1
|
Kroes S, Bierlaagh MC, Lefferts JW, Boni A, Muilwijk D, Viscomi C, Keijzer-Nieuwenhuijze NDA, Cristiani L, Niemöller PJ, Verburg TF, Cutrera R, Fiocchi AG, Lucidi V, van der Ent CK, Beekman JM, Alghisi F, Ciciriello F. Elexacaftor/tezacaftor/ivacaftor efficacy in intestinal organoids with rare CFTR variants in comparison to CFTR-F508del and CFTR-wild type controls. J Cyst Fibros 2024:S1569-1993(24)01787-9. [PMID: 39523185 DOI: 10.1016/j.jcf.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/22/2024] [Accepted: 09/21/2024] [Indexed: 11/16/2024]
Abstract
Cystic fibrosis is a life-shortening genetic disease caused by pathological variants of the cystic fibrosis transmembrane conductance regulator gene. The CFTR modulator therapy elexacaftor, tezacaftor and ivacaftor (ETI) rescues CFTR protein function and has made a significant impact on the lives of many people with CF. In Europe, ETI is currently available for people with CF who have at least one F508del mutation whilst the effect of ETI on rare CFTR variants remains unknown, albeit that many of such variants may be restored through ETI. Italy has a high prevalence of rare CFTR variants compared to the rest of Europe, potentially leading to significant undertreatment of people with rare CFTR variants. In this study, we used patient-derived intestinal organoids to identify individuals harboring rare CFTR variants who might benefit from ETI modulator therapy. Two CFTR-dependent readouts (steady-state lumen area and forskolin-induced swelling) in intestinal organoids were characterized to assess CFTR function rescue upon ETI incubation. Functional restoration by CFTR modulators was compared to wild type CFTR function, ETI-treated organoids harboring genotypes currently eligible for ETI therapy (F508del/class I) and organoids harboring non-responsive genotypes. Our data showed in vitro response to ETI within or beyond the range of CFTR function associated with F508del-ETI in 19 out of 28 organoids. This suggest that a large percentage of people with rare CFTR variants without access to ETI may benefit from this treatment.
Collapse
Affiliation(s)
- Suzanne Kroes
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Marlou C Bierlaagh
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands
| | - Juliet W Lefferts
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Alessandra Boni
- Pneumology and Cystic Fibrosis Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Danya Muilwijk
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands
| | - Carla Viscomi
- Pneumology and Cystic Fibrosis Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Natascha D A Keijzer-Nieuwenhuijze
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Luca Cristiani
- Pneumology and Cystic Fibrosis Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Paul J Niemöller
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Tibo F Verburg
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Renato Cutrera
- Pneumology and Cystic Fibrosis Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | | | - Vincenzina Lucidi
- Cystic Fibrosis Center, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Cornelis K van der Ent
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands.
| | - Federico Alghisi
- Pneumology and Cystic Fibrosis Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Fabiana Ciciriello
- Pneumology and Cystic Fibrosis Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
2
|
Bani Melhim S, Douglas LE, Reihill JA, Downey DG, Martin SL. The effect of triple CFTR modulator therapy and azithromycin on ion channels and inflammation in cystic fibrosis. ERJ Open Res 2024; 10:00502-2024. [PMID: 39687397 PMCID: PMC11647873 DOI: 10.1183/23120541.00502-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/07/2024] [Indexed: 12/18/2024] Open
Abstract
Background Inflammation in cystic fibrosis (CF) airways is difficult to treat with well-established regimens often including azithromycin (AZ) as an immunomodulatory drug. As AZ has been reported to require CF transmembrane conductance regulator (CFTR) to be able to reduce interleukin (IL)-8 and given the emergence of highly effective CFTR "triple" modulator therapy (elexacaftor/tezacaftor/ivacaftor; ETI), the aim of this study was to investigate the effect of AZ and ETI, singly and in combination, on ion channel activity and to assess the potential anti-inflammatory effects. Methods Electrophysiological assessment of ETI and AZ was performed on three-dimensional cultures of primary CF human bronchial epithelial (HBE) cells using a Multi Trans-Epithelial Current Clamp. IL-8 from NuLi-1 (non-CF) and CuFi-1 (CF) cells treated with AZ was measured by ELISA. Inflammatory mediators from primary CF HBE cells exposed to tumour necrosis factor-α in the presence of AZ, ETI and their combination, were screened using the Proteome Profiler™ Human Cytokine Array Kit, with selected targets validated by ELISA. Results AZ did not alter CFTR chloride efflux, nor did it have any synergistic/antagonistic effect in combination with ETI. AZ reduced IL-8 in NuLi-1 but not CuFi-1 cells. The Proteome Profiler™ screen identified several disease-relevant cytokines that were modulated by treatment. Subsequent analysis by ELISA showed IL-8, IL-6, CXCL1 and granulocyte-macrophage colony-stimulating factor to be significantly reduced by treatment with ETI, but not by AZ. Conclusions Incorporating ETI into the standard of CF care provides an opportunity to re-evaluate therapeutic regimens to reduce treatment burden and safely discontinue chronic treatments such as AZ, without loss of clinical benefit. Identification of redundant treatments in the era of CFTR modulation may improve medication adherence and overcome potential adverse effects associated with the chronic use AZ and other drugs.
Collapse
Affiliation(s)
- Suhad Bani Melhim
- School of Pharmacy, Queen's University Belfast, Belfast, UK
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | | | | | - Damian G. Downey
- Wellcome-Wolfson Institute of Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK
| | | |
Collapse
|
3
|
Hansson AB, Wadström H, Eliasson E, Al Shakirchi M, de Monestrol I, Barclay V. Development and clinical implementation of an LC-HRMS method for ivacaftor, lumacaftor, tezacaftor and elexacaftor in human plasma and breast milk. Anal Bioanal Chem 2024; 416:5565-5577. [PMID: 39196336 PMCID: PMC11493817 DOI: 10.1007/s00216-024-05496-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024]
Abstract
The four cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulators, ivacaftor, lumacaftor, tezacaftor, and elexacaftor, have revolutionised the treatment of CF by direct action on the protein target behind the disease's development. The aim was to develop and validate a quantification method for these CFTR modulators in plasma and breast milk to better understand inter-patient variability in pharmacokinetics and treatment outcome, including the risk of adverse drug reactions. The ability to monitor CFTR modulators in breast milk enables the estimation of the exposure of breastfed infant, with a potential concern for CFTR modulator-induced liver injury. The analysis was performed on a Thermo Vanquish Flex Binary UHPLC system coupled to a high-resolution mass spectrometer (HRMS), Thermo Q Exactive. The analytes were detected using positive electrospray ionisation in full scan mode. After sample preparation by protein precipitation, the supernatant was injected onto the LC system and the analytes were separated using a Zorbax SB-C18 Rapid Res HPLC column (3.5 µm, 4.6 × 75 mm). This is the first published method for CFTR modulators in breast milk. The validated quantification range for ivacaftor is 0.0050-10 µg/mL with a coefficient of variation < 6% and a mean accuracy of 97-106%; for lumacaftor, tezacaftor, and elexacaftor, the validated quantification range is 0.050-100 µg/mL with a coefficient of variation < 8% and a mean accuracy 93-106%. A simple and sensitive quantification method for CFTR modulators has been developed and used for routine analysis of human plasma and breast milk samples since 2022.
Collapse
Affiliation(s)
- Anna B Hansson
- Medical Unit of Clinical Pharmacology, Karolinska University Hospital, Stockholm, Sweden
| | - Hjalmar Wadström
- Medical Unit of Clinical Pharmacology, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Solna, Division of Clinical Epidemiology, Karolinska Institutet, Solna, Sweden
| | - Erik Eliasson
- Medical Unit of Clinical Pharmacology, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Huddinge, Sweden
| | - Mahasin Al Shakirchi
- Stockholm CF Centre, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Division of Pediatrics, Karolinska Institutet, Huddinge, Sweden
| | - Isabelle de Monestrol
- Stockholm CF Centre, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Division of Pediatrics, Karolinska Institutet, Huddinge, Sweden
| | - Victoria Barclay
- Medical Unit of Clinical Pharmacology, Karolinska University Hospital, Stockholm, Sweden.
- Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
4
|
Venglovecz V, Grassalkovich A, Tóth E, Ébert A, Gál E, Korsós MM, Maléth J, Rakonczay Z, Galla Z, Monostori P, Hegyi P. Restoring CFTR function with Orkambi decreases the severity of alcohol-induced acute pancreatitis. J Physiol 2024; 602:6153-6170. [PMID: 39418107 DOI: 10.1113/jp287289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Heavy alcohol intake is one of the most common causes of acute pancreatitis (AP). We have previously shown that ethanol (EtOH) decreases the expression and activity of the cystic fibrosis transmembrane conductance regulator (CFTR), which plays a key role in alcohol-induced AP development. The prescription drug, Orkambi (a combination of ivacaftor and lumacaftor) can correct impaired CFTR function and expression in cystic fibrosis (CF) patients. Thus, the present study aimed to investigate whether Orkambi can mitigate alcohol-induced AP. Intact guinea-pig pancreatic ducts were pre-treated with different concentrations of ethanol (EtOH; 30, 50 and 100 mm) for 12 h alone or in combination with ivacaftor (VX770) and/or lumacaftor (VX-809), and CFTR expression and activity were evaluated by immunostaining and by the patch clamp technique, respectively. Alcoholic AP was induced in Orkambi-treated guinea-pigs, and standard laboratory and histological parameters were measured. Ivacaftor and lumacaftor alone or in combination dose-dependently restored the apical expression and activity of CFTR after EtOH treatment in vitro. Oral administration of Orkambi reduced the severity of alcohol-induced AP and restored impaired CFTR activity and expression. Orkambi is able to restore the CFTR defect caused by EtOH and decreases the severity of alcohol-induced pancreatitis. This is the first in vivo pre-clinical evidence of Orkambi efficacy in the treatment of alcohol-induced AP. KEY POINTS: Acute pancreatitis is one of the leading causes of hospital admission among gastrointestinal diseases in which the lack of a specific drug therapy plays a crucial role. The cystic fibrosis transmembrane conductance regulator (CFTR) plays an essential role in pancreatic ductal HCO3 - secretion; inappropriate CFTR function, as seen in heavy alcohol consumption, increases the risk of pancreatitis development. CFTR modulators are able to prevent the inhibitory effect of ethanol and reduce pancreatic ductal injury and the severity of alcohol-induced pancreatitis. CFTR modulators present a novel option in the pharmacotherapy of alcohol-induced pancreatitis by enhancing pancreatic functions or preventing recurrence.
Collapse
Affiliation(s)
- Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
- Translational Pancreatology Research Group, Interdisciplinary Center of Excellence for Research Development and Innovation, University of Szeged, Szeged, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Anna Grassalkovich
- Translational Pancreatology Research Group, Interdisciplinary Center of Excellence for Research Development and Innovation, University of Szeged, Szeged, Hungary
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - Emese Tóth
- Translational Pancreatology Research Group, Interdisciplinary Center of Excellence for Research Development and Innovation, University of Szeged, Szeged, Hungary
- Department of Medicine, University of Szeged, Szeged, Hungary
- Department of Health Sciences, Department of Theoretical and Integrative Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Attila Ébert
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Eleonóra Gál
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | | | - József Maléth
- Department of Medicine, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
- ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Zoltán Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Zsolt Galla
- Metabolic and Newborn Screening Laboratory, Department of Paediatrics, University of Szeged, Szeged, Hungary
| | - Péter Monostori
- Metabolic and Newborn Screening Laboratory, Department of Paediatrics, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- Translational Pancreatology Research Group, Interdisciplinary Center of Excellence for Research Development and Innovation, University of Szeged, Szeged, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Pancreatic Disorders, Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Nick HJ, Christeson SE, Bratcher PE. The Functional Impact of VX-770 on the Cystic Fibrosis Transmembrane Conductance Regulator Is Enduring and Increases the Constitutive Activity of This Channel in Primary Airway Epithelia Generated from Healthy Donors. Biomolecules 2024; 14:1378. [PMID: 39595555 PMCID: PMC11591604 DOI: 10.3390/biom14111378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
VX-770 is a small-molecule CFTR potentiator that is highly efficacious in individuals with cystic fibrosis caused by mutations in CFTR that result in a defect in channel gating. While studies have reported on the mechanism of action of VX-770, there is still more to learn about the impact that it has on CFTR function in various contexts. The aim of the present study was to examine the longevity and stability of the effect of VX-770 on CFTR function in cultured airway epithelia and to measure the consequences of this interaction. The responses to acute and chronic VX-770 exposure were measured in cultures of expanded and re-differentiated primary human nasal epithelial cells. Acute VX-770 exposure resulted in an increase in CFTR-mediated currents in the absence of exogenous compounds that induce the phosphorylation/activation of CFTR, with acute exposure having the same effect as chronic exposure. The functional impact of VX-770 on CFTR was long-lasting in cultured airway epithelia, as they maintained an electrophysiological profile consistent with the saturation of CFTR with VX-770 over time periods of up to 4 days following a short (0.5 min) or low-dose (100 nM) exposure to VX-770 during an analysis in an Ussing chamber. Rinsing the apical surface prior to VX-770 exposure or exposure during the analysis in the Ussing chamber increased the interaction between VX-770 and the CFTR. Importantly, after short, low-dose exposures to VX-770, the CFTR channels in cultured epithelia appeared to remain saturated with VX-770 for extended periods of time, despite the repetitive rinsing of the apical surface. This finding has implications for patients discontinuing the use of VX-770-containing therapies.
