1
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
2
|
Lindner K, Gavin AC. Isoform- and cell-state-specific APOE homeostasis and function. Neural Regen Res 2024; 19:2456-2466. [PMID: 38526282 PMCID: PMC11090418 DOI: 10.4103/nrr.nrr-d-23-01470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/17/2023] [Accepted: 12/26/2023] [Indexed: 03/26/2024] Open
Abstract
Apolipoprotein E is the major lipid transporter in the brain and an important player in neuron-astrocyte metabolic coupling. It ensures the survival of neurons under stressful conditions and hyperactivity by nourishing and detoxifying them. Apolipoprotein E polymorphism, combined with environmental stresses and/or age-related alterations, influences the risk of developing late-onset Alzheimer's disease. In this review, we discuss our current knowledge of how apolipoprotein E homeostasis, i.e. its synthesis, secretion, degradation, and lipidation, is affected in Alzheimer's disease.
Collapse
Affiliation(s)
- Karina Lindner
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anne-Claude Gavin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Lu J, Wu K, Sha X, Lin J, Chen H, Yu Z. TRPV1 alleviates APOE4-dependent microglial antigen presentation and T cell infiltration in Alzheimer's disease. Transl Neurodegener 2024; 13:52. [PMID: 39468688 PMCID: PMC11520887 DOI: 10.1186/s40035-024-00445-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/17/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Persistent innate and adaptive immune responses in the brain contribute to the progression of Alzheimer's disease (AD). APOE4, the most important genetic risk factor for sporadic AD, encodes apolipoprotein E4, which by itself is a potent modulator of immune response. However, little is known about the immune hub that governs the crosstalk between the nervous and the adaptive immune systems. Transient receptor potential vanilloid type 1 (TRPV1) channel is a ligand-gated, nonselective cation channel with Ca2+ permeability, which has been proposed as a neuroprotective target in AD. METHODS Using Ca2+-sensitive dyes, dynamic changes of Ca2+ in microglia were measured, including exogenous Ca2+ uptake and endoplasmic reticulum Ca2+ release. The mRFP-GFP-tagged LC3 plasmid was expressed in microglia to characterize the role of TRPV1 in the autophagic flux. Transcriptomic analyses and flow cytometry were performed to investigate the effects of APOE4 on brain microglia and T cells from APOE-targeted replacement mice with microglia-specific TRPV1 gene deficiency. RESULTS Both APOE4 microglia derived from induced pluripotent stem cells of AD patients and APOE4-related tauopathy mouse model showed significantly increased cholesterol biosynthesis and accumulation compared to their APOE3 counterparts. Further, cholesterol dysregulation was associated with persistent activation of microglia and elevation of major histocompatibility complex II-dependent antigen presentation in microglia, subsequently accompanied by T cell infiltration. In addition, TRPV1-mediated transient Ca2+ influx mitigated cholesterol biosynthesis in microglia by suppressing the transcriptional activation of sterol regulatory element-binding protein 2, promoted autophagic activity and reduced lysosomal cholesterol accumulation, which were sufficient to resolve excessive immune response and neurodegeneration in APOE4-related tauopathy mouse model. Moreover, microglia-specific deficiency of TRPV1 gene accelerated glial inflammation, T cell response and associated neurodegeneration in an APOE4-related tauopathy mouse model. CONCLUSIONS The findings provide new perspectives for the treatment of APOE4-dependent neurodegeneration including AD.
Collapse
Affiliation(s)
- Jia Lu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kexin Wu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xudong Sha
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiayuan Lin
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhihua Yu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
4
|
Lin PBC, Holtzman DM. Current insights into apolipoprotein E and the immune response in Alzheimer's disease. Immunol Rev 2024. [PMID: 39445515 DOI: 10.1111/imr.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder and the most common cause of dementia. Genetic analyses identified apolipoprotein E (APOE) as the strongest genetic risk for late-onset AD. Studies have shown that ApoE modulates AD pathogenesis in part by influencing amyloid-β (Aβ) deposition. However, ApoE also appears to regulate elements of AD via regulation of innate immune response, especially through microglial and astrocyte activation. In model systems, it also regulates changes in T-cells. This review focuses on the key findings that have advanced our understanding of the role of ApoE in the pathogenesis of AD and the current view of innate immune response regulated by ApoE in AD, while discussing open questions and areas for future research.
Collapse
Affiliation(s)
- Peter Bor-Chian Lin
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University, St. Louis, Missouri, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Lu W, Shue F, Kurti A, Jeevaratnam S, Macyczko JR, Roy B, Izhar T, Wang N, Bu G, Kanekiyo T, Li Y. Amyloid pathology and cognitive impairment in hAβ-KI and APP SAA-KI mouse models of Alzheimer's disease. Neurobiol Aging 2024; 145:13-23. [PMID: 39447490 DOI: 10.1016/j.neurobiolaging.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
The hAβ-KI and APPSAA-KI are two amyloid models that harbor mutations in the endogenous mouse App gene. Both hAβ-KI and APPSAA-KI mice contain a humanized Aβ sequence, and APPSAA-KI mice carry three additional familial AD mutations. We herein report that the Aβ levels and Aβ42/Aβ40 ratio in APPSAA-KI homozygotes are dramatically higher than those in hAβ-KI homozygotes at 14 months of age. In addition, APPSAA-KI mice display a widespread distribution of amyloid plaques in the brain, whereas the plaques are undetectable in hAβ-KI mice. Moreover, there are no sex differences in amyloid pathology in APPSAA-KI mice. Both APPSAA-KI and hAβ-KI mice exhibit cognitive impairments, wherein no significant differences are found between these two models, although APPSAA KI mice show a trend towards worse cognitive function. Notably, female hAβ-KI and APPSAA-KI mice have a more pronounced cognitive impairments compared to their respective males. Our findings suggest that Aβ humanization contributes to cognitive deficits in APPSAA-KI mice, and that amyloid deposition might not be closely associated with cognitive impairments in APPSAA-KI mice.
