1
|
Sun Q, Liu Z, Jiang M, Lu Q, Tu Y. The circulating characteristics of common respiratory pathogens in Ningbo, China, both before and following the cessation of COVID-19 containment measures. Sci Rep 2024; 14:25876. [PMID: 39468306 PMCID: PMC11519631 DOI: 10.1038/s41598-024-77456-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
To assess the circulating characteristics of common respiratory pathogens following the complete relaxation of non-pharmaceutical interventions (NPIs) and the cessation of the dynamic zero-COVID policy. The retrospective analysis was conducted from 14,412 patients with acute respiratory infections (ARIs) from January 24, 2020, to December 31, 2023, including Influenza A virus (IFV-A), Influenza B virus (IFV-B), Respiratory Syncytial Virus (RSV), Human Rhinovirus (HRV), Human Parainfluenza Virus (HPIV), Human Metapneumovirus (HMPV), Human Coronavirus (HCoV), Human Bocavirus (HBoV), Human Adenovirus (HAdV), and Mycoplasma pneumoniae (MP). Compared with 2020-2022, Joinpoint analysis indicated a monthly increase in overall pathogen activity in 2023, rising from an average of 43.05% to an average of 68.46%. The positive rates of IFV-A, IFV-B, HMPV, HPIV, HCoV, and MP increased, while those of HRV and RSV decreased, and no differences in HAdV and HBoV. The outbreak of IFV-A and MP was observed, the positive rate of MP has surpassed pre-COVID-19 pandemic levels and the spread of RSV was interrupted by IFV-A. Infants and toddlers were primarily infected by HRV and RSV, Children and adolescents exhibited a higher prevalence of infections with MP, IFV-A, and HRV, whereas Adults and the elderly were primarily infected by IFV-A. The incidence of co-infections rose from 4.25 to 13.73%. Restricted cubic spline models showed that the susceptible age ranges for multiple pathogens expanded. These changes serve as a reminder to stay alert in the future and offer clinicians a useful guide for diagnosing and treating.
Collapse
Affiliation(s)
- Qian Sun
- Department of Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo University, Ningbo, 315040, China
| | - Zhen Liu
- Department of Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo University, Ningbo, 315040, China
| | - Min Jiang
- Department of Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo University, Ningbo, 315040, China
| | - Qinhong Lu
- Department of Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo University, Ningbo, 315040, China.
| | - Yanye Tu
- Department of Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo University, Ningbo, 315040, China.
| |
Collapse
|
2
|
Pazukhina E, Garcia-Gallo E, Reyes LF, Kildal AB, Jassat W, Dryden M, Holter JC, Chatterjee A, Gomez K, Søraas A, Puntoni M, Latronico N, Bozza FA, Edelstein M, Gonçalves BP, Kartsonaki C, Kruglova O, Gaião S, Chow YP, Doshi Y, Duque Vallejo SI, Ibáñez-Prada ED, Fuentes YV, Hastie C, O'Hara ME, Balan V, Menkir T, Merson L, Kelly S, Citarella BW, Semple MG, Scott JT, Munblit D, Sigfrid L. Long Covid: a global health issue - a prospective, cohort study set in four continents. BMJ Glob Health 2024; 9:e015245. [PMID: 39433402 DOI: 10.1136/bmjgh-2024-015245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/22/2024] [Indexed: 10/23/2024] Open
Abstract
INTRODUCTION A proportion of people develop Long Covid after acute COVID-19, but with most studies concentrated in high-income countries (HICs), the global burden is largely unknown. Our study aims to characterise long-term COVID-19 sequelae in populations globally and compare the prevalence of reported symptoms in HICs and low-income and middle-income countries (LMICs). METHODS A prospective, observational study in 17 countries in Africa, Asia, Europe and South America, including adults with confirmed COVID-19 assessed at 2 to <6 and 6 to <12 months post-hospital discharge. A standardised case report form developed by International Severe Acute Respiratory and emerging Infection Consortium's Global COVID-19 Follow-up working group evaluated the frequency of fever, persistent symptoms, breathlessness (MRC dyspnoea scale), fatigue and impact on daily activities. RESULTS Of 11 860 participants (median age: 52 (IQR: 41-62) years; 52.1% females), 56.5% were from HICs and 43.5% were from LMICs. The proportion identified with Long Covid was significantly higher in HICs vs LMICs at both assessment time points (69.0% vs 45.3%, p<0.001; 69.7% vs 42.4%, p<0.001). Participants in HICs were more likely to report not feeling fully recovered (54.3% vs 18.0%, p<0.001; 56.8% vs 40.1%, p<0.001), fatigue (42.9% vs 27.9%, p<0.001; 41.6% vs 27.9%, p<0.001), new/persistent fever (19.6% vs 2.1%, p<0.001; 20.3% vs 2.0%, p<0.001) and have a higher prevalence of anxiety/depression and impact on usual activities compared with participants in LMICs at 2 to <6 and 6 to <12 months post-COVID-19 hospital discharge, respectively. CONCLUSION Our data show that Long Covid affects populations globally, manifesting similar symptomatology and impact on functioning in both HIC and LMICs. The prevalence was higher in HICs versus LMICs. Although we identified a lower prevalence, the impact of Long Covid may be greater in LMICs if there is a lack of support systems available in HICs. Further research into the aetiology of Long Covid and the burden in LMICs is critical to implement effective, accessible treatment and support strategies to improve COVID-19 outcomes for all.
