1
|
Funaguma S, Iida A, Saito Y, Tanboon J, De Los Reyes FV, Sonehara K, Goto YI, Okada Y, Hayashi S, Nishino I. Retrotrans-genomics identifies aberrant THE1B endogenous retrovirus fusion transcripts in the pathogenesis of sarcoidosis. Nat Commun 2025; 16:1318. [PMID: 39920152 PMCID: PMC11805910 DOI: 10.1038/s41467-025-56567-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
Transposon-like human element 1B (THE1B) originates from ancient retroviral sequences integrated into the primate genome approximately 50 million years ago, now accounting for at least 27,233 copies in the human genome, suggesting their extensive influence on human genomic architecture. Here we report identification of 19 THE1B fusion transcripts through short- and long-read RNA-seq analysis, 15 of which are previously unmapped, showing elevated expression in 16 individuals with sarcoid myopathy (SM), as compared to 400 controls with various other muscle diseases. Analysis of publicly available RNA-seq data indicated a correlation between the reduced expression of eight THE1B fusion transcripts and clinical improvement in individuals with cutaneous sarcoidosis receiving tofacitinib treatment. Single-cell or single-nucleus RNA-seq analyses of sarcoidosis not only confirmed these transcripts but also revealed a novel read-through transcript, SIRPB1-SIRPD, and TREM2.1, predominantly in granuloma-associated macrophages. The expression profiles of THE1B fusion transcripts in tuberculosis (TB) significantly differed from SM in single-cell RNA-seq data, suggesting that the differences between TB's caseous granulomas and sarcoidosis's non-caseous granulomas might be linked to disparate expression patterns of THE1B fusion transcripts. Our retrotrans-genomics approach has not only identified the genomic landscape of sarcoidosis but also provided new insights into its etiology.
Collapse
Affiliation(s)
- Shunsuke Funaguma
- Department of Clinical Genome Analysis, Medical Genome Center (MGC), National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Aritoshi Iida
- Department of Clinical Genome Analysis, Medical Genome Center (MGC), National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan.
| | - Yoshihiko Saito
- Department of Neuromuscular Research, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan
| | - Jantima Tanboon
- Department of Neuromuscular Research, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Kyuto Sonehara
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Yu-Ichi Goto
- MGC, NCNP, Kodaira, Tokyo, Japan
- National Center Biobank Network, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Yukinori Okada
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Japan
| | - Shinichiro Hayashi
- Department of Neuromuscular Research, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan
| | - Ichizo Nishino
- Department of Clinical Genome Analysis, Medical Genome Center (MGC), National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
- Department of Neuromuscular Research, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan
- Department of Genome Medicine Development, MGC, NCNP, Kodaira, Tokyo, Japan
| |
Collapse
|
2
|
Pasternack N, Paulsen O, Nath A. Characterization of novel human endogenous retrovirus structures on chromosomes 6 and 7. Front Genet 2025; 16:1498978. [PMID: 39931732 PMCID: PMC11807958 DOI: 10.3389/fgene.2025.1498978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Human endogenous retroviruses (HERV) represent nearly 8% of the human genome. Of these, HERV-K subtype HML-2 is a transposable element that plays a critical role in embryonic development and in the pathogenesis of several diseases. Quantification and characterization of these multiple HML-2 insertions in the human chromosome has been challenging due to their size, sequence homology with each other, and their repetitive nature. We examined a cohort of 222 individuals for HML-2 proviruses 6q14.1 and 7p22.1a, two loci that are capable of producing full-length viral proteins and have been previously implicated in several cancers, autoimmune disorders and neurodegenerative diseases, using long-read DNA sequencing. While the reference genome for both regions suggests these two loci are structurally dissimilar, we found that for both loci about 5% of individuals have a unique tandem repeat-like sequence (three long terminal repeat sequences sandwiching two internal, potentially protein coding sequences), while most individuals have a standard proviral structure (one internal region sandwiched by two long terminal repeats). Moreover, both proviruses can make full-length, or nearly full-length, HERV-K proteins in multiple transcription orientations. The amino acid sequences from different loci in the same transcriptional orientation share sequence homology with each other. These results demonstrate a clear, previously unreported, relationship between HML-2 loci 6q14.1 and 7p22.1a and highlight the utility of long-read sequencing to study repetitive elements. Future studies need to determine if these polymorphisms determine genetic susceptibility to diseases that are associated with them.
Collapse
Affiliation(s)
- Nicholas Pasternack
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, United States
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
3
|
Fu Y, Adler GL, Youssef P, Phan K, Halliday GM, Dzamko N, Kim WS. Human Endogenous Retrovirus K in Astrocytes Is Altered in Parkinson's Disease. Mov Disord 2025. [PMID: 39840837 DOI: 10.1002/mds.30128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/01/2025] [Accepted: 01/06/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the most common neurodegenerative movement disease. Human endogenous retroviruses (HERVs) are proviral remnants of ancient retroviral infection of germ cells that now constitute about 8% of the human genome. Under certain disease conditions, HERV genes are activated and partake in the disease process. However, virtually nothing is known about the pathological relationship, if any, between HERV and PD. OBJECTIVE The objectives of this study were to unravel the pathological relationship between human endogenous retrovirus K (HERV-K) and PD, determine the localization of HERV-K in the brain, determine whether HERV-K levels are altered in PD brain and blood, and examine whether HERV-K could serve as a biomarker for PD. METHODS In situ HERV-K and glial fibrillary acidic protein (GFAP) expression in the superior frontal and fusiform cortices of PD and control brain were analyzed using immunofluorescence and confocal microscopy. HERV-K load and copy number in PD and control blood were measured by digital droplet polymerase chain reaction and GFAP by single-molecule array. HERV-K load was analyzed in relation to the Hoehn and Yahr Scale and Movement Disorder Society Unified Parkinson's Disease Rating Scale Part III. RESULTS HERV-K is predominantly expressed in astrocytes and colocalized with astrocytic GFAP, with decreased expression of both HERV-K and GFAP in PD brain compared with controls. Consistent with this, HERV-K levels were decreased in PD blood compared with controls and were correlated to blood GFAP levels. HERV-K levels were inversely correlated to PD severity and duration. CONCLUSIONS These findings suggest that HERV-K is related to astrocyte function and to PD progression, and that HERV-K could be neuroprotective. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- YuHong Fu
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Gabrielle L Adler
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Priscilla Youssef
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Katherine Phan
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Nicolas Dzamko
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Woojin Scott Kim
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Shouman S, Hesham N, Salem TZ. Viruses and neurodegeneration: a growing concern. J Transl Med 2025; 23:46. [PMID: 39800721 PMCID: PMC11727702 DOI: 10.1186/s12967-024-06025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Neurodegenerative diseases (NDDs) cause a progressive loss of neurons. Since NDDs are multifactorial, the precise etiology varies on the basis of the type of disease and patient history. Cohort studies and case studies have demonstrated a potential link between viral infections and the onset or progression of NDDs. Recent findings concerning the mechanisms by which neuropathic infections occur have provided more insights into the importance of such connections. In this review, we aim to elaborate on the occurrence of the neuropathic effects of viruses from epidemiological, clinical, and biological perspectives while highlighting potential treatments and challenges. One of the key players in viral neuropathogenesis is neuroinflammation caused by the immune response to the virus; this can occur due to both neurotropic and nonneurotropic viruses. The COVID-19 pandemic has raised concerns about whether vaccines are essential for preventing viruses or whether vaccines may play a part in exacerbating or accelerating NDDs. By classifying viruses and the common NDDs associated with them and further delving into their cellular pathways, this review provides insights to advance the development of potential treatments and diagnostic methods.
Collapse
Affiliation(s)
- S Shouman
- Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - N Hesham
- Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
- Molecular Biology and Virology Laboratory (MBVL), Center for X-Ray Determination of the Structure of Matter (CXDS), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - T Z Salem
- Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt.
- Molecular Biology and Virology Laboratory (MBVL), Center for X-Ray Determination of the Structure of Matter (CXDS), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt.
| |
Collapse
|
5
|
Fernandes JPM, Garcia LP, Gouhie FA, Pereira RC, Santos DFD. Association between motor neuron disease and HIV infection: A systematic review of case reports. Int J STD AIDS 2025; 36:24-35. [PMID: 39361871 DOI: 10.1177/09564624241288283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
BACKGROUND Motor neuron disease (MND) is a well-known group of neurodegenerative diseases, with amyotrophic lateral sclerosis (ALS) being the most common form. Since 1985, a possible association between MND/ALS and HIV infection has been described. METHODS We performed a systematic review of case reports and case series involving people living with HIV with MND/ALS through PubMed, Bireme, Embase, and Lilacs databases. The risk of bias was assessed using the Joanna Briggs Institute (JBI) Critical Appraisal Tool for Case Reports. RESULTS We analyzed 36 articles presenting 88 cases. The mean age was 41.6 years. Antiretroviral therapy (ART) was used by 89.8% and riluzole by 16.9%. First signs and symptoms were similarly present on cervical/upper (25%) and lumbosacral/lower limbs (23.9%), mostly with fasciculations (69.8%) and hyperreflexia (58.8%). MND had a progressive course in 32.9% patients and a clinical improve in 54.6% following ART. The mean survival of the 32 patients who died was 12.3 months and the mean survival of the living patients was 62 months. Respiratory failure was the main cause of death (35.7%). CONCLUSIONS MND/ALS may present differently in the people living with HIV as a rapidly progressive disease in younger people but with the potential to improve weakness and survival through antiretroviral therapy.
Collapse
Affiliation(s)
| | | | | | | | - Diogo Fernandes Dos Santos
- School of Medicine, Federal University of Uberlândia (UFU), Uberlândia, Brazil
- Postgraduate Program in Health Sciences, School of Medicine, Federal University of Uberlândia (UFU), Uberlândia, Brazil
| |
Collapse
|
6
|
Duarte RRR, Nixon DF, Powell TR. Ancient viral DNA in the human genome linked to neurodegenerative diseases. Brain Behav Immun 2025; 123:765-770. [PMID: 39401554 DOI: 10.1016/j.bbi.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Human endogenous retroviruses (HERVs) are sequences in the human genome that originated from infections with ancient retroviruses during our evolution. Previous studies have linked HERVs to neurodegenerative diseases, but defining their role in aetiology has been challenging. Here, we used a retrotranscriptome-wide association study (rTWAS) approach to assess the relationships between genetic risk for neurodegenerative diseases and HERV expression in the brain, calculated with genomic precision. METHODS We analysed genetic association statistics pertaining to Alzheimer's disease, amyotrophic lateral sclerosis, multiple sclerosis, and Parkinson's disease, using HERV expression models calculated from 792 cortical samples. Robust risk factors were considered those that survived multiple testing correction in the primary analysis, which were also significant in conditional and joint analyses, and that had a posterior inclusion probability above 0.5 in fine-mapping analyses. RESULTS The primary analysis identified 12 HERV expression signatures associated with neurodegenerative disease susceptibility. We found one HERV expression signature robustly associated with amyotrophic lateral sclerosis on chromosome 12q14 (MER61_12q14.2) and one robustly associated with multiple sclerosis on chromosome 1p36 (ERVLE_1p36.32a). A co-expression analysis suggested that these HERVs are involved in homophilic cell adhesion via plasma membrane adhesion molecules. CONCLUSIONS We found HERV expression profiles robustly associated with amyotrophic lateral sclerosis and multiple sclerosis susceptibility, highlighting novel risk mechanisms underlying neurodegenerative disease, and offering potential new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rodrigo R R Duarte
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY, the United States of America.
| | - Douglas F Nixon
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, the United States of America
| | - Timothy R Powell
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY, the United States of America.
| |
Collapse
|
7
|
Bo M, Carta A, Cipriani C, Cavassa V, Simula ER, Huyen NT, Phan GTH, Noli M, Matteucci C, Sotgiu S, Balestrieri E, Sechi LA. HERVs Endophenotype in Autism Spectrum Disorder: Human Endogenous Retroviruses, Specific Immunoreactivity, and Disease Association in Different Family Members. Microorganisms 2024; 13:9. [PMID: 39858776 PMCID: PMC11767913 DOI: 10.3390/microorganisms13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Increasing evidence indicates that human endogenous retroviruses (HERVs) are important to human health and are an underexplored component of many diseases. Certain HERV families show unique expression patterns and immune responses in autism spectrum disorder (ASD) patients compared to healthy controls, suggesting their potential as biomarkers. Despite these interesting findings, the role of HERVs in ASD needs to be further investigated. In this review, we discuss recent advances in genetic research on ASD, with a particular emphasis on the implications of HERVs on neurodevelopment and future genomic initiatives aimed at discovering ASD-related genes through Artificial Intelligence. Given their pro-inflammatory and autoimmune characteristics, the existing literature suggests that HERVs may contribute to the onset or worsening of ASD in individuals with a genetic predisposition. Therefore, we propose that investigating their fundamental properties could not only improve existing therapies but also pave the way for new therapeutic strategies.
