1
|
Ramandi A, Diehl AM, Sanyal AJ, de Jong YP. Experimental Models to Investigate PNPLA3 in Liver Steatosis. Liver Int 2025; 45:e70091. [PMID: 40231787 DOI: 10.1111/liv.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/26/2025] [Accepted: 03/30/2025] [Indexed: 04/16/2025]
Abstract
Patatin-like phospholipase domain-containing 3 (PNPLA3) was the first gene identified through genome-wide association studies to be linked to hepatic fat accumulation. A missense variant, encoding the PNPLA3-148M allele, has since been shown to increase the risk for the full spectrum of steatotic liver disease (SLD), from simple steatosis to steatohepatitis, cirrhosis, and hepatocellular carcinoma. Despite extensive validation of this association and ongoing research into its pathogenic role, the precise mechanisms by which PNPLA3-148M contributes to the progression of SLD remain poorly understood. In this review, we evaluate preclinical in vitro and in vivo models used to investigate PNPLA3 and its involvement in SLD, with particular emphasis on metabolic dysfunction-associated steatotic liver disease. We assess the strengths and limitations of these models, as well as the challenges arising from species differences in PNPLA3 expression and function between human and murine systems.
Collapse
Affiliation(s)
- Alireza Ramandi
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, New York, USA
| | - Anna-Mae Diehl
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ype P de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
2
|
Radić L, Offersgaard A, Kadavá T, Zon I, Capella-Pujol J, Mulder F, Koekkoek S, Spek V, Chumbe A, Bukh J, van Gils MJ, Sanders RW, Yin VC, Heck AJR, Gottwein JM, Sliepen K, Schinkel J. Bispecific antibodies against the hepatitis C virus E1E2 envelope glycoprotein. Proc Natl Acad Sci U S A 2025; 122:e2420402122. [PMID: 40193609 DOI: 10.1073/pnas.2420402122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/19/2025] [Indexed: 04/09/2025] Open
Abstract
Hepatitis C virus (HCV) currently causes about one million infections and 240,000 deaths worldwide each year. To reach the goal set by the World Health Organization of global HCV elimination by 2030, it is critical to develop a prophylactic vaccine. Broadly neutralizing antibodies (bNAbs) target the E1E2 envelope glycoproteins on the viral surface, can neutralize a broad range of the highly diverse circulating HCV strains, and are essential tools to inform vaccine design. However, bNAbs targeting a single E1E2 epitope might be limited in neutralization breadth, which can be enhanced by using combinations of bNAbs that target different envelope epitopes. We have generated 60 immunoglobulin G (IgG)-like bispecific antibodies (bsAbs) that can simultaneously target two distinct epitopes on E1E2. We combine non- or partially overlapping E1E2 specificities into three types of bsAbs, each containing a different hinge length. The majority of bsAbs shows retained or increased potency and breadth against a diverse panel of HCV pseudoparticles and HCV produced in cell culture compared to monospecific and cocktail controls. Additionally, we demonstrate that changes in the hinge length of bsAbs can alter the binding stoichiometry to E1E2. These results provide insights into the binding modes and the role of avidity in bivalent targeting of diverse E1E2 epitopes.This study illustrates how potential cooperative effects of HCV bNAbs can be utilized by strategically designing bispecific constructs. These HCV bsAbs can guide vaccine development and unlock novel therapeutic and prophylactic strategies against HCV and other (flavi)viruses.
Collapse
Affiliation(s)
- Laura Radić
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam 1105 AZ, the Netherlands
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program, Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Hvidovre 2650, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Tereza Kadavá
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht 3584 CH, the Netherlands
| | - Ian Zon
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam 1105 AZ, the Netherlands
| | - Joan Capella-Pujol
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam 1105 AZ, the Netherlands
| | - Fabian Mulder
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam 1105 AZ, the Netherlands
| | - Sylvie Koekkoek
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam 1105 AZ, the Netherlands
| | - Vera Spek
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam 1105 AZ, the Netherlands
| | - Ana Chumbe
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam 1105 AZ, the Netherlands
| | - Jens Bukh
- Copenhagen Hepatitis C Program, Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Hvidovre 2650, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam 1105 AZ, the Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam 1105 AZ, the Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065
| | - Victor C Yin
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht 3584 CH, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht 3584 CH, the Netherlands
| | - Judith M Gottwein
- Copenhagen Hepatitis C Program, Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Hvidovre 2650, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Kwinten Sliepen
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam 1105 AZ, the Netherlands
| | - Janke Schinkel
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam 1105 AZ, the Netherlands
| |
Collapse
|
3
|
Ali AA, Tabll AA. Unlocking potential: Virus-like particles as a promising strategy for effective HCV vaccine development. Virology 2025; 602:110307. [PMID: 39580887 DOI: 10.1016/j.virol.2024.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. The development of prophylactic vaccine is essential for HCV global eradication. Despite over three decades of research, no effective vaccine for HCV has been developed, primarily due to the virus's genetic diversity, immune evasion mechanisms, and incomplete understanding of protective immunity. However, Virus-Like Particles (VLPs) offer a promising approach to overcoming these challenges. VLPs mimic the structure of native virus but without the infectious genome, making them safe and non-infectious vaccines candidates. The capability of VLPs to incorporate neutralizing and conformational epitopes, and engage humoral and cellular immune responses, positions them as a promising tool for overcoming challenges associated with the HCV vaccine development. This review examines the challenges and immunological considerations for HCV vaccine development and provides an overview of the VLPs-based vaccines development. It also discusses future directions and public health implications of HCV vaccine development.
Collapse
Affiliation(s)
- Ahmed A Ali
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, (NRC), 12622, Cairo, Egypt.
| | - Ashraf A Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, 12622, Cairo, Egypt; Egyptian Centre for Research and Regenerative Medicine (ECRRM), 11517, Cairo, Egypt.
| |
Collapse
|
4
|
Liu Y, Maya S, Carver S, O’Connell AK, Tseng AE, Gertje HP, Seneca K, Nahass RG, Crossland NA, Ploss A. Development of a dual channel detection system for pan-genotypic simultaneous quantification of hepatitis B and delta viruses. Emerg Microbes Infect 2024; 13:2350167. [PMID: 38687692 PMCID: PMC11095294 DOI: 10.1080/22221751.2024.2350167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Hepatitis B virus (HBV) infection remains a major public health problem and, in associated co-infection with hepatitis delta virus (HDV), causes the most severe viral hepatitis and accelerated liver disease progression. As a defective satellite RNA virus, HDV can only propagate in the presence of HBV infection, which makes HBV DNA and HDV RNA the standard biomarkers for monitoring the virological response upon antiviral therapy, in co-infected patients. Although assays have been described to quantify these viral nucleic acids in circulation independently, a method for monitoring both viruses simultaneously is not available, thus hampering characterization of their complex dynamic interactions. Here, we describe the development of a dual fluorescence channel detection system for pan-genotypic, simultaneous quantification of HBV DNA and HDV RNA through a one-step quantitative PCR. The sensitivity for both HBV and HDV is about 10 copies per microliter without significant interference between these two detection targets. This assay provides reliable detection for HBV and HDV basic research in vitro and in human liver chimeric mice. Preclinical validation of this system on serum samples from patients on or off antiviral therapy also illustrates a promising application that is rapid and cost-effective in monitoring HBV and HDV viral loads simultaneously.
Collapse
Affiliation(s)
- Yongzhen Liu
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Stephanie Maya
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Sebastian Carver
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Aoife K. O’Connell
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Anna E. Tseng
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Hans P. Gertje
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | | | | | - Nicholas A. Crossland
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Virology, Immunology, & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
5
|
de Jong YP. Mice Engrafted with Human Liver Cells. Semin Liver Dis 2024; 44:405-415. [PMID: 39265638 PMCID: PMC11620938 DOI: 10.1055/s-0044-1790601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Rodents are commonly employed to model human liver conditions, although species differences can restrict their translational relevance. To overcome some of these limitations, researchers have long pursued human hepatocyte transplantation into rodents. More than 20 years ago, the first primary human hepatocyte transplantations into immunodeficient mice with liver injury were able to support hepatitis B and C virus infections, as these viruses cannot replicate in murine hepatocytes. Since then, hepatocyte chimeric mouse models have transitioned into mainstream preclinical research and are now employed in a diverse array of liver conditions beyond viral hepatitis, including malaria, drug metabolism, liver-targeting gene therapy, metabolic dysfunction-associated steatotic liver disease, lipoprotein and bile acid biology, and others. Concurrently, endeavors to cotransplant other cell types and humanize immune and other nonparenchymal compartments have seen growing success. Looking ahead, several challenges remain. These include enhancing immune functionality in mice doubly humanized with hepatocytes and immune systems, efficiently creating mice with genetically altered grafts and reliably humanizing chimeric mice with renewable cell sources such as patient-specific induced pluripotent stem cells. In conclusion, hepatocyte chimeric mice have evolved into vital preclinical models that address many limitations of traditional rodent models. Continued improvements may further expand their applications.
Collapse
Affiliation(s)
- Ype P de Jong
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, New York
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York
| |
Collapse
|
6
|
D'Aniello A, Del Bene A, Mottola S, Mazzarella V, Cutolo R, Campagna E, Di Maro S, Messere A. The bright side of chemistry: Exploring synthetic peptide-based anticancer vaccines. J Pept Sci 2024; 30:e3596. [PMID: 38571326 DOI: 10.1002/psc.3596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
The present review focuses on synthetic peptide-based vaccine strategies in the context of anticancer intervention, paying attention to critical aspects such as peptide epitope selection, adjuvant integration, and nuanced classification of synthetic peptide cancer vaccines. Within this discussion, we delve into the diverse array of synthetic peptide-based anticancer vaccines, each derived from tumor-associated antigens (TAAs), including melanoma antigen recognized by T cells 1 (Melan-A or MART-1), mucin 1 (MUC1), human epidermal growth factor receptor 2 (HER-2), tumor protein 53 (p53), human telomerase reverse transcriptase (hTERT), survivin, folate receptor (FR), cancer-testis antigen 1 (NY-ESO-1), and prostate-specific antigen (PSA). We also describe the synthetic peptide-based vaccines developed for cancers triggered by oncovirus, such as human papillomavirus (HPV), and hepatitis C virus (HCV). Additionally, the potential synergy of peptide-based vaccines with common therapeutics in cancer was considered. The last part of our discussion deals with the realm of the peptide-based vaccines delivery, highlighting its role in translating the most promising candidates into effective clinical strategies. Although this discussion does not cover all the ongoing peptide vaccine investigations, it aims at offering valuable insights into the chemical modifications and the structural complexities of anticancer peptide-based vaccines.
Collapse
Affiliation(s)
- Antonia D'Aniello
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Alessandra Del Bene
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Salvatore Mottola
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Vincenzo Mazzarella
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Roberto Cutolo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Erica Campagna
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Naples, Italy
| | - Anna Messere
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Naples, Italy
| |
Collapse
|
7
|
Plaza-Soriano Á, Martínez-Lobo FJ, Garza-Moreno L, Castillo-Pérez J, Caballero E, Castro JM, Simarro I, Prieto C. Determination of the frequency of individuals with broadly cross-reactive neutralizing antibodies against PRRSV in the sow population under field conditions. Porcine Health Manag 2024; 10:26. [PMID: 38978128 PMCID: PMC11229297 DOI: 10.1186/s40813-024-00372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/20/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) is a significant swine pathogen, yet the immune response components contributing to protection remain incompletely understood. Broadly reactive neutralizing antibodies (bNAs) may play a crucial role in preventing reinfections by heterologous viruses, although their occurrence is considered low under both field and experimental conditions. This study aimed to assess the frequency of sows exhibiting bNAs against PRRSV under field conditions and to analyze the epidemiological factors influencing the occurrence of these elite neutralizers. Blood samples were collected from breeding sows across eleven unrelated pig farms, with samples categorized by parity. Serum obtained was utilized in virus neutralization assays (VNs) against six PRRSV field isolates and two MLV strains. RESULTS Approximately 7% of the sows exhibited neutralization activity against all viruses in the panel, with a geometric mean of the titer (GMT) of NAs at or exceeding 4 log2. Exclusion of the PRRSV-2 isolate from the panel increased the proportion of elite neutralizers to around 15%. Farm-specific analysis revealed significant variations in both GMT of NAs and proportion of elite neutralizers. PRRSV unstable farms and those with a PRRS outbreak in the last 12 months displayed higher GMT of NAs compared to stable farms without recent outbreaks. The GMT of NAs showed a gradual, albeit moderate, increase with the parity of the sows. Parity's impact on bNA response was consistently observed in stable farms but not necessarily in unstable farms or those with recent outbreaks. Finally, the results indicated that vaccinated animals had higher NA titers against the vaccine virus used in the farm than against field viruses. CONCLUSION bNAs against heterologous isolates induced by PRRSV infection under field conditions are generally low, often falling below titers necessary for protection against reproductive failure. However, a subset of sows (approximately 15%) can be considered elite neutralizers, efficiently recognizing various PRRSV strains. Repeated exposures to PRRSV play a crucial role in eliciting these bNAs, with a higher frequency observed in unstable farms and those with recent outbreaks. In stable farms, parity only marginally influences bNA titers, highlighting its limited role compared to the impact of PRRSV exposure history.