Collapse
Affiliation(s)
- Wenyan Lu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Francis Shue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Suren Jeevaratnam
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jesse R Macyczko
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Bhaskar Roy
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Taha Izhar
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ni Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yonghe Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
6
|
Chen Y, Holtzman DM. New insights into innate immunity in Alzheimer's disease: from APOE protective variants to therapies. Trends Immunol 2024; 45:768-782. [PMID: 39278789 DOI: 10.1016/j.it.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024]
Abstract
Recent discoveries of rare variants of human APOE may shed light on novel therapeutic strategies for Alzheimer's disease (AD). Here, we highlight the newly identified protective variant [APOE3 Christchurch (APOE3ch, R136S)] as an example. We summarize human AD and mouse amyloidosis and tauopathy studies from the past 5 years that have been associated with this R136S variant. We also propose a potential mechanism for how this point mutation might lead to protection against AD pathology, from the molecular level, to cells, to mouse models, and potentially, to humans. Lastly, we extend our discussion of the recent insights gained regarding different APOE variants to putative therapeutic approaches in AD.
Collapse
Affiliation(s)
- Yun Chen
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St Louis, St Louis, MO 63110, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St Louis, St Louis, MO 63110, USA.
| |
Collapse
|
7
|
Jin Y, Li F, Li Z, Ikezu TC, O’Leary J, Selvaraj M, Zhu Y, Martens YA, Koga S, Santhakumar H, Li Y, Lu W, You Y, Lolo K, DeTure M, Beasley AI, Davis MD, McLean PJ, Ross OA, Kanekiyo T, Ikezu T, Caulfield T, Carr J, Wszolek ZK, Bu G, Dickson DW, Zhao N. Modeling Lewy body disease with SNCA triplication iPSC-derived cortical organoids and identifying therapeutic drugs. SCIENCE ADVANCES 2024; 10:eadk3700. [PMID: 39259788 PMCID: PMC11389790 DOI: 10.1126/sciadv.adk3700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/02/2024] [Indexed: 09/13/2024]
Abstract
Aggregated α-synuclein (α-SYN) proteins, encoded by the SNCA gene, are hallmarks of Lewy body disease (LBD), affecting multiple brain regions. However, the specific mechanisms underlying α-SYN pathology in cortical neurons, crucial for LBD-associated dementia, remain unclear. Here, we recapitulated α-SYN pathologies in human induced pluripotent stem cells (iPSCs)-derived cortical organoids generated from patients with LBD with SNCA gene triplication. Single-cell RNA sequencing, combined with functional and molecular validation, identified synaptic and mitochondrial dysfunction in excitatory neurons exhibiting high expression of the SNCA gene, aligning with observations in the cortex of autopsy-confirmed LBD human brains. Furthermore, we screened 1280 Food and Drug Administration-approved drugs and identified four candidates (entacapone, tolcapone, phenazopyridine hydrochloride, and zalcitabine) that inhibited α-SYN seeding activity in real-time quaking-induced conversion assays with human brains, reduced α-SYN aggregation, and alleviated mitochondrial dysfunction in SNCA triplication organoids and excitatory neurons. Our findings establish human cortical LBD models and suggest potential therapeutic drugs targeting α-SYN aggregation for LBD.
Collapse
Affiliation(s)
- Yunjung Jin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Fuyao Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Zonghua Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Tadafumi C. Ikezu
- Department of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Justin O’Leary
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Yiyang Zhu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yuka A. Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Yonghe Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Wenyan Lu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yang You
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Kiara Lolo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Mary D. Davis
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Pamela J. McLean
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Tsuneya Ikezu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Thomas Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jonathan Carr
- Tygerberg Hospital and University of Stellenbosch, Tygerberg 7505, South Africa
| | | | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
8
|
Deza-Lougovski YI, Weiss LM, Horton HM, Sun A, Borbye-Lorenzen N, Skogstrand K, Holmgaard S, Andersen-Ranberg K, Lundmark VP, Börsch-Supan A, Börsch-Supan M, Rieckmann A. Circulating apoE4 protein levels from dried blood spots predict cognitive function in a large population-based survey setting. Alzheimers Dement 2024. [PMID: 39234633 DOI: 10.1002/alz.14224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION The apolipoprotein E (APOE) ε4 allele carries risk for cognitive impairment, but whether the level of circulating apoE4 protein in carriers affects cognition is unclear, as is how health and lifestyle impact circulating apoE4 levels. METHODS We assayed apoE4 protein levels in dried blood spots of 12,532 adults aged 50+. Regression analyses tested the likelihood of cognitive impairment between groups and within those with detected apoE4 protein. Predictors of circulating apoE4 were assessed. RESULTS We detected protein binding that indicates the presence of an APOE ε4 allele in 28.4% of this group. This group was more likely to have cognitive impairment, and this risk increases with age. However, higher apoE4 levels were associated with less likelihood of cognitive impairment within this group. Antihypertensive medication predicted apoE4 protein levels. DISCUSSION The apoE4 isoform is associated with a deficient protein and worse cognition. This association is modulated by the level of circulating apoE4 protein in ε4 carriers. HIGHLIGHTS An assay to quantify apoE4 levels from dried blood spot samples was applied. The apoE4 protein was detected as specific binding at ≥30,000 pg/mL in 28.4% of samples. Having the apoE4 protein was associated with worse cognitive performance. Higher apoE4 protein levels in those who have it were associated with better cognition. Cardiovascular factors influenced levels of apoE4 protein.