Collapse
Affiliation(s)
- Marco Bo
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy; (M.B.); (E.R.S.); (M.N.); (L.A.S.)
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, 07100 Sassari, Italy
| | - Alessandra Carta
- Unit of Child Neuropsychiatry, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.)
| | - Chiara Cipriani
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (C.M.)
| | - Vanna Cavassa
- Unit of Child Neuropsychiatry, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.)
| | - Elena Rita Simula
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy; (M.B.); (E.R.S.); (M.N.); (L.A.S.)
| | - Nguyen Thi Huyen
- Department of Immunology and Pathophysiology, Hue University of Medicine and Pharmacy, Hue City 53000, Vietnam; (N.T.H.); (G.T.H.P.)
| | - Giang Thi Hang Phan
- Department of Immunology and Pathophysiology, Hue University of Medicine and Pharmacy, Hue City 53000, Vietnam; (N.T.H.); (G.T.H.P.)
| | - Marta Noli
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy; (M.B.); (E.R.S.); (M.N.); (L.A.S.)
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, 07100 Sassari, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (C.M.)
| | - Stefano Sotgiu
- Unit of Child Neuropsychiatry, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.)
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (C.M.)
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy; (M.B.); (E.R.S.); (M.N.); (L.A.S.)
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, 07100 Sassari, Italy
| |
Collapse
|
8
|
Izydorczyk MB, Kalef-Ezra E, Horner DW, Zheng X, Holmes N, Toffoli M, Sahin ZG, Han Y, Mehta HH, Muzny DM, Ameur A, Sedlazeck FJ, Proukakis C. Single cell long read whole genome sequencing reveals somatic transposon activity in human brain. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.11.24317113. [PMID: 39606404 PMCID: PMC11601780 DOI: 10.1101/2024.11.11.24317113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The advent of single cell DNA sequencing revealed astonishing dynamics of genomic variability, but failed at characterizing smaller to mid size variants that on the germline level have a profound impact. In this work we discover novel dynamics in three brains utilizing single cell long-read sequencing. This provides key insights into the dynamic of the genomes of individual cells and further highlights brain specific activity of transposable elements.
Collapse
Affiliation(s)
- Michal B Izydorczyk
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Ester Kalef-Ezra
- Department of Clinical and Movement Neurosciences, Royal Free Campus, Queen Square Institute of Neurology, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Dominic W Horner
- Department of Clinical and Movement Neurosciences, Royal Free Campus, Queen Square Institute of Neurology, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Xinchang Zheng
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Marco Toffoli
- Department of Clinical and Movement Neurosciences, Royal Free Campus, Queen Square Institute of Neurology, University College London, London, UK
| | - Zeliha Gozde Sahin
- Department of Clinical and Movement Neurosciences, Royal Free Campus, Queen Square Institute of Neurology, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Yi Han
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Heer H Mehta
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Adam Ameur
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX, USA
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, Royal Free Campus, Queen Square Institute of Neurology, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
9
|
Deng W, Citu C, Liu A, Zhao Z. Dynamic dysregulation of retrotransposons in neurodegenerative diseases at the single-cell level. Genome Res 2024; 34:1687-1699. [PMID: 39424325 PMCID: PMC11529867 DOI: 10.1101/gr.279363.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024]
Abstract
Retrotransposable elements (RTEs) are common mobile genetic elements comprising ∼42% of the human genome. RTEs play critical roles in gene regulation and function, but how they are specifically involved in complex diseases is largely unknown. Here, we investigate the cellular heterogeneity of RTEs using 12 single-cell transcriptome profiles covering three neurodegenerative diseases, Alzheimer's disease (AD), Parkinson's disease, and multiple sclerosis. We identify cell type marker RTEs in neurons, astrocytes, oligodendrocytes, and oligodendrocyte precursor cells that are related to these diseases. The differential expression analysis reveals the landscape of dysregulated RTE expression, especially L1s, in excitatory neurons of multiple neurodegenerative diseases. Machine learning algorithms for predicting cell disease stage using a combination of RTE and gene expression features suggests dynamic regulation of RTEs in AD. Furthermore, we construct a single-cell atlas of retrotransposable elements in neurodegenerative disease (scARE) using these data sets and features. scARE has six feature analysis modules to explore RTE dynamics in a user-defined condition. To our knowledge, scARE represents the first systematic investigation of RTE dynamics at the single-cell level within the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Wankun Deng
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Citu Citu
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Andi Liu
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA;
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| |
Collapse
|
10
|
Dayama G, Gupta S, Connizzo BK, Labadorf AT, Myers RH, Lau NC. Transposable element small and long RNAs in aging brains and implications in Huntington's and Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619758. [PMID: 39484439 PMCID: PMC11526979 DOI: 10.1101/2024.10.22.619758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Transposable Elements (TEs) are implicated in aging and neurodegenerative disorders, but the impact of brain TE RNA dynamics on these phenomena is not fully understood. Therefore, we quantified TE RNA changes in aging post-mortem human and mouse brains and in the neurodegenerative disorders Huntington's Disease (HD) and Parkinson's Disease (PD). We tracked TE small RNAs (smRNAs) expression landscape to assess the relationship to the active processing from TE long RNAs (lnRNAs). Human brain transcriptomes from the BrainSpan Atlas displayed a significant shift of TE smRNA patterns at age 20 years, whereas aging mouse brains lacked any such marked change, despite clear shift in aging-associated mRNA levels. Human frontal cortex displayed pronounced sense TE smRNAs during aging with a negative relationship between the TE smRNAs and lnRNAs indicative of age associated regulatory effects. Our analysis revealed TE smRNAs dysregulation in HD, while PD showed a stronger impact on TE lnRNAs, potentially correlating with the early average age of death for HD relative to PD. Furthermore, TE-silencing factor TRIM28 was down-regulated only in aging human brains, possibly explaining the lack of substantial TE RNA changes in aging mouse brains. Our study suggests brain TE RNAs may serve as novel biomarkers of human brain aging and neurodegenerative disorders.
Collapse
|
11
|
de Azevedo SSD, Ribeiro-Alves M, Côrtes FH, Delatorre E, Hoagland B, Villela LM, Grinsztejn B, Veloso VG, Morgado MG, Souza TML, Bello G. HIV-1 controllers exhibit an enhanced antiretroviral innate state characterised by overexpression of p21 and MCPIP1 and silencing of ERVK-6 RNA expression. Mem Inst Oswaldo Cruz 2024; 119:e240071. [PMID: 39292108 PMCID: PMC11404982 DOI: 10.1590/0074-02760240071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/12/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV)-1 infection can activate the expression of human endogenous retroviruses (HERVs), particularly HERV-K (HML-2). HIV controllers (HICs) are rare people living with HIV (PLWHs) who naturally control HIV-1 replication and overexpress some cellular restriction factors that negatively regulate the LTR-driven transcription of HIV-1 proviruses. OBJECTIVES To understand the ability of HICs to control the expression of endogenous retroviruses. METHODS We measured endogenous retrovirus type K6 (ERVK-6) RNA expression in peripheral blood mononuclear cells (PBMCs) of HICs (n = 23), antiretroviral (ART)-suppressed subjects (n = 8), and HIV-1-negative (NEG) individuals (n = 10) and correlated the transcript expression of ERVK-6 with multiple HIV-1 cellular restriction factors. FINDINGS Our study revealed that ERVK-6 RNA expression in PBMCs from HICs was significantly downregulated compared with that in both the ART and NEG control groups. Moreover, we detected that ERVK-6 RNA levels in PBMCs across all groups were negatively correlated with the expression levels of p21 and MCPIP1, two cellular restriction factors that limit the activation of macrophages and T cells by downregulating the activity of NF-kB. MAIN CONCLUSIONS These findings support the hypothesis that HICs activate innate antiviral mechanisms that may simultaneously downregulate the transcription of both exogenous (HIV-1) and endogenous (ERVK-6) retroviruses. Future studies with larger cohorts should be performed to confirm this hypothesis and to explore the role of p21 and MCPIP1 in regulating HERV-K expression in physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Marcelo Ribeiro-Alves
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Pesquisa Clínica em DST/AIDS, Rio de Janeiro, RJ, Brasil
| | - Fernanda Heloise Côrtes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de AIDS & Imunologia Molecular, Rio de Janeiro, RJ, Brasil
| | - Edson Delatorre
- Universidade Federal do Espírito Santo, Centro de Ciências da Saúde, Departamento de Patologia, Laboratório de Genômica e Ecologia Viral, Vitória, ES, Brasil
| | - Brenda Hoagland
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Pesquisa Clínica em DST/AIDS, Rio de Janeiro, RJ, Brasil
| | - Larissa M Villela
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Pesquisa Clínica em DST/AIDS, Rio de Janeiro, RJ, Brasil
| | - Beatriz Grinsztejn
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Pesquisa Clínica em DST/AIDS, Rio de Janeiro, RJ, Brasil
| | - Valdilea Gonçalvez Veloso
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Pesquisa Clínica em DST/AIDS, Rio de Janeiro, RJ, Brasil
| | - Mariza G Morgado
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de AIDS & Imunologia Molecular, Rio de Janeiro, RJ, Brasil
| | - Thiago Moreno L Souza
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunofarmacologia, Rio de Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Rio de Janeiro, RJ, Brasil
| | - Gonzalo Bello
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de AIDS & Imunologia Molecular, Rio de Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Arbovírus e Vírus Hemorrágicos, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
12
|
Honda H, Sadashima S, Yoshimura M, Sakurada N, Koyama S, Yagita K, Hamasaki H, Noguchi H, Arahata H, Sasagasako N. Altered expression of human myxovirus resistance protein A in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 2024; 83:745-751. [PMID: 38916909 DOI: 10.1093/jnen/nlae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder. The etiology of sporadic ALS (sALS) has not yet been clarified. An increasing body of evidence suggests the involvement of viral infections and interferons (IFNs). Human myxovirus resistance protein A (MxA) is an IFN-induced dynamin-like GTPase that acts as a potent antiviral factor. This study examined MxA expression in ALS patient spinal cords using immunohistochemistry. Thirty-two cases of sALS (pathologically proven ALS-TDP), 10 non-ALS, other neurological disease control cases were examined. In most ALS cases, MxA cytoplasmic condensates were observed in the remaining spinal anterior horn neurons. The ALS group had a significantly higher rate of MxA-highly expressing neurons than the non-ALS group. Colocalization of MxA cytoplasmic condensate and transactive response DNA-binding protein 43 kDa (TDP-43)-positive inclusions was rarely observed. Because MxA has antiviral activity induced by IFNs, our results suggest that IFNs are involved in the pathogenesis of ALS in spinal cord anterior horn neurons. Our study also suggests that monitoring viral infections and IFN activation in patients with ALS may be critically important.