Collapse
Affiliation(s)
- Ángeles Plaza-Soriano
- SALUVET group, Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Javier Martínez-Lobo
- Animal Science Department, School of Agrifood and Forestry Engineering and Veterinary Medicine, University of Lleida, Lleida, Spain.
| | - Laura Garza-Moreno
- SALUVET group, Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Jaime Castillo-Pérez
- SALUVET group, Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Elki Caballero
- SALUVET group, Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - José María Castro
- SALUVET group, Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Isabel Simarro
- SALUVET group, Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Cinta Prieto
- SALUVET group, Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
8
|
De Meyer A, Meuleman P. Preclinical animal models to evaluate therapeutic antiviral antibodies. Antiviral Res 2024; 225:105843. [PMID: 38548022 DOI: 10.1016/j.antiviral.2024.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2024]
Abstract
Despite the availability of effective preventative vaccines and potent small-molecule antiviral drugs, effective non-toxic prophylactic and therapeutic measures are still lacking for many viruses. The use of monoclonal and polyclonal antibodies in an antiviral context could fill this gap and provide effective virus-specific medical interventions. In order to develop these therapeutic antibodies, preclinical animal models are of utmost importance. Due to the variability in viral pathogenesis, immunity and overall characteristics, the most representative animal model for human viral infection differs between virus species. Therefore, throughout the years researchers sought to find the ideal preclinical animal model for each virus. The most used animal models in preclinical research include rodents (mice, ferrets, …) and non-human primates (macaques, chimpanzee, ….). Currently, antibodies are tested for antiviral efficacy against a variety of viruses including different hepatitis viruses, human immunodeficiency virus (HIV), influenza viruses, respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and rabies virus. This review provides an overview of the current knowledge about the preclinical animal models that are used for the evaluation of therapeutic antibodies for the abovementioned viruses.
Collapse
Affiliation(s)
- Amse De Meyer
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
9
|
Ogega CO, Skinner NE, Schoenle MV, Wilcox XE, Frumento N, Wright DA, Paul HT, Sinnis-Bourozikas A, Clark KE, Figueroa A, Bjorkman PJ, Ray SC, Flyak AI, Bailey JR. Convergent evolution and targeting of diverse E2 epitopes by human broadly neutralizing antibodies are associated with HCV clearance. Immunity 2024; 57:890-903.e6. [PMID: 38518779 PMCID: PMC11247618 DOI: 10.1016/j.immuni.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/21/2023] [Accepted: 03/01/2024] [Indexed: 03/24/2024]
Abstract
The early appearance of broadly neutralizing antibodies (bNAbs) in serum is associated with spontaneous hepatitis C virus (HCV) clearance, but to date, the majority of bNAbs have been isolated from chronically infected donors. Most of these bNAbs use the VH1-69 gene segment and target the envelope glycoprotein E2 front layer. Here, we performed longitudinal B cell receptor (BCR) repertoire analysis on an elite neutralizer who spontaneously cleared multiple HCV infections. We isolated 10,680 E2-reactive B cells, performed BCR sequencing, characterized monoclonal B cell cultures, and isolated bNAbs. In contrast to what has been seen in chronically infected donors, the bNAbs used a variety of VH genes and targeted at least three distinct E2 antigenic sites, including sites previously thought to be non-neutralizing. Diverse front-layer-reactive bNAb lineages evolved convergently, acquiring breadth-enhancing somatic mutations. These findings demonstrate that HCV clearance-associated bNAbs are genetically diverse and bind distinct antigenic sites that should be the target of vaccine-induced bNAbs.
Collapse
Affiliation(s)
- Clinton O Ogega
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicole E Skinner
- Division of Infectious Diseases, Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Center for Vaccines and Immunity, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Marta V Schoenle
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Xander E Wilcox
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Nicole Frumento
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Desiree A Wright
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harry T Paul
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ariadne Sinnis-Bourozikas
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kaitlyn E Clark
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexis Figueroa
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Stuart C Ray
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew I Flyak
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA.
| | - Justin R Bailey
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Capella-Pujol J, de Gast M, Radić L, Zon I, Chumbe A, Koekkoek S, Olijhoek W, Schinkel J, van Gils MJ, Sanders RW, Sliepen K. Signatures of V H1-69-derived hepatitis C virus neutralizing antibody precursors defined by binding to envelope glycoproteins. Nat Commun 2023; 14:4036. [PMID: 37419906 PMCID: PMC10328973 DOI: 10.1038/s41467-023-39690-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/23/2023] [Indexed: 07/09/2023] Open
Abstract
An effective preventive vaccine for hepatitis C virus (HCV) remains a major unmet need. Antigenic region 3 (AR3) on the E1E2 envelope glycoprotein complex overlaps with the CD81 receptor binding site and represents an important epitope for broadly neutralizing antibodies (bNAbs) and is therefore important for HCV vaccine design. Most AR3 bNAbs utilize the VH1-69 gene and share structural features that define the AR3C-class of HCV bNAbs. In this work, we identify recombinant HCV glycoproteins based on a permuted E2E1 trimer design that bind to the inferred VH1-69 germline precursors of AR3C-class bNAbs. When presented on nanoparticles, these recombinant E2E1 glycoproteins efficiently activate B cells expressing inferred germline AR3C-class bNAb precursors as B cell receptors. Furthermore, we identify critical signatures in three AR3C-class bNAbs that represent two subclasses of AR3C-class bNAbs that will allow refined protein design. These results provide a framework for germline-targeting vaccine design strategies against HCV.
Collapse
Affiliation(s)
- Joan Capella-Pujol
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Marlon de Gast
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Laura Radić
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Ian Zon
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Ana Chumbe
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Sylvie Koekkoek
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Wouter Olijhoek
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Janke Schinkel
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, 10065, USA.
| | - Kwinten Sliepen
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands.
| |
Collapse
|
11
|
Yu Y, Schneider WM, Kass MA, Michailidis E, Acevedo A, Pamplona Mosimann AL, Bordignon J, Koenig A, Livingston CM, van Gijzel H, Ni Y, Ambrose PM, Freije CA, Zhang M, Zou C, Kabbani M, Quirk C, Jahan C, Wu X, Urban S, You S, Shlomai A, de Jong YP, Rice CM. An RNA-based system to study hepatitis B virus replication and evaluate antivirals. SCIENCE ADVANCES 2023; 9:eadg6265. [PMID: 37043562 PMCID: PMC10096565 DOI: 10.1126/sciadv.adg6265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Hepatitis B virus (HBV) chronically infects an estimated 300 million people, and standard treatments are rarely curative. Infection increases the risk of liver cirrhosis and hepatocellular carcinoma, and consequently, nearly 1 million people die each year from chronic hepatitis B. Tools and approaches that bring insights into HBV biology and facilitate the discovery and evaluation of antiviral drugs are in demand. Here, we describe a method to initiate the replication of HBV, a DNA virus, using synthetic RNA. This approach eliminates contaminating background signals from input virus or plasmid DNA that plagues existing systems and can be used to study multiple stages of HBV replication. We further demonstrate that this method can be uniquely applied to identify sequence variants that confer resistance to antiviral drugs.
Collapse
Affiliation(s)
- Yingpu Yu
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - William M. Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Maximilian A. Kass
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Ashley Acevedo
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Ana L. Pamplona Mosimann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Juliano Bordignon
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Alexander Koenig
- Infectious Diseases Research Unit, GSK, Upper Providence, PA 19426, USA
| | | | | | - Yi Ni
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Pradeep M. Ambrose
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Catherine A. Freije
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Mengyin Zhang
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Chenhui Zou
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Mohammad Kabbani
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Corrine Quirk
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Cyprien Jahan
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Xianfang Wu
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Shihyun You
- Infectious Diseases Research Unit, GSK, Upper Providence, PA 19426, USA
| | - Amir Shlomai
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Ype P. de Jong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
12
|
Skinner NE, Ogega CO, Frumento N, Clark KE, Paul H, Yegnasubramanian S, Schuebel K, Meyers J, Gupta A, Wheelan S, Cox AL, Crowe JE, Ray SC, Bailey JR. Convergent antibody responses are associated with broad neutralization of hepatitis C virus. Front Immunol 2023; 14:1135841. [PMID: 37033983 PMCID: PMC10080129 DOI: 10.3389/fimmu.2023.1135841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Early development of broadly neutralizing antibodies (bNAbs) targeting the hepatitis C virus (HCV) envelope glycoprotein E2 is associated with spontaneous clearance of infection, so induction of bNAbs is a major goal of HCV vaccine development. However, the molecular antibody features important for broad neutralization are not known. Methods To identify B cell repertoire features associated with broad neutralization, we performed RNA sequencing of the B cell receptors (BCRs) of HCV E2-reactive B cells of HCV-infected individuals with either high or low plasma neutralizing breadth. We then produced a monoclonal antibody (mAb) expressed by pairing the most abundant heavy and light chains from public clonotypes identified among clearance, high neutralization subjects. Results We found distinctive BCR features associated with broad neutralization of HCV, including long heavy chain complementarity determining region 3 (CDRH3) regions, specific VH gene usage, increased frequencies of somatic hypermutation, and particular VH gene mutations. Most intriguing, we identified many E2-reactive public BCR clonotypes (heavy and light chain clones with the same V and J-genes and identical CDR3 sequences) present only in subjects who produced highly neutralizing plasma. The majority of these public clonotypes were shared by two subjects who cleared infection. A mAb expressing the most abundant public heavy and light chains from these clearance, high neutralization subjects had features enriched in high neutralization clonotypes, such as increased somatic hypermutation frequency and usage of IGHV1-69, and was cross-neutralizing. Discussion Together, these results demonstrate distinct BCR repertoires associated with high plasma neutralizing capacity. Further characterization of the molecular features and function of these antibodies can inform HCV vaccine development.
Collapse
Affiliation(s)
- Nicole E. Skinner
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Clinton O. Ogega
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nicole Frumento
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kaitlyn E. Clark
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Harry Paul
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Kornel Schuebel
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jennifer Meyers
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Anuj Gupta
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sarah Wheelan
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Andrea L. Cox
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - James E. Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Stuart C. Ray
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Justin R. Bailey
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
13
|
Backes IM, Byrd BK, Slein MD, Patel CD, Taylor SA, Garland CR, MacDonald SW, Balazs AB, Davis SC, Ackerman ME, Leib DA. Maternally transferred mAbs protect neonatal mice from HSV-induced mortality and morbidity. J Exp Med 2022; 219:e20220110. [PMID: 36156707 PMCID: PMC9516843 DOI: 10.1084/jem.20220110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/29/2022] [Accepted: 09/01/2022] [Indexed: 01/11/2023] Open
Abstract
Neonatal herpes simplex virus (nHSV) infections often result in significant mortality and neurological morbidity despite antiviral drug therapy. Maternally transferred herpes simplex virus (HSV)-specific antibodies reduce the risk of clinically overt nHSV, but this observation has not been translationally applied. Using a neonatal mouse model, we tested the hypothesis that passive transfer of HSV-specific human mAbs can prevent mortality and morbidity associated with nHSV. The mAbs were expressed in vivo via vectored immunoprophylaxis or recombinantly. Through these maternally derived routes or through direct administration to pups, diverse mAbs to HSV glycoprotein D protected against neonatal HSV-1 and HSV-2 infection. Using in vivo bioluminescent imaging, both pre- and post-exposure mAb treatment significantly reduced viral load in mouse pups. Together these studies support the notion that HSV-specific mAb-based therapies could prevent or improve HSV infection outcomes in neonates.