Collapse
Affiliation(s)
- Ekaterina Pazukhina
- ISARIC Global Support Centre, Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Esteban Garcia-Gallo
- ISARIC Global Support Centre, Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Luis Felipe Reyes
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chia, Colombia
- Clinica, Universidad de La Sabana, Chia, Colombia
| | - Anders Benjamin Kildal
- Department of Anesthesiology and Intensive Care, University Hospital of North Norway, Tromso, Troms, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Troms, Norway
| | - Waasila Jassat
- Genesis Analytics Pty Ltd, Johannesburg, Gauteng, South Africa
- National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Murray Dryden
- National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Jan Cato Holter
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Kyle Gomez
- Gibraltar Health Authority, Gibraltar, Gibraltar
| | | | - Matteo Puntoni
- Clinical & Epidemiological Research Unit, University Hospital of Parma, Parma, Italy
| | - Nicola Latronico
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Department of Emergency, Spedali Civili University Hospital, Brescia, Italy
| | - Fernando A Bozza
- National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Michael Edelstein
- Bar-Ilan University The Azrieli Faculty of Medicine, Safed, Northern District, Israel
| | - Bronner P Gonçalves
- Department of Comparative Biomedical Sciences, University of Surrey, Guildford, UK
| | | | - Oksana Kruglova
- Department of Internal Medicine No 2, Lugansk State Medical University, Rivne, Ukraine
| | | | - Yock Ping Chow
- Sunway Medical Centre, Bandar Sunway, Selangor, Malaysia
| | - Yash Doshi
- Terna Specialty Hospital and Research Centre, Mumbai, India
| | | | | | | | | | | | - Valeria Balan
- ISARIC Global Support Centre, Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tigist Menkir
- The Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard TH Chan School of Public Health, Harvard University, Cambridge, Massachusetts, USA
| | - Laura Merson
- ISARIC Global Support Centre, Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sadie Kelly
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Barbara Wanjiru Citarella
- ISARIC Global Support Centre, Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Malcolm G Semple
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Liverpool, UK
- Liverpool Institute for Child Health and Wellbeing, Alder Hey Children's Hospital, Liverpool, UK
| | - Janet T Scott
- MRC, University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
- RD&I and COVID Recovery Service, NHS Highland, Inverness, UK
| | - Daniel Munblit
- Division of Care in Long Term Conditions, Florence Nightingale Faculty of Nursing, Midwifery and Palliative Care, King's College London, London, UK
- Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child's Health, I M Sechenov First Moscow State Medical University, Moskva, Moskva, Russian Federation
| | - Louise Sigfrid
- ISARIC Global Support Centre, Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Policy and Practice Research Group, Pandemic Sciences Institute, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Narasimhan H, Cheon IS, Qian W, Hu SS, Parimon T, Li C, Goplen N, Wu Y, Wei X, Son YM, Fink E, de Almeida Santos G, Tang J, Yao C, Muehling L, Canderan G, Kadl A, Cannon A, Young S, Hannan R, Bingham G, Arish M, Sen Chaudhari A, Im JS, Mattingly CLR, Pramoonjago P, Marchesvsky A, Sturek J, Kohlmeier JE, Shim YM, Woodfolk J, Zang C, Chen P, Sun J. An aberrant immune-epithelial progenitor niche drives viral lung sequelae. Nature 2024; 634:961-969. [PMID: 39232171 DOI: 10.1038/s41586-024-07926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
The long-term physiological consequences of respiratory viral infections, particularly in the aftermath of the COVID-19 pandemic-termed post-acute sequelae of SARS-CoV-2 (PASC)-are rapidly evolving into a major public health concern1-3. While the cellular and molecular aetiologies of these sequelae are poorly defined, increasing evidence implicates abnormal immune responses3-6 and/or impaired organ recovery7-9 after infection. However, the precise mechanisms that link these processes in the context of PASC remain unclear. Here, with insights from three cohorts of patients with respiratory PASC, we established a mouse model of post-viral lung disease and identified an aberrant immune-epithelial progenitor niche unique to fibroproliferation in respiratory PASC. Using spatial transcriptomics and imaging, we found a central role for lung-resident CD8+ T cell-macrophage interactions in impairing alveolar regeneration and driving fibrotic sequelae after acute viral pneumonia. Specifically, IFNγ and TNF derived from CD8+ T cells stimulated local macrophages to chronically release IL-1β, resulting in the long-term maintenance of dysplastic epithelial progenitors and lung fibrosis. Notably, therapeutic neutralization of IFNγ + TNF or IL-1β markedly improved alveolar regeneration and pulmonary function. In contrast to other approaches, which require early intervention10, we highlight therapeutic strategies to rescue fibrotic disease after the resolution of acute disease, addressing a current unmet need in the clinical management of PASC and post-viral disease.
Collapse
Affiliation(s)
- Harish Narasimhan
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - In Su Cheon
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Wei Qian
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Sheng'en Shawn Hu
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Tanyalak Parimon
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chaofan Li
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Nick Goplen
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Yue Wu
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Xiaoqin Wei
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | - Elizabeth Fink
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Gislane de Almeida Santos
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jinyi Tang
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Changfu Yao
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lyndsey Muehling
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Glenda Canderan
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Alexandra Kadl
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Abigail Cannon
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Samuel Young
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Riley Hannan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Grace Bingham
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Mohammed Arish
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Arka Sen Chaudhari
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jun Sub Im
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Cameron L R Mattingly
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center of Excellence for Influenza Research and Response, Atlanta, GA, USA
| | | | | | - Jeffrey Sturek
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jacob E Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center of Excellence for Influenza Research and Response, Atlanta, GA, USA
| | - Yun Michael Shim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Judith Woodfolk
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Chongzhi Zang
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Peter Chen
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Jie Sun
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA.