Collapse
Affiliation(s)
- Yacila I Deza-Lougovski
- Institute of Psychology, University of the Bundeswehr München, Neubiberg, Germany
- Max Planck Institute for Social Law and Social Policy, Munich, Germany
| | - Luzia M Weiss
- Max Planck Institute for Social Law and Social Policy, Munich, Germany
| | - Hannah M Horton
- Max Planck Institute for Social Law and Social Policy, Munich, Germany
- Munich Research Institute for the Economics of Aging and SHARE Analyses (MEA), Munich, Germany
| | - Aijing Sun
- Max Planck Institute for Social Law and Social Policy, Munich, Germany
- Munich Research Institute for the Economics of Aging and SHARE Analyses (MEA), Munich, Germany
| | - Nis Borbye-Lorenzen
- Department for Congenital Disorders, Center for Neonatal Screening, Statens Serum Institut, Copenhagen, Denmark
| | - Kristin Skogstrand
- Department for Congenital Disorders, Center for Neonatal Screening, Statens Serum Institut, Copenhagen, Denmark
| | - Solveig Holmgaard
- Department for Congenital Disorders, Center for Neonatal Screening, Statens Serum Institut, Copenhagen, Denmark
| | - Karen Andersen-Ranberg
- Department of Public Health Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, Odense, Denmark
- Department of Clinical Research Geriatric Research Unit, University of Southern Denmark, Odense, Denmark
| | - Vania Panes Lundmark
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Axel Börsch-Supan
- Max Planck Institute for Social Law and Social Policy, Munich, Germany
- Munich Research Institute for the Economics of Aging and SHARE Analyses (MEA), Munich, Germany
| | - Martina Börsch-Supan
- Munich Research Institute for the Economics of Aging and SHARE Analyses (MEA), Munich, Germany
- Survey of Health, Ageing and Retirement in Europe (SHARE Biomarker Project), Munich, Germany
| | - Anna Rieckmann
- Institute of Psychology, University of the Bundeswehr München, Neubiberg, Germany
- Max Planck Institute for Social Law and Social Policy, Munich, Germany
| |
Collapse
|
9
|
Kloske CM, Belloy ME, Blue EE, Bowman GR, Carrillo MC, Chen X, Chiba‐Falek O, Davis AA, Paolo GD, Garretti F, Gate D, Golden LR, Heinecke JW, Herz J, Huang Y, Iadecola C, Johnson LA, Kanekiyo T, Karch CM, Khvorova A, Koppes‐den Hertog SJ, Lamb BT, Lawler PE, Guen YL, Litvinchuk A, Liu C, Mahinrad S, Marcora E, Marino C, Michaelson DM, Miller JJ, Morganti JM, Narayan PS, Naslavsky MS, Oosthoek M, Ramachandran KV, Ramakrishnan A, Raulin A, Robert A, Saleh RNM, Sexton C, Shah N, Shue F, Sible IJ, Soranno A, Strickland MR, TCW J, Thierry M, Tsai L, Tuckey RA, Ulrich JD, van der Kant R, Wang N, Wellington CL, Weninger SC, Yassine HN, Zhao N, Bu G, Goate AM, Holtzman DM. Advancements in APOE and dementia research: Highlights from the 2023 AAIC Advancements: APOE conference. Alzheimers Dement 2024; 20:6590-6605. [PMID: 39031528 PMCID: PMC11497726 DOI: 10.1002/alz.13877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 07/22/2024]
Abstract
INTRODUCTION The apolipoprotein E gene (APOE) is an established central player in the pathogenesis of Alzheimer's disease (AD), with distinct apoE isoforms exerting diverse effects. apoE influences not only amyloid-beta and tau pathologies but also lipid and energy metabolism, neuroinflammation, cerebral vascular health, and sex-dependent disease manifestations. Furthermore, ancestral background may significantly impact the link between APOE and AD, underscoring the need for more inclusive research. METHODS In 2023, the Alzheimer's Association convened multidisciplinary researchers at the "AAIC Advancements: APOE" conference to discuss various topics, including apoE isoforms and their roles in AD pathogenesis, progress in apoE-targeted therapeutic strategies, updates on disease models and interventions that modulate apoE expression and function. RESULTS This manuscript presents highlights from the conference and provides an overview of opportunities for further research in the field. DISCUSSION Understanding apoE's multifaceted roles in AD pathogenesis will help develop targeted interventions for AD and advance the field of AD precision medicine. HIGHLIGHTS APOE is a central player in the pathogenesis of Alzheimer's disease. APOE exerts a numerous effects throughout the brain on amyloid-beta, tau, and other pathways. The AAIC Advancements: APOE conference encouraged discussions and collaborations on understanding the role of APOE.