Collapse
Affiliation(s)
- Iara M. Backes
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
- Thayer School of Engineering, Dartmouth College, Hanover, NH
| | - Brook K. Byrd
- Thayer School of Engineering, Dartmouth College, Hanover, NH
| | - Matthew D. Slein
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
- Thayer School of Engineering, Dartmouth College, Hanover, NH
| | - Chaya D. Patel
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Sean A. Taylor
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Callaghan R. Garland
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | | | | | - Scott C. Davis
- Thayer School of Engineering, Dartmouth College, Hanover, NH
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
- Thayer School of Engineering, Dartmouth College, Hanover, NH
| | - David A. Leib
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| |
Collapse
|
14
|
Sliepen K, Radić L, Capella-Pujol J, Watanabe Y, Zon I, Chumbe A, Lee WH, de Gast M, Koopsen J, Koekkoek S, Del Moral-Sánchez I, Brouwer PJM, Ravichandran R, Ozorowski G, King NP, Ward AB, van Gils MJ, Crispin M, Schinkel J, Sanders RW. Induction of cross-neutralizing antibodies by a permuted hepatitis C virus glycoprotein nanoparticle vaccine candidate. Nat Commun 2022; 13:7271. [PMID: 36434005 PMCID: PMC9700739 DOI: 10.1038/s41467-022-34961-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Hepatitis C virus (HCV) infection affects approximately 58 million people and causes ~300,000 deaths yearly. The only target for HCV neutralizing antibodies is the highly sequence diverse E1E2 glycoprotein. Eliciting broadly neutralizing antibodies that recognize conserved cross-neutralizing epitopes is important for an effective HCV vaccine. However, most recombinant HCV glycoprotein vaccines, which usually include only E2, induce only weak neutralizing antibody responses. Here, we describe recombinant soluble E1E2 immunogens that were generated by permutation of the E1 and E2 subunits. We displayed the E2E1 immunogens on two-component nanoparticles and these nanoparticles induce significantly more potent neutralizing antibody responses than E2. Next, we generated mosaic nanoparticles co-displaying six different E2E1 immunogens. These mosaic E2E1 nanoparticles elicit significantly improved neutralization compared to monovalent E2E1 nanoparticles. These results provide a roadmap for the generation of an HCV vaccine that induces potent and broad neutralization.
Collapse
Affiliation(s)
- Kwinten Sliepen
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands.
| | - Laura Radić
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Joan Capella-Pujol
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Ian Zon
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Ana Chumbe
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Wen-Hsin Lee
- Department of Structural Biology and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Marlon de Gast
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Jelle Koopsen
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Sylvie Koekkoek
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Iván Del Moral-Sánchez
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Philip J M Brouwer
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, USA
- Institute for Protein Design, University of Washington, Seattle, USA
| | - Gabriel Ozorowski
- Department of Structural Biology and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, USA
- Institute for Protein Design, University of Washington, Seattle, USA
| | - Andrew B Ward
- Department of Structural Biology and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Marit J van Gils
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Janke Schinkel
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Rogier W Sanders
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, USA.
| |
Collapse
|
15
|
de la Peña AT, Sliepen K, Eshun-Wilson L, Newby ML, Allen JD, Zon I, Koekkoek S, Chumbe A, Crispin M, Schinkel J, Lander GC, Sanders RW, Ward AB. Structure of the hepatitis C virus E1E2 glycoprotein complex. Science 2022; 378:263-269. [PMID: 36264808 PMCID: PMC10512783 DOI: 10.1126/science.abn9884] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Hepatitis C virus (HCV) infection is a leading cause of chronic liver disease, cirrhosis, and hepatocellular carcinoma in humans and afflicts more than 58 million people worldwide. The HCV envelope E1 and E2 glycoproteins are essential for viral entry and comprise the primary antigenic target for neutralizing antibody responses. The molecular mechanisms of E1E2 assembly, as well as how the E1E2 heterodimer binds broadly neutralizing antibodies, remain elusive. Here, we present the cryo-electron microscopy structure of the membrane-extracted full-length E1E2 heterodimer in complex with three broadly neutralizing antibodies-AR4A, AT1209, and IGH505-at ~3.5-angstrom resolution. We resolve the interface between the E1 and E2 ectodomains and deliver a blueprint for the rational design of vaccine immunogens and antiviral drugs.
Collapse
Affiliation(s)
- Alba Torrents de la Peña
- Department of Integrative Structural Biology and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kwinten Sliepen
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105 AZ Amsterdam, Netherlands
| | - Lisa Eshun-Wilson
- Department of Integrative Structural Biology and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Maddy L. Newby
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Ian Zon
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105 AZ Amsterdam, Netherlands
| | - Sylvie Koekkoek
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105 AZ Amsterdam, Netherlands
| | - Ana Chumbe
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105 AZ Amsterdam, Netherlands
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Janke Schinkel
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105 AZ Amsterdam, Netherlands
| | - Gabriel C. Lander
- Department of Integrative Structural Biology and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rogier W. Sanders
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105 AZ Amsterdam, Netherlands
- Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Andrew B. Ward
- Department of Integrative Structural Biology and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
16
|
Kabbani M, Michailidis E, Steensels S, Fulmer CG, Luna JM, Le Pen J, Tardelli M, Razooky B, Ricardo-Lax I, Zou C, Zeck B, Stenzel AF, Quirk C, Foquet L, Ashbrook AW, Schneider WM, Belkaya S, Lalazar G, Liang Y, Pittman M, Devisscher L, Suemizu H, Theise ND, Chiriboga L, Cohen DE, Copenhaver R, Grompe M, Meuleman P, Ersoy BA, Rice CM, de Jong YP. Human hepatocyte PNPLA3-148M exacerbates rapid non-alcoholic fatty liver disease development in chimeric mice. Cell Rep 2022; 40:111321. [PMID: 36103835 PMCID: PMC11587767 DOI: 10.1016/j.celrep.2022.111321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/11/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
Advanced non-alcoholic fatty liver disease (NAFLD) is a rapidly emerging global health problem associated with pre-disposing genetic polymorphisms, most strikingly an isoleucine to methionine substitution in patatin-like phospholipase domain-containing protein 3 (PNPLA3-I148M). Here, we study how human hepatocytes with PNPLA3 148I and 148M variants engrafted in the livers of broadly immunodeficient chimeric mice respond to hypercaloric diets. As early as four weeks, mice developed dyslipidemia, impaired glucose tolerance, and steatosis with ballooning degeneration selectively in the human graft, followed by pericellular fibrosis after eight weeks of hypercaloric feeding. Hepatocytes with the PNPLA3-148M variant, either from a homozygous 148M donor or overexpressed in a 148I donor background, developed microvesicular and severe steatosis with frequent ballooning degeneration, resulting in more active steatohepatitis than 148I hepatocytes. We conclude that PNPLA3-148M in human hepatocytes exacerbates NAFLD. These models will facilitate mechanistic studies into human genetic variant contributions to advanced fatty liver diseases.
Collapse
Affiliation(s)
- Mohammad Kabbani
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
| | - Sandra Steensels
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA
| | - Clifton G Fulmer
- Department of Pathology, Weill Cornell Medicine, New York, NY 10065, USA; Robert J. Tomsich Pathology and Laboratory Medicine Institute, The Cleveland Clinic, Cleveland, OH 44195, USA
| | - Joseph M Luna
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Matteo Tardelli
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA
| | - Brandon Razooky
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Chenhui Zou
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA
| | - Briana Zeck
- Department of Pathology, NYU Langone, New York, NY 10028, USA
| | - Ansgar F Stenzel
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Corrine Quirk
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | | | - Alison W Ashbrook
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Serkan Belkaya
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Gadi Lalazar
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA; Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Yupu Liang
- Center for Clinical and Translational Science, The Rockefeller University, New York, NY 10065, USA
| | - Meredith Pittman
- Department of Pathology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lindsey Devisscher
- Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
| | | | - Neil D Theise
- Department of Pathology, NYU Langone, New York, NY 10028, USA
| | - Luis Chiriboga
- Department of Pathology, NYU Langone, New York, NY 10028, USA
| | - David E Cohen
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA
| | | | - Markus Grompe
- Yecuris Corporation, Tualatin, OR 97062, USA; Department of Pediatrics, Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Ghent University, Ghent, Belgium
| | - Baran A Ersoy
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Ype P de Jong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA.
| |
Collapse
|
17
|
van Lieshout LP, Rghei AD, Cao W, He S, Soule G, Zhu W, Thomas SP, Sorensen D, Frost K, Tierney K, Thompson B, Booth S, Safronetz D, Kulkarni RR, Bridle BW, Qiu X, Banadyga L, Wootton SK. AAV-monoclonal antibody expression protects mice from Ebola virus without impeding the endogenous antibody response to heterologous challenge. Mol Ther Methods Clin Dev 2022; 26:505-518. [PMID: 36092367 PMCID: PMC9436706 DOI: 10.1016/j.omtm.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/09/2022] [Indexed: 11/12/2022]
Abstract
Filoviruses cause severe hemorrhagic fever with case fatality rates as high as 90%. Filovirus-specific monoclonal antibodies (mAbs) confer protection in nonhuman primates as late as 5 days after challenge, and FDA-approved mAbs REGN-EB3 and mAb114 have demonstrated efficacy against Ebola virus (EBOV) infection in humans. Vectorized antibody expression mediated by adeno-associated virus (AAV) can generate protective and sustained concentrations of therapeutic mAbs in animal models for a variety of infectious diseases, including EBOV. Here we demonstrate that AAV6.2FF-mediated expression of murine IgG2a EBOV mAbs, 2G4 and 5D2, protects from mouse-adapted (MA)-EBOV infection with none of the surviving mice developing anti-VP40 antibodies above background. Protective serum concentrations of AAV6.2FF-2G4/AAV6.2FF-5D2 did not alter endogenous antibody responses to heterologous virus infection. AAV-mediated expression of EBOV mAbs 100 and 114, and pan-ebolavirus mAbs, FVM04, ADI-15878, and CA45, as human IgG1 antibodies conferred protection against MA-EBOV at low serum concentrations, with minimum protective serum levels as low as 2 μg/mL. Vectorized expression of murine IgG2a or human IgG1 mAbs led to sustained expression in the serum of mice for >400 days or for the lifetime of the animal, respectively. AAV6.2FF-mediated mAb expression offers an alternative to recombinant antibody administration in scenarios where long-term protection is preferable to passive immunization.
Collapse
|
18
|
Lin T, Chi X, Liu X, Pan S, Chen W, Duan H, Zhang X, Yang W. Recombinant Full-Length Hepatitis C Virus E1E2 Dimer Elicits Pangenotypic Neutralizing Antibodies. Front Immunol 2022; 13:831285. [PMID: 35837406 PMCID: PMC9273934 DOI: 10.3389/fimmu.2022.831285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
An effective prophylactic vaccine would be beneficial for controlling and eradicating hepatitis C virus (HCV) infections. However, the high diversity across HCV genotypes is a major challenge for vaccine development. Selection of the appropriate immunogen is critical to elicit broad HCV neutralizing antibodies (NAbs). To increase the antigenic coverage of heterodimer glycoproteins, we designed and produced recombinant E1E2 antigens for genotypes 1a/1b/2a/3a/6a from an IgG Fc-tagged precursor protein in FreeStyle 293-F cells. The recombinant E1 and E2 antigens were localized and associated with the endoplasmic reticulum and co-purified from membrane extracts. By examining the interactions with HCV entry co-receptors and the blockade of HCV infection, we found that these purified Fc-E1E2 proteins displayed correct folding and function. Mouse immunization results showed that each recombinant E1E2 antigen could elicit a pangenotypic antibody response to itself and other genotypes. We also found that the pentavalent formula triggered a relatively higher and more uniform NAb titer and T cell response than monovalent antigens. Taken together, our findings may provide a useful strategy for the vaccine development of HCV and other viruses with highly heterogeneous surface glycoproteins.