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA.
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Auld SC, Sheshadri A, Alexander-Brett J, Aschner Y, Barczak AK, Basil MC, Cohen KA, Dela Cruz C, McGroder C, Restrepo MI, Ridge KM, Schnapp LM, Traber K, Wunderink RG, Zhang D, Ziady A, Attia EF, Carter J, Chalmers JD, Crothers K, Feldman C, Jones BE, Kaminski N, Keane J, Lewinsohn D, Metersky M, Mizgerd JP, Morris A, Ramirez J, Samarasinghe AE, Staitieh BS, Stek C, Sun J, Evans SE. Postinfectious Pulmonary Complications: Establishing Research Priorities to Advance the Field: An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 2024; 21:1219-1237. [PMID: 39051991 DOI: 10.1513/annalsats.202406-651st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Continued improvements in the treatment of pulmonary infections have paradoxically resulted in a growing challenge of individuals with postinfectious pulmonary complications (PIPCs). PIPCs have been long recognized after tuberculosis, but recent experiences such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic have underscored the importance of PIPCs following other lower respiratory tract infections. Independent of the causative pathogen, most available studies of pulmonary infections focus on short-term outcomes rather than long-term morbidity among survivors. In this document, we establish a conceptual scope for PIPCs with discussion of globally significant pulmonary pathogens and an examination of how these pathogens can damage different components of the lung, resulting in a spectrum of PIPCs. We also review potential mechanisms for the transition from acute infection to PIPC, including the interplay between pathogen-mediated injury and aberrant host responses, which together result in PIPCs. Finally, we identify cross-cutting research priorities for the field to facilitate future studies to establish the incidence of PIPCs, define common mechanisms, identify therapeutic strategies, and ultimately reduce the burden of morbidity in survivors of pulmonary infections.
Collapse
|
5
|
Li C, Qian W, Wei X, Narasimhan H, Wu Y, Arish M, Cheon IS, Tang J, de Almeida Santos G, Li Y, Sharifi K, Kern R, Vassallo R, Sun J. Comparative single-cell analysis reveals IFN-γ as a driver of respiratory sequelae after acute COVID-19. Sci Transl Med 2024; 16:eadn0136. [PMID: 39018367 DOI: 10.1126/scitranslmed.adn0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/12/2024] [Accepted: 06/10/2024] [Indexed: 07/19/2024]
Abstract
Postacute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (PASC) represent an urgent public health challenge and are estimated to affect more than 60 million individuals globally. Although a growing body of evidence suggests that dysregulated immune reactions may be linked with PASC symptoms, most investigations have primarily centered around blood-based studies, with few focusing on samples derived from affected tissues. Furthermore, clinical studies alone often provide correlative insights rather than causal mechanisms. Thus, it is essential to compare clinical samples with relevant animal models and conduct functional experiments to understand the etiology of PASC. In this study, we comprehensively compared bronchoalveolar lavage fluid single-cell RNA sequencing data derived from clinical PASC samples and a mouse model of PASC. This revealed a pro-fibrotic monocyte-derived macrophage response in respiratory PASC, as well as abnormal interactions between pulmonary macrophages and respiratory resident T cells, in both humans and mice. Interferon-γ (IFN-γ) emerged as a key node mediating the immune anomalies in respiratory PASC. Neutralizing IFN-γ after the resolution of acute SARS-CoV-2 infection reduced lung inflammation and tissue fibrosis in mice. Together, our study underscores the importance of performing comparative analysis to understand the cause of PASC and suggests that the IFN-γ signaling axis might represent a therapeutic target.
Collapse
Affiliation(s)
- Chaofan Li
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Wei Qian
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Xiaoqin Wei
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Harish Narasimhan
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Yue Wu
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Mohd Arish
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - In Su Cheon
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jinyi Tang
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Gislane de Almeida Santos
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Ying Li
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Kamyar Sharifi
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Ryan Kern
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Robert Vassallo
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jie Sun
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
6
|
Beale S, Yavlinsky A, Fong WLE, Nguyen VG, Kovar J, Vos T, Wulf Hanson S, Hayward AC, Abubakar I, Aldridge RW. Long-term outcomes of SARS-CoV-2 variants and other respiratory infections: evidence from the Virus Watch prospective cohort in England. Epidemiol Infect 2024; 152:e77. [PMID: 38724258 PMCID: PMC11106725 DOI: 10.1017/s0950268824000748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024] Open
Abstract
This study compared the likelihood of long-term sequelae following infection with SARS-CoV-2 variants, other acute respiratory infections (ARIs) and non-infected individuals. Participants (n=5,630) were drawn from Virus Watch, a prospective community cohort investigating SARS-CoV-2 epidemiology in England. Using logistic regression, we compared predicted probabilities of developing long-term symptoms (>2 months) during different variant dominance periods according to infection status (SARS-CoV-2, other ARI, or no infection), adjusting for confounding by demographic and clinical factors and vaccination status. SARS-CoV-2 infection during early variant periods up to Omicron BA.1 was associated with greater probability of long-term sequalae (adjusted predicted probability (PP) range 0.27, 95% CI = 0.22-0.33 to 0.34, 95% CI = 0.25-0.43) compared with later Omicron sub-variants (PP range 0.11, 95% CI 0.08-0.15 to 0.14, 95% CI 0.10-0.18). While differences between SARS-CoV-2 and other ARIs (PP range 0.08, 95% CI 0.04-0.11 to 0.23, 95% CI 0.18-0.28) varied by period, all post-infection estimates substantially exceeded those for non-infected participants (PP range 0.01, 95% CI 0.00, 0.02 to 0.03, 95% CI 0.01-0.06). Variant was an important predictor of SARS-CoV-2 post-infection sequalae, with recent Omicron sub-variants demonstrating similar probabilities to other contemporaneous ARIs. Further aetiological investigation including between-pathogen comparison is recommended.
