1
|
Heer C, Sheffield M. Distinct catecholaminergic pathways projecting to hippocampal CA1 transmit contrasting signals during navigation in familiar and novel environments. eLife 2024; 13:RP95213. [PMID: 39504262 PMCID: PMC11540301 DOI: 10.7554/elife.95213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Neuromodulatory inputs to the hippocampus play pivotal roles in modulating synaptic plasticity, shaping neuronal activity, and influencing learning and memory. Recently, it has been shown that the main sources of catecholamines to the hippocampus, ventral tegmental area (VTA) and locus coeruleus (LC), may have overlapping release of neurotransmitters and effects on the hippocampus. Therefore, to dissect the impacts of both VTA and LC circuits on hippocampal function, a thorough examination of how these pathways might differentially operate during behavior and learning is necessary. We therefore utilized two-photon microscopy to functionally image the activity of VTA and LC axons within the CA1 region of the dorsal hippocampus in head-fixed male mice navigating linear paths within virtual reality (VR) environments. We found that within familiar environments some VTA axons and the vast majority of LC axons showed a correlation with the animals' running speed. However, as mice approached previously learned rewarded locations, a large majority of VTA axons exhibited a gradual ramping-up of activity, peaking at the reward location. In contrast, LC axons displayed a pre-movement signal predictive of the animal's transition from immobility to movement. Interestingly, a marked divergence emerged following a switch from the familiar to novel VR environments. Many LC axons showed large increases in activity that remained elevated for over a minute, while the previously observed VTA axon ramping-to-reward dynamics disappeared during the same period. In conclusion, these findings highlight distinct roles of VTA and LC catecholaminergic inputs in the dorsal CA1 hippocampal region. These inputs encode unique information, with reward information in VTA inputs and novelty and kinematic information in LC inputs, likely contributing to differential modulation of hippocampal activity during behavior and learning.
Collapse
Affiliation(s)
- Chad Heer
- The Department of Neurobiology, The University of ChicagoChicagoUnited States
| | - Mark Sheffield
- The Department of Neurobiology, The University of ChicagoChicagoUnited States
| |
Collapse
|
2
|
Rouhani N, Clewett D, Antony JW. Building and Breaking the Chain: A Model of Reward Prediction Error Integration and Segmentation of Memory. J Cogn Neurosci 2024; 36:2401-2414. [PMID: 38991138 DOI: 10.1162/jocn_a_02215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Prediction errors drive reinforcement learning and organize episodic memory into distinct contexts, but do these effects interact? Here, we review the roles of midbrain dopamine, the locus coeruleus, and the hippocampus in event cognition to propose and simulate the theoretical influence of two prediction error signals in integrating versus segmenting events in memory. We suggest that signed reward prediction errors can build mental models of reward environments, increasing the contextual similarity (integration) of experiences with stronger, more stable reward expectations. On the other hand, unsigned reward prediction errors can signal a new model of the environment, generating a contextual shift (segmentation) between experiences that crossed them. We moreover predicted that these differences in contextual similarity give rise to distinct patterns of temporal-order memory. We combined these ideas in a computational model to account for a seemingly paradoxical pattern of temporal-order memory where greater representational distance helps order memory within context but impairs it across contexts. We found that simulating signed reward prediction error integration and unsigned reward prediction error segmentation differentially enabled the model to perform associative chaining, which involved reactivating items between two tested probes to assist with sequential retrieval. In summary, our simulations provide a unifying explanation for the varied ways that neuromodulatory systems may alter event cognition and memory.
Collapse
|
3
|
Cai X, Liu C, Tsutsui-Kimura I, Lee JH, Guo C, Banerjee A, Lee J, Amo R, Xie Y, Patriarchi T, Li Y, Watabe-Uchida M, Uchida N, Kaeser PS. Dopamine dynamics are dispensable for movement but promote reward responses. Nature 2024; 635:406-414. [PMID: 39415006 DOI: 10.1038/s41586-024-08038-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/11/2024] [Indexed: 10/18/2024]
Abstract
Dopamine signalling modes differ in kinetics and spatial patterns of receptor activation1,2. How these modes contribute to motor function, motivation and learning has long been debated3-21. Here we show that action-potential-induced dopamine release is dispensable for movement initiation but supports reward-oriented behaviour. We generated mice with dopamine-neuron-specific knockout of the release site organizer protein RIM to disrupt action-potential-induced dopamine release. In these mice, rapid in vivo dopamine dynamics were strongly impaired, but baseline dopamine persisted and fully supported spontaneous movement. Conversely, reserpine-mediated dopamine depletion or blockade of dopamine receptors disrupted movement initiation. The dopamine precursor L-DOPA reversed reserpine-induced bradykinesia without restoring fast dopamine dynamics, a result that substantiated the conclusion that these dynamics are dispensable for movement initiation. In contrast to spontaneous movement, reward-oriented behaviour was impaired in dopamine-neuron-specific RIM knockout mice. In conditioned place preference and two-odour discrimination tasks, the mice effectively learned to distinguish the cues, which indicates that reward-based learning persists after RIM ablation. However, the performance vigour was reduced. During probabilistic cue-reward association, dopamine dynamics and conditioned responses assessed through anticipatory licking were disrupted. These results demonstrate that action-potential-induced dopamine release is dispensable for motor function and subsecond precision of movement initiation but promotes motivation and performance during reward-guided behaviours.
Collapse
Affiliation(s)
- Xintong Cai
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Changliang Liu
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Iku Tsutsui-Kimura
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Joon-Hyuk Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Chong Guo
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Aditi Banerjee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Jinoh Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ryunosuke Amo
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Yudi Xie
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH and University of Zurich, Zurich, Switzerland
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Mitsuko Watabe-Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Naoshige Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Loewinger G, Cui E, Lovinger DM, Pereira F. A Statistical Framework for Analysis of Trial-Level Temporal Dynamics in Fiber Photometry Experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.06.565896. [PMID: 37986853 PMCID: PMC10659337 DOI: 10.1101/2023.11.06.565896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Fiber photometry has become a popular technique to measure neural activity in vivo, but common analysis strategies can reduce detection of effects because they condense within-trial signals into summary measures, and discard trial-level information by averaging across-trials . We propose a novel photometry statistical framework based on functional linear mixed modeling, which enables hypothesis testing of variable effects at every trial time-point , and uses trial-level signals without averaging. This makes it possible to compare the timing and magnitude of signals across conditions while accounting for between-animal differences. Our framework produces a series of plots that illustrate covariate effect estimates and statistical significance at each trial time-point. By exploiting signal autocorrelation, our methodology yields joint 95% confidence intervals that account for inspecting effects across the entire trial and improve the detection of event-related signal changes over common multiple comparisons correction strategies. We reanalyze data from a recent study proposing a theory for the role of mesolimbic dopamine in reward learning, and show the capability of our framework to reveal significant effects obscured by standard analysis approaches. For example, our method identifies two dopamine components with distinct temporal dynamics in response to reward delivery. In simulation experiments, our methodology yields improved statistical power over common analysis approaches. Finally, we provide an open-source package and analysis guide for applying our framework.
Collapse
|
5
|
Zhang Z, Takahashi YK, Montesinos-Cartegena M, Kahnt T, Langdon AJ, Schoenbaum G. Expectancy-related changes in firing of dopamine neurons depend on hippocampus. Nat Commun 2024; 15:8911. [PMID: 39414794 PMCID: PMC11484966 DOI: 10.1038/s41467-024-53308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
The orbitofrontal cortex (OFC) and hippocampus (HC) both contribute to the cognitive maps that support flexible behavior. Previously, we used the dopamine neurons to measure the functional role of OFC. We recorded midbrain dopamine neurons as rats performed an odor-based choice task, in which expected rewards were manipulated across blocks. We found that ipsilateral OFC lesions degraded dopaminergic prediction errors, consistent with reduced resolution of the task states. Here we have repeated this experiment in male rats with ipsilateral HC lesions. The results show HC also shapes the task states, however unlike OFC, which provides information local to the trial, the HC is necessary for estimating upper-level hidden states that distinguish blocks. The results contrast the roles of the OFC and HC in cognitive mapping and suggest that the dopamine neurons access rich information from distributed regions regarding the environment's structure, potentially enabling this teaching signal to support complex behaviors.
Collapse
Affiliation(s)
- Zhewei Zhang
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA.
| | - Yuji K Takahashi
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | | | - Thorsten Kahnt
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Angela J Langdon
- Intramural Research Program, National Institute on Mental Health, Bethesda, MD, USA
| | - Geoffrey Schoenbaum
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA.
| |
Collapse
|
6
|
Kim MJ, Gibson DJ, Hu D, Yoshida T, Hueske E, Matsushima A, Mahar A, Schofield CJ, Sompolpong P, Tran KT, Tian L, Graybiel AM. Dopamine release plateau and outcome signals in dorsal striatum contrast with classic reinforcement learning formulations. Nat Commun 2024; 15:8856. [PMID: 39402067 PMCID: PMC11473536 DOI: 10.1038/s41467-024-53176-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/03/2024] [Indexed: 10/17/2024] Open
Abstract
We recorded dopamine release signals in centromedial and centrolateral sectors of the striatum as mice learned consecutive versions of visual cue-outcome conditioning tasks. Dopamine release responses differed for the centromedial and centrolateral sites. In neither sector could these be accounted for by classic reinforcement learning alone as classically applied to the activity of nigral dopamine-containing neurons. Medially, cue responses ranged from initial sharp peaks to modulated plateau responses; outcome (reward) responses during cue conditioning were minimal or, initially, negative. At centrolateral sites, by contrast, strong, transient dopamine release responses occurred at both cue and outcome. Prolonged, plateau release responses to cues emerged in both regions when discriminative behavioral responses became required. At most sites, we found no evidence for a transition from outcome signaling to cue signaling, a hallmark of temporal difference reinforcement learning as applied to midbrain dopaminergic neuronal activity. These findings delineate a reshaping of striatal dopamine release activity during learning and suggest that current views of reward prediction error encoding need review to accommodate distinct learning-related spatial and temporal patterns of striatal dopamine release in the dorsal striatum.
