Krishnamurthy A, De Marco García NV, Heck DH, Zhang J, Rajadhyaksha AM, Joyner AL. Cerebellar output neurons impair non-motor behaviors by altering development of extracerebellar connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602496. [PMID: 39026865 PMCID: PMC11257463 DOI: 10.1101/2024.07.08.602496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The capacity of the brain to compensate for insults during development depends on the type of cell loss, whereas the consequences of genetic mutations in the same neurons are difficult to predict. We reveal powerful compensation from outside the cerebellum when the excitatory cerebellar output neurons are ablated embryonically and demonstrate that the minimum requirement for these neurons is for motor coordination and not learning and social behaviors. In contrast, loss of the homeobox transcription factors Engrailed1/2 (EN1/2) in the cerebellar excitatory lineage leads to additional deficits in adult learning and spatial working memory, despite half of the excitatory output neurons being intact. Diffusion MRI indicates increased thalamo-cortico-striatal connectivity in En1/2 mutants, showing that the remaining excitatory neurons lacking En1/2 exert adverse effects on extracerebellar circuits regulating motor learning and select non-motor behaviors. Thus, an absence of cerebellar output neurons is less disruptive than having cerebellar genetic mutations.
Collapse
Affiliation(s)
- Andrew S. Lee
- Developmental Biology Program, Sloan Kettering Institute, New York 10065, NY, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York 10021, NY, USA
| | - Tanzil M. Arefin
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York 10016, NY, USA
- Present Address: Center for Neurotechnology in Mental Health Research, Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16801, USA
| | - Alina Gubanova
- Developmental Biology Program, Sloan Kettering Institute, New York 10065, NY, USA
| | - Daniel N. Stephen
- Developmental Biology Program, Sloan Kettering Institute, New York 10065, NY, USA
| | - Yu Liu
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
- Center for Cerebellar Network Structure and Function in Health and Disease, University of Minnesota, Duluth, MN 55812, USA
| | - Zhimin Lao
- Developmental Biology Program, Sloan Kettering Institute, New York 10065, NY, USA
| | - Anjana Krishnamurthy
- Developmental Biology Program, Sloan Kettering Institute, New York 10065, NY, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York 10021, NY, USA
| | - Natalia V. De Marco García
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York 10021, NY, USA
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York 10021, NY 10021, USA
| | - Detlef H. Heck
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
- Center for Cerebellar Network Structure and Function in Health and Disease, University of Minnesota, Duluth, MN 55812, USA
| | - Jiangyang Zhang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York 10016, NY, USA
| | - Anjali M. Rajadhyaksha
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York 10021, NY, USA
- Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York 10021, NY, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine, New York 10021, NY, USA
- Present address: Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA and Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Alexandra L. Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York 10065, NY, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York 10021, NY, USA
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York 10021, NY, USA
| |
Collapse
|
26
|
Konstantinides N, Desplan C. Neuronal Circuit Evolution: From Development to Structure and Adaptive Significance. Cold Spring Harb Perspect Biol 2024:a041493. [PMID: 38951021 PMCID: PMC11688512 DOI: 10.1101/cshperspect.a041493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Neuronal circuits represent the functional units of the brain. Understanding how the circuits are generated to perform computations will help us understand how the brain functions. Nevertheless, neuronal circuits are not engineered, but have formed through millions of years of animal evolution. We posit that it is necessary to study neuronal circuit evolution to comprehensively understand circuit function. Here, we review our current knowledge regarding the mechanisms that underlie circuit evolution. First, we describe the possible genetic and developmental mechanisms that have contributed to circuit evolution. Then, we discuss the structural changes of circuits during evolution and how these changes affected circuit function. Finally, we try to put circuit evolution in an ecological context and assess the adaptive significance of specific examples. We argue that, thanks to the advent of new tools and technologies, evolutionary neurobiology now allows us to address questions regarding the evolution of circuitry and behavior that were unimaginable until very recently.
Collapse
Affiliation(s)
| | - Claude Desplan
- Department of Biology, New York University, New York, New York 10003, USA
| |
Collapse
|
27
|
Lindhout FW, Krienen FM, Pollard KS, Lancaster MA. A molecular and cellular perspective on human brain evolution and tempo. Nature 2024; 630:596-608. [PMID: 38898293 DOI: 10.1038/s41586-024-07521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 04/29/2024] [Indexed: 06/21/2024]
Abstract
The evolution of the modern human brain was accompanied by distinct molecular and cellular specializations, which underpin our diverse cognitive abilities but also increase our susceptibility to neurological diseases. These features, some specific to humans and others shared with related species, manifest during different stages of brain development. In this multi-stage process, neural stem cells proliferate to produce a large and diverse progenitor pool, giving rise to excitatory or inhibitory neurons that integrate into circuits during further maturation. This process unfolds over varying time scales across species and has progressively become slower in the human lineage, with differences in tempo correlating with differences in brain size, cell number and diversity, and connectivity. Here we introduce the terms 'bradychrony' and 'tachycrony' to describe slowed and accelerated developmental tempos, respectively. We review how recent technical advances across disciplines, including advanced engineering of in vitro models, functional comparative genetics and high-throughput single-cell profiling, are leading to a deeper understanding of how specializations of the human brain arise during bradychronic neurodevelopment. Emerging insights point to a central role for genetics, gene-regulatory networks, cellular innovations and developmental tempo, which together contribute to the establishment of human specializations during various stages of neurodevelopment and at different points in evolution.