Collapse
Affiliation(s)
- Sarah Beale
- Institute of Health Informatics, University College London, London, UK
| | - Alexei Yavlinsky
- Institute of Health Informatics, University College London, London, UK
| | - Wing L. E. Fong
- Institute of Health Informatics, University College London, London, UK
| | - Vincent G. Nguyen
- Institute of Health Informatics, University College London, London, UK
- Institute of Epidemiology and Health Care, University College London, London, UK
- Department of Population, Policy and Practice, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Jana Kovar
- Institute of Health Informatics, University College London, London, UK
| | - Theo Vos
- The Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Sarah Wulf Hanson
- The Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Andrew C. Hayward
- Institute of Epidemiology and Health Care, University College London, London, UK
| | - Ibrahim Abubakar
- Faculty of Population Health Sciences, University College London, London, UK
| | - Robert W. Aldridge
- Institute of Health Informatics, University College London, London, UK
- The Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Hsieh MS, Hsu CW, Liao HC, Lin CL, Chiang CY, Chen MY, Liu SJ, Liao CL, Chen HW. SARS-CoV-2 spike-FLIPr fusion protein plus lipidated FLIPr protects against various SARS-CoV-2 variants in hamsters. J Virol 2024; 98:e0154623. [PMID: 38299865 PMCID: PMC10878263 DOI: 10.1128/jvi.01546-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024] Open
Abstract
Vaccine-induced mucosal immunity and broad protective capacity against various severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants remain inadequate. Formyl peptide receptor-like 1 inhibitory protein (FLIPr), produced by Staphylococcus aureus, can bind to various Fcγ receptor subclasses. Recombinant lipidated FLIPr (rLF) was previously found to be an effective adjuvant. In this study, we developed a vaccine candidate, the recombinant Delta SARS-CoV-2 spike (rDS)-FLIPr fusion protein (rDS-F), which employs the property of FLIPr binding to various Fcγ receptors. Our study shows that rDS-F plus rLF promotes rDS capture by dendritic cells. Intranasal vaccination of mice with rDS-F plus rLF increases persistent systemic and mucosal antibody responses and CD4/CD8 T-cell responses. Importantly, antibodies induced by rDS-F plus rLF vaccination neutralize Delta, Wuhan, Alpha, Beta, and Omicron strains. Additionally, rDS-F plus rLF provides protective effects against various SARS-CoV-2 variants in hamsters by reducing inflammation and viral loads in the lung. Therefore, rDS-F plus rLF is a potential vaccine candidate to induce broad protective responses against various SARS-CoV-2 variants.IMPORTANCEMucosal immunity is vital for combating pathogens, especially in the context of respiratory diseases like COVID-19. Despite this, most approved vaccines are administered via injection, providing systemic but limited mucosal protection. Developing vaccines that stimulate both mucosal and systemic immunity to address future coronavirus mutations is a growing trend. However, eliciting strong mucosal immune responses without adjuvants remains a challenge. In our study, we have demonstrated that using a recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike-formyl peptide receptor-like 1 inhibitory protein (FLIPr) fusion protein as an antigen, in combination with recombinant lipidated FLIPr as an effective adjuvant, induced simultaneous systemic and mucosal immune responses through intranasal immunization in mice and hamster models. This approach offered protection against various SARS-CoV-2 strains, making it a promising vaccine candidate for broad protection. This finding is pivotal for future broad-spectrum vaccine development.
Collapse
Affiliation(s)
- Ming-Shu Hsieh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chia-Wei Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hung-Chun Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chang-Ling Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chen-Yi Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Mei-Yu Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Len Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
8
|
Bingham GC, Muehling LM, Li C, Huang Y, Ma SF, Abebayehu D, Noth I, Sun J, Woodfolk JA, Barker TH, Bonham CA. High-dimensional comparison of monocytes and T cells in post-COVID and idiopathic pulmonary fibrosis. Front Immunol 2024; 14:1308594. [PMID: 38292490 PMCID: PMC10824838 DOI: 10.3389/fimmu.2023.1308594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction Up to 30% of hospitalized COVID-19 patients experience persistent sequelae, including pulmonary fibrosis (PF). Methods We examined COVID-19 survivors with impaired lung function and imaging worrisome for developing PF and found within six months, symptoms, restriction and PF improved in some (Early-Resolving COVID-PF), but persisted in others (Late-Resolving COVID-PF). To evaluate immune mechanisms associated with recovery versus persistent PF, we performed single-cell RNA-sequencing and multiplex immunostaining on peripheral blood mononuclear cells from patients with Early- and Late-Resolving COVID-PF and compared them to age-matched controls without respiratory disease. Results and discussion Our analysis showed circulating monocytes were significantly reduced in Late-Resolving COVID-PF patients compared to Early-Resolving COVID-PF and non-diseased controls. Monocyte abundance correlated with pulmonary function forced vital capacity and diffusion capacity. Differential expression analysis revealed MHC-II class molecules were upregulated on the CD8 T cells of Late-Resolving COVID-PF patients but downregulated in monocytes. To determine whether these immune signatures resembled other interstitial lung diseases, we analyzed samples from Idiopathic Pulmonary Fibrosis (IPF) patients. IPF patients had a similar marked decrease in monocyte HLA-DR protein expression compared to Late-Resolving COVID-PF patients. Our findings indicate decreased circulating monocytes are associated with decreased lung function and uniquely distinguish Late-Resolving COVID-PF from Early-Resolving COVID-PF, IPF, and non-diseased controls.
Collapse
Affiliation(s)
- Grace C. Bingham
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Lyndsey M. Muehling
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Chaofan Li
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Yong Huang
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA, United States
| | - Shwu-Fan Ma
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA, United States
| | - Daniel Abebayehu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA, United States
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, United States
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Judith A. Woodfolk
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Thomas H. Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Catherine A. Bonham
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
9
|
Hu Y, Bao F, Fu S, Feng S, Miao J, Miao P, Xu Y. A facile electrochemical biosensor for coronavirus RNA assay with silver deposition. Talanta 2024; 266:125013. [PMID: 37536110 DOI: 10.1016/j.talanta.2023.125013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
Coronaviruses are highly infectious and pose a serious threat to human and animal healths. In this work, a facile electrochemical method based on Exonuclease III (Exo III) catalyzed digestion and silver deposition is developed for coronavirus RNA analysis. A magnetic separation procedure is performed to specifically identify target sequence and release single-stranded DNA modified gold nanoparticles (AuNPs). The nanoparticles can thus be immobilized at a screen-printed electrode and catalyze silver deposition for signal readout. This method allows sensitive analysis of PEDV and SARS-CoV-2 RNAs in the concentration range from 1 to 1000 nM with the limits of detection as low as 0.47 nM and 0.17 nM, respectively. Good specificities are demonstrated. Thus, the proposed method may have great potential use in the applications of coronaviruses analysis.
Collapse
Affiliation(s)
- Yaqi Hu
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Fang Bao
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Siyuan Fu
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Shiyuan Feng
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jinfeng Miao
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, PR China.
| | - Yuanyuan Xu
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
10
|
Narasimhan H, Cheon IS, Qian W, Hu S, Parimon T, Li C, Goplen N, Wu Y, Wei X, Son YM, Fink E, Santos G, Tang J, Yao C, Muehling L, Canderan G, Kadl A, Cannon A, Young S, Hannan R, Bingham G, Arish M, Chaudhari AS, Sturek J, Pramoonjago P, Shim YM, Woodfolk J, Zang C, Chen P, Sun J. Proximal immune-epithelial progenitor interactions drive chronic tissue sequelae post COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557622. [PMID: 37745354 PMCID: PMC10515929 DOI: 10.1101/2023.09.13.557622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The long-term physiological consequences of SARS-CoV-2, termed Post-Acute Sequelae of COVID-19 (PASC), are rapidly evolving into a major public health concern. The underlying cellular and molecular etiology remain poorly defined but growing evidence links PASC to abnormal immune responses and/or poor organ recovery post-infection. Yet, the precise mechanisms driving non-resolving inflammation and impaired tissue repair in the context of PASC remain unclear. With insights from three independent clinical cohorts of PASC patients with abnormal lung function and/or viral infection-mediated pulmonary fibrosis, we established a clinically relevant mouse model of post-viral lung sequelae to investigate the pathophysiology of respiratory PASC. By employing a combination of spatial transcriptomics and imaging, we identified dysregulated proximal interactions between immune cells and epithelial progenitors unique to the fibroproliferation in respiratory PASC but not acute COVID-19 or idiopathic pulmonary fibrosis (IPF). Specifically, we found a central role for lung-resident CD8+ T cell-macrophage interactions in maintaining Krt8hi transitional and ectopic Krt5+ basal cell progenitors, thus impairing alveolar regeneration and driving fibrotic sequelae after acute viral pneumonia. Mechanistically, CD8+ T cell derived IFN-γ and TNF stimulated lung macrophages to chronically release IL-1β, resulting in the abnormal accumulation of dysplastic epithelial progenitors and fibrosis. Notably, therapeutic neutralization of IFN-γ and TNF, or IL-1β after the resolution of acute infection resulted in markedly improved alveolar regeneration and restoration of pulmonary function. Together, our findings implicate a dysregulated immune-epithelial progenitor niche in driving respiratory PASC. Moreover, in contrast to other approaches requiring early intervention, we highlight therapeutic strategies to rescue fibrotic disease in the aftermath of respiratory viral infections, addressing the current unmet need in the clinical management of PASC and post-viral disease.
Collapse
Affiliation(s)
- Harish Narasimhan
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - In Su Cheon
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Wei Qian
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Sheng’en Hu
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Tanyalak Parimon
- Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles CA 90048, USA
| | - Chaofan Li
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Nick Goplen
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Yue Wu
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Xiaoqin Wei
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | - Elizabeth Fink
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Gislane Santos
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jinyi Tang
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Changfu Yao
- Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles CA 90048, USA
| | - Lyndsey Muehling
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Glenda Canderan
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Alexandra Kadl
- Division of Pulmonary and Critical Care Medicine, Department of medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Abigail Cannon
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Samuel Young
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Riley Hannan
- Division of Pulmonary and Critical Care Medicine, Department of medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Grace Bingham
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Mohammed Arish
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Arka Sen Chaudhari
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jeffrey Sturek
- Division of Pulmonary and Critical Care Medicine, Department of medicine, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Yun Michael Shim
- Division of Pulmonary and Critical Care Medicine, Department of medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Judith Woodfolk
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Chongzhi Zang
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Peter Chen
- Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles CA 90048, USA
| | - Jie Sun
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
11
|
Vivaldi G, Pfeffer PE, Talaei M, Basera TJ, Shaheen SO, Martineau AR. Long-term symptom profiles after COVID-19 vs other acute respiratory infections: an analysis of data from the COVIDENCE UK study. EClinicalMedicine 2023; 65:102251. [PMID: 38106559 PMCID: PMC10721552 DOI: 10.1016/j.eclinm.2023.102251] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 12/19/2023] Open
Abstract
Background Long COVID is a well recognised, if heterogeneous, entity. Acute respiratory infections (ARIs) due to other pathogens may cause long-term symptoms, but few studies compare post-acute sequelae between SARS-CoV-2 and other ARIs. We aimed to compare symptom profiles between people with previous SARS-CoV-2 infection, people with previous non-COVID-19 ARIs, and contemporaneous controls, and to identify clusters of long-term symptoms. Methods COVIDENCE UK is a prospective, population-based UK study of ARIs in adults. We analysed data for 16 potential long COVID symptoms and health-related quality of life (HRQoL), reported between January 21 and February 15, 2021, by participants unvaccinated against SARS-CoV-2. We classified participants as having previous SARS-CoV-2 infection or previous non-COVID-19 ARI (≥4 weeks prior) or no reported ARI. We compared symptoms by infection status using logistic and fractional regression, and identified symptom clusters using latent class analysis (LCA). This study is registered with ClinicalTrials.gov, NCT04330599. Findings We included 10,171 participants (1311 [12.9%] with SARS-CoV-2 infection, 472 [4.6%] with non-COVID-19 ARI). Both types of infection were associated with increased prevalence/severity of most symptoms and decreased HRQoL compared with no infection. Participants with SARS-CoV-2 infection had increased odds of problems with taste/smell (odds ratio 19.74, 95% CI 10.53-37.00) and lightheadedness or dizziness (1.74, 1.18-2.56) compared with participants with non-COVID-19 ARIs. Separate LCA models identified three symptom severity groups for each infection type. In the most severe groups (representing 22% of participants for both SARS-CoV-2 and non-COVID-19 ARI), SARS-CoV-2 infection presented with a higher probability of problems with taste/smell (probability 0.41 vs 0.04), hair loss (0.25 vs 0.16), unusual sweating (0.38 vs 0.25), unusual racing of the heart (0.43 vs 0.33), and memory problems (0.70 vs 0.55) than non-COVID-19 ARI. Interpretation Both SARS-CoV-2 and non-COVID-19 ARIs are associated with a wide range of symptoms more than 4 weeks after the acute infection. Research on post-acute sequelae of ARIs should extend from SARS-CoV-2 to include other pathogens. Funding Barts Charity.
Collapse
Affiliation(s)
- Giulia Vivaldi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Paul E. Pfeffer
- Barts Health NHS Trust, London, UK
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mohammad Talaei
- Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Tariro Jayson Basera
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Seif O. Shaheen
- Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Adrian R. Martineau
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Asthma UK Centre for Applied Research, Queen Mary University of London, London, UK
| |
Collapse
|
12
|
Cheon IS, Son YM, Sun J. Tissue-resident memory T cells and lung immunopathology. Immunol Rev 2023; 316:63-83. [PMID: 37014096 PMCID: PMC10524334 DOI: 10.1111/imr.13201] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
Rapid reaction to microbes invading mucosal tissues is key to protect the host against disease. Respiratory tissue-resident memory T (TRM ) cells provide superior immunity against pathogen infection and/or re-infection, due to their presence at the site of pathogen entry. However, there has been emerging evidence that exuberant TRM -cell responses contribute to the development of various chronic respiratory conditions including pulmonary sequelae post-acute viral infections. In this review, we have described the characteristics of respiratory TRM cells and processes underlying their development and maintenance. We have reviewed TRM -cell protective functions against various respiratory pathogens as well as their pathological activities in chronic lung conditions including post-viral pulmonary sequelae. Furthermore, we have discussed potential mechanisms regulating the pathological activity of TRM cells and proposed therapeutic strategies to alleviate TRM -cell-mediated lung immunopathology. We hope that this review provides insights toward the development of future vaccines or interventions that can harness the superior protective abilities of TRM cells, while minimizing the potential for immunopathology, a particularly important topic in the era of coronavirus disease 2019 (COVID-19) pandemic.
Collapse
Affiliation(s)
- In Su Cheon
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea 17546
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
13
|
Fang J, Liu J, Cheng N, Kang X, Huang Z, Wang G, Xiong X, Lu T, Gong Z, Huang Z, Che J, Xiang T. Four thermostatic steps: A novel CRISPR-Cas12-based system for the rapid at-home detection of respiratory pathogens. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12568-3. [PMID: 37166482 PMCID: PMC10173909 DOI: 10.1007/s00253-023-12568-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) in 2019 has severely damaged the world's economy and public health and made people pay more attention to respiratory infectious diseases. However, traditional quantitative real-time polymerase chain reaction (qRT-PCR) nucleic acid detection kits require RNA extraction, reverse transcription, and amplification, as well as the support of large-scale equipment to enrich and purify nucleic acids and precise temperature control. Therefore, novel, fast, convenient, sensitive and specific detection methods are urgently being developed and moving to proof of concept test. In this study, we developed a new nucleic acid detection system, referred to as 4 Thermostatic steps (4TS), which innovatively allows all the detection processes to be completed in a constant temperature device, which performs extraction, amplification, cutting of targets, and detection within 40 min. The assay can specifically and sensitively detect five respiratory pathogens, namely SARS-CoV-2, Mycoplasma felis (MF), Chlamydia felis (CF), Feline calicivirus (FCV), and Feline herpes virus (FHV). In addition, a cost-effective and practical small-scale reaction device was designed and developed to maintain stable reaction conditions. The results of the detection of the five viruses show that the sensitivity of the system is greater than 94%, and specificity is 100%. The 4TS system does not require complex equipment, which makes it convenient and fast to operate, and allows immediate testing for suspected infectious agents at home or in small clinics. Therefore, the assay system has diagnostic value and significant potential for further reducing the cost of early screening of infectious diseases and expanding its application. KEY POINTS: • The 4TS system enables the accurate and specific detection of nucleic acid of pathogens at 37 °C in four simple steps, and the whole process only takes 40 min. •A simple alkali solution can be used to extract nucleic acid. • A small portable device simple to operate is developed for home diagnosis and detection of respiratory pathogens.
Collapse
Affiliation(s)
- Jianhua Fang
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Jing Liu
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Na Cheng
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Xiuhua Kang
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Zhanchao Huang
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Guoyu Wang
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Xiaofeng Xiong
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Tian Lu
- Jiangxi Zhongke Yanyuan Biotechnology Co, Ltd, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Zhenghua Gong
- Jiangxi Zhongke Yanyuan Biotechnology Co, Ltd, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Zhigang Huang
- Emergency Department, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Jun Che
- Shenzhen Institute of Quality & Safety Inspection and Research, Shenzhen, 518036, China.
| | - Tianxin Xiang
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China.
| |
Collapse
|
14
|
Cable J, Sun J, Cheon IS, Vaughan AE, Castro IA, Stein SR, López CB, Gostic KM, Openshaw PJM, Ellebedy AH, Wack A, Hutchinson E, Thomas MM, Langlois RA, Lingwood D, Baker SF, Folkins M, Foxman EF, Ward AB, Schwemmle M, Russell AB, Chiu C, Ganti K, Subbarao K, Sheahan TP, Penaloza-MacMaster P, Eddens T. Respiratory viruses: New frontiers-a Keystone Symposia report. Ann N Y Acad Sci 2023; 1522:60-73. [PMID: 36722473 PMCID: PMC10580159 DOI: 10.1111/nyas.14958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Respiratory viruses are a common cause of morbidity and mortality around the world. Viruses like influenza, RSV, and most recently SARS-CoV-2 can rapidly spread through a population, causing acute infection and, in vulnerable populations, severe or chronic disease. Developing effective treatment and prevention strategies often becomes a race against ever-evolving viruses that develop resistance, leaving therapy efficacy either short-lived or relevant for specific viral strains. On June 29 to July 2, 2022, researchers met for the Keystone symposium "Respiratory Viruses: New Frontiers." Researchers presented new insights into viral biology and virus-host interactions to understand the mechanisms of disease and identify novel treatment and prevention approaches that are effective, durable, and broad.
Collapse
Affiliation(s)
| | - Jie Sun
- Division of Pulmonary and Critical Medicine, Department of Medicine; Department of Immunology; and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Carter Immunology Center and Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - In Su Cheon
- Division of Pulmonary and Critical Medicine, Department of Medicine; Department of Immunology; and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Carter Immunology Center and Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Andrew E Vaughan
- University of Pennsylvania School of Veterinary Medicine, Biomedical Sciences, Philadelphia, Pennsylvania, USA
| | - Italo A Castro
- Virology Research Center, Ribeirao Preto Medical School, University of São Paulo - USP, São Paulo, Brazil
| | - Sydney R Stein
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center and Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Carolina B López
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St Louis, Missouri, USA
| | - Katelyn M Gostic
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA
| | | | - Ali H Ellebedy
- Department of Pathology and Immunology; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs; and Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, Missouri, USA
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, London, UK
| | | | | | - Ryan A Langlois
- Center for Immunology and Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel Lingwood
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA
| | - Steven F Baker
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | - Melanie Folkins
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Ellen F Foxman
- Department of Laboratory Medicine and Department of Immunology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Martin Schwemmle
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alistair B Russell
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ketaki Ganti
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kanta Subbarao
- Department of Microbiology and Immunology, WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, School of Medicine, Northwestern University Feinberg, Chicago, Illinois, USA
| | - Taylor Eddens
- Pediatric Scientist Development Program, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Tang J, Sun J. Lung tissue-resident memory T cells: the gatekeeper to respiratory viral (re)-infection. Curr Opin Immunol 2023; 80:102278. [PMID: 36565508 PMCID: PMC9911367 DOI: 10.1016/j.coi.2022.102278] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
The discovery of lung tissue-resident memory T (TRM) cells and the elucidation of their function in antiviral immunity have inspired considerable efforts to leverage the power of TRM cells, in defense to the infections and reinfections by respiratory viruses. Here, we have reviewed lung TRM cell identification, molecular regulation, and function after influenza and SARS-CoV-2 infections. Furthermore, we have discussed emerging data on TRM responses induced by systemic and mucosal vaccination strategies. We hope that our current outstanding of TRM cells in this review could provide insights toward the development of vaccines capable of inducing highly efficacious mucosal TRM responses for protection against respiratory viral infections.
Collapse
Affiliation(s)
- Jinyi Tang
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA; Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA; Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
16
|
Tang W, Xie H, Ye Z, Eick-Cost AA, Scheckelhoff M, Gustin CE, Bream JH, Plant EP. Post-vaccination serum cytokines levels correlate with breakthrough influenza infections. Sci Rep 2023; 13:1174. [PMID: 36670200 PMCID: PMC9857916 DOI: 10.1038/s41598-023-28295-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Post-vaccination cytokine levels from 256 young adults who subsequently suffered breakthrough influenza infections were compared with matched controls. Modulation within the immune system is important for eliciting a protective response, and the optimal response differs according to vaccine formulation and delivery. For both inactivated influenza vaccine (IIV) and live attenuated influenza vaccines (LAIV) lower levels of IL-8 were observed in post-vaccination sera. Post-vaccination antibody levels were higher and IFN-γ levels were lower in IIV sera compared to LAIV sera. Subjects who suffered breakthrough infections after IIV vaccination had higher levels of sCD25 compared to the control group. There were differences in LAIV post-vaccination interleukin levels for subjects who subsequently suffered breakthrough infections, but these differences were masked in subjects who received concomitant vaccines. Wide variances, sex-based differences and confounders such as concomitant vaccines thwart the establishment of specific cytokine responses as a correlate of protection, but our results provide real world evidence that the status of the immune system following vaccination is important for successful vaccination and subsequent protection against disease.
Collapse
Affiliation(s)
- Weichun Tang
- Laboratory of Pediatric and Respiratory Viral Disease, Office of Vaccine Research and Review, CBER, FDA, Silver Spring, MD, USA
| | - Hang Xie
- Laboratory of Pediatric and Respiratory Viral Disease, Office of Vaccine Research and Review, CBER, FDA, Silver Spring, MD, USA
| | - Zhiping Ye
- Laboratory of Pediatric and Respiratory Viral Disease, Office of Vaccine Research and Review, CBER, FDA, Silver Spring, MD, USA
| | - Angelia A Eick-Cost
- Armed Forces Health Surveillance Division, Defense Health Agency, Silver Spring, MD, USA
| | - Mark Scheckelhoff
- Armed Forces Health Surveillance Division, Defense Health Agency, Silver Spring, MD, USA
| | - Courtney E Gustin
- Armed Forces Health Surveillance Division, Defense Health Agency, Silver Spring, MD, USA
| | - Jay H Bream
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ewan P Plant
- Laboratory of Pediatric and Respiratory Viral Disease, Office of Vaccine Research and Review, CBER, FDA, Silver Spring, MD, USA.
| |
Collapse
|
17
|
Towards precision medicine: Omics approach for COVID-19. BIOSAFETY AND HEALTH 2023; 5:78-88. [PMID: 36687209 PMCID: PMC9846903 DOI: 10.1016/j.bsheal.2023.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic had a devastating impact on human society. Beginning with genome surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the development of omics technologies brought a clearer understanding of the complex SARS-CoV-2 and COVID-19. Here, we reviewed how omics, including genomics, proteomics, single-cell multi-omics, and clinical phenomics, play roles in answering biological and clinical questions about COVID-19. Large-scale sequencing and advanced analysis methods facilitate COVID-19 discovery from virus evolution and severity risk prediction to potential treatment identification. Omics would indicate precise and globalized prevention and medicine for the COVID-19 pandemic under the utilization of big data capability and phenotypes refinement. Furthermore, decoding the evolution rule of SARS-CoV-2 by deep learning models is promising to forecast new variants and achieve more precise data to predict future pandemics and prevent them on time.
Collapse
|
18
|
Arish M, Qian W, Narasimhan H, Sun J. COVID-19 immunopathology: From acute diseases to chronic sequelae. J Med Virol 2023; 95:e28122. [PMID: 36056655 PMCID: PMC9537925 DOI: 10.1002/jmv.28122] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 01/17/2023]
Abstract
The clinical manifestation of coronavirus disease 2019 (COVID-19) mainly targets the lung as a primary affected organ, which is also a critical site of immune cell activation by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, recent reports also suggest the involvement of extrapulmonary tissues in COVID-19 pathology. The interplay of both innate and adaptive immune responses is key to COVID-19 management. As a result, a robust innate immune response provides the first line of defense, concomitantly, adaptive immunity neutralizes the infection and builds memory for long-term protection. However, dysregulated immunity, both innate and adaptive, can skew towards immunopathology both in acute and chronic cases. Here we have summarized some of the recent findings that provide critical insight into the immunopathology caused by SARS-CoV-2, in acute and post-acute cases. Finally, we further discuss some of the immunomodulatory drugs in preclinical and clinical trials for dampening the immunopathology caused by COVID-19.
Collapse
Affiliation(s)
- Mohd Arish
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Wei Qian
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Harish Narasimhan
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|