Collapse
Affiliation(s)
- Min Jung Kim
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St., Cambridge, MA, 02139, USA
- Advanced Imaging Research Center, University of Texas, Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daniel J Gibson
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St., Cambridge, MA, 02139, USA
| | - Dan Hu
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St., Cambridge, MA, 02139, USA
| | - Tomoko Yoshida
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St., Cambridge, MA, 02139, USA
| | - Emily Hueske
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St., Cambridge, MA, 02139, USA
| | - Ayano Matsushima
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St., Cambridge, MA, 02139, USA
| | - Ara Mahar
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St., Cambridge, MA, 02139, USA
| | - Cynthia J Schofield
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St., Cambridge, MA, 02139, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Patlapa Sompolpong
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St., Cambridge, MA, 02139, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kathy T Tran
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St., Cambridge, MA, 02139, USA
| | - Lin Tian
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St., Cambridge, MA, 02139, USA.
| |
Collapse
|
7
|
Castro MML, Amaral Junior FLD, Mendes FDCCDS, Anthony DC, Brites DMTDO, Diniz CWP, Sosthenes MCK. Intriguing astrocyte responses in CA1 to reduced and rehabilitated masticatory function: Dorsal and ventral distinct perspectives in adult mice. Arch Oral Biol 2024; 169:106097. [PMID: 39395318 DOI: 10.1016/j.archoralbio.2024.106097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/14/2024]
Abstract
OBJECTIVE We sought to investigate the plasticity of diet-induced changes in astrocyte morphology of stratum lacunosum-moleculare (SLM) in CA1. DESIGN Three diet regimes were adopted in 15 mice, from the 21st postnatal day to 6 months. The first diet regimen was pellet feed, called Hard Diet (HD). The second, with reduced masticatory, received a pellet-diet followed by a powdered-diet, and it was identified as Hard Diet/Soft Diet (HD/SD). Finally, the group with rehabilitated masticatory was named Hard Diet/Soft Diet/Hard Diet (HD/SD/HD). In the end, euthanasia and brain histological processing were performed, in which astrocytic immunoreactivity to glial-fibrillary-acidic-protein (GFAP) was tested. In reconstructed astrocytes, morphometric analysis was performed. RESULTS Astrocyte morphometric revealed that changes in masticatory regimens impact astrocyte morphology. In the dorsal CA1, switching from a hard diet to a soft diet led to reductions in most variables, whereas in the ventral, fewer variables were affected, highlighting regional differences in astrocyte responses. Cluster analysis further showed that diet-induced changes in astrocyte morphology were reversible in the dorsal region, but not in the ventral region, indicating a persistent impact on astrocyte diversity and complexity in the ventral even after rehabilitation. Correlation tests between astrocyte morphology and behavioral performance demonstrated disrupted relationships under masticatory stress, with effects persisting after rehabilitation. CONCLUSION Changes in the diet result in significant alterations in astrocyte morphology, suggesting a direct link between dietary modulation and cellular structure. Morphometric analyses revealed distinct alterations in astrocyte morphology in response to changes in the masticatory regimen, with both dorsal/ventral regions displaying notable changes. Moreover, the regional differential effects on astrocytes underscore the complexity of mastication on neuroplasticity and cognitive function.
Collapse
Affiliation(s)
- Micaele Maria Lopes Castro
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil
| | - Fabio Leite do Amaral Junior
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil
| | - Fabíola de Carvalho Chaves de Siqueira Mendes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil; Curso de Medicina, Centro Universitário do Estado do Pará, Belém, PA 66613-903, Brazil
| | - Daniel Clive Anthony
- University of Oxford, Laboratory of Experimental Neuropathology, Department of Pharmacology, Oxford OX13QT, United Kingdom
| | - Dora Maria Tuna de Oliveira Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil
| | - Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil.
| |
Collapse
|
8
|
Papini MR, Green TA, Mármol Contreras Y, Torres C, Ogawa M, Li Z. Frustrative Nonreward: Behavior, Circuits, Neurochemistry, and Disorders. J Neurosci 2024; 44:e1021242024. [PMID: 39358023 PMCID: PMC11450524 DOI: 10.1523/jneurosci.1021-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 10/04/2024] Open
Abstract
The surprising omission or reduction of vital resources (food, fluid, social partners) can induce an aversive emotion known as frustrative nonreward (FNR), which can influence subsequent behavior and physiology. FNR is an integral mediator of irritability/aggression, motivation (substance use disorders, depression), anxiety/fear/threat, learning/conditioning, and social behavior. Despite substantial progress in the study of FNR during the twentieth century, research lagged in the later part of the century and into the early twenty-first century until the National Institute of Mental Health's Research Domain Criteria initiative included FNR and loss as components of the negative valence domain. This led to a renaissance of new research and paradigms relevant to basic and clinical science alike. The COVID-19 pandemic's extensive individual and social restrictions were correlated with increased drug and alcohol use, social conflict, irritability, and suicide, all potential consequences of FNR. This article highlights animal models related to these psychiatric disorders and symptoms and presents recent advances in identifying the brain regions and neurotransmitters implicated.
Collapse
Affiliation(s)
- Mauricio R Papini
- Department of Psychology, Texas Christian University, Fort Worth Texas 76129
| | - Thomas A Green
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Yorkiris Mármol Contreras
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Carmen Torres
- Department of Psychology, University of Jaén, Jaén 23071, Spain
| | - Masaaki Ogawa
- Department of System Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Zheng Li
- Section on Synapse Development Plasticity, NIMH/NIH, Bethesda Maryland 20892
| |
Collapse
|
9
|
Huang J, Crochet S, Sandi C, Petersen CC. Dopamine dynamics in nucleus accumbens across reward-based learning of goal-directed whisker-to-lick sensorimotor transformations in mice. Heliyon 2024; 10:e37831. [PMID: 39323852 PMCID: PMC11422591 DOI: 10.1016/j.heliyon.2024.e37831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/12/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
The synaptic and neuronal circuit mechanisms underlying reward-based learning remain to be fully determined. In the mammalian brain, dopamine release in nucleus accumbens is thought to contribute importantly to reward signals for learning and promoting synaptic plasticity. Here, through longitudinal fiber photometry of a genetically-encoded fluorescent sensor, we investigated dopamine signals in the nucleus accumbens of thirsty head-restrained mice as they learned to lick a liquid reward spout in response to single deflections of the C2 whisker across varying reward contingencies. Reward delivery triggered by well-timed licking drove fast transient dopamine increases in nucleus accumbens. On the other hand, unrewarded licking was overall associated with reduced dopamine sensor fluorescence, especially in trials where reward was unexpectedly omitted. The dopamine reward signal upon liquid delivery decreased within individual sessions as mice became sated. As mice learned to lick the reward spout in response to whisker deflection, a fast transient sensory-evoked dopamine signal developed, correlating with the learning of the whisker detection task across consecutive training days, as well as within single learning sessions. The well-defined behavioral paradigm involving a unitary stimulus of a single whisker as a reward-predicting cue along with precisely quantified licking allows untangling of sensory, motor and reward-related dopamine signals and how they evolve across the learning of whisker-dependent goal-directed sensorimotor transformations. Our longitudinal measurements of dopamine dynamics across reward-based learning are overall consistent with the hypothesis that dopamine could play an important role as a reward signal for reinforcement learning.
Collapse
Affiliation(s)
- Jun Huang
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory of Behavioral Genetics, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C.H. Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
10
|
Howard MW, Esfahani ZG, Le B, Sederberg PB. Learning temporal relationships between symbols with Laplace Neural Manifolds. ARXIV 2024:arXiv:2302.10163v4. [PMID: 36866224 PMCID: PMC9980275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Firing across populations of neurons in many regions of the mammalian brain maintains a temporal memory, a neural timeline of the recent past. Behavioral results demonstrate that people can both remember the past and anticipate the future over an analogous internal timeline. This paper presents a mathematical framework for building this timeline of the future. We assume that the input to the system is a time series of symbols-sparse tokenized representations of the present-in continuous time. The goal is to record pairwise temporal relationships between symbols over a wide range of time scales. We assume that the brain has access to a temporal memory in the form of the real Laplace transform. Hebbian associations with a diversity of synaptic time scales are formed between the past timeline and the present symbol. The associative memory stores the convolution between the past and the present. Knowing the temporal relationship between the past and the present allows one to infer relationships between the present and the future. With appropriate normalization, this Hebbian associative matrix can store a Laplace successor representation and a Laplace predecessor representation from which measures of temporal contingency can be evaluated. The diversity of synaptic time constants allows for learning of non-stationary statistics as well as joint statistics between triplets of symbols. This framework synthesizes a number of recent neuroscientific findings including results from dopamine neurons in the mesolimbic forebrain.
Collapse
Affiliation(s)
- Marc W Howard
- Department of Psychological and Brain Sciences, Boston University, 610 Commonwealth Ave, Boston, 02215, MA, USA
| | - Zahra Gh Esfahani
- Department of Psychological and Brain Sciences, Boston University, 610 Commonwealth Ave, Boston, 02215, MA, USA
| | - Bao Le
- Department of Psychology, University of Virginia, 409 McCormick Road, Charlottesville, 22904, VA, USA
| | - Per B Sederberg
- Department of Psychology, University of Virginia, 409 McCormick Road, Charlottesville, 22904, VA, USA
| |
Collapse
|
11
|
Weber SJ, Kawa AB, Beutler MM, Kuhn HM, Moutier AL, Westlake JG, Koyshman LM, Moreno CD, Wunsch AM, Wolf ME. Dopamine transmission at D1 and D2 receptors in the nucleus accumbens contributes to the expression of incubation of cocaine craving. Neuropsychopharmacology 2024:10.1038/s41386-024-01992-2. [PMID: 39300272 DOI: 10.1038/s41386-024-01992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Relapse represents a consistent clinical problem for individuals with substance use disorder. In the incubation of craving model of persistent craving and relapse, cue-induced drug seeking progressively intensifies or "incubates" during the first weeks of abstinence from drug self-administration and then remains high for months. Previously, we and others have demonstrated that expression of incubated cocaine craving requires strengthening of excitatory synaptic transmission in the nucleus accumbens core (NAcc). However, despite the importance of dopaminergic signaling in the NAcc for motivated behavior, little is known about the role that dopamine (DA) plays in the incubation of cocaine craving. Here we used fiber photometry to measure DA transients in the NAcc of male and female rats during cue-induced seeking tests conducted in early abstinence from cocaine self-administration, prior to incubation, and late abstinence, after incubation of craving has plateaued. We observed DA transients time-locked to cue-induced responding but their magnitude did not differ significantly when measured during early versus late abstinence seeking tests. Next, we tested for a functional role of these DA transients by injecting DA receptor antagonists into the NAcc just before the cue-induced seeking test. Blockade of either D1 or D2 DA receptors reduced cue-induced cocaine seeking after but not before incubation. We found no main effect of sex or significant interaction of sex with other factors in our experiments. These results suggest that DA contributes to incubated cocaine seeking but the emergence of this role reflects changes in postsynaptic responsiveness to DA rather than presynaptic alterations.