Collapse
Affiliation(s)
- Hiroyuki Honda
- Neuropathology Center, NHO, Omuta Hospital, Fukuoka, Japan
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Neurology, Department of Neurology, Neuro Muscular Center, NHO, Omuta Hospital, Fukuoka, Japan
| | - Shoko Sadashima
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Neurology, Brain Medical Hakata, Fukuoka, Japan
| | - Motoi Yoshimura
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Sachiko Koyama
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kaoru Yagita
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideomi Hamasaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideko Noguchi
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hajime Arahata
- Division of Neurology, Department of Neurology, Neuro Muscular Center, NHO, Omuta Hospital, Fukuoka, Japan
| | - Naokazu Sasagasako
- Division of Neurology, Department of Neurology, Neuro Muscular Center, NHO, Omuta Hospital, Fukuoka, Japan
| |
Collapse
|
13
|
Wang Y, Ge Y, Yan W, Wang L, Zhuang Z, He D. From smoke to stroke: quantifying the impact of smoking on stroke prevalence. BMC Public Health 2024; 24:2301. [PMID: 39180018 PMCID: PMC11344360 DOI: 10.1186/s12889-024-19754-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
PURPOSE The objective of this study is to assess the impact of smoking on stroke prevalence and to delineate the relationship between smoking-related factors and the risk of stroke, incorporating an analysis of demographic variations influencing this association. METHODS Our analysis encompassed 9,176 participants, evaluating clinical attributes alongside smoking-related characteristics such as duration of cigarette consumption, and levels of nicotine, tar, and carbon monoxide. We employed weighted univariate logistic regression and restricted cubic splines to examine the association between smoking indicators and stroke risk, complemented by subgroup analyses for demographic differentiation. RESULTS The overall prevalence of stroke in our cohort was 3.4%. Statistically significant associations were found between stroke incidence and factors such as age, gender, education, and marital status (p < 0.05). Adjusted logistic regression models showed increased odds ratios (ORs) for stroke with higher nicotine and carbon monoxide levels across progressively adjusted models: Model 1 (unadjusted), Model 2 (adjusted for age, gender), Model 3 (further adjusted for education, marital status, BMI, PIR), and Model 4 (fully adjusted for additional factors including hypertension, hyperlipidemia, diabetes, and drinking). Specifically, ORs for nicotine increased from 2.39 in Model 1 to 2.64 in Model 4; for carbon monoxide, from 1.10 to 1.11 over the same models.The threshold analysis using restricted cubic splines revealed critical points for stroke risk increase at smoke exposure levels of 410 units, tar 12 mg, nicotine 1.1 mg, and carbon monoxide 12 ppm. Above these thresholds, stroke risk escalates significantly. Additionally, the presence of family smoking history was associated with higher stroke risks compared to those without such history. CONCLUSION This study confirms that smoking significantly contributes to increased stroke risk, particularly through exposure to nicotine and carbon monoxide. The findings emphasize the necessity for tailored stroke prevention strategies that specifically address smoking behaviors and consider demographic susceptibilities. Incorporating smoking-related indicators into risk assessment models could enhance the precision of stroke prevention efforts.
Collapse
Affiliation(s)
- Yuntao Wang
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Ying Ge
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Wei Yan
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Lina Wang
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Zhenzhen Zhuang
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Daikun He
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
- Department of General Practice, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
14
|
Bo M, Manetti R, Biggio ML, Sechi LA. The Humoral Immune Response against Human Endogenous Retroviruses in Celiac Disease: A Case-Control Study. Biomedicines 2024; 12:1811. [PMID: 39200275 PMCID: PMC11351412 DOI: 10.3390/biomedicines12081811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND Celiac disease (CD) is an immune-mediated disease characterized by disruptions of the small intestine. Factors such as viral and bacterial infections can trigger CD. Recently, the reactivation of Human Endogenous Retroviruses (HERVs) has also been implicated, but little is known about their specific role in patients with celiac disease. METHODS The purpose of this study is to explore the humoral immune response mounted against epitopes derived from the envelope portion of three families of HERVs (HERV-K, HERV-H, and HERV-W) in CD patients. Reactivity against the HERV-K, HERV-H, and HERV-W env-su peptides was tested by indirect ELISAs in plasma of 40 patients with celiac disease and 41 age-matched healthy subjects (HCs). RESULTS HERV-K, HERV-H, and HERV-W env-su peptides triggered different antibody responses in CD patients compared to HCs, with a stronger reactivity (p = 0.0001). CONCLUSIONS Present results show, for the first time, that epitopes of HERV-K, HERV-H, and HERV-W are more recognized in patients with CD. Taking into consideration their proinflammatory and autoimmune features, this might suggest that HERVs may contribute to the development of CD or its exacerbation in genetically predisposed subjects. Finally, to elucidate the interplay between gut inflammation and HERVs during the inflammatory process, further studies are required. Those investigations should focus on the expression levels of HERVs and their relationship with the immune response, specifically examining anti-transglutaminase 2 (TG2) antibody levels under both gluten-free and gluten-containing dietary conditions.
Collapse
Affiliation(s)
- Marco Bo
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy;
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, 07100 Sassari, Italy
| | - Roberto Manetti
- Department of Medicine, Surgery and Pharmacology, University of Sassari, 07100 Sassari, Italy; (R.M.)
| | - Maria Luigia Biggio
- Department of Medicine, Surgery and Pharmacology, University of Sassari, 07100 Sassari, Italy; (R.M.)
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy;
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, 07100 Sassari, Italy
| |
Collapse
|
15
|
Censi ST, Mariani-Costantini R, Granzotto A, Tomassini V, Sensi SL. Endogenous retroviruses in multiple sclerosis: A network-based etiopathogenic model. Ageing Res Rev 2024; 99:102392. [PMID: 38925481 DOI: 10.1016/j.arr.2024.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
The present perspective article proposes an etiopathological model for multiple sclerosis pathogenesis and progression associated with the activation of human endogenous retroviruses. We reviewed preclinical, clinical, epidemiological, and evolutionary evidence indicating how the complex, multi-level interplay of genetic traits and environmental factors contributes to multiple sclerosis. We propose that endogenous retroviruses transactivation acts as a critical node in disease development. We also discuss the rationale for combined anti-retroviral therapy in multiple sclerosis as a disease-modifying therapeutic strategy. Finally, we propose that the immuno-pathogenic process triggered by endogenous retrovirus activation can be extended to aging and aging-related neurodegeneration. In this regard, endogenous retroviruses can be envisioned to act as epigenetic noise, favoring the proliferation of disorganized cellular subpopulations and accelerating system-specific "aging". Since inflammation and aging are two sides of the same coin (plastic dis-adaptation to external stimuli with system-specific degree of freedom), the two conditions may be epiphenomenal products of increased epigenomic entropy. Inflammation accelerates organ-specific aging, disrupting communication throughout critical systems of the body and producing symptoms. Overlapping neurological symptoms and syndromes may emerge from the activity of shared molecular networks that respond to endogenous retroviruses' reactivation.
Collapse
Affiliation(s)
- Stefano T Censi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy.
| | - Renato Mariani-Costantini
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Alberto Granzotto
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Valentina Tomassini
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy; Multiple Sclerosis Centre, Institute of Neurology, SS Annunziata Hospital, "G. d'Annunzio" University, Chieti, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti-Pescara, Italy; Multiple Sclerosis Centre, Institute of Neurology, SS Annunziata Hospital, "G. d'Annunzio" University, Chieti, Italy.
| |
Collapse
|
16
|
Pasternack N, Doucet-O'Hare T, Johnson K, Paulsen O, Nath A. Endogenous retroviruses are dysregulated in ALS. iScience 2024; 27:110147. [PMID: 38989463 PMCID: PMC11233923 DOI: 10.1016/j.isci.2024.110147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 07/12/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a universally fatal neurodegenerative disease with no cure. Human endogenous retroviruses (HERVs) have been implicated in its pathogenesis but their relevance to ALS is not fully understood. We examined bulk RNA-seq data from almost 2,000 ALS and unaffected control samples derived from the cortex and spinal cord. Using different methods of feature selection, including differential expression analysis and machine learning, we discovered that transcription of HERV-K loci 1q22 and 8p23.1 were significantly upregulated in the spinal cord of individuals with ALS. Additionally, we identified a subset of ALS patients with upregulated HERV-K expression in the cortex and spinal cord. We also found the expression of HERV-K loci 19q11 and 8p23.1 was correlated with protein coding genes previously implicated in ALS and dysregulated in ALS patients in this study. These results clarify the association of HERV-K and ALS and highlight specific genes in the pathobiology of late-stage ALS.
Collapse
Affiliation(s)
- Nicholas Pasternack
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Tara Doucet-O'Hare
- Neuro-Oncology Branch Stem Cell Team, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kory Johnson
- Bioinformatics Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
17
|
Wood TW, Henriques WS, Cullen HB, Romero M, Blengini CS, Sarathy S, Sorkin J, Bekele H, Jin C, Kim S, Chemiakine A, Khondker RC, Isola JV, Stout MB, Gennarino VA, Mogessie B, Jain D, Schindler K, Suh Y, Wiedenheft B, Berchowitz LE. The retrotransposon-derived capsid genes PNMA1 and PNMA4 maintain reproductive capacity. RESEARCH SQUARE 2024:rs.3.rs-4559920. [PMID: 39041030 PMCID: PMC11261967 DOI: 10.21203/rs.3.rs-4559920/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The human genome contains 24 gag-like capsid genes derived from deactivated retrotransposons conserved among eutherians. Although some of their encoded proteins retain the ability to form capsids and even transfer cargo, their fitness benefit has remained elusive. Here we show that the gag-like genes PNMA1 and PNMA4 support reproductive capacity during aging. Analysis of donated human ovaries shows that expression of both genes declines normally with age, while several PNMA1 and PNMA4 variants identified in genome-wide association studies are causally associated with low testosterone, altered puberty onset, or obesity. Six-week-old mice lacking either Pnma1 or Pnma4 are indistinguishable from wild-type littermates, but by six months the mutant mice become prematurely subfertile, with precipitous drops in sex hormone levels, gonadal atrophy, and abdominal obesity; overall they produce markedly fewer offspring than controls. These findings expand our understanding of factors that maintain human reproductive health and lend insight into the domestication of retrotransposon-derived genes.
Collapse
Affiliation(s)
- Thomas W.P. Wood
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - William S. Henriques
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Harrison B. Cullen
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Mayra Romero
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Cecilia S. Blengini
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Shreya Sarathy
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Julia Sorkin
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Hilina Bekele
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Chen Jin
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Seungsoo Kim
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alexei Chemiakine
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rishad C. Khondker
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - José V.V. Isola
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael B. Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Vincenzo A. Gennarino
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Columbia Stem Cell Initiative, New York, NY 10032, USA
- Initiative for Columbia Ataxia and Tremor, New York, NY 10032, USA
| | - Binyam Mogessie
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Devanshi Jain
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Karen Schindler
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Yousin Suh
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Luke E. Berchowitz
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s and the Aging Brain, New York, NY, USA
| |
Collapse
|
18
|
Ahmadi Ghezeldasht S, Mosavat A, Rezaee SA. Novel insights into human T-lymphotropic virus type-1 (HTLV-1) pathogenesis-host interactions in the manifestation of HTLV-1-associated myelopathy/tropical spastic paraparesis. Rev Med Virol 2024; 34:e2567. [PMID: 38937135 DOI: 10.1002/rmv.2567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/16/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Human T-lymphotropic virus type-1 (HTLV-1) was the first discovered human oncogenic retrovirus, the etiological agent of two serious diseases have been identified as adult T-cell leukaemia/lymphoma malignancy and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a debilitating chronic neuro-myelopathy. Despite more than 40 years of molecular, histopathological and immunological studies on HTLV-1-associated diseases, the virulence and pathogenicity of this virus are yet to be clarified. The reason why the majority of HTLV-1-infected individuals (∼95%) remain asymptomatic carriers is still unclear. The deterioration of the immune system towards oncogenicity and autoimmunity makes HTLV-1 a natural probe for the study of malignancy and neuro-inflammatory diseases. Additionally, its slow worldwide spreading has prompted public health authorities and researchers, as urged by the WHO, to focus on eradicating HTLV-1. In contrast, neither an effective therapy nor a protective vaccine has been introduced. This comprehensive review focused on the most relevant studies of the neuro-inflammatory propensity of HTLV-1-induced HAM/TSP. Such an emphasis on the virus-host interactions in the HAM/TSP pathogenesis will be critically discussed epigenetically. The findings may shed light on future research venues in designing and developing proper HTLV-1 therapeutics.
Collapse
Affiliation(s)
- Sanaz Ahmadi Ghezeldasht
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Inflammation and Inflammatory Diseases Division, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Adler GL, Le K, Fu Y, Kim WS. Human Endogenous Retroviruses in Neurodegenerative Diseases. Genes (Basel) 2024; 15:745. [PMID: 38927681 PMCID: PMC11202925 DOI: 10.3390/genes15060745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are DNA transposable elements that have integrated into the human genome via an ancestral germline infection. The potential importance of HERVs is underscored by the fact that they comprise approximately 8% of the human genome. HERVs have been implicated in the pathogenesis of neurodegenerative diseases, a group of CNS diseases characterized by a progressive loss of structure and function of neurons, resulting in cell death and multiple physiological dysfunctions. Much evidence indicates that HERVs are initiators or drivers of neurodegenerative processes in multiple sclerosis and amyotrophic lateral sclerosis, and clinical trials have been designed to target HERVs. In recent years, the role of HERVs has been explored in other major neurodegenerative diseases, including frontotemporal dementia, Alzheimer's disease and Parkinson's disease, with some interesting discoveries. This review summarizes and evaluates the past and current research on HERVs in neurodegenerative diseases. It discusses the potential role of HERVs in disease manifestation and neurodegeneration. It critically reviews antiretroviral strategies used in the therapeutic intervention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Gabrielle L. Adler
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Kelvin Le
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - YuHong Fu
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Woojin Scott Kim
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
20
|
Li X, Bedlack R. Evaluating emerging drugs in phase II & III for the treatment of amyotrophic lateral sclerosis. Expert Opin Emerg Drugs 2024; 29:93-102. [PMID: 38516735 DOI: 10.1080/14728214.2024.2333420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION Amyotrophic Lateral Sclerosis is a rapidly progressive motor neuron disorder causing severe disability and premature death. Owing to the advances in uncovering ALS pathophysiology, efficient clinical trial design and research advocacy program, several disease-modifying drugs have been approved for treating ALS. Despite this progress, ALS remains a rapidly disabling and life shortening condition. There is a critical need for more effective therapies. AREAS COVERED Here, we reviewed the emerging ALS therapeutics undergoing phase II & III clinical trials. To identify the investigational drugs, we searched ALS and phase II/III trials that are active and recruiting or not yet recruiting on clinicaltrials.gov and Pharmaprojects database. EXPERT OPINION The current pipeline is larger and more diverse than ever, with drugs targeting potential genetic and retroviral causes of ALS and drugs targeting a wide array of downstream pathways, including RNA metabolism, protein aggregation, integrated stress response and neuroinflammation.We remain most excited about those that target direct causes of ALS, e.g. antisense oligonucleotides targeting causative genes. Drugs that eliminate abnormal protein aggregates are also up-and-coming. Eventually, because of the heterogeneity of ALS pathophysiology, biomarkers that determine which biological events are most important for an individual ALS patient are needed.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Neurology, Duke University, Durham, NC, USA
| | | |
Collapse
|
21
|
Zhao Y, Xu K, Shu F, Zhang F. Neurotropic virus infection and neurodegenerative diseases: Potential roles of autophagy pathway. CNS Neurosci Ther 2024; 30:e14548. [PMID: 38082503 PMCID: PMC11163195 DOI: 10.1111/cns.14548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 06/11/2024] Open
Abstract
Neurodegenerative diseases (NDs) constitute a group of disorders characterized by the progressive deterioration of nervous system functionality. Currently, the precise etiological factors responsible for NDs remain incompletely elucidated, although it is probable that a combination of aging, genetic predisposition, and environmental stressors participate in this process. Accumulating evidence indicates that viral infections, especially neurotropic viruses, can contribute to the onset and progression of NDs. In this review, emerging evidence supporting the association between viral infection and NDs is summarized, and how the autophagy pathway mediated by viral infection can cause pathological aggregation of cellular proteins associated with various NDs is discussed. Furthermore, autophagy-related genes (ARGs) involved in Herpes simplex virus (HSV-1) infection and NDs are analyzed, and whether these genes could link HSV-1 infection to NDs is discussed. Elucidating the mechanisms underlying NDs is critical for developing targeted therapeutic approaches that prevent the onset and slow the progression of NDs.
Collapse
Affiliation(s)
- Yu‐jia Zhao
- Laboratory Animal CentreZunyi Medical UniversityZunyiGuizhouChina
| | - Kai‐fei Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiGuizhouChina
| | - Fu‐xing Shu
- Bioresource Institute for Healthy UtilizationZunyi Medical UniversityZunyiGuizhouChina
| | - Feng Zhang
- Laboratory Animal CentreZunyi Medical UniversityZunyiGuizhouChina
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
22
|
Al-Chalabi A, Andrews J, Farhan S. Recent advances in the genetics of familial and sporadic ALS. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:49-74. [PMID: 38802182 DOI: 10.1016/bs.irn.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
ALS shows complex genetic inheritance patterns. In about 5% to 10% of cases, there is a family history of ALS or a related condition such as frontotemporal dementia in a first or second degree relative, and for about 80% of such people a pathogenic gene variant can be identified. Such variants are also seen in people with no family history because of factor influencing the expression of genes, such as age. Genetic susceptibility factors also contribute to risk, and the heritability of ALS is between 40% and 60%. The genetic variants influencing ALS risk include single base changes, repeat expansions, copy number variants, and others. Here we review what is known of the genetic landscape and architecture of ALS.
Collapse
Affiliation(s)
- Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, King's College London, London, United Kingdom.
| | - Jinsy Andrews
- Department of Neurology, Columbia University, New York, NY, United States
| | - Sali Farhan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Montreal, QC, Canada; Department of Human Genetics, Montreal Neurological Institute-Hospital, Montreal, QC, Canada
| |
Collapse
|
23
|
Garcia-Montojo M, Fathi S, Rastegar C, Simula ER, Doucet-O'Hare T, Cheng YHH, Abrams RPM, Pasternack N, Malik N, Bachani M, Disanza B, Maric D, Lee MH, Wang H, Santamaria U, Li W, Sampson K, Lorenzo JR, Sanchez IE, Mezghrani A, Li Y, Sechi LA, Pineda S, Heiman M, Kellis M, Steiner J, Nath A. TDP-43 proteinopathy in ALS is triggered by loss of ASRGL1 and associated with HML-2 expression. Nat Commun 2024; 15:4163. [PMID: 38755145 PMCID: PMC11099023 DOI: 10.1038/s41467-024-48488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) proteinopathy in brain cells is the hallmark of amyotrophic lateral sclerosis (ALS) but its cause remains elusive. Asparaginase-like-1 protein (ASRGL1) cleaves isoaspartates, which alter protein folding and susceptibility to proteolysis. ASRGL1 gene harbors a copy of the human endogenous retrovirus HML-2, whose overexpression contributes to ALS pathogenesis. Here we show that ASRGL1 expression was diminished in ALS brain samples by RNA sequencing, immunohistochemistry, and western blotting. TDP-43 and ASRGL1 colocalized in neurons but, in the absence of ASRGL1, TDP-43 aggregated in the cytoplasm. TDP-43 was found to be prone to isoaspartate formation and a substrate for ASRGL1. ASRGL1 silencing triggered accumulation of misfolded, fragmented, phosphorylated and mislocalized TDP-43 in cultured neurons and motor cortex of female mice. Overexpression of ASRGL1 restored neuronal viability. Overexpression of HML-2 led to ASRGL1 silencing. Loss of ASRGL1 leading to TDP-43 aggregation may be a critical mechanism in ALS pathophysiology.
Collapse
Affiliation(s)
- Marta Garcia-Montojo
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Saeed Fathi
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Cyrus Rastegar
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Elena Rita Simula
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, Sassari, Italy
| | - Tara Doucet-O'Hare
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Y H Hank Cheng
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Rachel P M Abrams
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Nicholas Pasternack
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Nasir Malik
- Translational Neuroscience Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Muzna Bachani
- Translational Neuroscience Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Brianna Disanza
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Myoung-Hwa Lee
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Herui Wang
- Neuro-Oncology Branch, National Cancer Institute (NIH), Bethesda, MD, USA
| | - Ulisses Santamaria
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Wenxue Li
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kevon Sampson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Juan Ramiro Lorenzo
- Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CICPBA-UNCPBA, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro (FCV-UNCPBA), Tandil, Argentina
| | - Ignacio E Sanchez
- Protein Physiology Laboratory, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales and IQUIBICEN-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alexandre Mezghrani
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
- Centre de Biologie Structurale, Centre national de la recherche scientifique (CNRS), Montpellier, France
| | - Yan Li
- Protein/Peptide Sequencing Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Leonardo Antonio Sechi
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, Sassari, Italy
| | | | - Myriam Heiman
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manolis Kellis
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joseph Steiner
- Translational Neuroscience Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
24
|
Wood TWP, Henriques WS, Cullen HB, Romero M, Blengini CS, Sarathy S, Sorkin J, Bekele H, Jin C, Kim S, Chemiakine A, Khondker RC, Isola JVV, Stout MB, Gennarino VA, Mogessie B, Jain D, Schindler K, Suh Y, Wiedenheft B, Berchowitz LE. The retrotransposon - derived capsid genes PNMA1 and PNMA4 maintain reproductive capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.592987. [PMID: 38798495 PMCID: PMC11118267 DOI: 10.1101/2024.05.11.592987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The human genome contains 24 gag -like capsid genes derived from deactivated retrotransposons conserved among eutherians. Although some of their encoded proteins retain the ability to form capsids and even transfer cargo, their fitness benefit has remained elusive. Here we show that the gag -like genes PNMA1 and PNMA4 support reproductive capacity. Six-week-old mice lacking either Pnma1 or Pnma4 are indistinguishable from wild-type littermates, but by six months the mutant mice become prematurely subfertile, with precipitous drops in sex hormone levels, gonadal atrophy, and abdominal obesity; overall they produce markedly fewer offspring than controls. Analysis of donated human ovaries shows that expression of both genes declines normally with aging, while several PNMA1 and PNMA4 variants identified in genome-wide association studies are causally associated with low testosterone, altered puberty onset, or obesity. These findings expand our understanding of factors that maintain human reproductive health and lend insight into the domestication of retrotransposon-derived genes.