Collapse
|
19
|
Sepúlveda-Crespo D, Yélamos MB, Díez C, Gómez J, Hontañón V, Torresano-Felipe F, Berenguer J, González-García J, Ibañez-Samaniego L, Llop E, Olveira A, Martínez J, Resino S, Martínez I. Negative impact of HIV infection on broad-spectrum anti-HCV neutralizing antibody titers in HCV-infected patients with advanced HCV-related cirrhosis. Biomed Pharmacother 2022; 150:113024. [PMID: 35483197 DOI: 10.1016/j.biopha.2022.113024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES The current study aimed to assess the impact of HIV on the production of anti-HCV antibodies in HCV-infected individuals with advanced HCV-related cirrhosis before and 36 weeks after the sustained virological response (SVR) induced by direct-acting antivirals (DAAs) therapy. METHODS Prospective study on 62 patients (50 HIV/HCV-coinfected and 12 HCV-monoinfected). Plasma anti-E2 and HCV-nAbs were determined respectively by ELISA and microneutralization assays. RESULTS At baseline, the HCV-group had higher anti-E2 levels against Gt1a (p = 0.012), Gt1b (p = 0.023), and Gt4a (p = 0.005) than the HIV/HCV-group. After SVR, anti-E2 titers against Gt1a (p < 0.001), Gt1b (p = 0.001), and Gt4a (p = 0.042) were also higher in the HCV-group than HIV/HCV-group. At 36 weeks post-SVR, plasma anti-E2 titers decreased between 1.3 and 1.9-fold in the HIV/HCV-group (p < 0.001) and between 1.5 and 1.8-fold in the HCV-group (p ≤ 0.001). At baseline, the HCV-group had higher titers of HCV-nAbs against Gt1a (p = 0.022), Gt1b (p = 0.002), Gt2a (p < 0.001), and Gt4a (p < 0.001) than the HIV/HCV-group. After SVR, HCV-nAbs titers against Gt1a (p = 0.014), Gt1b (p < 0.001), Gt2a (p = 0.002), and Gt4a (p = 0.004) were also higher in the HCV-group. At 36 weeks post-SVR, HCV-nAbs decreased between 2.6 and 4.1-fold in the HIV/HCV-group (p < 0.001) and between 1.9 and 4.0-fold in the HCV-group (p ≤ 0.001). CONCLUSIONS HIV/HCV-coinfected patients produced lower levels of broad-spectrum anti-HCV antibodies than HCV-monoinfected patients.
Collapse
Affiliation(s)
- Daniel Sepúlveda-Crespo
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - María Belén Yélamos
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - Cristina Díez
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Enfermedades Infecciosas/VIH; Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria del Gregorio Marañón, Madrid, Spain
| | - Julián Gómez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - Víctor Hontañón
- Unidad de VIH; Servicio de Medicina Interna, Hospital Universitario La Paz, Madrid, Spain; Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| | - Francisco Torresano-Felipe
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Berenguer
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Enfermedades Infecciosas/VIH; Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria del Gregorio Marañón, Madrid, Spain
| | - Juan González-García
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unidad de VIH; Servicio de Medicina Interna, Hospital Universitario La Paz, Madrid, Spain; Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| | - Luis Ibañez-Samaniego
- Instituto de Investigación Sanitaria del Gregorio Marañón, Madrid, Spain; Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Elva Llop
- Servicio de Aparato Digestivo, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Antonio Olveira
- Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain; Servicio de Aparato Digestivo, Hospital Universitario La Paz, Madrid, Spain
| | - Javier Martínez
- Servicio de Aparato Digestivo, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Isidoro Martínez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
20
|
Odenwald MA, Paul S. Viral hepatitis: Past, present, and future. World J Gastroenterol 2022; 28:1405-1429. [PMID: 35582678 PMCID: PMC9048475 DOI: 10.3748/wjg.v28.i14.1405] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
Each hepatitis virus-Hepatitis A, B, C, D, E, and G-poses a distinct scenario to the patient and clinician alike. Since the discovery of each virus, extensive knowledge regarding epidemiology, virologic properties, and the natural clinical and immunologic history of acute and chronic infections has been generated. Basic discoveries about host immunologic responses to acute and chronic viral infections, combined with virologic data, has led to vaccines to prevent Hepatitis A, B, and E and highly efficacious antivirals for Hepatitis B and C. These therapeutic breakthroughs are transforming the fields of hepatology, transplant medicine in general, and public and global health. Most notably, there is even an ambitious global effort to eliminate chronic viral hepatitis within the next decade. While attainable, there are many barriers to this goal that are being actively investigated in basic and clinical labs on the local, national, and international scales. Herein, we discuss pertinent clinical information and recent organizational guidelines for each of the individual hepatitis viruses while also synthesizing this information with the latest research to focus on exciting future directions for each virus.
Collapse
Affiliation(s)
- Matthew August Odenwald
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, Center for Liver Diseases, University of Chicago, Chicago, IL 60637, United States
| | - Sonali Paul
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, Center for Liver Diseases, University of Chicago, Chicago, IL 60637, United States
| |
Collapse
|
21
|
Marino M, Holt MG. AAV Vector-Mediated Antibody Delivery (A-MAD) in the Central Nervous System. Front Neurol 2022; 13:870799. [PMID: 35493843 PMCID: PMC9039256 DOI: 10.3389/fneur.2022.870799] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
In the last four decades, monoclonal antibodies and their derivatives have emerged as a powerful class of therapeutics, largely due to their exquisite targeting specificity. Several clinical areas, most notably oncology and autoimmune disorders, have seen the successful introduction of monoclonal-based therapeutics. However, their adoption for treatment of Central Nervous System diseases has been comparatively slow, largely due to issues of efficient delivery resulting from limited permeability of the Blood Brain Barrier. Nevertheless, CNS diseases are becoming increasingly prevalent as societies age, accounting for ~6.5 million fatalities worldwide per year. Therefore, harnessing the full therapeutic potential of monoclonal antibodies (and their derivatives) in this clinical area has become a priority. Adeno-associated virus-based vectors (AAVs) are a potential solution to this problem. Preclinical studies have shown that AAV vector-mediated antibody delivery provides protection against a broad range of peripheral diseases, such as the human immunodeficiency virus (HIV), influenza and malaria. The parallel identification and optimization of AAV vector platforms which cross the Blood Brain Barrier with high efficiency, widely transducing the Central Nervous System and allowing high levels of local transgene production, has now opened a number of interesting scenarios for the development of AAV vector-mediated antibody delivery strategies to target Central Nervous System proteinopathies.
Collapse
Affiliation(s)
- Marika Marino
- Laboratory of Glia Biology, VIB-KU Leuven, Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Matthew G. Holt
- Laboratory of Glia Biology, VIB-KU Leuven, Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
- Synapse Biology Group, Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- *Correspondence: Matthew G. Holt
| |
Collapse
|
22
|
Wang R, Suzuki S, Guest JD, Heller B, Almeda M, Andrianov AK, Marin A, Mariuzza RA, Keck ZY, Foung SKH, Yunus AS, Pierce BG, Toth EA, Ploss A, Fuerst TR. Induction of broadly neutralizing antibodies using a secreted form of the hepatitis C virus E1E2 heterodimer as a vaccine candidate. Proc Natl Acad Sci U S A 2022; 119:e2112008119. [PMID: 35263223 PMCID: PMC8931252 DOI: 10.1073/pnas.2112008119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/19/2022] [Indexed: 11/26/2022] Open
Abstract
SignificanceHepatitis C virus chronically infects approximately 1% of the world's population, making an effective vaccine for hepatitis C virus a major unmet public health need. The membrane-associated E1E2 envelope glycoprotein has been used in clinical studies as a vaccine candidate. However, limited neutralization breadth and difficulty in producing large amounts of homogeneous membrane-associated E1E2 have hampered efforts to develop an E1E2-based vaccine. Our previous work described the design and biochemical validation of a native-like soluble secreted form of E1E2 (sE1E2). Here, we describe the immunogenic characterization of the sE1E2 complex. sE1E2 elicited broadly neutralizing antibodies in immunized mice, with increased neutralization breadth relative to the membrane-associated E1E2, thereby validating this platform as a promising model system for vaccine development.
Collapse
Affiliation(s)
- Ruixue Wang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Saori Suzuki
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Johnathan D. Guest
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Brigitte Heller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Maricar Almeda
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Roy A. Mariuzza
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Steven K. H. Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Abdul S. Yunus
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Brian G. Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Eric A. Toth
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Thomas R. Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| |
Collapse
|
23
|
Abstract
This review discusses peptide epitopes used as antigens in the development of vaccines in clinical trials as well as future vaccine candidates. It covers peptides used in potential immunotherapies for infectious diseases including SARS-CoV-2, influenza, hepatitis B and C, HIV, malaria, and others. In addition, peptides for cancer vaccines that target examples of overexpressed proteins are summarized, including human epidermal growth factor receptor 2 (HER-2), mucin 1 (MUC1), folate receptor, and others. The uses of peptides to target cancers caused by infective agents, for example, cervical cancer caused by human papilloma virus (HPV), are also discussed. This review also provides an overview of model peptide epitopes used to stimulate non-specific immune responses, and of self-adjuvanting peptides, as well as the influence of other adjuvants on peptide formulations. As highlighted in this review, several peptide immunotherapies are in advanced clinical trials as vaccines, and there is great potential for future therapies due the specificity of the response that can be achieved using peptide epitopes.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| |
Collapse
|
24
|
Weber T, Potthoff J, Bizu S, Labuhn M, Dold L, Schoofs T, Horning M, Ercanoglu MS, Kreer C, Gieselmann L, Vanshylla K, Langhans B, Janicki H, Ströh LJ, Knops E, Nierhoff D, Spengler U, Kaiser R, Bjorkman PJ, Krey T, Bankwitz D, Pfeifer N, Pietschmann T, Flyak AI, Klein F. Analysis of antibodies from HCV elite neutralizers identifies genetic determinants of broad neutralization. Immunity 2022; 55:341-354.e7. [PMID: 34990590 PMCID: PMC10089621 DOI: 10.1016/j.immuni.2021.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/21/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022]
Abstract
The high genetic diversity of hepatitis C virus (HCV) complicates effective vaccine development. We screened a cohort of 435 HCV-infected individuals and found that 2%-5% demonstrated outstanding HCV-neutralizing activity. From four of these patients, we isolated 310 HCV antibodies, including neutralizing antibodies with exceptional breadth and potency. High neutralizing activity was enabled by the use of the VH1-69 heavy-chain gene segment, somatic mutations within CDRH1, and CDRH2 hydrophobicity. Structural and mutational analyses revealed an important role for mutations replacing the serines at positions 30 and 31, as well as the presence of neutral and hydrophobic residues at the tip of the CDRH3. Based on these characteristics, we computationally created a de novo antibody with a fully synthetic VH1-69 heavy chain that efficiently neutralized multiple HCV genotypes. Our findings provide a deep understanding of the generation of broadly HCV-neutralizing antibodies that can guide the design of effective vaccine candidates.