Collapse
Affiliation(s)
- Sophia J Weber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Alex B Kawa
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Madelyn M Beutler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Hayley M Kuhn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Alana L Moutier
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Jonathan G Westlake
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Lara M Koyshman
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Cloe D Moreno
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Amanda M Wunsch
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
12
|
Kocharian A, Redish AD, Rothwell PE. Individual differences in decision-making shape how mesolimbic dopamine regulates choice confidence and change-of-mind. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613237. [PMID: 39345599 PMCID: PMC11429702 DOI: 10.1101/2024.09.16.613237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Nucleus accumbens dopamine signaling is an important neural substrate for decision-making. Dominant theories generally discretize and homogenize decision-making, when it is in fact a continuous process, with evaluation and re-evaluation components that extend beyond simple outcome prediction into consideration of past and future value. Extensive work has examined mesolimbic dopamine in the context of reward prediction error, but major gaps persist in our understanding of how dopamine regulates volitional and self-guided decision-making. Moreover, there is little consideration of individual differences in value processing that may shape how dopamine regulates decision-making. Here, using an economic foraging task in mice, we found that dopamine dynamics in the nucleus accumbens core reflected decision confidence during evaluation of decisions, as well as both past and future value during re-evaluation and change-of-mind. Optogenetic manipulations of mesolimbic dopamine release selectively altered evaluation and re-evaluation of decisions in mice whose dopamine dynamics and behavior reflected future value.
Collapse
Affiliation(s)
- Adrina Kocharian
- Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, MN
- Medical Scientist Training Program, University of Minnesota Medical School, Minneapolis, MN
| | - A. David Redish
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN
| | - Patrick E. Rothwell
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
13
|
Balsam PD, Simpson EH, Taylor K, Kalmbach A, Gallistel CR. Learning depends on the information conveyed by temporal relationships between events and is reflected in the dopamine response to cues. SCIENCE ADVANCES 2024; 10:eadi7137. [PMID: 39241065 PMCID: PMC11378905 DOI: 10.1126/sciadv.adi7137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/30/2024] [Indexed: 09/08/2024]
Abstract
Contemporary theories guiding the search for neural mechanisms of learning and memory assume that associative learning results from the temporal pairing of cues and reinforcers resulting in coincident activation of associated neurons, strengthening their synaptic connection. While enduring, this framework has limitations: Temporal pairing-based models of learning do not fit with many experimental observations and cannot be used to make quantitative predictions about behavior. Here, we present behavioral data that support an alternative, information-theoretic conception: The amount of information that cues provide about the timing of reward delivery predicts behavior. Furthermore, this approach accounts for the rate and depth of both inhibitory and excitatory learning across paradigms and species. We also show that dopamine release in the ventral striatum reflects cue-predicted changes in reinforcement rates consistent with subjects understanding temporal relationships between task events. Our results reshape the conceptual and biological framework for understanding associative learning.
Collapse
Affiliation(s)
- Peter D Balsam
- Department of Psychology, Barnard College, New York City, NY, USA
- Columbia University and New York State Psychiatric Institute, New York City, NY, USA
| | - Eleanor H Simpson
- Columbia University and New York State Psychiatric Institute, New York City, NY, USA
| | - Kathleen Taylor
- Department of Psychology, Barnard College, New York City, NY, USA
| | - Abigail Kalmbach
- Columbia University and New York State Psychiatric Institute, New York City, NY, USA
| | - Charles R Gallistel
- Department of Psychology and the Rutgers Center for Cognitive Science, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
14
|
Burke DA, Taylor A, Jeong H, Lee S, Wu B, Floeder JR, K Namboodiri VM. Reward timescale controls the rate of behavioural and dopaminergic learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.31.535173. [PMID: 37034619 PMCID: PMC10081323 DOI: 10.1101/2023.03.31.535173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Learning the causes of rewards is necessary for survival. Thus, it is critical to understand the mechanisms of such a vital biological process. Cue-reward learning is controlled by mesolimbic dopamine and improves with spacing of cue-reward pairings. However, whether a mathematical rule governs such improvements in learning rate, and if so, whether a unifying mechanism captures this rule and dopamine dynamics during learning remain unknown. Here, we investigate the behavioral, algorithmic, and dopaminergic mechanisms governing cue-reward learning rate. Across a range of conditions in mice, we show a strong, mathematically proportional relationship between both behavioral and dopaminergic learning rates and the duration between rewards. Due to this relationship, removing up to 19 out of 20 cue-reward pairings over a fixed duration has no influence on overall learning. These findings are explained by a dopamine-based model of retrospective learning, thereby providing a unified account of the biological mechanisms of learning.
Collapse
Affiliation(s)
- Dennis A Burke
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Annie Taylor
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Huijeong Jeong
- Department of Neurology, University of California, San Francisco, CA, USA
| | - SeulAh Lee
- Department of Neurology, University of California, San Francisco, CA, USA
- University of California, Berkeley, CA, USA
| | - Brenda Wu
- Department of Neurology, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Joseph R Floeder
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Vijay Mohan K Namboodiri
- Department of Neurology, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, University of California, San Francisco, CA, USA
| |
Collapse
|
15
|
Gershman SJ, Assad JA, Datta SR, Linderman SW, Sabatini BL, Uchida N, Wilbrecht L. Explaining dopamine through prediction errors and beyond. Nat Neurosci 2024; 27:1645-1655. [PMID: 39054370 DOI: 10.1038/s41593-024-01705-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/13/2024] [Indexed: 07/27/2024]
Abstract
The most influential account of phasic dopamine holds that it reports reward prediction errors (RPEs). The RPE-based interpretation of dopamine signaling is, in its original form, probably too simple and fails to explain all the properties of phasic dopamine observed in behaving animals. This Perspective helps to resolve some of the conflicting interpretations of dopamine that currently exist in the literature. We focus on the following three empirical challenges to the RPE theory of dopamine: why does dopamine (1) ramp up as animals approach rewards, (2) respond to sensory and motor features and (3) influence action selection? We argue that the prediction error concept, once it has been suitably modified and generalized based on an analysis of each computational problem, answers each challenge. Nonetheless, there are a number of additional empirical findings that appear to demand fundamentally different theoretical explanations beyond encoding RPE. Therefore, looking forward, we discuss the prospects for a unifying theory that respects the diversity of dopamine signaling and function as well as the complex circuitry that both underlies and responds to dopaminergic transmission.
Collapse
Affiliation(s)
- Samuel J Gershman
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA, USA.
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Cambridge, MA, USA.
| | - John A Assad
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Scott W Linderman
- Department of Statistics and Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Bernardo L Sabatini
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Cambridge, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Naoshige Uchida
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Linda Wilbrecht
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
16
|
Sharp PB, Eldar E. Humans adaptively deploy forward and backward prediction. Nat Hum Behav 2024; 8:1726-1737. [PMID: 39014069 DOI: 10.1038/s41562-024-01930-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/17/2024] [Indexed: 07/18/2024]
Abstract
The formation of predictions is essential to our ability to build models of the world and use them for intelligent decision-making. Here we challenge the dominant assumption that humans form only forward predictions, which specify what future events are likely to follow a given present event. We demonstrate that in some environments, it is more efficient to use backward prediction, which specifies what present events are likely to precede a given future event. This is particularly the case in diverging environments, where possible future events outnumber possible present events. Correspondingly, in six preregistered experiments (n = 1,299) involving both simple decision-making and more challenging planning tasks, we find that humans engage in backward prediction in divergent environments and use forward prediction in convergent environments. We thus establish that humans adaptively deploy forward and backward prediction in the service of efficient decision-making.
Collapse
Affiliation(s)
- Paul B Sharp
- Department of Psychology, Hebrew University of Jerusalem, Jerusalem, Israel.
- Department of Cognitive and Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel.
- Department of Psychology, Yale University, New Haven, CT, USA.
| | - Eran Eldar
- Department of Psychology, Hebrew University of Jerusalem, Jerusalem, Israel.
- Department of Cognitive and Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
17
|
Brown E, Zi Y, Vu MA, Bouabid S, Lindsey J, Godfrey-Nwachukwu C, Attarwala A, Litwin-Kumar A, DePasquale B, Howe M. Spatially organized striatal neuromodulator release encodes trajectory errors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607797. [PMID: 39185163 PMCID: PMC11343099 DOI: 10.1101/2024.08.13.607797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Goal-directed navigation requires animals to continuously evaluate their current direction and speed of travel relative to landmarks to discern whether they are approaching or deviating from their goal. Striatal dopamine and acetylcholine are powerful modulators of goal-directed behavior, but it is unclear whether and how neuromodulator dynamics at landmarks incorporate relative motion for effective behavioral guidance. Using optical measurements in mice, we demonstrate that cue-evoked striatal dopamine release encodes bi-directional 'trajectory errors' reflecting relationships between ongoing speed and direction of locomotion and visual flow relative to optimal goal trajectories. Striatum-wide micro-fiber array recordings resolved an anatomical gradient of trajectory error signaling across the anterior-posterior axis, distinct from trajectory error independent cue signals. Dynamic regression modeling revealed that positive and negative trajectory error encoding emerges early and late respectively during learning and over different time courses in the medial and lateral striatum, enabling region specific contributions to learning. Striatal acetylcholine release also encodes trajectory errors, but encoding is more spatially restricted, opposite polarity, and delayed relative to dopamine, supporting distinct roles in modulating striatal output and behavior. Dopamine trajectory error signaling and task performance were reproduced in a reinforcement learning model incorporating a conjunctive state space representation, suggesting a potential neural substrate for trajectory error generation. Our results establish region specific neuromodulator signals positioned to guide the speed and direction of locomotion to reach goals based on environmental landmarks during navigation.
Collapse
Affiliation(s)
- Eleanor Brown
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Yihan Zi
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Mai-Anh Vu
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Safa Bouabid
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Jack Lindsey
- Department of Neuroscience, Columbia University, New York, NY, USA
| | | | - Aaquib Attarwala
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | | | - Brian DePasquale
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Mark Howe
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| |
Collapse
|
18
|
Xu Y, Lin Y, Yu M, Zhou K. The nucleus accumbens in reward and aversion processing: insights and implications. Front Behav Neurosci 2024; 18:1420028. [PMID: 39184934 PMCID: PMC11341389 DOI: 10.3389/fnbeh.2024.1420028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
The nucleus accumbens (NAc), a central component of the brain's reward circuitry, has been implicated in a wide range of behaviors and emotional states. Emerging evidence, primarily drawing from recent rodent studies, suggests that the function of the NAc in reward and aversion processing is multifaceted. Prolonged stress or drug use induces maladaptive neuronal function in the NAc circuitry, which results in pathological conditions. This review aims to provide comprehensive and up-to-date insights on the role of the NAc in motivated behavior regulation and highlights areas that demand further in-depth analysis. It synthesizes the latest findings on how distinct NAc neuronal populations and pathways contribute to the processing of opposite valences. The review examines how a range of neuromodulators, especially monoamines, influence the NAc's control over various motivational states. Furthermore, it delves into the complex underlying mechanisms of psychiatric disorders such as addiction and depression and evaluates prospective interventions to restore NAc functionality.