Collapse
Affiliation(s)
| | - Michael E. Belloy
- Department of Neurology and Neurological SciencesStanford University, StanfordPalo AltoCaliforniaUSA
- NeuroGenomics and Informatics CenterWashington University School of MedicineSt. LouisMissouriUSA
- Department of NeurologyWashington University School of Medicine, St. Louis, MissouriSt. LouisMissouriUSA
| | - Elizabeth E. Blue
- Division of Medical GeneticsDepartment of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Institute for Public Health GeneticsUniversity of WashingtonSeattleWashingtonUSA
| | - Gregory R. Bowman
- Departments of Biochemistry & Biophysics and BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Xiaoying Chen
- Department of NeurologyHope Center for Neurological DisordersKnight Alzheimer's Disease Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - Ornit Chiba‐Falek
- Division of Translational Brain SciencesDepartment of NeurologyDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Albert A. Davis
- Department of Neurology Hope Center for Neurological Disorders Washington University School of MedicineSt. LouisMissouriUSA
| | | | - Francesca Garretti
- Ronald M. Loeb Center for Alzheimer's DiseaseNew YorkNew YorkUSA
- Department of Genetics & Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - David Gate
- The Ken & Ruth Davee Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Lesley R. Golden
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Jay W. Heinecke
- Department of MedicineUniversity of Washington, UV MedicineSeattleWashingtonUSA
| | - Joachim Herz
- Center for Translational Neurodegeneration ResearchUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Yadong Huang
- Gladstone Institute of Neurological DiseaseGladstone InstitutesSan FranciscoCaliforniaUSA
- Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNew YorkUSA
| | - Lance A. Johnson
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Takahisa Kanekiyo
- Department of NeuroscienceMayo Clinic JacksonvilleJacksonvilleFloridaUSA
| | - Celeste M. Karch
- Department of PsychiatryWashington University in St LouisSt. LouisMissouriUSA
| | - Anastasia Khvorova
- RNA Therapeutic InstituteUMass Chan Medical SchoolWorcesterMassachusettsUSA
| | - Sascha J. Koppes‐den Hertog
- Department of Functional GenomicsCenter for Neurogenomics and Cognitive Research (CNCR)VU University AmsterdamAmsterdamUSA
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam Neuroscience, Amsterdam University Medical CenterAmsterdamUSA
| | - Bruce T. Lamb
- Stark Neurosciences Research Institute Indiana University School of MedicineIndianapolisIndianaUSA
| | - Paige E. Lawler
- Department of NeurologyWashington University School of Medicine, St. Louis, MissouriSt. LouisMissouriUSA
- The Tracy Family SILQ CenterWashington University School of MedicineIndianapolisIndianaUSA
| | - Yann Le Guen
- Department of Neurology and Neurological SciencesStanford UniversityPalo AltoCaliforniaUSA
- Institut du Cerveau–Paris Brain Institute–ICMParisFrance
| | - Alexandra Litvinchuk
- Department of NeurologyHope Center for Neurological DisordersKnight Alzheimer's Disease Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - Chia‐Chen Liu
- Department of NeuroscienceMayo Clinic JacksonvilleJacksonvilleFloridaUSA
| | | | - Edoardo Marcora
- Department of Genetics and Genomic SciencesNash Family Department of NeuroscienceIcahn Genomics Institute; Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Claudia Marino
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Justin J. Miller
- Departments of Biochemistry & Biophysics and BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
| | - Josh M. Morganti
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of NeuroscienceUniversity of KentuckyLexingtonKentuckyUSA
| | - Priyanka S. Narayan
- Genetics and Biochemistry BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institute of Neurological Disorders and StrokeCenter for Alzheimer's and Related Dementias (CARD)National Institutes of HealthMarylandUSA
| | - Michel S. Naslavsky
- Human Genome and Stem‐cell Research CenterBiosciences InstituteUniversity of São PauloRua do MataoSão PauloBrazil
- Hospital Israelita Albert EinsteinAvenida Albert EinsteinSão PauloBrazil
| | - Marlies Oosthoek
- Neurochemistry LaboratoryDepartment of Laboratory MedicineVrije Universiteit Amsterdam, Amsterdam UMCAmsterdamNetherlands
| | - Kapil V. Ramachandran
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of NeuroscienceColumbia University Vagelos College of Physicians and SurgeonsNew YorkUSA
| | - Abhirami Ramakrishnan
- The Ken & Ruth Davee Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | | | - Aiko Robert
- Department of Functional GenomicsCenter for Neurogenomics and Cognitive Research (CNCR)VU University AmsterdamAmsterdamUSA
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam Neuroscience, Amsterdam University Medical CenterAmsterdamUSA
| | - Rasha N. M. Saleh
- Norwich Medical SchoolUniversity of East Anglia, UK Clinical and Chemical PathologyNorfolkUK
- Faculty of MedicineAlexandria UniversityAlexandria GovernorateEgypt
| | | | | | | | | | - Andrea Soranno
- Washington University in Saint Louis, St. Louis, Missouri, USASt. LouisMissouriUSA
| | - Michael R. Strickland
- Department of NeurologyWashington University School of Medicine, St. Louis, MissouriSt. LouisMissouriUSA
| | - Julia TCW
- Department of PharmacologyPhysiology & BiophysicsChobanian and Avedisian School of MedicineBoston UniversityBostonMassachusettsUSA
- Bioinformatics ProgramFaculty of Computing & Data SciencesBoston UniversityBostonMassachusettsUSA
| | - Manon Thierry
- Center for Cognitive NeurologyDepartment of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Li‐Huei Tsai
- Picower Institute for Learning and MemoryDepartment of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Ryan A. Tuckey
- Department of NeurologyCenter for Neurodegeneration and Experimental TherapeuticsMedical Scientist Training ProgramUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jason D. Ulrich
- Department of NeurologyHope Center for Neurological DisordersKnight Alzheimer's Disease Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - Rik van der Kant
- Department of Functional GenomicsCenter for Neurogenomics and Cognitive Research (CNCR)VU University AmsterdamAmsterdamUSA
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam Neuroscience, Amsterdam University Medical CenterAmsterdamUSA
| | - Na Wang
- Mayo Clinic RochesterRochesterMinnesotaUSA
| | - Cheryl L. Wellington
- Djavad Mowafaghian Centre for Brain Health Department of Pathology and Laboratory Medicine International Collaboration on Repair Discoveries School of Biomedical Engineering University of British ColumbiaVancouverCanada
| | | | - Hussein N. Yassine
- Department of NeurologyKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Na Zhao
- Department of NeuroscienceMayo Clinic JacksonvilleJacksonvilleFloridaUSA
| | - Guojun Bu
- Division of Life ScienceHong Kong University of Science and TechnologyClear Water BayKowloonHong Kong
| | - Alison M. Goate
- Department of Genetics & Genomic SciencesRonald M. Loeb Center for Alzheimer's diseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - David M. Holtzman
- Department of NeurologyHope Center for Neurological DisordersKnight Alzheimer's Disease Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
10
|
Moon HJ, Luo Y, Chugh D, Zhao L. Human apolipoprotein E glycosylation and sialylation: from structure to function. Front Mol Neurosci 2024; 17:1399965. [PMID: 39169951 PMCID: PMC11335735 DOI: 10.3389/fnmol.2024.1399965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/28/2024] [Indexed: 08/23/2024] Open
Abstract
Human apolipoprotein E (ApoE) was first identified as a polymorphic gene in the 1970s; however, the genetic association of ApoE genotypes with late-onset sporadic Alzheimer's disease (sAD) was only discovered 20 years later. Since then, intensive research has been undertaken to understand the molecular effects of ApoE in the development of sAD. Despite three decades' worth of effort and over 10,000 papers published, the greatest mystery in the ApoE field remains: human ApoE isoforms differ by only one or two amino acid residues; what is responsible for their significantly distinct roles in the etiology of sAD, with ApoE4 conferring the greatest genetic risk for sAD whereas ApoE2 providing exceptional neuroprotection against sAD. Emerging research starts to point to a novel and compelling hypothesis that the sialoglycans posttranslationally appended to human ApoE may serve as a critical structural modifier that alters the biology of ApoE, leading to the opposing impacts of ApoE isoforms on sAD and likely in the peripheral systems as well. ApoE has been shown to be posttranslationally glycosylated in a species-, tissue-, and cell-specific manner. Human ApoE, particularly in brain tissue and cerebrospinal fluid (CSF), is highly glycosylated, and the glycan chains are exclusively attached via an O-linkage to serine or threonine residues. Moreover, studies have indicated that human ApoE glycans undergo sialic acid modification or sialylation, a structural alteration found to be more prominent in ApoE derived from the brain and CSF than plasma. However, whether the sialylation modification of human ApoE has a biological role is largely unexplored. Our group recently first reported that the three major isoforms of human ApoE in the brain undergo varying degrees of sialylation, with ApoE2 exhibiting the most abundant sialic acid modification, whereas ApoE4 is the least sialylated. Our findings further indicate that the sialic acid moiety on human ApoE glycans may serve as a critical modulator of the interaction of ApoE with amyloid β (Aβ) and downstream Aβ pathogenesis, a prominent pathologic feature in AD. In this review, we seek to provide a comprehensive summary of this exciting and rapidly evolving area of ApoE research, including the current state of knowledge and opportunities for future exploration.