Collapse
Affiliation(s)
- Timm Weber
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Julian Potthoff
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Sven Bizu
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
| | - Maurice Labuhn
- Twincore, Centre for Experimental and Clinical Infection Research, Institute of Experimental Virology, 30625 Hannover, Germany
| | - Leona Dold
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department of Internal Medicine I, University Hospital of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Till Schoofs
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Marcel Horning
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Meryem S Ercanoglu
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Bettina Langhans
- Department of Internal Medicine I, University Hospital of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Hanna Janicki
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Luisa J Ströh
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Elena Knops
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Dirk Nierhoff
- Department of Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Ulrich Spengler
- Department of Internal Medicine I, University Hospital of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Rolf Kaiser
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany; Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, 23562 Luebeck, Germany; Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, 23562 Luebeck, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Dorothea Bankwitz
- Twincore, Centre for Experimental and Clinical Infection Research, Institute of Experimental Virology, 30625 Hannover, Germany
| | - Nico Pfeifer
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas Pietschmann
- Twincore, Centre for Experimental and Clinical Infection Research, Institute of Experimental Virology, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30625 Hannover, Germany
| | - Andrew I Flyak
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany; Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
25
|
Bukh J. Neutralizing Antibodies Against Hepatitis C Virus and Their Role in Vaccine Immunity. Gastroenterology 2022; 162:396-398. [PMID: 34863787 DOI: 10.1053/j.gastro.2021.11.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 01/10/2023]
Affiliation(s)
- Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
26
|
Bankwitz D, Krey T, Pietschmann T. [Development approaches for vaccines against hepatitis C virus infections]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2022; 65:183-191. [PMID: 35015104 PMCID: PMC8749110 DOI: 10.1007/s00103-021-03477-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/07/2021] [Indexed: 11/04/2022]
Abstract
Mehr als 10 Jahre nach der Zulassung der ersten direkt wirkenden antiviralen Wirkstoffe zur Behandlung der Hepatitis C bleibt die Inzidenz der Hepatitis-C-Virus-(HCV-)Infektion ungebrochen hoch. In manchen Ländern stecken sich mehr Menschen neu mit dem Virus an, als Patienten durch eine erfolgreiche Therapie geheilt werden. Die Entwicklung eines prophylaktischen Impfstoffes könnte die Transmission des Virus unterbinden und dadurch einen wesentlichen Beitrag zur Kontrolle dieser weltweit verbreiteten Infektion leisten. In diesem Artikel werden die besonderen Herausforderungen und die aktuellen Ansätze der HCV-Impfstoffentwicklung dargestellt. HCV ist ein hochgradig diverses und wandlungsfähiges Virus, das zumeist dem Immunsystem entkommt und chronische Infektionen etabliert. Andererseits heilt die HCV-Infektion bei bis zu einem Drittel der exponierten Individuen aus, sodass eine schützende Immunität erreichbar ist. Zahlreiche Untersuchungen zu den Determinanten einer schützenden Immunität gegen HCV zeichnen ein immer kompletteres Bild davon, welche Ziele ein Impfstoff erreichen muss. Sehr wahrscheinlich werden sowohl starke neutralisierende Antikörper als auch wirkungsvolle zytotoxische T‑Zellen gebraucht, um sicher vor einer chronischen Infektion zu schützen. Die Schlüsselfrage ist, welche Ansätze besonders breit wirksame Antikörper und T‑Zellen heranreifen lassen. Dies wird erforderlich sein, um vor der großen Fülle unterschiedlicher HCV-Varianten zu schützen. Die jüngsten Erfolge von mRNA-Impfstoffen öffnen neue Türen auch für die HCV-Impfstoffforschung. Kombiniert mit einem tieferen Verständnis der Struktur und Funktion der viralen Hüllproteine, der Identifizierung kreuzprotektiver Antikörper- und T‑Zellepitope sowie der Nutzung standardisierter Verfahren zur Quantifizierung der Wirksamkeit von Impfkandidaten ergeben sich neue Perspektiven für die Entwicklung eines Impfstoffes.
Collapse
Affiliation(s)
- Dorothea Bankwitz
- Twincore Zentrum für Experimentelle und Klinische Infektionsforschung, Institut für Experimentelle Virologie, Feodor-Lynen-Str. 7, 30625, Hannover, Deutschland
| | - Thomas Krey
- Medizinische Hochschule Hannover, RESIST Exzellenzcluster EXC2155, Hannover, Deutschland.,Zentrum für Strukturbiologie und Zellbiologie in der Medizin, Institut für Biochemie, Universität Lübeck, Lübeck, Deutschland.,Deutsches Zentrum für Infektionsforschung (DZIF), Partnerstandort Hamburg-Lübeck-Borstel-Riems, Braunschweig, Deutschland.,Institut für Virologie, Medizinische Hochschule Hannover, Hannover, Deutschland
| | - Thomas Pietschmann
- Twincore Zentrum für Experimentelle und Klinische Infektionsforschung, Institut für Experimentelle Virologie, Feodor-Lynen-Str. 7, 30625, Hannover, Deutschland. .,Medizinische Hochschule Hannover, RESIST Exzellenzcluster EXC2155, Hannover, Deutschland. .,Deutsches Zentrum für Infektionsforschung (DZIF), Partnerstandort Hannover-Braunschweig, Braunschweig, Deutschland.
| |
Collapse
|
27
|
Zou C, El Dika I, Vercauteren KOA, Capanu M, Chou J, Shia J, Pilet J, Quirk C, Lalazar G, Andrus L, Kabbani M, Yaqubie A, Khalil D, Mergoub T, Chiriboga L, Rice CM, Abou‐Alfa GK, de Jong YP. Mouse characteristics that affect establishing xenografts from hepatocellular carcinoma patient biopsies in the United States. Cancer Med 2021; 11:602-617. [PMID: 34951132 PMCID: PMC8817074 DOI: 10.1002/cam4.4375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Chenhui Zou
- Division of Gastroenterology and Hepatology Weill Medical College at Cornell University New York New York USA
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| | - Imane El Dika
- Department of Medicine Memorial Sloan Kettering Cancer Center New York New York USA
- Department of Medicine Weill Medical College at Cornell University New York New York USA
| | - Koen O. A. Vercauteren
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| | - Marinela Capanu
- Department of Epidemiology and Biostatistics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Joanne Chou
- Department of Epidemiology and Biostatistics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Jinru Shia
- Department of Pathology Memorial Sloan Kettering Cancer Center New York New York USA
| | - Jill Pilet
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| | - Corrine Quirk
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| | - Gadi Lalazar
- Division of Gastroenterology and Hepatology Weill Medical College at Cornell University New York New York USA
- Laboratory of Cellular Biophysics The Rockefeller University New York New York USA
| | - Linda Andrus
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| | - Mohammad Kabbani
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
- Department of Gastroenterology, Hepatology and Endocrinology Hannover Medical School Hannover Germany
| | - Amin Yaqubie
- Department of Medicine Memorial Sloan Kettering Cancer Center New York New York USA
| | - Danny Khalil
- Department of Medicine Memorial Sloan Kettering Cancer Center New York New York USA
- Department of Medicine Weill Medical College at Cornell University New York New York USA
| | - Taha Mergoub
- Memorial Sloan Kettering Cancer Center Sloan Kettering Institute New York New York USA
| | - Luis Chiriboga
- Department of Pathology Center for Biospecimen Research and Development NYU Langone Health New York New York USA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| | - Ghassan K. Abou‐Alfa
- Department of Medicine Memorial Sloan Kettering Cancer Center New York New York USA
- Department of Medicine Weill Medical College at Cornell University New York New York USA
| | - Ype P. de Jong
- Division of Gastroenterology and Hepatology Weill Medical College at Cornell University New York New York USA
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| |
Collapse
|
28
|
Ertuna YI, Fallet B, Marx AF, Dimitrova M, Kastner AL, Wagner I, Merkler D, Pinschewer DD. Vectored antibody gene delivery restores host B and T cell control of persistent viral infection. Cell Rep 2021; 37:110061. [PMID: 34852228 DOI: 10.1016/j.celrep.2021.110061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/02/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022] Open
Abstract
Passive antibody therapy and vectored antibody gene delivery (VAGD) in particular offer an innovative approach to combat persistent viral diseases. Here, we exploit a small animal model to investigate synergies of VAGD with the host's endogenous immune defense for treating chronic viral infection. An adeno-associated virus (AAV) vector delivering the lymphocytic choriomeningitis virus (LCMV)-neutralizing antibody KL25 (AAV-KL25) establishes protective antibody titers for >200 days. When therapeutically administered to chronically infected immunocompetent wild-type mice, AAV-KL25 affords sustained viral load control. In contrast, viral mutational escape thwarts therapeutic AAV-KL25 effects when mice are unable to mount LCMV-specific antibody responses or lack CD8+ T cells. VAGD augments antiviral germinal center B cell and antibody-secreting cell responses and reduces inhibitory receptor expression on antiviral CD8+ T cells. These results indicate that VAGD fortifies host immune defense and synergizes with B cell and CD8 T cell responses to restore immune control of chronic viral infection.
Collapse
Affiliation(s)
- Yusuf I Ertuna
- University of Basel, Department of Biomedicine-Haus Petersplatz, Division of Experimental Virology, 4009 Basel, Switzerland
| | - Benedict Fallet
- University of Basel, Department of Biomedicine-Haus Petersplatz, Division of Experimental Virology, 4009 Basel, Switzerland
| | - Anna-Friederike Marx
- University of Basel, Department of Biomedicine-Haus Petersplatz, Division of Experimental Virology, 4009 Basel, Switzerland
| | - Mirela Dimitrova
- University of Basel, Department of Biomedicine-Haus Petersplatz, Division of Experimental Virology, 4009 Basel, Switzerland
| | - Anna Lena Kastner
- University of Basel, Department of Biomedicine-Haus Petersplatz, Division of Experimental Virology, 4009 Basel, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, Geneva Faculty of Medicine, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Geneva Faculty of Medicine, Geneva University Hospital, 1211 Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Daniel D Pinschewer
- University of Basel, Department of Biomedicine-Haus Petersplatz, Division of Experimental Virology, 4009 Basel, Switzerland.
| |
Collapse
|
29
|
Lalazar G, Requena D, Ramos-Espiritu L, Ng D, Bhola PD, de Jong YP, Wang R, Narayan NJC, Shebl B, Levin S, Michailidis E, Kabbani M, Vercauteren KOA, Hurley AM, Farber BA, Hammond WJ, Saltsman JA, Weinberg EM, Glickman JF, Lyons BA, Ellison J, Schadde E, Hertl M, Leiting JL, Truty MJ, Smoot RL, Tierney F, Kato T, Wendel HG, LaQuaglia MP, Rice CM, Letai A, Coffino P, Torbenson MS, Ortiz MV, Simon SM. Identification of Novel Therapeutic Targets for Fibrolamellar Carcinoma Using Patient-Derived Xenografts and Direct-from-Patient Screening. Cancer Discov 2021; 11:2544-2563. [PMID: 34127480 PMCID: PMC8734228 DOI: 10.1158/2159-8290.cd-20-0872] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 03/12/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022]
Abstract
To repurpose therapeutics for fibrolamellar carcinoma (FLC), we developed and validated patient-derived xenografts (PDX) from surgical resections. Most agents used clinically and inhibitors of oncogenes overexpressed in FLC showed little efficacy on PDX. A high-throughput functional drug screen found primary and metastatic FLC were vulnerable to clinically available inhibitors of TOPO1 and HDAC and to napabucasin. Napabucasin's efficacy was mediated through reactive oxygen species and inhibition of translation initiation, and specific inhibition of eIF4A was effective. The sensitivity of each PDX line inversely correlated with expression of the antiapoptotic protein Bcl-xL, and inhibition of Bcl-xL synergized with other drugs. Screening directly on cells dissociated from patient resections validated these results. This demonstrates that a direct functional screen on patient tumors provides therapeutically informative data within a clinically useful time frame. Identifying these novel therapeutic targets and combination therapies is an urgent need, as effective therapeutics for FLC are currently unavailable. SIGNIFICANCE: Therapeutics informed by genomics have not yielded effective therapies for FLC. A functional screen identified TOPO1, HDAC inhibitors, and napabucasin as efficacious and synergistic with inhibition of Bcl-xL. Validation on cells dissociated directly from patient tumors demonstrates the ability for functional precision medicine in a solid tumor.This article is highlighted in the In This Issue feature, p. 2355.
Collapse
Affiliation(s)
- Gadi Lalazar
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, New York
| | - David Requena
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
| | - Lavoisier Ramos-Espiritu
- High Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, New York
| | - Denise Ng
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
| | - Patrick D Bhola
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ype P de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, New York
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York
| | - Ruisi Wang
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
| | - Nicole J C Narayan
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
- Pediatric Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bassem Shebl
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
| | - Solomon Levin
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York
| | - Mohammad Kabbani
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York
| | - Koen O A Vercauteren
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York
- Laboratory of Liver Infectious Diseases, Ghent University, Ghent, Belgium
- Institute of Tropical Medicine, Antwerp, Belgium
| | - Arlene M Hurley
- Hospital Program Direction, The Rockefeller University, New York, New York
| | - Benjamin A Farber
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
- Department of Surgery, Division of Pediatric Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - William J Hammond
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
- Pediatric Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Surgery, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| | - James A Saltsman
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
- Pediatric Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Surgery, Mount Sinai Hospital, New York, New York
| | - Ethan M Weinberg
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - J Fraser Glickman
- High Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, New York
| | - Barbara A Lyons
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico
| | - Jessica Ellison
- Division of Transplantation, Rush University Medical Center, Chicago, Illinois
| | - Erik Schadde
- Department of Surgery, Division of Transplantation and Division of Surgical Oncology, Rush University Medical Center, Chicago, Illinois
| | - Martin Hertl
- Division of Transplantation, Rush University Medical Center, Chicago, Illinois
| | - Jennifer L Leiting
- Division of Subspecialty General Surgery, Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Mark J Truty
- Division of Subspecialty General Surgery, Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Rory L Smoot
- Division of Subspecialty General Surgery, Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Faith Tierney
- Division of Abdominal Organ Transplantation, New York-Presbyterian/Columbia University, New York, New York
| | - Tomoaki Kato
- Division of Abdominal Organ Transplantation, New York-Presbyterian/Columbia University, New York, New York
| | - Hans-Guido Wendel
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael P LaQuaglia
- Pediatric Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Philip Coffino
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
| | | | - Michael V Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York.
| |
Collapse
|
30
|
Frumento N, Flyak AI, Bailey JR. Mechanisms of HCV resistance to broadly neutralizing antibodies. Curr Opin Virol 2021; 50:23-29. [PMID: 34329953 PMCID: PMC8500940 DOI: 10.1016/j.coviro.2021.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
Broadly neutralizing antibodies (bNAbs) block infection by genetically diverse hepatitis C virus (HCV) isolates by targeting relatively conserved epitopes on the HCV envelope glycoproteins, E1 and E2. Many amino acid substitutions conferring resistance to these bNAbs have been characterized, identifying multiple mechanisms of bNAb escape. Some resistance substitutions follow the expected mechanism of directly disrupting targeted epitopes. Interestingly, other resistance substitutions fall in E2 domains distant from bNAb-targeted epitopes. These substitutions, which can confer broad resistance to multiple bNAbs, act by less clearly defined mechanisms. Some modulate binding of HCV to cell surface receptors, while others may induce conformational changes in the E2 protein. In this review, we discuss mechanisms of HCV bNAb resistance and implications for HCV vaccine development.
Collapse
Affiliation(s)
- Nicole Frumento
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Andrew I Flyak
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Justin R Bailey
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
31
|
Reuther P, Martin K, Kreutzfeldt M, Ciancaglini M, Geier F, Calabrese D, Merkler D, Pinschewer DD. Persistent RNA virus infection is short-lived at the single-cell level but leaves transcriptomic footprints. J Exp Med 2021; 218:212556. [PMID: 34398180 PMCID: PMC8493862 DOI: 10.1084/jem.20210408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/14/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
Several RNA viruses can establish life-long persistent infection in mammalian hosts, but the fate of individual virus-infected cells remains undefined. Here we used Cre recombinase-encoding lymphocytic choriomeningitis virus to establish persistent infection in fluorescent cell fate reporter mice. Virus-infected hepatocytes underwent spontaneous noncytolytic viral clearance independently of type I or type II interferon signaling or adaptive immunity. Viral clearance was accompanied by persistent transcriptomic footprints related to proliferation and extracellular matrix remodeling, immune responses, and metabolism. Substantial overlap with persistent epigenetic alterations in HCV-cured patients suggested a universal RNA virus-induced transcriptomic footprint. Cell-intrinsic clearance occurred in cell culture, too, with sequential infection, reinfection cycles separated by a period of relative refractoriness to infection. Our study reveals that systemic persistence of a prototypic noncytolytic RNA virus depends on continuous spread and reinfection. Yet undefined cell-intrinsic mechanisms prevent viral persistence at the single-cell level but give way to profound transcriptomic alterations in virus-cleared cells.
Collapse
Affiliation(s)
- Peter Reuther
- Department of Biomedicine, Division of Experimental Virology, University of Basel, Basel, Switzerland
| | - Katrin Martin
- Department of Biomedicine, Division of Experimental Virology, University of Basel, Basel, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, Division of Clinical Pathology, Geneva Faculty of Medicine, Geneva University and University Hospital, Geneva, Switzerland
| | - Matias Ciancaglini
- Department of Biomedicine, Division of Experimental Virology, University of Basel, Basel, Switzerland
| | - Florian Geier
- Department of Biomedicine, Bioinformatics Core Facility, University Hospital Basel, Basel, Switzerland
| | - Diego Calabrese
- Department of Biomedicine, Histology Core Facility, University Hospital Basel, Basel, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, Geneva Faculty of Medicine, Geneva University and University Hospital, Geneva, Switzerland
| | - Daniel D Pinschewer
- Department of Biomedicine, Division of Experimental Virology, University of Basel, Basel, Switzerland
| |
Collapse
|
32
|
Hartlage AS, Kapoor A. Hepatitis C Virus Vaccine Research: Time to Put Up or Shut Up. Viruses 2021; 13:1596. [PMID: 34452460 PMCID: PMC8402855 DOI: 10.3390/v13081596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 12/16/2022] Open
Abstract
Unless urgently needed to prevent a pandemic, the development of a viral vaccine should follow a rigorous scientific approach. Each vaccine candidate should be designed considering the in-depth knowledge of protective immunity, followed by preclinical studies to assess immunogenicity and safety, and lastly, the evaluation of selected vaccines in human clinical trials. The recently concluded first phase II clinical trial of a human hepatitis C virus (HCV) vaccine followed this approach. Still, despite promising preclinical results, it failed to protect against chronic infection, raising grave concerns about our understanding of protective immunity. This setback, combined with the lack of HCV animal models and availability of new highly effective antivirals, has fueled ongoing discussions of using a controlled human infection model (CHIM) to test new HCV vaccine candidates. Before taking on such an approach, however, we must carefully weigh all the ethical and health consequences of human infection in the absence of a complete understanding of HCV immunity and pathogenesis. We know that there are significant gaps in our knowledge of adaptive immunity necessary to prevent chronic HCV infection. This review discusses our current understanding of HCV immunity and the critical gaps that should be filled before embarking upon new HCV vaccine trials. We discuss the importance of T cells, neutralizing antibodies, and HCV genetic diversity. We address if and how the animal HCV-like viruses can be used for conceptualizing effective HCV vaccines and what we have learned so far from these HCV surrogates. Finally, we propose a logical but narrow path forward for HCV vaccine development.
Collapse
Affiliation(s)
- Alex S. Hartlage
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Medical Scientist Training Program, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43205, USA
| | - Amit Kapoor
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
33
|
Tickner ZJ, Farzan M. Riboswitches for Controlled Expression of Therapeutic Transgenes Delivered by Adeno-Associated Viral Vectors. Pharmaceuticals (Basel) 2021; 14:ph14060554. [PMID: 34200913 PMCID: PMC8230432 DOI: 10.3390/ph14060554] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Vectors developed from adeno-associated virus (AAV) are powerful tools for in vivo transgene delivery in both humans and animal models, and several AAV-delivered gene therapies are currently approved for clinical use. However, AAV-mediated gene therapy still faces several challenges, including limited vector packaging capacity and the need for a safe, effective method for controlling transgene expression during and after delivery. Riboswitches, RNA elements which control gene expression in response to ligand binding, are attractive candidates for regulating expression of AAV-delivered transgene therapeutics because of their small genomic footprints and non-immunogenicity compared to protein-based expression control systems. In addition, the ligand-sensing aptamer domains of many riboswitches can be exchanged in a modular fashion to allow regulation by a variety of small molecules, proteins, and oligonucleotides. Riboswitches have been used to regulate AAV-delivered transgene therapeutics in animal models, and recently developed screening and selection methods allow rapid isolation of riboswitches with novel ligands and improved performance in mammalian cells. This review discusses the advantages of riboswitches in the context of AAV-delivered gene therapy, the subsets of riboswitch mechanisms which have been shown to function in human cells and animal models, recent progress in riboswitch isolation and optimization, and several examples of AAV-delivered therapeutic systems which might be improved by riboswitch regulation.
Collapse
Affiliation(s)
- Zachary J. Tickner
- Department of Immunology and Microbiology, the Scripps Research Institute, Jupiter, FL 33458, USA;
- Correspondence:
| | - Michael Farzan
- Department of Immunology and Microbiology, the Scripps Research Institute, Jupiter, FL 33458, USA;
- Emmune, Inc., Jupiter, FL 33458, USA
| |
Collapse
|
34
|
Structural and Biophysical Characterization of the HCV E1E2 Heterodimer for Vaccine Development. Viruses 2021; 13:v13061027. [PMID: 34072451 PMCID: PMC8227786 DOI: 10.3390/v13061027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
An effective vaccine for the hepatitis C virus (HCV) is a major unmet medical and public health need, and it requires an antigen that elicits immune responses to multiple key conserved epitopes. Decades of research have generated a number of vaccine candidates; based on these data and research through clinical development, a vaccine antigen based on the E1E2 glycoprotein complex appears to be the best choice. One bottleneck in the development of an E1E2-based vaccine is that the antigen is challenging to produce in large quantities and at high levels of purity and antigenic/functional integrity. This review describes the production and characterization of E1E2-based vaccine antigens, both membrane-associated and a novel secreted form of E1E2, with a particular emphasis on the major challenges facing the field and how those challenges can be addressed.
Collapse
|
35
|
To Include or Occlude: Rational Engineering of HCV Vaccines for Humoral Immunity. Viruses 2021; 13:v13050805. [PMID: 33946211 PMCID: PMC8146105 DOI: 10.3390/v13050805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Direct-acting antiviral agents have proven highly effective at treating existing hepatitis C infections but despite their availability most countries will not reach the World Health Organization targets for elimination of HCV by 2030. A prophylactic vaccine remains a high priority. Whilst early vaccines focused largely on generating T cell immunity, attention is now aimed at vaccines that generate humoral immunity, either alone or in combination with T cell-based vaccines. High-resolution structures of hepatitis C viral glycoproteins and their interaction with monoclonal antibodies isolated from both cleared and chronically infected people, together with advances in vaccine technologies, provide new avenues for vaccine development.
Collapse
|
36
|
Liu Y, Maya S, Ploss A. Animal Models of Hepatitis B Virus Infection-Success, Challenges, and Future Directions. Viruses 2021; 13:v13050777. [PMID: 33924793 PMCID: PMC8146732 DOI: 10.3390/v13050777] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection affects more than 250 million people worldwide, which greatly increases the risk for terminal liver diseases, such as liver cirrhosis and hepatocellular carcinoma (HCC). Even though current approved antiviral therapies, including pegylated type I interferon (IFN) and nucleos(t)ide analogs, can effectively suppress viremia, HBV infection is rarely cured. Since HBV exhibits a narrow species tropism and robustly infects only humans and higher primates, progress in HBV research and preclinical testing of antiviral drugs has been hampered by the scarcity of suitable animal models. Fortunately, a series of surrogate animal models have been developed for the study of HBV. An increased understanding of the barriers towards interspecies transmission has aided in the development of human chimeric mice and has greatly paved the way for HBV research in vivo, and for evaluating potential therapies of chronic hepatitis B. In this review, we summarize the currently available animal models for research of HBV and HBV-related hepadnaviruses, and we discuss challenges and future directions for improvement.