Collapse
Affiliation(s)
| | | | | | - Kuikui Zhou
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
19
|
Zhang C, Dulinskas R, Ineichen C, Greter A, Sigrist H, Li Y, Alanis-Lobato G, Hengerer B, Pryce CR. Chronic stress deficits in reward behaviour co-occur with low nucleus accumbens dopamine activity during reward anticipation specifically. Commun Biol 2024; 7:966. [PMID: 39123076 PMCID: PMC11316117 DOI: 10.1038/s42003-024-06658-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Whilst reward pathologies are major and common in stress-related neuropsychiatric disorders, their neurobiology and treatment are poorly understood. Imaging studies in human reward pathology indicate attenuated BOLD activity in nucleus accumbens (NAc) coincident with reward anticipation but not reinforcement; potentially, this is dopamine (DA) related. In mice, chronic social stress (CSS) leads to reduced reward learning and motivation. Here, DA-sensor fibre photometry is used to investigate whether these behavioural deficits co-occur with altered NAc DA activity during reward anticipation and/or reinforcement. In CSS mice relative to controls: (1) Reduced discriminative learning of the sequence, tone-on + appetitive behaviour = tone-on + sucrose reinforcement, co-occurs with attenuated NAc DA activity throughout tone-on and sucrose reinforcement. (2) Reduced motivation during the sequence, operant behaviour = tone-on + sucrose delivery + sucrose reinforcement, co-occurs with attenuated NAc DA activity at tone-on and typical activity at sucrose reinforcement. (3) Reduced motivation during the sequence, operant behaviour = appetitive behaviour + sociosexual reinforcement, co-occurs with typical NAc DA activity at female reinforcement. Therefore, in CSS mice, low NAc DA activity co-occurs with low reward anticipation and could account for deficits in learning and motivation, with important implications for understanding human reward pathology.
Collapse
Affiliation(s)
- Chenfeng Zhang
- Preclinical Laboratory, Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry and University of Zurich, Zurich, Switzerland
- Zurich Neuroscience Center, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Redas Dulinskas
- Preclinical Laboratory, Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry and University of Zurich, Zurich, Switzerland
| | - Christian Ineichen
- Preclinical Laboratory, Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry and University of Zurich, Zurich, Switzerland
| | - Alexandra Greter
- Preclinical Laboratory, Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry and University of Zurich, Zurich, Switzerland
| | - Hannes Sigrist
- Preclinical Laboratory, Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry and University of Zurich, Zurich, Switzerland
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Gregorio Alanis-Lobato
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Bastian Hengerer
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Christopher R Pryce
- Preclinical Laboratory, Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry and University of Zurich, Zurich, Switzerland.
- Zurich Neuroscience Center, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
20
|
Peck EG, Holleran KM, Curry AM, Holter KM, Estave PM, Sens JP, Locke JL, Ortelli OA, George BE, Dawes MH, West AM, Alexander NJ, Kiraly DD, Farris SP, Gould RW, McCool BA, Jones SR. Synaptogyrin-3 Prevents Cocaine Addiction and Dopamine Deficits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.27.605436. [PMID: 39211138 PMCID: PMC11361146 DOI: 10.1101/2024.07.27.605436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Synaptogyrin-3, a functionally obscure synaptic vesicle protein, interacts with vesicular monoamine and dopamine transporters, bringing together dopamine release and reuptake sites. Synaptogyrin-3 was reduced by chronic cocaine exposure in both humans and rats, and synaptogyrin-3 levels inversely correlated with motivation to take cocaine in rats. Synaptogyrin-3 overexpression in dopamine neurons reduced cocaine self-administration, decreased anxiety-like behavior, and enhanced cognitive flexibility. Overexpression also enhanced nucleus accumbens dopamine signaling and prevented cocaine-induced deficits, suggesting a putative therapeutic role for synaptogyrin-3 in cocaine use disorder.
Collapse
|
21
|
Chen J, Bornstein AM. The causal structure and computational value of narratives. Trends Cogn Sci 2024; 28:769-781. [PMID: 38734531 PMCID: PMC11305923 DOI: 10.1016/j.tics.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 05/13/2024]
Abstract
Many human behavioral and brain imaging studies have used narratively structured stimuli (e.g., written, audio, or audiovisual stories) to better emulate real-world experience in the laboratory. However, narratives are a special class of real-world experience, largely defined by their causal connections across time. Much contemporary neuroscience research does not consider this key property. We review behavioral and neuroscientific work that speaks to how causal structure shapes comprehension of and memory for narratives. We further draw connections between this work and reinforcement learning, highlighting how narratives help link causes to outcomes in complex environments. By incorporating the plausibility of causal connections between classes of actions and outcomes, reinforcement learning models may become more ecologically valid, while simultaneously elucidating the value of narratives.
Collapse
Affiliation(s)
- Janice Chen
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
| | - Aaron M Bornstein
- Department of Cognitive Sciences, University of California, Irvine, CA, USA; Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA
| |
Collapse
|
22
|
Schoeller F, Jain A, Pizzagalli DA, Reggente N. The neurobiology of aesthetic chills: How bodily sensations shape emotional experiences. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:617-630. [PMID: 38383913 PMCID: PMC11233292 DOI: 10.3758/s13415-024-01168-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/21/2024] [Indexed: 02/23/2024]
Abstract
The phenomenon of aesthetic chills-shivers and goosebumps associated with either rewarding or threatening stimuli-offers a unique window into the brain basis of conscious reward because of their universal nature and simultaneous subjective and physical counterparts. Elucidating the neural mechanisms underlying aesthetic chills can reveal fundamental insights about emotion, consciousness, and the embodied mind. What is the precise timing and mechanism of bodily feedback in emotional experience? How are conscious feelings and motivations generated from interoceptive predictions? What is the role of uncertainty and precision signaling in shaping emotions? How does the brain distinguish and balance processing of rewards versus threats? We review neuroimaging evidence and highlight key questions for understanding how bodily sensations shape conscious feelings. This research stands to advance models of brain-body interactions shaping affect and may lead to novel nonpharmacological interventions for disorders of motivation and pleasure.
Collapse
Affiliation(s)
- Felix Schoeller
- Institute for Advanced Consciousness Studies, Santa Monica, CA, USA.
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Abhinandan Jain
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Nicco Reggente
- Institute for Advanced Consciousness Studies, Santa Monica, CA, USA
| |
Collapse
|
23
|
Heer CM, Sheffield MEJ. Distinct catecholaminergic pathways projecting to hippocampal CA1 transmit contrasting signals during navigation in familiar and novel environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.29.569214. [PMID: 38076843 PMCID: PMC10705417 DOI: 10.1101/2023.11.29.569214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Neuromodulatory inputs to the hippocampus play pivotal roles in modulating synaptic plasticity, shaping neuronal activity, and influencing learning and memory. Recently it has been shown that the main sources of catecholamines to the hippocampus, ventral tegmental area (VTA) and locus coeruleus (LC), may have overlapping release of neurotransmitters and effects on the hippocampus. Therefore, to dissect the impacts of both VTA and LC circuits on hippocampal function, a thorough examination of how these pathways might differentially operate during behavior and learning is necessary. We therefore utilized 2-photon microscopy to functionally image the activity of VTA and LC axons within the CA1 region of the dorsal hippocampus in head-fixed male mice navigating linear paths within virtual reality (VR) environments. We found that within familiar environments some VTA axons and the vast majority of LC axons showed a correlation with the animals' running speed. However, as mice approached previously learned rewarded locations, a large majority of VTA axons exhibited a gradual ramping-up of activity, peaking at the reward location. In contrast, LC axons displayed a pre-movement signal predictive of the animal's transition from immobility to movement. Interestingly, a marked divergence emerged following a switch from the familiar to novel VR environments. Many LC axons showed large increases in activity that remained elevated for over a minute, while the previously observed VTA axon ramping-to-reward dynamics disappeared during the same period. In conclusion, these findings highlight distinct roles of VTA and LC catecholaminergic inputs in the dorsal CA1 hippocampal region. These inputs encode unique information, with reward information in VTA inputs and novelty and kinematic information in LC inputs, likely contributing to differential modulation of hippocampal activity during behavior and learning.
Collapse
Affiliation(s)
- Chad M Heer
- The Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Mark E J Sheffield
- The Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
24
|
Gallistel CR, Shahan TA. Time-scale invariant contingency yields one-shot reinforcement learning despite extremely long delays to reinforcement. Proc Natl Acad Sci U S A 2024; 121:e2405451121. [PMID: 39008663 PMCID: PMC11287270 DOI: 10.1073/pnas.2405451121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/06/2024] [Indexed: 07/17/2024] Open
Abstract
Reinforcement learning inspires much theorizing in neuroscience, cognitive science, machine learning, and AI. A central question concerns the conditions that produce the perception of a contingency between an action and reinforcement-the assignment-of-credit problem. Contemporary models of associative and reinforcement learning do not leverage the temporal metrics (measured intervals). Our information-theoretic approach formalizes contingency by time-scale invariant temporal mutual information. It predicts that learning may proceed rapidly even with extremely long action-reinforcer delays. We show that rats can learn an action after a single reinforcement, even with a 16-min delay between the action and reinforcement (15-fold longer than any delay previously shown to support such learning). By leveraging metric temporal information, our solution obviates the need for windows of associability, exponentially decaying eligibility traces, microstimuli, or distributions over Bayesian belief states. Its three equations have no free parameters; they predict one-shot learning without iterative simulation.
Collapse
Affiliation(s)
- Charles R. Gallistel
- Department of Psychology & Rutgers Center for Cognitive Sciences, Rutgers The State University of New Jersey, Piscataway, NJ08854-8020
| | - Timothy A. Shahan
- Department of Psychology, Utah State University, Logan, UT84322-2810
| |
Collapse
|
25
|
Lohnas LJ, Howard MW. The influence of emotion on temporal context models. Cogn Emot 2024:1-29. [PMID: 39007902 DOI: 10.1080/02699931.2024.2371075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 06/17/2024] [Indexed: 07/16/2024]
Abstract
Temporal context models (TCMs) have been influential in understanding episodic memory and its neural underpinnings. Recently, TCMs have been extended to explain emotional memory effects, one of the most clinically important findings in the field of memory research. This review covers recent advances in hypotheses for the neural representation of spatiotemporal context through the lens of TCMs, including their ability to explain the influence of emotion on episodic and temporal memory. In recent years, simplifying assumptions of "classical" TCMs - with exponential trace decay and the mechanism by which temporal context is recovered - have become increasingly clear. The review also outlines how recent advances could be incorporated into a future TCM, beyond classical assumptions, to integrate emotional modulation.