Collapse
Affiliation(s)
- Hee-Jung Moon
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Yan Luo
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Diksha Chugh
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
- Neuroscience Graduate Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
11
|
Jackson RJ, Hyman BT, Serrano-Pozo A. Multifaceted roles of APOE in Alzheimer disease. Nat Rev Neurol 2024; 20:457-474. [PMID: 38906999 DOI: 10.1038/s41582-024-00988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/23/2024]
Abstract
For the past three decades, apolipoprotein E (APOE) has been known as the single greatest genetic modulator of sporadic Alzheimer disease (AD) risk, influencing both the average age of onset and the lifetime risk of developing AD. The APOEε4 allele significantly increases AD risk, whereas the ε2 allele is protective relative to the most common ε3 allele. However, large differences in effect size exist across ethnoracial groups that are likely to depend on both global genetic ancestry and local genetic ancestry, as well as gene-environment interactions. Although early studies linked APOE to amyloid-β - one of the two culprit aggregation-prone proteins that define AD - in the past decade, mounting work has associated APOE with other neurodegenerative proteinopathies and broader ageing-related brain changes, such as neuroinflammation, energy metabolism failure, loss of myelin integrity and increased blood-brain barrier permeability, with potential implications for longevity and resilience to pathological protein aggregates. Novel mouse models and other technological advances have also enabled a number of therapeutic approaches aimed at either attenuating the APOEε4-linked increased AD risk or enhancing the APOEε2-linked AD protection. This Review summarizes this progress and highlights areas for future research towards the development of APOE-directed therapeutics.
Collapse
Affiliation(s)
- Rosemary J Jackson
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
| |
Collapse
|
12
|
Suri K, Ramesh M, Bhandari M, Gupta V, Kumar V, Govindaraju T, Murugan NA. Role of Amyloidogenic and Non-Amyloidogenic Protein Spaces in Neurodegenerative Diseases and their Mitigation Using Theranostic Agents. Chembiochem 2024; 25:e202400224. [PMID: 38668376 DOI: 10.1002/cbic.202400224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Indexed: 06/15/2024]
Abstract
Neurodegenerative diseases (NDDs) refer to a complex heterogeneous group of diseases which are associated with the accumulation of amyloid fibrils or plaques in the brain leading to progressive loss of neuronal functions. Alzheimer's disease is one of the major NDD responsible for 60-80 % of all dementia cases. Currently, there are no curative or disease-reversing/modifying molecules for many of the NDDs except a few such as donepezil, rivastigmine, galantamine, carbidopa and levodopa which treat the disease-associated symptoms. Similarly, there are very few FDA-approved tracers such as flortaucipir (Tauvid) for tau fibril imaging and florbetaben (Neuraceq), flutemetamol (Vizamyl), and florbetapir (Amyvid) for amyloid imaging available for diagnosis. Recent advances in the cryogenic electron microscopy reported distinctly different microstructures for tau fibrils associated with different tauopathies highlighting the possibility to develop tauopathy-specific imaging agents and therapeutics. In addition, it is important to identify the proteins that are associated with disease development and progression to know about their 3D structure to develop various diagnostics, therapeutics and theranostic agents. The current article discusses in detail the disease-associated amyloid and non-amyloid proteins along with their structural insights. We comprehensively discussed various novel proteins associated with NDDs and their implications in disease pathology. In addition, we document various emerging chemical compounds developed for diagnosis and therapy of different NDDs with special emphasis on theranostic agents for better management of NDDs.