Collapse
Affiliation(s)
- Feline W Lindhout
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| | - Fenna M Krienen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, Institute for Computational Health Sciences, and Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
28
|
Lee AT, Chang EF, Paredes MF, Nowakowski TJ. Large-scale neurophysiology and single-cell profiling in human neuroscience. Nature 2024; 630:587-595. [PMID: 38898291 DOI: 10.1038/s41586-024-07405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/09/2024] [Indexed: 06/21/2024]
Abstract
Advances in large-scale single-unit human neurophysiology, single-cell RNA sequencing, spatial transcriptomics and long-term ex vivo tissue culture of surgically resected human brain tissue have provided an unprecedented opportunity to study human neuroscience. In this Perspective, we describe the development of these paradigms, including Neuropixels and recent brain-cell atlas efforts, and discuss how their convergence will further investigations into the cellular underpinnings of network-level activity in the human brain. Specifically, we introduce a workflow in which functionally mapped samples of human brain tissue resected during awake brain surgery can be cultured ex vivo for multi-modal cellular and functional profiling. We then explore how advances in human neuroscience will affect clinical practice, and conclude by discussing societal and ethical implications to consider. Potential findings from the field of human neuroscience will be vast, ranging from insights into human neurodiversity and evolution to providing cell-type-specific access to study and manipulate diseased circuits in pathology. This Perspective aims to provide a unifying framework for the field of human neuroscience as we welcome an exciting era for understanding the functional cytoarchitecture of the human brain.
Collapse
Affiliation(s)
- Anthony T Lee
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Mercedes F Paredes
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Tomasz J Nowakowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
29
|
Richardson AM, Sokoloff G, Blumberg MS. Developmentally Unique Cerebellar Processing Prioritizes Self- over Other-Generated Movements. J Neurosci 2024; 44:e2345232024. [PMID: 38589230 PMCID: PMC11079960 DOI: 10.1523/jneurosci.2345-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/10/2024] Open
Abstract
Animals must distinguish the sensory consequences of self-generated movements (reafference) from those of other-generated movements (exafference). Only self-generated movements entail the production of motor copies (i.e., corollary discharges), which are compared with reafference in the cerebellum to compute predictive or internal models of movement. Internal models emerge gradually over the first three postnatal weeks in rats through a process that is not yet fully understood. Previously, we demonstrated in postnatal day (P) 8 and P12 rats that precerebellar nuclei convey corollary discharge and reafference to the cerebellum during active (REM) sleep when pups produce limb twitches. Here, recording from a deep cerebellar nucleus (interpositus, IP) in P12 rats of both sexes, we compared reafferent and exafferent responses with twitches and limb stimulations, respectively. As expected, most IP units showed robust responses to twitches. However, in contrast with other sensory structures throughout the brain, relatively few IP units showed exafferent responses. Upon finding that exafferent responses occurred in pups under urethane anesthesia, we hypothesized that urethane inhibits cerebellar cortical cells, thereby disinhibiting exafferent responses in IP. In support of this hypothesis, ablating cortical tissue dorsal to IP mimicked the effects of urethane on exafference. Finally, the results suggest that twitch-related corollary discharge and reafference are conveyed simultaneously and in parallel to cerebellar cortex and IP. Based on these results, we propose that twitches provide opportunities for the nascent cerebellum to integrate somatotopically organized corollary discharge and reafference, thereby enabling the development of closed-loop circuits and, subsequently, internal models.
Collapse
Affiliation(s)
- Angela M Richardson
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa 52242
| | - Greta Sokoloff
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| | - Mark S Blumberg
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa 52242
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
30
|
Pomaville MB, Sattler SM, Abitua PB. A new dawn for the study of cell type evolution. Development 2024; 151:dev200884. [PMID: 38722217 PMCID: PMC11128286 DOI: 10.1242/dev.200884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
Animal evolution is influenced by the emergence of new cell types, yet our understanding of this process remains elusive. This prompts the need for a broader exploration across diverse research organisms, facilitated by recent breakthroughs, such as gene editing tools and single-cell genomics. Essential to our understanding of cell type evolution is the accurate identification of homologous cells. We delve into the significance of considering developmental ontogeny and potential pitfalls when drawing conclusions about cell type homology. Additionally, we highlight recent discoveries in the study of cell type evolution through the application of single-cell transcriptomics and pinpoint areas ripe for further exploration.
Collapse
Affiliation(s)
| | | | - Philip B. Abitua
- Genome Sciences, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
31
|
Farnworth MS, Montgomery SH. Evolution of neural circuitry and cognition. Biol Lett 2024; 20:20230576. [PMID: 38747685 PMCID: PMC11285921 DOI: 10.1098/rsbl.2023.0576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/08/2024] [Accepted: 03/26/2024] [Indexed: 05/25/2024] Open
Abstract
Neural circuits govern the interface between the external environment, internal cues and outwardly directed behaviours. To process multiple environmental stimuli and integrate these with internal state requires considerable neural computation. Expansion in neural network size, most readily represented by whole brain size, has historically been linked to behavioural complexity, or the predominance of cognitive behaviours. Yet, it is largely unclear which aspects of circuit variation impact variation in performance. A key question in the field of evolutionary neurobiology is therefore how neural circuits evolve to allow improved behavioural performance or innovation. We discuss this question by first exploring how volumetric changes in brain areas reflect actual neural circuit change. We explore three major axes of neural circuit evolution-replication, restructuring and reconditioning of cells and circuits-and discuss how these could relate to broader phenotypes and behavioural variation. This discussion touches on the relevant uses and limitations of volumetrics, while advocating a more circuit-based view of cognition. We then use this framework to showcase an example from the insect brain, the multi-sensory integration and internal processing that is shared between the mushroom bodies and central complex. We end by identifying future trends in this research area, which promise to advance the field of evolutionary neurobiology.