Collapse
Affiliation(s)
- Heidi J. Nick
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | | | - Preston E. Bratcher
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
- Department of Pediatrics, University of Colorado Denver, Anschutz Medical Center, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Naehrig S, Shad C, Breuling M, Goetschke M, Habler K, Sieber S, Kastenberger J, Kunzelmann AK, Sommerburg O, Liebchen U, Behr J, Vogeser M, Paal M. Therapeutic Drug Monitoring of Elexacaftor, Tezacaftor, and Ivacaftor in Adult People with Cystic Fibrosis. J Pers Med 2024; 14:1065. [PMID: 39452571 PMCID: PMC11508966 DOI: 10.3390/jpm14101065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/29/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES Elexacaftor, tezacaftor, and ivacaftor (ETI) have significantly improved lung function in people with cystic fibrosis (pwCF). Despite exceptional improvements in most cases, treatment-related inter-subject variability and drug-drug interactions that complicate modulator therapy have been reported. METHODS This retrospective analysis presents data on the serum concentration of ETI in our pwCF with full or reduced dosage from August 2021 to December 2023 via routine therapeutic drug monitoring (TDM). The data were compared with the maximum drug concentrations (Cmax) from the pharmaceutical company's summary of product characteristics. RESULTS A total of 786 blood samples from 155 pwCF (41% female, 59% male) were analyzed. The examinations were divided into four groups: full dose within the given tmax (38.5% of all measurements), full dose outside the tmax (29%), reduced dose within the tmax (19.2%), and reduced dose outside the tmax (13.2%). In pwCF receiving the full dose and blood taken within the tmax, 45.3% of serum concentrations of elexacaftor, 51.1% of serum concentrations of ivacaftor, and 8.9% of serum concentrations of tezacaftor were found to be above the Cmax, respectively. For those on reduced doses within the tmax, 24.5% had a serum concentration of elexacaftor, 23.2% had a serum concentration of ivacaftor, and 2.5% had a serum concentration of tezacaftor above the Cmax, respectively. CONCLUSIONS Many pwCF under ETI therapy have Cmax values for elexacaftor and ivacaftor above the recommended range, even on reduced doses or before the tmax was reached. This highlights the value of a TDM program. Further pharmacokinetic studies are necessary.
Collapse
Affiliation(s)
- Susanne Naehrig
- Cystic Fibrosis Center for Adults, Department of Medicine V, LMU University Hospital, LMU Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), 80336 Munich, Germany
| | - Christina Shad
- Cystic Fibrosis Center for Adults, Department of Medicine V, LMU University Hospital, LMU Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), 80336 Munich, Germany
| | - Magdalena Breuling
- Cystic Fibrosis Center for Adults, Department of Medicine V, LMU University Hospital, LMU Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), 80336 Munich, Germany
| | - Melanie Goetschke
- Cystic Fibrosis Center for Adults, Department of Medicine V, LMU University Hospital, LMU Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), 80336 Munich, Germany
| | - Katharina Habler
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, 813777 Munich, Germany
| | - Sarah Sieber
- STAT-UP Statistical Consulting & Data Science GmbH, 80333 Munich, Germany
| | | | | | - Olaf Sommerburg
- Division of Pediatric Pulmonology, Allergy and Cystic Fibrosis Center, Department of Pediatrics, University Hospital Heidelberg, Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany;
| | - Uwe Liebchen
- Department of Anesthesiology, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Juergen Behr
- Department of Medicine V, LMU University Hospital, LMU Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany;
| | - Michael Vogeser
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, 813777 Munich, Germany
| | - Michael Paal
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, 813777 Munich, Germany
| |
Collapse
|
7
|
Gao X, Yeh HI, Yang Z, Fan C, Jiang F, Howard RJ, Lindahl E, Kappes JC, Hwang TC. Allosteric inhibition of CFTR gating by CFTRinh-172 binding in the pore. Nat Commun 2024; 15:6668. [PMID: 39107303 PMCID: PMC11303713 DOI: 10.1038/s41467-024-50641-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Loss-of-function mutations of the CFTR gene cause the life-shortening genetic disease cystic fibrosis (CF), whereas overactivity of CFTR may lead to secretory diarrhea and polycystic kidney disease. While effective drugs targeting the CFTR protein have been developed for the treatment of CF, little progress has been made for diseases caused by hyper-activated CFTR. Here, we solve the cryo-EM structure of CFTR in complex with CFTRinh-172 (Inh-172), a CFTR gating inhibitor with promising potency and efficacy. We find that Inh-172 binds inside the pore of CFTR, interacting with amino acid residues from transmembrane segments (TMs) 1, 6, 8, 9, and 12 through mostly hydrophobic interactions and a salt bridge. Substitution of these residues lowers the apparent affinity of Inh-172. The inhibitor-bound structure reveals re-orientations of the extracellular segment of TMs 1, 8, and 12, supporting an allosteric modulation mechanism involving post-binding conformational changes. This allosteric inhibitory mechanism readily explains our observations that pig CFTR, which preserves all the amino acid residues involved in Inh-172 binding, exhibits a much-reduced sensitivity to Inh-172 and that the apparent affinity of Inh-172 is altered by the CF drug ivacaftor (i.e., VX-770) which enhances CFTR's activity through binding to a site also comprising TM8.
Collapse
Affiliation(s)
- Xiaolong Gao
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, 65211, USA.
| | - Han-I Yeh
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
- Institute of Pharmacology, National Yang Ming Chiao Tung University, College of Medicine, Taipei, Taiwan
- Membrane Protein Structural Biology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Zhengrong Yang
- Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, 35233, USA
| | - Chen Fan
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Fan Jiang
- Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, 35233, USA
| | - Rebecca J Howard
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Erik Lindahl
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - John C Kappes
- Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, 35233, USA
- Research Service, Birmingham Veterans Affairs Medical Center, Veterans Health Administration, Birmingham, AL, 35233, USA
| | - Tzyh-Chang Hwang
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, 65211, USA.
- Institute of Pharmacology, National Yang Ming Chiao Tung University, College of Medicine, Taipei, Taiwan.
- Membrane Protein Structural Biology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
8
|
Azoicai AN, Lupu A, Trandafir LM, Alexoae MM, Alecsa M, Starcea IM, Cuciureanu M, Knieling A, Salaru DL, Hanganu E, Mocanu A, Lupu VV, Ioniuc I. Cystic fibrosis management in pediatric population-from clinical features to personalized therapy. Front Pediatr 2024; 12:1393193. [PMID: 38798310 PMCID: PMC11116730 DOI: 10.3389/fped.2024.1393193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations of the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). In 1949, it's been identified as a monogenic disease and was thought to primarily affect individuals of Northern European descent. It was the most prevalent autosomal recessive disease that shortens life. With the availability of multiple testing methodologies nowadays, there is a chance to create novel and enhanced treatment options. Even in the absence of a high sweat chloride test (SCT) result, the discovery of two causal mutations is diagnostic for cystic fibrosis (CF). For a CF diagnosis, however, at least two positive E sweat chloride tests are still required. In order to achieve early and active intervention to manage cystic fibrosis (CF) and its comorbidities, treatment regimens for pediatric patients should be evaluated, improved, and closely monitored. New developments in the treatment of cystic fibrosis (CF) have led to the development of medications derived from molecules that target the pathogenetic pathway of the illness. These options are very efficient and allow pediatric patients to receive individualized care. However, in order to better direct patient care and enhance patient outcomes, it is crucial to research uncommon CF mutations, which can provide crucial information about the prognosis of the disease and the relationships between genotype and phenotype. To ensure the success of creating novel, safer, and more efficient treatment approaches, a deeper understanding of the pathogeny of the illness is required. In the age of customized medicine, genetic research will be essential to improving patient care and quality of life for those with uncommon mutations.
Collapse
Affiliation(s)
| | - Ancuta Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | | | - Mirabela Alecsa
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Magdalena Cuciureanu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Anton Knieling
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Elena Hanganu
- Department of Biomedical Sciences, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Adriana Mocanu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Vasile Valeriu Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ileana Ioniuc
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
9
|
Taniguchi S, Berenger F, Doi Y, Mimura A, Yamanishi Y, Okiyoneda T. Ligand-based virtual-screening identified a novel CFTR ligand which improves the defective cell surface expression of misfolded ABC transporters. Front Pharmacol 2024; 15:1370676. [PMID: 38666024 PMCID: PMC11043560 DOI: 10.3389/fphar.2024.1370676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Cystic fibrosis (CF) is a monogenetic disease caused by the mutation of CFTR, a cAMP-regulated Cl- channel expressing at the apical plasma membrane (PM) of epithelia. ∆F508-CFTR, the most common mutant in CF, fails to reach the PM due to its misfolding and premature degradation at the endoplasmic reticulum (ER). Recently, CFTR modulators have been developed to correct CFTR abnormalities, with some being used as therapeutic agents for CF treatment. One notable example is Trikafta, a triple combination of CFTR modulators (TEZ/ELX/IVA), which significantly enhances the functionality of ΔF508-CFTR on the PM. However, there's room for improvement in its therapeutic effectiveness since TEZ/ELX/IVA doesn't fully stabilize ΔF508-CFTR on the PM. To discover new CFTR modulators, we conducted a virtual screening of approximately 4.3 million compounds based on the chemical structures of existing CFTR modulators. This effort led us to identify a novel CFTR ligand named FR3. Unlike clinically available CFTR modulators, FR3 appears to operate through a distinct mechanism of action. FR3 enhances the functional expression of ΔF508-CFTR on the apical PM in airway epithelial cell lines by stabilizing NBD1. Notably, FR3 counteracted the degradation of mature ΔF508-CFTR, which still occurs despite the presence of TEZ/ELX/IVA. Furthermore, FR3 corrected the defective PM expression of a misfolded ABCB1 mutant. Therefore, FR3 may be a potential lead compound for addressing diseases resulting from the misfolding of ABC transporters.
Collapse
Affiliation(s)
- Shogo Taniguchi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Nishinomiya, Japan
| | - Francois Berenger
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Yukako Doi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Nishinomiya, Japan
| | - Ayana Mimura
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Nishinomiya, Japan
| | - Yoshihiro Yamanishi
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Tsukasa Okiyoneda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Nishinomiya, Japan
| |
Collapse
|
10
|
Ramananda Y, Naren AP, Arora K. Functional Consequences of CFTR Interactions in Cystic Fibrosis. Int J Mol Sci 2024; 25:3384. [PMID: 38542363 PMCID: PMC10970640 DOI: 10.3390/ijms25063384] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 09/01/2024] Open
Abstract
Cystic fibrosis (CF) is a fatal autosomal recessive disorder caused by the loss of function mutations within a single gene for the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). CFTR is a chloride channel that regulates ion and fluid transport across various epithelia. The discovery of CFTR as the CF gene and its cloning in 1989, coupled with extensive research that went into the understanding of the underlying biological mechanisms of CF, have led to the development of revolutionary therapies in CF that we see today. The highly effective modulator therapies have increased the survival rates of CF patients and shifted the epidemiological landscape and disease prognosis. However, the differential effect of modulators among CF patients and the presence of non-responders and ineligible patients underscore the need to develop specialized and customized therapies for a significant number of patients. Recent advances in the understanding of the CFTR structure, its expression, and defined cellular compositions will aid in developing more precise therapies. As the lifespan of CF patients continues to increase, it is becoming critical to clinically address the extra-pulmonary manifestations of CF disease to improve the quality of life of the patients. In-depth analysis of the molecular signature of different CF organs at the transcriptional and post-transcriptional levels is rapidly advancing and will help address the etiological causes and variability of CF among patients and develop precision medicine in CF. In this review, we will provide an overview of CF disease, leading to the discovery and characterization of CFTR and the development of CFTR modulators. The later sections of the review will delve into the key findings derived from single-molecule and single-cell-level analyses of CFTR, followed by an exploration of disease-relevant protein complexes of CFTR that may ultimately define the etiological course of CF disease.
Collapse
Affiliation(s)
- Yashaswini Ramananda
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anjaparavanda P. Naren
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kavisha Arora
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
11
|
Ferreira FC, Buarque CD, Lopes-Pacheco M. Organic Synthesis and Current Understanding of the Mechanisms of CFTR Modulator Drugs Ivacaftor, Tezacaftor, and Elexacaftor. Molecules 2024; 29:821. [PMID: 38398574 PMCID: PMC10891718 DOI: 10.3390/molecules29040821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The monogenic rare disease Cystic Fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance (CFTR) protein, an anion channel expressed at the apical plasma membrane of epithelial cells. The discovery and subsequent development of CFTR modulators-small molecules acting on the basic molecular defect in CF-have revolutionized the standard of care for people with CF (PwCF), thus drastically improving their clinical features, prognosis, and quality of life. Currently, four of these drugs are approved for clinical use: potentiator ivacaftor (VX-770) alone or in combination with correctors lumacaftor, (VX-809), tezacaftor (VX-661), and elexacaftor (VX-445). Noteworthily, the triple combinatorial therapy composed of ivacaftor, tezacaftor, and elexacaftor constitutes the most effective modulator therapy nowadays for the majority of PwCF. In this review, we exploit the organic synthesis of ivacaftor, tezacaftor, and elexacaftor by providing a retrosynthetic drug analysis for these CFTR modulators. Furthermore, we describe the current understanding of the mechanisms of action (MoA's) of these compounds by discussing several studies that report the key findings on the molecular mechanisms underlying their action on the CFTR protein.
Collapse
Affiliation(s)
- Filipa C. Ferreira
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Camilla D. Buarque
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22435-900, RJ, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
12
|
Rano S, Bhaduri A, Singh M. Nanoparticle-based platforms for targeted drug delivery to the pulmonary system as therapeutics to curb cystic fibrosis: A review. J Microbiol Methods 2024; 217-218:106876. [PMID: 38135160 DOI: 10.1016/j.mimet.2023.106876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Cystic fibrosis (CF) is a genetic disorder of the respiratory system caused by mutation of the Cystic Fibrosis Trans-Membrane Conductance Regulator (CFTR) gene that affects a huge number of people worldwide. It results in difficulty breathing due to a large accumulation of mucus in the respiratory tract, resulting in serious bacterial infections, and subsequent death. Traditional drug-based treatments face hindered penetration at the site of action due to the thick mucus layer. Nanotechnology offers possibilities for developing advanced and effective treatment platforms by focusing on drugs that can penetrate the dense mucus layer, fighting against the underlying bacterial infections, and targeting the genetic cause of the disease. In this review, current nanoparticle-mediated drug delivery platforms for CF, challenges in therapeutics, and future prospects have been highlighted. The effectiveness of the different types of nano-based systems conjugated with various drugs to combat the symptoms and the challenges of treating CF are brought into focus. The toxic effects of these nano-medicines and the various factors that are responsible for their effectiveness are also highlighted.