Collapse
Affiliation(s)
- Kapali Suri
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| | - Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O., Bengaluru, 560064, Karnataka, India
| | - Mansi Bhandari
- Department of computer science and engineering, Jamia Hamdard University, Hamdard Nagar, New Delhi, Delhi, 110062
| | - Vishakha Gupta
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| | - Virendra Kumar
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O., Bengaluru, 560064, Karnataka, India
| | - N Arul Murugan
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| |
Collapse
|
13
|
Murakami R, Watanabe H, Hashimoto H, Kashiwagi-Hakozaki M, Hashimoto T, Karch CM, Iwatsubo T, Okano H. Inhibitory Roles of Apolipoprotein E Christchurch Astrocytes in Curbing Tau Propagation Using Human Pluripotent Stem Cell-Derived Models. J Neurosci 2024; 44:e1709232024. [PMID: 38649269 PMCID: PMC11170944 DOI: 10.1523/jneurosci.1709-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/08/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
Genetic variants in the apolipoprotein E (APOE) gene affect the onset and progression of Alzheimer's disease (AD). The APOE Christchurch (APOE Ch) variant has been identified as the most prominent candidate for preventing the onset and progression of AD. In this study, we generated isogenic APOE3Ch/3Ch human-induced pluripotent stem cells (iPSCs) from APOE3/3 healthy control female iPSCs and induced them into astrocytes. RNA expression analysis revealed the inherent resilience of APOE3Ch/3Ch astrocytes to induce a reactive state in response to inflammatory cytokines. Moreover, cytokine treatment changed astrocytic morphology with more complexity in APOE3/3 astrocytes, but not in APOE3Ch/3Ch astrocytes, indicating resilience of the rare variant to a reactive state. Interestingly, we observed robust morphological alterations containing more intricate processes when cocultured with iPSC-derived cortical neurons, in which APOE3Ch/3Ch astrocytes reduced complexity compared with APOE3/3 astrocytes. To assess the impacts of tau propagation effects, we next developed a sophisticated and sensitive assay utilizing cortical neurons derived from human iPSCs, previously generated from donors of both sexes. We showed that APOE3Ch/3Ch astrocytes effectively mitigated tau propagation within iPSC-derived neurons. This study provides important experimental evidence of the characteristic functions exhibited by APOE3Ch/3Ch astrocytes, thereby offering valuable insights for the advancement of novel clinical interventions in AD research.
Collapse
Affiliation(s)
- Rei Murakami
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Research fellow of Japan Society of the Promotion of Science (JSPS), Tokyo 102-0083, Japan
| | - Hirotaka Watanabe
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hideko Hashimoto
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mayu Kashiwagi-Hakozaki
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tadafumi Hashimoto
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-0031, Japan
| | - Celeste M Karch
- Department of Psychiatry and Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
14
|
Yu Y, Yu S, Battaglia G, Tian X. Amyloid-β in Alzheimer's disease: Structure, toxicity, distribution, treatment, and prospects. IBRAIN 2024; 10:266-289. [PMID: 39346788 PMCID: PMC11427815 DOI: 10.1002/ibra.12155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 10/01/2024]
Abstract
Amyloid-β (Aβ) is a pivotal biomarker in Alzheimer's disease (AD), attracting considerable attention from numerous researchers. There is uncertainty regarding whether clearing Aβ is beneficial or harmful to cognitive function. This question has been a central topic of research, especially given the lack of success in developing Aβ-targeted drugs for AD. However, with the Food and Drug Administration's approval of Lecanemab as the first anti-Aβ medication in July 2023, there is a significant shift in perspective on the potential of Aβ as a therapeutic target for AD. In light of this advancement, this review aims to illustrate and consolidate the molecular structural attributes and pathological ramifications of Aβ. Furthermore, it elucidates the determinants influencing its expression levels while delineating the gamut of extant Aβ-targeted pharmacotherapies that have been subjected to clinical or preclinical evaluation. Subsequently, a comprehensive analysis is presented, dissecting the research landscape of Aβ across the domains above, culminating in the presentation of informed perspectives. Concluding reflections contemplate the supplementary advantages conferred by nanoparticle constructs, conceptualized within the framework of multivalent theory, within the milieu of AD diagnosis and therapeutic intervention, supplementing conventional modalities.
Collapse
Affiliation(s)
- Yifan Yu
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I ReixacBarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| | - Shilong Yu
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I ReixacBarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| | - Giuseppe Battaglia
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I ReixacBarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| | - Xiaohe Tian
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I ReixacBarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
15
|
Naguib S, Torres ER, Lopez-Lee C, Fan L, Bhagwat M, Norman K, Lee SI, Zhu J, Ye P, Wong MY, Patel T, Mok SA, Luo W, Sinha S, Zhao M, Gong S, Gan L. APOE3-R136S mutation confers resilience against tau pathology via cGAS-STING-IFN inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591140. [PMID: 38712164 PMCID: PMC11071490 DOI: 10.1101/2024.04.25.591140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The Christchurch mutation (R136S) on the APOE3 (E3S/S) gene is associated with low tau pathology and slowdown of cognitive decline despite the causal PSEN1 mutation and high levels of amyloid beta pathology in the carrier1. However, the molecular effects enabling E3S/S mutation to confer protection remain unclear. Here, we replaced mouse Apoe with wild-type human E3 or E3S/S on a tauopathy background. The R136S mutation markedly mitigated tau load and protected against tau-induced synaptic loss, myelin loss, and spatial learning. Additionally, the R136S mutation reduced microglial interferon response to tau pathology both in vivo and in vitro, suppressing cGAS-STING activation. Treating tauopathy mice carrying wild-type E3 with cGAS inhibitor protected against tau-induced synaptic loss and induced similar transcriptomic alterations to those induced by the R136S mutation across brain cell types. Thus, cGAS-STING-IFN inhibition recapitulates the protective effects of R136S against tauopathy.