Collapse
Affiliation(s)
- Lynn J Lohnas
- Department of Psychology, Syracuse University, Syracuse, NY, USA
| | - Marc W Howard
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| |
Collapse
|
26
|
Burwell SC, Yan H, Lim SS, Shields BC, Tadross MR. Natural phasic inhibition of dopamine neurons signals cognitive rigidity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593320. [PMID: 38766037 PMCID: PMC11100816 DOI: 10.1101/2024.05.09.593320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
When animals unexpectedly fail, their dopamine neurons undergo phasic inhibition that canonically drives extinction learning-a cognitive-flexibility mechanism for discarding outdated strategies. However, the existing evidence equates natural and artificial phasic inhibition, despite their spatiotemporal differences. Addressing this gap, we targeted a GABAA-receptor antagonist precisely to dopamine neurons, yielding three unexpected findings. First, this intervention blocked natural phasic inhibition selectively, leaving tonic activity unaffected. Second, blocking natural phasic inhibition accelerated extinction learning-opposite to canonical mechanisms. Third, our approach selectively benefitted perseverative mice, restoring rapid extinction without affecting new reward learning. Our findings reveal that extinction learning is rapid by default and slowed by natural phasic inhibition-challenging foundational learning theories, while delineating a synaptic mechanism and therapeutic target for cognitive rigidity.
Collapse
Affiliation(s)
- Sasha C.V. Burwell
- Department of Neurobiology, Duke University, Durham, NC
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Haidun Yan
- Department of Biomedical Engineering, Duke University, NC
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Shaun S.X. Lim
- Department of Biomedical Engineering, Duke University, NC
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Brenda C. Shields
- Department of Biomedical Engineering, Duke University, NC
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Michael R. Tadross
- Department of Neurobiology, Duke University, Durham, NC
- Department of Biomedical Engineering, Duke University, NC
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| |
Collapse
|
27
|
Cone I, Clopath C, Shouval HZ. Learning to express reward prediction error-like dopaminergic activity requires plastic representations of time. Nat Commun 2024; 15:5856. [PMID: 38997276 PMCID: PMC11245539 DOI: 10.1038/s41467-024-50205-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
The dominant theoretical framework to account for reinforcement learning in the brain is temporal difference learning (TD) learning, whereby certain units signal reward prediction errors (RPE). The TD algorithm has been traditionally mapped onto the dopaminergic system, as firing properties of dopamine neurons can resemble RPEs. However, certain predictions of TD learning are inconsistent with experimental results, and previous implementations of the algorithm have made unscalable assumptions regarding stimulus-specific fixed temporal bases. We propose an alternate framework to describe dopamine signaling in the brain, FLEX (Flexibly Learned Errors in Expected Reward). In FLEX, dopamine release is similar, but not identical to RPE, leading to predictions that contrast to those of TD. While FLEX itself is a general theoretical framework, we describe a specific, biophysically plausible implementation, the results of which are consistent with a preponderance of both existing and reanalyzed experimental data.
Collapse
Affiliation(s)
- Ian Cone
- Department of Bioengineering, Imperial College London, London, UK
- Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, TX, USA
- Applied Physics Program, Rice University, Houston, TX, USA
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, London, UK
| | - Harel Z Shouval
- Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, TX, USA.
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.
| |
Collapse
|
28
|
Labouesse MA, Wilhelm M, Kagiampaki Z, Yee AG, Denis R, Harada M, Gresch A, Marinescu AM, Otomo K, Curreli S, Serratosa Capdevila L, Zhou X, Cola RB, Ravotto L, Glück C, Cherepanov S, Weber B, Zhou X, Katner J, Svensson KA, Fellin T, Trudeau LE, Ford CP, Sych Y, Patriarchi T. A chemogenetic approach for dopamine imaging with tunable sensitivity. Nat Commun 2024; 15:5551. [PMID: 38956067 PMCID: PMC11219860 DOI: 10.1038/s41467-024-49442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
Genetically-encoded dopamine (DA) sensors enable high-resolution imaging of DA release, but their ability to detect a wide range of extracellular DA levels, especially tonic versus phasic DA release, is limited by their intrinsic affinity. Here we show that a human-selective dopamine receptor positive allosteric modulator (PAM) can be used to boost sensor affinity on-demand. The PAM enhances DA detection sensitivity across experimental preparations (in vitro, ex vivo and in vivo) via one-photon or two-photon imaging. In vivo photometry-based detection of optogenetically-evoked DA release revealed that DETQ administration produces a stable 31 minutes window of potentiation without effects on animal behavior. The use of the PAM revealed region-specific and metabolic state-dependent differences in tonic DA levels and enhanced single-trial detection of behavior-evoked phasic DA release in cortex and striatum. Our chemogenetic strategy can potently and flexibly tune DA imaging sensitivity and reveal multi-modal (tonic/phasic) DA signaling across preparations and imaging approaches.
Collapse
Affiliation(s)
- Marie A Labouesse
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Maria Wilhelm
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Institute for Neuroscience, ETH Zurich, Zurich, Switzerland
| | | | - Andrew G Yee
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Raphaelle Denis
- Department of Pharmacology & Physiology, Faculty of Medicine, SNC and CIRCA Research groups, Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, SNC and CIRCA Research groups, Université de Montréal, Montréal, QC, Canada
| | - Masaya Harada
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Andrea Gresch
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | | | - Kanako Otomo
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Sebastiano Curreli
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Xuehan Zhou
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Reto B Cola
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Luca Ravotto
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Chaim Glück
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Stanislav Cherepanov
- Institute of Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Xin Zhou
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Louis-Eric Trudeau
- Department of Pharmacology & Physiology, Faculty of Medicine, SNC and CIRCA Research groups, Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, SNC and CIRCA Research groups, Université de Montréal, Montréal, QC, Canada
| | - Christopher P Ford
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Yaroslav Sych
- Institute of Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
29
|
Song MR, Lee SW. Rethinking dopamine-guided action sequence learning. Eur J Neurosci 2024; 60:3447-3465. [PMID: 38798086 DOI: 10.1111/ejn.16426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/21/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
As opposed to those requiring a single action for reward acquisition, tasks necessitating action sequences demand that animals learn action elements and their sequential order and sustain the behaviour until the sequence is completed. With repeated learning, animals not only exhibit precise execution of these sequences but also demonstrate enhanced smoothness and efficiency. Previous research has demonstrated that midbrain dopamine and its major projection target, the striatum, play crucial roles in these processes. Recent studies have shown that dopamine from the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA) serve distinct functions in action sequence learning. The distinct contributions of dopamine also depend on the striatal subregions, namely the ventral, dorsomedial and dorsolateral striatum. Here, we have reviewed recent findings on the role of striatal dopamine in action sequence learning, with a focus on recent rodent studies.
Collapse
Affiliation(s)
- Minryung R Song
- Department of Brain and Cognitive Sciences, KAIST, Daejeon, South Korea
| | - Sang Wan Lee
- Department of Brain and Cognitive Sciences, KAIST, Daejeon, South Korea
- Kim Jaechul Graduate School of AI, KAIST, Daejeon, South Korea
- KI for Health Science and Technology, KAIST, Daejeon, South Korea
- Center for Neuroscience-inspired AI, KAIST, Daejeon, South Korea
| |
Collapse
|
30
|
Lehmann CM, Miller NE, Nair VS, Costa KM, Schoenbaum G, Moussawi K. Generalized cue reactivity in dopamine neurons after opioids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597025. [PMID: 38853878 PMCID: PMC11160774 DOI: 10.1101/2024.06.02.597025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Cue reactivity is the maladaptive neurobiological and behavioral response upon exposure to drug cues and is a major driver of relapse. The leading hypothesis is that dopamine release by addictive drugs represents a persistently positive reward prediction error that causes runaway enhancement of dopamine responses to drug cues, leading to their pathological overvaluation compared to non-drug reward alternatives. However, this hypothesis has not been directly tested. Here we developed Pavlovian and operant procedures to measure firing responses, within the same dopamine neurons, to drug versus natural reward cues, which we found to be similarly enhanced compared to cues predicting natural rewards in drug-naïve controls. This enhancement was associated with increased behavioral reactivity to the drug cue, suggesting that dopamine release is still critical to cue reactivity, albeit not as previously hypothesized. These results challenge the prevailing hypothesis of cue reactivity, warranting new models of dopaminergic function in drug addiction, and provide critical insights into the neurobiology of cue reactivity with potential implications for relapse prevention.
Collapse
Affiliation(s)
- Collin M. Lehmann
- Department of Psychiatry, University of Pittsburgh; Pittsburgh, 15219, USA
| | - Nora E. Miller
- Department of Psychiatry, University of Pittsburgh; Pittsburgh, 15219, USA
| | - Varun S. Nair
- Department of Psychiatry, University of Pittsburgh; Pittsburgh, 15219, USA
| | - Kauê M. Costa
- Department of Psychology, University of Alabama at Birmingham; Birmingham, 35233, USA
| | - Geoffrey Schoenbaum
- National Institute on Drug Abuse, National Institutes of Health; Baltimore, 21224, USA
| | - Khaled Moussawi
- Department of Psychiatry, University of Pittsburgh; Pittsburgh, 15219, USA
- Department of Neurology, University of California San Francisco; San Francisco, 94158, USA
| |
Collapse
|
31
|
Hart G, Burton TJ, Balleine BW. What Role Does Striatal Dopamine Play in Goal-directed Action? Neuroscience 2024; 546:20-32. [PMID: 38521480 DOI: 10.1016/j.neuroscience.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/15/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
Evidence suggests that dopamine activity provides a US-related prediction error for Pavlovian conditioning and the reinforcement signal supporting the acquisition of habits. However, its role in goal-directed action is less clear. There are currently few studies that have assessed dopamine release as animals acquire and perform self-paced instrumental actions. Here we briefly review the literature documenting the psychological, behavioral and neural bases of goal-directed actions in rats and mice, before turning to describe recent studies investigating the role of dopamine in instrumental learning and performance. Plasticity in dorsomedial striatum, a central node in the network supporting goal-directed action, clearly requires dopamine release, the timing of which, relative to cortical and thalamic inputs, determines the degree and form of that plasticity. Beyond this, bilateral release appears to reflect reward prediction errors as animals experience the consequences of an action. Such signals feedforward to update the value of the specific action associated with that outcome during subsequent performance, with dopamine release at the time of action reflecting the updated predicted action value. More recently, evidence has also emerged for a hemispherically lateralised signal associated with the action; dopamine release is greater in the hemisphere contralateral to the spatial target of the action. This effect emerges over the course of acquisition and appears to reflect the strength of the action-outcome association. Thus, during goal-directed action, dopamine release signals the action, the outcome and their association to shape the learning and performance processes necessary to support this form of behavioral control.
