1
|
Tseng CEJ, Guma E, McDougle CJ, Hooker JM, Zürcher NR. Regional skull translocator protein elevation in autistic adults detected by PET-MRI. Brain Behav Immun 2025; 126:70-79. [PMID: 39904469 DOI: 10.1016/j.bbi.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/26/2025] [Accepted: 02/01/2025] [Indexed: 02/06/2025] Open
Abstract
Immune processes have been implicated in the pathophysiology of autism spectrum disorder (ASD). Brain borders, such as the skull, have recently been highlighted as sites where neuro-immune interactions occur with key consequences for brain immunity. Translocator protein (TSPO), a mitochondrial protein involved in immune functions, was measured in the skull using [11C]PBR28 positron emission tomography-magnetic resonance imaging (PET-MRI) in 38 autistic adults (26 males, 12 females) and 29 age-and sex-matched healthy controls (19 males, 10 females). [11C]PBR28 uptake relative to a pseudo-reference region assessed using standardized uptake value ratio (SUVR) revealed elevated TSPO in autistic adults in frontal and temporal skull. We did not observe an association between [11C]PBR28 uptake in total or regional skull areas and autism symptom severity. C-reactive protein levels were positively associated with [11C]PBR28 uptake in the total skull across participants. Lastly, [11C]PBR28 uptake in the total skull was stable across a 4-month period. This work indicates regional TSPO elevations in the skull in autistic adults, which may suggest immune involvement.
Collapse
Affiliation(s)
- Chieh-En Jane Tseng
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging Charlestown MA USA; Harvard Medical School Boston MA USA
| | - Elisa Guma
- Harvard Medical School Boston MA USA; Lurie Center for Autism, Massachusetts General Hospital Lexington MA USA
| | - Christopher J McDougle
- Harvard Medical School Boston MA USA; Lurie Center for Autism, Massachusetts General Hospital Lexington MA USA
| | - Jacob M Hooker
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging Charlestown MA USA; Harvard Medical School Boston MA USA; Lurie Center for Autism, Massachusetts General Hospital Lexington MA USA
| | - Nicole R Zürcher
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging Charlestown MA USA; Harvard Medical School Boston MA USA; Lurie Center for Autism, Massachusetts General Hospital Lexington MA USA.
| |
Collapse
|
2
|
Nakajima A, Hokari M, Yanagimura F, Saji E, Shimizu H, Toyoshima Y, Yanagawa K, Arakawa M, Yokoseki A, Wakasugi T, Okamoto K, Watanabe K, Minato K, Otsu Y, Nozawa Y, Kobayashi D, Sanpei K, Kikuchi H, Hirohata S, Awamori K, Nawata A, Yamada M, Takahashi H, Nishizawa M, Igarashi H, Sato N, Kakita A, Onodera O, Kawachi I. Long-Term Clinical Landscapes of Spinal Hypertrophic Pachymeningitis With Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis. Neurology 2025; 104:e213420. [PMID: 40106756 PMCID: PMC11919275 DOI: 10.1212/wnl.0000000000213420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/07/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Spinal hypertrophic pachymeningitis (HP) is an extremely rare disorder characterized by the thickening of the spinal dura mater, which harbors distinct repertoires of immune cells due to the unique partitioning of the arachnoid blood-CSF barrier. The objectives were to identify the pathogenesis and therapeutic strategies for spinal HP. METHODS This retrospective cohort study analyzed the clinical and pathologic profiles of patients with idiopathic/immune-mediated HP including spinal HP. RESULTS Among 61 patients with idiopathic/immune-mediated HP, all 6 Japanese patients with spinal HP, with a median observation period of 88.8 months, were myeloperoxidase (MPO)-anti-neutrophil cytoplasmic antibody (ANCA)-seropositive. The MPO-ANCA+ spinal HP cohort had the following characteristics: (1) a predominance of older women; (2) all patients were classified as having microscopic polyangiitis based on the 2022 American College of Rheumatology/European League Against Rheumatism criteria; (3) 83% of patients developed subacute/chronic myelopathy due to extramedullary spinal cord compression; (4) 50% of patients had lesion extension to the epidural compartment and vertebral column; (5) 50% of patients presented with chronic sinusitis, otitis media, or mastoiditis; (6) 33% of patients had involvement of the lower airways or kidneys; (7) a higher disease activity of the nervous system was noted based on the Birmingham Vasculitis Activity Score (BVAS), in contrast to MPO-ANCA+ cranial HP; (8) granulomatous inflammation with myofibroblasts, immune cells including granulocytes, and B-cell follicle-like structures were observed in the thickened dura mater; (9) immunotherapies (with or without surgical decompression) were effective in reducing the modified Rankin Scale score and reduced BVAS during the first active insults; (10) combined immunotherapies with glucocorticoids and cyclophosphamide/rituximab helped in reducing relapses in the long term; and (11) surgical decompression, including laminectomy and duraplasty, was necessary for compressive myelopathy. These data suggest that MPO-ANCA+ spinal HP shares common features with MPO-ANCA+ cranial HP (1, 2, 6, 8, 9, and 10), but also has unique clinical features (3, 4, 5, 7, and 11). DISCUSSION Our findings highlight the significant pathogenic role of ANCA in spinal HP. MPO-ANCA+ spinal HP, as an organ-threatening disease, should be positioned as having unique characteristics, whether limited to the CNS or as part of a generalized form in ANCA-associated vasculitis.
Collapse
Affiliation(s)
- Akihiro Nakajima
- Department of Neurology, Brain Research Institute, Niigata University, Japan
| | - Mariko Hokari
- Department of Neurology, Brain Research Institute, Niigata University, Japan
| | - Fumihiro Yanagimura
- Department of Neurology, Brain Research Institute, Niigata University, Japan
- Department of Neurology, NHO Niigata National Hospital, Kashiwazaki, Japan
| | - Etsuji Saji
- Department of Neurology, Brain Research Institute, Niigata University, Japan
- Department of Neurology, Niigata City General Hospital, Japan
| | - Hiroshi Shimizu
- Department of Pathology, Brain Research Institute, Niigata University, Japan
| | - Yasuko Toyoshima
- Department of Pathology, Brain Research Institute, Niigata University, Japan
- Department of Neurology, Brain Disease Center, Agano Hospital, Agano, Japan
| | - Kaori Yanagawa
- Department of Neurology, Brain Research Institute, Niigata University, Japan
| | - Musashi Arakawa
- Department of Neurology, Brain Research Institute, Niigata University, Japan
- Musashi Clinic, Niigata, Japan
| | - Akiko Yokoseki
- Department of Neurology, Brain Research Institute, Niigata University, Japan
- Department of Neurology, Niigata Medical Center, Japan
| | - Takahiro Wakasugi
- Department of Neurology, Brain Research Institute, Niigata University, Japan
- Department of Neurology, NHO Nishiniigata Chuo Hospital, Niigata, Japan
| | - Kouichirou Okamoto
- Department of Neurosurgery, Brain Research Institute, Niigata University, Japan
| | - Kei Watanabe
- Department of Orthopaedic Surgery, Niigata University Medical and Dental Hospital, Japan
- Niigata Spine Surgery Center, Kameda Daiichi Hospital, Niigata, Japan
| | - Keitaro Minato
- Department of Orthopaedic Surgery, Niigata University Medical and Dental Hospital, Japan
| | - Yutaka Otsu
- Department of Neurology, Brain Research Institute, Niigata University, Japan
| | - Yukiko Nozawa
- Division of Clinical Nephrology and Rheumatology, Graduate School of Medical and Dental Sciences, Niigata University, Japan
| | - Daisuke Kobayashi
- Division of Clinical Nephrology and Rheumatology, Graduate School of Medical and Dental Sciences, Niigata University, Japan
| | | | - Hirotoshi Kikuchi
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Shunsei Hirohata
- Department of Rheumatology, Nobuhara Hospital, Tatsuno, Japan
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Sagamihara, Japan
| | | | - Aya Nawata
- Department of Pathology and Oncology, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Mitsunori Yamada
- Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, Niigata University, Japan
- Department of Pathology and Laboratory Medicine, Niigata Neurosurgical Hospital, Japan
| | - Masatoyo Nishizawa
- Department of Neurology, Brain Research Institute, Niigata University, Japan
- Niigata University of Health and Welfare, Japan
| | - Hironaka Igarashi
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Japan
| | - Noboru Sato
- Division of Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Japan; and
- Medical Education Center, Graduate School of Medical and Dental Sciences, Niigata University, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Japan
| | - Izumi Kawachi
- Department of Neurology, Brain Research Institute, Niigata University, Japan
- Medical Education Center, Graduate School of Medical and Dental Sciences, Niigata University, Japan
| |
Collapse
|
3
|
Manavi Z, Melchor GS, Bullard MR, Gross PS, Ray S, Gaur P, Baydyuk M, Huang JK. Senescent cell reduction does not improve recovery in mice under experimental autoimmune encephalomyelitis (EAE) induced demyelination. J Neuroinflammation 2025; 22:101. [PMID: 40197319 PMCID: PMC11974124 DOI: 10.1186/s12974-025-03425-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/21/2025] [Indexed: 04/10/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by immune cell-driven demyelination and progressive neurodegeneration. Senescent cells (SCs) have recently been observed in chronic MS lesions indicating their possible involvement in disease progression. However, the role of SCs and the potential therapeutic benefit of their reduction through senolytic therapy remains to be determined in experimental autoimmune encephalomyelitis (EAE), a widely used preclinical model of MS. Here, we show that senescent-like myeloid cells accumulate in the spinal cord parenchyma and meninges in mice after myelin oligodendrocyte glycoprotein (MOG33-55) EAE induction. Treatment with the senolytic cocktail, Dasatinib and Quercetin (DQ), effectively reduces the senescent-like myeloid cells, but this does not translate into improved clinical outcomes in EAE mice. Increasing DQ dosage or using INK-ATTAC transgenic mice also failed to ameliorate EAE severity. Additionally, histopathological analysis shows no significant differences in demyelination or axonal degeneration between treated and control groups. Our findings indicate that senescent-like myeloid cells are present in an immune-mediated demyelinating model of MS and can be reduced through senolytic therapy with Dasatinib and Quercetin. However, their reduction through DQ does not significantly impact inflammation or recovery, suggesting that the therapeutic potential of senolytics as disease-modifying drugs in MS may be limited.
Collapse
Affiliation(s)
- Zeeba Manavi
- Department of Biology, Georgetown University, Washington, DC, USA
| | - George S Melchor
- Department of Biology, Georgetown University, Washington, DC, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
| | - Meghan R Bullard
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Phillip S Gross
- Department of Biology, Georgetown University, Washington, DC, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
| | - Shinjini Ray
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Pankaj Gaur
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - Maryna Baydyuk
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Jeffrey K Huang
- Department of Biology, Georgetown University, Washington, DC, USA.
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA.
| |
Collapse
|
4
|
Chen N, Zhang T, Yang X, Wang D, Yu S. Myeloid cells in the microenvironment of brain metastases. Biochim Biophys Acta Rev Cancer 2025; 1880:189311. [PMID: 40189115 DOI: 10.1016/j.bbcan.2025.189311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025]
Abstract
Brain metastasis (BrM) from peripheral solid tumors has a high mortality rate and remains a daunting clinical challenge. In addition to the targeting of tumor cells, studies have focused on the regulation of the tumor microenvironment (TME) for BrM treatment. Here, through a review of recent studies, we revealed that myeloid infiltration is a common feature of the TME in BrMs from different primary sites even though the brain is regarded as an immune-privileged site and is always in an immunosuppressive state. Tumor-educated bone marrow progenitors, especially mesenchymal stem cells (MSCs), may impact the brain tropism and and phenotypic switching of myeloid cells. Additionally, chronic inflammation may be key factors regulating the immunosuppressive TME and myeloid cell reprogramming. Here, the role of myeloid cells in the formation of the TME and strategies for targeting these cells before and after BrM are reviewed, emphasizing the potential for the use of myeloid cells in BrM treatment. However, the direct relationship between the neuronal system and myeloid cell filtration is still unclear and worthy of further study.
Collapse
Affiliation(s)
- Nian Chen
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), ChongQing 400038, China.; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, ChongQing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, ChongQing 400038, China
| | - Tao Zhang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), ChongQing 400038, China.; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, ChongQing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, ChongQing 400038, China
| | - Xianyan Yang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), ChongQing 400038, China.; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, ChongQing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, ChongQing 400038, China
| | - Di Wang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), ChongQing 400038, China.; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, ChongQing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, ChongQing 400038, China; Jin-Feng Laboratory, ChongQing 401329, China.
| | - Shicang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), ChongQing 400038, China.; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, ChongQing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, ChongQing 400038, China; Jin-Feng Laboratory, ChongQing 401329, China.
| |
Collapse
|
5
|
Zhang B, Fagarasan S. Metabolism and metabolites regulating hematopoiesis. Curr Opin Immunol 2025; 93:102525. [PMID: 39827832 DOI: 10.1016/j.coi.2025.102525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/24/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025]
Abstract
Energy metabolism of immune cells, such as glycolysis and mitochondrial activity, requires strict regulation. This is especially critical in the complex environment of the bone marrow (BM), where there is a need to both preserve the quiescence of hematopoietic stem cells (HSCs) and guarantee timed and effective lineage differentiation of the HSCs. Recent advances highlight the critical roles played by bioactive metabolites in regulating hematopoiesis. In particular, secreted immune metabolites (SIMets), such as γ-aminobutyric acid (GABA) and acetylcholine, secreted by B-lineage cells, act as potent modulators of hematopoietic processes, influencing HSC differentiation and emergency hematopoiesis. In this review, we provide an overview and discuss mechanisms by which energy metabolism and SIMets regulate hematopoiesis. We propose that biochemical communication facilitated by these metabolites is essential for maintaining the BM niche and suggest potential therapeutic strategies using SIMets in hematological disorders.
Collapse
Affiliation(s)
- Baihao Zhang
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan.
| | - Sidonia Fagarasan
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan; Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Yang M, Li Y, Shi K, Wang X, Liu X, Huang X, Shi F, Ma S, Li M, Wang Y. Single-Cell Transcriptomes of Immune Cells from Multiple Compartments Redefine the Ontology of Myeloid Subtypes Post-Stroke. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408722. [PMID: 39930981 PMCID: PMC11967789 DOI: 10.1002/advs.202408722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 01/23/2025] [Indexed: 04/05/2025]
Abstract
The activation and infiltration of immune cells are hallmarks of ischemic stroke. However, the precise origins and the molecular alterations of these infiltrating cells post-stroke remain poorly characterized. Here, a murine model of stroke (permanent middle cerebral artery occlusion [p-MCAO]) is utilized to profile single-cell transcriptomes of immune cells in the brain and their potential origins, including the calvarial bone marrow (CBM), femur bone marrow (FBM), and peripheral blood mononuclear cells (PBMCs). This analysis reveals transcriptomically distinct populations of cerebral myeloid cells and brain-resident immune cells after stroke. These include a novel CD14+ neutrophil subpopulation that transcriptomically resembles CBM neutrophils. Moreover, the sequential activation of transcription factor regulatory networks in neutrophils during stroke progression is delineated, many of which are unique to the CD14+ population and underlie their acquisition of chemotaxis and granule release capacities. Two distinct origins of post-stroke disease-related immune cell subtypes are also identified: disease inflammatory macrophages, likely deriving from circulating monocytes in the skull, and transcriptionally immature disease-associated microglia, possibly arising from pre-existing homeostatic microglia. Together, a comprehensive molecular survey of post-stroke immune responses is performed, encompassing both local and distant bone marrow sites and peripheral blood.
Collapse
Affiliation(s)
- Mo Yang
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- Laboratory for Clinical MedicineCapital Medical UniversityBeijing100069China
| | - Yixiang Li
- Department of PharmacologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Kaibin Shi
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- Chinese Institutes for Medical ResearchBeijing100069China
| | - Xuezhu Wang
- Department of PharmacologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiangrong Liu
- China National Clinical Research Center for Neurological DiseasesBeijing100070China
| | - Xiang Huang
- Institute of NeuroscienceCAS Center for Excellence in Brain Science and Intelligence TechnologyUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Fu‐Dong Shi
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
| | - Shaojie Ma
- Institute of NeuroscienceCAS Center for Excellence in Brain Science and Intelligence TechnologyUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University)Ministry of EducationShanghai200433China
| | - Mingfeng Li
- Department of PharmacologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei ProvinceWuhan430030China
- Innovation center for Brain Medical SciencesTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yilong Wang
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- Laboratory for Clinical MedicineCapital Medical UniversityBeijing100069China
- National Center for Neurological DisordersBeijing100070China
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijing100069China
- China National Clinical Research Center for Neurological DiseasesBeijing100070China
- Beijing Laboratory of Oral HealthCapital Medical UniversityBeijing100069China
- Beijing Municipal Key Laboratory of Clinical EpidemiologyBeijing100069China
- Chinese Institute for Brain ResearchBeijing102206China
| |
Collapse
|
7
|
Santos J, Maran PL, Rodríguez-Urrutia A. Stress, microbiota, and the gut-brain axis in mental and digestive health. Med Clin (Barc) 2025; 164:295-304. [PMID: 39824687 DOI: 10.1016/j.medcli.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/20/2025]
Abstract
The prevailing mind-body dualism in contemporary medicine, rooted in reductionism and the fragmentation of knowledge, has impeded the development of a conceptual model that can adequately address the complexity of illnesses. Integrating biomedical data into a cohesive model that considers the mind-body-context interconnections is essential. This integration is not merely theoretical; rather, it has significant clinical implications. This is exemplified by chronic stress-related mental and digestive disorders. The onset and development of these disorders are intimately linked to chronic psychological stress via the brain-gut-microbiota axis. The present article examines the evidence and mechanisms indicating that stress is a primary factor and a potentiator of symptom severity in common mental health and digestive diseases, with a particular focus on human studies. However, due to space limitations, only a very general overview of preventive and therapeutic clinical strategies is provided. It is hoped that the recurring phrase, "Everything that happens to you is due to stress," will become more comprehensible to the physician after reading this manuscript.
Collapse
Affiliation(s)
- Javier Santos
- Gastroenterology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Hospital Campus, Barcelona, Spain; Digestive Physiology and Physiopathology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain; Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| | - Patricia Laura Maran
- Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Amanda Rodríguez-Urrutia
- Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Treatment-Resistant Depression Programme, The Brain-Inmune-Gut Unit, Mental Health Department, Vall d'Hebron Hospital Campus, Barcelona, Spain; Centro de Investigación Biomédica en Red, Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Blanchard AC, Maximova A, Phillips-Jones T, Bruce MR, Anastasiadis P, Dionisos CV, Engel K, Reinl E, Pham A, Malaiya S, Singh N, Ament S, McCarthy MM. Mast cells proliferate in the peri-hippocampal space during early development and modulate local and peripheral immune cells. Dev Cell 2025; 60:853-870.e7. [PMID: 39662467 PMCID: PMC11945645 DOI: 10.1016/j.devcel.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/04/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024]
Abstract
Brain development is a non-linear process of regionally specific epochs occurring during windows of sensitivity to endogenous and exogenous stimuli. We have identified an epoch in the neonatal rat brain defined by a transient population of peri-hippocampal mast cells (phMCs) that are abundant from birth through 2-weeks post-natal but absent thereafter. The phMCs are maintained by proliferation and harbor a unique transcriptome compared with mast cells residing in the skin, bone marrow, or other brain regions. Pharmacological activation of this population broadly increases blood-brain barrier permeability, recruits peripheral immune cells, and stunts local microglia proliferation. Examination of the post-mortem human brain demonstrated mast cells in the peri-hippocampal region of a newborn, but not an older infant, suggesting a similar developmental period exists in humans. Mast cells specifically, and early-life inflammation generally, have been linked to heightened risk for neurodevelopmental disorders, and these results demonstrate a plausible source of that risk.
Collapse
Affiliation(s)
- Alexa C Blanchard
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Medical Scientist Training Program, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anna Maximova
- Medical Scientist Training Program, University of Maryland School of Medicine, Baltimore, MD, USA; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Taylor Phillips-Jones
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew R Bruce
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pavlos Anastasiadis
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA; Medicine Institute for Neuroscience Discovery, University of Maryland, Baltimore, MD 21201, USA
| | - Christie V Dionisos
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kaliroi Engel
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Erin Reinl
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aidan Pham
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sonia Malaiya
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nevil Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Seth Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Medicine Institute for Neuroscience Discovery, University of Maryland, Baltimore, MD 21201, USA
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA; Medicine Institute for Neuroscience Discovery, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
9
|
Takahashi M, Mukhamejanova D, Jasewicz H, Acharya N, Moon JJ, Hara T. Opportunities to Modulate Tumor Ecosystem Toward Successful Glioblastoma Immunotherapy. Cancer Sci 2025. [PMID: 40123277 DOI: 10.1111/cas.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025] Open
Abstract
Over the past decade, the failure of multiple clinical trials has confirmed the need for a systematic and comprehensive understanding of glioblastoma (GBM). Current immunotherapies aiming to harness the immune system to achieve anti-tumor effects remain largely ineffective, highlighting the complexities of the GBM microenvironment. However, our recent understanding of immune niches within the central nervous system provides both opportunities and challenges in translating these insights into successful immunotherapy implementation. We discuss these strategies, including targeting multiple antigens within the heterogeneous GBM microenvironment, identifying new druggable targets to abrogate immunosuppression, and understanding niche-specific immune cell functionality to modulate tumor-immune-stroma interactions.
Collapse
Affiliation(s)
- Mariko Takahashi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Darina Mukhamejanova
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurosurgery, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biology, Nazarbayev University, Astana, Kazakhstan
| | - Himani Jasewicz
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Nandini Acharya
- Pelotonia Institute for Immuno-Oncology, OSUCCC-James, The Ohio State University, Columbus, Ohio, USA
- Department of Neurology, the Neuroscience Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Toshiro Hara
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurosurgery, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
Xu Y, Bai X, Lin J, Lu K, Weng S, Wu Y, Liu S, Li H, Wu Z, Chen G, Li W. Intracranial AAV administration dose-dependently recruits B cells to inhibit the AAV redosing. Mol Ther Methods Clin Dev 2025; 33:101420. [PMID: 40034424 PMCID: PMC11874542 DOI: 10.1016/j.omtm.2025.101420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/22/2025] [Indexed: 03/05/2025]
Abstract
Recombinant adeno-associated virus (rAAV) is a widely used viral vector for gene therapy. However, a limitation of AAV-mediated gene therapy is that patients are typically dosed only once. In this study, we investigated the possibility of delivering multiple rounds of AAV through intracerebral injections in the mouse brain, and discovered a dose-dependent modulation of the second administration by the first-round AAV injection in a brain-wide scale. High-dose AAV injection increased chemokines CXCL9 and CXCL10 to recruit parenchymal infiltration of lymphocytes, whereas the blood-brain-barrier was relatively intact. Brain-wide dissection discovered the likely routes of the infiltrated lymphocytes through perivascular space and ventricles. Further analysis revealed that B lymphocytes played a critical role in inhibiting the redose. Choosing the right dosage for the first injection or switching the second AAV to a different serotype provided an effective way to antagonize the first-round AAV inhibition. Together, these results suggest that mammalian brains are not immunoprivileged for AAV infection, but multiple rounds of AAV gene therapy are feasible if designed carefully with proper doses and serotypes.
Collapse
Affiliation(s)
- Yuge Xu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Xiaoni Bai
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Jianhua Lin
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Kang Lu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Shihan Weng
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Yiying Wu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Shanggong Liu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Houlin Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Zheng Wu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510632, China
| | - Gong Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510632, China
| | - Wen Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510632, China
| |
Collapse
|
11
|
Joly P, Labsy R, Silvin A. Aging and neurodegeneration: when systemic dysregulations affect brain macrophage heterogeneity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkae034. [PMID: 40073104 DOI: 10.1093/jimmun/vkae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/14/2024] [Indexed: 03/14/2025]
Abstract
Microglia, the major population of brain resident macrophages, differentiate from yolk sac progenitors in the embryo and play multiple nonimmune roles in brain organization throughout development and life. Various microglia subtypes have been described by transcriptomic and proteomic signatures, involved metabolic pathways, morphology, intracellular complexity, time of residency, and ontogeny, both in development and in disease settings. Such macrophage heterogeneity increases with aging or neurodegeneration. Monocytes' infiltration and differentiation into monocyte-derived macrophages (MDMs) in the brain contribute to this diversity. Microbiota's role in brain diseases has been recently highlighted, revealing how microbial signals, such as metabolites, influence microglia and MDMs. In this brief review, we describe how these signals can influence microglia through their sensome and shape MDMs from their development in the bone marrow to their differentiation in the brain. Monocytes could then be a crucial player in the constitution of a dysbiotic gut-brain axis in neurodegenerative diseases and aging.
Collapse
Affiliation(s)
- Paul Joly
- INSERM U1015, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, 94805, France
| | - Reyhane Labsy
- INSERM U1015, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, 94805, France
| | - Aymeric Silvin
- INSERM U1015, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, 94805, France
| |
Collapse
|
12
|
Abellanas MA, Purnapatre M, Burgaletto C, Schwartz M. Monocyte-derived macrophages act as reinforcements when microglia fall short in Alzheimer's disease. Nat Neurosci 2025; 28:436-445. [PMID: 39762659 DOI: 10.1038/s41593-024-01847-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/06/2024] [Indexed: 03/12/2025]
Abstract
The central nervous system (CNS) is endowed with its own resident innate immune cells, the microglia. They constitute approximately 10% of the total cells within the CNS parenchyma and act as 'sentinels', sensing and mitigating any deviation from homeostasis. Nevertheless, under severe acute or chronic neurological injury or disease, microglia are unable to contain the damage, and the reparative activity of monocyte-derived macrophages (MDMs) is required. The failure of the microglia under such conditions could be an outcome of their prolonged exposure to hostile stimuli, leading to their exhaustion or senescence. Here, we describe the conditions under which the microglia fall short, focusing mainly on the context of Alzheimer's disease, and shed light on the functions performed by MDMs. We discuss whether and how MDMs engage in cross-talk with the microglia, why their recruitment is often inadequate, and potential ways to augment their homing to the brain in a well-controlled manner.