Collapse
Affiliation(s)
- Max S. Farnworth
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
32
|
Zhang XY, Wu WX, Shen LP, Ji MJ, Zhao PF, Yu L, Yin J, Xie ST, Xie YY, Zhang YX, Li HZ, Zhang QP, Yan C, Wang F, De Zeeuw CI, Wang JJ, Zhu JN. A role for the cerebellum in motor-triggered alleviation of anxiety. Neuron 2024; 112:1165-1181.e8. [PMID: 38301648 DOI: 10.1016/j.neuron.2024.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/16/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
Physical exercise is known to reduce anxiety, but the underlying brain mechanisms remain unclear. Here, we explore a hypothalamo-cerebello-amygdalar circuit that may mediate motor-dependent alleviation of anxiety. This three-neuron loop, in which the cerebellar dentate nucleus takes center stage, bridges the motor system with the emotional system. Subjecting animals to a constant rotarod engages glutamatergic cerebellar dentate neurons that drive PKCδ+ amygdalar neurons to elicit an anxiolytic effect. Moreover, challenging animals on an accelerated rather than a constant rotarod engages hypothalamic neurons that provide a superimposed anxiolytic effect via an orexinergic projection to the dentate neurons that activate the amygdala. Our findings reveal a cerebello-limbic pathway that may contribute to motor-triggered alleviation of anxiety and that may be optimally exploited during challenging physical exercise.
Collapse
Affiliation(s)
- Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Wen-Xia Wu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Li-Ping Shen
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi 214002, China
| | - Miao-Jin Ji
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Peng-Fei Zhao
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lei Yu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute of Physical Education, Jiangsu Second Normal University, Nanjing 211200, China
| | - Jun Yin
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yun-Yong Xie
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yang-Xun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Qi-Peng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3015 CN Rotterdam, the Netherlands; Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
33
|
Kebschull JM, Casoni F, Consalez GG, Goldowitz D, Hawkes R, Ruigrok TJH, Schilling K, Wingate R, Wu J, Yeung J, Uusisaari MY. Cerebellum Lecture: the Cerebellar Nuclei-Core of the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:620-677. [PMID: 36781689 PMCID: PMC10951048 DOI: 10.1007/s12311-022-01506-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/10/2022] [Indexed: 02/15/2023]
Abstract
The cerebellum is a key player in many brain functions and a major topic of neuroscience research. However, the cerebellar nuclei (CN), the main output structures of the cerebellum, are often overlooked. This neglect is because research on the cerebellum typically focuses on the cortex and tends to treat the CN as relatively simple output nuclei conveying an inverted signal from the cerebellar cortex to the rest of the brain. In this review, by adopting a nucleocentric perspective we aim to rectify this impression. First, we describe CN anatomy and modularity and comprehensively integrate CN architecture with its highly organized but complex afferent and efferent connectivity. This is followed by a novel classification of the specific neuronal classes the CN comprise and speculate on the implications of CN structure and physiology for our understanding of adult cerebellar function. Based on this thorough review of the adult literature we provide a comprehensive overview of CN embryonic development and, by comparing cerebellar structures in various chordate clades, propose an interpretation of CN evolution. Despite their critical importance in cerebellar function, from a clinical perspective intriguingly few, if any, neurological disorders appear to primarily affect the CN. To highlight this curious anomaly, and encourage future nucleocentric interpretations, we build on our review to provide a brief overview of the various syndromes in which the CN are currently implicated. Finally, we summarize the specific perspectives that a nucleocentric view of the cerebellum brings, move major outstanding issues in CN biology to the limelight, and provide a roadmap to the key questions that need to be answered in order to create a comprehensive integrated model of CN structure, function, development, and evolution.
Collapse
Affiliation(s)
- Justus M Kebschull
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Filippo Casoni
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - Daniel Goldowitz
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Karl Schilling
- Department of Anatomy, Anatomy & Cell Biology, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Federal Republic of Germany
| | - Richard Wingate
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joshua Wu
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Joanna Yeung
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Marylka Yoe Uusisaari
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami-Gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
34
|
Shen Y, Shao M, Hao ZZ, Huang M, Xu N, Liu S. Multimodal Nature of the Single-cell Primate Brain Atlas: Morphology, Transcriptome, Electrophysiology, and Connectivity. Neurosci Bull 2024; 40:517-532. [PMID: 38194157 PMCID: PMC11003949 DOI: 10.1007/s12264-023-01160-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/23/2023] [Indexed: 01/10/2024] Open
Abstract
Primates exhibit complex brain structures that augment cognitive function. The neocortex fulfills high-cognitive functions through billions of connected neurons. These neurons have distinct transcriptomic, morphological, and electrophysiological properties, and their connectivity principles vary. These features endow the primate brain atlas with a multimodal nature. The recent integration of next-generation sequencing with modified patch-clamp techniques is revolutionizing the way to census the primate neocortex, enabling a multimodal neuronal atlas to be established in great detail: (1) single-cell/single-nucleus RNA-seq technology establishes high-throughput transcriptomic references, covering all major transcriptomic cell types; (2) patch-seq links the morphological and electrophysiological features to the transcriptomic reference; (3) multicell patch-clamp delineates the principles of local connectivity. Here, we review the applications of these technologies in the primate neocortex and discuss the current advances and tentative gaps for a comprehensive understanding of the primate neocortex.