Collapse
Affiliation(s)
- Sujoy Rano
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India; In-vitro Biology, Aragen Life Sciences, Hyderabad 500076, Telangana, India
| | - Ahana Bhaduri
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India
| | - Mukesh Singh
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India; Department of Botany, Kabi Nazrul College, Murarai, Birbhum 731219 (West Bengal), India.
| |
Collapse
|
13
|
Li H, Rodrat M, Al-Salmani MK, Veselu DF, Han ST, Raraigh KS, Cutting GR, Sheppard DN. Two rare variants that affect the same amino acid in CFTR have distinct responses to ivacaftor. J Physiol 2024; 602:333-354. [PMID: 38186087 PMCID: PMC10872379 DOI: 10.1113/jp285727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Some residues in the cystic fibrosis transmembrane conductance regulator (CFTR) channel are the site of more than one CFTR variant that cause cystic fibrosis. Here, we investigated the function of S1159F and S1159P, two variants associated with different clinical phenotypes, which affect the same pore-lining residue in transmembrane segment 12 that are both strongly potentiated by ivacaftor when expressed in CFBE41o- bronchial epithelial cells. To study the single-channel behaviour of CFTR, we applied the patch-clamp technique to Chinese hamster ovary cells heterologously expressing CFTR variants incubated at 27°C to enhance channel residence at the plasma membrane. S1159F- and S1159P-CFTR formed Cl- channels activated by cAMP-dependent phosphorylation and gated by ATP that exhibited thermostability at 37°C. Both variants modestly reduced the single-channel conductance of CFTR. By severely attenuating channel gating, S1159F- and S1159P-CFTR reduced the open probability (Po ) of wild-type CFTR by ≥75% at ATP (1 mM); S1159F-CFTR caused the greater decrease in Po consistent with its more severe clinical phenotype. Ivacaftor (10-100 nM) doubled the Po of both CFTR variants without restoring Po values to wild-type levels, but concomitantly, ivacaftor decreased current flow through open channels. For S1159F-CFTR, the reduction of current flow was marked at high (supersaturated) ivacaftor concentrations (0.5-1 μM) and voltage-independent, identifying an additional detrimental action of elevated ivacaftor concentrations. In conclusion, S1159F and S1159P are gating variants, which also affect CFTR processing and conduction, but not stability, necessitating the use of combinations of CFTR modulators to optimally restore their channel activity. KEY POINTS: Dysfunction of the ion channel cystic fibrosis transmembrane conductance regulator (CFTR) causes the genetic disease cystic fibrosis (CF). This study investigated two rare pathogenic CFTR variants, S1159F and S1159P, which affect the same amino acid in CFTR, to understand the molecular basis of disease and response to the CFTR-targeted therapy ivacaftor. Both rare variants diminished CFTR function by modestly reducing current flow through the channel and severely inhibiting ATP-dependent channel gating with S1159F exerting the stronger adverse effect, which correlates with its association with more severe disease. Ivacaftor potentiated channel gating by both rare variants without restoring their activity to wild-type levels, but concurrently reduced current flow through open channels, particularly those of S1159F-CFTR. Our data demonstrate that S1159F and S1159P cause CFTR dysfunction by multiple mechanisms that require combinations of CFTR-targeted therapies to fully restore channel function.
Collapse
Affiliation(s)
- Hongyu Li
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Mayuree Rodrat
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
- Center of Research and Development for Biomedical Instrumentation, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Majid K Al-Salmani
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khoudh, Muscat, Sultanate of Oman
| | | | - Sangwoo T Han
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Karen S Raraigh
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Garry R Cutting
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
14
|
Gentzsch M, Baker B, Cholon DM, Kam CW, McKinzie CJ, Despotes KA, Boyles SE, Quinney NL, Esther CR, Ribeiro CM. Cystic fibrosis airway inflammation enables elexacaftor/tezacaftor/ivacaftor-mediated rescue of N1303K CFTR mutation. ERJ Open Res 2024; 10:00746-2023. [PMID: 38226069 PMCID: PMC10789252 DOI: 10.1183/23120541.00746-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/18/2023] [Indexed: 01/17/2024] Open
Abstract
Rescue of N1303K CFTR by highly effective modulator therapy (HEMT) is enabled by CF airway inflammation. These findings suggest that evaluation of HEMT for rare CFTR mutations must be performed under inflammatory conditions relevant to CF airways. https://bit.ly/3tTcoJE.
Collapse
Affiliation(s)
- Martina Gentzsch
- Marsico Lung Institute and Cystic Fibrosis Research Center, The University of North Carolina, Chapel Hill, NC, USA
- Department of Pediatrics, The University of North Carolina, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC, USA
- Joint first authors
| | - Brooke Baker
- Department of Pharmacy, Duke University Medical Center, Durham, NC, USA
- Joint first authors
| | - Deborah M. Cholon
- Marsico Lung Institute and Cystic Fibrosis Research Center, The University of North Carolina, Chapel Hill, NC, USA
| | - Charissa W. Kam
- Department of Pharmacy, University of North Carolina Medical Center, Chapel Hill, NC, USA
| | - Cameron J. McKinzie
- Department of Pharmacy, University of North Carolina Medical Center, Chapel Hill, NC, USA
| | | | - Susan E. Boyles
- Marsico Lung Institute and Cystic Fibrosis Research Center, The University of North Carolina, Chapel Hill, NC, USA
| | - Nancy L. Quinney
- Marsico Lung Institute and Cystic Fibrosis Research Center, The University of North Carolina, Chapel Hill, NC, USA
| | - Charles R. Esther
- Marsico Lung Institute and Cystic Fibrosis Research Center, The University of North Carolina, Chapel Hill, NC, USA
- Department of Pediatrics, The University of North Carolina, Chapel Hill, NC, USA
- Joint senior authors
| | - Carla M.P. Ribeiro
- Marsico Lung Institute and Cystic Fibrosis Research Center, The University of North Carolina, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC, USA
- Department of Medicine, The University of North Carolina, Chapel Hill, NC, USA
- Joint senior authors
| |
Collapse
|
15
|
Krasnova M, Efremova A, Bukhonin A, Zhekaite E, Bukharova T, Melyanovskaya Y, Goldshtein D, Kondratyeva E. The Effect of Complex Alleles of the CFTR Gene on the Clinical Manifestations of Cystic Fibrosis and the Effectiveness of Targeted Therapy. Int J Mol Sci 2023; 25:114. [PMID: 38203285 PMCID: PMC10779438 DOI: 10.3390/ijms25010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
The authors of this article analyzed the available literature with the results of studying the prevalence of complex alleles of the CFTR gene among patients with cystic fibrosis, and their pathogenicity and influence on targeted therapy with CFTR modulators. Cystic fibrosis (CF) is a multisystemic autosomal recessive disease caused by a defect in the expression of the CFTR protein, and more than 2000 genetic variants are known. Clinically significant variants are divided into seven classes. Information about the frequency of complex alleles appears in a number of registers, along with the traditional presentation of data on genetic variants. Complex alleles (those with the presence of more than two nucleotide variants on one allele) can complicate the diagnosis of the disease, and change the clinical manifestations of cystic fibrosis and the response to treatment, since each variant in the complex allele can contribute to the functional activity of the CFTR protein, changing it both in terms of increasing and decreasing function. The role of complex alleles is often underestimated, and their frequency has not been studied. At the moment, characteristic frequently encountered complex alleles have been found for several populations of patients with cystic fibrosis, but the prevalence and pathogenicity of newly detected complex alleles require additional research. In this review, more than 35 complex alleles of the CFTR gene from existing research studies were analyzed, and an analysis of their influence on the manifestations of the disease and the effectiveness of CFTR modulators was also described.
Collapse
Affiliation(s)
| | - Anna Efremova
- Research Centre for Medical Genetics, Moscow 115522, Russia; (M.K.); (A.B.); (E.Z.); (T.B.); (Y.M.); (D.G.); (E.K.)
| | | | | | | | | | | | | |
Collapse
|
16
|
Cholon DM, Greenwald MA, Higgs MG, Quinney NL, Boyles SE, Meinig SL, Minges JT, Chaubal A, Tarran R, Ribeiro CMP, Wolfgang MC, Gentzsch M. A Novel Co-Culture Model Reveals Enhanced CFTR Rescue in Primary Cystic Fibrosis Airway Epithelial Cultures with Persistent Pseudomonas aeruginosa Infection. Cells 2023; 12:2618. [PMID: 37998353 PMCID: PMC10670530 DOI: 10.3390/cells12222618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
People with cystic fibrosis (pwCF) suffer from chronic and recurring bacterial lung infections that begin very early in life and contribute to progressive lung failure. CF is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which encodes an ion channel important for maintaining the proper hydration of pulmonary surfaces. When CFTR function is ablated or impaired, airways develop thickened, adherent mucus that contributes to a vicious cycle of infection and inflammation. Therapeutics for pwCF, called CFTR modulators, target the CFTR defect directly, restoring airway surface hydration and mucociliary clearance. However, even with CFTR modulator therapy, bacterial infections persist. To develop a relevant model of diseased airway epithelium, we established a primary human airway epithelium culture system with persistent Pseudomonas aeruginosa infection. We used this model to examine the effects of CFTR modulators on CFTR maturation, CFTR function, and bacterial persistence. We found that the presence of P. aeruginosa increased CFTR mRNA, protein, and function. We also found that CFTR modulators caused a decrease in P. aeruginosa burden. These results demonstrate the importance of including live bacteria to accurately model the CF lung, and that understanding the effects of infection on CFTR rescue by CFTR modulators is critical to evaluating and optimizing drug therapies for all pwCF.
Collapse
Affiliation(s)
- Deborah M. Cholon
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
| | - Matthew A. Greenwald
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Matthew G. Higgs
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nancy L. Quinney
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
| | - Susan E. Boyles
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
| | - Suzanne L. Meinig
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
- Pharmaceutical Product Development (PPD), Thermo Fisher Scientific, Morrisville, NC 27560, USA
| | - John T. Minges
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
| | - Ashlesha Chaubal
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
| | - Robert Tarran
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
- Division of Genetic, Department of Internal Medicine, Environmental and Inhalational Disease, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Carla M. P. Ribeiro
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
- Division of Pulmonary Diseases, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Matthew C. Wolfgang
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Martina Gentzsch
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Division of Pediatric Pulmonology, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
17
|
Lefferts JW, Bierlaagh MC, Kroes S, Nieuwenhuijze NDA, Sonneveld van Kooten HN, Niemöller PJ, Verburg TF, Janssens HM, Muilwijk D, van Beuningen SFB, van der Ent CK, Beekman JM. CFTR Function Restoration upon Elexacaftor/Tezacaftor/Ivacaftor Treatment in Patient-Derived Intestinal Organoids with Rare CFTR Genotypes. Int J Mol Sci 2023; 24:14539. [PMID: 37833986 PMCID: PMC10572896 DOI: 10.3390/ijms241914539] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. The combination of the CFTR modulators elexacaftor, tezacaftor, and ivacaftor (ETI) enables the effective rescue of CFTR function in people with the most prevalent F508del mutation. However, the functional restoration of rare CFTR variants remains unclear. Here, we use patient-derived intestinal organoids (PDIOs) to identify rare CFTR variants and potentially individuals with CF that might benefit from ETI. First, steady-state lumen area (SLA) measurements were taken to assess CFTR function and compare it to the level observed in healthy controls. Secondly, the forskolin-induced swelling (FIS) assay was performed to measure CFTR rescue within a lower function range, and to further compare it to ETI-mediated CFTR rescue in CFTR genotypes that have received market approval. ETI responses in 30 PDIOs harboring the F508del mutation served as reference for ETI responses of 22 PDIOs with genotypes that are not currently eligible for CFTR modulator treatment, following European Medicine Agency (EMA) and/or U.S. Food and Drug Administration (FDA) regulations. Our data expand previous datasets showing a correlation between in vitro CFTR rescue in organoids and corresponding in vivo ppFEV1 improvement upon a CFTR modulator treatment in published clinical trials, and suggests that the majority of individuals with rare CFTR variants could benefit from ETI. CFTR restoration was further confirmed on protein levels using Western blot. Our data support that CFTR function measurements in PDIOs with rare CFTR genotypes can help to select potential responders to ETI, and suggest that regulatory authorities need to consider providing access to treatment based on the principle of equality for people with CF who do not have access to treatment.
Collapse
Affiliation(s)
- Juliet W. Lefferts
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Marlou C. Bierlaagh
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Suzanne Kroes
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Natascha D. A. Nieuwenhuijze
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB Utrecht, The Netherlands
| | - Heleen N. Sonneveld van Kooten
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB Utrecht, The Netherlands
| | - Paul J. Niemöller
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Tibo F. Verburg
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Hettie M. Janssens
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus Medical Center-Sophia Children’s Hospital, University Hospital Rotterdam, 3015 CN Rotterdam, The Netherlands
| | - Danya Muilwijk
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Sam F. B. van Beuningen
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB Utrecht, The Netherlands
| | - Cornelis K. van der Ent
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Jeffrey M. Beekman
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB Utrecht, The Netherlands
| |
Collapse
|
18
|
Taniguchi S, Ono Y, Doi Y, Taniguchi S, Matsuura Y, Iwasaki A, Hirata N, Fukuda R, Inoue K, Yamaguchi M, Tashiro A, Egami D, Aoki S, Kondoh Y, Honda K, Osada H, Kumeta H, Saio T, Okiyoneda T. Identification of α-Tocopherol succinate as an RFFL-substrate interaction inhibitor inducing peripheral CFTR stabilization and apoptosis. Biochem Pharmacol 2023; 215:115730. [PMID: 37543348 DOI: 10.1016/j.bcp.2023.115730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
The E3 ubiquitin ligase RFFL is an apoptotic inhibitor highly expressed in cancers and its knockdown suppresses cancer cell growth and sensitizes to chemotherapy. RFFL also participates in peripheral protein quality control which removes the functional cell surface ΔF508-CFTR channel and reduces the efficacy of pharmaceutical therapy for cystic fibrosis (CF). Although RFFL inhibitors have therapeutic potential for both cancer and CF, they remain undiscovered. Here, a chemical array screening has identified α-tocopherol succinate (αTOS) as an RFFL ligand. NMR analysis revealed that αTOS directly binds to RFFL's substrate-binding region without affecting the E3 enzymatic activity. Consequently, αTOS inhibits the RFFL-substrate interaction, ΔF508-CFTR ubiquitination and elimination from the plasma membrane of epithelial cells, resulting in the increased functional CFTR channel. Among the α-tocopherol (αTOL) analogs we tested, only αTOS inhibited the RFFL-substrate interaction and increased the cell surface ΔF508-CFTR, depending on RFFL expression. Similarly, the unique proapoptotic effect of αTOS was dependent on RFFL expression. Thus, unlike other αTOL analogs, αTOS acts as an RFFL protein-protein interaction inhibitor which may explain its unique biological properties among αTOL analogs. Moreover, αTOS may act as a CFTR stabilizer, a novel class of drugs that extend cell surface ΔF508-CFTR lifetime.