Collapse
Affiliation(s)
- Miguel A Abellanas
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Chiara Burgaletto
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Schwartz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
13
|
Gao M, Wang X, Su S, Feng W, Lai Y, Huang K, Cao D, Wang Q. Meningeal lymphatic vessel crosstalk with central nervous system immune cells in aging and neurodegenerative diseases. Neural Regen Res 2025; 20:763-778. [PMID: 38886941 PMCID: PMC11433890 DOI: 10.4103/nrr.nrr-d-23-01595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 06/20/2024] Open
Abstract
Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain metabolites but also contribute to antigen delivery and immune cell activation. The advent of novel genomic technologies has enabled rapid progress in the characterization of myeloid and lymphoid cells and their interactions with meningeal lymphatic vessels within the central nervous system. In this review, we provide an overview of the multifaceted roles of meningeal lymphatic vessels within the context of the central nervous system immune network, highlighting recent discoveries on the immunological niche provided by meningeal lymphatic vessels. Furthermore, we delve into the mechanisms of crosstalk between meningeal lymphatic vessels and immune cells in the central nervous system under both homeostatic conditions and neurodegenerative diseases, discussing how these interactions shape the pathological outcomes. Regulation of meningeal lymphatic vessel function and structure can influence lymphatic drainage, cerebrospinal fluid-borne immune modulators, and immune cell populations in aging and neurodegenerative disorders, thereby playing a key role in shaping meningeal and brain parenchyma immunity.
Collapse
Affiliation(s)
- Minghuang Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Xinyue Wang
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shijie Su
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Weicheng Feng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yaona Lai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Kongli Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Dandan Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
14
|
Mengoni M, Tüting T, Gaffal E, Braun AD. Liver Metastases are Associated with a Short Post-Progression Survival in a Real-World Group of Patients with Melanoma Treated with Checkpoint Inhibitors. Oncol Ther 2025; 13:131-143. [PMID: 39661321 PMCID: PMC11880473 DOI: 10.1007/s40487-024-00320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
INTRODUCTION The introduction of immunotherapy (IT) has transformed clinical care of patients with metastatic melanoma. However, many patients still die as a result of progressive disease. Here we analyzed how IT improved survival in a real-world setting. Additionally, we investigated whether IT alters the dynamics and pattern of metastatic progression in different organs resulting from tissue-specific immune microenvironments. METHODS We retrospectively compared a group of 61 patients with metastatic melanoma (24 female, 37 male) treated with IT between 2015 and 2018 with a historical control group of 56 patients with metastatic melanoma (21 female, 35 male) treated with chemotherapy between 2005 and 2008 regarding treatment response rates and overall survival as well as the timing and distribution of metastatic progression. RESULTS Patients with metastatic melanoma treated with IT showed increased response rates and longer overall survival when compared with patients treated with chemotherapy. In addition, treatment with IT altered the dynamics but not the pattern of metastatic progression when compared with treatment with chemotherapy. Interestingly, patients receiving IT lived significantly longer after metastatic progression to lymph nodes, lungs and brain, but not after metastatic progression to the liver. CONCLUSION Our results confirm the efficacy of IT in a real-world setting. The altered dynamics of metastases supports studies suggesting a unique role of immune privilege in the liver tissue microenvironment that increases resistance to immunotherapy.
Collapse
Affiliation(s)
- Miriam Mengoni
- Department of Dermatology, Laboratory for Experimental Dermatology, University Hospital Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Thomas Tüting
- Department of Dermatology, Laboratory for Experimental Dermatology, University Hospital Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Evelyn Gaffal
- Department of Dermatology, Laboratory for Experimental Dermatology, University Hospital Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, 23538, Lübeck, Germany
| | - Andreas D Braun
- Department of Dermatology, Laboratory for Experimental Dermatology, University Hospital Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany.
| |
Collapse
|
15
|
Ayerra L, Shumilov K, Ni A, Aymerich MS, Friess SH, Celorrio M. Chronic traumatic brain injury induces neurodegeneration, neuroinflammation, and cognitive deficits in a T cell-dependent manner. Brain Res 2025; 1850:149446. [PMID: 39800094 DOI: 10.1016/j.brainres.2025.149446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
Traumatic brain injury (TBI) can lead to chronic neuroinflammation, and neurodegeneration associated with long-term cognitive deficits. Following TBI, the acute neuroinflammatory response involves microglial activation and the release of proinflammatory cytokines and chemokines which induce the recruitment of peripheral immune cells such as monocytes and ultimately T cells. Persistent innate and adaptive immune cell responses can lead to chronic neurodegeneration and functional deficits. Therefore, understanding the dynamic interaction between chronic immune responses and TBI-related pathogenesis and progression of the disease is crucial. We hypothesized that T cells have an essential role in TBI severity and recovery. We used generic T cell deletion mice (TCRβ-/-δ-/-) vs Wild-type mice that underwent controlled cortical impact assessing behavioral, histological, and immune system response outcomes at 3 months post-TBI. The absence of T cells reduced neurodegeneration and was associated with improved neurological outcomes 3 months post-injury. Furthermore, the absence of T cells enhanced an anti-inflammatory phenotype in peripheral myeloid cells in the injured brain. Collectively, these data indicate that T cells promote persistent neuropathology and functional impairments chronically after TBI.
Collapse
Affiliation(s)
- Leyre Ayerra
- Department of Biochemistry and Genetics, University of Navarre, Pamplona, Spain; Gene Therapy for Neurological Diseases, CIMA-University of Navarre, Pamplona, Spain
| | - Kirill Shumilov
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Allen Ni
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Maria S Aymerich
- Department of Biochemistry and Genetics, University of Navarre, Pamplona, Spain; Gene Therapy for Neurological Diseases, CIMA-University of Navarre, Pamplona, Spain
| | - Stuart H Friess
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Marta Celorrio
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
16
|
Li J, Wang H, Li Y, Wang C, Feng H, Pang Y, Ren J, Li C, Gao E, Zhang D, Hu D, Zhao P, Ding H, Fan B, Zhang T, Song X, Wei Z, Ning G, Li YQ, Feng S. Novel carbon dots with dual Modulatory effects on the bone marrow and spleen as a potential therapeutic candidate for treating spinal cord injury. Bioact Mater 2025; 45:534-550. [PMID: 39759534 PMCID: PMC11696655 DOI: 10.1016/j.bioactmat.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/24/2024] [Accepted: 11/24/2024] [Indexed: 01/07/2025] Open
Abstract
Spinal cord injury triggers leukocyte mobilization from the peripheral circulation to the injury site, exacerbating spinal cord damage. Simultaneously, bone marrow hematopoietic stem cells (HSCs) and splenic leukocytes rapidly mobilize to replenish the depleted peripheral blood leukocyte pool. However, current treatments for spinal cord injuries overlook interventions targeting peripheral immune organs and tissues, highlighting the need to develop novel drugs capable of effectively regulating peripheral immunity and treating spinal cord injuries. In this study, we designed, synthesized, and characterized novel Ejiao carbon dots (EJCDs) that inhibit myeloid cell proliferation and peripheral migration by promoting HSC self-renewal, and distinct differentiation into erythroid progenitors in vitro and in vivo. Additionally, EJCDs attenuate the immune response in the spleen, leukocytes' reservoir, following spinal cord injury by diminishing the local infiltration of monocytes and macrophages while promoting motor function recovery. These effects are mediated through the downregulation of CCAAT enhancer binding protein-β expression in the spleen and the upregulation of FZD4 protein expression in Lin- Sca-1+ c-kit+ cells (LSKs) within the bone marrow. Our findings demonstrate that EJCDs effectively reduce myeloid cell infiltration post-spinal cord injury and promote neurological recovery, making them promising therapeutic candidates for treating spinal cord injuries.
Collapse
Affiliation(s)
- Junjin Li
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Hongda Wang
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Yuanquan Li
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Chunzhen Wang
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Haiwen Feng
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Yilin Pang
- Orthopedic Research Center of Shandong University and Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jie Ren
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Chuanhao Li
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Erke Gao
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300070, China
| | - Dejing Zhang
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300070, China
| | - Dunxu Hu
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300070, China
| | - Pengtian Zhao
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300070, China
| | - Han Ding
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Baoyou Fan
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Tao Zhang
- Department of Orthopaedics, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Tianqiao District, Jinan, 250033, China
| | - Xiaomeng Song
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Zhijian Wei
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300070, China
- Orthopedic Research Center of Shandong University and Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Guangzhi Ning
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Yong-Qiang Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Shiqing Feng
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300070, China
- Orthopedic Research Center of Shandong University and Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- Department of Orthopaedics, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Tianqiao District, Jinan, 250033, China
| |
Collapse
|
17
|
Yue Y, Ren Y, Lu C, Jiang N, Wang S, Fu J, Kong M, Zhang G. The research progress on meningeal metastasis in solid tumors. Discov Oncol 2025; 16:254. [PMID: 40019647 PMCID: PMC11871263 DOI: 10.1007/s12672-025-01950-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/08/2024] [Indexed: 03/01/2025] Open
Abstract
Meningeal metastasis (MM), particularly Leptomeningeal metastases (LM), represents the advanced stage of solid tumors and poses a significant threat to patients' lives. Moreover, it imposes a substantial burden on society. LM represents the ultimate and most fatal stage of solid tumors, inflicting devastating consequences on patients and imposing a substantial burden on society. The incidence of LM continues to rise annually, emphasizing the urgent need for early recognition and treatment initiation in individuals with LM to significantly extend overall patient survival. Despite rapid advancements in current LM detection and treatment methods, the diagnosis of LM remains constrained by several limitations such as low diagnostic efficiency, the therapeutic outcomes remain suboptimal. Furthermore, there is currently no universally recognized industry standard for LM treatment, further underscoring its status as an unresolved challenge in tumor management. Additionally, progress towards elucidating the mechanisms underlying MM has stagnated. Therefore, this review aims to comprehensively summarize recent research advances pertaining to MM in solid tumors by elucidating its underlying mechanisms, exploring diagnostic and prognostic biomarkers while addressing existing research challenges.
Collapse
Affiliation(s)
- Yi Yue
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chunya Lu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Nan Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Sihui Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Junkai Fu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Mengrui Kong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
18
|
Marin-Rodero M, Cintado E, Walker AJ, Jayewickreme T, Pinho-Ribeiro FA, Richardson Q, Jackson R, Chiu IM, Benoist C, Stevens B, Trejo JL, Mathis D. The meninges host a distinct compartment of regulatory T cells that preserves brain homeostasis. Sci Immunol 2025; 10:eadu2910. [PMID: 39873623 PMCID: PMC11924117 DOI: 10.1126/sciimmunol.adu2910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
Our understanding of the meningeal immune system has recently burgeoned, particularly regarding how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains limited. This study highlights the heterogeneous, polyfunctional regulatory T cell (Treg) compartment in the meninges. A Treg subtype specialized in controlling interferon-γ (IFN-γ) responses and another dedicated to regulating follicular B cell responses were substantial components of this compartment. Accordingly, punctual Treg ablation rapidly unleashed IFN-γ production by meningeal lymphocytes, unlocked access to the brain parenchyma, and altered meningeal B cell profiles. Distally, the hippocampus assumed a reactive state, with morphological and transcriptional changes in multiple glial cell types. Within the dentate gyrus, neural stem cells underwent more death and were blocked from further differentiation, which coincided with impairments in short-term spatial-reference memory. Thus, meningeal Tregs are a multifaceted safeguard of brain homeostasis at steady state.
Collapse
Affiliation(s)
| | - Elisa Cintado
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas; Madrid, Spain
| | - Alec J. Walker
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School; Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | | | | | | | - Ruaidhrí Jackson
- Department of Immunology, Harvard Medical School; Boston, MA, USA
| | - Isaac M. Chiu
- Department of Immunology, Harvard Medical School; Boston, MA, USA
| | | | - Beth Stevens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School; Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital; Boston, MA, USA
| | - José Luís Trejo
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas; Madrid, Spain
| | - Diane Mathis
- Department of Immunology, Harvard Medical School; Boston, MA, USA
| |
Collapse
|
19
|
Li L, Peng R, Wang C, Chen X, Gheyret D, Guan S, Chen B, Liu Y, Liu X, Cao Y, Han C, Xiong J, Li F, Lu T, Jia H, Li K, Wang J, Zhang X, Xu J, Wang Y, Xu X, Li T, Zhang J, Zhang S. β2 integrin regulates neutrophil trans endothelial migration following traumatic brain injury. Cell Commun Signal 2025; 23:70. [PMID: 39923080 PMCID: PMC11806581 DOI: 10.1186/s12964-025-02071-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/29/2025] [Indexed: 02/10/2025] Open
Abstract
Neutrophils are the first responders among peripheral immune cells to infiltrate the central nervous system following a traumatic brain injury (TBI), triggering neuroinflammation that can exacerbate secondary tissue damage. The precise molecular controls that dictate the inflammatory behavior of neutrophils post-TBI, however, remain largely elusive. Our comprehensive analysis of the molecular landscape surrounding the trauma in TBI mice has revealed a significant alteration in the abundance of β2 integrin (ITGB2), predominantly expressed by neutrophils and closely associated with immune responses. Using the fluid percussion injury (FPI) mouse model, we investigated the therapeutic efficacy of Rovelizumab, an agent that blocks ITGB2. The treatment has demonstrated significant improvements in neurologic function in TBI mice, attenuating blood-brain barrier permeability, mitigating oxidative stress and inflammatory mediator release, and enhancing cerebral perfusion. Moreover, ITGB2 blockade has effectively limited the adherence, migration, and infiltration of neutrophils, and has impeded the formation of neutrophil extracellular traps (NETs) upon their activation. Finally, it was demonstrated that ITGB2 mediates these effects mainly through its interaction with intercellular adhesion molecule-1 (ICAM 1) of endotheliocyte. These findings collectively illuminate ITGB2 as a crucial molecular switch that governs the adverse effects of neutrophils post-TBI and could be targeted to improve clinical outcome in patients.