Collapse
|
25
|
Guedán A, Burley M, Caroe ER, Bishop KN. HIV-1 Capsid Rapidly Induces Long-Lived CPSF6 Puncta in Non-Dividing Cells, but Similar Puncta Already Exist in Uninfected T-Cells. Viruses 2024; 16:670. [PMID: 38793552 PMCID: PMC11125723 DOI: 10.3390/v16050670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
The HIV-1 capsid (CA) protein forms the outer shell of the viral core that is released into the cytoplasm upon infection. CA binds various cellular proteins, including CPSF6, that direct HIV-1 integration into speckle-associated domains in host chromatin. Upon HIV-1 infection, CPSF6 forms puncta in the nucleus. Here, we characterised these CPSF6 puncta further in HeLa cells, T-cells and macrophages and confirmed that integration and reverse transcription are not required for puncta formation. Indeed, we found that puncta formed very rapidly after infection, correlating with the time that CA entered the nucleus. In aphidicolin-treated HeLa cells and macrophages, puncta were detected for the length of the experiment, suggesting that puncta are only lost upon cell division. CA still co-localised with CPSF6 puncta at the latest time points, considerably after the peak of reverse transcription and integration. Intriguingly, the number of puncta induced in macrophages did not correlate with the MOI or the total number of nuclear speckles present in each cell, suggesting that CA/CPSF6 is only directed to a few nuclear speckles. Furthermore, we found that CPSF6 already co-localised with nuclear speckles in uninfected T-cells, suggesting that HIV-1 promotes a natural behaviour of CPSF6.
Collapse
Affiliation(s)
| | | | | | - Kate N. Bishop
- Retroviral Replication Laboratory, The Francis Crick Institute, London NW1 1AT, UK; (A.G.); (M.B.); (E.R.C.)
| |
Collapse
|
26
|
da Silva AL, Guedes BLM, Santos SN, Correa GF, Nardy A, Nali LHDS, Bachi ALL, Romano CM. Beyond pathogens: the intriguing genetic legacy of endogenous retroviruses in host physiology. Front Cell Infect Microbiol 2024; 14:1379962. [PMID: 38655281 PMCID: PMC11035796 DOI: 10.3389/fcimb.2024.1379962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
The notion that viruses played a crucial role in the evolution of life is not a new concept. However, more recent insights suggest that this perception might be even more expansive, highlighting the ongoing impact of viruses on host evolution. Endogenous retroviruses (ERVs) are considered genomic remnants of ancient viral infections acquired throughout vertebrate evolution. Their exogenous counterparts once infected the host's germline cells, eventually leading to the permanent endogenization of their respective proviruses. The success of ERV colonization is evident so that it constitutes 8% of the human genome. Emerging genomic studies indicate that endogenous retroviruses are not merely remnants of past infections but rather play a corollary role, despite not fully understood, in host genetic regulation. This review presents some evidence supporting the crucial role of endogenous retroviruses in regulating host genetics. We explore the involvement of human ERVs (HERVs) in key physiological processes, from their precise and orchestrated activities during cellular differentiation and pluripotency to their contributions to aging and cellular senescence. Additionally, we discuss the costs associated with hosting a substantial amount of preserved viral genetic material.
Collapse
Affiliation(s)
- Amanda Lopes da Silva
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Luiz Miranda Guedes
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Samuel Nascimento Santos
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Giovanna Francisco Correa
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ariane Nardy
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | | | - Andre Luis Lacerda Bachi
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Camila Malta Romano
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
27
|
Halcrow PW, Quansah DN, Kumar N, Steiner JP, Nath A, Geiger JD. HERV-K (HML-2) Envelope Protein Induces Mitochondrial Depolarization and Neurotoxicity via Endolysosome Iron Dyshomeostasis. J Neurosci 2024; 44:e0826232024. [PMID: 38383499 PMCID: PMC10993035 DOI: 10.1523/jneurosci.0826-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/08/2024] [Accepted: 02/10/2024] [Indexed: 02/23/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are associated with the pathogenesis of amyotrophic lateral sclerosis (ALS); a disease characterized by motor neuron degeneration and cell death. The HERV-K subtype HML-2 envelope protein (HERV-K Env) is expressed in the brain, spinal cord, and cerebrospinal fluid of people living with ALS and through CD98 receptor-linked interactions causes neurodegeneration. HERV-K Env-induced increases in oxidative stress are implicated in the pathogenesis of ALS, and ferrous iron (Fe2+) generates reactive oxygen species (ROS). Endolysosome stores of Fe2+ are central to iron trafficking and endolysosome deacidification releases Fe2+ into the cytoplasm. Because HERV-K Env is an arginine-rich protein that is likely endocytosed and arginine is a pH-elevating amino acid, it is important to determine HERV-K Env effects on endolysosome pH and whether HERV-K Env-induced neurotoxicity is downstream of Fe2+ released from endolysosomes. Here, we showed using SH-SY5Y human neuroblastoma cells and primary cultures of human cortical neurons (HCNs, information on age and sex was not available) that HERV-K Env (1) is endocytosed via CD98 receptors, (2) concentration dependently deacidified endolysosomes, (3) decreased endolysosome Fe2+ concentrations, (4) increased cytosolic and mitochondrial Fe2+ and ROS levels, (5) depolarized mitochondrial membrane potential, and (6) induced cell death, effects blocked by an antibody against the CD98 receptor and by the endolysosome iron chelator deferoxamine. Thus, HERV-K Env-induced increases in cytosolic and mitochondrial Fe2+ and ROS as well as cell death appear to be mechanistically caused by HERV-K Env endocytosis, endolysosome deacidification, and endolysosome Fe2+ efflux into the cytoplasm.
Collapse
Affiliation(s)
- Peter W. Halcrow
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202
| | - Darius N.K. Quansah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202
| | - Nirmal Kumar
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202
| | - Joseph P. Steiner
- Section for Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Avindra Nath
- Section for Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Jonathan D. Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202
| |
Collapse
|
28
|
Wang J, Lu X, Zhang W, Liu GH. Endogenous retroviruses in development and health. Trends Microbiol 2024; 32:342-354. [PMID: 37802660 DOI: 10.1016/j.tim.2023.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/08/2023]
Abstract
Endogenous retroviruses (ERVs) are evolutionary remnants of retroviral infections in which the viral genome became embedded as a dormant regulatory element within the host germline. When ERVs become activated, they comprehensively rewire genomic regulatory networks of the host and facilitate critical developmental events, such as preimplantation development and placentation, in a manner specific to species, developmental stage, and tissues. However, accumulating evidence suggests that aberrant ERV transcription compromises genome stability and has been implicated in cellular senescence and various pathogenic processes, underscoring the significance of host genomic surveillance mechanisms. Here, we revisit the prominent functions of ERVs in early development and highlight their emerging roles in mammalian post-implantation development and organogenesis. We also discuss their implications for aging and pathological processes such as microbial infection, immune response. Furthermore, we discuss recent advances in stem-cell-based models, single-cell omics, and genome editing technologies, which serve as beacons illuminating the versatile nature of ERVs in mammalian development and health.
Collapse
Affiliation(s)
- Jichang Wang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China.
| |
Collapse
|
29
|
Li T, Qian K, Han J, Liu Y, Jia L, Wang X, Li T, Zhang B, Li J, Li H, Dou L, Li L. Higher Expression of Human Endogenous Retrovirus-K was Observed in Peripheral B Lymphocytes of Leukemia and Lymphoma Patients. AIDS Res Hum Retroviruses 2024; 40:268-279. [PMID: 38009220 DOI: 10.1089/aid.2023.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023] Open
Abstract
Hematological malignant tumors (HMTs) are serious diseases that threaten human health and life with high mortality. Therefore, it is necessary to develop novel strategies for diagnosis and treatment. Human endogenous retroviruses (HERVs) have recently attracted increasing attention as potential targets for cancer diagnosis and therapy. In this study, we explored the association between HERV-K expression levels and HMTs development. Clinical data and peripheral blood samples were collected from 236 leukemia, 384 lymphoma patients, and 69 healthy controls. Quantitative polymerase chain reaction was used to detect the expression of HERV-K gag, pol, and env genes in peripheral blood mononuclear cells or different cell subpopulations. Differently expressed HERV-K genes were further tested by using deep sequencing method, and further analyzed with gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. B cell- and T cell-related cytokines in patients were also detected by enzyme-linked immunosorbent assay (ELISA). The results showed that the expression levels of the HERV-K gag, pol, and env genes in patients were significantly higher than in healthy controls. There was a correlation between the expression level of HERV-K and the clinicopathological parameters of leukemia patients. HERV-K expression was increased in the B lymphocytes of leukemia and lymphoma patients, but not in the T cells or neutrophils. The GO and KEGG analyses showed that abnormal expression of the HERV-K locus in patients affected immune regulation. The analysis of cytokines proved that the B cell-related cytokines, including interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-10, tumor necrosis factor (TNF)-α, and interferon-gamma, were significantly decreased in patients, while the T cell-related cytokines, including IL-3, IL-12, and TNF-β, were not significantly changed. In conclusion, HERV-K genes might participate in the occurrence and development of leukemia and lymphoma, and might be biomarkers for the detection or evaluation of leukemia and lymphoma.
Collapse
Affiliation(s)
- Tianfu Li
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Kun Qian
- Nankai University School of Medicine, Tianjin, China
| | - Jingwan Han
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yongjian Liu
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lei Jia
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaolin Wang
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tianyi Li
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bohan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jingyun Li
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hanping Li
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Liping Dou
- Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
30
|
Banazadeh M, Abiri A, Poortaheri MM, Asnaashari L, Langarizadeh MA, Forootanfar H. Unexplored power of CRISPR-Cas9 in neuroscience, a multi-OMICs review. Int J Biol Macromol 2024; 263:130413. [PMID: 38408576 DOI: 10.1016/j.ijbiomac.2024.130413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/27/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The neuroscience and neurobiology of gene editing to enhance learning and memory is of paramount interest to the scientific community. The advancements of CRISPR system have created avenues to treat neurological disorders by means of versatile modalities varying from expression to suppression of genes and proteins. Neurodegenerative disorders have also been attributed to non-canonical DNA secondary structures by affecting neuron activity through controlling gene expression, nucleosome shape, transcription, translation, replication, and recombination. Changing DNA regulatory elements which could contribute to the fate and function of neurons are thoroughly discussed in this review. This study presents the ability of CRISPR system to boost learning power and memory, treat or cure genetically-based neurological disorders, and alleviate psychiatric diseases by altering the activity and the irritability of the neurons at the synaptic cleft through DNA manipulation, and also, epigenetic modifications using Cas9. We explore and examine how each different OMIC techniques can come useful when altering DNA sequences. Such insight into the underlying relationship between OMICs and cellular behaviors leads us to better neurological and psychiatric therapeutics by intelligently designing and utilizing the CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ardavan Abiri
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520, USA
| | | | - Lida Asnaashari
- Student Research Committee, Kerman Universiy of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Langarizadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
31
|
Dopkins N, Nixon DF. Activation of human endogenous retroviruses and its physiological consequences. Nat Rev Mol Cell Biol 2024; 25:212-222. [PMID: 37872387 DOI: 10.1038/s41580-023-00674-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
Human endogenous retroviruses (HERVs) are abundant sequences that persist within the human genome as remnants of ancient retroviral infections. These sequences became fixed and accumulate mutations or deletions over time. HERVs have affected human evolution and physiology by providing a unique repertoire of coding and non-coding sequences to the genome. In healthy individuals, HERVs participate in immune responses, formation of syncytiotrophoblasts and cell-fate specification. In this Review, we discuss how endogenized retroviral motifs and regulatory sequences have been co-opted into human physiology and how they are tightly regulated. Infections and mutations can derail this regulation, leading to differential HERV expression, which may contribute to pathologies including neurodegeneration, pathological inflammation and oncogenesis. Emerging evidence demonstrates that HERVs are crucial to human health and represent an understudied facet of many diseases, and we therefore argue that investigating their fundamental properties could improve existing therapies and help develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Nicholas Dopkins
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Douglas F Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
32
|
Le Breton A, Bettencourt MP, Gendrel AV. Navigating the brain and aging: exploring the impact of transposable elements from health to disease. Front Cell Dev Biol 2024; 12:1357576. [PMID: 38476259 PMCID: PMC10927736 DOI: 10.3389/fcell.2024.1357576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that constitute on average 45% of mammalian genomes. Their presence and activity in genomes represent a major source of genetic variability. While this is an important driver of genome evolution, TEs can also have deleterious effects on their hosts. A growing number of studies have focused on the role of TEs in the brain, both in physiological and pathological contexts. In the brain, their activity is believed to be important for neuronal plasticity. In neurological and age-related disorders, aberrant activity of TEs may contribute to disease etiology, although this remains unclear. After providing a comprehensive overview of transposable elements and their interactions with the host, this review summarizes the current understanding of TE activity within the brain, during the aging process, and in the context of neurological and age-related conditions.