Collapse
|
37
|
Chen F, Tzarum N, Lin X, Giang E, Velázquez-Moctezuma R, Augestad EH, Nagy K, He L, Hernandez M, Fouch ME, Grinyó A, Chavez D, Doranz BJ, Prentoe J, Stanfield RL, Lanford R, Bukh J, Wilson IA, Zhu J, Law M. Functional convergence of a germline-encoded neutralizing antibody response in rhesus macaques immunized with HCV envelope glycoproteins. Immunity 2021; 54:781-796.e4. [PMID: 33675683 PMCID: PMC8046733 DOI: 10.1016/j.immuni.2021.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/14/2020] [Accepted: 02/10/2021] [Indexed: 12/14/2022]
Abstract
Human IGHV1-69-encoded broadly neutralizing antibodies (bnAbs) that target the hepatitis C virus (HCV) envelope glycoprotein (Env) E2 are important for protection against HCV infection. An IGHV1-69 ortholog gene, VH1.36, is preferentially used for bnAbs isolated from HCV Env-immunized rhesus macaques (RMs). Here, we studied the genetic, structural, and functional properties of VH1.36-encoded bnAbs generated by vaccination, in comparison to IGHV1-69-encoded bnAbs from HCV patients. Global B cell repertoire analysis confirmed the expansion of VH1.36-derived B cells in immunized animals. Most E2-specific, VH1.36-encoded antibodies cross-neutralized HCV. Crystal structures of two RM bnAbs with E2 revealed that the RM bnAbs engaged conserved E2 epitopes using similar molecular features as human bnAbs but with a different binding mode. Longitudinal analyses of the RM antibody repertoire responses during immunization indicated rapid lineage development of VH1.36-encoded bnAbs with limited somatic hypermutation. Our findings suggest functional convergence of a germline-encoded bnAb response to HCV Env with implications for vaccination in humans.
Collapse
Affiliation(s)
- Fang Chen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Netanel Tzarum
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xiaohe Lin
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Erick Giang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rodrigo Velázquez-Moctezuma
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Elias H Augestad
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Kenna Nagy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linling He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | - Deborah Chavez
- Southwest National Primate Research Center at Texas Biomedical Research Institute, San Antonio, TX 788227, USA
| | | | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert Lanford
- Southwest National Primate Research Center at Texas Biomedical Research Institute, San Antonio, TX 788227, USA
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Jiang Zhu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
38
|
Velázquez-Moctezuma R, Augestad EH, Castelli M, Holmboe Olesen C, Clementi N, Clementi M, Mancini N, Prentoe J. Mechanisms of Hepatitis C Virus Escape from Vaccine-Relevant Neutralizing Antibodies. Vaccines (Basel) 2021; 9:291. [PMID: 33804732 PMCID: PMC8004074 DOI: 10.3390/vaccines9030291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) is a major causative agent of acute and chronic hepatitis. It is estimated that 400,000 people die every year from chronic HCV infection, mostly from severe liver-related diseases such as cirrhosis and liver cancer. Although HCV was discovered more than 30 years ago, an efficient prophylactic vaccine is still missing. The HCV glycoprotein complex, E1/E2, is the principal target of neutralizing antibodies (NAbs) and, thus, is an attractive antigen for B-cell vaccine design. However, the high genetic variability of the virus necessitates the identification of conserved epitopes. Moreover, the high intrinsic mutational capacity of HCV allows the virus to continually escape broadly NAbs (bNAbs), which is likely to cause issues with vaccine-resistant variants. Several studies have assessed the barrier-to-resistance of vaccine-relevant bNAbs in vivo and in vitro. Interestingly, recent studies have suggested that escape substitutions can confer antibody resistance not only by direct modification of the epitope but indirectly through allosteric effects, which can be grouped based on the breadth of these effects on antibody susceptibility. In this review, we summarize the current understanding of HCV-specific NAbs, with a special focus on vaccine-relevant bNAbs and their targets. We highlight antibody escape studies pointing out the different methodologies and the escape mutations identified thus far. Finally, we analyze the antibody escape mechanisms of envelope protein escape substitutions and polymorphisms according to the most recent evidence in the HCV field. The accumulated knowledge in identifying bNAb epitopes as well as assessing barriers to resistance and elucidating relevant escape mechanisms may prove critical in the successful development of an HCV B-cell vaccine.
Collapse
Affiliation(s)
- Rodrigo Velázquez-Moctezuma
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (R.V.-M.); (E.H.A.); (C.H.O.)
- Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark
| | - Elias H. Augestad
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (R.V.-M.); (E.H.A.); (C.H.O.)
- Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark
| | - Matteo Castelli
- Laboratory of Microbiology and Virology, Università “Vita-Salute” San Raffaele, 20132 Milano, Italy; (M.C.); (N.C.); (M.C.); (N.M.)
| | - Christina Holmboe Olesen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (R.V.-M.); (E.H.A.); (C.H.O.)
- Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark
| | - Nicola Clementi
- Laboratory of Microbiology and Virology, Università “Vita-Salute” San Raffaele, 20132 Milano, Italy; (M.C.); (N.C.); (M.C.); (N.M.)
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, Università “Vita-Salute” San Raffaele, 20132 Milano, Italy; (M.C.); (N.C.); (M.C.); (N.M.)
| | - Nicasio Mancini
- Laboratory of Microbiology and Virology, Università “Vita-Salute” San Raffaele, 20132 Milano, Italy; (M.C.); (N.C.); (M.C.); (N.M.)
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (R.V.-M.); (E.H.A.); (C.H.O.)
- Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark
| |
Collapse
|
39
|
Abstract
Antibody responses in hepatitis C virus (HCV) have been a rather mysterious research topic for many investigators working in the field. Chronic HCV infection is often associated with dysregulation of immune functions particularly in B cells, leading to abnormal lymphoproliferation or the production of autoantibodies that exacerbate inflammation and extrahepatic diseases. When considering the antiviral function of antibody, it was difficult to endorse its role in HCV protection, whereas T-cell response has been shown unequivocally critical for natural recovery. Recent breakthroughs in the study of HCV and antigen-specific antibody responses provide important insights into viral vulnerability to antibodies and the immunogenetic and structural properties of the neutralizing antibodies. The new knowledge reinvigorates HCV vaccine research by illuminating a new path for the rational design of vaccine antigens to elicit broadly neutralizing antibodies for protection.
Collapse
Affiliation(s)
- Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92109, USA
| |
Collapse
|
40
|
Laidlaw SM, Dustin LB. An HCV Vaccine on the Fly. J Infect Dis 2021; 221:1216-1218. [PMID: 31074788 DOI: 10.1093/infdis/jiz231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Stephen M Laidlaw
- Kennedy Institute of Rheumatology and the Peter Medawar Building for Pathogen Research, The University of Oxford, United Kingdom
| | - Lynn B Dustin
- Kennedy Institute of Rheumatology and the Peter Medawar Building for Pathogen Research, The University of Oxford, United Kingdom
| |
Collapse
|
41
|
Payandeh Z, Mohammadkhani N, Nabi Afjadi M, Khalili S, Rajabibazl M, Houjaghani Z, Dadkhah M. The immunology of SARS-CoV-2 infection, the potential antibody based treatments and vaccination strategies. Expert Rev Anti Infect Ther 2020; 19:899-910. [PMID: 33307883 DOI: 10.1080/14787210.2020.1863144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a potentially fatal agent for a new emerging viral disease (COVID-19) is of great global public health emergency. Herein, we represented potential antibody-based treatments especially monoclonal antibodies (mAbs) that may exert a potential role in treatment as well as developing vaccination strategies against COVID-19.Areas covered: We used PubMed, Google Scholar, and clinicaltrials.gov search strategies for relevant papers. We demonstrated some agents with potentially favorable efficacy as well as favorable safety. Several therapies are under assessment to evaluate their efficacy and safety for COVID19. However, the development of different strategies such as SARS-CoV-2-based vaccines and antibody therapy are urgently required beside other effective therapies such as plasma, anticoagulants, and immune as well as antiviral therapies. We encourage giving more attention to antibody-based treatments as an immediate strategy. Although there has not been any approved specific vaccine until now, developing vaccination strategies may have a protective effect against COVID-19.Expert opinion: An antiviral mAbs could be a safe and high-quality therapeutic intervention which is greatly recommended for COVID-19. Additionally, the high sequence homology between the SARS-CoV-2 and SARS/MERS viruses could shed light on developing to design a vaccine against SARS-CoV-2.
Collapse
Affiliation(s)
- Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Hospital of Xi'an Jiaotong University (Xibei Hospital), 710004 Xi'an, China
| | - Niloufar Mohammadkhani
- Department of Clinical Biochemistry, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohsen Nabi Afjadi
- Institute of Biochemistry and Biophysics, Tehran University, Tehran, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Houjaghani
- Department of Pharmacy Education, EMUPSS, Eastern Mediterranean University, Famagusta, N.Cyprus
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Pharmacology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
42
|
Ali MG, Zhang Z, Gao Q, Pan M, Rowan EG, Zhang J. Recent advances in therapeutic applications of neutralizing antibodies for virus infections: an overview. Immunol Res 2020; 68:325-339. [PMID: 33161557 PMCID: PMC7648849 DOI: 10.1007/s12026-020-09159-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022]
Abstract
Antibodies are considered as an excellent foundation to neutralize pathogens and as highly specific therapeutic agents. Antibodies are generated in response to a vaccine but little use as immunotherapy to combat virus infections. A new generation of broadly cross-reactive and highly potent antibodies has led to a unique chance for them to be used as a medical intervention. Neutralizing antibodies (monoclonal and polyclonal antibodies) are desirable for pharmaceutical products because of their ability to target specific epitopes with their variable domains by precise neutralization mechanisms. The isolation of neutralizing antiviral antibodies has been achieved by Phage displayed antibody libraries, transgenic mice, B cell approaches, and hybridoma technology. Antibody engineering technologies have led to efficacy improvements, to further boost antibody in vivo activities. "Although neutralizing antiviral antibodies have some limitations that hinder their full development as therapeutic agents, the potential for prevention and treatment of infections, including a range of viruses (HIV, Ebola, MERS-COV, CHIKV, SARS-CoV, and SARS-CoV2), are being actively pursued in human clinical trials."
Collapse
Affiliation(s)
- Manasik Gumah Ali
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Zhening Zhang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Qi Gao
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Mingzhu Pan
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Edward G Rowan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University Strathclyde, Glasgow, UK
| | - Juan Zhang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
43
|
Rghei AD, van Lieshout LP, Santry LA, Guilleman MM, Thomas SP, Susta L, Karimi K, Bridle BW, Wootton SK. AAV Vectored Immunoprophylaxis for Filovirus Infections. Trop Med Infect Dis 2020; 5:tropicalmed5040169. [PMID: 33182447 PMCID: PMC7709665 DOI: 10.3390/tropicalmed5040169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 01/07/2023] Open
Abstract
Filoviruses are among the deadliest infectious agents known to man, causing severe hemorrhagic fever, with up to 90% fatality rates. The 2014 Ebola outbreak in West Africa resulted in over 28,000 infections, demonstrating the large-scale human health and economic impact generated by filoviruses. Zaire ebolavirus is responsible for the greatest number of deaths to date and consequently there is now an approved vaccine, Ervebo, while other filovirus species have similar epidemic potential and remain without effective vaccines. Recent clinical success of REGN-EB3 and mAb-114 monoclonal antibody (mAb)-based therapies supports further investigation of this treatment approach for other filoviruses. While efficacious, protection from passive mAb therapies is short-lived, requiring repeat dosing to maintain therapeutic concentrations. An alternative strategy is vectored immunoprophylaxis (VIP), which utilizes an adeno-associated virus (AAV) vector to generate sustained expression of selected mAbs directly in vivo. This approach takes advantage of validated mAb development and enables vectorization of the top candidates to provide long-term immunity. In this review, we summarize the history of filovirus outbreaks, mAb-based therapeutics, and highlight promising AAV vectorized approaches to providing immunity against filoviruses where vaccines are not yet available.
Collapse
|
44
|
Zou C, Vercauteren KO, Michailidis E, Kabbani M, Zoluthkin I, Quirk C, Chiriboga L, Yazicioglu M, Anguela XM, Meuleman P, High KA, Herzog RW, de Jong YP. Experimental Variables that Affect Human Hepatocyte AAV Transduction in Liver Chimeric Mice. Mol Ther Methods Clin Dev 2020; 18:189-198. [PMID: 32637450 PMCID: PMC7326722 DOI: 10.1016/j.omtm.2020.05.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/27/2020] [Indexed: 12/28/2022]
Abstract
Adeno-associated virus (AAV) vector serotypes vary in their ability to transduce hepatocytes from different species. Chimeric mouse models harboring human hepatocytes have shown translational promise for liver-directed gene therapies. However, many variables that influence human hepatocyte transduction and transgene expression in such models remain poorly defined. Here, we aimed to test whether three experimental conditions influence AAV transgene expression in immunodeficient, fumaryl-acetoactetate-hydrolase-deficient (Fah -/-) chimeric mice repopulated with primary human hepatocytes. We examined the effects of the murine liver injury cycle, human donor variability, and vector doses on hepatocyte transduction with various AAV serotypes expressing a green fluorescent protein (GFP). We determined that the timing of AAV vector challenge in the liver injury cycle resulted in up to 7-fold differences in the percentage of GFP expressing human hepatocytes. The GFP+ hepatocyte frequency varied 7-fold between human donors without, however, changing the relative transduction efficiency between serotypes for an individual donor. There was also a clear relationship between AAV vector doses and human hepatocyte transduction and transgene expression. We conclude that several experimental variables substantially affect human hepatocyte transduction in the Fah -/- chimera model, attention to which may improve reproducibility between findings from different laboratories.
Collapse
Affiliation(s)
- Chenhui Zou
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10065, USA
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY 10065, USA
| | - Koen O.A. Vercauteren
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY 10065, USA
- Laboratory of Liver Infectious Diseases, Ghent University, 9000 Ghent, Belgium
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY 10065, USA
| | - Mohammad Kabbani
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY 10065, USA
| | - Irene Zoluthkin
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32603, USA
| | - Corrine Quirk
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY 10065, USA
| | - Luis Chiriboga
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | | | | | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Ghent University, 9000 Ghent, Belgium
| | | | - Roland W. Herzog
- Department of Pediatrics, Indiana University, Indianapolis, IN 46202, USA
- Herman B Wells Center for Pediatric Research, IUPUI, Indianapolis, IN 46202, USA
| | - Ype P. de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10065, USA
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
45
|
Kemming J, Thimme R, Neumann-Haefelin C. Adaptive Immune Response against Hepatitis C Virus. Int J Mol Sci 2020; 21:ijms21165644. [PMID: 32781731 PMCID: PMC7460648 DOI: 10.3390/ijms21165644] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
A functional adaptive immune response is the major determinant for clearance of hepatitis C virus (HCV) infection. However, in the majority of patients, this response fails and persistent infection evolves. Here, we dissect the HCV-specific key players of adaptive immunity, namely B cells and T cells, and describe factors that affect infection outcome. Once chronic infection is established, continuous exposure to HCV antigens affects functionality, phenotype, transcriptional program, metabolism, and the epigenetics of the adaptive immune cells. In addition, viral escape mutations contribute to the failure of adaptive antiviral immunity. Direct-acting antivirals (DAA) can mediate HCV clearance in almost all patients with chronic HCV infection, however, defects in adaptive immune cell populations remain, only limited functional memory is obtained and reinfection of cured individuals is possible. Thus, to avoid potential reinfection and achieve global elimination of HCV infections, a prophylactic vaccine is needed. Recent vaccine trials could induce HCV-specific immunity but failed to protect from persistent infection. Thus, lessons from natural protection from persistent infection, DAA-mediated cure, and non-protective vaccination trials might lead the way to successful vaccination strategies in the future.
Collapse
Affiliation(s)
- Janine Kemming
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg im Breisgau, Germany
| | - Robert Thimme
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
- Correspondence: ; Tel.: +49-761-270-32800
| |
Collapse
|
46
|
Optimized Hepatitis C Virus (HCV) E2 Glycoproteins and their Immunogenicity in Combination with MVA-HCV. Vaccines (Basel) 2020; 8:vaccines8030440. [PMID: 32764419 PMCID: PMC7563715 DOI: 10.3390/vaccines8030440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C virus (HCV) represents a major global health challenge and an efficient vaccine is urgently needed. Many HCV vaccination strategies employ recombinant versions of the viral E2 glycoprotein. However, recombinant E2 readily forms disulfide-bonded aggregates that might not be optimally suited for vaccines. Therefore, we have designed an E2 protein in which we strategically changed eight cysteines to alanines (E2.C8A). E2.C8A formed predominantly monomers and virtually no aggregates. Furthermore, E2.C8A also interacted more efficiently with broadly neutralizing antibodies than conventional E2. We used mice to evaluate different prime/boost immunization strategies involving a modified vaccinia virus Ankara (MVA) expressing the nearly full-length genome of HCV (MVA-HCV) in combination with either the E2 aggregates or the E2.C8A monomers. The combined MVA-HCV/E2 aggregates prime/boost strategy markedly enhanced HCV-specific effector memory CD4+ T cell responses and antibody levels compared to MVA-HCV/MVA-HCV. Moreover, the aggregated form of E2 induced higher levels of anti-E2 antibodies in vaccinated mice than E2.C8A monomers. These antibodies were cross-reactive and mainly of the IgG1 isotype. Our findings revealed how two E2 viral proteins that differ in their capacity to form aggregates are able to enhance to different extent the HCV-specific cellular and humoral immune responses, either alone or in combination with MVA-HCV. These combined protocols of MVA-HCV/E2 could serve as a basis for the development of a more effective HCV vaccine.
Collapse
|
47
|
Hepatitis C virus vaccine design: focus on the humoral immune response. J Biomed Sci 2020; 27:78. [PMID: 32631318 PMCID: PMC7338099 DOI: 10.1186/s12929-020-00669-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the recent development of safe and highly effective direct-acting antivirals, hepatitis C virus (HCV) infection remains a significant health problem. In 2016, the World Health Organization set out to reduce the rate of new HCV infections by 90% by 2030. Still, global control of the virus does not seem to be achievable in the absence of an effective vaccine. Current approaches to the development of a vaccine against HCV include the production of recombinant proteins, synthetic peptides, DNA vaccines, virus-like particles, and viral vectors expressing various antigens. In this review, we focus on the development of vaccines targeting the humoral immune response against HCV based on the cumulative evidence supporting the important role of neutralizing antibodies in protection against HCV infection. The main targets of HCV-specific neutralizing antibodies are the glycoproteins E1 and E2. Recent advances in the knowledge of HCV glycoprotein structure and their epitopes, as well as the possibility of getting detailed information on the human antibody repertoire generated by the infection, will allow rational structure-based antigen design to target specific germline antibodies. Although obtaining a vaccine capable of inducing sterilizing immunity will be a difficult task, a vaccine that prevents chronic hepatitis C infections, a more realistic goal in the short term, would have a considerable health impact.
Collapse
|
48
|
Wang Q, Michailidis E, Yu Y, Wang Z, Hurley AM, Oren DA, Mayer CT, Gazumyan A, Liu Z, Zhou Y, Schoofs T, Yao KH, Nieke JP, Wu J, Jiang Q, Zou C, Kabbani M, Quirk C, Oliveira T, Chhosphel K, Zhang Q, Schneider WM, Jahan C, Ying T, Horowitz J, Caskey M, Jankovic M, Robbiani DF, Wen Y, de Jong YP, Rice CM, Nussenzweig MC. A Combination of Human Broadly Neutralizing Antibodies against Hepatitis B Virus HBsAg with Distinct Epitopes Suppresses Escape Mutations. Cell Host Microbe 2020; 28:335-349.e6. [PMID: 32504577 DOI: 10.1016/j.chom.2020.05.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/09/2020] [Accepted: 05/08/2020] [Indexed: 02/08/2023]
Abstract
Although there is no effective cure for chronic hepatitis B virus (HBV) infection, antibodies are protective and correlate with recovery from infection. To examine the human antibody response to HBV, we screened 124 vaccinated and 20 infected, spontaneously recovered individuals. The selected individuals produced shared clones of broadly neutralizing antibodies (bNAbs) that targeted 3 non-overlapping epitopes on the HBV S antigen (HBsAg). Single bNAbs protected humanized mice against infection but selected for resistance mutations in mice with prior established infection. In contrast, infection was controlled by a combination of bNAbs targeting non-overlapping epitopes with complementary sensitivity to mutations that commonly emerge during human infection. The co-crystal structure of one of the bNAbs with an HBsAg peptide epitope revealed a stabilized hairpin loop. This structure, which contains residues frequently mutated in clinical immune escape variants, provides a molecular explanation for why immunotherapy for HBV infection may require combinations of complementary bNAbs.
Collapse
Affiliation(s)
- Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Yingpu Yu
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Arlene M Hurley
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Deena A Oren
- Structural Biology Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Christian T Mayer
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Zhenmi Liu
- West China School of Public Health, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunjiao Zhou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Till Schoofs
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Kai-Hui Yao
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Jan P Nieke
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Jianbo Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qingling Jiang
- West China School of Public Health, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chenhui Zou
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Mohanmmad Kabbani
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Corrine Quirk
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Thiago Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Kalsang Chhosphel
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Qianqian Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Cyprien Jahan
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jill Horowitz
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Davide F Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Yumei Wen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ype P de Jong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
49
|
Animal Models Used in Hepatitis C Virus Research. Int J Mol Sci 2020; 21:ijms21113869. [PMID: 32485887 PMCID: PMC7312079 DOI: 10.3390/ijms21113869] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
The narrow range of species permissive to infection by hepatitis C virus (HCV) presents a unique challenge to the development of useful animal models for studying HCV, as well as host immune responses and development of chronic infection and disease. Following earlier studies in chimpanzees, several unique approaches have been pursued to develop useful animal models for research while avoiding the important ethical concerns and costs inherent in research with chimpanzees. Genetically related hepatotropic viruses that infect animals are being used as surrogates for HCV in research studies; chimeras of these surrogate viruses harboring specific regions of the HCV genome are being developed to improve their utility for vaccine testing. Concurrently, genetically humanized mice are being developed and continually advanced using human factors known to be involved in virus entry and replication. Further, xenotransplantation of human hepatocytes into mice allows for the direct study of HCV infection in human liver tissue in a small animal model. The current advances in each of these approaches are discussed in the present review.
Collapse
|
50
|
Olbrich A, Wardemann H, Böhm S, Rother K, Colpitts CC, Wrensch F, Baumert TF, Berg T, Benckert J. Repertoire and Neutralizing Activity of Antibodies Against Hepatitis C Virus E2 Peptide in Patients With Spontaneous Resolution of Hepatitis C. J Infect Dis 2020; 220:1209-1218. [PMID: 31165162 DOI: 10.1093/infdis/jiz274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/03/2019] [Indexed: 12/15/2022] Open
Abstract
Neutralizing antibodies can prevent hepatitis C virus (HCV) infection, one of the leading causes of cirrhosis and liver cancer. Here, we characterized the immunoglobulin repertoire of memory B-cell antibodies against a linear epitope in the central front layer of the HCV envelope (E2; amino acids 483-499) in patients who were infected in a single-source outbreak. A reverse transcription polymerase chain reaction-based immunoglobulin gene cloning and recombinant expression approach was used to express monoclonal antibodies from HCV E2 peptide-binding immunoglobulin G-positive memory B cells. We identified highly mutated antibodies with a neutralizing effect in vitro against different genotype isolates sharing similar gene features. Our data confirm the importance of VH1-69 use for neutralizing activity. The data offer a promising basis for vaccine research and the use of anti-E2 antibodies as a means of passive immunization.
Collapse
Affiliation(s)
- Anne Olbrich
- Laboratory for Clinical and Experimental Hepatology, Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Clinic Leipzig, Leipzig, Germany
| | - Hedda Wardemann
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Stephan Böhm
- Laboratory for Clinical and Experimental Hepatology, Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Clinic Leipzig, Leipzig, Germany.,Max von Pettenkofer Institute, Munich, Germany
| | - Karen Rother
- Laboratory for Clinical and Experimental Hepatology, Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Clinic Leipzig, Leipzig, Germany
| | - Che C Colpitts
- Inserm U1110, University of Strasbourg, France.,Division of Infection and Immunity, University College London, United Kingdom
| | - Florian Wrensch
- Clinic for Hepatology and Gastroenterology, Charité, CVK, Berlin, Germany
| | - Thomas F Baumert
- Clinic for Hepatology and Gastroenterology, Charité, CVK, Berlin, Germany
| | - Thomas Berg
- Laboratory for Clinical and Experimental Hepatology, Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Clinic Leipzig, Leipzig, Germany
| | - Julia Benckert
- Laboratory for Clinical and Experimental Hepatology, Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Clinic Leipzig, Leipzig, Germany.,Inserm U1110, University of Strasbourg, France
| |
Collapse
|