Collapse
Affiliation(s)
- Lei Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Ruilong Peng
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300200, China
| | - Cong Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Dilmurat Gheyret
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Siyu Guan
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Bo Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Yafan Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Xilei Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yiyao Cao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Cha Han
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jianhua Xiong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Fanjian Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Taoyuan Lu
- Xuanwu Jinan Hospital, 5106 Jingshi Road, Jinan, 250000, Shandong, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Haoran Jia
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Kaiji Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Jinchao Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Xu Zhang
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jianye Xu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Yajuan Wang
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xin Xu
- Xuanwu Jinan Hospital, 5106 Jingshi Road, Jinan, 250000, Shandong, China.
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
| | - Tuo Li
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300200, China.
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China.
| | - Shu Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China.
| |
Collapse
|
20
|
Eiff B, Bullmore ET, Clatworthy MR, Fryer TD, Pariante CM, Mondelli V, Maccioni L, Hadjikhani N, Loggia ML, Moskowitz MA, Bruner E, Veronese M, Turkheimer FE, Schubert JJ. Extra-axial inflammatory signal and its relationship to peripheral and central immunity in depression. Brain 2025; 148:635-646. [PMID: 39657983 PMCID: PMC11788198 DOI: 10.1093/brain/awae343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/13/2024] [Accepted: 10/06/2024] [Indexed: 12/12/2024] Open
Abstract
Although both central and peripheral inflammation have been observed consistently in depression, the relationship between the two remains obscure. Extra-axial immune cells may play a role in mediating the connection between central and peripheral immunity. This study investigates the potential roles of calvarial bone marrow and parameningeal spaces in mediating interactions between central and peripheral immunity in depression. PET was used to measure regional TSPO expression in the skull and parameninges as a marker of inflammatory activity. This measure was correlated with brain TSPO expression and peripheral cytokine concentrations in a cohort enriched for heightened peripheral and central immunity comprising 51 individuals with depression and 25 healthy controls. The findings reveal a complex relationship between regional skull TSPO expression and both peripheral and central immunity. Facial and parietal skull bone TSPO expression showed significant associations with both peripheral and central immunity. TSPO expression in the confluence of sinuses was also linked to both central and peripheral immune markers. Group-dependent elevations in TSPO expression within the occipital skull bone marrow were also found to be significantly associated with central inflammation. Significant associations between immune activity within the skull, parameninges, parenchyma and periphery highlight the role of the skull bone marrow and venous sinuses as pivotal sites for peripheral and central immune interactions.
Collapse
Affiliation(s)
- Brandi Eiff
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
| | - Edward T Bullmore
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SZ, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge CB21 5EF, UK
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Tim D Fryer
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
| | - Valeria Mondelli
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
| | - Lucia Maccioni
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
| | - Nouchine Hadjikhani
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Marco L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael A Moskowitz
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Emiliano Bruner
- Department of Paleobiology, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
- Alzheimer Center Reina Sofía, CIEN Foundation, ISCIII, 28031 Madrid, Spain
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
| | - Julia J Schubert
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
| |
Collapse
|
21
|
Wheeler MA, Quintana FJ. The neuroimmune connectome in health and disease. Nature 2025; 638:333-342. [PMID: 39939792 DOI: 10.1038/s41586-024-08474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/02/2024] [Indexed: 02/14/2025]
Abstract
The nervous and immune systems have complementary roles in the adaptation of organisms to environmental changes. However, the mechanisms that mediate cross-talk between the nervous and immune systems, called neuroimmune interactions, are poorly understood. In this Review, we summarize advances in the understanding of neuroimmune communication, with a principal focus on the central nervous system (CNS): its response to immune signals and the immunological consequences of CNS activity. We highlight these themes primarily as they relate to neurological diseases, the control of immunity, and the regulation of complex behaviours. We also consider the importance and challenges linked to the study of the neuroimmune connectome, which is defined as the totality of neuroimmune interactions in the body, because this provides a conceptual framework to identify mechanisms of disease pathogenesis and therapeutic approaches. Finally, we discuss how the latest techniques can advance our understanding of the neuroimmune connectome, and highlight the outstanding questions in the field.
Collapse
Affiliation(s)
- Michael A Wheeler
- The Gene Lay Institute of Immunology and Inflammation, Brigham & Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Francisco J Quintana
- The Gene Lay Institute of Immunology and Inflammation, Brigham & Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
22
|
Liu W, Yang M, Wang N, Liu X, Wang C, Shi K, Shi FD, Pan Y, Zhang M, Sun Z, Wang Y, Wang Y. Intracalvariosseous injection: an approach for central nervous system drug delivery through skull bone marrow with a preclinical research in stroke. EBioMedicine 2025; 112:105568. [PMID: 39884187 PMCID: PMC11830332 DOI: 10.1016/j.ebiom.2025.105568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Central nervous system (CNS) accessibility constitutes a major hurdle for drug development to treat neurological diseases. Existing drug delivery methods rely on breaking the blood-brain barrier (BBB) for drugs to penetrate the CNS. Researchers have discovered natural microchannels between the skull bone marrow and the dura mater, providing a pathway for drug delivery through the skull bone marrow. However, there has been no research on the feasibility, safety, and efficacy of this delivery method for drug treatment of stroke. METHODS We used a microporous method for intracalvariosseous (ICO) injection to deliver drugs directly into brain parenchyma through skull bone marrow. Safety of ICO was assessed by monitoring changes in skull and peripheral blood neutrophil counts, and FITC-dextran extravasation across the BBB. Drug delivery pathways were observed through transparent skull-dura mater-brain tissue. In a rodent stroke model, NA-1 or Y-3 neuroprotective agents were administered via ICO to evaluate safety and efficacy by assessing neurological deficits, infarct size, neuroinflammatory factors, neuronal apoptosis, and liver/kidney function. Drug concentration in tissues was measured using fluorescence tracing and high-performance liquid chromatography to gauge ICO delivery efficiency. FINDINGS ICO injection delivers drugs to the brain parenchyma through microchannels between the skull bone marrow and the dura mater, offering higher delivery efficiency than intravenous injection. After ICO injection, there were no changes in neutrophil counts in the skull bone marrow and peripheral blood, and the amount of FITC-dextran passing through the BBB remained unchanged. This confirmed that ICO injection does not cause skull infection or break BBB, which suggested ICO injection is safe and feasible. In the treatment of stroke with neuroprotective agents, although the drug dosage of ICO injection was lower than intravenous injection, drug accumulation in the brain increased after ICO injection, which helped repair nerve damage, reduce neuronal apoptosis, and decrease the expression of inflammatory factors. INTERPRETATION ICO injection is a central nervous system drug delivery method that utilizes natural microchannels between the skull and dura mater for efficient drug delivery. Our results assessed the feasibility and safety of ICO injection at the preclinical level and evaluated its efficacy in animal models of stroke. The findings provided a foundation for the clinical translation of ICO injection. FUNDING This study was supported by The National Natural Science Foundation of China (No. 82425101); Beijing Municipal Science & Technology Commission (No. Z231100004823036); Capital's Funds for Health Improvement and Research (2022-2-2045); National Key Research & Development Program of China (2022YFF1501500, 2022YFF1501501, 2022YFF1501502, 2022YFF1501503, 2022YFF1501504, 2022YFF1501505).
Collapse
Affiliation(s)
- Wenqian Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mo Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Nanxing Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiangrong Liu
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chaoyu Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kaibin Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Fu-Dong Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuesong Pan
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Mingjun Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Zhiwei Sun
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Chinese Institute for Brain Research, Beijing, China; National Center for Neurological Disorders, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
23
|
Lu X, Bai S, Feng L, Yan X, Lin Y, Huang J, Liao X, Wang H, Li L, Yang Z, Yan LYC, Yang B, Wang M, Jin J, Zong Z, Jiang Z, Huang C, Liu C, Zhang X, Su H, Wang Y, Lee WY, Jiang X, Tortorella MD, Lin S, Ko H, Li G. Cranial bone maneuver ameliorates Alzheimer's disease pathology via enhancing meningeal lymphatic drainage function. Alzheimers Dement 2025; 21:e14518. [PMID: 39887820 PMCID: PMC11848205 DOI: 10.1002/alz.14518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 02/01/2025]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a progressive neurodegenerative disease and the leading cause of dementia. Recent research highlights meningeal lymphatics as key regulators in neurological diseases, suggesting that enhancing their drainage function could be a potential therapeutic strategy for AD. Our proof-of-concept study demonstrated that cranial bone transport can improve meningeal lymphatic drainage function and promote ischemic stroke recovery. METHODS This study defined cranial bone maneuver (CBM) technique. After osteotomy, a small circular bone flap was made and attached to an external fixator for subsequent maneuver in a controlled fashion for a defined period using 5xFAD mice. RESULTS CBM treatment improved memory functions, reduced amyloid deposits, and promoted meningeal lymphatic drainage function. CBM induced cascades of inflammatory and lymphangiogenic processes in skull and meninges. Meningeal lymphatics are indispensable elements for the therapeutic effects of CBM. DISCUSSION CBM might be a promising innovative therapy for AD management, warranting further clinical investigation. HIGHLIGHTS Cranial bone maneuver (CBM) alleviated memory deficits and amyloid depositions. CBM promoted meningeal lymphangiogenesis and lymphatic drainage function. The beneficial effects of CBM lasted for a long time following the CBM procedures. CBM induced cascades of inflammatory and lymphangiogenic processes in the meninges. Meningeal lymphatic vessels are indispensable elements for CBM therapeutic effects.