Collapse
Affiliation(s)
| | | | - Anne-Valerie Gendrel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
33
|
Hossain MJ, Nyame P, Monde K. Species-Specific Transcription Factors Associated with Long Terminal Repeat Promoters of Endogenous Retroviruses: A Comprehensive Review. Biomolecules 2024; 14:280. [PMID: 38540701 PMCID: PMC10968565 DOI: 10.3390/biom14030280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 11/11/2024] Open
Abstract
Endogenous retroviruses (ERVs) became a part of the eukaryotic genome through endogenization millions of years ago. Moreover, they have lost their innate capability of virulence or replication. Nevertheless, in eukaryotic cells, they actively engage in various activities that may be advantageous or disadvantageous to the cells. The mechanisms by which transcription is triggered and implicated in cellular processes are complex. Owing to the diversity in the expression of transcription factors (TFs) in cells and the TF-binding motifs of viruses, the comprehensibility of ERV initiation and its impact on cellular functions are unclear. Currently, several factors are known to be related to their initiation. TFs that bind to the viral long-terminal repeat (LTR) are critical initiators. This review discusses the TFs shown to actively associate with ERV stimulation across species such as humans, mice, pigs, monkeys, zebrafish, Drosophila, and yeast. A comprehensive summary of the expression of previously reported TFs may aid in identifying similarities between animal species and endogenous viruses. Moreover, an in-depth understanding of ERV expression will assist in elucidating their physiological roles in eukaryotic cell development and in clarifying their relationship with endogenous retrovirus-associated diseases.
Collapse
Affiliation(s)
| | | | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (M.J.H.); (P.N.)
| |
Collapse
|
34
|
Pai SK. Innate immunity in brain aging and neurodegeneration. AGING BRAIN 2024; 5:100108. [PMID: 38327386 PMCID: PMC10847783 DOI: 10.1016/j.nbas.2024.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Affiliation(s)
- Sadashiva K. Pai
- Science Mission LLC, 3424 Canyon Lake Dr, Little Elm, TX 75068, United States
| |
Collapse
|
35
|
Mantovani F, Kitsou K, Magiorkinis G. HERVs: Expression Control Mechanisms and Interactions in Diseases and Human Immunodeficiency Virus Infection. Genes (Basel) 2024; 15:192. [PMID: 38397182 PMCID: PMC10888493 DOI: 10.3390/genes15020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are the result of retroviral infections acquired millions of years ago; nowadays, they compose around 8% of human DNA. Multiple mechanisms have been employed for endogenous retroviral deactivation, rendering replication and retrotransposition defective, while some of them have been co-opted to serve host evolutionary advantages. A pleiad of mechanisms retains the delicate balance of HERV expression in modern humans. Thus, epigenetic modifications, such as DNA and histone methylation, acetylation, deamination, chromatin remodeling, and even post-transcriptional control are recruited. In this review, we aim to summarize the main HERV silencing pathways, revisit paradigms of human disease with a HERV component, and emphasize the human immunodeficiency virus (HIV) and HERV interactions during HIV infection.
Collapse
Affiliation(s)
| | | | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (F.M.); (K.K.)
| |
Collapse
|
36
|
Zanrè V, Bellinato F, Cardile A, Passarini C, Monticelli J, Di Bella S, Menegazzi M. Lamivudine, Doravirine, and Cabotegravir Downregulate the Expression of Human Endogenous Retroviruses (HERVs), Inhibit Cell Growth, and Reduce Invasive Capability in Melanoma Cell Lines. Int J Mol Sci 2024; 25:1615. [PMID: 38338893 PMCID: PMC10855363 DOI: 10.3390/ijms25031615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
This study explores the impact of antiretroviral administration on the expression of human endogenous retroviruses (HERVs), cell growth, and invasive capability of human melanoma cell lines in culture. We investigated three antiretrovirals-lamivudine, doravirine, and cabotegravir-in A375, FO-1, and SK-Mel-28, BRAF-mutated, and in MeWo, P53-mutated, melanoma cell lines. The findings indicate a general capability of these drugs to downregulate the expression of HERV-K Pol and Env genes and hinder cell viability, mobility, and colony formation capacity of melanoma cells. The antiretroviral drugs also demonstrate selectivity against malignant cells, sparing normal human epithelial melanocytes. The study reveals that the integrase inhibitor cabotegravir is particularly effective in inhibiting cell growth and invasion across different cell lines in comparison with lamivudine and doravirine, which are inhibitors of the viral reverse transcriptase enzyme. The investigation further delves into the molecular mechanisms underlying the observed effects, highlighting the potential induction of ferroptosis, apoptosis, and alterations in cell cycle regulatory proteins. Our findings showed cytostatic effects principally revealed in A375, and SK-Mel-28 cell lines through a downregulation of retinoblastoma protein phosphorylation and/or cyclin D1 expression. Signs of ferroptosis were detected in both A375 cells and FO-1 cells by a decrease in glutathione peroxidase 4 and ferritin expression, as well as by an increase in transferrin protein levels. Apoptosis was also detected in FO-1 and SK-Mel-28, but only with cabotegravir treatment. Moreover, we explored the expression and activity of the stimulator of interferon genes (STING) protein and its correlation with programmed death-ligand 1 (PD-L1) expression. Both the STING activity and PD-L1 expression were decreased, suggesting that the antiretroviral treatments may counteract the detrimental effects of PD-L1 expression activation through the STING/interferon pathway triggered by HERV-K. Finally, this study underscores the potential therapeutic significance of cabotegravir in melanoma treatment. The findings also raise the prospect of using antiretroviral drugs to downregulate PD-L1 expression, potentially enhancing the therapeutic responses of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Valentina Zanrè
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy; (V.Z.); (A.C.); (C.P.)
| | - Francesco Bellinato
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Piazzale Stefani 1, 37126 Verona, Italy;
| | - Alessia Cardile
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy; (V.Z.); (A.C.); (C.P.)
| | - Carlotta Passarini
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy; (V.Z.); (A.C.); (C.P.)
| | - Jacopo Monticelli
- Infectious Diseases Unit, Trieste University Hospital (ASUGI), Piazza dell’Ospitale 1, 34129 Trieste, Italy;
| | - Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy;
| | - Marta Menegazzi
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy; (V.Z.); (A.C.); (C.P.)
| |
Collapse
|
37
|
Moreno-Martinez L, Macías-Redondo S, Strunk M, Guillén-Antonini MI, Lunetta C, Tarlarini C, Penco S, Calvo AC, Osta R, Schoorlemmer J. New Insights into Endogenous Retrovirus-K Transcripts in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2024; 25:1549. [PMID: 38338823 PMCID: PMC10855536 DOI: 10.3390/ijms25031549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Retroviral reverse transcriptase activity and the increased expression of human endogenous retroviruses (HERVs) are associated with amyotrophic lateral sclerosis (ALS). We were interested in confirming HERVK overexpression in the ALS brain, its use as an accessory diagnostic marker for ALS, and its potential interplay with neuroinflammation. Using qPCR to analyze HERVK expression in peripheral blood mononuclear cells (PBMCs) and in postmortem brain samples from ALS patients, no significant differences were observed between patients and control subjects. By contrast, we report alterations in the expression patterns of specific HERVK copies, especially in the brainstem. Out of 27 HERVK copies sampled, the relative expression of 17 loci was >1.2-fold changed in samples from ALS patients. In particular, the relative expression of two HERVK copies (Chr3-3 and Chr3-5) was significantly different in brainstem samples from ALS patients compared with controls. Further qPCR analysis of inflammation markers in brain samples revealed a significant increase in NLRP3 levels, while TNFA, IL6, and GZMB showed slight decreases. We cannot confirm global HERVK overexpression in ALS, but we can report the ALS-specific overexpression of selected HERVK copies in the ALS brain. Our data are compatible with the requirement for better patient stratification and support the potential importance of particular HERVK copies in ALS.
Collapse
Affiliation(s)
- Laura Moreno-Martinez
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; (L.M.-M.); (R.O.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), University of Zaragoza-CITA, C/Miguel, Servet 177, 50013 Zaragoza, Spain
| | - Sofía Macías-Redondo
- Instituto Aragonés de Ciencias de la Salud (IACS), Centro de Investigación Biomédica de Aragón (CIBA), 50009 Zaragoza, Spain; (S.M.-R.)
| | - Mark Strunk
- Instituto Aragonés de Ciencias de la Salud (IACS), Centro de Investigación Biomédica de Aragón (CIBA), 50009 Zaragoza, Spain; (S.M.-R.)
| | | | - Christian Lunetta
- NEMO (NEuroMuscular Omnicentre) Clinical Center, Fondazione Serena Onlus, 20162 Milan, Italy
- Neurorehabilitation Department of Milano Institute, Istituti Clinici Scientifici Maugeri IRCCS, 20138 Milan, Italy
- Medical Genetics Unit, Department of Laboratory Medicine, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (C.T.)
| | - Claudia Tarlarini
- Medical Genetics Unit, Department of Laboratory Medicine, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (C.T.)
| | - Silvana Penco
- Medical Genetics Unit, Department of Laboratory Medicine, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (C.T.)
| | - Ana Cristina Calvo
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; (L.M.-M.); (R.O.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), University of Zaragoza-CITA, C/Miguel, Servet 177, 50013 Zaragoza, Spain
| | - Rosario Osta
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; (L.M.-M.); (R.O.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), University of Zaragoza-CITA, C/Miguel, Servet 177, 50013 Zaragoza, Spain
| | - Jon Schoorlemmer
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Instituto Aragonés de Ciencias de la Salud (IACS), Centro de Investigación Biomédica de Aragón (CIBA), 50009 Zaragoza, Spain; (S.M.-R.)
- ARAID Foundation, 50009 Zaragoza, Spain
| |
Collapse
|
38
|
Singh S, Borkar MR, Bhatt LK. Transposable Elements: Emerging Therapeutic Targets in Neurodegenerative Diseases. Neurotox Res 2024; 42:9. [PMID: 38270797 DOI: 10.1007/s12640-024-00688-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are characterized by the progressive loss of neuronal function and structure. While several genetic and environmental factors have been implicated in the pathogenesis of these disorders, emerging evidence suggests that transposable elements (TEs), once considered "junk DNA," play a significant role in their development and progression. TEs are mobile genetic elements capable of moving within the genome, and their dysregulation has been associated with genomic instability, altered gene expression, and neuroinflammation. This review provides an overview of TEs, including long interspersed nuclear elements (LINEs), short interspersed nuclear elements (SINEs), and endogenous retroviruses (ERVs), mechanisms of repression and derepression, and their potential impact on neurodegeneration. The evidence linking TEs to AD, PD, and ALS by shedding light on the complex interactions between TEs and neurodegeneration has been discussed. Furthermore, the therapeutic potential of targeting TEs in neurodegenerative diseases has been explored. Understanding the role of TEs in neurodegeneration holds promise for developing novel therapeutic strategies aimed at mitigating disease progression and preserving neuronal health.
