1
|
Jiang S, Deng X, Ma L, Wang H, Wang X, Feng L, Zhu F, Xue S, Mohammad A. Standardized framework for assessing soil quality at antimony smelting site by considering microbial-induced resilience and heavy metal contamination. J Environ Sci (China) 2025; 148:306-320. [PMID: 39095167 DOI: 10.1016/j.jes.2023.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 08/04/2024]
Abstract
Antimony smelting activities damage the soil and vegetation surroundings while generating economic value. However, no standardized methods are available to diagnose the extent of soil degradation at antimony smelting sites. This study developed a standardized framework for assessing soil quality by considering microbial-induced resilience and heavy metal contamination at Xikuangshan antimony smelting site. The soil resilience index (SRI) and soil contamination index (SCI) were calculated by Minimum Data Set and geo-accumulation model, respectively. After standardized by a multi-criteria quantitative procedure of modified Nemerow's pollution index (NPI), the integrated assessment of soil quality index (SQI), which is the minimum of SRINPI and SCINPI, was achieved. The results showed that Sb and As were the prominent metal(loid) pollutants, and significant correlations between SQI and SRI indicated that the poor soil quality was mainly caused by the low level of soil resilience. The primary limiting factors of SRI were Fungi in high and middle contaminated areas, and Skermanella in low contaminated area, suggesting that the weak soil resilience was caused by low specific microbial abundances. Microbial regulation and phytoremediation are greatly required to improve the soil quality at antimony smelting sites from the perspectives of pollution control and resilience improvement. This study improves our understanding of ecological effects of antimony smelting sites and provides a theoretical basis for ecological restoration and sustainable development of mining areas.
Collapse
Affiliation(s)
- Shasha Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xiaoyu Deng
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Liyuan Ma
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; School of Engineering, Cardiff University, Cardiff CF243AA, United Kingdom.
| | - Hongmei Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xingjie Wang
- School of Engineering, Cardiff University, Cardiff CF243AA, United Kingdom; Institute of Geological Survey, China University of Geosciences, Wuhan 430074, China
| | - Liang Feng
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Feng Zhu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Arif Mohammad
- School of Engineering, Cardiff University, Cardiff CF243AA, United Kingdom
| |
Collapse
|
2
|
Dong Q, Ren S, Willing CE, Adams CA, Li Y, Ji B, Gao C. Xizang meadow degradation alters resource exchange ratio, network complexity, and biomass allocation tradeoff of arbuscular mycorrhizal symbiosis. THE NEW PHYTOLOGIST 2025; 245:1288-1301. [PMID: 39611464 DOI: 10.1111/nph.20304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024]
Abstract
The response of arbuscular mycorrhizal (AM) symbiosis to environmental fluctuations involves resource exchange between host plants and fungal partners, associations between different AM fungal taxa, and biomass allocation between AM fungal spore and hyphal structures; yet a systematic understanding of these responses to meadow degradation remains relatively unknown, particularly in Xizang alpine meadow. Here, we approached this knowledge gap by labeling dual isotopes of air 13CO2 and soil 15NH4Cl, computing ecological networks of AM fungal communities, and quantifying AM fungal biomass allocation among spores, intra- and extraradical hyphae. We found that the exchange ratio of photosynthate and nitrogen between plants and AM fungi increased with the increasing severity of meadow degradation, indicating greater dependence of host plants on this symbiosis for resource acquisition. Additionally, using 18S rRNA gene metabarcoding, we found that AM fungal co-occurrence networks were more complex in more degraded meadows, supporting the stress gradient hypothesis. Meadow degradation also increased AM fungal biomass allocation toward traits associated with intra- and extraradical hyphae at the expense of spores. Our findings suggest that an integrated consideration of resource exchange, ecological networks, and biomass allocation may be important for the restoration of degraded ecosystems.
Collapse
Affiliation(s)
- Qiang Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Shijie Ren
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | | | - Catharine Allyssa Adams
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720-3102, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yaoming Li
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Baoming Ji
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Cheng Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Peddle SD, Hodgson RJ, Borrett RJ, Brachmann S, Davies TC, Erickson TE, Liddicoat C, Muñoz‐Rojas M, Robinson JM, Watson CD, Krauss SL, Breed MF. Practical applications of soil microbiota to improve ecosystem restoration: current knowledge and future directions. Biol Rev Camb Philos Soc 2025; 100:1-18. [PMID: 39075839 PMCID: PMC11718600 DOI: 10.1111/brv.13124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
Soil microbiota are important components of healthy ecosystems. Greater consideration of soil microbiota in the restoration of biodiverse, functional, and resilient ecosystems is required to address the twin global crises of biodiversity decline and climate change. In this review, we discuss available and emerging practical applications of soil microbiota into (i) restoration planning, (ii) direct interventions for shaping soil biodiversity, and (iii) strategies for monitoring and predicting restoration trajectories. We show how better planning of restoration activities to account for soil microbiota can help improve progress towards restoration targets. We show how planning to embed soil microbiota experiments into restoration projects will permit a more rigorous assessment of the effectiveness of different restoration methods, especially when complemented by statistical modelling approaches that capitalise on existing data sets to improve causal understandings and prioritise research strategies where appropriate. In addition to recovering belowground microbiota, restoration strategies that include soil microbiota can improve the resilience of whole ecosystems. Fundamentally, restoration planning should identify appropriate reference target ecosystem attributes and - from the perspective of soil microbiota - comprehensibly consider potential physical, chemical and biological influences on recovery. We identify that inoculating ecologically appropriate soil microbiota into degraded environments can support a range of restoration interventions (e.g. targeted, broad-spectrum and cultured inoculations) with promising results. Such inoculations however are currently underutilised and knowledge gaps persist surrounding successful establishment in light of community dynamics, including priority effects and community coalescence. We show how the ecological trajectories of restoration sites can be assessed by characterising microbial diversity, composition, and functions in the soil. Ultimately, we highlight practical ways to apply the soil microbiota toolbox across the planning, intervention, and monitoring stages of ecosystem restoration and address persistent open questions at each stage. With continued collaborations between researchers and practitioners to address knowledge gaps, these approaches can improve current restoration practices and ecological outcomes.
Collapse
Affiliation(s)
- Shawn D. Peddle
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Riley J. Hodgson
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Ryan J. Borrett
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures InstituteMurdoch University90 South StreetMurdochWestern Australia6150Australia
| | - Stella Brachmann
- University of Waikato Te Whare Wananga o Waikato Gate 1Knighton RoadHamilton3240New Zealand
| | - Tarryn C. Davies
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Todd E. Erickson
- Department of Biodiversity, Conservation and AttractionsKings Park ScienceKattidj CloseKings ParkWestern Australia6005Australia
- Centre for Engineering Innovation, School of Agriculture and EnvironmentThe University of Western AustraliaStirling HighwayCrawleyWestern Australia6009Australia
| | - Craig Liddicoat
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Miriam Muñoz‐Rojas
- Department of Plant Biology and EcologyUniversity of SevilleC. San FernandoSevillaSpain
- School of Biological, Earth and Environmental Sciences, Centre for Ecosystem ScienceUniversity of New South WalesSydneyNew South Wales2052Australia
| | - Jake M. Robinson
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Carl D. Watson
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Siegfried L. Krauss
- Department of Biodiversity, Conservation and AttractionsKings Park ScienceKattidj CloseKings ParkWestern Australia6005Australia
- School of Biological SciencesThe University of Western AustraliaStirling HighwayCrawleyWestern Australia6009Australia
| | - Martin F. Breed
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| |
Collapse
|
4
|
Yang C, Chen Y, Sun W, Zhang Q, Diao M, Sun J. Extreme soil salinity reduces N and P metabolism and related microbial network complexity and community immigration rate. ENVIRONMENTAL RESEARCH 2025; 264:120361. [PMID: 39547566 DOI: 10.1016/j.envres.2024.120361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Soil microbiomes are well known to suffer from the effects of rising salinity. There are, however, no current understandings regarding its specific effects on microbial metabolic functions associated with nitrogen (N) and phosphorus (P) cycling, particularly in the Yellow River Delta (YRD), one of the largest estuaries in the world. This research examined soil microbiomes at 50 sites in the YRD region to analyze their co-occurrence networks and their relationship with N (nitrification, denitrification, dissimilatory, assimilatory, fixation, and mineralization) and P (solubilization, mineralization, transportation, and regulation) metabolism processes. Our findings indicate a notable reduction in soil multifunctionality as salinity levels increase, with Halofilum-ochraceum playing a significant role in nitrification, whereas Bacteroidetes-SB0662-bin-6 helps solubilize inorganic P in highly saline areas. High soil salinity negatively affected the amoA gene involved in nitrification and increased the nosZ gene involved in denitrification in extreme salinity soil with 8.2 g/kg salt content. Extreme salinity significantly reduced the expression of genes involved in inorganic P solubilization, such as ppa and ppx. Additionally, the alkaline P gene phoD exhibited significant decreases in extremely saline soils, thereby impeding the mineralization of organic P. The neutral community models indicated that microbial community immigration rate showed a linear negative relationship with soil EC in the six N and four P processes. Salinization, however, displayed a nonlinear pattern with clearly defined thresholds on the community of microbes involved in N and P cycling. Reduced microbial diversity and interactions are causing a decline in soil multifunctionality, and the soil multifunctionality and network edges jointly limited the microbial community immigration rate involved in N and P cycling. It is crucial to preserve soil microbial functions to support nutrient cycling and predict the ecological effects of soil salinization.
Collapse
Affiliation(s)
- Chao Yang
- College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China; Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao, Shandong, 266109, China; Shandong Key Laboratory for Germplasm Innovation of Saline-Alkaline Tolerant Grasses and Trees, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Yitong Chen
- College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Wenyao Sun
- College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Qian Zhang
- College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Mengmeng Diao
- College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China; Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao, Shandong, 266109, China; Shandong Key Laboratory for Germplasm Innovation of Saline-Alkaline Tolerant Grasses and Trees, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Juan Sun
- College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China; Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao, Shandong, 266109, China; Shandong Key Laboratory for Germplasm Innovation of Saline-Alkaline Tolerant Grasses and Trees, Qingdao Agricultural University, Qingdao, Shandong, 266109, China.
| |
Collapse
|
5
|
Lv B, Zhang Z, Chen B, Yu S, Song M, Yu Y, Lu T, Sun L, Qian H. The effects of different halogenated-pyrethroid pesticides on soil microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177882. [PMID: 39644647 DOI: 10.1016/j.scitotenv.2024.177882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/30/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
The application of pesticides increases crop yields but affects the structure and function of the soil microbial community. Halogens are common functional modification groups in chemical compounds, and innovative pesticides have been developed on the basis of these groups. However, the effects of different halogen substituents on soil microorganisms remain unclear. This study investigated the effects of three pyrethroid pesticides (deltamethrin, cypermethrin, and cyfluthrin) on the soil microbiota. Our results revealed that all these pesticides significantly reduced the stability of the bacterial communities and decreased bacterial diversity at high concentrations. Compared with deltamethrin (Br-) and cypermethrin (Cl-), low concentrations (0.5 mg/kg) of cyfluthrin (F-) increased soil bacterial diversity by 23.14 % and increased the potential for nitrogen fixation by 2.00 % and nitrification by 3.39 %, thus making it a relatively eco-friendly option. Our findings provide new insights into the potential ecological effects of halogenated pyrethroid pesticides on soil ecosystems.
Collapse
Affiliation(s)
- Binghai Lv
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhenyan Zhang
- Institute for Advanced Study, Shaoxing University, Shaoxing 312000, PR China; College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, PR China
| | - Bingfeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Siqi Yu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Minglong Song
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yitian Yu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
6
|
Holanda FR, Vidal Santos LD, Melo JC, Pedrotti A, Sussuchi EM, Griza S, Araújo Filho RN, Nascimento BL. Influence of Sodium Hydroxide Treatment on Typha domingensis Fibers for Geotextile Manufacturing. ACS OMEGA 2024; 9:51040-51051. [PMID: 39758627 PMCID: PMC11696754 DOI: 10.1021/acsomega.4c05602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025]
Abstract
The conservation of soil, a finite natural resource, demands effective measures. Within this context, the instability of soil masses on steep slopes poses significant risks to human life and environmental infrastructure, highlighting the need for developing erosion control strategies rooted in soil bioengineering principles. The objective of this study was to investigate the mechanical properties of Typha domingensis fibers subjected to biodegradation and treated with sodium hydroxide (NaOH) for geotextile manufacturing. Experimental slopes were employed to mimic natural environmental degradation conditions. The Typha domingensis fibers underwent treatment with alkaline NaOH solutions at concentrations of 3, 6, and 9% and were exposed for 180 days. Samples were collected every 30 days to evaluate the degradation process and performance under these conditions. These fibers exhibited resilience against field degradation over a period exceeding 180 days, demonstrating sustained effectiveness. Despite an initial reduction in strength compared to untreated control fibers, the treated fibers displayed enduring stability throughout the experimentation. This suggests that 6% NaOH concentration may yield higher tensile strength, thus positioning it as the optimal choice for the production of biodegradable geotextiles derived from Typha domingensis fibers.
Collapse
Affiliation(s)
| | - Luiz Diego Vidal Santos
- Postgraduate
Study in in Territorial Planning, Department of Human Sciences and
Philosophy, Universidade Estadual de Feira
de Santana - UEFS, Avenida Transnordestina, Novo Horizonte, Feira
de Santana 44036-900, Bahia, Brazil
| | - Jeangela Carla
Rodrigues Melo
- Department
of Agronomy Engineering Rosa Elze, Universidade
Federal de Sergipe-UFS, São
Cristóvão 49100-000, Sergipe, Brasil
| | - Alceu Pedrotti
- Department
of Agronomy Engineering Rosa Elze, Universidade
Federal de Sergipe-UFS, São
Cristóvão 49100-000, Sergipe, Brasil
| | - Eliana Midori Sussuchi
- Department
of Chemistry, Universidade Federal de Sergipe-UFS, Rosa Elze, São Cristóvão 49100-000, Sergipe, Brasil
| | - Sandro Griza
- Postgraduate
Study in Materials Science and Engineering, Universidade Federal de Sergipe-UFS, Rosa Elze, São Cristóvão
- SE 49100-000, Brasil
| | - Renisson Neponuceno
de Araújo Filho
- Department
of Rural Technology, Universidade Federal
Rural de Pernambuco-UFRPE, Rua Dom Manuel de Medeiros, s/n Dois Irmãos, 52171-900 Recife-PE, Brasil
| | - Brenno Lima Nascimento
- Postgraduate
Study in Materials Science and Engineering, Universidade Federal de Sergipe-UFS, Rosa Elze, São Cristóvão
- SE 49100-000, Brasil
| |
Collapse
|
7
|
Jiang Y, Zhang D, Zhang S, Li T, Wang G, Xu X, Pu Y, Nengzi L. Interaction effects of different chemical fractions of lanthanum, cerium, and fluorine on the taxonomic composition of soil microbial community. BMC Microbiol 2024; 24:539. [PMID: 39731003 DOI: 10.1186/s12866-024-03708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/13/2024] [Indexed: 12/29/2024] Open
Abstract
The extensive mining of bastnasite (CeFCO3) has caused pollution of lanthanum (La), cerium (Ce), and fuorine (F) in the surrounding farmland soil, severely threatening the safety of the soil ecosystem. However, the interaction effects of various chemical fractions of La, Ce, and F on the composition of microbial communities are unclear. In our study, high-throughput sequencing was performed based on the pot experiments of four types of combined pollution soils, i.e., La + Ce (LC), Ce + F (CF), La + F (LF), and La + Ce + F (LCF), and the pollution concentration ranges of these three elements of 20-240, 40-450, and 150-900 mg kg-1, respectively. The improved Tessier method was used to investigate the interaction effects of chemical fractions of these elements on the variations in the soil microbial compositions. The result showed the residual form of La (La_RES) displayed restraint on Abditibacteriota, leading to its undetected level in the highest concentration of LC-polluted soils, whereas promoted relative abundance of microbes (Planctomycetota, Elusimicrobiota, Gemmatimonadota, and Rozellomycota) by more than 80%; the exchangeable and organic-bound forms of Ce and F as well as the iron-manganese-bound and residual forms of F were identified as the stress factors for the sensitive bacteria (e.g., WS4, Elusimicrobiota, RCP2-54, and Monoblepharomycota) in CF-polluted soils; in LF-polluted soils, the water-soluble form of La showed the most toxic effect on RCP2-54, Nitrospirota, and FCPU426, leading to decreased relative abundance by more than 80%; while La_RES and iron-manganese-bound form of F were identified as the stress factors for the relative abundance of Nitrospirota, Elusimicrobiota, and GAL15, showing decline of more than 80% in LCF-polluted soils. Our study revealed both inhibition and promotion effects of the element interaction on the growth of microbial communities, providing a certain experimental evidence to support further exploration of the treatment of environmental pollution caused by these elements.
Collapse
Affiliation(s)
- Ying Jiang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, China
- School of Environment and Resource, Xichang University, Xichang, 615000, China
| | - DaiXi Zhang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shirong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, China.
| | - Ting Li
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Guiyin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xiaoxun Xu
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Yulin Pu
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Lichao Nengzi
- School of Environment and Resource, Xichang University, Xichang, 615000, China
| |
Collapse
|
8
|
Wang H, Yang L, Yang Y. A review of sodium alginate-based hydrogels: Structure, mechanisms, applications, and perspectives. Int J Biol Macromol 2024; 292:139151. [PMID: 39725117 DOI: 10.1016/j.ijbiomac.2024.139151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
With the global emphasis on green and sustainable development, sodium alginate-based hydrogels (SAHs), as a renewable and biocompatible environmental material, have garnered widespread attention for their research and application. This review summarizes the latest advancements in the study of SAHs, thoroughly discussing their structural characteristics, formation mechanisms, and current applications in various fields, as well as prospects for future development. Initially, the chemical structure of SA and the network structure of hydrogels are introduced, and the impact of factors such as molecular weight, crosslinking density, and environmental conditions on the hydrogel structure is explored. Subsequently, the formation mechanisms of SAHs, including physical and chemical crosslinking, are detailed. Furthermore, a systematic review of the applications of SAHs in tissue engineering, drug delivery, medical dressings, wastewater treatment, strain sensor, and food science is provided. Finally, future research directions for SAHs are outlined. This work not only offers researchers a comprehensive framework for the study of SAHs but also provides significant theoretical and experimental foundations for the development of new hydrogel materials.
Collapse
Affiliation(s)
- Hong Wang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China
| | - Liang Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China.
| | - Yanning Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China
| |
Collapse
|
9
|
Jiang C, Qiu C, Shui W. The life strategy of bacteria rather than fungi shifts in karst tiankeng island-like systems. Appl Environ Microbiol 2024; 90:e0158124. [PMID: 39589109 DOI: 10.1128/aem.01581-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/09/2024] [Indexed: 11/27/2024] Open
Abstract
Karst tiankeng is a typical terrestrial habitat island-like system, known as an oasis in a degraded karst landscape. However, we know little about the composition, structure, and life strategies of soil microbial communities in the karst tiankeng ecosystem. In this study, we use amplicon sequencing to investigate the soil bacteria and fungi of 26 karst tiankeng in two typical karst tiankeng groups. The results showed that the composition and structure of bacterial and fungal communities were significantly different at two dimensions (among and within the karst tiankeng group). Bacteria showed more sensitivity to variation in the karst tiankeng area and isolation than fungi. With the increase of karst tiankeng area and isolation, the bacterial life strategies shift from K-strategist to r-strategist, likely due to the changes in soil properties (total phosphorus, Ca, and soil water content). Abundant and rare taxa play different roles in karst tiankeng ecosystems; abundant taxa serve a key role in nutrient cycles and life strategy shifts by occupying the key status in networks. Considering the key role of soil microbes in ecosystems, more attention must be paid to the impact of habitat loss on soil microbial life strategies, particularly in the ecological impact of life strategies change of abundant and rare taxa. IMPORTANCE These findings highlight that habitat loss or fragmentation induces a shift in microbial life strategies and improves our understanding of the composition and biogeography of karst ecosystem microorganisms.
Collapse
Affiliation(s)
- Cong Jiang
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Changchun Qiu
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China
| | - Wei Shui
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
10
|
Li T, Wang S, Zhao L, Yuan X, Gao Y, Fu D, Liu C, Duan C. Improvement of soil nutrient cycling by dominant plants in natural restoration of heavy metal polluted areas. ENVIRONMENTAL RESEARCH 2024; 263:120030. [PMID: 39299450 DOI: 10.1016/j.envres.2024.120030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Referring to the natural succession to restore polluted land is one of the most vital assignments to solving the environmental problems. However, there is little understanding of the natural restoration of nutrient biogeochemical cycles in abandoned land with severe metal pollution. To clarify the nutrient cycling process and the influence of organisms on it, we investigated the magnitude of rhizosphere effects on soil nitrogen (N), phosphorus (P) and sulphur (S) cycles in natural restoration of an abandoned metal mine, as well as the roles of plants and microorganisms in the nutrient cycles. Our data revealed that the rhizosphere had higher levels of ammoniation than non-rhizosphere soil at both stages of restoration. In the early stage, the rhizosphere had greater levels of inorganic phosphorus and organophosphorus solubilisation, as well as sulphite oxidation, compared to non-rhizosphere soil. The bacterial composition influenced the N and S cycles, while the fungal composition had the greatest effect on the P cycles. Furthermore, rhizosphere nutrition cycles and microbial communities altered according plant strategy. Overall, the plants that colonize the early stages of natural recovery demonstrate enhanced restoration of nutrient efficiency. These results contribute to further knowledge of nutrient recovery in mining areas, as well as suggestions for selecting remedial microorganisms and plants in metal-polluted environments.
Collapse
Affiliation(s)
- Ting Li
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming, 650091, China
| | - Sichen Wang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming, 650091, China
| | - Luoqi Zhao
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming, 650091, China
| | - Xinqi Yuan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming, 650091, China
| | - Yuhan Gao
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming, 650091, China
| | - Denggao Fu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming, 650091, China
| | - Chang'e Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming, 650091, China
| | - Changqun Duan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
11
|
Jiang H, Chen X, Li Y, Chen J, Wei L, Zhang Y. Seasonal dynamics of soil microbiome in response to dry-wet alternation along the Jinsha River Dry-hot Valley. BMC Microbiol 2024; 24:496. [PMID: 39587503 PMCID: PMC11587743 DOI: 10.1186/s12866-024-03662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Soil microorganisms play a key role in nutrient cycling, carbon sequestration, and other important ecosystem processes, yet their response to seasonal dry-wet alternation remains poorly understood. Here, we collected 120 soil samples from dry-hot valleys (DHVs, ~ 1100 m a.s.l.), transition (~ 2000 m a.s.l.) and alpine zones (~ 3000 m a.s.l.) along the Jinsha River in southwest China during both wet and dry seasons. Our aims were to investigate the bacterial microbiome across these zones, with a specific focus on the difference between wet and dry seasons. RESULTS Despite seasonal variations, bacterial communities in DHVs exhibit resilience, maintaining consistent community richness, diversity, and coverage. This suggests that the microbes inhabiting DHVs have evolved adaptive mechanisms to withstand the extreme dry and hot conditions. In addition, we observed season-specific microbial clades in all sampling areas, highlighting their resilience to environmental fluctuations. Notably, we found similarities in microbial clades between soils from DHVs and the transition zones, including the phyla Actinomycetota, Chloroflexota, and Pseudomonadota. The neutral community model respectively explained a substantial proportion of the community variation in DHVs (87.7%), transition (81.4%) and alpine zones (81%), indicating that those were predominantly driven by stochastic processes. Our results showed that migration rates were higher in the dry season than in the wet season in both DHVs and the alpine zones, suggesting fewer diffusion constraints. However, this trend was reversed in the transition zones. CONCLUSIONS Our findings contribute to a better understanding of how the soil microbiome responds to seasonal dry-wet alternation in the Jinsha River valley. These insights can be valuable for optimizing soil health and enhancing ecosystem resilience, particularly in dry-hot valleys, in the context of climate change.
Collapse
Affiliation(s)
- Hao Jiang
- Key Laboratory of Mountain Hazards and Earth Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610299, China.
- State Key Laboratory of Mountain Hazards and Engineering Resilience, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610299, China.
| | - Xiaoqing Chen
- Key Laboratory of Mountain Hazards and Earth Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610299, China.
- State Key Laboratory of Mountain Hazards and Engineering Resilience, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610299, China.
| | - Yongping Li
- School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Jiangang Chen
- Key Laboratory of Mountain Hazards and Earth Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610299, China
- State Key Laboratory of Mountain Hazards and Engineering Resilience, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610299, China
| | - Li Wei
- Key Laboratory of Mountain Hazards and Earth Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610299, China
- State Key Laboratory of Mountain Hazards and Engineering Resilience, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610299, China
| | - Yuanbin Zhang
- Key Laboratory of Mountain Hazards and Earth Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610299, China
| |
Collapse
|
12
|
Huang M, Hu T, Wang J, Ding Y, Köster K, Sun L. Effects of biochar on soil carbon pool stability in the Dahurian larch (Larix gmelinii) forest are regulated by the dominant soil microbial ecological strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175725. [PMID: 39181256 DOI: 10.1016/j.scitotenv.2024.175725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Biochar is widely used in integrated soil management, and can directly alter the soil environment and drastically affect the soil microbial community. Given the important role of soil microorganisms in the carbon cycling of soils, it is important to understand how biochar alters the stability of soil organic carbon (SOC) pools in Dahurian larch (Larix gmelinii) forests through microbial pathways unburned and high-severity burned soils to guide comprehensive soil management and restore ecological functions in postfire soils. This study employed the r/K ecological strategy theory to quantify the ecological strategy propensities of soil microbial communities. The ratio of oligotrophic species to copiotrophic species was used to measure these propensities. The study aimed to establish a link between the ecological strategy choices of microbial communities and SOC pools. We found: that (1) biochar increases the mass of SOC regardless of whether the soil has experienced fire, (2) biochar addition to unburned stands makes the K-strategy dominant in microbial communities, significantly decreasing the mineral-associated organic carbon (MAOC) to SOC ratio and weakening the of SOC pool stability; (3) biochar addition to high-severity burned stands shifts the dominant microbial strategy to r-strategy, restoring the damaged microbial community to its preburned state. The MAOC/SOC ratio significantly increased, contributing to the restoration of the SOC pool stability and enhancing the soil carbon sequestration capacity. This study elucidates the effects of biochar addition on the dominant ecological strategy of microbial communities and alterations in the structure and stability of SOC pools, which is important for understanding how biochar affects SOC pools through biochemical pathways, and provides important references for unraveling the relation between microbial ecological strategies and soil carbon pools.