Collapse
Affiliation(s)
- Sachiho Taniguchi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Yuji Ono
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Yukako Doi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Shogo Taniguchi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Yuta Matsuura
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Ayuka Iwasaki
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Noriaki Hirata
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Ryosuke Fukuda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Keitaro Inoue
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan
| | - Miho Yamaguchi
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan
| | - Anju Tashiro
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan
| | - Daichi Egami
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan
| | - Shunsuke Aoki
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan
| | - Yasumitsu Kondoh
- Chemical Resource Development Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Kaori Honda
- Chemical Resource Development Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Resource Development Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Hiroyuki Kumeta
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Tomohide Saio
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Tsukasa Okiyoneda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan.
| |
Collapse
|
19
|
Oliver KE, Carlon MS, Pedemonte N, Lopes-Pacheco M. The revolution of personalized pharmacotherapies for cystic fibrosis: what does the future hold? Expert Opin Pharmacother 2023; 24:1545-1565. [PMID: 37379072 PMCID: PMC10528905 DOI: 10.1080/14656566.2023.2230129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF), a potentially fatal genetic disease, is caused by loss-of-function mutations in the gene encoding for the CFTR chloride/bicarbonate channel. Modulator drugs rescuing mutant CFTR traffic and function are now in the clinic, providing unprecedented breakthrough therapies for people with CF (PwCF) carrying specific genotypes. However, several CFTR variants are unresponsive to these therapies. AREA COVERED We discussed several therapeutic approaches that are under development to tackle the fundamental cause of CF, including strategies targeting defective CFTR mRNA and/or protein expression and function. Alternatively, defective chloride secretion and dehydration in CF epithelia could be restored by exploiting pharmacological modulation of alternative targets, i.e., ion channels/transporters that concur with CFTR to maintain the airway surface liquid homeostasis (e.g., ENaC, TMEM16A, SLC26A4, SLC26A9, and ATP12A). Finally, we assessed progress and challenges in the development of gene-based therapies to replace or correct the mutant CFTR gene. EXPERT OPINION CFTR modulators are benefiting many PwCF responsive to these drugs, yielding substantial improvements in various clinical outcomes. Meanwhile, the CF therapy development pipeline continues to expand with the development of novel CFTR modulators and alternative therapeutic strategies with the ultimate goal of providing effective therapies for all PwCF in the foreseeable future.
Collapse
Affiliation(s)
- Kathryn E. Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Marianne S. Carlon
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Center for Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
20
|
Lee RE, Reidel B, Nelson MR, Macdonald JK, Kesimer M, Randell SH. Air-Liquid interface cultures to model drug delivery through the mucociliary epithelial barrier. Adv Drug Deliv Rev 2023; 198:114866. [PMID: 37196698 PMCID: PMC10336980 DOI: 10.1016/j.addr.2023.114866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/23/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Epithelial cells from mucociliary portions of the airways can be readily grown and expanded in vitro. When grown on a porous membrane at an air-liquid interface (ALI) the cells form a confluent, electrically resistive barrier separating the apical and basolateral compartments. ALI cultures replicate key morphological, molecular and functional features of the in vivo epithelium, including mucus secretion and mucociliary transport. Apical secretions contain secreted gel-forming mucins, shed cell-associated tethered mucins, and hundreds of additional molecules involved in host defense and homeostasis. The respiratory epithelial cell ALI model is a time-proven workhorse that has been employed in various studies elucidating the structure and function of the mucociliary apparatus and disease pathogenesis. It serves as a critical milestone test for small molecule and genetic therapies targeting airway diseases. To fully exploit the potential of this important tool, numerous technical variables must be thoughtfully considered and carefully executed.
Collapse
Affiliation(s)
- Rhianna E Lee
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Cell Biology and Physiology, United States
| | - Boris Reidel
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Mark R Nelson
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States
| | - Jade K Macdonald
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States
| | - Mehmet Kesimer
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Scott H Randell
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Cell Biology and Physiology, United States.
| |
Collapse
|
21
|
Taniguchi S, Fukuda R, Okiyoneda T. The multiple ubiquitination mechanisms in CFTR peripheral quality control. Biochem Soc Trans 2023:233016. [PMID: 37140364 DOI: 10.1042/bst20221468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated anion channel, which is expressed on the apical plasma membrane (PM) of epithelial cells. Mutations in the CFTR gene cause cystic fibrosis (CF), one of the most common genetic diseases among Caucasians. Most CF-associated mutations result in misfolded CFTR proteins that are degraded by the endoplasmic reticulum quality control (ERQC) mechanism. However, the mutant CFTR reaching the PM through therapeutic agents is still ubiquitinated and degraded by the peripheral protein quality control (PeriQC) mechanism, resulting in reduced therapeutic efficacy. Moreover, certain CFTR mutants that can reach the PM under physiological conditions are degraded by PeriQC. Thus, it may be beneficial to counteract the selective ubiquitination in PeriQC to enhance therapeutic outcomes for CF. Recently, the molecular mechanisms of CFTR PeriQC have been revealed, and several ubiquitination mechanisms, including both chaperone-dependent and -independent pathways, have been identified. In this review, we will discuss the latest findings related to CFTR PeriQC and propose potential novel therapeutic strategies for CF.
Collapse
Affiliation(s)
- Shogo Taniguchi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1330, Japan
| | - Ryosuke Fukuda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1330, Japan
| | - Tsukasa Okiyoneda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1330, Japan
| |
Collapse
|
22
|
Tümmler B. Post-approval studies with the CFTR modulators Elexacaftor-Tezacaftor-Ivacaftor. Front Pharmacol 2023; 14:1158207. [PMID: 37025483 PMCID: PMC10072268 DOI: 10.3389/fphar.2023.1158207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
Triple combination therapy with the CFTR modulators elexacaftor (ELX), tezacaftor (TEZ) and ivacaftor (IVA) has been qualified as a game changer in cystic fibrosis (CF). We provide an overview of the body of literature on ELX/TEZ/IVA published between November 2019 and February 2023 after approval by the regulators. Recombinant ELX/TEZ/IVA-bound Phe508del CFTR exhibits a wild type conformation in vitro, but in patient's tissue a CFTR glyoisoform is synthesized that is distinct from the wild type and Phe508del isoforms. ELX/TEZ/IVA therapy improved the quality of life of people with CF in the real-life setting irrespective of their anthropometry and lung function at baseline. ELX/TEZ/IVA improved sinonasal and abdominal disease, lung function and morphology, airway microbiology and the basic defect of impaired epithelial chloride and bicarbonate transport. Pregnancy rates were increasing in women with CF. Side effects of mental status changes deserve particular attention in the future.
Collapse
Affiliation(s)
- Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| |
Collapse
|
23
|
Railean V, Rodrigues CS, Ramalho SS, Silva IAL, Bartosch J, Farinha CM, Pankonien I, Amaral MD. Personalized medicine: Function of CFTR variant p.Arg334Trp is rescued by currently available CFTR modulators. Front Mol Biosci 2023; 10:1155705. [PMID: 37006619 PMCID: PMC10063961 DOI: 10.3389/fmolb.2023.1155705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Most of the 2,100 CFTR gene variants reported to date are still unknown in terms of their disease liability in Cystic Fibrosis (CF) and their molecular and cellular mechanism that leads to CFTR dysfunction. Since some rare variants may respond to currently approved modulators, characterizing their defect and response to these drugs is essential for effective treatment of people with CF (pwCF) not eligible for the current treatment. Here, we assessed how the rare variant, p.Arg334Trp, impacts on CFTR traffic and function and its response to existing CFTR modulators. To this end, we performed the forskolin-induced swelling (FIS) assay on intestinal organoids from 10 pwCF bearing the p.Arg334Trp variant in one or both alleles of the CFTR gene. In parallel, a novel p.Arg334Trp-CFTR expressing CFBE cell line was generated to characterize the variant individually. Results show that p.Arg334Trp-CFTR does not significantly affect the plasma membrane traffic of CFTR and evidences residual CFTR function. This CFTR variant is rescued by currently available CFTR modulators independently of the variant in the second allele. The study, predicting clinical benefit for CFTR modulators in pwCF with at least one p.Arg334Trp variant, demonstrates the high potential of personalized medicine through theranostics to extend the label of approved drugs for pwCF carrying rare CFTR variants. We recommend that this personalized approach should be considered for drug reimbursement policies by health insurance systems/national health services.
Collapse
|
24
|
Stanke F, Pallenberg ST, Tamm S, Hedtfeld S, Eichhorn EM, Minso R, Hansen G, Welte T, Sauer-Heilborn A, Ringshausen FC, Junge S, Tümmler B, Dittrich AM. Changes in cystic fibrosis transmembrane conductance regulator protein expression prior to and during elexacaftor-tezacaftor-ivacaftor therapy. Front Pharmacol 2023; 14:1114584. [PMID: 36778025 PMCID: PMC9911415 DOI: 10.3389/fphar.2023.1114584] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Background: Defects in expression, maturation or function of the epithelial membrane glycoprotein CFTR are causative for the progressive disease cystic fibrosis. Recently, molecular therapeutics that improve CFTR maturation and functional defects have been approved. We aimed to verify whether we could detect an improvement of CFTR protein expression and maturation by triple therapy with elexacaftor-tezacaftor-ivacaftor (ELX/TEZ/IVA). Methods: Rectal suction biopsies of 21 p.Phe508del homozygous or compound heterozygous CF patients obtained pre- and during treatment with ELX/TEZ/IVA were analyzed by CFTR Western blot that was optimized to distinguish CFTR glycoisoforms. Findings: CFTR western immunoblot analysis revealed that-compared to baseline-the levels of CFTR protein increased by at least twofold in eight out of 12 patients upon treatment with ELX/TEZ/IVA compared to baseline (p < 0.02). However, polydispersity of the mutant CFTR protein was lower than that of the fully glycosylated wild type CFTR Golgi isoform, indicating an incompletely glycosylated p.Phe508el CFTR protein isoform C* in patients with CF which persists after ELX/TEZ/IVA treatment. Interpretation: Treatment with ELX/TEZ/IVA increased protein expression by facilitating the posttranslational processing of mutant CFTR but apparently did not succeed in generating the polydisperse spectrum of N-linked oligosaccharides that is characteristic for the wild type CFTR band C glycoisoform. Our results caution that the lower amounts or immature glycosylation of the C* glycoisoform observed in patients' biomaterial might not translate to fully restored function of mutant CFTR necessary for long-term provision of clinical benefit.
Collapse
Affiliation(s)
- Frauke Stanke
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany,*Correspondence: Frauke Stanke,
| | - Sophia T. Pallenberg
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Stephanie Tamm
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Silke Hedtfeld
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Ella M. Eichhorn
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Rebecca Minso
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany,Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | | | - Felix C. Ringshausen
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany,Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Sibylle Junge
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Anna-Maria Dittrich
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| |
Collapse
|
25
|
Hillenaar T, Beekman J, van der Sluijs P, Braakman I. Redefining Hypo- and Hyper-Responding Phenotypes of CFTR Mutants for Understanding and Therapy. Int J Mol Sci 2022; 23:15170. [PMID: 36499495 PMCID: PMC9735543 DOI: 10.3390/ijms232315170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Mutations in CFTR cause misfolding and decreased or absent ion-channel function, resulting in the disease Cystic Fibrosis. Fortunately, a triple-modulator combination therapy (Trikafta) has been FDA-approved for 178 mutations, including all patients who have F508del on one allele. That so many CFTR mutants respond well to modulators developed for a single mutation is due to the nature of the folding process of this multidomain protein. We have addressed the question 'What characterizes the exceptions: the mutants that functionally respond either not or extremely well'. A functional response is the product of the number of CFTR molecules on the cell surface, open probability, and conductivity of the CFTR chloride channel. By combining biosynthetic radiolabeling with protease-susceptibility assays, we have followed CF-causing mutants during the early and late stages of folding in the presence and absence of modulators. Most CFTR mutants showed typical biochemical responses for each modulator, such as a TMD1 conformational change or an increase in (cell-surface) stability, regardless of a functional response. These modulators thus should still be considered for hypo-responder genotypes. Understanding both biochemical and functional phenotypes of outlier mutations will boost our insights into CFTR folding and misfolding, and lead to improved therapeutic strategies.
Collapse
Affiliation(s)
- Tamara Hillenaar
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, 3584 CS Utrecht, The Netherlands; (T.H.); (P.v.d.S.)
| | - Jeffrey Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands;
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB Utrecht, The Netherlands
| | - Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, 3584 CS Utrecht, The Netherlands; (T.H.); (P.v.d.S.)
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, 3584 CS Utrecht, The Netherlands; (T.H.); (P.v.d.S.)
| |
Collapse
|
26
|
Guimbellot JS, Nichols DP, Brewington JJ. Novel Applications of Biomarkers and Personalized Medicine in Cystic Fibrosis. Clin Chest Med 2022; 43:617-630. [PMID: 36344070 DOI: 10.1016/j.ccm.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As routine care in cystic fibrosis (CF) becomes increasingly personalized, new opportunities to further focus care on the individual have emerged. These opportunities are increasingly filled through research in tools aiding drug selection, drug monitoring and titration, disease-relevant biomarkers, and evaluation of therapeutic benefits. Herein, we will discuss such research tools presently being translated into the clinic to improve the personalization of care in CF.