Collapse
Affiliation(s)
- Genevra Hart
- Decision Neuroscience Lab, UNSW Sydney, Australia
| | | | | |
Collapse
|
32
|
Konanur VR, Hurh SJ, Hsu TM, Roitman MF. Dopamine neuron activity evoked by sucrose and sucrose-predictive cues is augmented by peripheral and central manipulations of glucose availability. Eur J Neurosci 2024; 59:2419-2435. [PMID: 38057909 PMCID: PMC11108752 DOI: 10.1111/ejn.16214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/23/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023]
Abstract
Food deprivation drives eating through multiple signals and circuits. Decreased glucose availability (i.e., cytoglucopenia) drives eating and also increases the value of sucrose. Ventral tegmental area (VTA) dopamine neurons (DANs) contribute to the evaluation of taste stimuli, but their role in integrating glucoprivic signals remains unknown. We monitored VTA DAN activity via Cre-dependent expression of a calcium indicator with in vivo fibre photometry. In ad libitum fed rats, intraoral sucrose evoked a phasic increase in DAN activity. To manipulate glucose availability, we administered (intraperitoneal, lateral or fourth ventricular) the antiglycolytic agent 5-thio-D-glucose (5TG), which significantly augmented the phasic DAN activity to sucrose. 5TG failed to alter DAN activity to water or saccharin, suggesting the response was selective for caloric stimuli. 5TG enhancement of sucrose-evoked DAN activity was stronger after fourth ventricular administration, suggesting a critical node of action within the hindbrain. As 5TG also increases blood glucose, in a separate study, we used peripheral insulin, which stimulates eating, to decrease blood glucose-which was associated with increased DAN activity to intraoral sucrose. DAN activity developed to a cue predictive of intraoral sucrose. While 5TG augmented cue-evoked DAN activity, its action was most potent when delivered to the lateral ventricle. Together, the studies point to central glucose availability as a key modulator of phasic DAN activity to food and food-cues. As glucose sensing neurons are known to populate the hypothalamus and brainstem, results suggest differential modulation of cue-evoked and sucrose-evoked DAN activity.
Collapse
Affiliation(s)
- Vaibhav R. Konanur
- Department of Psychology, University of Illinois at Chicago, Chicago, IL
- Current affiliation: Department of Biology, University of Illinois at Chicago, Chicago, IL
| | - Samantha J. Hurh
- Department of Psychology, University of Illinois at Chicago, Chicago, IL
| | - Ted M. Hsu
- Department of Psychology, University of Illinois at Chicago, Chicago, IL
| | | |
Collapse
|
33
|
Osuch B, Misztal T, Pałatyńska K, Tomaszewska-Zaremba D. Implications of Kynurenine Pathway Metabolism for the Immune System, Hypothalamic-Pituitary-Adrenal Axis, and Neurotransmission in Alcohol Use Disorder. Int J Mol Sci 2024; 25:4845. [PMID: 38732064 PMCID: PMC11084367 DOI: 10.3390/ijms25094845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/21/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
In recent years, there has been a marked increase in interest in the role of the kynurenine pathway (KP) in mechanisms associated with addictive behavior. Numerous reports implicate KP metabolism in influencing the immune system, hypothalamic-pituitary-adrenal (HPA) axis, and neurotransmission, which underlie the behavioral patterns characteristic of addiction. An in-depth analysis of the results of these new studies highlights interesting patterns of relationships, and approaching alcohol use disorder (AUD) from a broader neuroendocrine-immune system perspective may be crucial to better understanding this complex phenomenon. In this review, we provide an up-to-date summary of information indicating the relationship between AUD and the KP, both in terms of changes in the activity of this pathway and modulation of this pathway as a possible pharmacological approach for the treatment of AUD.
Collapse
Affiliation(s)
- Bartosz Osuch
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (T.M.); (K.P.); (D.T.-Z.)
| | | | | | | |
Collapse
|
34
|
Floeder JR, Jeong H, Mohebi A, Namboodiri VMK. Mesolimbic dopamine ramps reflect environmental timescales. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587103. [PMID: 38659749 PMCID: PMC11042231 DOI: 10.1101/2024.03.27.587103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Mesolimbic dopamine activity occasionally exhibits ramping dynamics, reigniting debate on theories of dopamine signaling. This debate is ongoing partly because the experimental conditions under which dopamine ramps emerge remain poorly understood. Here, we show that during Pavlovian and instrumental conditioning, mesolimbic dopamine ramps are only observed when the inter-trial interval is short relative to the trial period. These results constrain theories of dopamine signaling and identify a critical variable determining the emergence of dopamine ramps.
Collapse
Affiliation(s)
- Joseph R Floeder
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Huijeong Jeong
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Ali Mohebi
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Vijay Mohan K Namboodiri
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, University of California, San Francisco, CA, USA
| |
Collapse
|
35
|
Nagel J, Morgan DP, Gürsoy NÇ, Sander S, Kern S, Feld GB. Memory for rewards guides retrieval. COMMUNICATIONS PSYCHOLOGY 2024; 2:31. [PMID: 39242930 PMCID: PMC11332070 DOI: 10.1038/s44271-024-00074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/11/2024] [Indexed: 09/09/2024]
Abstract
Rewards paid out for successful retrieval motivate the formation of long-term memory. However, it has been argued that the Motivated Learning Task does not measure reward effects on memory strength but decision-making during retrieval. We report three large-scale online experiments in healthy participants (N = 200, N = 205, N = 187) that inform this debate. In experiment 1, we found that explicit stimulus-reward associations formed during encoding influence response strategies at retrieval. In experiment 2, reward affected memory strength and decision-making strategies. In experiment 3, reward affected decision-making strategies only. These data support a theoretical framework that assumes that promised rewards not only increase memory strength, but additionally lead to the formation of stimulus-reward associations that influence decisions at retrieval.
Collapse
Affiliation(s)
- Juliane Nagel
- Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
- Addiction Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
- Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - David Philip Morgan
- Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Addiction Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Necati Çağatay Gürsoy
- Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Addiction Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Samuel Sander
- Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Addiction Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Simon Kern
- Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Addiction Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Gordon Benedikt Feld
- Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
- Addiction Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
- Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
- Department of Psychology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
36
|
Drzewiecki CM, Fox AS. Understanding the heterogeneity of anxiety using a translational neuroscience approach. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:228-245. [PMID: 38356013 PMCID: PMC11039504 DOI: 10.3758/s13415-024-01162-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/14/2024] [Indexed: 02/16/2024]
Abstract
Anxiety disorders affect millions of people worldwide and present a challenge in neuroscience research because of their substantial heterogeneity in clinical presentation. While a great deal of progress has been made in understanding the neurobiology of fear and anxiety, these insights have not led to effective treatments. Understanding the relationship between phenotypic heterogeneity and the underlying biology is a critical first step in solving this problem. We show translation, reverse translation, and computational modeling can contribute to a refined, cross-species understanding of fear and anxiety as well as anxiety disorders. More specifically, we outline how animal models can be leveraged to develop testable hypotheses in humans by using targeted, cross-species approaches and ethologically informed behavioral paradigms. We discuss reverse translational approaches that can guide and prioritize animal research in nontraditional research species. Finally, we advocate for the use of computational models to harmonize cross-species and cross-methodology research into anxiety. Together, this translational neuroscience approach will help to bridge the widening gap between how we currently conceptualize and diagnose anxiety disorders, as well as aid in the discovery of better treatments for these conditions.
Collapse
Affiliation(s)
- Carly M Drzewiecki
- California National Primate Research Center, University of California, Davis, CA, USA.
| | - Andrew S Fox
- California National Primate Research Center, University of California, Davis, CA, USA.
- Department of Psychology, University of California, Davis, CA, USA.
| |
Collapse
|
37
|
Seiler JL, Zhuang X, Nelson AB, Lerner TN. Dopamine across timescales and cell types: Relevance for phenotypes in Parkinson's disease progression. Exp Neurol 2024; 374:114693. [PMID: 38242300 DOI: 10.1016/j.expneurol.2024.114693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Dopamine neurons in the substantia nigra pars compacta (SNc) synthesize and release dopamine, a critical neurotransmitter for movement and learning. SNc dopamine neurons degenerate in Parkinson's Disease (PD), causing a host of motor and non-motor symptoms. Here, we review recent conceptual advances in our basic understanding of the dopamine system - including our rapidly advancing knowledge of dopamine neuron heterogeneity - with special attention to their importance for understanding PD. In PD patients, dopamine neuron degeneration progresses from lateral SNc to medial SNc, suggesting clinically relevant heterogeneity in dopamine neurons. With technical advances in dopamine system interrogation, we can understand the relevance of this heterogeneity for PD progression and harness it to develop new treatments.
Collapse
Affiliation(s)
- Jillian L Seiler
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Xiaowen Zhuang
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA; Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Alexandra B Nelson
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA; Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Talia N Lerner
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Northwestern University Interdepartmental Neuroscience Program (NUIN), Evanston, IL, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
38
|
Zhou M, Wu B, Jeong H, Burke DA, Namboodiri VMK. An open-source behavior controller for associative learning and memory (B-CALM). Behav Res Methods 2024; 56:2695-2710. [PMID: 37464151 PMCID: PMC10898869 DOI: 10.3758/s13428-023-02182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 07/20/2023]
Abstract
Associative learning and memory, i.e., learning and remembering the associations between environmental stimuli, self-generated actions, and outcomes such as rewards or punishments, are critical for the well-being of animals. Hence, the neural mechanisms underlying these processes are extensively studied using behavioral tasks in laboratory animals. Traditionally, these tasks have been controlled using commercial hardware and software, which limits scalability and accessibility due to their cost. More recently, due to the revolution in microcontrollers or microcomputers, several general-purpose and open-source solutions have been advanced for controlling neuroscientific behavioral tasks. While these solutions have great strength due to their flexibility and general-purpose nature, for the same reasons, they suffer from some disadvantages including the need for considerable programming expertise, limited online visualization, or slower than optimal response latencies for any specific task. Here, to mitigate these concerns, we present an open-source behavior controller for associative learning and memory (B-CALM). B-CALM provides an integrated suite that can control a host of associative learning and memory behaviors. As proof of principle for its applicability, we show data from head-fixed mice learning Pavlovian conditioning, operant conditioning, discrimination learning, as well as a timing task and a choice task. These can be run directly from a user-friendly graphical user interface (GUI) written in MATLAB that controls many independently running Arduino Mega microcontrollers in parallel (one per behavior box). In sum, B-CALM will enable researchers to execute a wide variety of associative learning and memory tasks in a scalable, accurate, and user-friendly manner.
Collapse
Affiliation(s)
- Mingkang Zhou
- Department of Neurology, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Brenda Wu
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Huijeong Jeong
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Dennis A Burke
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Vijay Mohan K Namboodiri
- Department of Neurology, University of California, San Francisco, CA, USA.
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA.
- Weill Institute for Neuroscience, Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, University of California, San Francisco, CA, USA.
| |
Collapse
|
39
|
Carter F, Cossette MP, Trujillo-Pisanty I, Pallikaras V, Breton YA, Conover K, Caplan J, Solis P, Voisard J, Yaksich A, Shizgal P. Does phasic dopamine release cause policy updates? Eur J Neurosci 2024; 59:1260-1277. [PMID: 38039083 DOI: 10.1111/ejn.16199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 12/03/2023]
Abstract
Phasic dopamine activity is believed to both encode reward-prediction errors (RPEs) and to cause the adaptations that these errors engender. If so, a rat working for optogenetic stimulation of dopamine neurons will repeatedly update its policy and/or action values, thus iteratively increasing its work rate. Here, we challenge this view by demonstrating stable, non-maximal work rates in the face of repeated optogenetic stimulation of midbrain dopamine neurons. Furthermore, we show that rats learn to discriminate between world states distinguished only by their history of dopamine activation. Comparison of these results to reinforcement learning simulations suggests that the induced dopamine transients acted more as rewards than RPEs. However, pursuit of dopaminergic stimulation drifted upwards over a time scale of days and weeks, despite its stability within trials. To reconcile the results with prior findings, we consider multiple roles for dopamine signalling.
Collapse
Affiliation(s)
- Francis Carter
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
- Montreal Institute for Learning Algorithms, Université de Montréal, Montreal, Quebec, Canada
| | | | - Ivan Trujillo-Pisanty
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
- Department of Psychology, Langara College, Vancouver, British Columbia, Canada
| | | | | | - Kent Conover
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Jill Caplan
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Pavel Solis
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Jacques Voisard
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Alexandra Yaksich
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Peter Shizgal
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Qian L, Burrell M, Hennig JA, Matias S, Murthy VN, Gershman SJ, Uchida N. The role of prospective contingency in the control of behavior and dopamine signals during associative learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578961. [PMID: 38370735 PMCID: PMC10871210 DOI: 10.1101/2024.02.05.578961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Associative learning depends on contingency, the degree to which a stimulus predicts an outcome. Despite its importance, the neural mechanisms linking contingency to behavior remain elusive. Here we examined the dopamine activity in the ventral striatum - a signal implicated in associative learning - in a Pavlovian contingency degradation task in mice. We show that both anticipatory licking and dopamine responses to a conditioned stimulus decreased when additional rewards were delivered uncued, but remained unchanged if additional rewards were cued. These results conflict with contingency-based accounts using a traditional definition of contingency or a novel causal learning model (ANCCR), but can be explained by temporal difference (TD) learning models equipped with an appropriate inter-trial-interval (ITI) state representation. Recurrent neural networks trained within a TD framework develop state representations like our best 'handcrafted' model. Our findings suggest that the TD error can be a measure that describes both contingency and dopaminergic activity.
Collapse
Affiliation(s)
- Lechen Qian
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- These authors contributed equally
| | - Mark Burrell
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- These authors contributed equally
| | - Jay A. Hennig
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | - Sara Matias
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Venkatesh. N. Murthy
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Samuel J. Gershman
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | - Naoshige Uchida
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
41
|
Wolff AR, Saunders BT. Sensory Cues Potentiate VTA Dopamine Mediated Reinforcement. eNeuro 2024; 11:ENEURO.0421-23.2024. [PMID: 38238080 PMCID: PMC10875637 DOI: 10.1523/eneuro.0421-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024] Open
Abstract
Sensory cues are critical for shaping decisions and invigorating actions during reward seeking. Dopamine neurons in the ventral tegmental area (VTA) are central in this process, supporting associative learning in Pavlovian and instrumental settings. Studies of intracranial self-stimulation (ICSS) behavior, which show that animals will work hard to receive stimulation of dopamine neurons, support the notion that dopamine transmits a reward or value signal to support learning. Recent studies have begun to question this, however, emphasizing dopamine's value-free functions, leaving its contribution to behavioral reinforcement somewhat muddled. Here, we investigated the role of sensory stimuli in dopamine-mediated reinforcement, using an optogenetic ICSS paradigm in tyrosine hydroxylase (TH)-Cre rats. We find that while VTA dopamine neuron activation in the absence of explicit external cues is sufficient to maintain robust self-stimulation, the presence of cues dramatically potentiates ICSS behavior. Our results support a framework where dopamine can have some base value as a reinforcer, but the impact of this signal is modulated heavily by the sensory learning context.
Collapse
Affiliation(s)
- Amy R Wolff
- Department of Neuroscience, University of Minnesota, Minneapolis 55455, Minnesota
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis 55455, Minnesota
| | - Benjamin T Saunders
- Department of Neuroscience, University of Minnesota, Minneapolis 55455, Minnesota
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis 55455, Minnesota
| |
Collapse
|
42
|
Costello H, Husain M, Roiser JP. Apathy and Motivation: Biological Basis and Drug Treatment. Annu Rev Pharmacol Toxicol 2024; 64:313-338. [PMID: 37585659 DOI: 10.1146/annurev-pharmtox-022423-014645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Apathy is a disabling syndrome associated with poor functional outcomes that is common across a broad range of neurological and psychiatric conditions. Currently, there are no established therapies specifically for the condition, and safe and effective treatments are urgently needed. Advances in the understanding of motivation and goal-directed behavior in humans and animals have shed light on the cognitive and neurobiological mechanisms contributing to apathy, providing an important foundation for the development of new treatments. Here, we review the cognitive components, neural circuitry, and pharmacology of apathy and motivation, highlighting converging evidence of shared transdiagnostic mechanisms. Though no pharmacological treatments have yet been licensed, we summarize trials of existing and novel compounds to date, identifying several promising candidates for clinical use and avenues of future drug development.
Collapse
Affiliation(s)
- Harry Costello
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom;
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences and Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
| | - Jonathan P Roiser
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom;
| |
Collapse
|
43
|
Lowet AS, Zheng Q, Meng M, Matias S, Drugowitsch J, Uchida N. An opponent striatal circuit for distributional reinforcement learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573966. [PMID: 38260354 PMCID: PMC10802299 DOI: 10.1101/2024.01.02.573966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Machine learning research has achieved large performance gains on a wide range of tasks by expanding the learning target from mean rewards to entire probability distributions of rewards - an approach known as distributional reinforcement learning (RL)1. The mesolimbic dopamine system is thought to underlie RL in the mammalian brain by updating a representation of mean value in the striatum2,3, but little is known about whether, where, and how neurons in this circuit encode information about higher-order moments of reward distributions4. To fill this gap, we used high-density probes (Neuropixels) to acutely record striatal activity from well-trained, water-restricted mice performing a classical conditioning task in which reward mean, reward variance, and stimulus identity were independently manipulated. In contrast to traditional RL accounts, we found robust evidence for abstract encoding of variance in the striatum. Remarkably, chronic ablation of dopamine inputs disorganized these distributional representations in the striatum without interfering with mean value coding. Two-photon calcium imaging and optogenetics revealed that the two major classes of striatal medium spiny neurons - D1 and D2 MSNs - contributed to this code by preferentially encoding the right and left tails of the reward distribution, respectively. We synthesize these findings into a new model of the striatum and mesolimbic dopamine that harnesses the opponency between D1 and D2 MSNs5-15 to reap the computational benefits of distributional RL.
Collapse
Affiliation(s)
- Adam S. Lowet
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Program in Neuroscience, Harvard University, Boston, MA, USA
| | - Qiao Zheng
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Melissa Meng
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Sara Matias
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Jan Drugowitsch
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Naoshige Uchida
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
44
|
Seifert G, Sealander A, Marzen S, Levin M. From reinforcement learning to agency: Frameworks for understanding basal cognition. Biosystems 2024; 235:105107. [PMID: 38128873 DOI: 10.1016/j.biosystems.2023.105107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023]
Abstract
Organisms play, explore, and mimic those around them. Is there a purpose to this behavior? Are organisms just behaving, or are they trying to achieve goals? We believe this is a false dichotomy. To that end, to understand organisms, we attempt to unify two approaches for understanding complex agents, whether evolved or engineered. We argue that formalisms describing multiscale competencies and goal-directedness in biology (e.g., TAME), and reinforcement learning (RL), can be combined in a symbiotic framework. While RL has been largely focused on higher-level organisms and robots of high complexity, TAME is naturally capable of describing lower-level organisms and minimal agents as well. We propose several novel questions that come from using RL/TAME to understand biology as well as ones that come from using biology to formulate new theory in AI. We hope that the research programs proposed in this piece shape future efforts to understand biological organisms and also future efforts to build artificial agents.
Collapse
Affiliation(s)
- Gabriella Seifert
- Department of Physics, University of Colorado, Boulder, CO 80309, USA; W. M. Keck Science Department, Pitzer, Scripps, and Claremont McKenna College, Claremont, CA 91711, USA
| | - Ava Sealander
- Department of Electrical Engineering, School of Engineering and Applied Sciences, Columbia University, New York, NY 10027, USA; W. M. Keck Science Department, Pitzer, Scripps, and Claremont McKenna College, Claremont, CA 91711, USA
| | - Sarah Marzen
- W. M. Keck Science Department, Pitzer, Scripps, and Claremont McKenna College, Claremont, CA 91711, USA.
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA 02155, USA; Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| |
Collapse
|
45
|
Pool ER, Pauli WM, Cross L, O'Doherty JP. Neural substrates of parallel devaluation-sensitive and devaluation-insensitive Pavlovian learning in humans. Nat Commun 2023; 14:8057. [PMID: 38052792 PMCID: PMC10697955 DOI: 10.1038/s41467-023-43747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
We aim to differentiate the brain regions involved in the learning and encoding of Pavlovian associations sensitive to changes in outcome value from those that are not sensitive to such changes by combining a learning task with outcome devaluation, eye-tracking, and functional magnetic resonance imaging in humans. Contrary to theoretical expectation, voxels correlating with reward prediction errors in the ventral striatum and subgenual cingulate appear to be sensitive to devaluation. Moreover, regions encoding state prediction errors appear to be devaluation insensitive. We can also distinguish regions encoding predictions about outcome taste identity from predictions about expected spatial location. Regions encoding predictions about taste identity seem devaluation sensitive while those encoding predictions about an outcome's spatial location seem devaluation insensitive. These findings suggest the existence of multiple and distinct associative mechanisms in the brain and help identify putative neural correlates for the parallel expression of both devaluation sensitive and insensitive conditioned behaviors.
Collapse
Affiliation(s)
- Eva R Pool
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland.
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA.
| | - Wolfgang M Pauli
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
- Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA, USA
| | - Logan Cross
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Computer Science, Stanford University, Palo Alto, CA, USA
| | - John P O'Doherty
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
- Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
46
|
Sands LP, Jiang A, Liebenow B, DiMarco E, Laxton AW, Tatter SB, Montague PR, Kishida KT. Subsecond fluctuations in extracellular dopamine encode reward and punishment prediction errors in humans. SCIENCE ADVANCES 2023; 9:eadi4927. [PMID: 38039368 PMCID: PMC10691773 DOI: 10.1126/sciadv.adi4927] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023]
Abstract
In the mammalian brain, midbrain dopamine neuron activity is hypothesized to encode reward prediction errors that promote learning and guide behavior by causing rapid changes in dopamine levels in target brain regions. This hypothesis (and alternatives regarding dopamine's role in punishment-learning) has limited direct evidence in humans. We report intracranial, subsecond measurements of dopamine release in human striatum measured, while volunteers (i.e., patients undergoing deep brain stimulation surgery) performed a probabilistic reward and punishment learning choice task designed to test whether dopamine release encodes only reward prediction errors or whether dopamine release may also encode adaptive punishment learning signals. Results demonstrate that extracellular dopamine levels can encode both reward and punishment prediction errors within distinct time intervals via independent valence-specific pathways in the human brain.
Collapse
Affiliation(s)
- L. Paul Sands
- Neuroscience Graduate Program, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Angela Jiang
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Brittany Liebenow
- Neuroscience Graduate Program, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Emily DiMarco
- Neuroscience Graduate Program, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Adrian W. Laxton
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Stephen B. Tatter
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - P. Read Montague
- Wellcome Centre for Human Neuroimaging, University College London, WC1N 3BG London, UK
- Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA
- Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Kenneth T. Kishida
- Neuroscience Graduate Program, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
47
|
Latagliata EC, Orsini C, Cabib S, Biagioni F, Fornai F, Puglisi-Allegra S. Prefrontal Dopamine in Flexible Adaptation to Environmental Changes: A Game for Two Players. Biomedicines 2023; 11:3189. [PMID: 38137410 PMCID: PMC10740496 DOI: 10.3390/biomedicines11123189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Deficits in cognitive flexibility have been characterized in affective, anxiety, and neurodegenerative disorders. This paper reviews data, mainly from studies on animal models, that support the existence of a cortical-striatal brain circuit modulated by dopamine (DA), playing a major role in cognitive/behavioral flexibility. Moreover, we reviewed clinical findings supporting misfunctioning of this circuit in Parkinson's disease that could be responsible for some important non-motoric symptoms. The reviewed findings point to a role of catecholaminergic transmission in the medial prefrontal cortex (mpFC) in modulating DA's availability in the nucleus accumbens (NAc), as well as a role of NAc DA in modulating the motivational value of natural and conditioned stimuli. The review section is accompanied by a preliminary experiment aimed at testing weather the extinction of a simple Pavlovian association fosters increased DA transmission in the mpFC and inhibition of DA transmission in the NAc.
Collapse
Affiliation(s)
| | - Cristina Orsini
- I.R.C.C.S. Fondazione Santa Lucia, 00143 Rome, Italy; (C.O.); (S.C.)
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Simona Cabib
- I.R.C.C.S. Fondazione Santa Lucia, 00143 Rome, Italy; (C.O.); (S.C.)
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Biagioni
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (F.F.)
| | - Francesco Fornai
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (F.F.)
- Department of Translational Research and New Technologies on Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | | |
Collapse
|
48
|
Fraser KM, Collins VL, Wolff AR, Ottenheimer DJ, Bornhoft KN, Pat F, Chen BJ, Janak PH, Saunders BT. Contexts facilitate dynamic value encoding in the mesolimbic dopamine system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.05.565687. [PMID: 37961363 PMCID: PMC10635154 DOI: 10.1101/2023.11.05.565687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Adaptive behavior in a dynamic environment often requires rapid revaluation of stimuli that deviates from well-learned associations. The divergence between stable value-encoding and appropriate behavioral output remains a critical test to theories of dopamine's function in learning, motivation, and motor control. Yet how dopamine neurons are involved in the revaluation of cues when the world changes to alter our behavior remains unclear. Here we make use of pharmacology, in vivo electrophysiology, fiber photometry, and optogenetics to resolve the contributions of the mesolimbic dopamine system to the dynamic reorganization of reward-seeking. Male and female rats were trained to discriminate when a conditioned stimulus would be followed by sucrose reward by exploiting the prior, non-overlapping presentation of a separate discrete cue - an occasion setter. Only when the occasion setter's presentation preceded the conditioned stimulus did the conditioned stimulus predict sucrose delivery. As a result, in this task we were able to dissociate the average value of the conditioned stimulus from its immediate expected value on a trial-to-trial basis. Both the activity of ventral tegmental area dopamine neurons and dopamine signaling in the nucleus accumbens were essential for rats to successfully update behavioral responding in response to the occasion setter. Moreover, dopamine release in the nucleus accumbens following the conditioned stimulus only occurred when the occasion setter indicated it would predict reward. Downstream of dopamine release, we found that single neurons in the nucleus accumbens dynamically tracked the value of the conditioned stimulus. Together these results reveal a novel mechanism within the mesolimbic dopamine system for the rapid revaluation of motivation.
Collapse
Affiliation(s)
- Kurt M Fraser
- Department of Psychological and Brain Sciences, Johns Hopkins University
| | | | - Amy R Wolff
- Department of Neuroscience, University of Minnesota
| | | | | | - Fiona Pat
- Department of Psychological and Brain Sciences, Johns Hopkins University
| | - Bridget J Chen
- Department of Psychological and Brain Sciences, Johns Hopkins University
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Johns Hopkins University
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University
| | - Benjamin T Saunders
- Department of Neuroscience, University of Minnesota
- Medical Discovery Team on Addiction, University of Minnesota
| |
Collapse
|
49
|
Iglesias AG, Chiu AS, Wong J, Campus P, Li F, Liu ZN, Bhatti JK, Patel SA, Deisseroth K, Akil H, Burgess CR, Flagel SB. Inhibition of Dopamine Neurons Prevents Incentive Value Encoding of a Reward Cue: With Revelations from Deep Phenotyping. J Neurosci 2023; 43:7376-7392. [PMID: 37709540 PMCID: PMC10621773 DOI: 10.1523/jneurosci.0848-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/08/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
The survival of an organism is dependent on its ability to respond to cues in the environment. Such cues can attain control over behavior as a function of the value ascribed to them. Some individuals have an inherent tendency to attribute reward-paired cues with incentive motivational value, or incentive salience. For these individuals, termed sign-trackers, a discrete cue that precedes reward delivery becomes attractive and desirable in its own right. Prior work suggests that the behavior of sign-trackers is dopamine-dependent, and cue-elicited dopamine in the NAc is believed to encode the incentive value of reward cues. Here we exploited the temporal resolution of optogenetics to determine whether selective inhibition of ventral tegmental area (VTA) dopamine neurons during cue presentation attenuates the propensity to sign-track. Using male tyrosine hydroxylase (TH)-Cre Long Evans rats, it was found that, under baseline conditions, ∼84% of TH-Cre rats tend to sign-track. Laser-induced inhibition of VTA dopamine neurons during cue presentation prevented the development of sign-tracking behavior, without affecting goal-tracking behavior. When laser inhibition was terminated, these same rats developed a sign-tracking response. Video analysis using DeepLabCutTM revealed that, relative to rats that received laser inhibition, rats in the control group spent more time near the location of the reward cue even when it was not present and were more likely to orient toward and approach the cue during its presentation. These findings demonstrate that cue-elicited dopamine release is critical for the attribution of incentive salience to reward cues.SIGNIFICANCE STATEMENT Activity of dopamine neurons in the ventral tegmental area (VTA) during cue presentation is necessary for the development of a sign-tracking, but not a goal-tracking, conditioned response in a Pavlovian task. We capitalized on the temporal precision of optogenetics to pair cue presentation with inhibition of VTA dopamine neurons. A detailed behavioral analysis with DeepLabCutTM revealed that cue-directed behaviors do not emerge without dopamine neuron activity in the VTA. Importantly, however, when optogenetic inhibition is lifted, cue-directed behaviors increase, and a sign-tracking response develops. These findings confirm the necessity of dopamine neuron activity in the VTA during cue presentation to encode the incentive value of reward cues.
Collapse
Affiliation(s)
- Amanda G Iglesias
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48104
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48104
| | - Alvin S Chiu
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48104
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48104
| | - Jason Wong
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan 48104
| | - Paolo Campus
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48104
| | - Fei Li
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48104
| | - Zitong Nemo Liu
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48104
| | - Jasmine K Bhatti
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48104
| | - Shiv A Patel
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48104
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, California 94305
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305
| | - Huda Akil
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48104
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan 48104
| | - Christian R Burgess
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48104
| | - Shelly B Flagel
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48104
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan 48104
| |
Collapse
|
50
|
Krausz TA, Comrie AE, Kahn AE, Frank LM, Daw ND, Berke JD. Dual credit assignment processes underlie dopamine signals in a complex spatial environment. Neuron 2023; 111:3465-3478.e7. [PMID: 37611585 PMCID: PMC10841332 DOI: 10.1016/j.neuron.2023.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/23/2023] [Accepted: 07/25/2023] [Indexed: 08/25/2023]
Abstract
Animals frequently make decisions based on expectations of future reward ("values"). Values are updated by ongoing experience: places and choices that result in reward are assigned greater value. Yet, the specific algorithms used by the brain for such credit assignment remain unclear. We monitored accumbens dopamine as rats foraged for rewards in a complex, changing environment. We observed brief dopamine pulses both at reward receipt (scaling with prediction error) and at novel path opportunities. Dopamine also ramped up as rats ran toward reward ports, in proportion to the value at each location. By examining the evolution of these dopamine place-value signals, we found evidence for two distinct update processes: progressive propagation of value along taken paths, as in temporal difference learning, and inference of value throughout the maze, using internal models. Our results demonstrate that within rich, naturalistic environments dopamine conveys place values that are updated via multiple, complementary learning algorithms.
Collapse
Affiliation(s)
- Timothy A Krausz
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alison E Comrie
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ari E Kahn
- Department of Psychology, and Princeton Neuroscience Institute, Princeton University, Princeton, Princeton, NJ 08544, USA
| | - Loren M Frank
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nathaniel D Daw
- Department of Psychology, and Princeton Neuroscience Institute, Princeton University, Princeton, Princeton, NJ 08544, USA
| | - Joshua D Berke
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology and Department of Psychiatry and Behavioral Science, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|