Collapse
Grants
- 82172430 National Natural Science Foundation of China
- 82272505 National Natural Science Foundation of China
- 82472454 National Natural Science Foundation of China
- 81874000 National Natural Science Foundation of China
- 82122001 National Natural Science Foundation of China
- 14108720 University Grants Committee, Research Grants Council of the Hong Kong Special Administrative Region, China
- 14121721 University Grants Committee, Research Grants Council of the Hong Kong Special Administrative Region, China
- 14202920 University Grants Committee, Research Grants Council of the Hong Kong Special Administrative Region, China
- 14100122 University Grants Committee, Research Grants Council of the Hong Kong Special Administrative Region, China
- 14119124 University Grants Committee, Research Grants Council of the Hong Kong Special Administrative Region, China
- 14113723 University Grants Committee, Research Grants Council of the Hong Kong Special Administrative Region, China
- N_CUHK472/22 University Grants Committee, Research Grants Council of the Hong Kong Special Administrative Region, China
- C7030-18G University Grants Committee, Research Grants Council of the Hong Kong Special Administrative Region, China
- C6027-19GF University Grants Committee, Research Grants Council of the Hong Kong Special Administrative Region, China
- C7074-21GF University Grants Committee, Research Grants Council of the Hong Kong Special Administrative Region, China
- T13-402/17-N University Grants Committee, Research Grants Council of the Hong Kong Special Administrative Region, China
- AoE/M-402/20 University Grants Committee, Research Grants Council of the Hong Kong Special Administrative Region, China
- AoE/M-604/16 University Grants Committee, Research Grants Council of the Hong Kong Special Administrative Region, China
- 17180831 Heath Medical Research Fund (HMRF) of Food and Health Bureau Hong Kong
- 08190416 Heath Medical Research Fund (HMRF) of Food and Health Bureau Hong Kong
- 09203436 Heath Medical Research Fund (HMRF) of Food and Health Bureau Hong Kong
- PRP/050/19FX Hong Kong Innovation Technology Commission Funds
- 2023A1515011040 Natural Science Foundation of Guangdong Province
- National Natural Science Foundation of China
- Natural Science Foundation of Guangdong Province
Collapse
Affiliation(s)
- Xuan Lu
- Stem Cells and Regenerative Medicine LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
- Musculoskeletal Research LaboratoryDepartment of Orthopaedics & TraumatologyFaculty of MedicineThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
- Centre for Regenerative Medicine and HealthHong Kong Institute of Science & InnovationChinese Academy of SciencesHong Kong SARPR China
| | - Shanshan Bai
- Stem Cells and Regenerative Medicine LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
- Musculoskeletal Research LaboratoryDepartment of Orthopaedics & TraumatologyFaculty of MedicineThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
- Centre for Regenerative Medicine and HealthHong Kong Institute of Science & InnovationChinese Academy of SciencesHong Kong SARPR China
| | - Lu Feng
- Centre for Regenerative Medicine and HealthHong Kong Institute of Science & InnovationChinese Academy of SciencesHong Kong SARPR China
| | - Xu Yan
- Stem Cells and Regenerative Medicine LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
- Musculoskeletal Research LaboratoryDepartment of Orthopaedics & TraumatologyFaculty of MedicineThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
| | - Yuejun Lin
- Stem Cells and Regenerative Medicine LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
- Musculoskeletal Research LaboratoryDepartment of Orthopaedics & TraumatologyFaculty of MedicineThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenPR China
| | - Junzhe Huang
- Division of NeurologyDepartment of Medicine and Therapeutics & Li Ka Shing Institute of Health SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARPR China
| | - Xulin Liao
- Department of Ophthalmology and Visual SciencesThe Chinese University of Hong KongHong Kong SARPR China
| | - Haixing Wang
- Stem Cells and Regenerative Medicine LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
- Musculoskeletal Research LaboratoryDepartment of Orthopaedics & TraumatologyFaculty of MedicineThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
- Centre for Regenerative Medicine and HealthHong Kong Institute of Science & InnovationChinese Academy of SciencesHong Kong SARPR China
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenPR China
| | - Linlong Li
- Centre for Regenerative Medicine and HealthHong Kong Institute of Science & InnovationChinese Academy of SciencesHong Kong SARPR China
| | - Zhengmeng Yang
- Centre for Regenerative Medicine and HealthHong Kong Institute of Science & InnovationChinese Academy of SciencesHong Kong SARPR China
| | - Leo Yik Chun Yan
- Division of NeurologyDepartment of Medicine and Therapeutics & Li Ka Shing Institute of Health SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARPR China
| | - Boguang Yang
- Stem Cells and Regenerative Medicine LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
- Musculoskeletal Research LaboratoryDepartment of Orthopaedics & TraumatologyFaculty of MedicineThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
- Department of Biomedical EngineeringThe Chinese University of Hong KongHong Kong SARPR China
| | - Ming Wang
- Stem Cells and Regenerative Medicine LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
- Musculoskeletal Research LaboratoryDepartment of Orthopaedics & TraumatologyFaculty of MedicineThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
| | - Jiakang Jin
- Stem Cells and Regenerative Medicine LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
- Musculoskeletal Research LaboratoryDepartment of Orthopaedics & TraumatologyFaculty of MedicineThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
| | - Zhixian Zong
- Stem Cells and Regenerative Medicine LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
- Musculoskeletal Research LaboratoryDepartment of Orthopaedics & TraumatologyFaculty of MedicineThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
| | - Zhaowei Jiang
- Stem Cells and Regenerative Medicine LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
- Musculoskeletal Research LaboratoryDepartment of Orthopaedics & TraumatologyFaculty of MedicineThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
| | - Chuiguo Huang
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong Kong SARPR China
| | - Chaoran Liu
- Musculoskeletal Research LaboratoryDepartment of Orthopaedics & TraumatologyFaculty of MedicineThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
| | - Xiaoting Zhang
- Stem Cells and Regenerative Medicine LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
- Musculoskeletal Research LaboratoryDepartment of Orthopaedics & TraumatologyFaculty of MedicineThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
| | - Han Su
- Stem Cells and Regenerative Medicine LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
- Musculoskeletal Research LaboratoryDepartment of Orthopaedics & TraumatologyFaculty of MedicineThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
- Department of NeurosurgeryFirst Hospital of Jilin UniversityChangchunPR China
| | - Yaofeng Wang
- Centre for Regenerative Medicine and HealthHong Kong Institute of Science & InnovationChinese Academy of SciencesHong Kong SARPR China
| | - Wayne Yuk‐Wai Lee
- Stem Cells and Regenerative Medicine LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
- Musculoskeletal Research LaboratoryDepartment of Orthopaedics & TraumatologyFaculty of MedicineThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
| | - Xiaohua Jiang
- MOE Key Laboratory for Regenerative MedicineSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARPR China
| | - Micky D. Tortorella
- Centre for Regenerative Medicine and HealthHong Kong Institute of Science & InnovationChinese Academy of SciencesHong Kong SARPR China
| | - Sien Lin
- Stem Cells and Regenerative Medicine LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
- Musculoskeletal Research LaboratoryDepartment of Orthopaedics & TraumatologyFaculty of MedicineThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
| | - Ho Ko
- Division of NeurologyDepartment of Medicine and Therapeutics & Li Ka Shing Institute of Health SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARPR China
| | - Gang Li
- Stem Cells and Regenerative Medicine LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
- Musculoskeletal Research LaboratoryDepartment of Orthopaedics & TraumatologyFaculty of MedicineThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARPR China
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenPR China
| |
Collapse
|
24
|
Kovacs M, Dominguez-Belloso A, Ali-Moussa S, Deczkowska A. Immune control of brain physiology. Nat Rev Immunol 2025:10.1038/s41577-025-01129-6. [PMID: 39890999 DOI: 10.1038/s41577-025-01129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 02/03/2025]
Abstract
The peripheral immune system communicates with the brain through complex anatomical routes involving the skull, the brain borders, circumventricular organs and peripheral nerves. These immune-brain communication pathways were classically considered to be dormant under physiological conditions and active only in cases of infection or damage. Yet, peripheral immune cells and signals are key in brain development, function and maintenance. In this Perspective, we propose an alternative framework for understanding the mechanisms of immune-brain communication. During brain development and in homeostasis, these anatomical structures allow selected elements of the peripheral immune system to affect the brain directly or indirectly, within physiological limits. By contrast, in ageing and pathological settings, detrimental peripheral immune signals hijack the existing communication routes or alter their structure. We discuss why a diversity of communication channels is needed and how they work in relation to one another to maintain homeostasis of the brain.
Collapse
Affiliation(s)
- Mariángeles Kovacs
- Brain-Immune Communication Lab, Institut Pasteur, Université Paris Cité, Inserm U1224, Paris, France
| | - Amaia Dominguez-Belloso
- Brain-Immune Communication Lab, Institut Pasteur, Université Paris Cité, Inserm U1224, Paris, France
| | - Samir Ali-Moussa
- Brain-Immune Communication Lab, Institut Pasteur, Université Paris Cité, Inserm U1224, Paris, France
| | - Aleksandra Deczkowska
- Brain-Immune Communication Lab, Institut Pasteur, Université Paris Cité, Inserm U1224, Paris, France.
| |
Collapse
|
25
|
Liu L, Zhang X, Chai Y, Zhang J, Deng Q, Chen X. Skull bone marrow and skull meninges channels: redefining the landscape of central nervous system immune surveillance. Cell Death Dis 2025; 16:53. [PMID: 39875352 PMCID: PMC11775313 DOI: 10.1038/s41419-025-07336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025]
Abstract
The understanding of neuroimmune function has evolved from concepts of immune privilege and protection to a new stage of immune interaction. The discovery of skull meninges channels (SMCs) has opened new avenues for understanding central nervous system (CNS) immunity. Here, we characterize skull bone marrow and SMCs by detailing the anatomical structures adjacent to the skull, the differences between skull and peripheral bone marrow, mainstream animal processing methods, and the role of skull bone marrow in monitoring various CNS diseases. Additionally, we highlight several unresolved issues based on current research findings, aiming to guide future research directions.
Collapse
Affiliation(s)
- Liang Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Xian Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Yan Chai
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Quanjun Deng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China.
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China.
| |
Collapse
|
26
|
Wu B, Meng L, Zhao Y, Li J, Tian Q, Pang Y, Ren C, Dong Z. Meningeal neutrophil immune signaling influences behavioral adaptation following threat. Neuron 2025; 113:260-276.e8. [PMID: 39561768 DOI: 10.1016/j.neuron.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 05/27/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024]
Abstract
Social creatures must attend to threat signals from conspecifics and respond appropriately, both behaviorally and physiologically. In this work, we show in mice a threat-sensitive immune mechanism that orchestrates psychological processes and is amenable to social modulation. Repeated encounters with socially cued threats triggered meningeal neutrophil (MN) priming preferentially in males. MN activity was correlated with attenuated defensive responses to cues. Canonical neutrophil-specific activation marker CD177 was upregulated after social threat cueing, and its genetic ablation abrogated male behavioral phenotypes. CD177 signals favored meningeal T helper (Th)1-like immune bias, which blunted neural response to threatening stimuli by enhancing intrinsic GABAergic inhibition within the prelimbic cortex via interferon-gamma (IFN-γ). MN signaling was sensitized by negative emotional states and governed by socially dependent androgen release. This male-biased hormone/neutrophil regulatory axis is seemingly conserved in humans. Our findings provide insights into how immune responses influence behavioral threat responses, suggesting a possible neuroimmune basis of emotional regulation.
Collapse
Affiliation(s)
- Bin Wu
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Meng
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China; Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Zhao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junjie Li
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qiuyun Tian
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yayan Pang
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chunguang Ren
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.
| | - Zhifang Dong
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
27
|
Iadecola C, Anrather J. The immunology of stroke and dementia. Immunity 2025; 58:18-39. [PMID: 39813992 PMCID: PMC11736048 DOI: 10.1016/j.immuni.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
Ischemic stroke and vascular cognitive impairment, caused by a sudden arterial occlusion or more subtle but protracted vascular insufficiency, respectively, are leading causes of morbidity and mortality worldwide with limited therapeutic options. Innate and adaptive immunity have long been implicated in neurovascular injury, but recent advances in methodology and new experimental approaches have shed new light on their contributions. A previously unappreciated dynamic interplay of brain-resident, meningeal, and systemic immune cells with the ischemic brain and its vasculature has emerged, and new insights into the frequent overlap between vascular and Alzheimer pathology have been provided. Here, we critically review these recent findings, place them in the context of current concepts on neurovascular pathologies and Alzheimer's disease, and highlight their impact on recent stroke and Alzheimer therapies.
Collapse
Affiliation(s)
- Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
28
|
Jiang-Xie LF, Drieu A, Kipnis J. Waste clearance shapes aging brain health. Neuron 2025; 113:71-81. [PMID: 39395409 PMCID: PMC11717645 DOI: 10.1016/j.neuron.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/14/2024]
Abstract
Brain health is intimately connected to fluid flow dynamics that cleanse the brain of potentially harmful waste material. This system is regulated by vascular dynamics, the maintenance of perivascular spaces, neural activity during sleep, and lymphatic drainage in the meningeal layers. However, aging can impinge on each of these layers of regulation, leading to impaired brain cleansing and the emergence of various age-associated neurological disorders, including Alzheimer's and Parkinson's diseases. Understanding the intricacies of fluid flow regulation in the brain and how this becomes altered with age could reveal new targets and therapeutic strategies to tackle age-associated neurological decline.
Collapse
Affiliation(s)
- Li-Feng Jiang-Xie
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Antoine Drieu
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014 Paris, France
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
29
|
Basurco L, Abellanas MA, Purnapatre M, Antonello P, Schwartz M. Chronological versus immunological aging: Immune rejuvenation to arrest cognitive decline. Neuron 2025; 113:140-153. [PMID: 39788084 DOI: 10.1016/j.neuron.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/11/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025]
Abstract
The contemporary understanding that the immune response significantly supports higher brain functions has emphasized the notion that the brain's condition is linked in a complex manner to the state of the immune system. It is therefore not surprising that immunity is a key factor in shaping brain aging. In this perspective article, we propose amending the Latin phrase "mens sana in corpore sano" ("a healthy mind in a healthy body") to "a healthy mind in a healthy immune system." Briefly, we discuss the emerging understanding of the pivotal role of the immune system in supporting lifelong brain maintenance, how the aging of the immune system impacts the brain, and how the potential rejuvenation of the immune system could, in turn, help revitalize brain function, with the ultimate ambitious goal of developing an anti-aging immune therapy.
Collapse
Affiliation(s)
- Leyre Basurco
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Paola Antonello
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Schwartz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
30
|
Santisteban MM, Iadecola C. The pathobiology of neurovascular aging. Neuron 2025; 113:49-70. [PMID: 39788087 DOI: 10.1016/j.neuron.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
As global life expectancy increases, age-related brain diseases such as stroke and dementia have become leading causes of death and disability. The aging of the neurovasculature is a critical determinant of brain aging and disease risk. Neurovascular cells are particularly vulnerable to aging, which induces significant structural and functional changes in arterial, venous, and lymphatic vessels. Consequently, neurovascular aging impairs oxygen and glucose delivery to active brain regions, disrupts endothelial transport mechanisms essential for blood-brain exchange, compromises proteostasis by reducing the clearance of potentially toxic proteins, weakens immune surveillance and privilege, and deprives the brain of key growth factors required for repair and renewal. In this review, we examine the effects of neurovascular aging on brain function and its role in stroke, vascular cognitive impairment, and Alzheimer's disease. Finally, we discuss key unanswered questions that must be addressed to develop neurovascular strategies aimed at promoting healthy brain aging.
Collapse
Affiliation(s)
- Monica M Santisteban
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
31
|
Bijnen M, Sridhar S, Keller A, Greter M. Brain macrophages in vascular health and dysfunction. Trends Immunol 2025; 46:46-60. [PMID: 39732528 DOI: 10.1016/j.it.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/30/2024]
Abstract
Diverse macrophage populations inhabit the rodent and human central nervous system (CNS), including microglia in the parenchyma and border-associated macrophages (BAMs) in the meninges, choroid plexus, and perivascular spaces. These innate immune phagocytes are essential in brain development and maintaining homeostasis, but they also play diverse roles in neurological diseases. In this review, we highlight the emerging roles of CNS macrophages in regulating vascular function in health and disease. We discuss that, in addition to microglia, BAMs, including perivascular macrophages, play roles in supporting vascular integrity and maintaining blood flow. We highlight recent advancements in understanding how these macrophages are implicated in protecting against vascular dysfunction and modulating the progression of cerebrovascular diseases, as seen in vessel-associated neurodegeneration.
Collapse
Affiliation(s)
- Mitchell Bijnen
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sucheta Sridhar
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Annika Keller
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
32
|
Satyanarayanan SK, Han Z, Xiao J, Yuan Q, Yung WH, Ke Y, Chang RCC, Zhu MH, Su H, Su KP, Qin D, Lee SMY. Frontiers of Neurodegenerative Disease Treatment: Targeting Immune Cells in Brain Border Regions. Brain Behav Immun 2025; 123:483-499. [PMID: 39378973 DOI: 10.1016/j.bbi.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/15/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024] Open
Abstract
Neurodegenerative diseases (NDs) demonstrate a complex interaction with the immune system, challenging the traditional view of the brain as an "immune-privileged" organ. Microglia were once considered the sole guardians of the brain's immune response. However, recent research has revealed the critical role of peripheral immune cells located in key brain regions like the meninges, choroid plexus, and perivascular spaces. These previously overlooked cells are now recognized as contributors to the development and progression of NDs. This newfound understanding opens doors for pioneering therapeutic strategies. By targeting these peripheral immune cells, we may be able to modulate the brain's immune environment, offering an alternative approach to treat NDs and circumvent the challenges posed by the blood-brain barrier. This comprehensive review will scrutinize the latest findings on the complex interactions between these peripheral immune cells and NDs. It will also critically assess the prospects of targeting these cells as a ground-breaking therapeutic avenue for these debilitating disorders.
Collapse
Affiliation(s)
- Senthil Kumaran Satyanarayanan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China
| | - Zixu Han
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China
| | - Jingwei Xiao
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China
| | - Qiuju Yuan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing Ho Yung
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Ya Ke
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Faculty of Medicine Building, Hong Kong, China
| | - Maria Huachen Zhu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Hong Kong, China
| | - Kuan-Pin Su
- An-Nan Hospital, China Medical University, Tainan, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan; Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
| | - Dajiang Qin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
| | - Suki Man Yan Lee
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
33
|
Dai X, Liang R, Dai M, Li X, Zhao W. Smoking Impacts Alzheimer's Disease Progression Through Oral Microbiota Modulation. Mol Neurobiol 2025; 62:19-44. [PMID: 38795302 DOI: 10.1007/s12035-024-04241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/13/2024] [Indexed: 05/27/2024]
Abstract
Alzheimer's disease (AD) is an important public health challenge with a limited understanding of its pathogenesis. Smoking is a significant modifiable risk factor for AD progression, and its specific mechanism is often interpreted from a toxicological perspective. However, microbial infections also contribute to AD, with oral microbiota playing a crucial role in its progression. Notably, smoking alters the ecological structure and pathogenicity of the oral microbiota. Currently, there is no systematic review or summary of the relationship between these three factors; thus, understanding this association can help in the development of new treatments. This review summarizes the connections between smoking, AD, and oral microbiota from existing research. It also explores how smoking affects the occurrence and development of AD through oral microbiota, and examines treatments for oral microbiota that delay the progression of AD. Furthermore, this review emphasizes the potential of the oral microbiota to act as a biomarker for AD. Finally, it considers the feasibility of probiotics and oral antibacterial therapy to expand treatment methods for AD.
Collapse
Affiliation(s)
- Xingzhu Dai
- Department of Stomatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Liang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Manqiong Dai
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyu Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanghong Zhao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
34
|
Soliman E, Gudenschwager Basso EK, Ju J, Willison A, Theus MH. Skull bone marrow-derived immune cells infiltrate the injured cerebral cortex and exhibit anti-inflammatory properties. Brain Behav Immun 2025; 123:244-253. [PMID: 39293691 PMCID: PMC11624077 DOI: 10.1016/j.bbi.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/05/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024] Open
Abstract
Identifying the origins and contributions of peripheral-derived immune cell populations following brain injury is crucial for understanding their roles in neuroinflammation and tissue repair. This study investigated the infiltration and phenotypic characteristics of skull bone marrow-derived immune cells in the murine brain after traumatic brain injury (TBI). We performed calvarium transplantation from GFP donor mice and subjected the recipients to controlled cortical impact (CCI) injury 14 days post-transplant. Confocal imaging at 3 days post-CCI revealed GFP+ calvarium-derived cells were present in the ipsilateral injured cortex, expressing CD45 and CD11b immune markers. These cells included Ly6G-positive neutrophil or Ccr2-positive monocyte identities. Calvarium-derived GFP+/Iba1+ monocyte/macrophages expressed the efferocytosis receptor MERTK and displayed engulfment of NeuN+ and cleaved caspase 3+ apoptotic cells. Phenotypic analysis showed that greater calvarium-derived monocytes/macrophages disproportionately express the anti-inflammatory arginase-1 marker than pro-inflammatory CD86. To differentiate the responses of blood- and calvarium-derived macrophages, we transplanted GFP calvarium skull bone into tdTomato bone marrow chimeric mice, then performed CCI injury 14 days post-transplant. Calvarium-derived GFP+cells predominantly infiltrated the lesion boundary, while blood-derived tdTomato+ cells dispersed throughout the lesion and peri-lesion. Compared to calvarium-derived cells, more blood-derived cells expressed pro-inflammatory CD86 and displayed altered 3D morphologic traits. These findings uniquely demonstrate that skull bone marrow-derived immune cells infiltrate the brain after injury and contribute to the neuroinflammatory milieu, representing a novel immune cell source that may be further investigated for their causal role in functional outcomes.
Collapse
Affiliation(s)
- Eman Soliman
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA; School of Neuroscience, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | - Jing Ju
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Andrew Willison
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, VA 24061, USA
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA; Center for Engineered Health, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
35
|
Zhao J, Wu D, Liu J, Zhang Y, Li C, Zhao W, Cao P, Wu S, Li M, Li W, Liu Y, Huang Y, Cao Y, Sun Y, Yang E, Ji N, Yang J, Chen J. Disease-specific suppressive granulocytes participate in glioma progression. Cell Rep 2024; 43:115014. [PMID: 39630582 DOI: 10.1016/j.celrep.2024.115014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/17/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Glioblastoma represents one of the most aggressive cancers, characterized by severely limited therapeutic options. Despite extensive investigations into this brain malignancy, cellular and molecular components governing its immunosuppressive microenvironment remain incompletely understood. Here, we identify a distinct neutrophil subpopulation, termed disease-specific suppressive granulocytes (DSSGs), present in human glioblastoma and lower-grade gliomas. DSSGs exhibit the concurrent expression of multiple immunosuppressive and immunomodulatory signals, and their abundance strongly correlates with glioma grades and poor clinical outcomes. Genetic disruption of neutrophil recruitment in immunocompetent mouse models of gliomas, achieved through Cxcl1 knockout in glioma cells or host-specific Cxcr2 deletion or diphtheria toxin A-mediated neutrophil depletion, can significantly enhance antitumor immunity and prolong survival. Further, we reveal that the skull bone marrow and meninges can be the primary sources of neutrophils and DSSGs in human and mouse glioma tumors. These findings demonstrate a critical mechanism underlying the establishment of the immunosuppressive microenvironment in gliomas.
Collapse
Affiliation(s)
- Jiarui Zhao
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Di Wu
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Jiaqi Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Chunzhao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | | | - Penghui Cao
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Shixuan Wu
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Mengyuan Li
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Wenlong Li
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Ying Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yingying Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Cao
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yiwen Sun
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Ence Yang
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Jing Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Peking University Third Hospital Cancer Center, Beijing 100191, China.
| | - Jian Chen
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Changping Laboratory, Beijing 102206, China.
| |
Collapse
|
36
|
Amann L, Fell A, Monaco G, Sankowski R, Wu HZQ, Jordão MJC, Borst K, Fliegauf M, Masuda T, Ardura-Fabregat A, Paterson N, Nent E, Cook J, Staszewski O, Mossad O, Falk T, Louveau A, Smirnov I, Kipnis J, Lämmermann T, Prinz M. Extrasinusoidal macrophages are a distinct subset of immunologically active dural macrophages. Sci Immunol 2024; 9:eadh1129. [PMID: 39705337 DOI: 10.1126/sciimmunol.adh1129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 11/26/2024] [Indexed: 12/22/2024]
Abstract
Although macrophages in the meningeal compartments of the central nervous system (CNS) have been comprehensively characterized under steady state, studying their contribution to physiological and pathological processes has been hindered by the lack of specific targeting tools in vivo. Recent findings have shown that the dural sinus and its adjacent lymphatic vessels act as a neuroimmune interface. However, the cellular and functional heterogeneity of extrasinusoidal dural macrophages outside this immune hub is not fully understood. Therefore, we comprehensively characterized these cells using single-cell transcriptomics, fate mapping, confocal imaging, clonal analysis, and transgenic mouse lines. Extrasinusoidal dural macrophages were distinct from leptomeningeal and CNS parenchymal macrophages in terms of their origin, expansion kinetics, and transcriptional profiles. During autoimmune neuroinflammation, extrasinusoidal dural macrophages performed efferocytosis of apoptotic granulocytes. Our results highlight a previously unappreciated myeloid cell diversity and provide insights into the brain's innate immune system.
Collapse
Affiliation(s)
- Lukas Amann
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Amelie Fell
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gianni Monaco
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center, University of Freiburg, Freiburg, Germany
| | - Roman Sankowski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Huang Zie Quann Wu
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Katharina Borst
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Fliegauf
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Takahiro Masuda
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Alberto Ardura-Fabregat
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Neil Paterson
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Elisa Nent
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - James Cook
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ori Staszewski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Omar Mossad
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Thorsten Falk
- Department of Computer Sciences, University of Freiburg, Freiburg, Germany
| | - Antoine Louveau
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Igor Smirnov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
37
|
Evans MA, Chavkin NW, Sano S, Sun H, Sardana T, Ravi R, Doviak H, Wang Y, Yura Y, Polizio AH, Horitani K, Ogawa H, Hirschi KK, Walsh K. Tet2-mediated clonal hematopoiesis modestly improves neurological deficits and is associated with inflammation resolution in the subacute phase of experimental stroke. Front Cell Neurosci 2024; 18:1487867. [PMID: 39742155 PMCID: PMC11685025 DOI: 10.3389/fncel.2024.1487867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/12/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Recent work has revealed that clonal hematopoiesis (CH) is associated with a higher risk of numerous age-related diseases, including ischemic stroke, however little is known about whether it influences stroke outcome independent of its widespread effects on cardiovascular disease. Studies suggest that leukocytes carrying CH driver mutations have an enhanced inflammatory profile, which could conceivably exacerbate brain injury after a stroke. Methods Using a competitive bone marrow transplant model of Tet2-mediated CH, we tested the hypothesis that CH would lead to a poorer outcome after ischemic stroke by augmenting brain inflammation. Stroke was induced in mice by middle cerebral artery occlusion and neurological outcome was assessed at acute (24 h) and subacute (14 d) timepoints. Brains were collected at both time points for histological, immunofluorescence and gene expression assays. Results Unexpectedly, Tet2-mediated CH had no effect on acute stroke outcome but led to a reduction in neurological deficits during the subacute phase. This improved neurological outcome was associated with lower levels of brain inflammation as evidenced by lower transcript levels of various inflammatory molecules alongside reduced astrogliosis. Discussion These findings suggest that Tet2-mediated CH may have beneficial effects on outcome after stroke, contrasting with the conventional understanding of CH whereby leukocytes with driver mutations promote disease by exacerbating inflammation.
Collapse
Affiliation(s)
- Megan A. Evans
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Nicholas W. Chavkin
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Soichi Sano
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Hanna Sun
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Taneesha Sardana
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Ramya Ravi
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Heather Doviak
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Ying Wang
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Yoshimitsu Yura
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Ariel H. Polizio
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Keita Horitani
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Hayato Ogawa
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Karen K. Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
38
|
Rong Z, Mai H, Ebert G, Kapoor S, Puelles VG, Czogalla J, Hu S, Su J, Prtvar D, Singh I, Schädler J, Delbridge C, Steinke H, Frenzel H, Schmidt K, Braun C, Bruch G, Ruf V, Ali M, Sühs KW, Nemati M, Hopfner F, Ulukaya S, Jeridi D, Mistretta D, Caliskan ÖS, Wettengel JM, Cherif F, Kolabas ZI, Molbay M, Horvath I, Zhao S, Krahmer N, Yildirim AÖ, Ussar S, Herms J, Huber TB, Tahirovic S, Schwarzmaier SM, Plesnila N, Höglinger G, Ondruschka B, Bechmann I, Protzer U, Elsner M, Bhatia HS, Hellal F, Ertürk A. Persistence of spike protein at the skull-meninges-brain axis may contribute to the neurological sequelae of COVID-19. Cell Host Microbe 2024; 32:2112-2130.e10. [PMID: 39615487 DOI: 10.1016/j.chom.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/10/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024]
Abstract
SARS-CoV-2 infection is associated with long-lasting neurological symptoms, although the underlying mechanisms remain unclear. Using optical clearing and imaging, we observed the accumulation of SARS-CoV-2 spike protein in the skull-meninges-brain axis of human COVID-19 patients, persisting long after viral clearance. Further, biomarkers of neurodegeneration were elevated in the cerebrospinal fluid from long COVID patients, and proteomic analysis of human skull, meninges, and brain samples revealed dysregulated inflammatory pathways and neurodegeneration-associated changes. Similar distribution patterns of the spike protein were observed in SARS-CoV-2-infected mice. Injection of spike protein alone was sufficient to induce neuroinflammation, proteome changes in the skull-meninges-brain axis, anxiety-like behavior, and exacerbated outcomes in mouse models of stroke and traumatic brain injury. Vaccination reduced but did not eliminate spike protein accumulation after infection in mice. Our findings suggest persistent spike protein at the brain borders may contribute to lasting neurological sequelae of COVID-19.
Collapse
Affiliation(s)
- Zhouyi Rong
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Munich Medical Research School (MMRS), Munich, Germany
| | - Hongcheng Mai
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Munich Medical Research School (MMRS), Munich, Germany
| | - Gregor Ebert
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany; German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Saketh Kapoor
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Victor G Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Jan Czogalla
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Senbin Hu
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jinpeng Su
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | - Danilo Prtvar
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Inderjeet Singh
- Research Unit Adipocytes & Metabolism (ADM), Helmholtz Diabetes Center, Helmholtz Munich, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Julia Schädler
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claire Delbridge
- Institute of Pathology, Division of Neuropathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hanno Steinke
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Hannah Frenzel
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Katja Schmidt
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Christian Braun
- Institute of Legal Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gina Bruch
- Institute of Legal Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mayar Ali
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Graduate School of Neuroscience (GSN), Munich, Germany
| | | | - Mojtaba Nemati
- Department of Neurology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Franziska Hopfner
- Department of Neurology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Selin Ulukaya
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany
| | - Denise Jeridi
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany
| | - Daniele Mistretta
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | | | | | - Fatma Cherif
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Zeynep Ilgin Kolabas
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Graduate School of Neuroscience (GSN), Munich, Germany
| | - Müge Molbay
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Munich Medical Research School (MMRS), Munich, Germany
| | - Izabela Horvath
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Center of Doctoral Studies in Informatics and its Applications (CEDOSIA), Technical University of Munich, Munich, Germany
| | - Shan Zhao
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Natalie Krahmer
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
| | - Ali Önder Yildirim
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Siegfried Ussar
- Research Unit Adipocytes & Metabolism (ADM), Helmholtz Diabetes Center, Helmholtz Munich, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Susanne M Schwarzmaier
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Günter Höglinger
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Department of Neurology, Ludwig-Maximilians-University Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Benjamin Ondruschka
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany; German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Markus Elsner
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany
| | - Harsharan Singh Bhatia
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Farida Hellal
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ali Ertürk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Koç University, School of Medicine, İstanbul, Turkey.
| |
Collapse
|
39
|
Mou R, Ma J, Ju X, Wu Y, Chen Q, Li J, Shang T, Chen S, Yang Y, Li Y, Lv K, Chen X, Zhang Q, Liang T, Feng Y, Lu X. Vasopressin drives aberrant myeloid differentiation of hematopoietic stem cells, contributing to depression in mice. Cell Stem Cell 2024; 31:1794-1812.e10. [PMID: 39442524 DOI: 10.1016/j.stem.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Psychological stress is often linked to depression and can also impact the immune system, illustrating the interconnectedness of mental health and immune function. Hematopoietic stem cells (HSCs) can directly sense neuroendocrine signals in bone marrow and play a fundamental role in the maintenance of immune homeostasis. However, it is unclear how psychological stress impacts HSCs in depression. Here, we report that neuroendocrine factor arginine vasopressin (AVP) promotes myeloid-biased HSC differentiation by activating neutrophils. AVP administration increases neutrophil and Ly6Chi monocyte production by triggering HSCs that rely on intrinsic S100A9 in mice. When stimulated with AVP, neutrophils return to the bone marrow and release interleukin 36G (IL-36G), which interacts with interleukin 1 receptor-like 2 (IL-1RL2) on HSCs to produce neutrophils with high Elane expression that infiltrate the brain and induce neuroinflammation. Together, these findings define HSCs as a relay between psychological stress and myelopoiesis and identify the IL-36G-IL-1RL2 axis as a potential target for depression therapy.
Collapse
Affiliation(s)
- Rong Mou
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Junkai Ma
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Xuan Ju
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang, China
| | - Yixin Wu
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Qiuli Chen
- Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Jinglin Li
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Tongyao Shang
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Siying Chen
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yue Yang
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Yue Li
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Kaosheng Lv
- Hunan Key Laboratory of Animal Models and Molecular Medicine, School of BioMedical Sciences, Hunan University, Changsha 410028, Hunan, China
| | - Xuequn Chen
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Ye Feng
- Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China.
| | - Xinjiang Lu
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
40
|
Zhang Y, Chen H, Cao J, Gao L, Jing Y. Maternal separation alters peripheral immune responses associated with IFN-γ and OT in mice. Peptides 2024; 182:171318. [PMID: 39486747 DOI: 10.1016/j.peptides.2024.171318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The co-evolution of social behavior and the immune system plays a critical role in individuals' adaptation to their environment. However, also need for further research on the key molecules that co-regulate social behavior and immunity. This study focused on neonatal mice that were separated from their mothers for 4 hours per day between the 6th and 16th day after birth. The results showed that these mice had lower plasma levels of IFN-γ and oxytocin, but higher levels of plasma glucocorticoids (GC), then impacting their social abilities. Additionally, maternal separation led to decreased levels of BDNF, IGF2, and CREB mRNAs in the hippocampus, while levels in the prefrontal cortex (PFC) remained unaffected. Maternal separation also resulted in increased levels of oxytocin and CRH mRNA in the hypothalamus, as well as an increase in CD45+ lymphocyte subsets in the meninges and choroid plexus (CP), with CD8+ lymphocytes in meninges and CD4+ lymphocytes in CP showing an increase. In IFN-γ-/- mice, a decrease in social preference was observed alongside lower plasma oxytocin levels. Moreover, IFN-γ-/- mice exhibited reduced numbers of oxytocin neurons in the paraventricular nucleus of the paraventricular nucleus of hypothalamus (PVN), decreased BDNF levels in the PFC and hippocampus, and alterations in CD45+ lymphocytes in CP and meninges, with an increase in CD8+ lymphocytes in meninges and CD4+ lymphocytes in CP. These findings highlight the immunological impact of social stress on IFN-γ regulation, suggesting that the immunomodulatory molecule IFN-γ may influence social behavior by affecting synaptic efficiency in brain regions such as the hippocampus and PFC, which are linked to oxytocin in the PVN.
Collapse
Affiliation(s)
- Yishu Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, PR China
| | - HaiChao Chen
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, PR China
| | - JiaXin Cao
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, PR China
| | - LiPing Gao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, PR China
| | - YuHong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu province, Lanzhou University, Lanzhou, Gansu, PR China.
| |
Collapse
|
41
|
Koh BI, Mohanakrishnan V, Jeong HW, Park H, Kruse K, Choi YJ, Nieminen-Kelhä M, Kumar R, Pereira RS, Adams S, Lee HJ, Bixel MG, Vajkoczy P, Krause DS, Adams RH. Adult skull bone marrow is an expanding and resilient haematopoietic reservoir. Nature 2024; 636:172-181. [PMID: 39537918 PMCID: PMC11618084 DOI: 10.1038/s41586-024-08163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
The bone marrow microenvironment is a critical regulator of haematopoietic stem cell self-renewal and fate1. Although it is appreciated that ageing, chronic inflammation and other insults compromise bone marrow function and thereby negatively affect haematopoiesis2, it is not known whether different bone compartments exhibit distinct microenvironmental properties and functional resilience. Here we use imaging, pharmacological approaches and mouse genetics to uncover specialized properties of bone marrow in adult and ageing skull. Specifically, we show that the skull bone marrow undergoes lifelong expansion involving vascular growth, which results in an increasing contribution to total haematopoietic output. Furthermore, skull is largely protected against major hallmarks of ageing, including upregulation of pro-inflammatory cytokines, adipogenesis and loss of vascular integrity. Conspicuous rapid and dynamic changes to the skull vasculature and bone marrow are induced by physiological alterations, namely pregnancy, but also pathological challenges, such as stroke and experimental chronic myeloid leukaemia. These responses are highly distinct from femur, the most extensively studied bone marrow compartment. We propose that skull harbours a protected and dynamically expanding bone marrow microenvironment, which is relevant for experimental studies and, potentially, for clinical treatments in humans.
Collapse
Affiliation(s)
- Bong Ihn Koh
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
| | - Vishal Mohanakrishnan
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hyun-Woo Jeong
- Sequencing Core Facility, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hongryeol Park
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Kai Kruse
- Bioinformatics Service Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Young Jun Choi
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Melina Nieminen-Kelhä
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rahul Kumar
- Institute of Transfusion Medicine, Transfusion Center, University Medicine Mainz, Mainz, Germany
| | - Raquel S Pereira
- Georg-Speyer-Haus Institute for Tumor Biology and Experimental Medicine and Goethe University Frankfurt, Frankfurt, Germany
| | - Susanne Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hyuek Jong Lee
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - M Gabriele Bixel
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniela S Krause
- Institute of Transfusion Medicine, Transfusion Center, University Medicine Mainz, Mainz, Germany
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
| |
Collapse
|
42
|
Li B, Ding Z, Ouchi T, Liao Y, Li B, Gong J, Xie Y, Zhao Z, Li L. Deciphering the spatial distribution of Gli1-lineage cells in dental, oral, and craniofacial regions. J Bone Miner Res 2024; 39:1809-1820. [PMID: 39303104 DOI: 10.1093/jbmr/zjae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
The craniofacial bone, crucial for protecting brain tissue and supporting facial structure, undergoes continuous remodeling through mesenchymal (MSCs) or skeletal stem cells in their niches. Gli1 is an ideal marker for labeling MSCs and osteoprogenitors in this region, and Gli1-lineage cells are identified as pivotal for bone growth, development, repair, and regeneration. Despite its significance, the distribution of Gli1-lineage cells across the dental, oral, and craniofacial (DOC) regions remains to be systematically explored. Utilizing tissue-clearing and light sheet fluorescence microscopy with a Gli1CreER; tdTomatoAi14 mouse model, we mapped the spatial distribution of Gli1-lineage cells throughout the skull, focusing on calvarial bones, sutures, bone marrow, teeth, periodontium, jaw bones, and the temporomandibular joint. We found Gli1-lineage cells widespread in these areas, underscoring their significance in DOC regions. Additionally, we observed their role in repairing calvarial bone defects, providing novel insights into craniofacial biology and stem cell niches and enhancing our understanding of stem cells and their progeny's behavior in vivo.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhangfan Ding
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Takehito Ouchi
- Department of Physiology, Tokyo Dental College, 2-9-18 Kanda-Misaki-cho, Chiyoda-ku, Tokyo 1010061, Japan
| | - Yueqi Liao
- Department of Biomedical Engineering, School of Big Health and Intelligent Engineering, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Bingzhi Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiajing Gong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuhang Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
43
|
Kadam R, Gupta M, Lazarov O, Prabhakar BS. Brain-immune interactions: implication for cognitive impairments in Alzheimer's disease and autoimmune disorders. J Leukoc Biol 2024; 116:1269-1290. [PMID: 38869088 DOI: 10.1093/jleuko/qiae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024] Open
Abstract
Progressive memory loss and cognitive dysfunction, encompassing deficits in learning, memory, problem solving, spatial reasoning, and verbal expression, are characteristics of Alzheimer's disease and related dementia. A wealth of studies has described multiple roles of the immune system in the development or exacerbation of dementia. Individuals with autoimmune disorders can also develop cognitive dysfunction, a phenomenon termed "autoimmune dementia." Together, these findings underscore the pivotal role of the neuroimmune axis in both Alzheimer's disease and related dementia and autoimmune dementia. The dynamic interplay between adaptive and innate immunity, both in and outside the brain, significantly affects the etiology and progression of these conditions. Multidisciplinary research shows that cognitive dysfunction arises from a bidirectional relationship between the nervous and immune systems, though the specific mechanisms that drive cognitive impairments are not fully understood. Intriguingly, this reciprocal regulation occurs at multiple levels, where neuronal signals can modulate immune responses, and immune system-related processes can influence neuronal viability and function. In this review, we consider the implications of autoimmune responses in various autoimmune disorders and Alzheimer's disease and explore their effects on brain function. We also discuss the diverse cellular and molecular crosstalk between the brain and the immune system, as they may shed light on potential triggers of peripheral inflammation, their effect on the integrity of the blood-brain barrier, and brain function. Additionally, we assess challenges and possibilities associated with developing immune-based therapies for the treatment of cognitive decline.