Collapse
Affiliation(s)
- Mingzhou Huang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; Northern Forest Fire Management Key Laboratory of State Forestry and Grassland Administration, China
| | - Tongxin Hu
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; Northern Forest Fire Management Key Laboratory of State Forestry and Grassland Administration, China
| | - Jianyu Wang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; Northern Forest Fire Management Key Laboratory of State Forestry and Grassland Administration, China
| | - Yiyang Ding
- Department of Forest Sciences, Institute for Atmospheric Sciences and Earth System Research (INAR), Department of Physics, University of Helsinki, 00014, Finland
| | - Kajar Köster
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Long Sun
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; Northern Forest Fire Management Key Laboratory of State Forestry and Grassland Administration, China.
| |
Collapse
|
13
|
Bâ AM, Séne S, Manokari M, Galardis MMB, Sylla SN, Selosse MA, Shekhawat MS. Coccoloba uvifera L. associated with Scleroderma Bermudense Coker: a pantropical ectomycorrhizal symbiosis used in restoring of degraded coastal sand dunes. MYCORRHIZA 2024; 34:375-389. [PMID: 39367926 PMCID: PMC11604829 DOI: 10.1007/s00572-024-01170-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024]
Abstract
Coccoloba uvifera L. (Polygonacaeae), named also seagrape, is an ectomycorrhizal (ECM) Caribbean beach tree, introduced pantropically for stabilizing coastal soils and producing edible fruits. This review covers the pantropical distribution and micropropagation of seagrape as well as genetic diversity, functional traits and use of ECM symbioses in response to salinity, both in its native regions and areas where it has been introduced. The ECM fungal diversity associated with seagrape was found to be relatively low in its region of origin, with Scleroderma bermudense Coker being the predominant fungal species. In regions of introduction, seagrape predominantly associated with Scleroderma species, whereas S. bermudense was exclusively identified in Réunion and Senegal. The introduction of S. bermudense is likely through spores adhering to the seed coats of seagrape, suggesting a vertical transmission of ECM colonization in seagrape by S. bermudense. This ECM fungus demonstrated its capacity to enhance salt tolerance in seagrape seedlings by reducing Na concentration and increasing K and Ca levels, consequently promoting higher K/Na and Ca/Na ratios in the tissues of ECM seedlings vs. non-ECM plants in nursery conditions. Moreover, the ECM symbiosis positively influenced growth, photosynthetic and transpiration rates, chlorophyll fluorescence and content, stomatal conductance, intercellular CO2, and water status, which improved the performance of ECM seagrape exposed to salt stress in planting conditions. The standardization of seagrape micropropagation emerges as a crucial tool for propagating homogeneous plant material in nursery and planting conditions. This review also explores the use of the ECM symbiosis between seagrape and S. bermudense as a strategy for restoring degraded coastal ecosystems in the Caribbean, Indian Ocean, and West African regions.
Collapse
Affiliation(s)
- A M Bâ
- Laboratoire de Biologie et Physiologie Végétales, Université des Antilles, Guadeloupe, France.
- Laboratoire des Symbioses Tropicales et Méditerranéennes UMR113, UM2/CIRAD, IRD/Sup-Agro, Montpellier, France.
- Académie Nationale des Sciences et Techniques du Sénégal, Dakar, Sénégal.
| | - S Séne
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, BP 1386, Dakar, Sénégal
| | - M Manokari
- Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, India
| | - M M Bullaín Galardis
- Plant Biotechnology Studies Center, Faculty of Agricultural Sciences, University of Granma, Carretera Manzanillo, Bayamo, 85100, Cuba
| | - S N Sylla
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, BP 1386, Dakar, Sénégal
- Département de Biologie végétale, UCAD, Dakar, Sénégal
| | - M A Selosse
- Institut de Systématique, UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, Évolution, Biodiversité, Paris, 75005, France
- Faculty of Biology, Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland
- Institut Universitaire de France, Paris, France
| | - M S Shekhawat
- Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, India
| |
Collapse
|
14
|
Rebi A, Wang G, Yang T, Kanomanyanga J, Ejaz I, Mustafa A, Rizwan M, Zhou J. Stoichiometric and bacterial eco-physiological insights into microbial resource availability in karst regions affected by clipping-and-burning. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122925. [PMID: 39413635 DOI: 10.1016/j.jenvman.2024.122925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Despite growing interest in soil microbial resource limitation (MRL), the impacts of clipping-and-burning on bacterial resource acquisition and its soil carbon, nitrogen, and phosphorous stoichiometry (C:N:P) remain unclear, yet are critical for nutrient cycling and SOC accumulation in vegetation restoration. We examined the soil C:N:P and eco-enzymatic stoichiometry, bacterial life-history strategies, and bacterial resource limitation under the influence of clipping-and-burning management practices: high-intensity fire (HIF), low-intensity fire (LIF), clipping-and-fire (CF), clipping (CP), and an undisturbed control (CK) in a Karst site in southwest China. The results showed that SOC, TN, and TP in HIF and LIF were significantly (p < 0.05) reduced (by 64%, 97%, and 99%) compared to CK. However, soil C:N, C:P, and N:P ratios were surprisingly higher (18.1, 56, and 3.08) in CF than in CK. The ratios of soil microbial biomass carbon (MBC) and nitrogen (MBN) were higher (4.8) under clipping. In contrast, their ratios with microbial biomass phosphorus (MBP) were observed to be higher (22.3 and 6.4) under high-intensity fire compared to CK. Moreover, results show that there is a higher percentage of species linked with oligotroph bacteria of Rickettsiales in CF treatments than CK. Soil bacterial communities in CF treatments exhibited co-limitation by C and P, whereas N limitation was more pronounced under low-intensity fire conditions. In conclusion, the evidence links MRL to soil C:N:P stoichiometry, underscoring the critical role of oligotrophic bacteria in mediating soil nutrient dynamics under clipping-and-burning disturbances. These findings improve our understanding of MRL over the Karst region under clipping-and-burning treatments, shedding light on its relationship with soil C:N:P, eco-enzymatic stoichiometry, and bacterial life-history strategies.
Collapse
Affiliation(s)
- Ansa Rebi
- Jianshui Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Efficient Production of Forestry Resources, Beijing Forestry University, Beijing, 100083, China; Engineering Research Centre of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Guan Wang
- Jianshui Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Efficient Production of Forestry Resources, Beijing Forestry University, Beijing, 100083, China; Engineering Research Centre of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Tao Yang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jasper Kanomanyanga
- Lincoln Institute for Agri-Food Technology, University of Lincoln, Lincoln, LN6 7TS, United Kingdom; NIAB, Cambridge, CB3 0LE, United Kingdom
| | - Irsa Ejaz
- Department of Crop Science, Division of Agronomy, University of Göttingen, Göttingen, 37075, Germany
| | - Adnan Mustafa
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Jinxing Zhou
- Jianshui Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Efficient Production of Forestry Resources, Beijing Forestry University, Beijing, 100083, China; Engineering Research Centre of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
15
|
Yang J, Chen Z, Dai J, Liu F, Zhu J. Research on the optimal ratio of improved electrolytic manganese residue substrate about Pennisetum sinese Roxb growth effects. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2206-2215. [PMID: 39049592 DOI: 10.1080/15226514.2024.2379610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Electrolytic manganese slag (EMR) is a solid waste generated in the manganese hydrometallurgy process. It not only takes up significant land space but also contains Mn2+, which can lead to environmental contamination. There is a need for research on the treatment and utilization of EMR. Improved EMR substrate for Pennisetum sinese Roxb growth was determined in pot planting experiments. The study tested the effects of leaching solution, microorganisms, leaf cell structures, and growth data. Results indicated a substrate of 45% EMR, 40% phosphogypsum, 5% Hericium erinaceus fungi residue, 5% quicklime, and 5% dolomite sand significantly increased the available phosphorus content (135.54 ± 2.88 μg·g-1) by 17.95 times, compared to pure soil, and enhanced the relative abundance of dominant bacteria. After 240 days, the plant height (147.00 ± 0.52 cm), number of tillers (6), and aerial dry weight (144.00 ± 15.99g) of Pennisetum sinese Roxb increased by 5.81%, 200%, and 32.58%, respectively. Analyses of leaves and leaching solution revealed that the highest leaf Mn content (46.84 ± 2.91 μg·g-1) being 3.38 times higher than in pure soil, and the leaching solution Mn content (0.66 ± 0.13 μg·g-1) was lowest. Our study suggested P. sinese Roxb grown in an improved EMR substrate could be a feasible option for solidification treatment and resource utilization of EMR.
Collapse
Affiliation(s)
- Jian Yang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, Guiyang, China
| | - Zuyong Chen
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, China
| | - Jie Dai
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, Guiyang, China
| | - Fang Liu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, Guiyang, China
| | - Jian Zhu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, Guiyang, China
| |
Collapse
|
16
|
Foley MM, Stone BWG, Caro TA, Sokol NW, Koch BJ, Blazewicz SJ, Dijkstra P, Hayer M, Hofmockel K, Finley BK, Mack M, Marks J, Mau RL, Monsaint-Queeney V, Morrissey E, Propster J, Purcell A, Schwartz E, Pett-Ridge J, Fierer N, Hungate BA. Growth rate as a link between microbial diversity and soil biogeochemistry. Nat Ecol Evol 2024; 8:2018-2026. [PMID: 39294403 DOI: 10.1038/s41559-024-02520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/25/2024] [Indexed: 09/20/2024]
Abstract
Measuring the growth rate of a microorganism is a simple yet profound way to quantify its effect on the world. The absolute growth rate of a microbial population reflects rates of resource assimilation, biomass production and element transformation-some of the many ways in which organisms affect Earth's ecosystems and climate. Microbial fitness in the environment depends on the ability to reproduce quickly when conditions are favourable and adopt a survival physiology when conditions worsen, which cells coordinate by adjusting their relative growth rate. At the population level, relative growth rate is a sensitive metric of fitness, linking survival and reproduction to the ecology and evolution of populations. Techniques combining omics and stable isotope probing enable sensitive measurements of the growth rates of microbial assemblages and individual taxa in soil. Microbial ecologists can explore how the growth rates of taxa with known traits and evolutionary histories respond to changes in resource availability, environmental conditions and interactions with other organisms. We anticipate that quantitative and scalable data on the growth rates of soil microorganisms, coupled with measurements of biogeochemical fluxes, will allow scientists to test and refine ecological theory and advance process-based models of carbon flux, nutrient uptake and ecosystem productivity. Measurements of in situ microbial growth rates provide insights into the ecology of populations and can be used to quantitatively link microbial diversity to soil biogeochemistry.
Collapse
Affiliation(s)
- Megan M Foley
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA.
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.
| | - Bram W G Stone
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tristan A Caro
- Department of Geological Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - Noah W Sokol
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Benjamin J Koch
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Steven J Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Paul Dijkstra
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Michaela Hayer
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Kirsten Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Brianna K Finley
- Department of Ecology, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michelle Mack
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Jane Marks
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Rebecca L Mau
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Victoria Monsaint-Queeney
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Ember Morrissey
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, USA
| | - Jeffrey Propster
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biology, New Mexico Highlands University, Las Vegas, NM, USA
| | - Alicia Purcell
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life & Environmental Sciences Department, University of California, Merced, Merced, CA, USA
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
17
|
Xu M, Xi J, Liu Y, Li S. Adaptation strategies of soil microorganisms in resource changes and stoichiometric imbalances induced by secondary succession on the loess plateau. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122668. [PMID: 39332301 DOI: 10.1016/j.jenvman.2024.122668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/11/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Sequestering farmland for secondary succession is an effective method of restoring ecosystem services to degraded farmland, but long-term secondary succession often alters ecosystem environments, resources, and substrate stoichiometry. Currently, it is not known how resource changes and stoichiometric imbalances due to secondary succession affect soil microbial community structure and function, hindering our understanding of the natural resilience for degraded ecosystems. Here, we assessed nutrient limitation elements, community structure, metabolic functions, co-occurrence network complexity, and community stability of soil microorganisms during secondary succession of abandoned farmlands on the Loess Plateau. Results showed that secondary succession significantly altered plant characteristics and soil properties, as well as causing stoichiometry imbalances in nutrient resources. Along the secondary succession chronosequence, microbial nutrient metabolism shifted from phosphorus (P) limitation to carbon (C) and nitrogen (N) co-limitation. Microbial diversity, eutrophic flora, plant growth-promoting bacteria, and metabolism functional groups increased significantly during the 20 years after the abandonment of the farmlands, but decreased significantly with long-term succession. However, oligotrophic flora and P-solubilizing bacteria became dominant after 30 years of secondary succession on abandoned farmlands. The topological features of microbial co-occurring networks, including nodes, degree, closeness, betweenness, and eigenvector complexity, natural connectivity, and community stability first increased and then decreased with secondary succession. Correlation and random forest analyses indicated that secondary succession-induced stoichiometry imbalances in C:N and N:P, as well as changes in soil organic C and lignin phenols, were the key factors influencing microbial community structure and function. Overall, these results enhance our understanding of the adaptation strategies of soil microbial communities in ecologically managed regions to changes in ecosystem resources and stoichiometric imbalances.
Collapse
Affiliation(s)
- Miaoping Xu
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jiazhen Xi
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yushu Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shiqing Li
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, 730070 Gansu, China.
| |
Collapse
|
18
|
Qiao R, Song Z, Chen Y, Xu M, Yang Q, Shen X, Yu D, Zhang P, Ding C, Guo H. Planting density effect on poplar growth traits and soil nutrient availability, and response of microbial community, assembly and function. BMC PLANT BIOLOGY 2024; 24:1035. [PMID: 39482578 PMCID: PMC11529485 DOI: 10.1186/s12870-024-05648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND The interaction between soil characteristics and microbial communities is crucial for poplar growth under different planting densities. Yet, little is understood about their relationships and how they respond to primary environmental drivers across varying planting densities. RESULTS In this study, we investigated poplar growth metrics, soil characteristics, and community assembly of soil bacterial and fungal communities in four poplar genotypes (M1316, BT17, S86, and B331) planted at low, medium, and high densities. Our findings reveal that planting density significantly influenced poplar growth, soil nutrients, and microbial communities (P < 0.05). Lower and medium planting densities supported superior poplar growth, higher soil nutrient levels, increased microbial diversity, and more stable microbial co-occurrence networks. The assembly of bacterial communities in plantation soils was predominantly deterministic (βNTI < -2), while fungal communities showed more stochastic assembly patterns (-2 < βNTI < 2). Soil available phosphorus (AP) and potassium (AK) emerged as pivotal factors shaping microbial communities and influencing bacterial and fungal community assembly. Elevated AP levels promoted the recruitment of beneficial bacteria such as Bacillus and Streptomyces, known for their phosphate-solubilizing abilities. This facilitated positive feedback regulation of soil AP, forming beneficial loops in soils with lower and medium planting densities. CONCLUSIONS Our study underscores the critical role of planting density in shaping soil microbial communities and their interaction with poplar growth. This research carries significant implications for enhancing forest management practices by integrating microbiological factors to bolster forest resilience and productivity.
Collapse
Affiliation(s)
- Rongye Qiao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
| | - Zhen Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yinglong Chen
- UWA School of Agriculture and Environment, UWA Institute of Agriculture, Perth, WA, 6009, Australia
| | - Mingzhen Xu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
| | - Qiqi Yang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
| | - Xiaolei Shen
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
| | - Dingyi Yu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
| | - Pingdong Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Hui Guo
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China.
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing, 100083, China.
| |
Collapse
|
19
|
Boustany A, Feuerstadt P, Tillotson G. The 3 Ds: Depression, Dysbiosis, and Clostridiodes difficile. Adv Ther 2024; 41:3982-3995. [PMID: 39276186 PMCID: PMC11480130 DOI: 10.1007/s12325-024-02972-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/12/2024] [Indexed: 09/16/2024]
Abstract
This paper explores the intricate relationship between depression, gut dysbiosis, and Clostridioides difficile infections, collectively termed "The 3 Ds". Depression is a widespread mental disorder increasing in prevalence. It is recognized for its societal burden and complex pathophysiology, encompassing genetic, environmental, and microbiome-related factors. The consequent increased use of antidepressants has led to growing concerns about their effects on the gut microbiome. Various classes of antidepressants and antipsychotics show antimicrobial activity, potentially leading to shifts in the gut microbiome and contributing to the development of dysbiosis. Dysbiosis, in turn, can predispose individuals to opportunistic infections like C. difficile, a significant healthcare concern due to its high recurrence rates and severe impact on patients' quality of life. Further, the link between antidepressant use and an increased risk of C. difficile infection (CDI) is explored and, finally, the emergence of live biotherapeutic products as novel treatment options for recurrent CDI is discussed.
Collapse
Affiliation(s)
- Antoine Boustany
- Department of Internal Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Paul Feuerstadt
- Yale University School of Medicine, New Haven, CT, USA
- PACT-Gastroenterology Center, Hamden, CT, USA
| | | |
Collapse
|
20
|
Zheng Y, Su F, Li H, Song F, Wei C, Cui P. Structure and Function of Soil Bacterial Communities in the Different Wetland Types of the Liaohe Estuary Wetland. Microorganisms 2024; 12:2075. [PMID: 39458385 PMCID: PMC11509890 DOI: 10.3390/microorganisms12102075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Soil bacterial communities play a crucial role in the functioning of estuarine wetlands. Investigating the structure and function of these communities across various wetland types, along with the key factors influencing them, is essential for understanding the relationship between bacteria and wetland ecosystems. The Liaohe Estuary Wetland formed this study's research area, and soil samples from four distinct wetland types were utilized: suaeda wetlands, reed wetlands, pond returning wetlands, and tidal flat wetlands. The structure and function of the soil bacterial communities were examined using Illumina MiSeq high-throughput sequencing technology in conjunction with the PICRUSt analysis method. The results indicate that different wetland types significantly affect the physical and chemical properties of soil, as well as the structure and function of bacterial communities. The abundance and diversity of soil bacterial communities were highest in the suaeda wetland and lowest in the tidal flat wetland. The dominant bacterial phyla identified were Proteobacteria and Bacteroidota. Furthermore, the dominant bacterial genera identified included RSA9, SZUA_442, and SP4260. The primary functional pathways associated with the bacterial communities involved the biosynthesis of valine, leucine, and isoleucine, as well as lipoic acid metabolism, which are crucial for the carbon and nitrogen cycles. This study enhances our understanding of the mutual feedback between river estuary wetland ecosystems and environmental changes, providing a theoretical foundation for the protection and management of wetlands.
Collapse
Affiliation(s)
- Yunlong Zheng
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Fangli Su
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang 110866, China
- Liaoning Shuangtai Estuary Wetland Ecosystem Research Station, Panjin 124112, China
- Liaoning Provincial Key Laboratory of Soil Erosion and Ecological Restoration, Shenyang 110866, China
| | - Haifu Li
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang 110866, China
- Liaoning Shuangtai Estuary Wetland Ecosystem Research Station, Panjin 124112, China
- Liaoning Provincial Key Laboratory of Soil Erosion and Ecological Restoration, Shenyang 110866, China
| | - Fei Song
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang 110866, China
- Liaoning Shuangtai Estuary Wetland Ecosystem Research Station, Panjin 124112, China
- Liaoning Provincial Key Laboratory of Soil Erosion and Ecological Restoration, Shenyang 110866, China
| | - Chao Wei
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang 110866, China
- Liaoning Shuangtai Estuary Wetland Ecosystem Research Station, Panjin 124112, China
- Liaoning Provincial Key Laboratory of Soil Erosion and Ecological Restoration, Shenyang 110866, China
| | - Panpan Cui
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
21
|
Yan B, Deng T, Shi L. Towards Sustainable Productivity of Greenhouse Vegetable Soils: Limiting Factors and Mitigation Strategies. PLANTS (BASEL, SWITZERLAND) 2024; 13:2885. [PMID: 39458833 PMCID: PMC11511448 DOI: 10.3390/plants13202885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Greenhouse vegetable production has become increasingly important in meeting the increasing global food demand. Yet, it faces severe challenges in terms of how to maintain soil productivity from a long-term perspective. This review discusses the main soil productivity limiting factors for vegetables grown in greenhouses and identifies strategies that attempt to overcome these limitations. The main processes leading to soil degradation include physical (e.g., compaction), chemical (e.g., salinization, acidification, and nutrient imbalances), and biological factors (e.g., biodiversity reduction and pathogen buildup). These processes are often favored by intensive greenhouse cultivation. Mitigation strategies involve managing soil organic matter and mineral nutrients and adopting crop rotation. Future research should focus on precisely balancing soil nutrient supply with vegetable crop demands throughout their life cycle and using targeted organic amendments to manage specific soil properties. To ensure the successful adoption of recommended strategies, socioeconomic considerations are also necessary. Future empirical research is required to adapt socioeconomic frameworks, such as Science and Technology Backyard 2.0, from cereal production systems to greenhouse vegetable production systems. Addressing these issues will enable the productivity of greenhouse vegetable soils that meet growing vegetable demand to be sustained using limited soil resources.
Collapse
Affiliation(s)
- Bofang Yan
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Tenghaobo Deng
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Liangliang Shi
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| |
Collapse
|
22
|
Gao L, Okoye CO, Wang C, Lou F, Jiang J. Enhanced Remediation of Phenanthrene and Naphthalene by Corn-Bacterial Consortium in Contaminated Soil. PLANTS (BASEL, SWITZERLAND) 2024; 13:2839. [PMID: 39458786 PMCID: PMC11511142 DOI: 10.3390/plants13202839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
The persistent and hazardous nature of polycyclic aromatic hydrocarbons (PAHs) released into the soil has become a critical global concern, contributing to environmental pollution. In this study, the removal efficiency of phenanthrene and naphthalene degradation by complex flora or pure bacteria combined with corn and their effects on the growth of corn, pH, and the number of soil bacteria were investigated using a pot experiment. The results indicate that the corn remediation method (P) outperformed degrading bacteria remediation (B) for phenanthrene, yet the combination (PB) exhibited significantly higher removal efficiency. The degradation efficiency of PB methods increased over time, ranging from 58.40% to 75.13% after 30 days. Naphthalene removal showed a similar trend. Soil pH, influenced by remediation methods, experienced slight but non-significant increases. The number of degrading bacteria increased with combined methods, notably with PB-W1 and PB-W2 treatments. Corn accumulated phenanthrene and naphthalene, with higher concentrations in roots. Remediation by the combined corn and degrading bacteria slightly increased PAH accumulation, indicating potential root protection. Biomass yield analysis revealed the inhibitory effects of PAHs on corn growth, decreased by degrading bacteria. PB-W1 and PB-EF3 demonstrated the highest fresh weight and moisture content for stem and leaf biomass, while PB-F2-6 excelled in root biomass. Overall, combined remediation methods proved more effective, which underscores the potential of the corn and degrading bacteria consortium for efficient PAH remediation in contaminated soil.
Collapse
Affiliation(s)
- Lu Gao
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (L.G.); (C.O.O.); (C.W.); (F.L.)
| | - Charles Obinwanne Okoye
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (L.G.); (C.O.O.); (C.W.); (F.L.)
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
- Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria
| | - Congsheng Wang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (L.G.); (C.O.O.); (C.W.); (F.L.)
| | - Feiyue Lou
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (L.G.); (C.O.O.); (C.W.); (F.L.)
| | - Jianxiong Jiang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (L.G.); (C.O.O.); (C.W.); (F.L.)
| |
Collapse
|
23
|
Liao H, Liu C, Zhou S, Liu C, Eldridge DJ, Ai C, Wilhelm SW, Singh BK, Liang X, Radosevich M, Yang QE, Tang X, Wei Z, Friman VP, Gillings M, Delgado-Baquerizo M, Zhu YG. Prophage-encoded antibiotic resistance genes are enriched in human-impacted environments. Nat Commun 2024; 15:8315. [PMID: 39333115 PMCID: PMC11437078 DOI: 10.1038/s41467-024-52450-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 09/07/2024] [Indexed: 09/29/2024] Open
Abstract
The spread of antibiotic resistance genes (ARGs) poses a substantial threat to human health. Phage-mediated transduction could exacerbate ARG transmission. While several case studies exist, it is yet unclear to what extent phages encode and mobilize ARGs at the global scale and whether human impacts play a role in this across different habitats. Here, we combine 38,605 bacterial genomes, 1432 metagenomes, and 1186 metatranscriptomes across 12 contrasting habitats to explore the distribution of prophages and their cargo ARGs in natural and human-impacted environments. Worldwide, we observe a significant increase in the abundance, diversity, and activity of prophage-encoded ARGs in human-impacted habitats linked with relatively higher risk of past antibiotic exposure. This effect was driven by phage-encoded cargo ARGs that could be mobilized to provide increased resistance in heterologous E. coli host for a subset of analyzed strains. Our findings suggest that human activities have altered bacteria-phage interactions, enriching ARGs in prophages and making ARGs more mobile across habitats globally.
Collapse
Affiliation(s)
- Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chen Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Chunqin Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - David J Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Chaofan Ai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Steven W Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, TN, USA
| | - Brajesh K Singh
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Xiaolong Liang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning Province, China
| | - Mark Radosevich
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN, USA
| | - Qiu-E Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiang Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhong Wei
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | | | - Michael Gillings
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas, Seville, Spain.
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
24
|
Brakhage AA. Microbial hub signaling compounds: natural products disproportionally shape microbiome composition and structure. MICROLIFE 2024; 5:uqae017. [PMID: 39318451 PMCID: PMC11421377 DOI: 10.1093/femsml/uqae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/05/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
Microbiomes are shaped by abiotic factors like nutrients, oxygen availability, pH, temperature, and so on, but also by biotic factors including low molecular weight organic compounds referred to as natural products (NPs). Based on genome analyses, millions of these compounds are predicted to exist in nature, some of them have found important applications e.g. as antibiotics. Based on recent data I propose a model that some of these compounds function as microbial hub signaling compounds, i.e. they have a higher hierarchical influence on microbiomes. These compounds have direct effects e.g. by inhibiting microorganisms and thereby exclude them from a microbiome (excluded). Some microorganisms do not respond at all (nonresponder), others respond by producing themselves NPs like a second wave of information molecules (message responder) influencing other microorganisms, but conceivably a more limited spectrum. Some microorganisms may respond to the hub compounds with their chemical modification (message modifiers). This way, the modified NPs may have themselves signaling function for a subset of microorganisms. Finally, it is also likely that NPs act as food source (C- and/or N-source) for microorganisms specialized on their degradation. As a consequence, such specialized microorganisms are selectively recruited to the microbiota.
Collapse
Affiliation(s)
- Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, 07745 Jena, Germany
| |
Collapse
|
25
|
Fernández-Triana I, Rubilar O, Parada J, Fincheira P, Benavides-Mendoza A, Durán P, Fernández-Baldo M, Seabra AB, Tortella GR. Metal nanoparticles and pesticides under global climate change: Assessing the combined effects of multiple abiotic stressors on soil microbial ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173494. [PMID: 38810746 DOI: 10.1016/j.scitotenv.2024.173494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
The soil is a vital resource that hosts many microorganisms crucial in biogeochemical cycles and ecosystem health. However, human activities such as the use of metal nanoparticles (MNPs), pesticides and the impacts of global climate change (GCCh) can significantly affect soil microbial communities (SMC). For many years, pesticides and, more recently, nanoparticles have contributed to sustainable agriculture to ensure continuous food production to sustain the significant growth of the world population and, therefore, the demand for food. Pesticides have a recognized pest control capacity. On the other hand, nanoparticles have demonstrated a high ability to improve water and nutrient retention, promote plant growth, and control pests. However, it has been reported that their accumulation in agricultural soils can also adversely affect the environment and soil microbial health. In addition, climate change, with its variations in temperature and extreme water conditions, can lead to drought and increased soil salinity, modifying both soil conditions and the composition and function of microbial communities. Abiotic stressors can interact and synergistically or additively affect soil microorganisms, significantly impacting soil functioning and the capacity to provide ecosystem services. Therefore, this work reviewed the current scientific literature to understand how multiple stressors interact and affect the SMC. In addition, the importance of molecular tools such as metagenomics, metatranscriptomics, proteomics, or metabolomics in the study of the responses of SMC to exposure to multiple abiotic stressors was examined. Future research directions were also proposed, focusing on exploring the complex interactions between stressors and their long-term effects and developing strategies for sustainable soil management. These efforts will contribute to the preservation of soil health and the promotion of sustainable agricultural practices.
Collapse
Affiliation(s)
- I Fernández-Triana
- Doctoral Program in Science of Natural Resources, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - O Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile; Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - J Parada
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile
| | - P Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile
| | - A Benavides-Mendoza
- Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, 25315 Saltillo, Mexico
| | - P Durán
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco, Chile
| | - Martín Fernández-Baldo
- Department of Animal and Plant Biology, University of Londrina, PR 445, km 380, CEP 86047-970 Londrina, PR, Brazil
| | - A B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André, Brazil
| | - G R Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile; Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
26
|
Qiao J, Zheng J, Li S, Zhang F, Zhang B, Zhao M. Impact of climate warming on soil microbial communities during the restoration of the inner Mongolian desert steppe. Front Microbiol 2024; 15:1458777. [PMID: 39309524 PMCID: PMC11412859 DOI: 10.3389/fmicb.2024.1458777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Grazer exclosure is widely regarded as an effective measure for restoring degraded grasslands, having positive effects on soil microbial diversity. The Intergovernmental Panel on Climate Change (IPCC) predicts that global surface temperatures will increase by 1.5-4.5°C by the end of the 21st century, which may affect restoration practices for degraded grasslands. This inevitability highlights the urgent need to study the effect of temperature on grassland soil microbial communities, given their critical ecological functions. Methods Here, we assessed the effects of heavy grazing (control), grazer exclosure, and grazer exclosure plus warming by 1.5°C on soil microbial community diversity and network properties as well as their relationships to soil physicochemical properties. Results and discussion Our results showed that grazer closure increased soil microbial richness relative to heavy grazing controls. Specifically, bacterial richness increased by 7.9%, fungal richness increased by 20.2%, and the number of fungal network nodes and edges increased without altering network complexity and stability. By contrast, grazer exclosure plus warming decreased bacterial richness by 9.2% and network complexity by 12.4% compared to heavy grazing controls, while increasing fungal network complexity by 25.8%. Grazer exclosure without warming increased soil ammonium nitrogen content, while warming increased soil nitrate nitrogen content. Soil pH and organic carbon were not affected by either exclosure strategy, but nitrate nitrogen was the dominant soil factor explaining changes in bacterial communities. Conclusion Our findings show that grazer exclosure increases soil microbial diversity which are effective soil restoration measures for degraded desert steppe, but this effect is weakened under warming conditions. Thus, global climate change should be considered when formulating restoration measures for degraded grasslands.
Collapse
Affiliation(s)
| | | | | | | | | | - Mengli Zhao
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
27
|
Huang L, Zhou Y. Influence of thinning on carbon storage mediated by soil physicochemical properties and microbial community composition in large Chinese fir timber plantation. CARBON BALANCE AND MANAGEMENT 2024; 19:29. [PMID: 39225934 PMCID: PMC11373250 DOI: 10.1186/s13021-024-00269-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Thinning practices are useful measures in forest management and play an essential role in maintaining ecological stability. However, the effects of thinning on the soil properties and microbial community in large Chinese fir timber plantations remain unknown. The purpose of this study was to investigate the changes in soil physicochemical properties and microbial community composition in topsoil (0-20 cm) under six different intensities (i.e., 300 (R300), 450 (R450), 600 (R600), 750 (R750) and 900 (R900) trees per hectare and 1650 (R1650) as a control) in a large Chinese fir timber plantation. RESULTS Compared with the CK treatment, thinning significantly altered the contents of soil organic carbon (SOC) and its fractions but not in a linear fashion; these indicators were highest in R900. In addition, thinning did not significantly affect the soil microbial community diversity indices but significantly affected the relative abundance of the core microbial community. Proteobacteria, Acidobacteria, and Actinobacteria were the dominant bacterial phyla; the relative abundances of Proteobacteria and Acidobacteria were highest in R900, and that of Actinobacteria was lowest in R900. The dominant fungal phyla were Ascomycota, Basidiomycota and Mucoromycota; the relative abundance of Ascomycota was lowest in R900, and that of Mucoromycota was highest in R900. The fungal microbial community composition was more sensitive than the bacterial community composition. The activity of the carbon-cycling genes was not linearly correlated with thinning, and the abundance of C-cycle genes was highest in R900. CONCLUSIONS These findings are important because they show that SOC and its fractions and the abundance of the soil microorganism community in large Chinese fir timber plantations can be significantly altered by thinning, thus affecting the capacity for carbon storage. These results may advance our understanding of how the density of large timber plantations could be modified to promote soil carbon storage.
Collapse
Affiliation(s)
- Lei Huang
- College of Forestry, Guizhou University, Guiyang, 550025, China
- Guizhou Academy of Forestry, Guiyang, 550025, China
- Institute for Forest Resources and Environment of Guizhou, Guizhou University, Guiyang, 550025, China
| | - Yunchao Zhou
- College of Forestry, Guizhou University, Guiyang, 550025, China.
- Institute for Forest Resources and Environment of Guizhou, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
28
|
Leveau JHJ. Re-Envisioning the Plant Disease Triangle: Full Integration of the Host Microbiota and a Focal Pivot to Health Outcomes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:31-47. [PMID: 38684078 DOI: 10.1146/annurev-phyto-121423-042021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The disease triangle is a structurally simple but conceptually rich model that is used in plant pathology and other fields of study to explain infectious disease as an outcome of the three-way relationship between a host, a pathogen, and their environment. It also serves as a guide for finding solutions to treat, predict, and prevent such diseases. With the omics-driven, evidence-based realization that the abundance and activity of a pathogen are impacted by proximity to and interaction with a diverse multitude of other microorganisms colonizing the same host, the disease triangle evolved into a tetrahedron shape, which features an added fourth dimension representing the host-associated microbiota. Another variant of the disease triangle emerged from the recently formulated pathobiome paradigm, which deviates from the classical "one pathogen" etiology of infectious disease in favor of a scenario in which disease represents a conditional outcome of complex interactions between and among a host, its microbiota (including microbes with pathogenic potential), and the environment. The result is a version of the original disease triangle where "pathogen" is substituted with "microbiota." Here, as part of a careful and concise review of the origin, history, and usage of the disease triangle, I propose a next step in its evolution, which is to replace the word "disease" in the center of the host-microbiota-environment triad with the word "health." This triangle highlights health as a desirable outcome (rather than disease as an unwanted state) and as an emergent property of host-microbiota-environment interactions. Applied to the discipline of plant pathology, the health triangle offers an expanded range of targets and approaches for the diagnosis, prediction, restoration, and maintenance of plant health outcomes. Its applications are not restricted to infectious diseases only, and its underlying framework is more inclusive of all microbial contributions to plant well-being, including those by mycorrhizal fungi and nitrogen-fixing bacteria, for which there never was a proper place in the plant disease triangle. The plant health triangle also may have an edge as an education and communication tool to convey and stress the importance of healthy plants and their associated microbiota to a broader public and stakeholdership.
Collapse
Affiliation(s)
- Johan H J Leveau
- Department of Plant Pathology, University of California, Davis, California, USA;
| |
Collapse
|
29
|
Fang K, Kou YP, Tang N, Liu J, Zhang XY, He HL, Xia RX, Zhao WQ, Li DD, Liu Q. Differential responses of soil bacteria, fungi and protists to root exudates and temperature. Microbiol Res 2024; 286:127829. [PMID: 39018940 DOI: 10.1016/j.micres.2024.127829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/30/2024] [Indexed: 07/19/2024]
Abstract
The impact of climate warming on soil microbes has been well documented, with studies revealing its effects on diversity, community structure and network dynamics. However, the consistency of soil microbial community assembly, particularly in response to diverse plant root exudates under varying temperature conditions, remains an unresolved issue. To address this issue, we employed a growth chamber to integrate temperature and root exudates in a controlled experiment to examine the response of soil bacteria, fungi, and protists. Our findings revealed that temperature independently regulated microbial diversity, with distinct patterns observed among bacteria, fungi, and protists. Both root exudates and temperature significantly influenced microbial community composition, yet interpretations of these factors varied among prokaryotes and eukaryotes. In addition to phototrophic bacteria and protists, as well as protistan consumers, root exudates determined to varying degrees the enrichment of other microbial functional guilds at specific temperatures. The effects of temperature and root exudates on microbial co-occurrence patterns were interdependent; root exudates primarily simplified the network at low and high temperatures, while responses to temperature varied between single and mixed exudate treatments. Moreover, temperature altered the composition of keystone species within the microbial network, while root exudates led to a decrease in their number. These results emphasize the substantial impact of plant root exudates on soil microbial community responses to temperature, underscoring the necessity for future climate change research to incorporate additional environmental variables.
Collapse
Affiliation(s)
- Kai Fang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; College of Agriculture and Biological Sciences, Dali University, Dali 671003, China
| | - Yong-Ping Kou
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China.
| | - Na Tang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Jia Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Xiao-Ying Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - He-Liang He
- College of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644007, China
| | - Rui-Xue Xia
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Wen-Qiang Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Dan-Dan Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Qing Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China.
| |
Collapse
|
30
|
Zhao S, van der Heijden MGA, Banerjee S, Liu JJ, Gu HD, Zhou N, Yin CH, Peng B, Liu X, Wang BZ, Tian CY. The role of halophyte-induced saline fertile islands in soil microbial biogeochemical cycling across arid ecosystems. Commun Biol 2024; 7:1061. [PMID: 39209991 PMCID: PMC11362332 DOI: 10.1038/s42003-024-06741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Halophyte shrubs, prevalent in arid regions globally, create saline fertile islands under their canopy. This study investigates the soil microbial communities and their energy utilization strategies associated with tamarisk shrubs in arid ecosystems. Shotgun sequencing revealed that high salinity in tamarisk islands reduces functional gene alpha-diversity and relative abundance compared to bare soils. However, organic matter accumulation within islands fosters key halophilic archaea taxa such as Halalkalicoccus, Halogeometricum, and Natronorubrum, linked to processes like organic carbon oxidation, nitrous oxide reduction, and sulfur oxidation, potentially strengthening the coupling of nutrient cycles. In contrast, bare soils harbor salt-tolerant microbes with genes for autotrophic energy acquisition, including carbon fixation, H2 or CH4 consumption, and anammox. Additionally, isotope analysis shows higher microbial carbon use efficiency, N mineralization, and denitrification activity in tamarisk islands. Our findings demonstrate that halophyte shrubs serve as hotspots for halophilic microbes, enhancing microbial nutrient transformation in saline soils.
Collapse
Affiliation(s)
- Shuai Zhao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | | | - Samiran Banerjee
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Jun-Jie Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China.
| | - Hai-Dong Gu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Na Zhou
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Chuan-Hua Yin
- School of Tea and Food Science, Wuyi University, Wuyishan, 354300, China.
| | - Bin Peng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Xu Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210000, China
| | - Bao-Zhan Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210000, China
| | - Chang-Yan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| |
Collapse
|
31
|
Zhang M, Yu X, Jiang G, Zhou L, Liu Z, Li X, Zhang T, Wen J, Xia L, Liu X, Yin H, Meng D. Response of bacterial ecological and functional properties to anthropogenic interventions during maturation of mine sand soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173354. [PMID: 38796007 DOI: 10.1016/j.scitotenv.2024.173354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/27/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
Soil formation is a complex process that starts from the biological development. The ecological principles and biological function in soil are of great importance, whereas their response to anthropogenic intervention has been poorly understood. In this study, a 150-day microcosmic experiment was conducted with the addition of sludge and/or fermented wood chips (FWC) to promote the soil maturation. The results showed that, compared to the control (natural development without anthropogenic intervention), sludge, FWC, and their combination increased the availability of carbon, nitrogen, and potassium, and promoted the soil aggregation. They also enhanced the cellulase activity, microbial biomass carbon (MBC) and bacterial diversity, indicating that anthropogenic interventions promoted the maturation of sand soil. Molecular ecology network and functional analyses indicated that soil maturation was accomplished with the enhancement of ecosystem functionality and stability. Specifically, sludge promoted a transition in bacterial community function from denitrification to nitrification, facilitated the degradation of easily degradable organic matter, and enhanced the autotrophic nutritional mode. FWC facilitated the transition of bacterial function from denitrification to ammonification, promoted the degradation of recalcitrant organic matter, and simultaneously enhanced both autotrophic and heterotrophic nutritional modes. Although both sludge and FWC promoted the soil functionality, they showed distinct mechanistic actions, with sludge enhancing the physical structure, and FWC altering chemical composition. It is also worth emphasizing that sludge and FWC exhibited a synergistic effect in promoting biological development and ecosystem stability, thereby providing an effective avenue for soil maturation.
Collapse
Affiliation(s)
- Min Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China
| | - Xi Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China
| | - Guoping Jiang
- Beijing Research Institute of Chemical Engineering and Metallurgy, Beijing 101148, China
| | - Lei Zhou
- Beijing Research Institute of Chemical Engineering and Metallurgy, Beijing 101148, China
| | - Zhenghua Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China
| | - Xing Li
- Hunan HIKEE Environmental Technology CO., LTD, Changsha 410221, China
| | - Teng Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Hunan urban and Rural Environmental Construction Co., Ltd, Changsha 410118, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China
| | - Jing Wen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Shenzhen Zhongrui Construction Engineering Co., Ltd, Shenzhen 518126, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China
| | - Ling Xia
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China.
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China.
| |
Collapse
|
32
|
Han H, Song P, Jiang Y, Fan J, Khan A, Liu P, Mašek O, Li X. Biochar immobilized hydrolase degrades PET microplastics and alleviates the disturbance of soil microbial function via modulating nitrogen and phosphorus cycles. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134838. [PMID: 38850944 DOI: 10.1016/j.jhazmat.2024.134838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/07/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Microplastics (MPs) pose an emerging threat to soil ecological function, yet effective solutions remain limited. This study introduces a novel approach using magnetic biochar immobilized PET hydrolase (MB-LCC-FDS) to degrade soil polyethylene terephthalate microplastics (PET-MPs). MB-LCC-FDS exhibited a 1.68-fold increase in relative activity in aquatic solutions and maintained 58.5 % residual activity after five consecutive cycles. Soil microcosm experiment amended with MB-LCC-FDS observed a 29.6 % weight loss of PET-MPs, converting PET into mono(2-hydroxyethyl) terephthalate (MHET). The generated MHET can subsequently be metabolized by soil microbiota to release terephthalic acid. The introduction of MB-LCC-FDS shifted the functional composition of soil microbiota, increasing the relative abundances of Microbacteriaceae and Skermanella while reducing Arthobacter and Vicinamibacteraceae. Metagenomic analysis revealed that MB-LCC-FDS enhanced nitrogen fixation, P-uptake and transport, and organic-P mineralization in PET-MPs contaminated soil, while weakening the denitrification and nitrification. Structural equation model indicated that changes in soil total carbon and Simpson index, induced by MB-LCC-FDS, were the driving factors for soil carbon and nitrogen transformation. Overall, this study highlights the synergistic role of magnetic biochar-immobilized PET hydrolase and soil microbiota in degrading soil PET-MPs, and enhances our understanding of the microbiome and functional gene responses to PET-MPs and MB-LCC-FDS in soil systems.
Collapse
Affiliation(s)
- Huawen Han
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Peizhi Song
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China; State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuchao Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Jingwen Fan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Ondřej Mašek
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Crew Building, King's Buildings, Edinburgh EH9 3FF, United Kingdom.
| | - Xiangkai Li
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China.
| |
Collapse
|
33
|
Zhou Y, Liu D, Li F, Dong Y, Jin Z, Liao Y, Li X, Peng S, Delgado-Baquerizo M, Li X. Superiority of native soil core microbiomes in supporting plant growth. Nat Commun 2024; 15:6599. [PMID: 39097606 PMCID: PMC11297980 DOI: 10.1038/s41467-024-50685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/18/2024] [Indexed: 08/05/2024] Open
Abstract
Native core microbiomes represent a unique opportunity to support food provision and plant-based industries. Yet, these microbiomes are often neglected when developing synthetic communities (SynComs) to support plant health and growth. Here, we study the contribution of native core, native non-core and non-native microorganisms to support plant production. We construct four alternative SynComs based on the excellent growth promoting ability of individual stain and paired non-antagonistic action. One of microbiome based SynCom (SC2) shows a high niche breadth and low average variation degree in-vitro interaction. The promoting-growth effect of SC2 can be transferred to non-sterile environment, attributing to the colonization of native core microorganisms and the improvement of rhizosphere promoting-growth function including nitrogen fixation, IAA production, and dissolved phosphorus. Further, microbial fertilizer based on SC2 and composite carrier (rapeseed cake fertilizer + rice husk carbon) increase the net biomass of plant by 129%. Our results highlight the fundamental importance of native core microorganisms to boost plant production.
Collapse
Affiliation(s)
- Yanyan Zhou
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China
| | - Donghui Liu
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China
| | - Fengqiao Li
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuanhua Dong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhili Jin
- Yongzhou Company of Hunan Tobacco Company, Yongzhou, 425000, China
| | - Yangwenke Liao
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaohui Li
- Yongzhou Company of Hunan Tobacco Company, Yongzhou, 425000, China
| | - Shuguang Peng
- Hunan Province Company of China Tobacco Corporation, Changsha, 410004, China.
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Xiaogang Li
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
34
|
Masudi WL, Titilawo Y, Keshinro TA, Cowan AK. Isolation of bacteria with plant growth-promoting properties from microalgae-bacterial flocs produced in high-rate oxidation ponds. ENVIRONMENTAL TECHNOLOGY 2024; 45:4003-4016. [PMID: 37469005 DOI: 10.1080/09593330.2023.2238928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Exploring plant growth-promoting (PGP) bacterial activity of microbial components aggregated by wastewater treatment can reduce dependence on fossil fuel-derived fertilisers. This study describes the isolation and identification of bacteria from microalgae-bacteria flocs (MaB-flocs) generated in high-rate algal oxidation ponds (HRAOP) of an integrated algal pond system (IAPS) remediating municipal wastewater. Amplified 16S rRNA gene sequence analysis determined the molecular identity of the individual strains. Genetic relatedness to known PGP rhizobacteria in the NCBI GenBank database was by metagenomics. Isolated strains were screened for the production of indoles (measured as indole-3-acetic acid; IAA) and an ability to mineralise NH 4 + , PO 4 3 - , and K + . Of the twelve bacterial strains isolated from HRAOP MaB-flocs, four produced indoles, nine mineralised NH 4 + , seven solubilised P, and one K. Potential of isolated strains for PGP activity according to one-way ANOVA on ranks was: ECCN 7b > ECCN 4b > ECCN 6b > ECCN 3b = ECCN 10b > ECCN 1b = ECCN 5b > ECCN 8b > ECCN 2b > ECCN 12b > ECCN 9b = ECCN 11b. Further study revealed that cell-free filtrate from indole-producing cultures of Aeromonas strain ECCN 4b, Enterobacter strain ECCN 7b, and Arthrobacter strain ECCN 6b promoted mung bean adventitious root formation suggestive of the presence of auxin-like biological activity.
Collapse
Affiliation(s)
- Wiya L Masudi
- Institute for Environmental Biotechnology, Rhodes University (EBRU), Makhanda, South Africa
| | - Yinka Titilawo
- Institute for Environmental Biotechnology, Rhodes University (EBRU), Makhanda, South Africa
| | - Taobat A Keshinro
- Institute for Environmental Biotechnology, Rhodes University (EBRU), Makhanda, South Africa
| | - A Keith Cowan
- Institute for Environmental Biotechnology, Rhodes University (EBRU), Makhanda, South Africa
| |
Collapse
|
35
|
Liu H, Li J, Singh BK. Harnessing co-evolutionary interactions between plants and Streptomyces to combat drought stress. NATURE PLANTS 2024; 10:1159-1171. [PMID: 39048724 DOI: 10.1038/s41477-024-01749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Streptomyces is a drought-tolerant bacterial genus in soils, which forms close associations with plants to provide host resilience to drought stress. Here we synthesize the emerging research that illuminates the multifaceted interactions of Streptomyces spp. in both plant and soil environments. It also explores the potential co-evolutionary relationship between plants and Streptomyces spp. to forge mutualistic relationships, providing drought tolerance to plants. We propose that further advancement in fundamental knowledge of eco-evolutionary interactions between plants and Streptomyces spp. is crucial and holds substantial promise for developing effective strategies to combat drought stress, ensuring sustainable agriculture and environmental sustainability in the face of climate change.
Collapse
Affiliation(s)
- Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia.
| | - Jiayu Li
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia.
| |
Collapse
|
36
|
Cai X, Chen C, Singh AK, Zhu X, Liu W. Anthropogenic restoration exhibits more complex and stable microbial co-occurrence patterns than natural restoration in rubber plantations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174935. [PMID: 39053530 DOI: 10.1016/j.scitotenv.2024.174935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/05/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Forest restoration is an effective method for restoring degraded soil ecosystems (e.g., converting primary tropical forests into rubber monoculture plantations; RM). The effects of forest restoration on microbial community diversity and composition have been extensively studied. However, how rubber plantation-based forest restoration reshapes soil microbial communities, networks, and inner assembly mechanisms remains unclear. Here, we explored the effects of jungle rubber mixed (JRM; secondary succession and natural restoration of RM) plantation and introduction of rainforest species (AR; anthropogenic restoration established by mimicking the understory and overstory tree species of native rainforests) to RM stands on soil physico-chemical properties and microbial communities. We found that converting tropical rainforest (RF) to RM decreased soil fertility and simplified microbial composition and co-occurrence patterns, whereas the conversion of RM to JRM and AR exhibited opposite results. These changes were significantly correlated with pH, soil moisture content (SMC), and soil nutrients, suggesting that vegetation restoration can provide a favorable soil microenvironment that promotes the development of soil microorganisms. The complexity and stability of the bacterial-fungal cross-kingdom, bacterial, and fungal networks increased with JRM and AR. Bacterial community assembly was primarily governed by stochastic (78.79 %) and deterministic (59.09 %) processes in JRM and AR, respectively, whereas stochastic processes (limited dispersion) predominantly shaped fungal assembly across all forest stands. AR has more significant benefits than JRM, such as a relatively slower and natural vegetation succession with more nutritive soil conditions, microbial diversity, and complex and stable microbial networks. These results highlight the importance of sustainable forest management to restore soil biodiversity and ecosystem functions after extensive soil degradation and suggest that anthropogenic restoration can more effectively improve soil quality and microbial communities than natural restoration in degraded rubber plantations.
Collapse
Affiliation(s)
- Xiaoyi Cai
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunfeng Chen
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China.
| | - Ashutosh Kumar Singh
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Xiai Zhu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China.
| | - Wenjie Liu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China.
| |
Collapse
|
37
|
Kang H, Xue Y, Cui Y, Moorhead DL, Lambers H, Wang D. Nutrient limitation mediates soil microbial community structure and stability in forest restoration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173266. [PMID: 38759924 DOI: 10.1016/j.scitotenv.2024.173266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Soil microorganisms are often limited by nutrients, representing an important control of heterotrophic metabolic processes. However, how nutrient limitations relate to microbial community structure and stability remains unclear, which creates a knowledge gap to understanding microbial biogeography and community changes during forest restoration. Here, we combined an eco-enzymatic stoichiometry model and high-throughput DNA sequencing to assess the potential roles of nutrient limitation on microbial community structure, assembly, and stability along a forest restoration sequence in the Qinling Mountains, China. Results showed that nutrient limitations tended to decrease during the oak forest restoration. Carbon and phosphorus limitations enhanced community dissimilarity and significantly increased bacterial alpha diversity, but not fungal diversity. Stochastic assembly processes primarily structured both bacterial (average contribution of 74.73 % and 74.17 % in bulk and rhizosheath soils, respectively) and fungal (average contribution of 77.23 % and 72.04 % in bulk and rhizosheath soils, respectively) communities during forest restoration, with nutrient limitation also contributing to the importance of stochastic processes in the bacterial communities. The migration rate (m) for bacteria was 0.19 and 0.23, respectively in both bulk soil and rhizosheath soil, and was greater than that for the fungi (m was 1.19 and 1.41, respectively), indicating a stronger dispersal limitation for fungal communities. Finally, nutrient limitations significantly affected bacterial and fungal co-occurrence with more interconnections occurring among weakly nutrient-limited microbial taxa and nutrient limitations reducing community stability when nutrient availability changed during forest restoration. Our findings highlight the fundamental effects of nutrient limitations on microbial communities and their self-regulation under changing environmental resources.
Collapse
Affiliation(s)
- Haibin Kang
- College of Forestry, Northwest Agriculture & Forestry University, Yangling 712100, China; School of Biological Sciences, The University of Western Australia, Perth 6009, Australia
| | - Yue Xue
- School of Geography and Oceanography, Nanjing University, Nanjing 210023, China
| | - Yongxing Cui
- Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany
| | - Daryl L Moorhead
- Department of Environmental Sciences, University of Toledo, Toledo 43606, USA
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, Perth 6009, Australia
| | - Dexiang Wang
- College of Forestry, Northwest Agriculture & Forestry University, Yangling 712100, China.
| |
Collapse
|
38
|
Guo Y, Gu S, Tanentzap AJ, Wang P, Li Q, Wu K, He P, Liu X, Yu J, Qiu D, Wu J, Zhang Y, Bai G, Lee SMY, Wu Z, Zhou Q. Submerged macrophyte restoration enhanced microbial carbon utilization in shallow lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173357. [PMID: 38772483 DOI: 10.1016/j.scitotenv.2024.173357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
Submerged macrophytes are integral to the functioning of shallow lakes through their interaction with microorganisms. However, we have a limited understanding of how microbial communities in shallow lakes respond when macrophytes are restored after being historically extirpated. Here, we explored the interactions between prokaryotic communities and carbon utilization in two lakes where submerged macrophytes were restored. We found restoration reduced total carbon in sediment by 8.9 %-27.9 % and total organic carbon by 16.7 %-36.9 % relative to control treatment, but had no effects on carbon content in the overlying water. Sediment microbial communities were more sensitive to restoration than planktonic microbes and showed enhanced utilization of simple carbon substrates, such as Tween 40, after restoration. The increase in carbon utilization was attributed to declines in the relative abundance of some genera, such as Saccharicenans and Desertimonas, which were found weakly associated with the utilization of different carbon substrates. These genera likely competed with microbes with high carbon utilization in restored areas, such as Lubomirskia. Our findings highlight how restoring submerged macrophytes can enhance microbial carbon utilization and provide guidance to improve the carbon sequestration capacity of restored shallow lakes.
Collapse
Affiliation(s)
- Yao Guo
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Songsong Gu
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing 10085, China
| | - Andrew J Tanentzap
- Ecosystems and Global Change Group, School of the Environment, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Pei Wang
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qianzheng Li
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kaixuan Wu
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Peng He
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xiangfen Liu
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Junqi Yu
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dongru Qiu
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Junmei Wu
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yi Zhang
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guoliang Bai
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Simon Ming-Yuen Lee
- Department of Food Science and Nutrient, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Zhenbin Wu
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Qiaohong Zhou
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
39
|
MacColl KA, Tosi M, Chagnon PL, MacDougall AS, Dunfield KE, Maherali H. Prairie restoration promotes the abundance and diversity of mutualistic arbuscular mycorrhizal fungi. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2981. [PMID: 38738945 DOI: 10.1002/eap.2981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/12/2024] [Accepted: 03/14/2024] [Indexed: 05/14/2024]
Abstract
Predicting how biological communities assemble in restored ecosystems can assist in conservation efforts, but most research has focused on plants, with relatively little attention paid to soil microbial organisms that plants interact with. Arbuscular mycorrhizal (AM) fungi are an ecologically significant functional group of soil microbes that form mutualistic symbioses with plants and could therefore respond positively to plant community restoration. To evaluate the effects of plant community restoration on AM fungi, we compared AM fungal abundance, species richness, and community composition of five annually cultivated, conventionally managed agricultural fields with paired adjacent retired agricultural fields that had undergone prairie restoration 5-9 years prior to sampling. We hypothesized that restoration stimulates AM fungal abundance and species richness, particularly for disturbance-sensitive taxa, and that gains of new taxa would not displace AM fungal species present prior to restoration due to legacy effects. AM fungal abundance was quantified by measuring soil spore density and root colonization. AM fungal species richness and community composition were determined in soils and plant roots using DNA high-throughput sequencing. Soil spore density was 2.3 times higher in restored prairies compared to agricultural fields, but AM fungal root colonization did not differ between land use types. AM fungal species richness was 2.7 and 1.4 times higher in restored prairies versus agricultural fields for soil and roots, respectively. The abundance of Glomeraceae, a disturbance-tolerant family, decreased by 25% from agricultural to restored prairie soils but did not differ in plant roots. The abundance of Claroideoglomeraceae and Diversisporaceae, both disturbance-sensitive families, was 4.6 and 3.2 times higher in restored prairie versus agricultural soils, respectively. Species turnover was higher than expected relative to a null model, indicating that AM fungal species were gained by replacement. Our findings demonstrate that restoration can promote a relatively rapid increase in the abundance and diversity of soil microbial communities that had been degraded by decades of intensive land use, and community compositional change can be predicted by the disturbance tolerance of soil microbial taxonomic and functional groups.
Collapse
Affiliation(s)
- Kevin A MacColl
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Micaela Tosi
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Pierre-Luc Chagnon
- Institut de recherche en biologie végétale, Université de Montréal, Montréal, Quebec, Canada
| | - Andrew S MacDougall
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Kari E Dunfield
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Hafiz Maherali
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
40
|
Tohtahun K, Kong D, Chai L, Mulati M, Zhao X, Dong X, Zhang W. Diversity and growth-promoting characteristics of rhizosphere bacteria of three naturally growing plants at the sand iron ore restoration area in Qinghe County. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172654. [PMID: 38649044 DOI: 10.1016/j.scitotenv.2024.172654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
It is a great challenge to restore northern mines after mining and achieve optimal results due to the extremely harsh environment and climate, as in Qinghe County of Xinjiang Province, China. Qinghe County has a climate of drought, cold, strong winds, and high altitude. After sand and iron mining, the soil in this area contains a large amount of sand and gravel with extremely low organic matter, nitrogen deficiency, and a high pH of 9.26. Our preliminary studies disclosed that only three plants, including Caligonum junceum, Atraphaxis virgata, and Melilotus albus Medic, can grow naturally in this environment without any artificial management. For effective ecology restoration, this study explored the mechanism of plant-microbial interaction and stress resistance in this environment. It was found that although the soil condition in the sand iron ore landfill area is extreme, the bacterial diversity remained high, with Shannon and Simpson indices reaching 9.135 and 0.994, respectively. The planting of three types of remediation plants did not significantly improve, or even decreased, the soil bacterial diversity index, but greatly changed the composition of dominant bacterial genera. Significant differences in the composition of rhizosphere soil bacterial communities among these three remediation plants were observed. Potential new bacterial species accounted for 9.8 %, and the proportion of unique genera reached 30 % or 50 %, respectively. Among all the isolated strains, 74 % had nitrogen fixation and other growth-promoting properties. In summary, the soil microbial community structure in this extreme environment is unique and diverse. The types of remediation plants play a major role in the composition of the rhizosphere bacterial community structure, and the recruited growth-promoting bacteria are diverse and functional. This study may offer valuable information for further studies in vegetation restoration and aid in ecology restoration, especially under extreme conditions.
Collapse
Affiliation(s)
- Kawsar Tohtahun
- School of Life Sciences, Xinjiang Normal University, Xinyi Road, Urumqi 830046, The People's Republic of China; Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Urumqi 830046, The People's Republic of China
| | - Delong Kong
- School of Life Sciences, Xinjiang Normal University, Xinyi Road, Urumqi 830046, The People's Republic of China; Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Urumqi 830046, The People's Republic of China
| | - Lili Chai
- School of Life Sciences, Xinjiang Normal University, Xinyi Road, Urumqi 830046, The People's Republic of China; Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Urumqi 830046, The People's Republic of China
| | - Mila Mulati
- School of Life Sciences, Xinjiang Normal University, Xinyi Road, Urumqi 830046, The People's Republic of China; Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Urumqi 830046, The People's Republic of China
| | - Xiaoying Zhao
- School of Life Sciences, Xinjiang Normal University, Xinyi Road, Urumqi 830046, The People's Republic of China
| | - Xiuli Dong
- School of Osteopathic Medicine, Campbell University, 4350 US Hwy 421 S, Lillington, NC 27546, USA.
| | - Wei Zhang
- School of Life Sciences, Xinjiang Normal University, Xinyi Road, Urumqi 830046, The People's Republic of China; Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Urumqi 830046, The People's Republic of China.
| |
Collapse
|
41
|
Brüssow F, Bruessow F, Brüssow H. The role of the plant microbiome for forestry, agriculture and urban greenspace in times of environmental change. Microb Biotechnol 2024; 17:e14482. [PMID: 38858806 PMCID: PMC11164675 DOI: 10.1111/1751-7915.14482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 06/12/2024] Open
Abstract
This Lilliput article provides a literature overview on ecological effects of the plant microbiome with a focus on practical application in forestry, agriculture and urban greenspace under the spectre of climate change. After an overview of the mostly bacterial microbiome of the model plant Arabidopsis thaliana, worldwide data from forests reveal ecological differentiation with respect to major guilds of predominantly fungal plant root symbionts. The plant-microbiome association forms a new holobiont, an integrated unit for ecological adaptation and evolutionary selection. Researchers explored the impact of the microbiome on the capacity of plants to adapt to changing climate conditions. They investigated the impact of the microbiome in reforestation programs, after wildfire, drought, salination and pollution events in forestry, grasslands and agriculture. With increasing temperatures plant populations migrate to higher latitudes and higher altitudes. Ecological studies compared the dispersal capacity of plant seeds with that of soil microbes and the response of soil and root microbes to experimental heating of soils. These studies described a succession of microbiome associations and the kinetics of a release of stored soil carbon into the atmosphere enhancing global warming. Scientists explored the impact of synthetic microbial communities (SynComs) on rice productivity or tea quality; of whole soil addition in grassland restoration; or single fungal inoculation in maize fields. Meta-analyses of fungal inoculation showed overall a positive effect, but also a wide variation in effect sizes. Climate change will be particularly prominent in urban areas ("urban heat islands") where more than half of the world population is living. Urban landscape architecture will thus have an important impact on human health and studies started to explore the contribution of the microbiome from urban greenspace to ecosystem services.
Collapse
Affiliation(s)
- Felix Brüssow
- La Comète, Paysage, Architecture et TerritoireGenèveSwitzerland
| | | | - Harald Brüssow
- Laboratory of Gene Technology, Department of BiosystemsKU LeuvenLeuvenBelgium
| |
Collapse
|
42
|
Lewandowská Š, Vaňková Z, Beesley L, Cajthaml T, Wickramasinghe N, Vojar J, Vítková M, Tsang DCW, Ndungu K, Komárek M. Nano zerovalent Fe did not reduce metal(loid) leaching and ecotoxicity further than conventional Fe grit in contrasting smelter impacted soils: A 1-year field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171892. [PMID: 38531450 DOI: 10.1016/j.scitotenv.2024.171892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
The majority of the studies on nanoscale zero-valent iron (nZVI) are conducted at a laboratory-scale, while field-scale evidence is scarce. The objective of this study was to compare the metal(loid) immobilization efficiency of selected Fe-based materials under field conditions for a period of one year. Two contrasting metal(loid) (As, Cd, Pb, Zn) enriched soils from a smelter-contaminated area were amended with sulfidized nZVI (S-nZVI) solely or combined with thermally stabilized sewage sludge and compared to amendment with microscale iron grit. In the soil with higher pH (7.5) and organic matter content (TOC = 12.7 %), the application of amendments resulted in a moderate increase in pH and reduced As, Cd, Pb, and Zn leaching after 1-year, with S-nZVI and sludge combined being the most efficient, followed by iron grit and S-nZVI alone. However, the amendments had adverse impacts on microbial biomass quantity, S-nZVI being the least damaging. In the soil with a lower pH (6.0) and organic matter content (TOC = 2.3 %), the results were mixed; 0.01 M CaCl2 extraction data showed only S-nZVI with sludge as remaining effective in reducing extractable concentrations of metals; on the other hand, Cd and Zn concentrations were increased in the extracted soil pore water solutions, in contrast to the two conventional amendments. Despite that, S-nZVI with sludge enhanced the quantity of microbial biomass in this soil. Additional earthworm avoidance data indicated that they generally avoided soil treated with all Fe-based materials, but the presence of sludge impacted their preferences somewhat. In summary, no significant differences between S-nZVI and iron grit were observed for metal(loid) immobilization, though sludge significantly improved the performance of S-nZVI in terms of soil health indicators. Therefore, this study indicates that S-nZVI amendment of soils alone should be avoided, though further field evidence from a broader range of soils is now required.
Collapse
Affiliation(s)
- Šárka Lewandowská
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
| | - Zuzana Vaňková
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
| | - Luke Beesley
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic; School of Science, Engineering and Environment, Peel Building, University of Salford, Manchester M5 4WT, UK
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague 2, Czech Republic
| | - Niluka Wickramasinghe
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
| | - Jiří Vojar
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
| | - Martina Vítková
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Kuria Ndungu
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579 Oslo, Norway
| | - Michael Komárek
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic.
| |
Collapse
|
43
|
Jones EM, Marken JP, Silver PA. Synthetic microbiology in sustainability applications. Nat Rev Microbiol 2024; 22:345-359. [PMID: 38253793 DOI: 10.1038/s41579-023-01007-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/24/2024]
Abstract
Microorganisms are a promising means to address many societal sustainability challenges owing to their ability to thrive in diverse environments and interface with the microscale chemical world via diverse metabolic capacities. Synthetic biology can engineer microorganisms by rewiring their regulatory networks or introducing new functionalities, enhancing their utility for target applications. In this Review, we provide a broad, high-level overview of various research efforts addressing sustainability challenges through synthetic biology, emphasizing foundational microbiological research questions that can accelerate the development of these efforts. We introduce an organizational framework that categorizes these efforts along three domains - factory, farm and field - that are defined by the extent to which the engineered microorganisms interface with the natural external environment. Different application areas within the same domain share many fundamental challenges, highlighting productive opportunities for cross-disciplinary collaborations between researchers working in historically disparate fields.
Collapse
Affiliation(s)
- Ethan M Jones
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - John P Marken
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Resnick Sustainability Institute, California Institute of Technology, Pasadena, CA, USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
44
|
Qiu T, Peñuelas J, Chen Y, Sardans J, Yu J, Xu Z, Cui Q, Liu J, Cui Y, Zhao S, Chen J, Wang Y, Fang L. Arbuscular mycorrhizal fungal interactions bridge the support of root-associated microbiota for slope multifunctionality in an erosion-prone ecosystem. IMETA 2024; 3:e187. [PMID: 38898982 PMCID: PMC11183171 DOI: 10.1002/imt2.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 06/21/2024]
Abstract
The role of diverse soil microbiota in restoring erosion-induced degraded lands is well recognized. Yet, the facilitative interactions among symbiotic arbuscular mycorrhizal (AM) fungi, rhizobia, and heterotrophic bacteria, which underpin multiple functions in eroded ecosystems, remain unclear. Here, we utilized quantitative microbiota profiling and ecological network analyses to explore the interplay between the diversity and biotic associations of root-associated microbiota and multifunctionality across an eroded slope of a Robinia pseudoacacia plantation on the Loess Plateau. We found explicit variations in slope multifunctionality across different slope positions, associated with shifts in limiting resources, including soil phosphorus (P) and moisture. To cope with P limitation, AM fungi were recruited by R. pseudoacacia, assuming pivotal roles as keystones and connectors within cross-kingdom networks. Furthermore, AM fungi facilitated the assembly and composition of bacterial and rhizobial communities, collectively driving slope multifunctionality. The symbiotic association among R. pseudoacacia, AM fungi, and rhizobia promoted slope multifunctionality through enhanced decomposition of recalcitrant compounds, improved P mineralization potential, and optimized microbial metabolism. Overall, our findings highlight the crucial role of AM fungal-centered microbiota associated with R. pseudoacacia in functional delivery within eroded landscapes, providing valuable insights for the sustainable restoration of degraded ecosystems in erosion-prone regions.