Collapse
Affiliation(s)
- Shrishti Singh
- Department of Pharmacology, Bhanuben Nanavati College of Pharmacy, SVKM's DrVile Parle (W), Mumbai, India
| | - Maheshkumar R Borkar
- Department of Pharmaceutical Chemistry, SVKM's Dr, Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, Bhanuben Nanavati College of Pharmacy, SVKM's DrVile Parle (W), Mumbai, India.
| |
Collapse
|
39
|
Hou Y, Li Y, Xiang JF, Tilahun K, Jiang J, Corces VG, Yao B. TDP-43 chronic deficiency leads to dysregulation of transposable elements and gene expression by affecting R-loop and 5hmC crosstalk. Cell Rep 2024; 43:113662. [PMID: 38184854 PMCID: PMC10857847 DOI: 10.1016/j.celrep.2023.113662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024] Open
Abstract
TDP-43 is an RNA/DNA-binding protein that forms aggregates in various brain disorders. TDP-43 engages in many aspects of RNA metabolism, but its molecular roles in regulating genes and transposable elements (TEs) have not been extensively explored. Chronic TDP-43 knockdown impairs cell proliferation and cellular responses to DNA damage. At the molecular level, TDP-43 chronic deficiency affects gene expression either locally or distally by concomitantly altering the crosstalk between R-loops and 5-hydroxymethylcytosine (5hmC) in gene bodies and long-range enhancer/promoter interactions. Furthermore, TDP-43 knockdown induces substantial disease-relevant TE activation by influencing their R-loop and 5hmC homeostasis in a locus-specific manner. Together, our findings highlight the genomic roles of TDP-43 in modulating R-loop-5hmC coordination in coding genes, distal regulatory elements, and TEs, presenting a general and broad molecular mechanism underlying the contributions of proteinopathies to the etiology of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yingzi Hou
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jian-Feng Xiang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kedamawit Tilahun
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jie Jiang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
40
|
Dopkins N, Singh B, Michael S, Zhang P, Marston JL, Fei T, Singh M, Feschotte C, Collins N, Bendall ML, Nixon DF. Ribosomal profiling of human endogenous retroviruses in healthy tissues. BMC Genomics 2024; 25:5. [PMID: 38166631 PMCID: PMC10759522 DOI: 10.1186/s12864-023-09909-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are the germline embedded proviral fragments of ancient retroviral infections that make up roughly 8% of the human genome. Our understanding of HERVs in physiology primarily surrounds their non-coding functions, while their protein coding capacity remains virtually uncharacterized. Therefore, we applied the bioinformatic pipeline "hervQuant" to high-resolution ribosomal profiling of healthy tissues to provide a comprehensive overview of translationally active HERVs. We find that HERVs account for 0.1-0.4% of all translation in distinct tissue-specific profiles. Collectively, our study further supports claims that HERVs are actively translated throughout healthy tissues to provide sequences of retroviral origin to the human proteome.
Collapse
Affiliation(s)
- Nicholas Dopkins
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
| | - Bhavya Singh
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Stephanie Michael
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Panpan Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Jez L Marston
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Tongyi Fei
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Manvendra Singh
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Cedric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Nicholas Collins
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Matthew L Bendall
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Douglas F Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| |
Collapse
|
41
|
DeMarino C, Nath A, Zhuang Z, Doucet-O’Hare TT. Does the interplay between human endogenous retrovirus K and extracellular vesicles contribute to aging? EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:548-56. [PMID: 38606283 PMCID: PMC11007738 DOI: 10.20517/evcna.2023.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The role of extracellular vesicles (EVs), including retroviral-like particles (RVLPs), in pathogenic processes is currently a subject of active investigation. Several studies have identified mechanistic links between the increased presence of EVs and the process of senescence. A recent study reveals that the reverse transcribed complementary DNA (cDNA) of a human endogenous retroviral sequence can activate the innate immune system and result in tissue damage and/or the spread of cellular senescence to distant tissues. Several studies have linked EVs to age-related diseases, such as Alzheimer's disease and Parkinson's disease, and have included isolation of EVs from individuals with these diseases. Loss of epigenetic regulation, immune activation, and environmental stimuli can all lead to the expression of endogenous retroviruses and the incorporation of their proteins and transcripts into EVs. In addition, EVs disseminating these endogenous retroviral components have now been shown to act in a paracrine manner in multiple human diseases. Further investigation of the connection between EVs containing endogenous retroviral protein products or nucleotides should be pursued in models of age-related diseases.
Collapse
Affiliation(s)
- Catherine DeMarino
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
42
|
Garza R, Sharma Y, Atacho DAM, Thiruvalluvan A, Abu Hamdeh S, Jönsson ME, Horvath V, Adami A, Ingelsson M, Jern P, Hammell MG, Englund E, Kirkeby A, Jakobsson J, Marklund N. Single-cell transcriptomics of human traumatic brain injury reveals activation of endogenous retroviruses in oligodendroglia. Cell Rep 2023; 42:113395. [PMID: 37967557 DOI: 10.1016/j.celrep.2023.113395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/05/2023] [Accepted: 10/20/2023] [Indexed: 11/17/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of chronic brain impairment and results in a robust, but poorly understood, neuroinflammatory response that contributes to the long-term pathology. We used single-nuclei RNA sequencing (snRNA-seq) to study transcriptomic changes in different cell populations in human brain tissue obtained acutely after severe, life-threatening TBI. This revealed a unique transcriptional response in oligodendrocyte precursors and mature oligodendrocytes, including the activation of a robust innate immune response, indicating an important role for oligodendroglia in the initiation of neuroinflammation. The activation of an innate immune response correlated with transcriptional upregulation of endogenous retroviruses in oligodendroglia. This observation was causally linked in vitro using human glial progenitors, implicating these ancient viral sequences in human neuroinflammation. In summary, this work provides insight into the initiating events of the neuroinflammatory response in TBI, which has therapeutic implications.
Collapse
Affiliation(s)
- Raquel Garza
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Yogita Sharma
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Diahann A M Atacho
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Arun Thiruvalluvan
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Sami Abu Hamdeh
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Marie E Jönsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Vivien Horvath
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Anita Adami
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden; Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada; Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Patric Jern
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Molly Gale Hammell
- Institute for Systems Genetics, Department of Neuroscience and Physiology, NYU Langone Health, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10003, USA
| | - Elisabet Englund
- Department of Clinical Sciences Lund, Division of Pathology, Lund University, Lund, Sweden
| | - Agnete Kirkeby
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark; Department of Experimental Medical Science, Wallenberg Center for Molecular Medicine and Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Johan Jakobsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden.
| | - Niklas Marklund
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
43
|
Shin W, Mun S, Han K. Human Endogenous Retrovirus-K (HML-2)-Related Genetic Variation: Human Genome Diversity and Disease. Genes (Basel) 2023; 14:2150. [PMID: 38136972 PMCID: PMC10742618 DOI: 10.3390/genes14122150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023] Open
Abstract
Human endogenous retroviruses (HERVs) comprise a significant portion of the human genome, making up roughly 8%, a notable comparison to the 2-3% represented by coding sequences. Numerous studies have underscored the critical role and importance of HERVs, highlighting their diverse and extensive influence on the evolution of the human genome and establishing their complex correlation with various diseases. Among HERVs, the HERV-K (HML-2) subfamily has recently attracted significant attention, integrating into the human genome after the divergence between humans and chimpanzees. Its insertion in the human genome has received considerable attention due to its structural and functional characteristics and the time of insertion. Originating from ancient exogenous retroviruses, these elements succeeded in infecting germ cells, enabling vertical transmission and existing as proviruses within the genome. Remarkably, these sequences have retained the capacity to form complete viral sequences, exhibiting activity in transcription and translation. The HERV-K (HML-2) subfamily is the subject of active debate about its potential positive or negative effects on human genome evolution and various pathologies. This review summarizes the variation, regulation, and diseases in human genome evolution arising from the influence of HERV-K (HML-2).
Collapse
Affiliation(s)
- Wonseok Shin
- NGS Clinical Laboratory, Division of Cancer Research, Dankook University Hospital, Cheonan 31116, Republic of Korea;
- Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea;
| | - Seyoung Mun
- Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea;
- College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
| | - Kyudong Han
- Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea;
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea
- Department of Bioconvergence Engineering, Dankook University, Yongin 16890, Republic of Korea
- R&D Center, HuNBiome Co., Ltd., Seoul 08507, Republic of Korea
| |
Collapse
|
44
|
Boeke JD, Burns KH, Chiappinelli KB, Classon M, Coffin JM, DeCarvalho DD, Dukes JD, Greenbaum B, Kassiotis G, Knutson SK, Levine AJ, Nath A, Papa S, Rios D, Sedivy J, Ting DT. Proceedings of the inaugural Dark Genome Symposium: November 2022. Mob DNA 2023; 14:18. [PMID: 37990347 PMCID: PMC10664479 DOI: 10.1186/s13100-023-00306-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023] Open
Abstract
In November 2022 the first Dark Genome Symposium was held in Boston, USA. The meeting was hosted by Rome Therapeutics and Enara Bio, two biotechnology companies working on translating our growing understanding of this vast genetic landscape into therapies for human disease. The spirit and ambition of the meeting was one of shared knowledge, looking to strengthen the network of researchers engaged in the field. The meeting opened with a welcome from Rosana Kapeller and Kevin Pojasek followed by a first session of field defining talks from key academics in the space. A series of panels, bringing together academia and industry views, were then convened covering a wide range of pertinent topics. Finally, Richard Young and David Ting gave their views on the future direction and promise for patient impact inherent in the growing understanding of the Dark Genome.
Collapse
Affiliation(s)
- Jef D Boeke
- Institute for Systems Genetics, NYU Langone Health, New York, NY, 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, 11201, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, 10016, USA
| | - Kathleen H Burns
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Marie Classon
- Pfizer Centre for Therapeutic Innovation, San Diego, USA
| | - John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, 02111, USA
| | - Daniel D DeCarvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joseph D Dukes
- Enara Bio Limited, Magdalen Centre, 1 Robert Robinson Avenue, The Oxford Science Park, Oxford, OX4 4GA, UK
| | - Benjamin Greenbaum
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - George Kassiotis
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Sarah K Knutson
- Rome Therapeutics, 201 Brookline Avenue, Suite 1001, Boston, MA, USA
| | - Arnold J Levine
- Simons Center for Systems Biology, Institute for Advanced Study, Princeton, NJ, USA
| | - Avindra Nath
- Section for Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sophie Papa
- Enara Bio Limited, Magdalen Centre, 1 Robert Robinson Avenue, The Oxford Science Park, Oxford, OX4 4GA, UK.