Collapse
Affiliation(s)
- Jennifer S Guimbellot
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham; 1600 7th Avenue South, ACC 620, Birmingham, AL 35233, USA
| | - David P Nichols
- Department of Pediatrics, Division of Pulmonary Medicine, Seattle Children's Hospital, University of Washington School of Medicine, Building Cure, 1920 Terry Avenue, Office 4-209, Seattle, WA 98109, USA
| | - John J Brewington
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA; Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 2021, Cincinnati, OH 45229, USA.
| |
Collapse
|
27
|
Ruan J, Liang D, Yan W, Zhong Y, Talley DC, Rai G, Tao D, LeClair CA, Simeonov A, Zhang Y, Chen F, Quinney NL, Boyles SE, Cholon DM, Gentzsch M, Henderson MJ, Xue F, Fang S. A small-molecule inhibitor and degrader of the RNF5 ubiquitin ligase. Mol Biol Cell 2022; 33:ar120. [PMID: 36074076 PMCID: PMC9634977 DOI: 10.1091/mbc.e22-06-0233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
RNF5 E3 ubiquitin ligase has multiple biological roles and has been linked to the development of severe diseases such as cystic fibrosis, acute myeloid leukemia, and certain viral infections, emphasizing the importance of discovering small-molecule RNF5 modulators for research and drug development. The present study describes the synthesis of a new benzo[b]thiophene derivative, FX12, that acts as a selective small-molecule inhibitor and degrader of RNF5. We initially identified the previously reported STAT3 inhibitor, Stattic, as an inhibitor of dislocation of misfolded proteins from the endoplasmic reticulum (ER) lumen to the cytosol in ER-associated degradation. A concise structure-activity relationship campaign (SAR) around the Stattic chemotype led to the synthesis of FX12, which has diminished activity in inhibition of STAT3 activation and retains dislocation inhibitory activity. FX12 binds to RNF5 and inhibits its E3 activity in vitro as well as promoting proteasomal degradation of RNF5 in cells. RNF5 as a molecular target for FX12 was supported by the facts that FX12 requires RNF5 to inhibit dislocation and negatively regulates RNF5 function. Thus, this study developed a small-molecule inhibitor and degrader of the RNF5 ubiquitin ligase, providing a chemical biology tool for RNF5 research and therapeutic development.
Collapse
Affiliation(s)
- Jingjing Ruan
- Center for Biomedical Engineering and Technology, Department of Physiology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201,First Affiliated Hospital and
| | - Dongdong Liang
- University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Wenjing Yan
- Center for Biomedical Engineering and Technology, Department of Physiology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Yongwang Zhong
- Center for Biomedical Engineering and Technology, Department of Physiology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Daniel C. Talley
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Christopher A. LeClair
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Yinghua Zhang
- Center for Innovative Biomedical Resources, Biosensor Core, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Feihu Chen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
| | | | | | | | - Martina Gentzsch
- Marsico Lung Institute and Cystic Fibrosis Research Center,Department of Pediatric Pulmonology, and,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mark J. Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850,*Address corespondence to: Shengyun Fang (lead contact) (); Mark J. Henderson (); Fengtian Xue ()
| | - Fengtian Xue
- University of Maryland School of Pharmacy, Baltimore, MD 21201,*Address corespondence to: Shengyun Fang (lead contact) (); Mark J. Henderson (); Fengtian Xue ()
| | - Shengyun Fang
- Center for Biomedical Engineering and Technology, Department of Physiology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201,*Address corespondence to: Shengyun Fang (lead contact) (); Mark J. Henderson (); Fengtian Xue ()
| |
Collapse
|
28
|
Ludovico A, Moran O, Baroni D. Modulator Combination Improves In Vitro the Microrheological Properties of the Airway Surface Liquid of Cystic Fibrosis Airway Epithelia. Int J Mol Sci 2022; 23:ijms231911396. [PMID: 36232697 PMCID: PMC9569604 DOI: 10.3390/ijms231911396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a plasma membrane protein expressed on the apical surface of secretory epithelia of the airways. In the airways, defective or absent function of the CFTR protein determines abnormalities of chloride and bicarbonate secretion and, in general, of the transepithelial homeostasis that lead to alterations of airway surface liquid (ASL) composition and properties. The reduction of ASL volume impairs ciliary beating with the consequent accumulation of a sticky mucus. This situation prevents normal mucociliary clearance, favoring the survival and proliferation of bacteria and contributing to the genesis of the CF pulmonary disease. We explored the potential of some CFTR modulators, namely ivacaftor, tezacaftor, elexacaftor and their combination KaftrioTM, capable of partially recovering the basic defects of the CFTR protein, to ameliorate the transepithelial fluid transport and the viscoelastic properties of the mucus when used singly or in combination. Primary human bronchial epithelial cells obtained from CF and non-CF patients were differentiated into a mucociliated epithelia in order to assess the effects of correctors tezacaftor, elexacaftor and their combination with potentiator ivacaftor on the key properties of ASL, such as fluid reabsorption, viscosity, protein content and pH. The treatment of airway epithelia bearing the deletion of a phenylalanine at position 508 (F508del) in the CFTR gene with tezacaftor and elexacaftor significantly improved the pericilial fluid composition, reducing the fluid reabsorption, correcting the ASL pH and reducing the viscosity of the mucus. KaftrioTM was more effective than single modulators in improving all the evaluated parameters, demonstrating once more that this combination recently approved for patients 6 years and older with cystic fibrosis who have at least one F508del mutation in the CFTR gene represents a valuable tool to defeat CF.
Collapse
Affiliation(s)
| | | | - Debora Baroni
- Correspondence: ; Tel.: +39-010-647-5559; Fax: +39-010-647-5500
| |
Collapse
|
29
|
Therapeutic Drug Monitoring of Ivacaftor, Lumacaftor, Tezacaftor, and Elexacaftor in Cystic Fibrosis: Where Are We Now? Pharmaceutics 2022; 14:pharmaceutics14081674. [PMID: 36015300 PMCID: PMC9412421 DOI: 10.3390/pharmaceutics14081674] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Drugs modulating the cystic fibrosis transmembrane conductance regulator (CFTR) protein, namely ivacaftor, lumacaftor, tezacaftor, and elexacaftor, are currently revolutionizing the management of patients with cystic fibrosis (CF), particularly those with at least one F508del variant (up to 85% of patients). These “caftor” drugs are mainly metabolized by cytochromes P450 3A, whose enzymatic activity is influenced by environmental factors, and are sensitive to inhibition and induction. Hence, CFTR modulators are characterized by an important interindividual pharmacokinetic variability and are also prone to drug–drug interactions. However, these CFTR modulators are given at standardized dosages, while they meet all criteria for a formal therapeutic drug monitoring (TDM) program that should be considered in cases of clinical toxicity, less-than-expected clinical response, drug or food interactions, distinct patient subgroups (i.e., pediatrics), and for monitoring short-term adherence. While the information on CFTR drug exposure–clinical response relationships is still limited, we review the current evidence of the potential interest in the TDM of caftor drugs in real-life settings.
Collapse
|
30
|
Lee RE, Lewis CA, He L, Bulik-Sullivan EC, Gallant SC, Mascenik TM, Dang H, Cholon DM, Gentzsch M, Morton LC, Minges JT, Theile JW, Castle NA, Knowles MR, Kimple AJ, Randell SH. Small molecule eRF3a degraders rescue CFTR nonsense mutations by promoting premature termination codon readthrough. J Clin Invest 2022; 132:154571. [PMID: 35900863 PMCID: PMC9479597 DOI: 10.1172/jci154571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
The vast majority of people with cystic fibrosis (CF) are now eligible for CF transmembrane regulator (CFTR) modulator therapy. The remaining individuals with CF harbor premature termination codons (PTCs) or rare CFTR variants with limited treatment options. Although the clinical modulator response can be reliably predicted using primary airway epithelial cells, primary cells carrying rare CFTR variants are scarce. To overcome this obstacle, cell lines can be created by overexpression of mouse Bmi-1 and human TERT (hTERT). Using this approach, we developed 2 non-CF and 6 CF airway epithelial cell lines, 3 of which were homozygous for the W1282X PTC variant. The Bmi-1/hTERT cell lines recapitulated primary cell morphology and ion transport function. The 2 F508del-CFTR cell lines responded robustly to CFTR modulators, which was mirrored in the parent primary cells and in the cell donors’ clinical response. Cereblon E3 ligase modulators targeting eukaryotic release factor 3a (eRF3a) rescued W1282X-CFTR function to approximately 20% of WT levels and, when paired with G418, rescued G542X-CFTR function to approximately 50% of WT levels. Intriguingly, eRF3a degraders also diminished epithelial sodium channel (ENaC) function. These studies demonstrate that Bmi-1/hTERT cell lines faithfully mirrored primary cell responses to CFTR modulators and illustrate a therapeutic approach to rescue CFTR nonsense mutations.
Collapse
Affiliation(s)
- Rhianna E Lee
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Catherine A Lewis
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Lihua He
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Emily C Bulik-Sullivan
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Samuel C Gallant
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Teresa M Mascenik
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Hong Dang
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Deborah M Cholon
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Martina Gentzsch
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Lisa C Morton
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - John T Minges
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | | | - Neil A Castle
- Research and Development, Icagen, Durham, United States of America
| | - Michael R Knowles
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Adam J Kimple
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Scott H Randell
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| |
Collapse
|
31
|
Veit G, Silva I, Conese M, Laselva O. Editorial: Mechanisms of Novel Drugs and Gene Modifiers in the Treatment of Cystic Fibrosis. Front Mol Biosci 2022; 9:975946. [PMID: 35903150 PMCID: PMC9315944 DOI: 10.3389/fmolb.2022.975946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Guido Veit
- Department of Physiology, McGill University, Montréal, QC, Canada
| | | | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Onofrio Laselva
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- *Correspondence: Onofrio Laselva,
| |
Collapse
|
32
|
Douglas LEJ, Reihill JA, Ho MWY, Axten JM, Campobasso N, Schneck JL, Rendina AR, Wilcoxen KM, Martin SL. A highly selective, cell-permeable furin inhibitor BOS-318 rescues key features of cystic fibrosis airway disease. Cell Chem Biol 2022; 29:947-957.e8. [PMID: 35202587 DOI: 10.1016/j.chembiol.2022.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/14/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022]
Abstract
In cystic fibrosis (CF), excessive furin activity plays a critical role in the activation of the epithelial sodium channel (ENaC), dysregulation of which contributes to airway dehydration, ineffective mucociliary clearance (MCC), and mucus obstruction. Here, we report a highly selective, cell-permeable furin inhibitor, BOS-318, that derives selectivity by eliciting the formation of a new, unexpected binding pocket independent of the active site catalytic triad. Using human ex vivo models, BOS-318 showed significant suppression of ENaC, which led to enhanced airway hydration and an ∼30-fold increase in MCC rate. Furin inhibition also protected ENaC from subsequent activation by neutrophil elastase, a soluble protease dominant in CF airways. Additional therapeutic benefits include protection against epithelial cell death induced by Pseudomonas aeruginosa exotoxin A. Our findings demonstrate the utility of selective furin inhibition as a mutation-agnostic approach that can correct features of CF airway pathophysiology in a manner expected to deliver therapeutic value.
Collapse
Affiliation(s)
- Lisa E J Douglas
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - James A Reihill
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Melisa W Y Ho
- GlaxoSmithKline Research and Development, Collegeville, PA 19426, USA
| | - Jeffrey M Axten
- GlaxoSmithKline Research and Development, Collegeville, PA 19426, USA
| | - Nino Campobasso
- GlaxoSmithKline Research and Development, Collegeville, PA 19426, USA
| | - Jessica L Schneck
- GlaxoSmithKline Research and Development, Collegeville, PA 19426, USA
| | - Alan R Rendina
- GlaxoSmithKline Research and Development, Collegeville, PA 19426, USA
| | | | - S Lorraine Martin
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
33
|
Ensinck MM, Carlon MS. One Size Does Not Fit All: The Past, Present and Future of Cystic Fibrosis Causal Therapies. Cells 2022; 11:cells11121868. [PMID: 35740997 PMCID: PMC9220995 DOI: 10.3390/cells11121868] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Cystic fibrosis (CF) is the most common monogenic disorder, caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Over the last 30 years, tremendous progress has been made in understanding the molecular basis of CF and the development of treatments that target the underlying defects in CF. Currently, a highly effective CFTR modulator treatment (Kalydeco™/Trikafta™) is available for 90% of people with CF. In this review, we will give an extensive overview of past and ongoing efforts in the development of therapies targeting the molecular defects in CF. We will discuss strategies targeting the CFTR protein (i.e., CFTR modulators such as correctors and potentiators), its cellular environment (i.e., proteostasis modulation, stabilization at the plasma membrane), the CFTR mRNA (i.e., amplifiers, nonsense mediated mRNA decay suppressors, translational readthrough inducing drugs) or the CFTR gene (gene therapies). Finally, we will focus on how these efforts can be applied to the 15% of people with CF for whom no causal therapy is available yet.