Collapse
Affiliation(s)
- Tianyi Qiu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess PlateauNorthwest A&F UniversityYanglingChina
- College of Natural Resources and EnvironmentNorthwest A&F UniversityYanglingChina
- Key Laboratory of Green Utilization of Critical Non‐metallic Mineral Resources, Ministry of EducationWuhan University of TechnologyWuhanChina
| | - Josep Peñuelas
- Consejo Superior de Investigaciones CientíficasGlobal Ecology Unit Centre de Recerca Ecològica i Aplicacions Forestals‐Consejo Superior de Investigaciones Científicas‐Universitat Autònoma de BarcelonaBellaterraSpain
- Centre de Recerca Ecològica i Aplicacions ForestalsCerdanyola del VallèsCataloniaSpain
| | - Yinglong Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess PlateauNorthwest A&F UniversityYanglingChina
- College of Natural Resources and EnvironmentNorthwest A&F UniversityYanglingChina
- School of Agriculture and Environment, Institute of AgricultureThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Jordi Sardans
- Consejo Superior de Investigaciones CientíficasGlobal Ecology Unit Centre de Recerca Ecològica i Aplicacions Forestals‐Consejo Superior de Investigaciones Científicas‐Universitat Autònoma de BarcelonaBellaterraSpain
- Centre de Recerca Ecològica i Aplicacions ForestalsCerdanyola del VallèsCataloniaSpain
| | - Jialuo Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
| | - Zhiyuan Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess PlateauNorthwest A&F UniversityYanglingChina
- College of Natural Resources and EnvironmentNorthwest A&F UniversityYanglingChina
| | - Qingliang Cui
- Institute of Soil and Water ConservationChinese Academy of Sciences and Ministry of Water ResourcesYanglingChina
| | - Ji Liu
- Hubei Province Key Laboratory for Geographical Process Analysis and SimulationCentral China Normal UniversityWuhanChina
| | - Yongxing Cui
- Institute of BiologyFreie Universität BerlinBerlinGermany
| | - Shuling Zhao
- Institute of Soil and Water ConservationChinese Academy of Sciences and Ministry of Water ResourcesYanglingChina
| | - Jing Chen
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yunqiang Wang
- Chinese Academy of Sciences Center for Excellence in Quaternary Science and Global ChangeChinese Academy of SciencesXi'anChina
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess PlateauNorthwest A&F UniversityYanglingChina
- Key Laboratory of Green Utilization of Critical Non‐metallic Mineral Resources, Ministry of EducationWuhan University of TechnologyWuhanChina
- Institute of Soil and Water ConservationChinese Academy of Sciences and Ministry of Water ResourcesYanglingChina
- Chinese Academy of Sciences Center for Excellence in Quaternary Science and Global ChangeChinese Academy of SciencesXi'anChina
| |
Collapse
|
45
|
Bao X, Chong P, He C, Wang X, Zhang F. Mechanism on the promotion of host growth and enhancement of salt tolerance by Bacillaceae isolated from the rhizosphere of Reaumuria soongorica. Front Microbiol 2024; 15:1408622. [PMID: 38881656 PMCID: PMC11176432 DOI: 10.3389/fmicb.2024.1408622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Salt stress is a major abiotic stress that affects the growth of Reaumuria soongorica and many psammophytes in the desert areas of Northwest China. However, various Plant Growth-Promoting Rhizobacteria (PGPR) have been known to play an important role in promoting plant growth and alleviating the damaging effects of salt stress. In this study, three PGPR strains belonging to Bacillaceae were isolated from the rhizosphere of Reaumuria soongorica by morphological and molecular identification. All isolated strains exhibited capabilities of producing IAA, solubilizing phosphate, and fixing nitrogen, and were able to tolerate high levels of NaCl stress, up to 8-12%. The results of the pot-based experiment showed that salt (400 mM NaCl) stress inhibited Reaumuria soongorica seedlings' growth performance as well as biomass production, but after inoculation with strains P2, S37, and S40, the plant's height significantly increased by 26.87, 17.59, and 13.36%, respectively (p < 0.05), and both aboveground and root fresh weight significantly increased by more than 2 times compared to NaCl treatment. Additionally, inoculation with P2, S37, and S40 strains increased the content of photosynthetic pigments, proline, and soluble protein in Reaumuria soongorica seedlings under NaCl stress, while reducing the content of malondialdehyde and soluble sugars. Metabolomic analysis showed that strain S40 induces Reaumuria soongorica seedling leaves metabolome reprogramming to regulate cell metabolism, including plant hormone signal transduction and phenylalanine, tyrosine, and tryptophan biosynthesis pathways. Under NaCl stress, inoculation with strain S40 upregulated differential metabolites in plant hormone signal transduction pathways including plant hormones such as auxins (IAA), cytokinins, and jasmonic acid. The results indicate that inoculation with Bacillaceae can promote the growth of Reaumuria soongorica seedlings under NaCl stress and enhance salt tolerance by increasing the content of photosynthetic pigments, accumulating osmoregulatory substances, regulating plant hormone levels This study contributes to the enrichment of PGPR strains capable of promoting the growth of desert plants and has significant implications for the psammophytes growth and development in desert regions, as well as the effective utilization and transformation of saline-alkali lands.
Collapse
Affiliation(s)
- Xinguang Bao
- College of Forest of Gansu Agriculture University, Lanzhou, China
| | - Peifang Chong
- College of Forest of Gansu Agriculture University, Lanzhou, China
| | - Cai He
- Wuwei Academy of Forestry, Wuwei, China
| | - Xueying Wang
- College of Forest of Gansu Agriculture University, Lanzhou, China
| | - Feng Zhang
- College of Forest of Gansu Agriculture University, Lanzhou, China
| |
Collapse
|
46
|
Zampolli J, De Giani A, Rossi M, Finazzi M, Di Gennaro P. Who inhabits the built environment? A microbiological point of view on the principal bacteria colonizing our urban areas. Front Microbiol 2024; 15:1380953. [PMID: 38863750 PMCID: PMC11165352 DOI: 10.3389/fmicb.2024.1380953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024] Open
Abstract
Modern lifestyle greatly influences human well-being. Indeed, nowadays people are centered in the cities and this trend is growing with the ever-increasing population. The main habitat for modern humans is defined as the built environment (BE). The modulation of life quality in the BE is primarily mediated by a biodiversity of microbes. They derive from different sources, such as soil, water, air, pets, and humans. Humans are the main source and vector of bacterial diversity in the BE leaving a characteristic microbial fingerprint on the surfaces and spaces. This review, focusing on articles published from the early 2000s, delves into bacterial populations present in indoor and outdoor urban environments, exploring the characteristics of primary bacterial niches in the BE and their native habitats. It elucidates bacterial interconnections within this context and among themselves, shedding light on pathways for adaptation and survival across diverse environmental conditions. Given the limitations of culture-based methods, emphasis is placed on culture-independent approaches, particularly high-throughput techniques to elucidate the genetic and -omic features of BE bacteria. By elucidating these microbiota profiles, the review aims to contribute to understanding the implications for human health and the assessment of urban environmental quality in modern cities.
Collapse
Affiliation(s)
| | | | | | | | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
47
|
Yang Z, Qu J, Qiao L, Jiang M, Zou X, Cao W. Tea and Pleurotus ostreatus intercropping modulates structure of soil and root microbial communities. Sci Rep 2024; 14:11295. [PMID: 38760401 PMCID: PMC11101613 DOI: 10.1038/s41598-024-61883-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024] Open
Abstract
Intercropping with Pleurotus ostreatus has been demonstrated to increase the tea yield and alleviate soil acidification in tea gardens. However, the underlying mechanisms remain elusive. Here, high-throughput sequencing and Biolog Eco analysis were performed to identify changes in the community structure and abundance of soil microorganisms in the P. ostreatus intercropped tea garden at different seasons (April and September). The results showed that the soil microbial diversity of rhizosphere decreased in April, while rhizosphere and non-rhizosphere soil microbial diversity increased in September in the P. ostreatus intercropped tea garden. The diversity of tea tree root microorganisms increased in both periods. In addition, the number of fungi associated with organic matter decomposition and nutrient cycling, such as Penicillium, Trichoderma, and Trechispora, was significantly higher in the intercropped group than in the control group. Intercropping with P. ostreatus increased the levels of total nitrogen (TN), total phosphorus (TP), and available phosphorus (AP) in the soil. It also improved the content of secondary metabolites, such as tea catechins, and polysaccharides in tea buds. Microbial network analysis showed that Unclassified_o__Helotiales, and Devosia were positively correlated with soil TN and pH, while Lactobacillus, Acidothermus, and Monascus were positively correlated with flavone, AE, and catechins in tea trees. In conclusion, intercropping with P. ostreatus can improve the physical and chemical properties of soil and the composition and structure of microbial communities in tea gardens, which has significant potential for application in monoculture tea gardens with acidic soils.
Collapse
Affiliation(s)
- Zhengkai Yang
- College of Tea Sciences, Guizhou University, Guiyang, 550025, China
| | - Jiaojiao Qu
- College of Tea Sciences, Guizhou University, Guiyang, 550025, China.
| | - Lu Qiao
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Meiling Jiang
- College of Tea Sciences, Guizhou University, Guiyang, 550025, China
| | - Xiao Zou
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Wei Cao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
48
|
Robinson JM, Liddicoat C, Muñoz-Rojas M, Breed MF. Restoring soil biodiversity. Curr Biol 2024; 34:R393-R398. [PMID: 38714171 DOI: 10.1016/j.cub.2024.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Soil health is crucial for all terrestrial life, supporting, among other processes, food production, water purification and carbon sequestration. Soil biodiversity - the variety of life within soils - is key to these processes and thus key to soil restoration. Human activities that degrade ecosystems threaten soil biodiversity and associated ecosystem processes. Indeed, 75% of the world's soils are affected by degradation - a figure that could rise to 90% by 2050 if deforestation, overgrazing, urbanisation and other harmful practices persist. Restoring soil biodiversity is a prerequisite for planetary health, and it comes with many challenges and opportunities. Soil directly supports around 60% of all species on Earth, and land degradation poses a major problem for this biodiversity and the ecosystem services that sustain human populations. Indeed, 98% of human calories come from soil, and earthworms alone underpin 6.5% of the world's grain production. Moreover, the total carbon in terrestrial ecosystems is around 3,170 gigatons (1 gigaton (Gt) = 1 billion metric tons), of which approximately 80% (2,500 Gt) is found in soil. Therefore, restoring soil biodiversity is not just a human need but an ecological and Earth-system imperative. It is pivotal for maintaining ecosystem resilience, sustaining agricultural productivity and mitigating climate change impacts.
Collapse
Affiliation(s)
- Jake M Robinson
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia.
| | - Craig Liddicoat
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Miriam Muñoz-Rojas
- Departamento de Biologia Vegetal y Ecologia, Universidad de Sevilla, 41004 Sevilla, Spain; Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Sydney, NSW 2052, Australia
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
49
|
Visca A, Di Gregorio L, Clagnan E, Bevivino A. Sustainable strategies: Nature-based solutions to tackle antibiotic resistance gene proliferation and improve agricultural productivity and soil quality. ENVIRONMENTAL RESEARCH 2024; 248:118395. [PMID: 38307185 DOI: 10.1016/j.envres.2024.118395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
The issue of antibiotic resistance is now recognized by the World Health Organisation (WHO) as one of the major problems in human health. Although its effects are evident in the healthcare settings, the root cause should be traced back to the One Health link, extending from animals to the environment. In fact, the use of organic fertilizers in agroecosystems represents one, if not the primary, cause of the introduction of antibiotics and antibiotic-resistant bacteria into the soil. Since the concentrations of antibiotics introduced into the soil are residual, the agroecosystem has become a perfect environment for the selection and proliferation of antibiotic resistance genes (ARGs). The continuous influx of these emerging contaminants (i.e., antibiotics) into the agroecosystem results in the selection and accumulation of ARGs in soil bacteria, occasionally giving rise to multi-resistant bacteria. These bacteria may harbour ARGs related to various antibiotics on their plasmids. In this context, these bacteria can potentially enter the human sphere when individuals consume food from contaminated agroecosystems, leading to the acquisition of multi-resistant bacteria. Once introduced into the nosocomial environment, these bacteria pose a significant threat to human health. In this review, we analyse how the use of digestate as an organic fertilizer can mitigate the spread of ARGs in agroecosystems. Furthermore, we highlight how, according to European guidelines, digestate can be considered a Nature-Based Solution (NBS). This NBS not only has the ability to mitigate the spread of ARGs in agroecosystems but also offers the opportunity to further improve Microbial-Based Solutions (MBS), with the aim of enhancing soil quality and productivity.
Collapse
Affiliation(s)
- Andrea Visca
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy.
| | - Luciana Di Gregorio
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| | - Elisa Clagnan
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| | - Annamaria Bevivino
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| |
Collapse
|
50
|
Wang X, Wang Z, Chen F, Zhang Z, Fang J, Xing L, Zeng J, Zhang Q, Liu H, Liu W, Ren C, Yang G, Zhong Z, Zhang W, Han X. Deterministic assembly of grassland soil microbial communities driven by climate warming amplifies soil carbon loss. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171418. [PMID: 38460701 DOI: 10.1016/j.scitotenv.2024.171418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
Perturbations in soil microbial communities caused by climate warming are expected to have a strong impact on biodiversity and future climate-carbon (C) feedback, especially in vulnerable habitats that are highly sensitive to environmental change. Here, we investigate the impact of four-year experimental warming on soil microbes and C cycling in the Loess Hilly Region of China. The results showed that warming led to soil C loss, mainly from labile C, and this C loss is associated with microbial response. Warming significantly decreased soil bacterial diversity and altered its community structure, especially increasing the abundance of heat-tolerant microorganisms, but had no effect on fungi. Warming also significantly increased the relative importance of homogeneous selection and decreased "drift" of bacterial and fungal communities. Moreover, warming decreased bacterial network stability but increased fungal network stability. Notably, the magnitude of soil C loss was significantly and positively correlated with differences in bacterial community characteristics under ambient and warming conditions, including diversity, composition, network stability, and community assembly. This result suggests that microbial responses to warming may amplify soil C loss. Combined, these results provide insights into soil microbial responses and C feedback in vulnerable ecosystems under climate warming scenarios.
Collapse
Affiliation(s)
- Xing Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Zhengchen Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Fang Chen
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Zhenjiao Zhang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Jingbo Fang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Liheng Xing
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Jia Zeng
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Qi Zhang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Hanyu Liu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Weichao Liu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Chengjie Ren
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Gaihe Yang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Zekun Zhong
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wei Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Xinhui Han
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|