Collapse
Affiliation(s)
- Rashmi Kadam
- Department of Microbiology and Immunology, University of Illinois College of Medicine, 835 S Wolcott street, MC 790, Chicago, Chicago, IL 60612, United States
| | - Muskan Gupta
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, 808 S Wood street, MC 512, Chicago, Chicago, IL 60612, United States
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, 808 S Wood street, MC 512, Chicago, Chicago, IL 60612, United States
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, 835 S Wolcott street, MC 790, Chicago, Chicago, IL 60612, United States
| |
Collapse
|
44
|
Celorrio M, Shumilov K, Ni A, Self WK, Vitorino FNL, Rodgers R, Schriefer LA, Garcia B, Layden BT, Egervari G, Baldridge MT, Friess SH. Short-chain fatty acids are a key mediator of gut microbial regulation of T cell trafficking and differentiation after traumatic brain injury. RESEARCH SQUARE 2024:rs.3.rs-5397327. [PMID: 39606443 PMCID: PMC11601855 DOI: 10.21203/rs.3.rs-5397327/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The gut microbiota has emerged as a pivotal regulator of host inflammatory processes after traumatic brain injury (TBI). However, the mechanisms by which the gut microbiota communicates to the brain in TBI are still under investigation. We previously reported that gut microbiota depletion (GMD) using antibiotics after TBI resulted in increased microglial activation, reduced neurogenesis, and reduced T cell infiltration. In the present study, we have demonstrated that intestinal T cells contribute to the pool of cells infiltrating the brain after TBI. Depletion or genetic deletion of T cells before injury reversed GMD induced reductions in post-TBI neurogenesis. Short-chain fatty acid supplementation increased T regulatory and T helper1 cell infiltration to the brain along with restoring neurogenesis and microglia activation after TBI with GMD. These data suggest that T cell subsets are essential cellular mediators by which the gut microbiota modulates TBI pathogenesis, a finding with important therapeutic implications.
Collapse
Affiliation(s)
| | | | - Allen Ni
- Washington University in St. Louis School of Medicine
| | | | | | | | | | - Ben Garcia
- Washington University in St. Louis School of Medicine
| | | | | | | | | |
Collapse
|
45
|
Yin B, Cai Y, Chen L, Li Z, Li X. Immunosuppressive MDSC and Treg signatures predict prognosis and therapeutic response in glioma. Int Immunopharmacol 2024; 141:112922. [PMID: 39137632 DOI: 10.1016/j.intimp.2024.112922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Glioma, a complex and aggressive brain tumor, is characterized by dysregulated immune responses within the tumor microenvironment (TME). We conducted a comprehensive analysis to elucidate the roles of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) in glioma progression and their impact on the immune landscape. Using transcriptome data, we stratified glioma samples based on MDSC and Treg levels, revealing significant differences in patient survival probabilities. LASSO regression identified a gene panel associated with glioma prognosis, yielding a patient-specific risk score. Multivariate Cox regression confirmed the risk score's correlation with overall survival. An ISS (immune suppressive score) system assessed the immune landscape's impact on glioma progression and therapeutic response. Functional validation showed MDSC and Treg infiltration's relevance in glioma progression and immune modulation. Hub genes in the black module, including CCL2, LINC01503, CXCL8, CLEC2B, TIMP1, and RGS2, were identified through MCODE analysis. RGS2 expression correlated with immune cell populations and varied in glioma cells. This study sheds light on MDSCs' and Tregs' roles in glioma pathogenesis, suggesting their potential as prognostic biomarkers and therapeutic targets for personalized immunotherapeutic strategies in glioma treatment.
Collapse
Affiliation(s)
- Bowen Yin
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiheng Cai
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China; Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingxia Chen
- Department of Pathogenic Biology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | | | - Xiaofei Li
- Department of Science and Technology, Yunnan University of Chinese Medicine, Kunming, China.
| |
Collapse
|
46
|
Li B. Guardians of the mind: Calvarial stem cells and brain border immunity. Stem Cell Reports 2024; 19:1520-1523. [PMID: 39486404 PMCID: PMC11589192 DOI: 10.1016/j.stemcr.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 11/04/2024] Open
Abstract
Calvarial bones safeguard the brain and are interconnected by immovable joints termed sutures, which function as growth centers for skull morphogenesis and stem cell niches. Recent years have witnessed paradigm shifts in this field, highlighting the essential roles of calvarial stem cells (CSCs), sutures, and surrounding structures in neuroimmune crosstalk and neurocognitive restoration.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
47
|
Messmer JM, Thommek C, Piechutta M, Venkataramani V, Wehner R, Westphal D, Schubert M, Mayer CD, Effern M, Berghoff AS, Hinze D, Helfrich I, Schadendorf D, Wick W, Hölzel M, Karreman MA, Winkler F. T lymphocyte recruitment to melanoma brain tumors depends on distinct venous vessels. Immunity 2024; 57:2688-2703.e11. [PMID: 39368486 DOI: 10.1016/j.immuni.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/14/2024] [Accepted: 09/06/2024] [Indexed: 10/07/2024]
Abstract
To improve immunotherapy for brain tumors, it is important to determine the principal intracranial site of T cell recruitment from the bloodstream and their intracranial route to brain tumors. Using intravital microscopy in mouse models of intracranial melanoma, we discovered that circulating T cells preferably adhered and extravasated at a distinct type of venous blood vessel in the tumor vicinity, peritumoral venous vessels (PVVs). Other vascular structures were excluded as alternative T cell routes to intracranial melanomas. Anti-PD-1/CTLA-4 immune checkpoint inhibitors increased intracranial T cell motility, facilitating migration from PVVs to the tumor and subsequently inhibiting intracranial tumor growth. The endothelial adhesion molecule ICAM-1 was particularly expressed on PVVs, and, in samples of human brain metastases, ICAM-1 positivity of PVV-like vessels correlated with intratumoral T cell infiltration. These findings uncover a distinct mechanism by which the immune system can access and control brain tumors and potentially influence other brain pathologies.
Collapse
Affiliation(s)
- Julia M Messmer
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany; Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Calvin Thommek
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Manuel Piechutta
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany; Department of Functional Neuroanatomy, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Rebekka Wehner
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, TU Dresden, 01307 Dresden, Germany; Partner Site Dresden, National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, 01307 Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dana Westphal
- Partner Site Dresden, National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; Department of Dermatology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Marc Schubert
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Chanté D Mayer
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Maike Effern
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Anna S Berghoff
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Daniel Hinze
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Iris Helfrich
- Medical Faculty of the Ludwig Maximilian University of Munich, Department of Dermatology and Allergology, Frauenlobstrasse 9-11, 80377 Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany; Department of Dermatology, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Matthia A Karreman
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.
| | - Frank Winkler
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.
| |
Collapse
|
48
|
Midavaine É, Moraes BC, Benitez J, Rodriguez SR, Braz JM, Kochhar NP, Eckalbar WL, Domingos AI, Pintar JE, Basbaum AI, Kashem SW. Regulatory T cell-derived enkephalin gates nociception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593442. [PMID: 38798460 PMCID: PMC11118376 DOI: 10.1101/2024.05.11.593442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
T cells have emerged as sex-dependent orchestrators of pain chronification but the sexually dimorphic mechanisms by which T cells control pain sensitivity is not resolved. Here, we demonstrate an influence of regulatory T cells (Tregs) on pain processing that is distinct from their canonical functions of immune regulation and tissue repair. Specifically, meningeal Tregs (mTregs) express the endogenous opioid, enkephalin, and mTreg-derived enkephalin exerts an antinociceptive action through a presynaptic opioid receptor signaling mechanism that is dispensable for immunosuppression. We demonstrate that mTregs are both necessary and sufficient to suppress mechanical pain sensitivity in female, but not male, mice, with this modulation reliant on sex hormones. These results uncover a fundamental sex-specific, and immunologically-derived endogenous opioid circuit for nociceptive regulation with critical implications for pain biology.
Collapse
Affiliation(s)
- Élora Midavaine
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Beatriz C. Moraes
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Jorge Benitez
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Sian R. Rodriguez
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Joao M. Braz
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Nathan P. Kochhar
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Walter L. Eckalbar
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Ana I. Domingos
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - John E. Pintar
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Allan I. Basbaum
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Sakeen W. Kashem
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Dermatology, Veterans Affairs Medical Center, San Francisco, California, USA
| |
Collapse
|
49
|
Moulton C, Baroni A, Quagliarini E, Leone L, Digiacomo L, Morotti M, Caracciolo G, Podda MV, Tasciotti E. Navigating the nano-bio immune interface: advancements and challenges in CNS nanotherapeutics. Front Immunol 2024; 15:1447567. [PMID: 39600701 PMCID: PMC11588692 DOI: 10.3389/fimmu.2024.1447567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
In recent years, significant advancements have been made in utilizing nanoparticles (NPs) to modulate immune responses within the central nervous system (CNS), offering new opportunities for nanotherapeutic interventions in neurological disorders. NPs can serve as carriers for immunomodulatory agents or platforms for delivering nucleic acid-based therapeutics to regulate gene expression and modulate immune responses. Several studies have demonstrated the efficacy of NP-mediated immune modulation in preclinical models of neurological diseases, including multiple sclerosis, stroke, Alzheimer's disease, and Parkinson's disease. While challenges remain, advancements in NPs engineering and design have led to the development of NPs using diverse strategies to overcome these challenges. The nano-bio interface with the immune system is key in the conceptualization of NPs to efficiently act as nanotherapeutics in the CNS. The biomolecular corona plays a pivotal role in dictating NPs behavior and immune recognition within the CNS, giving researchers the opportunity to optimize NPs design and surface modifications to minimize immunogenicity and enhance biocompatibility. Here, we review how NPs interact with the CNS immune system, focusing on immunosurveillance of NPs, NP-induced immune reprogramming and the impact of the biomolecular corona on NPs behavior in CNS immune responses. The integration of NPs into CNS nanotherapeutics offers promising opportunities for addressing the complex challenges of acute and chronic neurological conditions and pathologies, also in the context of preventive and rehabilitative medicine. By harnessing the nano-bio immune interface and understanding the significance of the biomolecular corona, researchers can develop targeted, safe, and effective nanotherapeutic interventions for a wide range of CNS disorders to improve treatment and rehabilitation. These advancements have the potential to revolutionize the treatment landscape of neurological diseases, offering promising solutions for improved patient care and quality of life in the future.
Collapse
Affiliation(s)
| | - Anna Baroni
- Human Longevity Program, IRCCS San Raffaele Roma, Rome, Italy
| | - Erica Quagliarini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucia Leone
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Digiacomo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Marta Morotti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Vittoria Podda
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Ennio Tasciotti
- Human Longevity Program, IRCCS San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, Università telematica San Raffaele, Rome, Italy
| |
Collapse
|
50
|
King JS, Wan M, Kim A, Novak S, Prabhu S, Kalajzic I, Delany AM, Sanjay A. Effects of Aging on the Immune and Periosteal Response to Fracture in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622348. [PMID: 39574733 PMCID: PMC11580938 DOI: 10.1101/2024.11.06.622348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Aging predisposes individuals to reduced bone mass and fragility fractures, which are costly and linked to high mortality. Understanding how aging affects fracture healing is essential for developing therapies to enhance bone regeneration in older adults. During the inflammatory phase of fracture healing, immune cells are recruited to the injury site as periosteal skeletal stem/progenitor cells (pSSPCs) rapidly proliferate and differentiate into osteochondral lineages, allowing for fibrocartilaginous callus formation and complete bone healing. Irrespective of age, how periosteal mesenchymal and immune cells interact during early fracture healing is incompletely understood, limiting our ability to potentially modulate these processes. To address this, we directly analyzed, in parallel, at a single-cell level, isolated murine CD45(+) and CD45(-) periosteal cells dissected from intact and fractured bones, collected three days after injury. Through comprehensive analysis, corroborated by bulk RNA-sequencing, flow cytometry, and histology, we found aging decreases pSSPCs proliferative, marked by a reduced expression of genes required for callus formation and an increased senescence signature. We found that the chemokine Cxcl9 was highly upregulated in aged intact Prrx1+ pSSPCs, predicted to interact with other pSSPCs directly, and associated with increased recruitment of CD8+ T cells at the fracture site three days after injury. Cell-to-cell communication analysis provided insight into the complexity of interactions among the many cell types regulating fracture healing and the impact of aging on these processes. Together, these results provide insight into age-induced alterations in fracture healing, informing the development of improved therapeutic approaches for fragility fractures.
Collapse
|