Collapse
Affiliation(s)
- Marjolein M. Ensinck
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
| | - Marianne S. Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Flanders, Belgium
- Correspondence:
| |
Collapse
|
34
|
Hong E, Almond LM, Chung PS, Rao AP, Beringer PM. Physiologically-Based Pharmacokinetic-Led Guidance for Patients With Cystic Fibrosis Taking Elexacaftor-Tezacaftor-Ivacaftor With Nirmatrelvir-Ritonavir for the Treatment of COVID-19. Clin Pharmacol Ther 2022; 111:1324-1333. [PMID: 35292968 PMCID: PMC9087007 DOI: 10.1002/cpt.2585] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/04/2022] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) modulating therapies, including elexacaftor-tezacaftor-ivacaftor, are primarily eliminated through cytochrome P450 (CYP) 3A-mediated metabolism. This creates a therapeutic challenge to the treatment of coronavirus disease 2019 (COVID-19) with nirmatrelvir-ritonavir in people with cystic fibrosis (CF) due to the potential for significant drug-drug interactions (DDIs). However, the population with CF is more at risk of serious illness following COVID-19 infection and hence it is important to manage the DDI risk and provide treatment options. CYP3A-mediated DDI of elexacaftor-tezacaftor-ivacaftor was evaluated using a physiologically-based pharmacokinetic modeling approach. Modeling was performed incorporating physiological information and drug-dependent parameters of elexacaftor-tezacaftor-ivacaftor to predict the effect of ritonavir (the CYP3A inhibiting component of the combination) on the pharmacokinetics of elexacaftor-tezacaftor-ivacaftor. The elexacaftor-tezacaftor-ivacaftor models were verified using independent clinical pharmacokinetic and DDI data of elexacaftor-tezacaftor-ivacaftor with a range of CYP3A modulators. When ritonavir was administered on Days 1 through 5, the predicted area under the curve (AUC) ratio of ivacaftor (the most sensitive CYP3A substrate) on Day 6 was 9.31, indicating that its metabolism was strongly inhibited. Based on the predicted DDI, the dose of elexacaftor-tezacaftor-ivacaftor should be reduced when coadministered with nirmatrelvir-ritonavir to elexacaftor 200 mg-tezacaftor 100 mg-ivacaftor 150 mg on Days 1 and 5, with delayed resumption of full-dose elexacaftor-tezacaftor-ivacaftor on Day 9, considering the residual inhibitory effect of ritonavir as a mechanism-based inhibitor. The simulation predicts a regimen of elexacaftor-tezacaftor-ivacaftor administered concomitantly with nirmatrelvir-ritonavir in people with CF that will likely decrease the impact of the drug interaction.
Collapse
Affiliation(s)
- Eunjin Hong
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | | | - Peter S Chung
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,University of Southern California, Anton Yelchin Cystic Fibrosis Clinic, Los Angeles, California, USA
| | - Adupa P Rao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,University of Southern California, Anton Yelchin Cystic Fibrosis Clinic, Los Angeles, California, USA
| | - Paul M Beringer
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California, USA.,University of Southern California, Anton Yelchin Cystic Fibrosis Clinic, Los Angeles, California, USA
| |
Collapse
|
35
|
Martina MG, Sannio F, Crespan E, Pavone M, Simoncini A, Barbieri F, Perini C, Pesce E, Maga G, Pedemonte N, Docquier JD, Radi M. Towards Innovative Antibacterial-Correctors for Cystic Fibrosis Targeting the Lung Microbiome with a Multifunctional Effect. ChemMedChem 2022; 17:e202200277. [PMID: 35638249 DOI: 10.1002/cmdc.202200277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 05/30/2022] [Indexed: 11/10/2022]
Abstract
Cystic Fibrosis (CF) is a genetic disease caused by loss-of-function mutations in the CFTR gene, which codes for a defective ion channel. This causes an electrolyte imbalance and results in a spiral of negative effects on multiple organs, most notably the accumulation of thick mucus in the lungs, chronic respiratory tract infections and inflammation leading to pulmonary exacerbation and premature death. Progressive decline of lung function is mainly linked to persistent or recurring infections, mostly caused by bacteria, which require treatments with antibiotics and represent one of the major life-limiting factors in subjects with CF. Treatment of such a complex disease require multiple drugs with a consequent therapeutic burden and complications caused by drug-drug interactions and rapid emergence of bacterial drug resistance. We report herein our recent efforts in developing innovative multifunctional antibiotics specifically tailored to CF by a direct action on bacterial topoisomerases and a potential indirect effect on the pulmonary mucociliary clearance mediated by ΔF508-CFTR correction. The obtained results may pave the way for the development of a simplified therapeutic approach with a single agent acting as multifunctional antibacterial-corrector.
Collapse
Affiliation(s)
- Maria Grazia Martina
- University of Parma: Universita degli Studi di Parma, Department of Food and Drug, ITALY
| | - Filomena Sannio
- University of Siena: Universita degli Studi di Siena, Dipartimento di Biotecnologie Mediche, ITALY
| | - Emmanuele Crespan
- CNR: Consiglio Nazionale delle Ricerche, Istituto di Genetica Molecolare, IGM-CNR "Luigi Luca Cavalli-Sforza", ITALY
| | - Marialaura Pavone
- University of Parma: Universita degli Studi di Parma, Department of Food and Drug, ITALY
| | - Alice Simoncini
- University of Parma: Universita degli Studi di Parma, Department of Food and Drug, ITALY
| | - Francesca Barbieri
- University of Parma: Universita degli Studi di Parma, Department of Food and Drug, ITALY
| | - Cecilia Perini
- CNR: Consiglio Nazionale delle Ricerche, Istituto di Genetica Molecolare, IGM-CNR "Luigi Luca Cavalli-Sforza", ITALY
| | - Emanuela Pesce
- Istituto Giannina Gaslini Istituto Pediatrico di Ricovero e Cura a Carattere Scientifico: Istituto Giannina Gaslini, U.O.C. Genetica Medica, ITALY
| | - Giovanni Maga
- CNR: Consiglio Nazionale delle Ricerche, Istituto di Genetica Molecolare, IGM-CNR "Luigi Luca Cavalli-Sforza", ITALY
| | - Nicoletta Pedemonte
- Istituto Giannina Gaslini Istituto Pediatrico di Ricovero e Cura a Carattere Scientifico: Istituto Giannina Gaslini, U.O.C. Genetica Medica, ITALY
| | - Jean-Denis Docquier
- University of Siena: Universita degli Studi di Siena, Dipartimento di Biotecnologie Mediche, ITALY
| | - Marco Radi
- University of Parma, Department of Food and Drug, Viale delle Scienze, 27/A, 43124, Parma, ITALY
| |
Collapse
|
36
|
Wellmerling J, Rayner RE, Chang SW, Kairis EL, Kim SH, Sharma A, Boyaka PN, Cormet-Boyaka E. Targeting the EGFR-ERK axis using the compatible solute ectoine to stabilize CFTR mutant F508del. FASEB J 2022; 36:e22270. [PMID: 35412656 PMCID: PMC9009300 DOI: 10.1096/fj.202100458rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 11/11/2022]
Abstract
Mutations in the CFTR gene lead to cystic fibrosis, a genetic disease associated with chronic infection and inflammation and ultimately respiratory failure. The most common CF-causing mutation is F508del and CFTR modulators (correctors and potentiators) are being developed to rescue its trafficking and activity defects. However, there are currently no modulators that stabilize the rescued membrane F508del-CFTR which is endocytosed and quickly degraded resulting in a shorter half-life than wild-type (WT). We previously reported that the extracellular signal-regulated kinase (ERK) MAPK pathway is involved in CFTR degradation upon cigarette smoke exposure. Interestingly, we found that ERK phosphorylation was increased in CF human bronchial epithelial (HBE) cells (CF-HBE41o- and primary CF-HBE) compared to non-CF controls, and this was likely due to signaling by the epidermal growth factor receptor (EGFR). EGFR can be activated by several ligands, and we provide evidence that amphiregulin (AREG) is important for activating this signaling axis in CF. The natural osmolyte ectoine stabilizes membrane macromolecules. We show that ectoine decreases ERK phosphorylation, increases the half-life of rescued CFTR, and increases CFTR-mediated chloride transport in combination with the CFTR corrector VX-661. Additionally, ectoine reduces production of AREG and interleukin-8 by CF primary bronchial epithelial cells. In conclusion, EGFR-ERK signaling negatively regulates CFTR and is hyperactive in CF, and targeting this axis with ectoine may prove beneficial for CF patients.
Collapse
Affiliation(s)
- Jack Wellmerling
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Rachael E Rayner
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Sheng-Wei Chang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Elizabeth L Kairis
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Sun Hee Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Amit Sharma
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Prosper N Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
37
|
Ghigo A, Murabito A, Sala V, Pisano AR, Bertolini S, Gianotti A, Caci E, Montresor A, Premchandar A, Pirozzi F, Ren K, Sala AD, Mergiotti M, Richter W, de Poel E, Matthey M, Caldrer S, Cardone RA, Civiletti F, Costamagna A, Quinney NL, Butnarasu C, Visentin S, Ruggiero MR, Baroni S, Crich SG, Ramel D, Laffargue M, Tocchetti CG, Levi R, Conti M, Lu XY, Melotti P, Sorio C, De Rose V, Facchinetti F, Fanelli V, Wenzel D, Fleischmann BK, Mall MA, Beekman J, Laudanna C, Gentzsch M, Lukacs GL, Pedemonte N, Hirsch E. A PI3Kγ mimetic peptide triggers CFTR gating, bronchodilation, and reduced inflammation in obstructive airway diseases. Sci Transl Med 2022; 14:eabl6328. [PMID: 35353541 PMCID: PMC9869178 DOI: 10.1126/scitranslmed.abl6328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cyclic adenosine 3',5'-monophosphate (cAMP)-elevating agents, such as β2-adrenergic receptor (β2-AR) agonists and phosphodiesterase (PDE) inhibitors, remain a mainstay in the treatment of obstructive respiratory diseases, conditions characterized by airway constriction, inflammation, and mucus hypersecretion. However, their clinical use is limited by unwanted side effects because of unrestricted cAMP elevation in the airways and in distant organs. Here, we identified the A-kinase anchoring protein phosphoinositide 3-kinase γ (PI3Kγ) as a critical regulator of a discrete cAMP signaling microdomain activated by β2-ARs in airway structural and inflammatory cells. Displacement of the PI3Kγ-anchored pool of protein kinase A (PKA) by an inhaled, cell-permeable, PI3Kγ mimetic peptide (PI3Kγ MP) inhibited a pool of subcortical PDE4B and PDE4D and safely increased cAMP in the lungs, leading to airway smooth muscle relaxation and reduced neutrophil infiltration in a murine model of asthma. In human bronchial epithelial cells, PI3Kγ MP induced unexpected cAMP and PKA elevations restricted to the vicinity of the cystic fibrosis transmembrane conductance regulator (CFTR), the ion channel controlling mucus hydration that is mutated in cystic fibrosis (CF). PI3Kγ MP promoted the phosphorylation of wild-type CFTR on serine-737, triggering channel gating, and rescued the function of F508del-CFTR, the most prevalent CF mutant, by enhancing the effects of existing CFTR modulators. These results unveil PI3Kγ as the regulator of a β2-AR/cAMP microdomain central to smooth muscle contraction, immune cell activation, and epithelial fluid secretion in the airways, suggesting the use of a PI3Kγ MP for compartment-restricted, therapeutic cAMP elevation in chronic obstructive respiratory diseases.
Collapse
Affiliation(s)
- Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy,Kither Biotech S.r.l.; 10126 Torino, Italy
| | - Alessandra Murabito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy
| | - Valentina Sala
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy,Kither Biotech S.r.l.; 10126 Torino, Italy
| | - Anna Rita Pisano
- Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D; 43122 Parma, Italy
| | - Serena Bertolini
- Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D; 43122 Parma, Italy
| | - Ambra Gianotti
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini; 16147 Genova, Italy
| | - Emanuela Caci
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini; 16147 Genova, Italy
| | - Alessio Montresor
- Division of General Pathology, Department of Medicine, University of Verona School of Medicine; 37134 Verona, Italy,Cystic Fibrosis Translational Research Laboratory "Daniele Lissandrini," Department of Medicine, University of Verona School of Medicine; 37134 Verona, Italy
| | | | - Flora Pirozzi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy,Department of Translational Medical Sciences, Federico II University; 80131 Naples, Italy
| | - Kai Ren
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy
| | - Angela Della Sala
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy
| | - Marco Mergiotti
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy
| | - Wito Richter
- Department of Biochemistry & Molecular Biology, University of South Alabama College of Medicine; AL 36688 Mobile, Alabama, USA
| | - Eyleen de Poel
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht; 3584 EA Utrecht, The Netherlands
| | - Michaela Matthey
- Department of Systems Physiology, Medical Faculty, Ruhr University Bochum; 44801 Bochum, Germany
| | - Sara Caldrer
- Division of General Pathology, Department of Medicine, University of Verona School of Medicine; 37134 Verona, Italy,Cystic Fibrosis Translational Research Laboratory "Daniele Lissandrini," Department of Medicine, University of Verona School of Medicine; 37134 Verona, Italy
| | - Rosa A. Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari; 70126 Bari, Italy
| | - Federica Civiletti
- Department of Anesthesia and Critical Care Medicine, University of Torino, Azienda Ospedaliera Città della Salute e della Scienza di Torino; 10126 Torino, Italy
| | - Andrea Costamagna
- Department of Anesthesia and Critical Care Medicine, University of Torino, Azienda Ospedaliera Città della Salute e della Scienza di Torino; 10126 Torino, Italy
| | - Nancy L. Quinney
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina; NC 27599 Chapel Hill, North Carolina, USA
| | - Cosmin Butnarasu
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy
| | - Maria Rosaria Ruggiero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy
| | - Simona Baroni
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy
| | - Simonetta Geninatti Crich
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy
| | - Damien Ramel
- Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University; 31432 Toulouse, France
| | - Muriel Laffargue
- Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University; 31432 Toulouse, France
| | - Carlo G. Tocchetti
- Department of Translational Medical Sciences, Federico II University; 80131 Naples, Italy,Interdepartmental Center of Clinical and Translational Research (CIRCET), Federico II University; 80131 Naples, Italy,Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University; 80131 Naples, Italy
| | - Renzo Levi
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
| | - Marco Conti
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco; CA 94143 San Francisco, California, USA
| | - Xiao-Yun Lu
- School of life Science & Technology, Xi'an Jiaotong University; 710049 Xi'an Shaanxi, P.R.China
| | - Paola Melotti
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata di Verona; 37126 Verona, Italy
| | - Claudio Sorio
- Division of General Pathology, Department of Medicine, University of Verona School of Medicine; 37134 Verona, Italy,Cystic Fibrosis Translational Research Laboratory "Daniele Lissandrini," Department of Medicine, University of Verona School of Medicine; 37134 Verona, Italy
| | - Virginia De Rose
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy
| | | | - Vito Fanelli
- Department of Anesthesia and Critical Care Medicine, University of Torino, Azienda Ospedaliera Città della Salute e della Scienza di Torino; 10126 Torino, Italy
| | - Daniela Wenzel
- Department of Systems Physiology, Medical Faculty, Ruhr University Bochum; 44801 Bochum, Germany,Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn; 53127 Bonn, Germany
| | - Bernd K. Fleischmann
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn; 53127 Bonn, Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin; 10117 Berlin, Germany,German Center for Lung Research (DZL), associated partner; 10117 Berlin, Germany
| | - Jeffrey Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht; 3584 EA Utrecht, The Netherlands
| | - Carlo Laudanna
- Division of General Pathology, Department of Medicine, University of Verona School of Medicine; 37134 Verona, Italy,Cystic Fibrosis Translational Research Laboratory "Daniele Lissandrini," Department of Medicine, University of Verona School of Medicine; 37134 Verona, Italy
| | - Martina Gentzsch
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina; NC 27599 Chapel Hill, North Carolina, USA,Department of Pediatric Pulmonology, University of North Carolina; NC 27599 Chapel Hill, North Carolina, USA
| | - Gergely L. Lukacs
- Department of Physiology, McGill University; H3G 1Y6 Montréal, Quebec, Canada
| | | | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy,Kither Biotech S.r.l.; 10126 Torino, Italy
| |
Collapse
|
38
|
The L467F-F508del Complex Allele Hampers Pharmacological Rescue of Mutant CFTR by Elexacaftor/Tezacaftor/Ivacaftor in Cystic Fibrosis Patients: The Value of the Ex Vivo Nasal Epithelial Model to Address Non-Responders to CFTR-Modulating Drugs. Int J Mol Sci 2022; 23:ijms23063175. [PMID: 35328596 PMCID: PMC8952007 DOI: 10.3390/ijms23063175] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/16/2022] Open
Abstract
Loss-of-function mutations of the CFTR gene cause cystic fibrosis (CF) through a variety of molecular mechanisms involving altered expression, trafficking, and/or activity of the CFTR chloride channel. The most frequent mutation among CF patients, F508del, causes multiple defects that can be, however, overcome by a combination of three pharmacological agents that improve CFTR channel trafficking and gating, namely, elexacaftor, tezacaftor, and ivacaftor. This study was prompted by the evidence of two CF patients, compound heterozygous for F508del and a minimal function variant, who failed to obtain any beneficial effects following treatment with the triple drug combination. Functional studies on nasal epithelia generated in vitro from these patients confirmed the lack of response to pharmacological treatment. Molecular characterization highlighted the presence of an additional amino acid substitution, L467F, in cis with the F508del variant, demonstrating that both patients were carriers of a complex allele. Functional and biochemical assays in heterologous expression systems demonstrated that the double mutant L467F-F508del has a severely reduced activity, with negligible rescue by CFTR modulators. While further studies are needed to investigate the actual prevalence of the L467F-F508del allele, our results suggest that this complex allele should be taken into consideration as plausible cause in CF patients not responding to CFTR modulators.
Collapse
|
39
|
Shaughnessy CA, Zeitlin PL, Bratcher PE. Net benefit of ivacaftor during prolonged tezacaftor/elexacaftor exposure in vitro. J Cyst Fibros 2022; 21:637-643. [DOI: 10.1016/j.jcf.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/05/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022]
|
40
|
Yeh HI, Hwang TC. In vitro assessment of triple combination therapy for the most common disease-associated mutation in cystic fibrosis. Eur Respir J 2022; 59:59/2/2102380. [PMID: 35210304 DOI: 10.1183/13993003.02380-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Han-I Yeh
- Dept of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tzyh-Chang Hwang
- Dept of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan .,Dept of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, MO, USA.,Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, USA
| |
Collapse
|
41
|
Matos AM, Jordan P, Matos P. Treatment of Polarized Cystic Fibrosis Airway Cells With HGF Prevents VX-661-Rescued F508del-CFTR Destabilization Caused by Prolonged Co-exposure to VX-770. Front Mol Biosci 2022; 8:812101. [PMID: 35004859 PMCID: PMC8727755 DOI: 10.3389/fmolb.2021.812101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF), the most common inherited disease in Caucasians, is caused by mutations in CFTR, the most frequent of which is F508del. F508del causes ER retention and degradation of the mutant CFTR protein, but also defective channel gating and decreased half-life at the plasma membrane. Despite the recent successes with small-molecule CFTR modulator drugs, the folding-corrector/gating-potentiator drug combinations approved for CF individuals carrying F508del-CFTR have sometimes produced severe side effects. Previously, we showed that a prolonged, 15-days treatment of polarized bronchial epithelial monolayers with the VX-809+VX-770 combination resulted in epithelial dedifferentiation effects that we found were caused specifically by VX-809. Moreover, prolonged VX-770 exposure also led to the destabilization of VX-809-rescued F508del-CFTR. Notably, co-treatment with the physiological factor HGF prevented VX-809-mediated epithelial differentiation and reverted the destabilizing effect of VX-770 on VX-809-rescued CFTR. Here, we show that prolonged treatment with VX-661, a second-generation corrector developed based on VX-809 structure, does not perturb epithelial integrity of polarized bronchial epithelial monolayers. Yet, its efficacy is still affected by co-exposure to VX-770, the potentiator present in all VX-661-containing combination therapies approved in the United States and Europe for treatment of F508del-CFTR carriers. Importantly, we found that co-treatment with HGF still ameliorated the impact of VX-770 in F508del-CFTR functional rescue by VX-661, without increasing cell proliferation (Ki-67) or altering the overall expression of epithelial markers (ZO-1, E-cadherin, CK8, CK18). Our findings highlight the importance of evaluating the cellular effects of prolonged exposure to CFTR modulators and suggest that the benefits of adding HGF to current combination therapies should be further investigated.
Collapse
Affiliation(s)
- Ana M Matos
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal.,BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Peter Jordan
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal.,BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Paulo Matos
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal.,BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
42
|
Ulloa-Aguirre A, Zariñán T, Gutiérrez-Sagal R, Tao YX. Targeting trafficking as a therapeutic avenue for misfolded GPCRs leading to endocrine diseases. Front Endocrinol (Lausanne) 2022; 13:934685. [PMID: 36093106 PMCID: PMC9452723 DOI: 10.3389/fendo.2022.934685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are plasma membrane proteins associated with an array of functions. Mutations in these receptors lead to a number of genetic diseases, including diseases involving the endocrine system. A particular subset of loss-of-function mutant GPCRs are misfolded receptors unable to traffic to their site of function (i.e. the cell surface plasma membrane). Endocrine disorders in humans caused by GPCR misfolding include, among others, hypo- and hyper-gonadotropic hypogonadism, morbid obesity, familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism, X-linked nephrogenic diabetes insipidus, congenital hypothyroidism, and familial glucocorticoid resistance. Several in vitro and in vivo experimental approaches have been employed to restore function of some misfolded GPCRs linked to endocrine disfunction. The most promising approach is by employing pharmacological chaperones or pharmacoperones, which assist abnormally and incompletely folded proteins to refold correctly and adopt a more stable configuration to pass the scrutiny of the cell's quality control system, thereby correcting misrouting. This review covers the most important aspects that regulate folding and traffic of newly synthesized proteins, as well as the experimental approaches targeted to overcome protein misfolding, with special focus on GPCRs involved in endocrine diseases.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación (RAI), National University of Mexico and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
- *Correspondence: Alfredo Ulloa-Aguirre,
| | - Teresa Zariñán
- Red de Apoyo a la Investigación (RAI), National University of Mexico and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación (RAI), National University of Mexico and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology & Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| |
Collapse
|
43
|
Graeber SY, Vitzthum C, Pallenberg ST, Naehrlich L, Stahl M, Rohrbach A, Drescher M, Minso R, Ringshausen FC, Rueckes-Nilges C, Klajda J, Berges J, Yu Y, Scheuermann H, Hirtz S, Sommerburg O, Dittrich AM, Tümmler B, Mall MA. Effects of Elexacaftor/Tezacaftor/Ivacaftor Therapy on CFTR Function in Patients with Cystic Fibrosis and One or Two F508del Alleles. Am J Respir Crit Care Med 2021; 205:540-549. [PMID: 34936849 DOI: 10.1164/rccm.202110-2249oc] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The CFTR modulator combination elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) was shown to improve clinical outcomes and sweat chloride concentration (SCC) in patients with cystic fibrosis (CF) and one or two F508del alleles. However, the effect of ELX/TEZ/IVA on CFTR function in the airways and intestine has not been studied. OBJECTIVES To assess the effect of ELX/TEZ/IVA on CFTR function in airway and intestinal epithelia in patients with CF and one or two F508del alleles aged 12 years and older. METHODS This prospective observational multicenter study assessed clinical outcomes including FEV1 %predicted and body mass index, and the CFTR biomarkers SCC, nasal potential difference (NPD) and intestinal current measurement (ICM) before and 8-16 weeks after initiation of ELX/TEZ/IVA. MEASUREMENTS AND MAIN RESULTS A total of 107 patients with CF including 55 patients with one F508del and a minimal function mutation and 52 F508del homozygous patients were enrolled in this study. In patients with one F508del allele, NPD and ICM showed that ELX/TEZ/IVA improved CFTR function in nasal epithelia to a level of 46.5% (IQR, 27.5-72.4; P<0.001) and in intestinal epithelia to 41.8% of normal (IQR, 25.1-57.6; P<0.001). In F508del homozygous patients, ELX/TEZ/IVA exceeded improvement of CFTR function observed with TEZ/IVA and increased CFTR-mediated Cl- secretion to a level of 47.4% of normal (IQR, 19.3-69.2; P<0.001) in nasal and to 45.9% (IQR, 19.7-66.6; P<0.001) in intestinal epithelia. CONCLUSIONS Treatment with ELX/TEZ/IVA results in effective improvement of CFTR function in airway and intestinal epithelia in patients with CF and one or two F508del alleles.
Collapse
Affiliation(s)
- Simon Y Graeber
- Charité Universitätsmedizin Berlin, 14903, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Berlin, Germany.,Berlin Institute of Health, 522475, Berlin, Germany.,German Center for Lung Research, 542891, associated partner, Berlin, Germany
| | - Constanze Vitzthum
- Charité Universitätsmedizin Berlin, 14903, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Berlin, Germany.,German Center for Lung Research, 542891, associated partner, Berlin, Germany
| | - Sophia T Pallenberg
- Hannover Medical School, 9177, Department of Pediatric Pneumology, Allergology and Neonatology, Hannover, Germany.,German Center for Lung Research, 542891, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Lutz Naehrlich
- Justus-Liebig-University Giessen, Department of Pediatrics, Giessen, Germany.,German Center for Lung Research, 542891, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Mirjam Stahl
- Charité Universitätsmedizin Berlin, 14903, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Berlin, Germany.,Berlin Institute of Health, 522475, Berlin, Germany.,German Center for Lung Research, 542891, associated partner, Berlin, Germany
| | - Alexander Rohrbach
- Charité Universitätsmedizin Berlin, 14903, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Berlin, Germany
| | - Marika Drescher
- Charité Universitätsmedizin Berlin, 14903, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Berlin, Germany.,German Center for Lung Research, 542891, associated partner, Berlin, Germany
| | - Rebecca Minso
- Hannover Medical School, 9177, Department of Pediatric Pneumology, Allergology and Neonatology, Hannover, Germany
| | - Felix C Ringshausen
- Hannover Medical School, 9177, Department of Respiratory Medicine, Hannover, Germany.,German Center for Lung Research, 542891, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | | | - Jan Klajda
- Justus-Liebig-University Giessen, Department of Pediatrics, Giessen, Germany
| | - Julian Berges
- University of Heidelberg, 9144, Department of Pediatrics, Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Heidelberg, Germany.,University of Heidelberg, 9144, Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Yin Yu
- University of Heidelberg, 9144, Department of Pediatrics, Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Heidelberg, Germany.,University of Heidelberg, 9144, German Centre for Lung Research (DZL), Translational Lung Research Center Heidelberg (TLRC), Department of Translational Pulmonology, Heidelberg, Germany
| | - Heike Scheuermann
- University of Heidelberg, 9144, Department of Pediatrics, Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Heidelberg, Germany.,University of Heidelberg, 9144, Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Stephanie Hirtz
- University of Heidelberg, 9144, Department of Pediatrics, Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Heidelberg, Germany.,University of Heidelberg, 9144, Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Olaf Sommerburg
- University of Heidelberg, 9144, Department of Pediatrics, Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Heidelberg, Germany.,University of Heidelberg, 9144, Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Anna-Maria Dittrich
- Hannover Medical School, 9177, Department of Pediatric Pneumology, Allergology and Neonatology, Hannover, Germany.,German Center for Lung Research, 542891, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Burkhard Tümmler
- Hannover Medical School, 9177, Department of Pediatric Pneumology, Allergology and Neonatology, Hannover, Germany.,German Center for Lung Research, 542891, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Marcus A Mall
- Charité Universitätsmedizin Berlin, 14903, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Berlin, Germany.,Berlin Institute of Health, 522475, Berlin, Germany.,German Center for Lung Research, 542891, associated partner, Berlin, Germany;
| |
Collapse
|
44
|
Network pharmacology: curing causal mechanisms instead of treating symptoms. Trends Pharmacol Sci 2021; 43:136-150. [PMID: 34895945 DOI: 10.1016/j.tips.2021.11.004] [Citation(s) in RCA: 401] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/05/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022]
Abstract
For complex diseases, most drugs are highly ineffective, and the success rate of drug discovery is in constant decline. While low quality, reproducibility issues, and translational irrelevance of most basic and preclinical research have contributed to this, the current organ-centricity of medicine and the 'one disease-one target-one drug' dogma obstruct innovation in the most profound manner. Systems and network medicine and their therapeutic arm, network pharmacology, revolutionize how we define, diagnose, treat, and, ideally, cure diseases. Descriptive disease phenotypes are replaced by endotypes defined by causal, multitarget signaling modules that also explain respective comorbidities. Precise and effective therapeutic intervention is achieved by synergistic multicompound network pharmacology and drug repurposing, obviating the need for drug discovery and speeding up clinical translation.
Collapse
|
45
|
Ribeiro CMP, Gentzsch M. Impact of Airway Inflammation on the Efficacy of CFTR Modulators. Cells 2021; 10:3260. [PMID: 34831482 PMCID: PMC8619863 DOI: 10.3390/cells10113260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 01/02/2023] Open
Abstract
Defective CFTR biogenesis and activity in cystic fibrosis airways leads to airway dehydration and impaired mucociliary clearance, resulting in chronic airway infection and inflammation. Most cystic fibrosis patients have at least one copy of the F508del CFTR mutation, which results in a protein retained in the endoplasmic reticulum and degraded by the proteosomal pathway. CFTR modulators, e.g., correctors, promote the transfer of F508del to the apical membrane, while potentiators increase CFTR activity. Corrector and potentiator double therapies modestly improve lung function, whereas triple therapies with two correctors and one potentiator indicate improved outcomes. Enhanced F508del rescue by CFTR modulators is achieved by exposing F508del/F508del primary cultures of human bronchial epithelia to relevant inflammatory stimuli, i.e., supernatant from mucopurulent material or bronchoalveolar lavage fluid from human cystic fibrosis airways. Inflammation enhances the biochemical and functional rescue of F508del by double or triple CFTR modulator therapy and overcomes abrogation of CFTR correction by chronic VX-770 treatment in vitro. Furthermore, the impact of inflammation on clinical outcomes linked to CFTR rescue has been recently suggested. This review discusses these data and possible mechanisms for airway inflammation-enhanced F508del rescue. Expanding the understanding of how airway inflammation improves CFTR rescue may benefit cystic fibrosis patients.
Collapse
Affiliation(s)
- Carla M. P. Ribeiro
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Division of Pulmonary Diseases, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Martina Gentzsch
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Division of Pediatric Pulmonology, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
46
|
Measurements of spontaneous CFTR-mediated ion transport without acute channel activation in airway epithelial cultures after modulator exposure. Sci Rep 2021; 11:22616. [PMID: 34799640 PMCID: PMC8605007 DOI: 10.1038/s41598-021-02044-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Quantitation of CFTR function in vitro is commonly performed by acutely stimulating then inhibiting ion transport through CFTR and measuring the resulting changes in transepithelial voltage (Vte) and current (ISC). While this technique is suitable for measuring the maximum functional capacity of CFTR, it may not provide an accurate estimate of in vivo CFTR activity. To test if CFTR-mediated ion transport could be measured in the absence of acute CFTR stimulation, primary airway epithelia were analyzed in an Ussing chamber with treatment of amiloride followed by CFTR(inh)-172 without acute activation of CFTR. Non-CF epithelia demonstrated a decrease in Vte and ISC following exposure to CFTR(inh)-172 and in the absence of forskolin/IBMX (F/I); this decrease is interpreted as a measure of spontaneous CFTR activity present in these epithelia. In F508del/F508del CFTR epithelia, F/I-induced changes in Vte and ISC were ~ fourfold increased after treatment with VX-809/VX-770, while the magnitude of spontaneous CFTR activities were only ~ 1.6-fold increased after VX-809/VX-770 treatment. Method-dependent discrepancies in the responses of other CF epithelia to modulator treatments were observed. These results serve as a proof of concept for the analysis of CFTR modulator responses in vitro in the absence of acute CFTR activation. Future studies will determine the usefulness of this approach in the development of novel CFTR modulator therapies.
Collapse
|
47
|
Laselva O, Guerra L, Castellani S, Favia M, Di Gioia S, Conese M. Small-molecule drugs for cystic fibrosis: Where are we now? Pulm Pharmacol Ther 2021; 72:102098. [PMID: 34793977 DOI: 10.1016/j.pupt.2021.102098] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/24/2021] [Accepted: 11/12/2021] [Indexed: 01/05/2023]
Abstract
The cystic fibrosis (CF) lung disease is due to the lack/dysfunction of the CF Transmembrane Conductance Regulator (CFTR), a chloride channel expressed by epithelial cells as the main regulator of ion and fluid homeostasis. More than 2000 genetic variation in the CFTR gene are known, among which those with identified pathomechanism have been divided into six VI mutation classes. A major advancement in the pharmacotherapy of CF has been the development of small-molecule drugs hitting the root of the disease, i.e. the altered ion and fluid transport through the airway epithelium. These drugs, called CFTR modulators, have been advanced to the clinics to treat nearly 90% of CF patients, including the CFTR potentiator ivacaftor, approved for residual function mutations (Classes III and IV), and combinations of correctors (lumacaftor, tezacaftor, elexacaftor) and ivacaftor for patients bearing at least one the F508del mutation, the most frequent mutation belonging to class II. To cover the 10% of CF patients without etiological therapies, other novel small-molecule CFTR modulators are in evaluation of their effectiveness in all the CFTR mutation classes: read-through agents for Class I, correctors, potentiators and amplifiers from different companies for Class II-V, stabilizers for Class VI. In alternative, other solute carriers, such as SLC26A9 and SLC6A14, are the focus of intensive investigation. Finally, other molecular targets are being evaluated for patients with no approved CFTR modulator therapy or as means of enhancing CFTR modulatory therapy, including small molecules forming ion channels, inhibitors of the ENaC sodium channel and potentiators of the calcium-activated chloride channel TMEM16A. This paper aims to give an up-to-date overview of old and novel CFTR modulators as well as of novel strategies based on small-molecule drugs. Further investigations in in-vivo and cell-based models as well as carrying out large prospective studies will be required to determine if novel CFTR modulators, stabilizers, amplifiers, and the ENaC inhibitors or TMEM16A potentiators will further improve the clinical outcomes in CF management.
Collapse
Affiliation(s)
- Onofrio Laselva
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Stefano Castellani
- Department of Medical Sciences and Human Oncology, University of Bari, Bari, Italy
| | - Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
48
|
Liu J, Berg AP, Wang Y, Jantarajit W, Sutcliffe KJ, Stevens EB, Cao L, Pregel MJ, Sheppard DN. A small molecule CFTR potentiator restores ATP-dependent channel gating to the cystic fibrosis mutant G551D-CFTR. Br J Pharmacol 2021; 179:1319-1337. [PMID: 34644413 PMCID: PMC9304199 DOI: 10.1111/bph.15709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Cystic fibrosis transmembrane conductance regulator (CFTR) potentiators are small molecules developed to treat the genetic disease cystic fibrosis (CF). They interact directly with CFTR Cl- channels at the plasma membrane to enhance channel gating. Here, we investigate the action of a new CFTR potentiator, CP-628006 with a distinct chemical structure. EXPERIMENTAL APPROACH Using electrophysiological assays with CFTR-expressing heterologous cells and CF patient-derived human bronchial epithelial (hBE) cells, we compared the effects of CP-628006 with the marketed CFTR potentiator ivacaftor. KEY RESULTS CP-628006 efficaciously potentiated CFTR function in epithelia from cultured hBE cells. Its effects on the predominant CFTR variant F508del-CFTR were larger than those with the gating variant G551D-CFTR. In excised inside-out membrane patches, CP-628006 potentiated wild-type, F508del- and G551D-CFTR by increasing the frequency and duration of channel openings. CP-628006 increased the affinity and efficacy of F508del-CFTR gating by ATP. In these respects, CP-628006 behaved like ivacaftor. CP-628006 also demonstrated notable differences with ivacaftor. Its potency and efficacy were lower than those of ivacaftor. CP-628006 conferred ATP-dependent gating on G551D-CFTR, whereas the action of ivacaftor was ATP-independent. For G551D-CFTR, but not F508del-CFTR, the action of CP-628006 plus ivacaftor was greater than ivacaftor alone. CP-628006 delayed, but did not prevent, the deactivation of F508del-CFTR at the plasma membrane, whereas ivacaftor accentuated F508del-CFTR deactivation. CONCLUSIONS AND IMPLICATIONS CP-628006 has distinct effects compared to ivacaftor, suggesting a different mechanism of CFTR potentiation. The emergence of CFTR potentiators with diverse modes of action makes therapy with combinations of potentiators a possibility.
Collapse
Affiliation(s)
- Jia Liu
- Neuroscience and Pain Research Unit, Pfizer Inc., Granta Park, Great Abington, Cambridge, UK.,School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK
| | - Allison P Berg
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Yiting Wang
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK
| | - Walailak Jantarajit
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK.,Center of Calcium and Bone Research and Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Katy J Sutcliffe
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK
| | - Edward B Stevens
- Neuroscience and Pain Research Unit, Pfizer Inc., Granta Park, Great Abington, Cambridge, UK
| | - Lishuang Cao
- Neuroscience and Pain Research Unit, Pfizer Inc., Granta Park, Great Abington, Cambridge, UK
| | - Marko J Pregel
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK
| |
Collapse
|
49
|
Luan X, Le Y, Jagadeeshan S, Murray B, Carmalt JL, Duke T, Beazley S, Fujiyama M, Swekla K, Gray B, Burmester M, Campanucci VA, Shipley A, Machen TE, Tam JS, Ianowski JP. cAMP triggers Na + absorption by distal airway surface epithelium in cystic fibrosis swine. Cell Rep 2021; 37:109795. [PMID: 34610318 DOI: 10.1016/j.celrep.2021.109795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/05/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022] Open
Abstract
A controversial hypothesis pertaining to cystic fibrosis (CF) lung disease is that the CF transmembrane conductance regulator (CFTR) channel fails to inhibit the epithelial Na+ channel (ENaC), yielding increased Na+ reabsorption and airway dehydration. We use a non-invasive self-referencing Na+-selective microelectrode technique to measure Na+ transport across individual folds of distal airway surface epithelium preparations from CFTR-/- (CF) and wild-type (WT) swine. We show that, under unstimulated control conditions, WT and CF epithelia exhibit similar, low rates of Na+ transport that are unaffected by the ENaC blocker amiloride. However, in the presence of the cyclic AMP (cAMP)-elevating agents forskolin+IBMX (isobutylmethylxanthine), folds of WT tissues secrete large amounts of Na+, while CFTR-/- tissues absorb small, but potentially important, amounts of Na+. In cAMP-stimulated conditions, amiloride inhibits Na+ absorption in CFTR-/- tissues but does not affect secretion in WT tissues. Our results are consistent with the hypothesis that ENaC-mediated Na+ absorption may contribute to dehydration of CF distal airways.
Collapse
Affiliation(s)
- Xiaojie Luan
- Department of Anatomy Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yen Le
- Department of Anatomy Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Santosh Jagadeeshan
- Department of Anatomy Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brendan Murray
- Department of Anatomy Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - James L Carmalt
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tanya Duke
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shannon Beazley
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Masako Fujiyama
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kurtis Swekla
- Animal Care and Research Support, Research Excellence and Innovation, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bridget Gray
- Animal Care and Research Support, Research Excellence and Innovation, University of Saskatchewan, Saskatoon, SK, Canada
| | - Monique Burmester
- Animal Care Unit, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Veronica A Campanucci
- Department of Anatomy Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada; Respiratory Research Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Terry E Machen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Julian S Tam
- Department of Medicine, Division of Respirology, Critical Care, and Sleep Medicine, Royal University Hospital, University of Saskatchewan, Saskatoon, SK, Canada; Respiratory Research Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Juan P Ianowski
- Department of Anatomy Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada; Respiratory Research Centre, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
50
|
Meoli A, Fainardi V, Deolmi M, Chiopris G, Marinelli F, Caminiti C, Esposito S, Pisi G. State of the Art on Approved Cystic Fibrosis Transmembrane Conductance Regulator ( CFTR) Modulators and Triple-Combination Therapy. Pharmaceuticals (Basel) 2021; 14:ph14090928. [PMID: 34577628 PMCID: PMC8471029 DOI: 10.3390/ph14090928] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/23/2022] Open
Abstract
Cystic fibrosis (CF) is the most common life-limiting inherited disease in Caucasian populations, affecting approximately 80,000 people worldwide. CF is a complex multi-organ monogenic autosomal recessive disorder caused by a mutation in cystic fibrosis transmembrane conductance regulator (CFTR) gene. Since the discovery of the CFTR gene in 1989, more than 2000 mutations have been identified so far and about 240 can cause CF. Until recently, the treatment for CF was aimed to prevent and manage the manifestations of CFTR dysfunction, primarily recurrent pulmonary infections and pancreatic exocrine failure. Over the past few decades, the therapeutic approach to CF has been revolutionized by the development of a new class of small molecules called CFTR modulators that target specific defects caused by mutations in the CFTR gene. CFTR modulators have been shown to change profoundly the clinical course of the CF, leading to meaningful improvements in the lives of a large proportion of people of CF heterozygous for F508del, especially if started in young children. Further studies are needed to extend the use of triple CFTR modulation therapy also for young children in order to prevent the irreversible effects of the disease and for patients with very rare mutations with a personalized approach to treatment.
Collapse
Affiliation(s)
- Aniello Meoli
- Paediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy; (A.M.); (V.F.); (M.D.); (G.C.); (F.M.); (G.P.)
| | - Valentina Fainardi
- Paediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy; (A.M.); (V.F.); (M.D.); (G.C.); (F.M.); (G.P.)
| | - Michela Deolmi
- Paediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy; (A.M.); (V.F.); (M.D.); (G.C.); (F.M.); (G.P.)
| | - Giulia Chiopris
- Paediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy; (A.M.); (V.F.); (M.D.); (G.C.); (F.M.); (G.P.)
| | - Francesca Marinelli
- Paediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy; (A.M.); (V.F.); (M.D.); (G.C.); (F.M.); (G.P.)
| | - Caterina Caminiti
- Research and Innovation Unit, University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy;
| | - Susanna Esposito
- Paediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy; (A.M.); (V.F.); (M.D.); (G.C.); (F.M.); (G.P.)
- Correspondence:
| | - Giovanna Pisi
- Paediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy; (A.M.); (V.F.); (M.D.); (G.C.); (F.M.); (G.P.)
| |
Collapse
|