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Daniel Rios
- Rome Therapeutics, 201 Brookline Avenue, Suite 1001, Boston, MA, USA
| | - John Sedivy
- Center on the Biology of Aging, Brown University, Providence, RI, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - David T Ting
- Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
45
|
Dubowsky M, Theunissen F, Carr JM, Rogers ML. The Molecular Link Between TDP-43, Endogenous Retroviruses and Inflammatory Neurodegeneration in Amyotrophic Lateral Sclerosis: a Potential Target for Triumeq, an Antiretroviral Therapy. Mol Neurobiol 2023; 60:6330-6345. [PMID: 37450244 PMCID: PMC10533598 DOI: 10.1007/s12035-023-03472-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND), is a progressive neurological disorder, characterised by the death of upper and lower motor neurons. The aetiology of ALS remains unknown, and treatment options are limited. Endogenous retroviruses (ERVs), specifically human endogenous retrovirus type K (HERV-K), have been proposed to be involved in the propagation of neurodegeneration in ALS. ERVs are genomic remnants of ancient viral infection events, with most being inactive and not retaining the capacity to encode a fully infectious virus. However, some ERVs retain the ability to be activated and transcribed, and ERV transcripts have been found to be elevated within the brain tissue of MND patients. A hallmark of ALS pathology is altered localisation of the transactive response (TAR) DNA binding protein 43 kDa (TDP-43), which is normally found within the nucleus of neuronal and glial cells and is involved in RNA regulation. In ALS, TDP-43 aggregates within the cytoplasm and facilitates neurodegeneration. The involvement of ERVs in ALS pathology is thought to occur through TDP-43 and neuroinflammatory mediators. In this review, the proposed involvement of TDP-43, HERV-K and immune regulators on the onset and progression of ALS will be discussed. Furthermore, the evidence supporting a therapy based on targeting ERVs in ALS will be reviewed.
Collapse
Affiliation(s)
- Megan Dubowsky
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia.
| | - Frances Theunissen
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | - Jillian M Carr
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Mary-Louise Rogers
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
46
|
Simpson J, Kozak CA, Boso G. Evolutionary conservation of an ancient retroviral gagpol gene in Artiodactyla. J Virol 2023; 97:e0053523. [PMID: 37668369 PMCID: PMC10537755 DOI: 10.1128/jvi.00535-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/28/2023] [Indexed: 09/06/2023] Open
Abstract
The genomes of mammals contain fingerprints of past infections by ancient retroviruses that invaded the germline of their ancestors. Most of these endogenous retroviruses (ERVs) contain only remnants of the original retrovirus; however, on rare occasions, ERV genes can be co-opted for a beneficial host function. While most studies of co-opted ERVs have focused on envelope genes, including the syncytins that function in placentation, there are examples of co-opted gag genes including one we recently discovered in simian primates. Here, we searched for other intact gag genes in non-primate mammalian lineages. We began by examining the genomes of extant camel species, which represent a basal lineage in the order Artiodactyla. This identified a gagpol gene with a large open reading frame (ORF) (>3,500 bp) in the same orthologous location in Artiodactyla species but that is absent in other mammals. Thus, this ERV was fixed in the common ancestor of all Artiodactyla at least 64 million years ago. The amino acid sequence of this gene, termed ARTgagpol, contains recognizable matrix, capsid, nucleocapsid, and reverse transcriptase domains in ruminants, with an RNase H domain in camels and pigs. Phylogenetic analysis and structural prediction of its reverse transcriptase and RNase H domains groups ARTgagpol with gammaretroviruses. Transcriptomic analysis shows ARTgagpol expression in multiple tissues suggestive of a co-opted host function. These findings identify the oldest and largest ERV-derived gagpol gene with an intact ORF in mammals, an intriguing milestone in the co-evolution of mammals and retroviruses. IMPORTANCE Retroviruses are unique among viruses that infect animals as they integrate their reverse-transcribed double-stranded DNA into host chromosomes. When this happens in a germline cell, such as sperm, egg, or their precursors, the integrated retroviral copies can be passed on to the next generation as endogenous retroviruses (ERVs). On rare occasions, the genes of these ERVs can be domesticated by the host. In this study we used computational similarity searches to identify an ancient ERV with an intact viral gagpol gene in the genomes of camels that is also found in the same genomic location in other even-toed ungulates suggesting that it is at least 64 million years old. Broad tissue expression and predicted preservation of the reverse transcriptase fold of this protein suggest that it may be domesticated for a host function. This is the oldest known intact gagpol gene of an ancient retrovirus in mammals.
Collapse
Affiliation(s)
- J'Zaria Simpson
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Christine A. Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Guney Boso
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| |
Collapse
|
47
|
Runfola V, Giambruno R, Caronni C, Pannese M, Andolfo A, Gabellini D. MATR3 is an endogenous inhibitor of DUX4 in FSHD muscular dystrophy. Cell Rep 2023; 42:113120. [PMID: 37703175 PMCID: PMC10591880 DOI: 10.1016/j.celrep.2023.113120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/07/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common neuromuscular disorders and has no cure. Due to an unknown molecular mechanism, FSHD displays overlapping manifestations with the neurodegenerative disease amyotrophic lateral sclerosis (ALS). FSHD is caused by aberrant gain of expression of the transcription factor double homeobox 4 (DUX4), which triggers a pro-apoptotic transcriptional program resulting in inhibition of myogenic differentiation and muscle wasting. Regulation of DUX4 activity is poorly known. We identify Matrin 3 (MATR3), whose mutation causes ALS and dominant distal myopathy, as a cellular factor controlling DUX4 expression and activity. MATR3 binds to the DUX4 DNA-binding domain and blocks DUX4-mediated gene expression, rescuing cell viability and myogenic differentiation of FSHD muscle cells, without affecting healthy muscle cells. Finally, we characterize a shorter MATR3 fragment that is necessary and sufficient to directly block DUX4-induced toxicity to the same extent as the full-length protein. Collectively, our data suggest MATR3 as a candidate for developing a treatment for FSHD.
Collapse
Affiliation(s)
- Valeria Runfola
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Roberto Giambruno
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| | - Claudia Caronni
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria Pannese
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Annapaola Andolfo
- ProMeFa, Proteomics and Metabolomics Facility, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Davide Gabellini
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| |
Collapse
|
48
|
Gimenez J, Spalloni A, Cappelli S, Ciaiola F, Orlando V, Buratti E, Longone P. TDP-43 Epigenetic Facets and Their Neurodegenerative Implications. Int J Mol Sci 2023; 24:13807. [PMID: 37762112 PMCID: PMC10530927 DOI: 10.3390/ijms241813807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
Since its initial involvement in numerous neurodegenerative pathologies in 2006, either as a principal actor or as a cofactor, new pathologies implicating transactive response (TAR) DNA-binding protein 43 (TDP-43) are regularly emerging also beyond the neuronal system. This reflects the fact that TDP-43 functions are particularly complex and broad in a great variety of human cells. In neurodegenerative diseases, this protein is often pathologically delocalized to the cytoplasm, where it irreversibly aggregates and is subjected to various post-translational modifications such as phosphorylation, polyubiquitination, and cleavage. Until a few years ago, the research emphasis has been focused particularly on the impacts of this aggregation and/or on its widely described role in complex RNA splicing, whether related to loss- or gain-of-function mechanisms. Interestingly, recent studies have strengthened the knowledge of TDP-43 activity at the chromatin level and its implication in the regulation of DNA transcription and stability. These discoveries have highlighted new features regarding its own transcriptional regulation and suggested additional mechanistic and disease models for the effects of TPD-43. In this review, we aim to give a comprehensive view of the potential epigenetic (de)regulations driven by (and driving) this multitask DNA/RNA-binding protein.
Collapse
Affiliation(s)
- Juliette Gimenez
- Molecular Neurobiology Laboratory, Experimental Neuroscience, IRCCS Fondazione Santa Lucia (FSL), 00143 Rome, Italy; (A.S.); (P.L.)
| | - Alida Spalloni
- Molecular Neurobiology Laboratory, Experimental Neuroscience, IRCCS Fondazione Santa Lucia (FSL), 00143 Rome, Italy; (A.S.); (P.L.)
| | - Sara Cappelli
- Molecular Pathology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (S.C.); (E.B.)
| | - Francesca Ciaiola
- Molecular Neurobiology Laboratory, Experimental Neuroscience, IRCCS Fondazione Santa Lucia (FSL), 00143 Rome, Italy; (A.S.); (P.L.)
- Department of Systems Medicine, University of Roma Tor Vergata, 00133 Rome, Italy
| | - Valerio Orlando
- KAUST Environmental Epigenetics Program, Biological Environmental Sciences and Engineering Division BESE, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Emanuele Buratti
- Molecular Pathology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (S.C.); (E.B.)
| | - Patrizia Longone
- Molecular Neurobiology Laboratory, Experimental Neuroscience, IRCCS Fondazione Santa Lucia (FSL), 00143 Rome, Italy; (A.S.); (P.L.)
| |
Collapse
|
49
|
Akçimen F, Lopez ER, Landers JE, Nath A, Chiò A, Chia R, Traynor BJ. Amyotrophic lateral sclerosis: translating genetic discoveries into therapies. Nat Rev Genet 2023; 24:642-658. [PMID: 37024676 PMCID: PMC10611979 DOI: 10.1038/s41576-023-00592-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2023] [Indexed: 04/08/2023]
Abstract
Recent advances in sequencing technologies and collaborative efforts have led to substantial progress in identifying the genetic causes of amyotrophic lateral sclerosis (ALS). This momentum has, in turn, fostered the development of putative molecular therapies. In this Review, we outline the current genetic knowledge, emphasizing recent discoveries and emerging concepts such as the implication of distinct types of mutation, variability in mutated genes in diverse genetic ancestries and gene-environment interactions. We also propose a high-level model to synthesize the interdependent effects of genetics, environmental and lifestyle factors, and ageing into a unified theory of ALS. Furthermore, we summarize the current status of therapies developed on the basis of genetic knowledge established for ALS over the past 30 years, and we discuss how developing treatments for ALS will advance our understanding of targeting other neurological diseases.
Collapse
Affiliation(s)
- Fulya Akçimen
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | - Elia R Lopez
- Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute for Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Adriano Chiò
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
- Institute of Cognitive Sciences and Technologies, C.N.R, Rome, Italy
- Azienda Ospedaliero Universitaria Citta' della Salute e della Scienza, Turin, Italy
| | - Ruth Chia
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Bryan J Traynor
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA.
| |
Collapse
|
50
|
Steiner JP, Bachani M, Malik N, Li W, Tyagi R, Sampson K, Abrams RPM, Kousa Y, Solis J, Johnson TP, Nath A. Neurotoxic properties of the Zika virus envelope protein. Exp Neurol 2023; 367:114469. [PMID: 37327963 PMCID: PMC10527427 DOI: 10.1016/j.expneurol.2023.114469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/31/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Prenatal Zika virus (ZIKV) infection is a serious global concern as it can lead to brain injury and many serious birth defects, collectively known as congenital Zika syndrome. Brain injury likely results from viral mediated toxicity in neural progenitor cells. Additionally, postnatal ZIKV infections have been linked to neurological complications, yet the mechanisms driving these manifestations are not well understood. Existing data suggest that the ZIKV envelope protein can persist in the central nervous system for extended periods of time, but it is unknown if this protein can independently contribute to neuronal toxicity. Here we find that the ZIKV envelope protein is neurotoxic, leading to overexpression of poly adenosine diphosphate -ribose polymerase 1, which can induce parthanatos. Together, these data suggest that neuronal toxicity resulting from the envelope protein may contribute to the pathogenesis of post-natal ZIKV-related neurologic complications.
Collapse
Affiliation(s)
- Joseph P Steiner
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Muznabanu Bachani
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Nasir Malik
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Wenxue Li
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Richa Tyagi
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Kevon Sampson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Rachel P M Abrams
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Youssef Kousa
- Division of Neurology, Children's National Hospital, Washington, DC 20010, USA; Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Jamie Solis
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Tory P Johnson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Avindra Nath
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America; Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America.
| |
Collapse
|