Collapse
Affiliation(s)
- Yuhui Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Mingting Shao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhao-Zhe Hao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Mengyao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Nana Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Sheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, 510080, China.
| |
Collapse
|
35
|
Miller MI, Trouvé A, Younes L. Space-feature measures on meshes for mapping spatial transcriptomics. Med Image Anal 2024; 93:103068. [PMID: 38176357 DOI: 10.1016/j.media.2023.103068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 09/18/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Advances in the development of largely automated microscopy methods such as MERFISH for imaging cellular structures in mouse brains are providing spatial detection of micron resolution gene expression. While there has been tremendous progress made in the field of Computational Anatomy (CA) to perform diffeomorphic mapping technologies at the tissue scales for advanced neuroinformatic studies in common coordinates, integration of molecular- and cellular-scale populations through statistical averaging via common coordinates remains yet unattained. This paper describes the first set of algorithms for calculating geodesics in the space of diffeomorphisms, what we term space-feature-measure LDDMM, extending the family of large deformation diffeomorphic metric mapping (LDDMM) algorithms to accommodate a space-feature action on marked particles which extends consistently to the tissue scales. It leads to the derivation of a cross-modality alignment algorithm of transcriptomic data to common coordinate systems attached to standard atlases. We represent the brain data as geometric measures, termed as space-feature measures supported by a large number of unstructured points, each point representing a small volume in space and carrying a list of densities of features elements of a high-dimensional feature space. The shape of space-feature measure brain spaces is measured by transforming them by diffeomorphisms. The metric between these measures is obtained after embedding these objects in a linear space equipped with the norm, yielding a so-called "chordal metric".
Collapse
Affiliation(s)
- Michael I Miller
- Center of Imaging Science and Department of Biomedical Engineering, Johns Hopkins University, United States of America.
| | - Alain Trouvé
- Centre Giovanni Borelli (UMR 9010), Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, France.
| | - Laurent Younes
- Center of imaging Science and Department of Applied Mathematics and Statistics, Johns Hopkins University, United States of America.
| |
Collapse
|
36
|
Sendhilnathan N, Bostan AC, Strick PL, Goldberg ME. A cerebro-cerebellar network for learning visuomotor associations. Nat Commun 2024; 15:2519. [PMID: 38514616 PMCID: PMC10957870 DOI: 10.1038/s41467-024-46281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Consensus is rapidly building to support a role for the cerebellum beyond motor function, but its contributions to non-motor learning remain poorly understood. Here, we provide behavioral, anatomical and computational evidence to demonstrate a causal role for the primate posterior lateral cerebellum in learning new visuomotor associations. Reversible inactivation of the posterior lateral cerebellum of male monkeys impeded the learning of new visuomotor associations, but had no effect on movement parameters, or on well-practiced performance of the same task. Using retrograde transneuronal transport of rabies virus, we identified a distinct cerebro-cerebellar network linking Purkinje cells in the posterior lateral cerebellum with a region of the prefrontal cortex that is critical in learning visuomotor associations. Together, these results demonstrate a causal role for the primate posterior lateral cerebellum in non-motor, reinforcement learning.
Collapse
Affiliation(s)
- Naveen Sendhilnathan
- Doctoral program in Neurobiology and Behavior, Columbia University, New York, NY, USA.
- Dept. of Neuroscience, Mahoney Center for Brain and Behavior Research, Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, USA.
| | - Andreea C Bostan
- Department of Neurobiology, Systems Neuroscience Center, and Brain Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Peter L Strick
- Department of Neurobiology, Systems Neuroscience Center, and Brain Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael E Goldberg
- Dept. of Neuroscience, Mahoney Center for Brain and Behavior Research, Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA
- Dept. of Neurology, Psychiatry, and Ophthalmology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
37
|
Senovilla-Ganzo R, García-Moreno F. The Phylotypic Brain of Vertebrates, from Neural Tube Closure to Brain Diversification. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:45-68. [PMID: 38342091 DOI: 10.1159/000537748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND The phylotypic or intermediate stages are thought to be the most evolutionary conserved stages throughout embryonic development. The contrast with divergent early and later stages derived from the concept of the evo-devo hourglass model. Nonetheless, this developmental constraint has been studied as a whole embryo process, not at organ level. In this review, we explore brain development to assess the existence of an equivalent brain developmental hourglass. In the specific case of vertebrates, we propose to split the brain developmental stages into: (1) Early: Neurulation, when the neural tube arises after gastrulation. (2) Intermediate: Brain patterning and segmentation, when the neuromere identities are established. (3) Late: Neurogenesis and maturation, the stages when the neurons acquire their functionality. Moreover, we extend this analysis to other chordates brain development to unravel the evolutionary origin of this evo-devo constraint. SUMMARY Based on the existing literature, we hypothesise that a major conservation of the phylotypic brain might be due to the pleiotropy of the inductive regulatory networks, which are predominantly expressed at this stage. In turn, earlier stages such as neurulation are rather mechanical processes, whose regulatory networks seem to adapt to environment or maternal geometries. The later stages are also controlled by inductive regulatory networks, but their effector genes are mostly tissue-specific and functional, allowing diverse developmental programs to generate current brain diversity. Nonetheless, all stages of the hourglass are highly interconnected: divergent neurulation must have a vertebrate shared end product to reproduce the vertebrate phylotypic brain, and the boundaries and transcription factor code established during the highly conserved patterning will set the bauplan for the specialised and diversified adult brain. KEY MESSAGES The vertebrate brain is conserved at phylotypic stages, but the highly conserved mechanisms that occur during these brain mid-development stages (Inducing Regulatory Networks) are also present during other stages. Oppositely, other processes as cell interactions and functional neuronal genes are more diverse and majoritarian in early and late stages of development, respectively. These phenomena create an hourglass of transcriptomic diversity during embryonic development and evolution, with a really conserved bottleneck that set the bauplan for the adult brain around the phylotypic stage.
Collapse
Affiliation(s)
- Rodrigo Senovilla-Ganzo
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Leioa, Spain
| | - Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Leioa, Spain
- IKERBASQUE Foundation, Bilbao, Spain
| |
Collapse
|
38
|
Kim TY, Roychaudhury A, Kim HT, Choi TI, Baek ST, Thyme SB, Kim CH. Impairments of cerebellar structure and function in a zebrafish KO of neuropsychiatric risk gene znf536. Transl Psychiatry 2024; 14:82. [PMID: 38331943 PMCID: PMC10853220 DOI: 10.1038/s41398-024-02806-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Genetic variants in ZNF536 contribute to the risk for neuropsychiatric disorders such as schizophrenia, autism, and others. The role of this putative transcriptional repressor in brain development and function is, however, largely unknown. We generated znf536 knockout (KO) zebrafish and studied their behavior, brain anatomy, and brain function. Larval KO zebrafish showed a reduced ability to compete for food, resulting in decreased total body length and size. This phenotype can be rescued by segregating the homozygous KO larvae from their wild-type and heterozygous siblings, enabling studies of adult homozygous KO animals. In adult KO zebrafish, we observed significant reductions in anxiety-like behavior and social interaction. These znf536 KO zebrafish have decreased cerebellar volume, corresponding to decreased populations of specific neuronal cells, especially in the valvular cerebelli (Va). Finally, using a Tg[mbp:mgfp] line, we identified a previously undetected myelin structure located bilaterally within the Va, which also displayed a reduction in volume and disorganization in KO zebrafish. These findings indicate an important role for ZNF536 in brain development and implicate the cerebellum in the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tae-Yoon Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | | | - Hyun-Taek Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, South Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Seung Tae Baek
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Summer B Thyme
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA, USA.
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
39
|
Novello M, Bosman LWJ, De Zeeuw CI. A Systematic Review of Direct Outputs from the Cerebellum to the Brainstem and Diencephalon in Mammals. CEREBELLUM (LONDON, ENGLAND) 2024; 23:210-239. [PMID: 36575348 PMCID: PMC10864519 DOI: 10.1007/s12311-022-01499-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
The cerebellum is involved in many motor, autonomic and cognitive functions, and new tasks that have a cerebellar contribution are discovered on a regular basis. Simultaneously, our insight into the functional compartmentalization of the cerebellum has markedly improved. Additionally, studies on cerebellar output pathways have seen a renaissance due to the development of viral tracing techniques. To create an overview of the current state of our understanding of cerebellar efferents, we undertook a systematic review of all studies on monosynaptic projections from the cerebellum to the brainstem and the diencephalon in mammals. This revealed that important projections from the cerebellum, to the motor nuclei, cerebral cortex, and basal ganglia, are predominantly di- or polysynaptic, rather than monosynaptic. Strikingly, most target areas receive cerebellar input from all three cerebellar nuclei, showing a convergence of cerebellar information at the output level. Overall, there appeared to be a large level of agreement between studies on different species as well as on the use of different types of neural tracers, making the emerging picture of the cerebellar output areas a solid one. Finally, we discuss how this cerebellar output network is affected by a range of diseases and syndromes, with also non-cerebellar diseases having impact on cerebellar output areas.
Collapse
Affiliation(s)
- Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| |
Collapse
|
40
|
Schilling K. Revisiting the development of cerebellar inhibitory interneurons in the light of single-cell genetic analyses. Histochem Cell Biol 2024; 161:5-27. [PMID: 37940705 PMCID: PMC10794478 DOI: 10.1007/s00418-023-02251-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 11/10/2023]
Abstract
The present review aims to provide a short update of our understanding of the inhibitory interneurons of the cerebellum. While these cells constitute but a minority of all cerebellar neurons, their functional significance is increasingly being recognized. For one, inhibitory interneurons of the cerebellar cortex are now known to constitute a clearly more diverse group than their traditional grouping as stellate, basket, and Golgi cells suggests, and this diversity is now substantiated by single-cell genetic data. The past decade or so has also provided important information about interneurons in cerebellar nuclei. Significantly, developmental studies have revealed that the specification and formation of cerebellar inhibitory interneurons fundamentally differ from, say, the cortical interneurons, and define a mode of diversification critically dependent on spatiotemporally patterned external signals. Last, but not least, in the past years, dysfunction of cerebellar inhibitory interneurons could also be linked with clinically defined deficits. I hope that this review, however fragmentary, may stimulate interest and help focus research towards understanding the cerebellum.
Collapse
Affiliation(s)
- Karl Schilling
- Anatomisches Institut - Anatomie und Zellbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 10, 53115, Bonn, Germany.
| |
Collapse
|
41
|
Sepp M, Leiss K, Murat F, Okonechnikov K, Joshi P, Leushkin E, Spänig L, Mbengue N, Schneider C, Schmidt J, Trost N, Schauer M, Khaitovich P, Lisgo S, Palkovits M, Giere P, Kutscher LM, Anders S, Cardoso-Moreira M, Sarropoulos I, Pfister SM, Kaessmann H. Cellular development and evolution of the mammalian cerebellum. Nature 2024; 625:788-796. [PMID: 38029793 PMCID: PMC10808058 DOI: 10.1038/s41586-023-06884-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
The expansion of the neocortex, a hallmark of mammalian evolution1,2, was accompanied by an increase in cerebellar neuron numbers3. However, little is known about the evolution of the cellular programmes underlying the development of the cerebellum in mammals. In this study we generated single-nucleus RNA-sequencing data for around 400,000 cells to trace the development of the cerebellum from early neurogenesis to adulthood in human, mouse and the marsupial opossum. We established a consensus classification of the cellular diversity in the developing mammalian cerebellum and validated it by spatial mapping in the fetal human cerebellum. Our cross-species analyses revealed largely conserved developmental dynamics of cell-type generation, except for Purkinje cells, for which we observed an expansion of early-born subtypes in the human lineage. Global transcriptome profiles, conserved cell-state markers and gene-expression trajectories across neuronal differentiation show that cerebellar cell-type-defining programmes have been overall preserved for at least 160 million years. However, we also identified many orthologous genes that gained or lost expression in cerebellar neural cell types in one of the species or evolved new expression trajectories during neuronal differentiation, indicating widespread gene repurposing at the cell-type level. In sum, our study unveils shared and lineage-specific gene-expression programmes governing the development of cerebellar cells and expands our understanding of mammalian brain evolution.
Collapse
Affiliation(s)
- Mari Sepp
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Kevin Leiss
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Florent Murat
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- INRAE, LPGP, Rennes, France
| | - Konstantin Okonechnikov
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Piyush Joshi
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Evgeny Leushkin
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Lisa Spänig
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Noe Mbengue
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Céline Schneider
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Julia Schmidt
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Nils Trost
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Maria Schauer
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Philipp Khaitovich
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Steven Lisgo
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Miklós Palkovits
- Human Brain Tissue Bank, Semmelweis University, Budapest, Hungary
| | - Peter Giere
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Lena M Kutscher
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Simon Anders
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- BioQuant, Heidelberg University, Heidelberg, Germany
| | | | - Ioannis Sarropoulos
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
- Wellcome Sanger Institute, Cambridge, UK.
| | - Stefan M Pfister
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
42
|
Langlieb J, Sachdev NS, Balderrama KS, Nadaf NM, Raj M, Murray E, Webber JT, Vanderburg C, Gazestani V, Tward D, Mezias C, Li X, Flowers K, Cable DM, Norton T, Mitra P, Chen F, Macosko EZ. The molecular cytoarchitecture of the adult mouse brain. Nature 2023; 624:333-342. [PMID: 38092915 PMCID: PMC10719111 DOI: 10.1038/s41586-023-06818-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023]
Abstract
The function of the mammalian brain relies upon the specification and spatial positioning of diversely specialized cell types. Yet, the molecular identities of the cell types and their positions within individual anatomical structures remain incompletely known. To construct a comprehensive atlas of cell types in each brain structure, we paired high-throughput single-nucleus RNA sequencing with Slide-seq1,2-a recently developed spatial transcriptomics method with near-cellular resolution-across the entire mouse brain. Integration of these datasets revealed the cell type composition of each neuroanatomical structure. Cell type diversity was found to be remarkably high in the midbrain, hindbrain and hypothalamus, with most clusters requiring a combination of at least three discrete gene expression markers to uniquely define them. Using these data, we developed a framework for genetically accessing each cell type, comprehensively characterized neuropeptide and neurotransmitter signalling, elucidated region-specific specializations in activity-regulated gene expression and ascertained the heritability enrichment of neurological and psychiatric phenotypes. These data, available as an online resource ( www.BrainCellData.org ), should find diverse applications across neuroscience, including the construction of new genetic tools and the prioritization of specific cell types and circuits in the study of brain diseases.
Collapse
Affiliation(s)
| | | | | | - Naeem M Nadaf
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Mukund Raj
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Evan Murray
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | | | | | - Daniel Tward
- Departments of Computational Medicine and Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chris Mezias
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Xu Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Dylan M Cable
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Partha Mitra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Fei Chen
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Harvard Stem Cell and Regenerative Biology, Cambridge, MA, USA.
| | - Evan Z Macosko
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
43
|
Nieder A. Convergent Circuit Computation for Categorization in the Brains of Primates and Songbirds. Cold Spring Harb Perspect Biol 2023; 15:a041526. [PMID: 38040453 PMCID: PMC10691494 DOI: 10.1101/cshperspect.a041526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Categorization is crucial for behavioral flexibility because it enables animals to group stimuli into meaningful classes that can easily be generalized to new circumstances. A most abstract quantitative category is set size, the number of elements in a set. This review explores how categorical number representations are realized by the operations of excitatory and inhibitory neurons in associative telencephalic microcircuits in primates and songbirds. Despite the independent evolution of the primate prefrontal cortex and the avian nidopallium caudolaterale, the neuronal computations of these associative pallial circuits show surprising correspondence. Comparing cellular functions in distantly related taxa can inform about the evolutionary principles of circuit computations for cognition in distinctly but convergently realized brain structures.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
44
|
Krishnamurthy A, Lee AS, Bayin NS, Stephen DN, Nasef O, Lao Z, Joyner AL. Engrailed transcription factors direct excitatory cerebellar neuron diversity and survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569445. [PMID: 38077070 PMCID: PMC10705369 DOI: 10.1101/2023.11.30.569445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The excitatory neurons of the three cerebellar nuclei (eCN) form the primary output for the cerebellar circuit. The medial eCN (eCNm) were recently divided into molecularly defined subdomains in the adult, however how they are established during development is not known. We define molecular subdomains of the eCNm using scRNA-seq and spatial expression analysis and show they evolve during embryogenesis to resemble the adult. Furthermore, the eCNm is transcriptionally divergent from the rest of the eCN by E14.5. We previously showed that loss of the homeobox genes En1 and En2 leads to death of a subset of embryonic eCNm. We demonstrate that mutation of En1/2 in embryonic eCNm results in cell death of specific posterior eCNm molecular subdomains and loss of TBR2 (EOMES) expression in an anterior subdomain, as well as reduced synaptic gene expression. We further reveal a similar function for EN1/2 in mediating TBR2 expression, neuron differentiation and survival in the two other cerebellar excitatory neuron types. Thus, our work defines embryonic eCNm molecular diversity and reveals conserved roles for EN1/2 in the cerebellar excitatory neuron lineage.
Collapse
|
45
|
Nevue AA, Zemel BM, Friedrich SR, von Gersdorff H, Mello CV. Cell type specializations of the vocal-motor cortex in songbirds. Cell Rep 2023; 42:113344. [PMID: 37910500 PMCID: PMC10752865 DOI: 10.1016/j.celrep.2023.113344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/30/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Identifying molecular specializations in cortical circuitry supporting complex behaviors, like learned vocalizations, requires understanding of the neuroanatomical context from which these circuits arise. In songbirds, the robust arcopallial nucleus (RA) provides descending cortical projections for fine vocal-motor control. Using single-nuclei transcriptomics and spatial gene expression mapping in zebra finches, we have defined cell types and molecular specializations that distinguish RA from adjacent regions involved in non-vocal motor and sensory processing. We describe an RA-specific projection neuron, differential inhibitory subtypes, and glia specializations and have probed predicted GABAergic interneuron subtypes electrophysiologically within RA. Several cell-specific markers arise developmentally in a sex-dependent manner. Our interactive apps integrate cellular data with developmental and spatial distribution data from the gene expression brain atlas ZEBrA. Users can explore molecular specializations of vocal-motor neurons and support cells that likely reflect adaptations key to the physiology and evolution of vocal control circuits and refined motor skills.
Collapse
Affiliation(s)
- Alexander A Nevue
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Benjamin M Zemel
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Samantha R Friedrich
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
46
|
Zhong S, Wang M, Huang L, Chen Y, Ge Y, Zhang J, Shi Y, Dong H, Zhou X, Wang B, Lu T, Jing X, Lu Y, Zhang J, Wang X, Wu Q. Single-cell epigenomics and spatiotemporal transcriptomics reveal human cerebellar development. Nat Commun 2023; 14:7613. [PMID: 37993461 PMCID: PMC10665552 DOI: 10.1038/s41467-023-43568-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
Human cerebellar development is orchestrated by molecular regulatory networks to achieve cytoarchitecture and coordinate motor and cognitive functions. Here, we combined single-cell transcriptomics, spatial transcriptomics and single cell chromatin accessibility states to systematically depict an integrative spatiotemporal landscape of human fetal cerebellar development. We revealed that combinations of transcription factors and cis-regulatory elements (CREs) play roles in governing progenitor differentiation and cell fate determination along trajectories in a hierarchical manner, providing a gene expression regulatory map of cell fate and spatial information for these cells. We also illustrated that granule cells located in different regions of the cerebellar cortex showed distinct molecular signatures regulated by different signals during development. Finally, we mapped single-nucleotide polymorphisms (SNPs) of disorders related to cerebellar dysfunction and discovered that several disorder-associated genes showed spatiotemporal and cell type-specific expression patterns only in humans, indicating the cellular basis and possible mechanisms of the pathogenesis of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Suijuan Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
- Changping Laboratory, Beijing, 102206, China.
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Luwei Huang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Youqiao Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Yuxin Ge
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Jiyao Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Yingchao Shi
- Guangdong Institute of Intelligence Science and Technology, Guangdong, 519031, China
| | - Hao Dong
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- Changping Laboratory, Beijing, 102206, China
| | - Bosong Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Tian Lu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxi Jing
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Yufeng Lu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Junjing Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Xiaoqun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- Changping Laboratory, Beijing, 102206, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
- Changping Laboratory, Beijing, 102206, China.
| |
Collapse
|
47
|
Zhu J, Hasanbegović H, Liu LD, Gao Z, Li N. Activity map of a cortico-cerebellar loop underlying motor planning. Nat Neurosci 2023; 26:1916-1928. [PMID: 37814026 PMCID: PMC10620095 DOI: 10.1038/s41593-023-01453-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
The neocortex and cerebellum interact to mediate cognitive functions. It remains unknown how the two structures organize into functional networks to mediate specific behaviors. Here we delineate activity supporting motor planning in relation to the mesoscale cortico-cerebellar connectome. In mice planning directional licking based on short-term memory, preparatory activity instructing future movement depends on the anterior lateral motor cortex (ALM) and the cerebellum. Transneuronal tracing revealed divergent and largely open-loop connectivity between the ALM and distributed regions of the cerebellum. A cerebellum-wide survey of neuronal activity revealed enriched preparatory activity in hotspot regions with conjunctive input-output connectivity to the ALM. Perturbation experiments show that the conjunction regions were required for maintaining preparatory activity and correct subsequent movement. Other cerebellar regions contributed little to motor planning despite input or output connectivity to the ALM. These results identify a functional cortico-cerebellar loop and suggest the cerebellar cortex selectively establishes reciprocal cortico-cerebellar communications to orchestrate motor planning.
Collapse
Affiliation(s)
- Jia Zhu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Liu D Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
48
|
Chen CH, Newman LN, Stark AP, Bond KE, Zhang D, Nardone S, Vanderburg CR, Nadaf NM, Yao Z, Mutume K, Flaquer I, Lowell BB, Macosko EZ, Regehr WG. A Purkinje cell to parabrachial nucleus pathway enables broad cerebellar influence over the forebrain. Nat Neurosci 2023; 26:1929-1941. [PMID: 37919612 PMCID: PMC11348979 DOI: 10.1038/s41593-023-01462-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023]
Abstract
In addition to its motor functions, the cerebellum is involved in emotional regulation, anxiety and affect. We found that suppressing the firing of cerebellar Purkinje cells (PCs) rapidly excites forebrain areas that contribute to such functions (including the amygdala, basal forebrain and septum), but that the classic cerebellar outputs, the deep cerebellar nuclei, do not directly project there. We show that PCs directly inhibit parabrachial nuclei (PBN) neurons that project to numerous forebrain regions. Suppressing the PC-PBN pathway influences many regions in the forebrain and is aversive. Molecular profiling shows that PCs directly inhibit numerous types of PBN neurons that control diverse behaviors that are not involved in motor control. Therefore, the PC-PBN pathway allows the cerebellum to directly regulate activity in the forebrain, and may be an important substrate for cerebellar disorders arising from damage to the posterior vermis.
Collapse
Affiliation(s)
- Christopher H Chen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Leannah N Newman
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Amanda P Stark
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Katherine E Bond
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Dawei Zhang
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Stefano Nardone
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Charles R Vanderburg
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Naeem M Nadaf
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Zhiyi Yao
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Kefiloe Mutume
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Isabella Flaquer
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Evan Z Macosko
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
49
|
Jung N, Kim TK. Spatial transcriptomics in neuroscience. Exp Mol Med 2023; 55:2105-2115. [PMID: 37779145 PMCID: PMC10618223 DOI: 10.1038/s12276-023-01093-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 10/03/2023] Open
Abstract
The brain is one of the most complex living tissue types and is composed of an exceptional diversity of cell types displaying unique functional connectivity. Single-cell RNA sequencing (scRNA-seq) can be used to efficiently map the molecular identities of the various cell types in the brain by providing the transcriptomic profiles of individual cells isolated from the tissue. However, the lack of spatial context in scRNA-seq prevents a comprehensive understanding of how different configurations of cell types give rise to specific functions in individual brain regions and how each distinct cell is connected to form a functional unit. To understand how the various cell types contribute to specific brain functions, it is crucial to correlate the identities of individual cells obtained through scRNA-seq with their spatial information in intact tissue. Spatial transcriptomics (ST) can resolve the complex spatial organization of cell types in the brain and their connectivity. Various ST tools developed during the past decade based on imaging and sequencing technology have permitted the creation of functional atlases of the brain and have pulled the properties of neural circuits into ever-sharper focus. In this review, we present a summary of several ST tools and their applications in neuroscience and discuss the unprecedented insights these tools have made possible.
Collapse
Affiliation(s)
- Namyoung Jung
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Tae-Kyung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea.
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
50
|
Gumnit E, Tosches MA. A cell type atlas of the lamprey brain. Nat Ecol Evol 2023; 7:1591-1592. [PMID: 37710040 DOI: 10.1038/s41559-023-02195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Affiliation(s)
- Elias Gumnit
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | |
Collapse
|