Collapse
Affiliation(s)
- Sarah Naguib
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Authors contributed equally
| | - Eileen Ruth Torres
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Authors contributed equally
| | - Chloe Lopez-Lee
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
- Authors contributed equally
| | - Li Fan
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Maitreyee Bhagwat
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Kendra Norman
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Se-In Lee
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Jingjie Zhu
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Pearly Ye
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Man Ying Wong
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Tark Patel
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Sue-Ann Mok
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Wenjie Luo
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Subhash Sinha
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Mingrui Zhao
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Shiaoching Gong
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Li Gan
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| |
Collapse
|
16
|
Kondkar AA, Azad TA, Sultan T, Khatlani T, Alshehri AA, Radhakrishnan R, Lobo GP, Alsirhy E, Almobarak FA, Osman EA, Al-Obeidan SA. APOE ε2-Carriers Are Associated with an Increased Risk of Primary Angle-Closure Glaucoma in Patients of Saudi Origin. Int J Mol Sci 2024; 25:4571. [PMID: 38674156 PMCID: PMC11050284 DOI: 10.3390/ijms25084571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This study investigated the association between apolipoprotein E (APOE) gene polymorphisms (rs429358 and rs7412) and primary angle-closure glaucoma (PACG) and pseudoexfoliation glaucoma (PXG) in a Saudi cohort. Genotyping of 437 DNA samples (251 controls, 92 PACG, 94 PXG) was conducted using PCR-based Sanger sequencing. The results showed no significant differences in the allele and genotype frequencies of rs429358 and rs7412 between the PACG/PXG cases and controls. Haplotype analysis revealed ε3 as predominant, followed by ε4 and ε2 alleles, with no significant variance in PACG/PXG. However, APOE genotype analysis indicated a significant association between ε2-carriers and PACG (odds ratio = 4.82, 95% CI 1.52-15.26, p = 0.007), whereas no notable association was observed with PXG. Logistic regression confirmed ε2-carriers as a significant predictor for PACG (p = 0.008), while age emerged as significant for PXG (p < 0.001). These findings suggest a potential role of ε2-carriers in PACG risk within the Saudi cohort. Further validation and larger-scale investigations are essential to elucidate the precise role of APOE in PACG pathogenesis and progression.
Collapse
Affiliation(s)
- Altaf A. Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia (E.A.); (S.A.A.-O.)
- Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
- King Saud University Medical City, King Saud University, Riyadh 11411, Saudi Arabia
| | - Taif A. Azad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia (E.A.); (S.A.A.-O.)
| | - Tahira Sultan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia (E.A.); (S.A.A.-O.)
| | - Tanvir Khatlani
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University of Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Abdulaziz A. Alshehri
- Department of Ophthalmology, Imam Abdulrahman Alfaisal Hospital, Riyadh 14723, Saudi Arabia
| | - Rakesh Radhakrishnan
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55347, USA; (R.R.)
| | - Glenn P. Lobo
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55347, USA; (R.R.)
| | - Ehab Alsirhy
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia (E.A.); (S.A.A.-O.)
| | - Faisal A. Almobarak
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia (E.A.); (S.A.A.-O.)
| | - Essam A. Osman
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia (E.A.); (S.A.A.-O.)
| | - Saleh A. Al-Obeidan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia (E.A.); (S.A.A.-O.)
- Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
| |
Collapse
|
17
|
Marino C, Perez‐Corredor P, O'Hare M, Heuer A, Chmielewska N, Gordon H, Chandrahas AS, Gonzalez‐Buendia L, Delgado‐Tirado S, Doan TH, Vanderleest TE, Arevalo‐Alquichire S, Obar RA, Ortiz‐Cordero C, Villegas A, Sepulveda‐Falla D, Kim LA, Lopera F, Mahley R, Huang Y, Quiroz YT, Arboleda‐Velasquez JF. APOE Christchurch-mimetic therapeutic antibody reduces APOE-mediated toxicity and tau phosphorylation. Alzheimers Dement 2024; 20:819-836. [PMID: 37791598 PMCID: PMC10916992 DOI: 10.1002/alz.13436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 10/05/2023]
Abstract
INTRODUCTION We discovered that the APOE3 Christchurch (APOE3Ch) variant may provide resistance to Alzheimer's disease (AD). This resistance may be due to reduced pathological interactions between ApoE3Ch and heparan sulfate proteoglycans (HSPGs). METHODS We developed and characterized the binding, structure, and preclinical efficacy of novel antibodies targeting human ApoE-HSPG interactions. RESULTS We found that one of these antibodies, called 7C11, preferentially bound ApoE4, a major risk factor for sporadic AD, and disrupts heparin-ApoE4 interactions. We also determined the crystal structure of a Fab fragment of 7C11 and used computer modeling to predict how it would bind to ApoE. When we tested 7C11 in mouse models, we found that it reduced recombinant ApoE-induced tau pathology in the retina of MAPT*P301S mice and curbed pTau S396 phosphorylation in brains of systemically treated APOE4 knock-in mice. Targeting ApoE-HSPG interactions using 7C11 antibody may be a promising approach to developing new therapies for AD.
Collapse
Affiliation(s)
- Claudia Marino
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Paula Perez‐Corredor
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Michael O'Hare
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Annie Heuer
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Natalia Chmielewska
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Harper Gordon
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Anita S. Chandrahas
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Lucia Gonzalez‐Buendia
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Santiago Delgado‐Tirado
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Tri H. Doan
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Timothy E. Vanderleest
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Said Arevalo‐Alquichire
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Robert A. Obar
- Department of Cell BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | | | - Andres Villegas
- Grupo de Neurociencias de Antioquia, Facultad de MedicinaUniversidad de AntioquiaMedellínColombia
| | - Diego Sepulveda‐Falla
- Molecular Neuropathology of Alzheimer's DiseaseInstitute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Leo A. Kim
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Facultad de MedicinaUniversidad de AntioquiaMedellínColombia
| | - Robert Mahley
- Gladstone Institute of Neurological DiseaseSan FranciscoCaliforniaUSA
- Gladstone Institute of Cardiovascular DiseaseSan FranciscoCaliforniaUSA
- Department of PathologyUCSFSan FranciscoCaliforniaUSA
- Department of MedicineUCSFSan FranciscoCaliforniaUSA
- Cardiovascular Research InstituteUCSFSan FranciscoCaliforniaUSA
| | - Yadong Huang
- Gladstone Institute of Neurological DiseaseSan FranciscoCaliforniaUSA
- Gladstone Institute of Cardiovascular DiseaseSan FranciscoCaliforniaUSA
- Department of PathologyUCSFSan FranciscoCaliforniaUSA
- Department of NeurologyUCSFSan FranciscoCaliforniaUSA
| | - Yakeel T. Quiroz
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Joseph F. Arboleda‐Velasquez
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
18
|
Chen Y, Song S, Parhizkar S, Lord J, Zhu Y, Strickland MR, Wang C, Park J, Travis Tabor G, Jiang H, Li K, Davis AA, Yuede CM, Colonna M, Ulrich JD, Holtzman DM. APOE3ch alters microglial response and suppresses Aβ-induced tau seeding and spread. Cell 2024; 187:428-445.e20. [PMID: 38086389 PMCID: PMC10842861 DOI: 10.1016/j.cell.2023.11.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023]
Abstract
A recent case report described an individual who was a homozygous carrier of the APOE3 Christchurch (APOE3ch) mutation and resistant to autosomal dominant Alzheimer's Disease (AD) caused by a PSEN1-E280A mutation. Whether APOE3ch contributed to the protective effect remains unclear. We generated a humanized APOE3ch knock-in mouse and crossed it to an amyloid-β (Aβ) plaque-depositing model. We injected AD-tau brain extract to investigate tau seeding and spreading in the presence or absence of amyloid. Similar to the case report, APOE3ch expression resulted in peripheral dyslipidemia and a marked reduction in plaque-associated tau pathology. Additionally, we observed decreased amyloid response and enhanced microglial response around plaques. We also demonstrate increased myeloid cell phagocytosis and degradation of tau aggregates linked to weaker APOE3ch binding to heparin sulfate proteoglycans. APOE3ch influences the microglial response to Aβ plaques, which suppresses Aβ-induced tau seeding and spreading. The results reveal new possibilities to target Aβ-induced tauopathy.
Collapse
Affiliation(s)
- Yun Chen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sihui Song
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samira Parhizkar
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer Lord
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yiyang Zhu
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael R. Strickland
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chanung Wang
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jiyu Park
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - G. Travis Tabor
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hong Jiang
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kevin Li
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Albert A. Davis
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carla M. Yuede
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jason D. Ulrich
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David M. Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
19
|
Zhou X, Wu X, Wang R, Han L, Li H, Zhao W. Mechanisms of 3-Hydroxyl 3-Methylglutaryl CoA Reductase in Alzheimer's Disease. Int J Mol Sci 2023; 25:170. [PMID: 38203341 PMCID: PMC10778631 DOI: 10.3390/ijms25010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide and has a high incidence in the elderly. Unfortunately, there is no effective therapy for AD owing to its complicated pathogenesis. However, the development of lipid-lowering anti-inflammatory drugs has heralded a new era in the treatment of Alzheimer's disease. Several studies in recent years have shown that lipid metabolic dysregulation and neuroinflammation are associated with the pathogenesis of AD. 3-Hydroxyl 3-methylglutaryl CoA reductase (HMGCR) is a rate-limiting enzyme in cholesterol synthesis that plays a key role in cholesterol metabolism. HMGCR inhibitors, known as statins, have changed from being solely lipid-lowering agents to neuroprotective compounds because of their effects on lipid levels and inflammation. In this review, we first summarize the main regulatory mechanism of HMGCR affecting cholesterol biosynthesis. We also discuss the pathogenesis of AD induced by HMGCR, including disordered lipid metabolism, oxidative stress, inflammation, microglial proliferation, and amyloid-β (Aβ) deposition. Subsequently, we explain the possibility of HMGCR as a potential target for AD treatment. Statins-based AD treatment is an ascent field and currently quite controversial; therefore, we also elaborate on the current application prospects and limitations of statins in AD treatment.
Collapse
Affiliation(s)
- Xun Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
- Department of Endocrinology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China;
| | - Xiaolang Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
| | - Rui Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
| | - Lu Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
| | - Huilin Li
- Department of Endocrinology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China;
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
| |
Collapse
|
20
|
Nelson MR, Liu P, Agrawal A, Yip O, Blumenfeld J, Traglia M, Kim MJ, Koutsodendris N, Rao A, Grone B, Hao Y, Yoon SY, Xu Q, De Leon S, Choenyi T, Thomas R, Lopera F, Quiroz YT, Arboleda-Velasquez JF, Reiman EM, Mahley RW, Huang Y. The APOE-R136S mutation protects against APOE4-driven Tau pathology, neurodegeneration and neuroinflammation. Nat Neurosci 2023; 26:2104-2121. [PMID: 37957317 PMCID: PMC10689245 DOI: 10.1038/s41593-023-01480-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 10/04/2023] [Indexed: 11/15/2023]
Abstract
Apolipoprotein E4 (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD), leading to earlier age of clinical onset and exacerbating pathologies. There is a critical need to identify protective targets. Recently, a rare APOE variant, APOE3-R136S (Christchurch), was found to protect against early-onset AD in a PSEN1-E280A carrier. In this study, we sought to determine if the R136S mutation also protects against APOE4-driven effects in LOAD. We generated tauopathy mouse and human iPSC-derived neuron models carrying human APOE4 with the homozygous or heterozygous R136S mutation. We found that the homozygous R136S mutation rescued APOE4-driven Tau pathology, neurodegeneration and neuroinflammation. The heterozygous R136S mutation partially protected against APOE4-driven neurodegeneration and neuroinflammation but not Tau pathology. Single-nucleus RNA sequencing revealed that the APOE4-R136S mutation increased disease-protective and diminished disease-associated cell populations in a gene dose-dependent manner. Thus, the APOE-R136S mutation protects against APOE4-driven AD pathologies, providing a target for therapeutic development against AD.
Collapse
Affiliation(s)
- Maxine R Nelson
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Peng Liu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Ayushi Agrawal
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Oscar Yip
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Jessica Blumenfeld
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Michela Traglia
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Min Joo Kim
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Nicole Koutsodendris
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Antara Rao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Brian Grone
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Yanxia Hao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Seo Yeon Yoon
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Qin Xu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Samuel De Leon
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Tenzing Choenyi
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Reuben Thomas
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia de la Universidad de Antioquia, Medellin, