1
|
Zheng X, Ji N, Campbell V, Slavin A, Zhu X, Chen D, Rong H, Enerson B, Mayo M, Sharma K, Browne CM, Klaus CR, Li H, Massa G, McDonald AA, Shi Y, Sintchak M, Skouras S, Walther DM, Yuan K, Zhang Y, Kelleher J, Liu G, Luo X, Mainolfi N, Weiss MM. Discovery of KT-474─a Potent, Selective, and Orally Bioavailable IRAK4 Degrader for the Treatment of Autoimmune Diseases. J Med Chem 2024; 67:18022-18037. [PMID: 39151120 PMCID: PMC11513890 DOI: 10.1021/acs.jmedchem.4c01305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/18/2024]
Abstract
Interleukin-1 receptor associated kinase 4 (IRAK4) is an essential mediator of the IL-1R and TLR signaling pathways, both of which have been implicated in multiple autoimmune conditions. Hence, blocking the activity of IRAK4 represents an attractive approach for the treatment of autoimmune diseases. The activity of this serine/threonine kinase is dependent on its kinase and scaffolding activities; thus, degradation represents a potentially superior approach to inhibition. Herein, we detail the exploration of structure-activity relationships that ultimately led to the identification of KT-474, a potent, selective, and orally bioavailable heterobifunctional IRAK4 degrader. This represents the first heterobifunctional degrader evaluated in a nononcology indication and dosed to healthy human volunteers. This molecule successfully completed phase I studies in healthy adult volunteers and patients with atopic dermatitis or hidradenitis suppurativa. Phase II clinical trials in both of these indications have been initiated.
Collapse
Affiliation(s)
- Xiaozhang Zheng
- Kymera
Therapeutics, 500 N. Beacon Street, Fourth Floor, Watertown, Massachusetts 02472, United States
| | - Nan Ji
- Kymera
Therapeutics, 500 N. Beacon Street, Fourth Floor, Watertown, Massachusetts 02472, United States
| | - Veronica Campbell
- Kymera
Therapeutics, 500 N. Beacon Street, Fourth Floor, Watertown, Massachusetts 02472, United States
| | - Anthony Slavin
- Kymera
Therapeutics, 500 N. Beacon Street, Fourth Floor, Watertown, Massachusetts 02472, United States
| | - Xiao Zhu
- Kymera
Therapeutics, 500 N. Beacon Street, Fourth Floor, Watertown, Massachusetts 02472, United States
| | - Dapeng Chen
- Kymera
Therapeutics, 500 N. Beacon Street, Fourth Floor, Watertown, Massachusetts 02472, United States
| | - Haojing Rong
- Kymera
Therapeutics, 500 N. Beacon Street, Fourth Floor, Watertown, Massachusetts 02472, United States
| | - Brad Enerson
- Kymera
Therapeutics, 500 N. Beacon Street, Fourth Floor, Watertown, Massachusetts 02472, United States
| | - Michele Mayo
- Kymera
Therapeutics, 500 N. Beacon Street, Fourth Floor, Watertown, Massachusetts 02472, United States
| | - Kirti Sharma
- Kymera
Therapeutics, 500 N. Beacon Street, Fourth Floor, Watertown, Massachusetts 02472, United States
| | - Chris M. Browne
- Kymera
Therapeutics, 500 N. Beacon Street, Fourth Floor, Watertown, Massachusetts 02472, United States
| | - Christine R. Klaus
- Kymera
Therapeutics, 500 N. Beacon Street, Fourth Floor, Watertown, Massachusetts 02472, United States
| | - Haoran Li
- Kymera
Therapeutics, 500 N. Beacon Street, Fourth Floor, Watertown, Massachusetts 02472, United States
| | - Ginny Massa
- Kymera
Therapeutics, 500 N. Beacon Street, Fourth Floor, Watertown, Massachusetts 02472, United States
| | - Alice A. McDonald
- Kymera
Therapeutics, 500 N. Beacon Street, Fourth Floor, Watertown, Massachusetts 02472, United States
| | - Yatao Shi
- Kymera
Therapeutics, 500 N. Beacon Street, Fourth Floor, Watertown, Massachusetts 02472, United States
| | - Mike Sintchak
- Kymera
Therapeutics, 500 N. Beacon Street, Fourth Floor, Watertown, Massachusetts 02472, United States
| | - Stephanie Skouras
- Kymera
Therapeutics, 500 N. Beacon Street, Fourth Floor, Watertown, Massachusetts 02472, United States
| | - Dirk M. Walther
- Kymera
Therapeutics, 500 N. Beacon Street, Fourth Floor, Watertown, Massachusetts 02472, United States
| | - Karen Yuan
- Kymera
Therapeutics, 500 N. Beacon Street, Fourth Floor, Watertown, Massachusetts 02472, United States
| | - Yi Zhang
- Kymera
Therapeutics, 500 N. Beacon Street, Fourth Floor, Watertown, Massachusetts 02472, United States
| | - Joe Kelleher
- Kymera
Therapeutics, 500 N. Beacon Street, Fourth Floor, Watertown, Massachusetts 02472, United States
| | - Guang Liu
- Kymera
Therapeutics, 500 N. Beacon Street, Fourth Floor, Watertown, Massachusetts 02472, United States
| | - Xinbo Luo
- Kymera
Therapeutics, 500 N. Beacon Street, Fourth Floor, Watertown, Massachusetts 02472, United States
| | - Nello Mainolfi
- Kymera
Therapeutics, 500 N. Beacon Street, Fourth Floor, Watertown, Massachusetts 02472, United States
| | - Matthew M. Weiss
- Kymera
Therapeutics, 500 N. Beacon Street, Fourth Floor, Watertown, Massachusetts 02472, United States
| |
Collapse
|
2
|
Amabebe E, Ikumi N, Oosthuizen A, Soma-Pillay P, Matjila M, Anumba DOC. Gestation-dependent increase in cervicovaginal pro-inflammatory cytokines and cervical extracellular matrix proteins is associated with spontaneous preterm delivery within 2 weeks of index assessment in South African women. Front Immunol 2024; 15:1377500. [PMID: 39165357 PMCID: PMC11333255 DOI: 10.3389/fimmu.2024.1377500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Inflammation-induced remodelling of gestational tissues that underpins spontaneous preterm birth (sPTB, delivery < 37 weeks' gestation) may vary by race and context. To explore relationships between markers of these pathological processes, we (a) characterised the cervicovaginal fluid (CVF) cytokine profiles of pregnant South African women at risk of PTB; (b) determined CVF matrix-metalloproteinase-9 (MMP-9) and its regulator tissue inhibitor of metalloproteinase-1 (TIMP-1); and (c) explored the predictive potential of these markers for sPTB. Method of study The concentrations of 10 inflammatory cytokines and MMP-9 and TIMP-1 were determined by ELISA in CVF samples from 47 non-labouring women at high risk of PTB. We studied CVF sampled at three gestational time points (GTPs): GTP1 (20-22 weeks, n = 37), GTP2 (26-28 weeks, n = 40), and GTP3 (34-36 weeks, n = 29) and analysed for changes in protein concentrations and predictive capacities (area under the ROC curve (AUC) and 95% confidence interval (CI)) for sPTB. Results There were 11 (GTP1), 13 (GTP2), and 6 (GTP3) women who delivered preterm within 85.3 ± 25.9, 51.3 ± 15.3, and 11.8 ± 7.5 (mean ± SD) days after assessment, respectively. At GTP1, IL-8 was higher (4-fold, p = 0.02), whereas GM-CSF was lower (~1.4-fold, p = 0.03) in the preterm compared with term women with an average AUC = 0.73. At GTP2, IL-1β (18-fold, p < 0.0001), IL-8 (4-fold, p = 0.03), MMP-9 (17-fold, p = 0.0007), MMP-9/TIMP-1 ratio (9-fold, p = 0.004), and MMP-9/GM-CSF ratio (87-fold, p = 0.005) were higher in preterm compared with term women with an average AUC = 0.80. By contrast, IL-10 was associated with term delivery with an AUC (95% CI) = 0.75 (0.55-0.90). At GTP3, IL-1β (58-fold, p = 0.0003), IL-8 (12-fold, p = 0.002), MMP-9 (296-fold, p = 0.03), and TIMP-1 (35-fold, p = 0.01) were higher in preterm compared with term women with an average AUC = 0.85. Elevated IL-1β was associated with delivery within 14 days of assessment with AUC = 0.85 (0.67-0.96). Overall, elevated MMP-9 at GTP3 had the highest (13.3) positive likelihood ratio for distinguishing women at risk of sPTB. Lastly, a positive correlation between MMP-9 and TIMP-1 at all GTPs (ρ ≥ 0.61, p < 0.01) for women delivering at term was only observed at GTP1 for those who delivered preterm (ρ = 0.70, p < 0.03). Conclusions In this cohort, sPTB is associated with gestation-dependent increase in pro-inflammatory cytokines, decreased IL-10 and GM-CSF, and dysregulated MMP-9-TIMP-1 interaction. Levels of cytokine (especially IL-1β) and ECM remodelling proteins rise significantly in the final 2 weeks before the onset of labour when sPTB is imminent. The signalling mechanisms for these ECM remodelling observations remain to be elucidated.
Collapse
Affiliation(s)
- Emmanuel Amabebe
- Division of Clinical Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Nadia Ikumi
- Division of Anatomical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Ally Oosthuizen
- Department of Obstetrics and Gynaecology, University of Cape Town, Cape Town, South Africa
| | - Priya Soma-Pillay
- Department of Obstetrics and Gynaecology, University of Pretoria, Pretoria, South Africa
| | - Mushi Matjila
- Department of Obstetrics and Gynaecology, University of Cape Town, Cape Town, South Africa
| | - Dilly O. C. Anumba
- Division of Clinical Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
3
|
Weng P, Lan M, Zhang H, Fan H, Wang X, Ran C, Yue Z, Hu J, Xu A, Huang S. Both IRAK3 and IRAK1 Activate the MyD88-TRAF6 Pathway in Zebrafish. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:362-372. [PMID: 38847613 DOI: 10.4049/jimmunol.2400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/20/2024] [Indexed: 07/17/2024]
Abstract
IL-1R-associated kinases (IRAKs) are signal transducers of the TLR/IL-1R-MyD88-TRAF6 pathways. Vertebrates possess two IRAK lineages, IRAK1/2/3 and IRAK4. In mammals, IRAK4/IRAK1 and IRAK4/IRAK2 are pathway enhancers, whereas IRAK3 is a repressor. However, in bony fish, IRAK2 is absent, and it remains elusive how fish IRAK1/3/4 functionally differ from their mammalian counterparts. In this study, we explored this using the zebrafish model. First, we showed that in human 293T cells, zebrafish IRAK1 and IRAK4 were components of the Myddosome (MyD88-IRAK4-IRAK1) complex, with IRAK1 serving as a potent pathway enhancer. Then, we discovered two zebrafish IRAK3 variants: one (IRAK3a) contains an N-terminal Death domain, a middle pseudokinase domain, and a C-terminal TRAF6-binding domain, whereas the other (IRAK3b) lost both the kinase and TRAF6-binding domains. This truncation of IRAK3 variants could be a conserved phenomenon in fish, because it is also observed in trout and grass carp. We proceeded to show that zebrafish IRAK3a acts as a pathway enhancer by binding with MyD88 and TRAF6, but its activity is milder than IRAK1, possibly because it has no kinase activity. Zebrafish IRAK3b, however, plays a sheer negative role, apparently because of its lack of kinase and TRAF6-binding domains. Moreover, zebrafish IRAK3a/3b inhibit the activity of IRAK1/4, not by interacting with IRAK1/4 but possibly by competing for MyD88 and TRAF6. Finally, we have verified the essential activities of zebrafish IRAK1/3a/3b/4 in zebrafish cells and embryos. In summary, to our knowledge, our findings provide new insights into the molecular functions of fish IRAKs and the evolution of the IRAK functional modes in vertebrates.
Collapse
Affiliation(s)
- Panwei Weng
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Mengjiao Lan
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Hao Zhang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Huiping Fan
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Xiao Wang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Chenrui Ran
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Zirui Yue
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Jiaxuan Hu
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Shengfeng Huang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
4
|
McDonald A, Karnik R, Campbell V, Davis J, Chavoshi S, Slavin A, Sharma K, Gollob J, Alavi A. IRAK4 Is Overexpressed in Hidradenitis Suppurativa Skin and Correlates with Inflammatory Biomarkers. J Invest Dermatol 2024:S0022-202X(24)01899-2. [PMID: 39084489 DOI: 10.1016/j.jid.2024.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 08/02/2024]
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory disease manifesting as painful dermal nodules, abscesses, and tunnels. Activation of the IL-1R/toll-like receptor pathway is strongly implicated in the pathogenesis of HS; thus, the role of a key signaling node, IRAK4, was investigated in a noninterventional study (NCT04440410) that enrolled 30 patients with HS. IRAK4 expression was evaluated in blood and lesional, perilesional, and nonlesional skin biopsies. PBMCs expressed IRAK4, with significantly higher levels in monocytes (P ≤ .0001). Ex vivo treatment of PBMCs with KT-474, a targeted degrader of IRAK4, robustly decreased IRAK4 in all immune cell types from healthy volunteers and patients with HS. Ex vivo treatment of toll-like receptor-stimulated healthy donor monocytes with KT-474 decreased IRAK4 protein levels and inhibited inflammatory cytokine production. In HS skin samples, IRAK4 protein levels were significantly higher in lesional than in nonlesional tissue (P ≤ .0001), and IRAK4-positive immune infiltrate increased with greater disease severity. Multiple inflammatory mediators were upregulated in HS lesional skin, correlating with IRAK4 overexpression. These data confirm the significance of the IL-1R/toll-like receptor pathway in the pathogenesis of HS and provide support for ongoing clinical studies evaluating KT-474 in the treatment of HS.
Collapse
Affiliation(s)
| | - Rahul Karnik
- Kymera Therapeutics, Watertown, Massachusetts, USA
| | | | - Jeff Davis
- Kymera Therapeutics, Watertown, Massachusetts, USA
| | | | | | - Kirti Sharma
- Kymera Therapeutics, Watertown, Massachusetts, USA
| | - Jared Gollob
- Kymera Therapeutics, Watertown, Massachusetts, USA
| | | |
Collapse
|
5
|
Kim KM, Hwang NH, Hyun JS, Shin D. Recent Advances in IRAK1: Pharmacological and Therapeutic Aspects. Molecules 2024; 29:2226. [PMID: 38792088 PMCID: PMC11123835 DOI: 10.3390/molecules29102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Interleukin receptor-associated kinase (IRAK) proteins are pivotal in interleukin-1 and Toll-like receptor-mediated signaling pathways. They play essential roles in innate immunity and inflammation. This review analyzes and discusses the physiological functions of IRAK1 and its associated diseases. IRAK1 is involved in a wide range of diseases such as dry eye, which highlights its potential as a therapeutic target under various conditions. Various IRAK1 inhibitors, including Pacritinib and Rosoxacin, show therapeutic potential against malignancies and inflammatory diseases. The covalent IRAK1 inhibitor JH-X-119-01 shows promise in B-cell lymphomas, emphasizing the significance of covalent bonds in its activity. Additionally, the emergence of selective IRAK1 degraders, such as JNJ-101, provides a novel strategy by targeting the scaffolding function of IRAK1. Thus, the evolving landscape of IRAK1-targeted approaches provides promising avenues for increasingly safe and effective therapeutic interventions for various diseases.
Collapse
Affiliation(s)
| | | | - Ja-Shil Hyun
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon 21935, Republic of Korea
| | - Dongyun Shin
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon 21935, Republic of Korea
| |
Collapse
|
6
|
Wenzel TJ, Mousseau DD. Brain organoids engineered to give rise to glia and neural networks after 90 days in culture exhibit human-specific proteoforms. Front Cell Neurosci 2024; 18:1383688. [PMID: 38784709 PMCID: PMC11111902 DOI: 10.3389/fncel.2024.1383688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Human brain organoids are emerging as translationally relevant models for the study of human brain health and disease. However, it remains to be shown whether human-specific protein processing is conserved in human brain organoids. Herein, we demonstrate that cell fate and composition of unguided brain organoids are dictated by culture conditions during embryoid body formation, and that culture conditions at this stage can be optimized to result in the presence of glia-associated proteins and neural network activity as early as three-months in vitro. Under these optimized conditions, unguided brain organoids generated from induced pluripotent stem cells (iPSCs) derived from male-female siblings are similar in growth rate, size, and total protein content, and exhibit minimal batch-to-batch variability in cell composition and metabolism. A comparison of neuronal, microglial, and macroglial (astrocyte and oligodendrocyte) markers reveals that profiles in these brain organoids are more similar to autopsied human cortical and cerebellar profiles than to those in mouse cortical samples, providing the first demonstration that human-specific protein processing is largely conserved in unguided brain organoids. Thus, our organoid protocol provides four major cell types that appear to process proteins in a manner very similar to the human brain, and they do so in half the time required by other protocols. This unique copy of the human brain and basic characteristics lay the foundation for future studies aiming to investigate human brain-specific protein patterning (e.g., isoforms, splice variants) as well as modulate glial and neuronal processes in an in situ-like environment.
Collapse
Affiliation(s)
- Tyler J. Wenzel
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
7
|
Gürkan B, Poelman H, Pereverzeva L, Kruijswijk D, de Vos AF, Groenen AG, Nollet EE, Wichapong K, Lutgens E, van der Poll T, Du J, Wiersinga WJ, Nicolaes GAF, van ‘t Veer C. The IRAK-M death domain: a tale of three surfaces. Front Mol Biosci 2024; 10:1265455. [PMID: 38268724 PMCID: PMC10806146 DOI: 10.3389/fmolb.2023.1265455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/29/2023] [Indexed: 01/26/2024] Open
Abstract
The anti-inflammatory interleukin-1 receptor associated kinase-M (IRAK-M) is a negative regulator of MyD88/IRAK-4/IRAK-1 signaling. However, IRAK-M has also been reported to activate NF-κB through the MyD88/IRAK-4/IRAK-M myddosome in a MEKK-3 dependent manner. Here we provide support that IRAK-M uses three surfaces of its Death Domain (DD) to activate NF-κB downstream of MyD88/IRAK-4/IRAK-M. Surface 1, with central residue Trp74, binds to MyD88/IRAK-4. Surface 2, with central Lys60, associates with other IRAK-M DDs to form an IRAK-M homotetramer under the MyD88/IRAK-4 scaffold. Surface 3; with central residue Arg97 is located on the opposite side of Trp74 in the IRAK-M DD tetramer, lacks any interaction points with the MyD88/IRAK-4 complex. Although the IRAK-M DD residue Arg97 is not directly involved in the association with MyD88/IRAK-4, Arg97 was responsible for 50% of the NF-κB activation though the MyD88/IRAK-4/IRAK-M myddosome. Arg97 was also found to be pivotal for IRAK-M's interaction with IRAK-1, and important for IRAK-M's interaction with TRAF6. Residue Arg97 was responsible for 50% of the NF-κB generated by MyD88/IRAK-4/IRAK-M myddosome in IRAK-1/MEKK3 double knockout cells. By structural modeling we found that the IRAK-M tetramer surface around Arg97 has excellent properties that allow formation of an IRAK-M homo-octamer. This model explains why mutation of Arg97 results in an IRAK-M molecule with increased inhibitory properties: it still binds to myddosome, competing with myddosome IRAK-1 binding, while resulting in less NF-κB formation. The findings further identify the structure-function properties of IRAK-M, which is a potential therapeutic target in inflammatory disease.
Collapse
Affiliation(s)
- Berke Gürkan
- Center of Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Hessel Poelman
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
- Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Liza Pereverzeva
- Center of Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Danielle Kruijswijk
- Center of Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Alex F. de Vos
- Center of Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Anouk G. Groenen
- Center of Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Edgar E. Nollet
- Center of Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Kanin Wichapong
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Esther Lutgens
- Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Division of Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Jiangfeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - W. Joost Wiersinga
- Center of Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Division of Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Gerry A. F. Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
- Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Cornelis van ‘t Veer
- Center of Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
Gadkari M, Sun J, Carcamo A, Fraser I, Franco LM, Pegoraro G. hcHCR: High-Throughput Single-Cell Imaging of RNA in Human Primary Immune Cells. Methods Mol Biol 2024; 2784:113-132. [PMID: 38502482 PMCID: PMC11251460 DOI: 10.1007/978-1-0716-3766-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Functional genomics and chemical screens can identify and characterize novel cellular factors regulating signaling networks and chemical tools to modulate their function for the treatment of disease. Screening methods have relied primarily on immortalized and/or transformed cancer cell lines, which can limit the generalization of results to more physiologically relevant systems. Most have also relied on immunofluorescence, or on stably expressed recombinant fluorescent proteins, to detect specific protein markers using high-content imaging readouts. In comparison, high-throughput methods to visualize and measure RNA species have been less explored. To address this, we have adapted an isothermal signal amplification chemistry for RNA FISH known as hybridization chain reaction (HCR) to an automated, high-content imaging assay format. We present a detailed protocol for this technique, which we have named high-content HCR (hcHCR). The protocol focuses on the measurement of changes in mRNA abundance at the single-cell level in human primary cells, but it can be applied to a variety of primary cell types and perturbing agents. We anticipate that hcHCR will be most suitable for low- to medium-throughput screening experiments in which changes in transcript abundance are the desired output measure.
Collapse
Affiliation(s)
- Manasi Gadkari
- Functional Immunogenomics Section, NIAMS/NIH, Bethesda, MD, USA
| | - Jing Sun
- Signaling Systems Section, Laboratory of Immune System Biology, NIAID/NIH, Bethesda, MD, USA
| | - Adrian Carcamo
- High-Throughput Imaging Facility (HiTIF), Center for Cancer Research (CCR), NCI/NIH, Bethesda, MD, USA
| | - Iain Fraser
- Signaling Systems Section, Laboratory of Immune System Biology, NIAID/NIH, Bethesda, MD, USA
| | - Luis M Franco
- Functional Immunogenomics Section, NIAMS/NIH, Bethesda, MD, USA.
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility (HiTIF), Center for Cancer Research (CCR), NCI/NIH, Bethesda, MD, USA.
| |
Collapse
|
9
|
Ackerman L, Acloque G, Bacchelli S, Schwartz H, Feinstein BJ, La Stella P, Alavi A, Gollerkeri A, Davis J, Campbell V, McDonald A, Agarwal S, Karnik R, Shi K, Mishkin A, Culbertson J, Klaus C, Enerson B, Massa V, Kuhn E, Sharma K, Keaney E, Barnes R, Chen D, Zheng X, Rong H, Sabesan V, Ho C, Mainolfi N, Slavin A, Gollob JA. IRAK4 degrader in hidradenitis suppurativa and atopic dermatitis: a phase 1 trial. Nat Med 2023; 29:3127-3136. [PMID: 37957373 PMCID: PMC10719089 DOI: 10.1038/s41591-023-02635-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/06/2023] [Indexed: 11/15/2023]
Abstract
Toll-like receptor-driven and interleukin-1 (IL-1) receptor-driven inflammation mediated by IL-1 receptor-associated kinase 4 (IRAK4) is involved in the pathophysiology of hidradenitis suppurativa (HS) and atopic dermatitis (AD). KT-474 (SAR444656), an IRAK4 degrader, was studied in a randomized, double-blind, placebo-controlled phase 1 trial where the primary objective was safety and tolerability. Secondary objectives included pharmacokinetics, pharmacodynamics and clinical activity in patients with moderate to severe HS and in patients with moderate to severe AD. KT-474 was administered as a single dose and then daily for 14 d in 105 healthy volunteers (HVs), followed by dosing for 28 d in an open-label cohort of 21 patients. Degradation of IRAK4 was observed in HV blood, with mean reductions after a single dose of ≥93% at 600-1,600 mg and after 14 daily doses of ≥95% at 50-200 mg. In patients, similar IRAK4 degradation was achieved in blood, and IRAK4 was normalized in skin lesions where it was overexpressed relative to HVs. Reduction of disease-relevant inflammatory biomarkers was demonstrated in the blood and skin of patients with HS and patients with AD and was associated with improvement in skin lesions and symptoms. There were no drug-related infections. These results, from what, to our knowledge, is the first published clinical trial using a heterobifunctional degrader, provide initial proof of concept for KT-474 in HS and AD to be further confirmed in larger trials. ClinicalTrials.gov identifier: NCT04772885 .
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Kelvin Shi
- Kymera Therapeutics, Inc., Watertown, MA, USA
| | | | | | | | | | | | - Eric Kuhn
- Kymera Therapeutics, Inc., Watertown, MA, USA
| | | | - Erin Keaney
- Kymera Therapeutics, Inc., Watertown, MA, USA
| | | | - Dapeng Chen
- Kymera Therapeutics, Inc., Watertown, MA, USA
| | | | | | | | - Chris Ho
- Kymera Therapeutics, Inc., Watertown, MA, USA
| | | | | | | |
Collapse
|
10
|
Li W, Liu M, Chu M. Strategies targeting IL-33/ST2 axis in the treatment of allergic diseases. Biochem Pharmacol 2023; 218:115911. [PMID: 37981174 DOI: 10.1016/j.bcp.2023.115911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Interleukin-33 (IL-33) and its receptor Serum Stimulation-2 (ST2, also called Il1rl1) are members of the IL-1 superfamily that plays a crucial role in allergic diseases. The interaction of IL-33 and ST2 mainly activates NF-κB signaling and MAPK signaling via the MyD88/IRAK/TRAF6 module, resulting in the production and secretion of pro-inflammatory cytokines. The IL-33/ST2 axis participates in the pathogenesis of allergic diseases, and therefore serves as a promising strategy for allergy treatment. In recent years, strategies blocking IL-33/ST2 through targeting regulation of IL-33 and ST2 or targeting the molecules involved in the signal transduction have been extensively studied mostly in animal models. These studies provide various potential therapeutic agents other than antibodies, such as small molecules, nucleic acids and traditional Chinese medicines. Herein, we reviewed potential targets and agents targeting IL-33/ST2 axis in the treatment of allergic diseases, providing directions for further investigations on treatments for IL-33 induced allergic diseases.
Collapse
Affiliation(s)
- Wenran Li
- Department of Immunology, School of Basic Medical Sciences, Health Science Centre, Peking University. Beijing, China
| | - Mengqi Liu
- Department of Immunology, School of Basic Medical Sciences, Health Science Centre, Peking University. Beijing, China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Health Science Centre, Peking University. Beijing, China; Beijing Life Science Academy, Beijing, China.
| |
Collapse
|
11
|
Solomon SL, Bryson BD. Single-cell analysis reveals a weak macrophage subpopulation response to Mycobacterium tuberculosis infection. Cell Rep 2023; 42:113418. [PMID: 37963018 PMCID: PMC10842899 DOI: 10.1016/j.celrep.2023.113418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/28/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) infection remains one of society's greatest human health challenges. Macrophages integrate multiple signals derived from ontogeny, infection, and the environment. This integration proceeds heterogeneously during infection. Some macrophages are infected, while others are not; therefore, bulk approaches mask the subpopulation dynamics. We establish a modular, targeted, single-cell protein analysis framework to study the immune response to Mtb. We demonstrate that during Mtb infection, only a small fraction of resting macrophages produce tumor necrosis factor (TNF) protein. We demonstrate that Mtb infection results in muted phosphorylation of p38 and JNK, regulators of inflammation, and leverage our single-cell methods to distinguish between pathogen-mediated interference in host signaling and weak activation of host pathways. We demonstrate that the inflammatory signal magnitude is decoupled from the ability to control Mtb growth. These data underscore the importance of developing pathogen-specific models of signaling and highlight barriers to activation of pathways that control inflammation.
Collapse
Affiliation(s)
- Sydney L Solomon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Ragon Institute of MGH, Harvard & MIT, Cambridge, MA 02139, USA
| | - Bryan D Bryson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Ragon Institute of MGH, Harvard & MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
12
|
Choudhary SA, Patra D, Sinha A, Mazumder S, Pant R, Chouhan R, Jha AN, Prusty BM, Manna D, Das SK, Tikoo K, Pal D, Dasgupta S. A small molecule potent IRAK4 inhibitor abrogates lipopolysaccharide-induced macrophage inflammation in-vitro and in-vivo. Eur J Pharmacol 2023; 944:175593. [PMID: 36804543 DOI: 10.1016/j.ejphar.2023.175593] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Increasing evidence supports vanillin and its analogs as potent toll-like receptor signaling inhibitors that strongly attenuate inflammation, though, the underlying molecular mechanism remains elusive. Here, we report that vanillin inhibits lipopolysaccharide (LPS)-induced toll-like receptor 4 activation in macrophages by targeting the myeloid differentiation primary-response gene 88 (MyD88)-dependent pathway through direct interaction and suppression of interleukin-1 receptor-associated kinase 4 (IRAK4) activity. Moreover, incubation of vanillin in cells expressing constitutively active forms of different toll-like receptor 4 signaling molecules revealed that vanillin could only able to block the ligand-independent constitutively activated IRAK4/1 or its upstream molecules-associated NF-κB activation and NF-κB transactivation along with the expression of various proinflammatory cytokines. A significant inhibition of LPS-induced IRAK4/MyD88, IRAK4/IRAK1, and IRAK1/TRAF6 association was evinced in response to vanillin treatment. Furthermore, mutations at Tyr262 and Asp329 residues in IRAK4 or modifications of 3-OMe and 4-OH side groups in vanillin, significantly reduced IRAK4 activity and vanillin function, respectively. Mice pretreated with vanillin followed by LPS challenge markedly impaired LPS-induced IRAK4 activation and inflammation in peritoneal macrophages. Thus, the present study posits vanillin as a novel and potent IRAK4 inhibitor and thus providing an opportunity for its therapeutic application in managing various inflammatory diseases.
Collapse
Affiliation(s)
- Saynaz A Choudhary
- Metabolic Disease Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Debarun Patra
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - Archana Sinha
- Metabolic Disease Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Sayani Mazumder
- Metabolic Disease Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Rajat Pant
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India
| | - Raju Chouhan
- Department of Chemical Sciences, Tezpur University, Tezpur, 784028, Assam, India
| | - Anupam Nath Jha
- Computational Biophysics Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Biswa Mohan Prusty
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Debasis Manna
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Sajal K Das
- Department of Chemical Sciences, Tezpur University, Tezpur, 784028, Assam, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India
| | - Durba Pal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - Suman Dasgupta
- Metabolic Disease Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India.
| |
Collapse
|
13
|
Lavazais S, Jargosch M, Dupont S, Labéguère F, Menet C, Jagerschmidt C, Ohm F, Kupcsik L, Parent I, Cottereaux C, Marsais F, Oste L, Van de Water A, Christophe T, De Vos S, Fallon P, Lauffer F, Clément-Lacroix P, Eyerich K, Brys R. IRAK4 inhibition dampens pathogenic processes driving inflammatory skin diseases. Sci Transl Med 2023; 15:eabj3289. [PMID: 36791209 DOI: 10.1126/scitranslmed.abj3289] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Innate immunity not only shapes the way epithelial barriers interpret environmental cues but also drives adaptive responses. Therefore, modulators of innate immune responses are expected to have high therapeutic potential across immune-mediated inflammatory diseases. IRAK4 is a kinase that integrates signaling downstream of receptors acting at the interface between innate and adaptive immune responses, such as Toll-like receptors (TLRs), interleukin-1R (IL-1R), and IL-18R. Because effects of IRAK4 inhibition are stimulus, cell type, and species dependent, the evaluation of the therapeutic potential of IRAK4 inhibitors requires a highly translational approach. Here, we profiled a selective IRAK4 inhibitor, GLPG2534, in an extensive panel of models of inflammatory skin diseases, translationally expanding evidence from in vitro to in vivo and from mouse to human. In vitro, IRAK4 inhibition resulted in substantial inhibition of TLR and IL-1 responses in dendritic cells, keratinocytes, granulocytes, and T cells but only weakly affected dermal fibroblast responses. Furthermore, disease activity in murine models of skin inflammation (IL-23-, IL-33-, imiquimod-, and MC903-induced) was markedly dampened by IRAK4 inhibition. Last, inhibiting IRAK4 reversed pathogenic molecular signatures in human lesional psoriasis and atopic dermatitis biopsies. Over the variety of models used, IRAK4 inhibition consistently affected central mediators of psoriasis (IL-17A) and atopic dermatitis (IL-4 and IL-13). Overall, our data highlight IRAK4 as a central player in skin inflammatory processes and demonstrate the potential of IRAK4 inhibition as a therapeutic strategy in chronic inflammatory skin diseases.
Collapse
Affiliation(s)
| | - Manja Jargosch
- Department of Dermatology and Allergy, Technical University of Munich, 80802 Munich, Germany
| | | | | | | | | | - Frenz Ohm
- Department of Dermatology and Allergy, Technical University of Munich, 80802 Munich, Germany
| | | | | | | | | | - Line Oste
- Galapagos NV, 2800 Mechelen, Belgium
| | | | | | | | - Padraic Fallon
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Felix Lauffer
- Department of Dermatology and Allergy, Technical University of Munich, 80802 Munich, Germany
| | | | - Kilian Eyerich
- Department of Dermatology and Venerology, Medical Center-University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
14
|
Pereira M, Gazzinelli RT. Regulation of innate immune signaling by IRAK proteins. Front Immunol 2023; 14:1133354. [PMID: 36865541 PMCID: PMC9972678 DOI: 10.3389/fimmu.2023.1133354] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
The Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1R) families are of paramount importance in coordinating the early immune response to pathogens. Signaling via most TLRs and IL-1Rs is mediated by the protein myeloid differentiation primary-response protein 88 (MyD88). This signaling adaptor forms the scaffold of the myddosome, a molecular platform that employs IL-1R-associated kinase (IRAK) proteins as main players for transducing signals. These kinases are essential in controlling gene transcription by regulating myddosome assembly, stability, activity and disassembly. Additionally, IRAKs play key roles in other biologically relevant responses such as inflammasome formation and immunometabolism. Here, we summarize some of the key aspects of IRAK biology in innate immunity.
Collapse
Affiliation(s)
- Milton Pereira
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States,*Correspondence: Milton Pereira, ; Ricardo T. Gazzinelli,
| | - Ricardo T. Gazzinelli
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States,Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil,Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil,Plataforma de Medicina Translacional, Fundação Oswaldo Cruz, Ribeirão Preto, SP, Brazil,*Correspondence: Milton Pereira, ; Ricardo T. Gazzinelli,
| |
Collapse
|
15
|
Gadkari M, Sun J, Carcamo A, Alessi H, Hu Z, Fraser IDC, Pegoraro G, Franco LM. High-throughput imaging of mRNA at the single-cell level in human primary immune cells. RNA (NEW YORK, N.Y.) 2022; 28:1263-1278. [PMID: 35764396 PMCID: PMC9380748 DOI: 10.1261/rna.079239.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Measurement of gene expression at the single-cell level has advanced the study of transcriptional regulation programs in healthy and disease states. In particular, single-cell approaches have shed light on the high level of transcriptional heterogeneity of individual cells, both at baseline and in response to experimental or environmental perturbations. We have developed a method for high-content imaging (HCI)-based quantification of relative changes in transcript abundance at the single-cell level in human primary immune cells and have validated its performance under multiple experimental conditions to demonstrate its general applicability. This method, named hcHCR, combines the sensitivity of the hybridization chain reaction (HCR) for the visualization of RNA in single cells, with the speed, scalability, and reproducibility of HCI. We first tested eight cell attachment substrates for short-term culture of primary human B cells, T cells, monocytes, or neutrophils. We then miniaturized HCR in 384-well format and documented the ability of the method to detect changes in transcript abundance at the single-cell level in thousands of cells for each experimental condition by HCI. Furthermore, we demonstrated the feasibility of multiplexing gene expression measurements by simultaneously assaying the abundance of three transcripts per cell at baseline and in response to an experimental stimulus. Finally, we tested the robustness of the assay to technical and biological variation. We anticipate that hcHCR will be suitable for low- to medium-throughput chemical or functional genomics screens in primary human cells, with the possibility of performing screens on cells obtained from patients with a specific disease.
Collapse
Affiliation(s)
- Manasi Gadkari
- Functional Immunogenomics Section, Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jing Sun
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Adrian Carcamo
- High-Throughput Imaging Facility (HiTIF), National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hugh Alessi
- Functional Immunogenomics Section, Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Zonghui Hu
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - Iain D C Fraser
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility (HiTIF), National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Luis M Franco
- Functional Immunogenomics Section, Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
16
|
Kaushal A, Zhang Y, Ballantyne LL, Fitzpatrick LE. The extended effect of adsorbed damage-associated molecular patterns and Toll-like receptor 2 signaling on macrophage-material interactions. Front Bioeng Biotechnol 2022; 10:959512. [PMID: 36091432 PMCID: PMC9458975 DOI: 10.3389/fbioe.2022.959512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
Implanted biomaterials elicit an immune-mediated foreign body reaction (FBR) that results in the fibrous encapsulation of the implant and can critically impact the performance of some implants. Consequently, understanding the molecular mechanisms that underpin cell-materials interactions that initiate biomaterial-induced inflammation and fibrosis is critical to improving the performance of biomaterial implants negatively impacted by the FBR. Damage-associated molecular patterns (DAMPs) are endogenous mediators of inflammation that are released upon tissue injury and induce sterile inflammation via Toll-like receptors (TLRs). However, the prevalence of DAMPs within the adsorbed protein layer on material surfaces and their role mediating cell-material interactions is unclear. Previously, our group demonstrated that molecules in fibroblast lysates adsorbed to various biomaterials and induced a potent TLR2-dependent inflammatory response in macrophages at 24 h. In this study, we examined the extended response of RAW-Blue reporter macrophages on lysate or serum-adsorbed Teflon™ AF surfaces to understand the potential role of adsorbed DAMPs in macrophage-material interactions at later time points. Lysate-conditioned surfaces maintained increased nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1) transcription factor activity and increased expression Regulated upon Activation, Normal T Cell Expressed and Presumably Secreted (RANTES/CCL5) at 72 h and 120 h, compared to FBS-conditioned surfaces. In contrast, monocyte chemoattractant protein 1 (MCP-1/CCL2) was only elevated at 72 h in lysate conditions. Transforming growth factor beta 1 (TGF-β1) secretion was significantly increased on lysate-conditioned surfaces, while conditioned media from macrophages on lysate-conditioned surfaces induced alpha smooth muscle actin (αSMA) expression in 3T3 fibroblasts. TLR2 neutralizing antibody treatment significantly decreased NF-κB/AP-1 activity and attenuated TGF-β1 expression at both time points, and MCP-1 and RANTES at 72 h. Finally, multinucleated cells were observed on lysate-conditioned surfaces at 72 h, indicating adsorbed DAMPs induced a fusion permissive environment for adherent macrophages. This study demonstrates that adsorbed DAMPs continue to influence macrophage-material responses beyond the initial 24-h period and maintain a pro-inflammatory and fibrotic response that models aspects of the early FBR. Furthermore, the transient inhibition of TLR2 continued to exert an effect at these later time points, suggesting TLR2 may be a target for therapeutic interventions in FBR.
Collapse
Affiliation(s)
- Anuj Kaushal
- Department of Chemical Engineering, Queen’s University, Kingston, ON, Canada
| | - Yuxi Zhang
- Department of Chemical Engineering, Queen’s University, Kingston, ON, Canada
| | - Laurel L. Ballantyne
- Department of Chemical Engineering, Queen’s University, Kingston, ON, Canada
- The Centre for Health Innovation, Queen’s University and the Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Lindsay E. Fitzpatrick
- Department of Chemical Engineering, Queen’s University, Kingston, ON, Canada
- The Centre for Health Innovation, Queen’s University and the Kingston Health Sciences Centre, Kingston, ON, Canada
- *Correspondence: Lindsay E. Fitzpatrick,
| |
Collapse
|
17
|
Duan T, Du Y, Xing C, Wang HY, Wang RF. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front Immunol 2022. [PMID: 35309296 DOI: 10.3389/fimmu.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Innate immunity is the first defense system against invading pathogens. Toll-like receptors (TLRs) are well-defined pattern recognition receptors responsible for pathogen recognition and induction of innate immune responses. Since their discovery, TLRs have revolutionized the field of immunology by filling the gap between the initial recognition of pathogens by innate immune cells and the activation of the adaptive immune response. TLRs critically link innate immunity to adaptive immunity by regulating the activation of antigen-presenting cells and key cytokines. Furthermore, recent studies also have shown that TLR signaling can directly regulate the T cell activation, growth, differentiation, development, and function under diverse physiological conditions. This review provides an overview of TLR signaling pathways and their regulators and discusses how TLR signaling, directly and indirectly, regulates cell-mediated immunity. In addition, we also discuss how TLR signaling is critically important in the host's defense against infectious diseases, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Tianhao Duan
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yang Du
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Changsheng Xing
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Helen Y Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
18
|
Duan T, Du Y, Xing C, Wang HY, Wang RF. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front Immunol 2022; 13:812774. [PMID: 35309296 PMCID: PMC8927970 DOI: 10.3389/fimmu.2022.812774] [Citation(s) in RCA: 269] [Impact Index Per Article: 134.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
Innate immunity is the first defense system against invading pathogens. Toll-like receptors (TLRs) are well-defined pattern recognition receptors responsible for pathogen recognition and induction of innate immune responses. Since their discovery, TLRs have revolutionized the field of immunology by filling the gap between the initial recognition of pathogens by innate immune cells and the activation of the adaptive immune response. TLRs critically link innate immunity to adaptive immunity by regulating the activation of antigen-presenting cells and key cytokines. Furthermore, recent studies also have shown that TLR signaling can directly regulate the T cell activation, growth, differentiation, development, and function under diverse physiological conditions. This review provides an overview of TLR signaling pathways and their regulators and discusses how TLR signaling, directly and indirectly, regulates cell-mediated immunity. In addition, we also discuss how TLR signaling is critically important in the host's defense against infectious diseases, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Tianhao Duan
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yang Du
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Changsheng Xing
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Helen Y. Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Cell intrinsic and extrinsic perturbations to inflammatory signaling pathways are a hallmark of development and progression of hematologic malignancies. The interleukin 1 receptor-associated kinases (IRAKs) are a family of related signaling intermediates (IRAK1, IRAK2, IRAK3, IRAK4) that operate at the nexus of multiple inflammatory pathways implicated in the hematologic malignancies. In this review, we explicate the oncogenic role of these kinases and review recent therapeutic advances in the dawning era of IRAK-targeted therapy. RECENT FINDINGS Emerging evidence places IRAK signaling at the confluence of adaptive resistance and oncogenesis in the hematologic malignancies and solid tissue tumors. Preclinical investigations nominate the IRAK kinases as targetable molecular dependencies in diverse cancers. SUMMARY IRAK-targeted therapies that have matriculated to early phase trials are yielding promising preliminary results. However, studies of IRAK kinase signaling continue to defy conventional signaling models and raise questions as to the design of optimal treatment strategies. Efforts to refine IRAK signaling mechanisms in the malignant context will inspire deliberate IRAK-targeted drug development and informed combination therapy.
Collapse
Affiliation(s)
- Joshua Bennett
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
- Department of Cancer Biology
| | - Daniel T. Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
- Department of Cancer Biology
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
20
|
Song J, Chen D, Pan Y, Shi X, Liu Q, Lu X, Xu X, Chen G, Cai Y. Discovery of a Novel MyD88 Inhibitor M20 and Its Protection Against Sepsis-Mediated Acute Lung Injury. Front Pharmacol 2021; 12:775117. [PMID: 34912226 PMCID: PMC8666603 DOI: 10.3389/fphar.2021.775117] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Myeloid differentiation factor 88 (MyD88) is a hub protein in the Toll-like receptor signaling pathway, which acts as a master switch for numerous inflammatory diseases, including acute lung injury (ALI). Although this protein is considered as a crucial therapeutic target, there are currently no clinically approved MyD88-targeting drugs. Based on previous literature, here we report the discovery via computer-aided drug design (CADD) of a small molecule, M20, which functions as a novel MyD88 inhibitor to efficiently relieve lipopolysaccharide-induced inflammation both in vitro and in vivo. Computational chemistry, surface plasmon resonance detection (SPR) and biological experiments demonstrated that M20 forms an important interaction with the MyD88-Toll/interleukin-1 receptor domain and thereby inhibits the protein dimerization. Taken together, this study found a MyD88 inhibitor, M20, with a novel skeleton, which provides a crucial understanding in the development and modification of MyD88 inhibitors. Meanwhile, the favorable bioactivity of the hit compound is also conducive to the treatment of acute lung injury or other more inflammatory diseases.
Collapse
Affiliation(s)
- Jiali Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Daoxing Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yingqiao Pan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xueqin Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qian Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyao Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ximing Xu
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Marine Biomedical Research Institute of Qingdao, Qingdao, China
| | - Gaozhi Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuepiao Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
21
|
Bansod S, Dodhiawala PB, Lim KH. Oncogenic KRAS-Induced Feedback Inflammatory Signaling in Pancreatic Cancer: An Overview and New Therapeutic Opportunities. Cancers (Basel) 2021; 13:cancers13215481. [PMID: 34771644 PMCID: PMC8582583 DOI: 10.3390/cancers13215481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains highly refractory to treatment. While the KRAS oncogene is present in almost all PDAC cases and accounts for many of the malignant feats of PDAC, targeting KRAS or its canonical, direct effector cascades remains unsuccessful in patients. The recalcitrant nature of PDAC is also heavily influenced by its highly fibro-inflammatory tumor microenvironment (TME), which comprises an acellular extracellular matrix and various types of non-neoplastic cells including fibroblasts, immune cells, and adipocytes, underscoring the critical need to delineate the bidirectional signaling interplay between PDAC cells and the TME in order to develop novel therapeutic strategies. The impact of tumor-cell KRAS signaling on various cell types in the TME has been well covered by several reviews. In this article, we critically reviewed evidence, including work from our group, on how the feedback inflammatory signals from the TME impact and synergize with oncogenic KRAS signaling in PDAC cells, ultimately augmenting their malignant behavior. We discussed past and ongoing clinical trials that target key inflammatory pathways in PDAC and highlight lessons to be learned from outcomes. Lastly, we provided our perspective on the future of developing therapeutic strategies for PDAC through understanding the breadth and complexity of KRAS and the inflammatory signaling network.
Collapse
Affiliation(s)
- Sapana Bansod
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.B.); (P.B.D.)
| | - Paarth B. Dodhiawala
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.B.); (P.B.D.)
- Medical Scientist Training Program, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.B.); (P.B.D.)
- Correspondence: ; Tel.: +1-314-362-6157
| |
Collapse
|
22
|
In situ observation of mitochondrial biogenesis as the early event of apoptosis. iScience 2021; 24:103038. [PMID: 34553131 PMCID: PMC8441175 DOI: 10.1016/j.isci.2021.103038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/28/2021] [Accepted: 08/22/2021] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial biogenesis is a cell response to external stimuli which is generally believed to suppress apoptosis. However, during the process of apoptosis, whether mitochondrial biogenesis occurs in the early stage of the apoptotic cells remains unclear. To address this question, we constructed the COX8-EGFP-ACTIN-mCherry HeLa cells with recombinant fluorescent proteins respectively tagged on the nucleus and mitochondria and monitored the mitochondrial changes in the living cells exposed to gamma-ray radiation. Besides in situ detection of mitochondrial fluorescence changes, we also examined the cell viability, nuclear DNA damage, reactive oxygen species (ROS), mitochondrial superoxide, citrate synthase activity, ATP, cytoplasmic and mitochondrial calcium, mitochondrial mass, mitochondrial morphology, and protein expression related to mitochondrial biogenesis, as well as the apoptosis biomarkers. As a result, we confirmed that significant mitochondrial biogenesis took place preceding the radiation-induced apoptosis, and it was closely correlated with the apoptotic cells at late stage. The involved mechanism was also discussed. Dual fluorescence approach was used for in situ observation of living cell processes Radiation-induced effects of mitochondrial biogenesis and apoptosis were observed Relationship between mitochondrial biogenesis and apoptosis was revisited Assessing early mitochondrial biogenesis is critical for predicting later fate of cells
Collapse
|
23
|
Winkler A, Sun W, De S, Jiao A, Sharif MN, Symanowicz PT, Athale S, Shin JH, Wang J, Jacobson BA, Ramsey SJ, Dower K, Andreyeva T, Liu H, Hegen M, Homer BL, Brodfuehrer J, Tilley M, Gilbert SA, Danto SI, Beebe JJ, Barnes BJ, Pascual V, Lin LL, Kilty I, Fleming M, Rao VR. The Interleukin-1 Receptor-Associated Kinase 4 Inhibitor PF-06650833 Blocks Inflammation in Preclinical Models of Rheumatic Disease and in Humans Enrolled in a Randomized Clinical Trial. Arthritis Rheumatol 2021; 73:2206-2218. [PMID: 34423919 PMCID: PMC8671219 DOI: 10.1002/art.41953] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the role of PF-06650833, a highly potent and selective small-molecule inhibitor of interleukin-1-associated kinase 4 (IRAK4), in autoimmune pathophysiology in vitro, in vivo, and in the clinical setting. METHODS Rheumatoid arthritis (RA) inflammatory pathophysiology was modeled in vitro through 1) stimulation of primary human macrophages with anti-citrullinated protein antibody immune complexes (ICs), 2) RA fibroblast-like synoviocyte (FLS) cultures stimulated with Toll-like receptor (TLR) ligands, as well as 3) additional human primary cell cocultures exposed to inflammatory stimuli. Systemic lupus erythematosus (SLE) pathophysiology was simulated in human neutrophils, dendritic cells, B cells, and peripheral blood mononuclear cells stimulated with TLR ligands and SLE patient ICs. PF-06650833 was evaluated in vivo in the rat collagen-induced arthritis (CIA) model and the mouse pristane-induced and MRL/lpr models of lupus. Finally, RNA sequencing data generated with whole blood samples from a phase I multiple-ascending-dose clinical trial of PF-06650833 were used to test in vivo human pharmacology. RESULTS In vitro, PF-06650833 inhibited human primary cell inflammatory responses to physiologically relevant stimuli generated with RA and SLE patient plasma. In vivo, PF-06650833 reduced circulating autoantibody levels in the pristane-induced and MRL/lpr murine models of lupus and protected against CIA in rats. In a phase I clinical trial (NCT02485769), PF-06650833 demonstrated in vivo pharmacologic action pertinent to SLE by reducing whole blood interferon gene signature expression in healthy volunteers. CONCLUSION These data demonstrate that inhibition of IRAK4 kinase activity can reduce levels of inflammation markers in humans and provide confidence in the rationale for clinical development of IRAK4 inhibitors for rheumatologic indications.
Collapse
Affiliation(s)
| | | | - Saurav De
- The Feinstein Institute, Manhasset, New York
| | | | | | | | - Shruti Athale
- Baylor Institute for Immunology Research, Dallas, Texas
| | | | - Ju Wang
- Pfizer, Cambridge, Massachusetts
| | | | | | | | | | - Heng Liu
- Pfizer, Cambridge, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Nguyen GT, Xu S, Adams W, Leong JM, Bunnell SC, Mansour MK, Sykes DB, Mecsas J. Neutrophils require SKAP2 for reactive oxygen species production following C-type lectin and Candida stimulation. iScience 2021; 24:102871. [PMID: 34386732 PMCID: PMC8346660 DOI: 10.1016/j.isci.2021.102871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/03/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022] Open
Abstract
Signaling cascades converting the recognition of pathogens to efficient inflammatory responses by neutrophils are critical for host survival. SKAP2, an adaptor protein, is required for reactive oxygen species (ROS) generation following neutrophil stimulation by integrins, formyl peptide receptors, and for host defense against the Gram-negative bacterial pathogens, Klebsiella pneumoniae and Yersinia pseudotuberculosis. Using neutrophils from murine HoxB8-immortalized progenitors, we show that SKAP2 in neutrophils is crucial for maximal ROS response to purified C-type lectin receptor agonists and to the fungal pathogens, Candida glabrata and Candida albicans, and for robust killing of C. glabrata. Inside-out signaling to integrin and Syk phosphorylation occurred independently of SKAP2 after Candida infection. However, Pyk2, ERK1/2, and p38 phosphorylation were significantly reduced after infection with C. glabrata and K. pneumoniae in Skap2-/- neutrophils. These data demonstrate the importance of SKAP2 in ROS generation and host defense beyond antibacterial immunity to include CLRs and Candida species.
Collapse
Affiliation(s)
- Giang T. Nguyen
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Shuying Xu
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Walter Adams
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - John M. Leong
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Stephen C. Bunnell
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
- Department of Immunology, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Michael K. Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - David B. Sykes
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA 02115, USA
| | - Joan Mecsas
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
25
|
Liu X, Gündel B, Li X, Liu J, Wright A, Löhr M, Arvidsson G, Heuchel R. 3D heterospecies spheroids of pancreatic stroma and cancer cells demonstrate key phenotypes of pancreatic ductal adenocarcinoma. Transl Oncol 2021; 14:101107. [PMID: 33946033 PMCID: PMC8111319 DOI: 10.1016/j.tranon.2021.101107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/18/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, partly due to the dense desmoplasia and a lack of suitable model systems to study. In the present work, we developed a 3D heterospecies spheroid model to study the microenvironmental interactions between tumor cells and stellate cells which can also be employed to test therapeutic regimens. We set up monospheroids and heterospheroids made up from murine pancreatic stellate cells (mPSCs) and human PDAC cells (Panc1), which allowed for direct isolation of mRNA from a mixed cell population followed by an in silico separation of the RNA-seq reads. Global transcript level changes for cells in heterospheroids versus monospheroids were calculated, followed by gene set enrichment analysis and molecular subtype analysis. We observed an apparent shift of Panc1 from the classical to the squamous/basal-like phenotype upon co-culture with mPSCs. Moreover, mPSCs acquired a different cancer-associated fibroblast-related phenotype upon co-culture with Panc1. We analyzed the tumor cell-specific chemosensitivities towards gemcitabine, paclitaxel and SN38 and compared these to published pharmacotranscriptomic signatures. In conclusion, our heterospecies spheroid model reflected key aspects of PDAC and facilitated the study of intercellular interactions between tumor and stroma while additionally proving to be a good model for studying therapeutic responses.
Collapse
Affiliation(s)
- Xinyuan Liu
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology, (CLINTEC), Karolinska Institutet, Huddinge SE 141 86, Sweden
| | - Beate Gündel
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology, (CLINTEC), Karolinska Institutet, Huddinge SE 141 86, Sweden
| | - Xidan Li
- Department of Medicine, Karolinska Institutet, Huddinge SE 141 86, Sweden
| | - Jianping Liu
- Department of Medicine, Karolinska Institutet, Huddinge SE 141 86, Sweden
| | - Anthony Wright
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge SE 141 86, Sweden
| | - Matthias Löhr
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology, (CLINTEC), Karolinska Institutet, Huddinge SE 141 86, Sweden
| | - Gustav Arvidsson
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge SE 141 86, Sweden
| | - Rainer Heuchel
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology, (CLINTEC), Karolinska Institutet, Huddinge SE 141 86, Sweden.
| |
Collapse
|
26
|
Brown RL, Larkinson MLY, Clarke TB. Immunological design of commensal communities to treat intestinal infection and inflammation. PLoS Pathog 2021; 17:e1009191. [PMID: 33465156 PMCID: PMC7846104 DOI: 10.1371/journal.ppat.1009191] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 01/29/2021] [Accepted: 11/29/2020] [Indexed: 12/15/2022] Open
Abstract
The immunological impact of individual commensal species within the microbiota is poorly understood limiting the use of commensals to treat disease. Here, we systematically profile the immunological fingerprint of commensals from the major phyla in the human intestine (Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria) to reveal taxonomic patterns in immune activation and use this information to rationally design commensal communities to enhance antibacterial defenses and combat intestinal inflammation. We reveal that Bacteroidetes and Firmicutes have distinct effects on intestinal immunity by differentially inducing primary and secondary response genes. Within these phyla, the immunostimulatory capacity of commensals from the Bacteroidia class (Bacteroidetes phyla) reflects their robustness of TLR4 activation and Bacteroidia communities rely solely on this receptor for their effects on intestinal immunity. By contrast, within the Clostridia class (Firmicutes phyla) it reflects the degree of TLR2 and TLR4 activation, and communities of Clostridia signal via both of these receptors to exert their effects on intestinal immunity. By analyzing the receptors, intracellular signaling components and transcription factors that are engaged by different commensal species, we identify canonical NF-κB signaling as a critical rheostat which grades the degree of immune stimulation commensals elicit. Guided by this immunological analysis, we constructed a cross-phylum consortium of commensals (Bacteroides uniformis, Bacteroides ovatus, Peptostreptococcus anaerobius and Clostridium histolyticum) which enhances innate TLR, IL6 and macrophages-dependent defenses against intestinal colonization by vancomycin resistant Enterococci, and fortifies mucosal barrier function during pathological intestinal inflammation through the same pathway. Critically, the setpoint of intestinal immunity established by this consortium is calibrated by canonical NF-κB signaling. Thus, by profiling the immunological impact of major human commensal species our work paves the way for rational microbiota reengineering to protect against antibiotic resistant infections and to treat intestinal inflammation.
Collapse
Affiliation(s)
- Rebecca L. Brown
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Max L. Y. Larkinson
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Thomas B. Clarke
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
27
|
Polumuri S, Perkins DJ, Vogel SN. cAMP levels regulate macrophage alternative activation marker expression. Innate Immun 2020; 27:133-142. [PMID: 33241977 PMCID: PMC7882807 DOI: 10.1177/1753425920975082] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The capacity for macrophages to polarize into distinct functional activation states (e.g., M1, M2) is critical to tune an inflammatory response to the relevant infection or injury. Alternative or M2 polarization of macrophages is most often achieved in vitro in response to IL-4/IL-13 and results in the transcriptional up-regulation of a constellation of characteristic M2 marker genes. In vivo, additional signals from the inflammatory milieu can further increase or decrease M2 marker expression. Particularly, activation of cAMP-generating G protein-coupled receptors is reported to increase M2 markers, but whether this is strictly dependent upon cAMP production is unclear. We report herein that increased cAMP alone can increase IL-4-dependent M2 marker expression through a PKA/C/EBPβ/CREB dependent pathway in murine macrophages.
Collapse
Affiliation(s)
- Swamy Polumuri
- Food and Drug Administration (FDA), White Oak Campus, Silver Spring, MD, USA
| | - Darren J Perkins
- Department of Microbiology and Immunology, University of Maryland, Baltimore (UMB), School of Medicine, Baltimore, MD, USA
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland, Baltimore (UMB), School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Cougnoux A, Yerger JC, Fellmeth M, Serra-Vinardell J, Wassif CA, Cawley NX, Porter FD. Toll-like receptor mediated lysozyme expression in Niemann-pick disease, type C1. Mol Genet Metab 2020; 131:364-366. [PMID: 33129690 PMCID: PMC7736542 DOI: 10.1016/j.ymgme.2020.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023]
Abstract
Niemann-Pick type C1 (NPC1) is a rare neurodegenerative disease. In NPC1 mouse cerebella, the antibacterial enzyme, lysozyme (Lyz2), is significantly increased in multiple cell types. Due to its possible role in toxic fibril deposition, we confirmed Lyz2 overexpression in culture in different control and NPC1 cell types including human NPC1 fibroblasts. Lyz2 expression is induced by Toll-like receptors potentially in response to lipid storage but does not play a functional role in NPC disease pathology.
Collapse
Affiliation(s)
- Antony Cougnoux
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Julia C Yerger
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Mason Fellmeth
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jenny Serra-Vinardell
- Human Biochemical Genetics Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher A Wassif
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Niamh X Cawley
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Forbes D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
29
|
Abstract
Despite recent advances in the treatment of autoimmune and inflammatory diseases, unmet medical needs in some areas still exist. One of the main therapeutic approaches to alleviate dysregulated inflammation has been to target the activity of kinases that regulate production of inflammatory mediators. Small-molecule kinase inhibitors have the potential for broad efficacy, convenience and tissue penetrance, and thus often offer important advantages over biologics. However, designing kinase inhibitors with target selectivity and minimal off-target effects can be challenging. Nevertheless, immense progress has been made in advancing kinase inhibitors with desirable drug-like properties into the clinic, including inhibitors of JAKs, IRAK4, RIPKs, BTK, SYK and TPL2. This Review will address the latest discoveries around kinase inhibitors with an emphasis on clinically validated autoimmunity and inflammatory pathways. Unmet medical needs in the treatment of autoimmune and inflammatory diseases still exist. This Review discusses the activity of kinases that regulate production of inflammatory mediators and the recent advances in developing inhibitors to target such kinases.
Collapse
|
30
|
Chen L, Zheng L, Chen P, Liang G. Myeloid Differentiation Primary Response Protein 88 (MyD88): The Central Hub of TLR/IL-1R Signaling. J Med Chem 2020; 63:13316-13329. [DOI: 10.1021/acs.jmedchem.0c00884] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lingfeng Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Lulu Zheng
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Pengqin Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| |
Collapse
|
31
|
Kapetanovic R, Afroz SF, Ramnath D, Lawrence GM, Okada T, Curson JE, de Bruin J, Fairlie DP, Schroder K, St John JC, Blumenthal A, Sweet MJ. Lipopolysaccharide promotes Drp1-dependent mitochondrial fission and associated inflammatory responses in macrophages. Immunol Cell Biol 2020; 98:528-539. [PMID: 32686869 PMCID: PMC7497224 DOI: 10.1111/imcb.12363] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Abstract
Mitochondria have a multitude of functions, including energy generation and cell signaling. Recent evidence suggests that mitochondrial dynamics (i.e. the balance between mitochondrial fission and fusion) also regulate immune functions. Here, we reveal that lipopolysaccharide (LPS) stimulation increases mitochondrial numbers in mouse bone marrow‐derived macrophages (BMMs) and human monocyte‐derived macrophages. In BMMs, this response requires Toll‐like receptor 4 (Tlr4) and the TLR adaptor protein myeloid differentiation primary response 88 (MyD88) but is independent of mitochondrial biogenesis. Consistent with this phenomenon being a consequence of mitochondrial fission, the dynamin‐related protein 1 (Drp1) GTPase that promotes mitochondrial fission is enriched on mitochondria in LPS‐activated macrophages and is required for the LPS‐mediated increase in mitochondrial numbers in both BMMs and mouse embryonic fibroblasts. Pharmacological agents that skew toward mitochondrial fusion also abrogated this response. LPS triggered acute Drp1 phosphorylation at serine 635 (S635), followed by sustained Drp1 dephosphorylation at serine 656 (S656), in BMMs. LPS‐induced S656 dephosphorylation was abrogated in MyD88‐deficient BMMs, suggesting that this post‐translational modification is particularly important for Tlr4‐inducible fission. Pharmacological or genetic targeting of Tlr4‐inducible fission had selective effects on inflammatory mediator production, with LPS‐inducible mitochondrial fission promoting the expression and/or secretion of a subset of inflammatory mediators in BMMs and mouse embryonic fibroblasts. Thus, triggering of Tlr4 results in MyD88‐dependent activation of Drp1, leading to inducible mitochondrial fission and subsequent inflammatory responses in macrophages.
Collapse
Affiliation(s)
- Ronan Kapetanovic
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, QLD, 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Syeda Farhana Afroz
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, QLD, 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Divya Ramnath
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, QLD, 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Grace Mep Lawrence
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, QLD, 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Takashi Okada
- The Mitochondrial Genetics Group, Robinson Research Institute, School of Medicine, Adelaide Health and Medical Sciences Building, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - James Eb Curson
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, QLD, 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jost de Bruin
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, QLD, 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David P Fairlie
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, QLD, 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, QLD, 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Justin C St John
- The Mitochondrial Genetics Group, Robinson Research Institute, School of Medicine, Adelaide Health and Medical Sciences Building, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, QLD, 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
32
|
Doreste B, Torelli S, Morgan J. Irradiation dependent inflammatory response may enhance satellite cell engraftment. Sci Rep 2020; 10:11119. [PMID: 32632224 PMCID: PMC7338540 DOI: 10.1038/s41598-020-68098-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/28/2020] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle stem (satellite) cells transplanted into host mouse muscles contribute to muscle regeneration. Irradiation of host muscle enhances donor stem cell engraftment by promoting the proliferation of transplanted donor cells. We hypothesised that, similar to other systems, cells damaged by radiation might be effecting this donor cell proliferation. But we found no difference in the percentage of dying (TUNEL+) cells in immunodeficient dystrophic mouse muscles at the times after the irradiation dose that enhances donor cell engraftment. Similarly, irradiation did not significantly increase the number of TUNEL+ cells in non-dystrophic immunodeficient mouse muscles and it only slightly enhanced donor satellite cell engraftment in this mouse strain, suggesting either that the effector cells are present in greater numbers within dystrophic muscle, or that an innate immune response is required for effective donor cell engraftment. Donor cell engraftment within non-irradiated dystrophic host mouse muscles was not enhanced if they were transplanted with either satellite cells, or myofibres, derived from irradiated dystrophic mouse muscle. But a mixture of cells from irradiated muscle transplanted with donor satellite cells promoted donor cell engraftment in a few instances, suggesting that a rare, yet to be identified, cell type within irradiated dystrophic muscle enhances the donor stem cell-mediated regeneration. The mechanism by which cells within irradiated host muscle promote donor cell engraftment remains elusive.
Collapse
Affiliation(s)
- Bruno Doreste
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London, WC1N 1EH, UK
| | - Silvia Torelli
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London, WC1N 1EH, UK
| | - Jennifer Morgan
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N1EH, UK.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
33
|
Jain VG, Kong F, Kallapur SG, Presicce P, Senthamaraikannnan P, Cappelletti M, Chougnet CA, Bhattacharyya S, Pasare C, Muglia LJ. IRAK1 Is a Critical Mediator of Inflammation-Induced Preterm Birth. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2651-2660. [PMID: 32238461 PMCID: PMC7366796 DOI: 10.4049/jimmunol.1901368] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/10/2020] [Indexed: 01/09/2023]
Abstract
Preterm birth (PTB) is a major cause of neonatal mortality and morbidity, often triggered by chorioamnionitis or intrauterine inflammation (IUI) with or without infection. Recently, there has been a strong association of IL-1 with PTB. We hypothesized that IL-1R-associated kinase 1 (IRAK1), a key signaling mediator in the TLR/IL-1 pathway, plays a critical role in PTB. In human fetal membranes (FM) collected immediately after birth from women delivering preterm, p-IRAK1 was significantly increased in all the layers of FM with chorioamnionitis, compared with no-chorioamnionitis subjects. In a preterm rhesus macaque model of IUI given intra-amniotic LPS, induction of p-IRAK1 and downstream proinflammatory signaling mediators were seen in the FM. In a C57BL/6J wild-type PTB mouse model of IUI given intrauterine LPS, an IRAK1 inhibitor significantly decreased PTB and increased live birth in a dose-dependent manner. Furthermore, IRAK1 knockout mice were protected from LPS-induced PTB, which was seen in wild-type controls. Activation of IRAK1 was maintained by K63-mediated ubiquitination in preterm FM of humans with chorioamnionitis and rhesus and mouse IUI models. Mechanistically, IRAK1 induced PTB in the mouse model of IUI by upregulating expression of COX-2. Thus, our data from human, rhesus, and mouse demonstrates a critical role IRAK1 in IUI and inflammation-associated PTB and suggest it as potential therapeutic target in IUI-induced PTB.
Collapse
Affiliation(s)
- Viral G Jain
- Division of Neonatology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Fansheng Kong
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Suhas G Kallapur
- Division of Neonatology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Division of Neonatology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095
| | - Pietro Presicce
- Division of Neonatology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Division of Neonatology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095
| | | | - Monica Cappelletti
- Division of Neonatology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095
| | - Claire A Chougnet
- Division of Immunobiology, Center for Inflammation and Tolerance, Cincinnati Children's Hospital, Cincinnati, OH 45229; and
| | - Sandip Bhattacharyya
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Chandrashekhar Pasare
- Division of Immunobiology, Center for Inflammation and Tolerance, Cincinnati Children's Hospital, Cincinnati, OH 45229; and
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Louis J Muglia
- Division of Neonatology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229;
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| |
Collapse
|
34
|
Nguyen GT, Shaban L, Mack M, Swanson KD, Bunnell SC, Sykes DB, Mecsas J. SKAP2 is required for defense against K. pneumoniae infection and neutrophil respiratory burst. eLife 2020; 9:56656. [PMID: 32352382 PMCID: PMC7250567 DOI: 10.7554/elife.56656] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022] Open
Abstract
Klebsiella pneumoniae is a respiratory, blood, liver, and bladder pathogen of significant clinical concern. We show that the adaptor protein, SKAP2, is required for protection against K. pneumoniae (ATCC 43816) pulmonary infections. Skap2-/- mice had 100-fold higher bacterial burden when compared to wild-type and burden was controlled by SKAP2 expression in innate immune cells. Skap2-/- neutrophils and monocytes were present in infected lungs, and the neutrophils degranulated normally in response to K. pneumoniae infection in mice; however, K. pneumoniae-stimulated reactive oxygen species (ROS) production in vitro was abolished. K. pneumoniae-induced neutrophil ROS response required the activity of SFKs, Syk, Btk, PLCγ2, and PKC. The loss of SKAP2 significantly hindered the K. pneumoniae-induced phosphorylation of SFKs, Syk, and Pyk2 implicating SKAP2 as proximal to their activation in pathogen-signaling pathways. In conclusion, SKAP2-dependent signaling in neutrophils is essential for K. pneumoniae-activated ROS production and for promoting bacterial clearance during infection. Klebsiella pneumoniae is a type of bacteria that can cause life-threatening infections – including pneumonia, blood stream infections, and urinary tract infections – in hospitalized patients. These infections can be difficult to treat because some K. pneumoniae are resistant to antibiotics. The bacteria are normally found in the human intestine, and they do not usually cause infections in healthy people. This implies that healthy people’s immune systems are better able to fend off K. pneumoniae infections; learning how could help scientists develop new ways to treat or prevent infections in hospitalized patients. In healthy people, a type of immune cell called neutrophils are the first line of defense against bacterial infections. Several different proteins are needed to activate neutrophils, including a protein called SKAP2. But the role of this protein in fighting K. pneumoniae infections is not clear. To find out what role SKAP2 plays in the defense against pneumonia caused by K. pneumoniae, Nguyen et al. compared infections in mice with and without the protein. Mice lacking SKAP2 in their white blood cells had more bacteria in their lungs than normal mice. The experiments showed that neutrophils from mice with SKAP2 produce a burst of chemicals called “reactive oxygen species”, which can kill bacteria. But neutrophils without the protein do not. Without SKAP2, several proteins that help produce reactive oxygen species do not work. Understanding the role of SKAP2 in fighting infections may help scientists better understand the immune system. This could help clinicians to treat conditions that cause it to be hyperactive or ineffective. More studies are needed to determine if SKAP2 works the same way in human neutrophils and if it works against all types of K. pneumoniae. If it does, then scientists might be able use this information to develop therapies that help the immune system fight infections.
Collapse
Affiliation(s)
- Giang T Nguyen
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, United States
| | - Lamyaa Shaban
- Graduate Program in Molecular Microbiology, Tufts Graduate School of Biomedical Sciences, Boston, United States
| | - Matthias Mack
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Kenneth D Swanson
- Brain Tumor Center and Neuro-Oncology Unit, Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, United States
| | - Stephen C Bunnell
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, United States.,Department of Immunology, School of Medicine, Tufts University, Boston, United States
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, United States
| | - Joan Mecsas
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, United States.,Graduate Program in Molecular Microbiology, Tufts Graduate School of Biomedical Sciences, Boston, United States.,Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, United States
| |
Collapse
|
35
|
Toll-like Receptors and the Control of Immunity. Cell 2020; 180:1044-1066. [DOI: 10.1016/j.cell.2020.02.041] [Citation(s) in RCA: 567] [Impact Index Per Article: 141.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/02/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
|
36
|
John SP, Sun J, Carlson RJ, Cao B, Bradfield CJ, Song J, Smelkinson M, Fraser IDC. IFIT1 Exerts Opposing Regulatory Effects on the Inflammatory and Interferon Gene Programs in LPS-Activated Human Macrophages. Cell Rep 2020; 25:95-106.e6. [PMID: 30282041 PMCID: PMC6492923 DOI: 10.1016/j.celrep.2018.09.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 07/06/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Activation of the TLR4 signaling pathway by lipopolysaccharide (LPS) leads to induction of both inflammatory and interferon-stimulated genes, but the mechanisms through which these coordinately activated transcriptional programs are balanced to promote an optimal innate immune response remain poorly understood. In a genome-wide small interfering RNA (siRNA) screen of the LPS-induced tumor necrosis factor α (TNF-α) response in macrophages, we identify the interferon-stimulated protein IFIT1 as a negative regulator of the inflammatory gene program. Transcriptional profiling further identifies a positive regulatory role for IFIT1 in type I interferon expression, implicating IFIT1 as a reciprocal modulator of LPS-induced gene classes. We demonstrate that these effects of IFIT1 are mediated through modulation of a Sin3A-HDAC2 transcriptional regulatory complex at LPS-induced gene loci. Beyond the well-studied role of cytosolic IFIT1 in restricting viral replication, our data demonstrate a function for nuclear IFIT1 in differential transcriptional regulation of separate branches of the LPS-induced gene program.
Collapse
Affiliation(s)
- Sinu P John
- Signaling Systems Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | - Jing Sun
- Signaling Systems Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Rebecca J Carlson
- Signaling Systems Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Binh Cao
- Signaling Systems Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Clinton J Bradfield
- Signaling Systems Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Jian Song
- Bioinformatics Group, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Margery Smelkinson
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Iain D C Fraser
- Signaling Systems Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
37
|
The role of toll-like receptors in myocardial toxicity induced by doxorubicin. Immunol Lett 2019; 217:56-64. [PMID: 31707054 DOI: 10.1016/j.imlet.2019.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/21/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023]
Abstract
Doxorubicin is an effective antitumor drug commonly used in the treatment of a wide variety of cancers. However, doxorubicin may cause cardiac toxicity, which can cause congestive heart failure in severe cases, and this seriously limits its clinical application. It is believed that doxorubicin promotes the formation of reactive oxygen species, inducing oxidative stress, and at the same time, reduces the content of antioxidant substances in cardiac tissues, causing adverse effects. Toll-like receptors (TLRs) are biomolecules expressed on the surfaces of macrophages, dendritic cells, and epithelial cells that can recognize various types of pathogen-related or damage-related molecular patterns. In recent years, a large number of studies have confirmed that TLRs play important roles in the cardiac toxicity induced by doxorubicin. This review aimed to explore the role of TLRs in the cardiac toxicity induced by doxorubicin and provide possible solutions.
Collapse
|
38
|
[Composition and mode of action of adjuvants in licensed viral vaccines]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2019; 62:462-471. [PMID: 30830257 DOI: 10.1007/s00103-019-02921-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The immunogenicity and efficacy of vaccines is largely governed by nature and the amount of antigen(s) included. Specific immune-stimulating substances, so-called adjuvants, are added to vaccine formulations to enhance and modulate the induced immune response.Adjuvants are very different in their physicochemical nature and are primarily characterized by their immune-enhancing effects. In this report, adjuvants that are components of vaccines licensed in the EU will be presented and their mode of action will be discussed.Aluminum salts have been used for almost a century as vaccine adjuvants. In recent years numerous novel immune-stimulating substances have been developed and integrated into licensed human vaccines. These novel adjuvants are not only intended to generally increase the vaccine-induced antibody titers, but are also aimed at modulating and triggering a specific immune response. The search for innovative adjuvants was considerably stimulated during development of pandemic influenza vaccines. By using squalene-containing oil-in-water adjuvants (namely AS03 and MF59), pandemic influenza vaccines were developed that were efficacious despite a significant reduction of the antigen content.The development of novel adjuvants is a highly dynamic and essential area in modern vaccine design. Some years ago, vaccines for prevention of HPV-induced cervix carcinoma and hepatitis B were licensed that contained the toll-like receptor 4 agonist 3‑O-desacyl-monophosphoryl lipid A (MPL), a detoxified LPS version, as the adjuvant. Quite recently, a herpes zoster vaccine was licensed in Europe with a combination of MPL and the saponin QS21 as adjuvant. This combination of immune enhancers is also used in the formulations of the same manufacturer's malaria and hepatitis B vaccine.
Collapse
|
39
|
Moen SH, Ehrnström B, Kojen JF, Yurchenko M, Beckwith KS, Afset JE, Damås JK, Hu Z, Yin H, Espevik T, Stenvik J. Human Toll-like Receptor 8 (TLR8) Is an Important Sensor of Pyogenic Bacteria, and Is Attenuated by Cell Surface TLR Signaling. Front Immunol 2019; 10:1209. [PMID: 31214180 PMCID: PMC6554558 DOI: 10.3389/fimmu.2019.01209] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/13/2019] [Indexed: 11/15/2022] Open
Abstract
TLR8 is an endosomal sensor of RNA degradation products in human phagocytes, and is involved in the recognition of viral and bacterial pathogens. We previously showed that in human primary monocytes and monocyte derived macrophages, TLR8 senses entire Staphylococcus aureus and Streptococcus agalactiae (group B streptococcus, GBS), resulting in the activation of IRF5 and production of IFNβ, IL-12p70, and TNF. However, the quantitative and qualitative impact of TLR8 for the sensing of bacteria have remained unclear because selective inhibitors have been unavailable. Moreover, while we have shown that TLR2 activation attenuates TLR8-IRF5 signaling, the molecular mechanism of this crosstalk is unknown. We here used a recently developed chemical antagonist of TLR8 to determine its role in human primary monocytes challenged with S. aureus, GBS, Streptococcus pneumonia, Pseudomonas aeruginosa, and E. coli. The inhibitor completely blocked cytokine production in monocytes stimulated with TLR8-agonists, but not TLR2-, and TLR4-agonists. Upon challenge with S. aureus, GBS, and S. pneumonia, the TLR8 inhibitor almost eliminated the production of IL-1β and IL-12p70, and it strongly reduced the release of IL-6, TNF, and IL-10. With P. aeruginosa infection, the TLR8 inhibitor impaired the production of IL-12p70 and IL-1β, while with E. coli infection the inhibitor had less effect that varied depending on the strain and conditions. Signaling via TLR2, TLR4, or TLR5, but not TLR8, rapidly eliminated IRAK-1 detection by immunoblotting due to IRAK-1 modifications during activation. Silencing of IRAK-1 reduced the induction of IFNβ and TNF by TLR8 activation, suggesting that IRAK-1 is required for TLR8-IRF5 signaling. The TLR-induced modifications of IRAK-1 also correlated closely with attenuation of TLR8-IRF5 activation, suggesting that sequestration and/or modification of Myddosome components by cell surface TLRs limit the function of TLR8. Accordingly, inhibition of CD14- and TLR4-activation during E. coli challenge increased the activation of IRF5 and the production of IL-1β and IL-12p70. We conclude that TLR8 is a dominating sensor of several species of pyogenic bacteria in human monocytes, while some bacteria attenuate TLR8-signaling via cell surface TLR- activation. Taken together, TLR8 appears as a more important sensor in the antibacterial defense system than previously known.
Collapse
Affiliation(s)
- Siv H Moen
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Birgitta Ehrnström
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Infectious Diseases, Clinic of Medicine, St. Olavs Hospital HF, Trondheim University Hospital, Trondheim, Norway
| | - June F Kojen
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mariia Yurchenko
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kai S Beckwith
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jan E Afset
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital HF, Trondheim University Hospital, Trondheim, Norway
| | - Jan K Damås
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Infectious Diseases, Clinic of Medicine, St. Olavs Hospital HF, Trondheim University Hospital, Trondheim, Norway
| | - Zhenyi Hu
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States
| | - Hang Yin
- School of Pharmaceutical Sciences, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jørgen Stenvik
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Infectious Diseases, Clinic of Medicine, St. Olavs Hospital HF, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
40
|
Smith MA, Choudhary GS, Pellagatti A, Choi K, Bolanos LC, Bhagat TD, Gordon-Mitchell S, Von Ahrens D, Pradhan K, Steeples V, Kim S, Steidl U, Walter M, Fraser IDC, Kulkarni A, Salomonis N, Komurov K, Boultwood J, Verma A, Starczynowski DT. U2AF1 mutations induce oncogenic IRAK4 isoforms and activate innate immune pathways in myeloid malignancies. Nat Cell Biol 2019; 21:640-650. [PMID: 31011167 PMCID: PMC6679973 DOI: 10.1038/s41556-019-0314-5] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 03/15/2019] [Indexed: 12/28/2022]
Abstract
Spliceosome mutations are common in myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML), but the oncogenic changes due to these mutations have not been identified. Here a global analysis of exon usage in AML samples revealed distinct molecular subsets containing alternative spliced isoforms of inflammatory and immune genes. Interleukin-1 receptor-associated kinase 4 (IRAK4) was the dominant alternatively spliced isoform in MDS and AML and is characterized by a longer isoform that retains exon 4, which encodes IRAK4-long (IRAK4-L), a protein that assembles with the myddosome, results in maximal activation of nuclear factor kappa-light-chain-enhancer of B cells (NF-κB) and is essential for leukaemic cell function. Expression of IRAK4-L is mediated by mutant U2 small nuclear RNA auxiliary factor 1 (U2AF1) and is associated with oncogenic signalling in MDS and AML. Inhibition of IRAK4-L abrogates leukaemic growth, particularly in AML cells with higher expression of the IRAK4-L isoform. Collectively, mutations in U2AF1 induce expression of therapeutically targetable 'active' IRAK4 isoforms and provide a genetic link to activation of chronic innate immune signalling in MDS and AML.
Collapse
Affiliation(s)
- Molly A Smith
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Gaurav S Choudhary
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Andrea Pellagatti
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford and Oxford BRC Haematology Theme, Oxford, UK
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lyndsey C Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Tushar D Bhagat
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | | | - Dagny Von Ahrens
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Kith Pradhan
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Violetta Steeples
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford and Oxford BRC Haematology Theme, Oxford, UK
| | - Sanghyun Kim
- Department of Medicine, Washington University, St. Louis, MO, USA
| | - Ulrich Steidl
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Matthew Walter
- Department of Medicine, Washington University, St. Louis, MO, USA
| | - Iain D C Fraser
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Aishwarya Kulkarni
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Kakajan Komurov
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Jacqueline Boultwood
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford and Oxford BRC Haematology Theme, Oxford, UK.
| | - Amit Verma
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
41
|
Bengoechea JA, Sa Pessoa J. Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiol Rev 2019; 43:123-144. [PMID: 30452654 PMCID: PMC6435446 DOI: 10.1093/femsre/fuy043] [Citation(s) in RCA: 287] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/16/2018] [Indexed: 12/26/2022] Open
Abstract
Klebsiella species cause a wide range of diseases including pneumonia, urinary tract infections (UTIs), bloodstream infections and sepsis. These infections are particularly a problem among neonates, elderly and immunocompromised individuals. Klebsiella is also responsible for a significant number of community-acquired infections. A defining feature of these infections is their morbidity and mortality, and the Klebsiella strains associated with them are considered hypervirulent. The increasing isolation of multidrug-resistant strains has significantly narrowed, or in some settings completely removed, the therapeutic options for the treatment of Klebsiella infections. Not surprisingly, this pathogen has then been singled out as an 'urgent threat to human health' by several organisations. This review summarises the tremendous progress that has been made to uncover the sophisticated immune evasion strategies of K. pneumoniae. The co-evolution of Klebsiella in response to the challenge of an activated immune has made Klebsiella a formidable pathogen exploiting stealth strategies and actively suppressing innate immune defences to overcome host responses to survive in the tissues. A better understanding of Klebsiella immune evasion strategies in the context of the host-pathogen interactions is pivotal to develop new therapeutics, which can be based on antagonising the anti-immune strategies of this pathogen.
Collapse
Affiliation(s)
- José A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Joana Sa Pessoa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
42
|
Balka KR, De Nardo D. Understanding early TLR signaling through the Myddosome. J Leukoc Biol 2018; 105:339-351. [PMID: 30256449 DOI: 10.1002/jlb.mr0318-096r] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/27/2018] [Accepted: 09/06/2018] [Indexed: 12/27/2022] Open
Abstract
TLRs are expressed on the plasma and endosomal membranes of innate immune cells acting as sensors of foreign and inherent danger signals that threaten the host. Upon activation, TLRs facilitate the assembly of large intracellular oligomeric signaling complexes, termed Myddosomes, which initiate key signal transduction pathways to elicit critical inflammatory immune responses. The formation of the Myddosome is integral for TLR signaling; however, the molecular mechanisms controlling its formation, disassembly, and the subsequent proximal signaling events remain to be clearly defined. In this review, we present a brief overview of TLR signal transduction pathways, summarize the current understanding of the Myddosome and the proteins that comprise its structure, including MyD88 and members of the IL-1 receptor-associated kinase (IRAK) family. Finally, we will discuss recent advances and open questions regarding early TLR signaling in the context of the Myddosome complex.
Collapse
Affiliation(s)
- Katherine R Balka
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Dominic De Nardo
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
43
|
Singer JW, Fleischman A, Al-Fayoumi S, Mascarenhas JO, Yu Q, Agarwal A. Inhibition of interleukin-1 receptor-associated kinase 1 (IRAK1) as a therapeutic strategy. Oncotarget 2018; 9:33416-33439. [PMID: 30279971 PMCID: PMC6161786 DOI: 10.18632/oncotarget.26058] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023] Open
Abstract
Interleukin-1 receptor-associated kinases (IRAK1, IRAK2, IRAK3 [IRAK-M], and IRAK4) are serine-threonine kinases involved in toll-like receptor and interleukin-1 signaling pathways, through which they regulate innate immunity and inflammation. Evidence exists that IRAKs play key roles in the pathophysiologies of cancers, and metabolic and inflammatory diseases, and that IRAK inhibition has potential therapeutic benefits. Molecules capable of selectively interfering with IRAK function and expression have been reported, paving the way for the clinical evaluation of IRAK inhibition. Herein, we focus on IRAK1, review its structure and physiological roles, and summarize emerging data for IRAK1 inhibitors in preclinical and clinical studies.
Collapse
Affiliation(s)
| | - Angela Fleischman
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | | | - John O Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qiang Yu
- Genome Institute of Singapore, Singapore, SG, Singapore
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
44
|
De Nardo D, Balka KR, Cardona Gloria Y, Rao VR, Latz E, Masters SL. Interleukin-1 receptor-associated kinase 4 (IRAK4) plays a dual role in myddosome formation and Toll-like receptor signaling. J Biol Chem 2018; 293:15195-15207. [PMID: 30076215 PMCID: PMC6166714 DOI: 10.1074/jbc.ra118.003314] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/25/2018] [Indexed: 12/28/2022] Open
Abstract
Toll-like receptors (TLRs) form part of the host innate immune system, in which they act as sensors of microbial and endogenous danger signals. Upon TLR activation, the intracellular Toll/interleukin-1 receptor domains of TLR dimers initiate oligomerization of a multiprotein signaling platform comprising myeloid differentiation primary response 88 (MyD88) and members of the interleukin-1 receptor–associated kinase (IRAK) family. Formation of this myddosome complex initiates signal transduction pathways, leading to the activation of transcription factors and the production of inflammatory cytokines. To date, little is known about the assembly and disassembly of the myddosome and about the mechanisms by which these complexes mediate multiple downstream signaling pathways. Here, we isolated myddosome complexes from whole-cell lysates of TLR-activated primary mouse macrophages and from IRAK reporter macrophages to examine the kinetics of myddosome assembly and disassembly. Using a selective inhibitor of IRAK4's kinase activity, we found that whereas TLR cytokine responses were ablated, myddosome formation was stabilized in the absence of IRAK4's kinase activity. Of note, IRAK4 inhibition had only a minimal effect on NF-κB and mitogen-activated protein kinase (MAPK) signaling. In summary, our results indicate that IRAK4 has a critical scaffold function in myddosome formation and that its kinase activity is dispensable for myddosome assembly and activation of the NF-κB and MAPK pathways but is essential for MyD88-dependent production of inflammatory cytokines. Our findings suggest that the scaffold function of IRAK4 may be an attractive target for treating inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Dominic De Nardo
- From the Inflammation Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia, .,the Department of Medical Biology, University of Melbourne, Parkville 3010, Australia
| | - Katherine R Balka
- From the Inflammation Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Yamel Cardona Gloria
- the Institute of Innate Immunity, University Hospital, University of Bonn, Sigmund Freud Strasse 25, 53127 Bonn, Germany
| | - Vikram R Rao
- the Inflammation and Immunology, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Eicke Latz
- the Institute of Innate Immunity, University Hospital, University of Bonn, Sigmund Freud Strasse 25, 53127 Bonn, Germany.,the Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, and.,the German Center for Neurodegenerative Diseases, Bonn 53175, Germany
| | - Seth L Masters
- From the Inflammation Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,the Department of Medical Biology, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
45
|
Fritsch-Decker S, Marquardt C, Stoeger T, Diabaté S, Weiss C. Revisiting the stress paradigm for silica nanoparticles: decoupling of the anti-oxidative defense, pro-inflammatory response and cytotoxicity. Arch Toxicol 2018; 92:2163-2174. [DOI: 10.1007/s00204-018-2223-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/17/2018] [Indexed: 01/04/2023]
|
46
|
Heger L, Balk S, Lühr JJ, Heidkamp GF, Lehmann CHK, Hatscher L, Purbojo A, Hartmann A, Garcia-Martin F, Nishimura SI, Cesnjevar R, Nimmerjahn F, Dudziak D. CLEC10A Is a Specific Marker for Human CD1c + Dendritic Cells and Enhances Their Toll-Like Receptor 7/8-Induced Cytokine Secretion. Front Immunol 2018; 9:744. [PMID: 29755453 PMCID: PMC5934495 DOI: 10.3389/fimmu.2018.00744] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/26/2018] [Indexed: 12/31/2022] Open
Abstract
Dendritic cells (DCs) are major players for the induction of immune responses. Apart from plasmacytoid DCs (pDCs), human DCs can be categorized into two types of conventional DCs: CD141+ DCs (cDC1) and CD1c+ DCs (cDC2). Defining uniquely expressed surface markers on human immune cells is not only important for the identification of DC subpopulations but also a prerequisite for harnessing the DC subset-specific potential in immunomodulatory approaches, such as antibody-mediated antigen targeting. Although others identified CLEC9A as a specific endocytic receptor for CD141+ DCs, such a receptor for CD1c+ DCs has not been discovered, yet. By performing transcriptomic and flow cytometric analyses on human DC subpopulations from different lymphohematopoietic tissues, we identified CLEC10A (CD301, macrophage galactose-type C-type lectin) as a specific marker for human CD1c+ DCs. We further demonstrate that CLEC10A rapidly internalizes into human CD1c+ DCs upon binding of a monoclonal antibody directed against CLEC10A. The binding of a CLEC10A-specific bivalent ligand (the MUC-1 peptide glycosylated with N-acetylgalactosamine) is limited to CD1c+ DCs and enhances the cytokine secretion (namely TNFα, IL-8, and IL-10) induced by TLR 7/8 stimulation. Thus, CLEC10A represents not only a candidate to better define CD1c+ DCs—due to its high endocytic potential—CLEC10A also exhibits an interesting candidate receptor for future antigen-targeting approaches.
Collapse
Affiliation(s)
- Lukas Heger
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Silke Balk
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Jennifer J Lühr
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Gordon F Heidkamp
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Christian H K Lehmann
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Lukas Hatscher
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Ariawan Purbojo
- Department of Pediatric Cardiac Surgery, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Arndt Hartmann
- Department of Pathology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Fayna Garcia-Martin
- Graduate School of Life Science and Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Shin-Ichiro Nishimura
- Graduate School of Life Science and Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Robert Cesnjevar
- Department of Pediatric Cardiac Surgery, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Falk Nimmerjahn
- Department of Biology, Chair of Genetics, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
47
|
De Nardo D, Kalvakolanu DV, Latz E. Immortalization of Murine Bone Marrow-Derived Macrophages. Methods Mol Biol 2018; 1784:35-49. [PMID: 29761386 DOI: 10.1007/978-1-4939-7837-3_4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macrophages are specialized phagocytes that display a variety of important functions for the host immune system. They are particularly important for the recognition of exogenous and endogenous danger signals, forming the defensive front line as part of innate immune response. As such, murine macrophages are commonly used for in vitro cell-based assays examining the mechanisms of innate immune activation, which can require the ongoing breeding and housing of a large number of genetically modified mouse strains. Here, we describe a robust protocol for the generation of immortalized bone marrow-derived macrophages (iBMDMs) from primary murine bone marrow cells. We further provide general protocols for harvesting, freezing, and thawing of bone marrow cells, maintaining iBMDMs in culture and generation of monoclonal iBMDM populations by single-cell cloning.
Collapse
Affiliation(s)
- Dominic De Nardo
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Dhan V Kalvakolanu
- Department of Microbiology and Immunology, Greenebaum NCI-Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany.,Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.,German Center for Neurodegenerative Diseases, Bonn, Germany
| |
Collapse
|
48
|
Cardona Gloria Y, Latz E, De Nardo D. Generation of Innate Immune Reporter Cells Using Retroviral Transduction. Methods Mol Biol 2018; 1714:97-117. [PMID: 29177858 DOI: 10.1007/978-1-4939-7519-8_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Innate immune cells are notoriously difficult to transfect; however, retroviruses can be used to stably integrate genes of interest into the host genome of primary or immortalized immune cells resulting in the generation of reporter cells. Here, we provide a detailed protocol covering the production of retroviruses, retroviral infection of innate immune target cells (including isolation and differentiation of murine bone marrow cells to macrophages), and several methods for enrichment of positively transduced cells.
Collapse
Affiliation(s)
- Yamel Cardona Gloria
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital, University of Bonn, Sigmund Freud Str. 25, 53127, Bonn, Germany.,Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.,German Center for Neurodegenerative Diseases, Bonn, 53175, Germany
| | - Dominic De Nardo
- Inflammation Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. .,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
49
|
Odendall C, Voak AA, Kagan JC. Type III IFNs Are Commonly Induced by Bacteria-Sensing TLRs and Reinforce Epithelial Barriers during Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:3270-3279. [PMID: 28954888 PMCID: PMC5679450 DOI: 10.4049/jimmunol.1700250] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/28/2017] [Indexed: 12/20/2022]
Abstract
Type III IFNs (IFN-λs) are secreted factors that are well-known for their antiviral activities. However, their regulation and functions during bacterial infections are unclear. In this article, we report that the regulation of IFN-λ genes did not track with mechanisms that control type I IFN expression in response to TLRs. Whereas type I IFNs were only expressed from TLRs present on endosomes, type III IFNs could be induced by TLRs that reside at the plasma membrane and that detect various bacterial products. The mechanisms that regulate type III IFN gene expression tracked with those that promote inflammatory cytokine and chemokine expression. Importantly, rIFN-λs enhanced epithelial barriers in vitro, preventing transcellular bacteria dissemination. We therefore propose that in addition to their functions in cell-intrinsic antiviral immunity, type III IFNs protect epithelial barrier integrity, an activity that would benefit the host during any infectious encounter.
Collapse
Affiliation(s)
- Charlotte Odendall
- Harvard Medical School, Boston, MA 02115;
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115; and
- Department of Infectious Diseases, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Andrew A Voak
- Department of Infectious Diseases, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Jonathan C Kagan
- Harvard Medical School, Boston, MA 02115;
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115; and
| |
Collapse
|
50
|
Kong F, Liu Z, Jain VG, Shima K, Suzuki T, Muglia LJ, Starczynowski DT, Pasare C, Bhattacharyya S. Inhibition of IRAK1 Ubiquitination Determines Glucocorticoid Sensitivity for TLR9-Induced Inflammation in Macrophages. THE JOURNAL OF IMMUNOLOGY 2017; 199:3654-3667. [PMID: 29038250 DOI: 10.4049/jimmunol.1700443] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/19/2017] [Indexed: 01/26/2023]
Abstract
Inflammatory responses are controlled by signaling mediators that are regulated by various posttranslational modifications. Recently, transcription-independent functions for glucocorticoids (GC) in restraining inflammation have emerged, but the underlying mechanisms are unknown. In this study, we report that GC receptor (GR)-mediated actions of GC acutely suppress TLR9-induced inflammation via inhibition of IL-1R-associated kinase 1 (IRAK1) ubiquitination. β-TrCP-IRAK1 interaction is required for K48-linked ubiquitination of IRAK1 at Lys134 and subsequent membrane-to-cytoplasm trafficking of IRAK1 interacting partners TNFR-associated factor 6 and TAK1 that facilitates NF-κB and MAPK activation. Upon costimulation of macrophages with GC and TLR9-engaging ligand, GR physically interacts with IRAK1 and interferes with protein-protein interactions between β-TrCP and IRAK1. Ablation of GR in macrophages prevents GC-dependent suppression of β-TrCP-IRAK1 interactions. This GC-mediated suppression of IRAK1 activation is unique to TLR9, as GC treatment impairs TLR9 but not TLR4 ligand-induced K48-linked IRAK1 ubiquitination and trafficking of IRAK1 interacting partners. Furthermore, mutations in IRAK1 at Lys134 prevent TLR9 ligand-induced activation of inflammatory signaling mediators and synthesis of proinflammatory cytokines to an extent comparable to GC-mediated inhibition. Collectively, these findings identify a transcription-independent, rapid, and nongenomic GC suppression of TLR9 ligand-mediated IRAK1 ubiquitination as a novel mechanism for restraining acute inflammatory reactions.
Collapse
Affiliation(s)
- Fansheng Kong
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229
| | - Zhiwei Liu
- Neonatal Division, International Peace Maternity and Child Health Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Viral G Jain
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Kenjiro Shima
- Division of Pulmonary Biology, Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Takuji Suzuki
- Division of Pulmonary Biology, Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Louis J Muglia
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229
| | - Daniel T Starczynowski
- Experimental Hematology and Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; and
| | - Chandrashekhar Pasare
- Department of Immunology, Southwestern Medical Center, University of Texas, Dallas, TX 75390
| | - Sandip Bhattacharyya
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229;
| |
Collapse
|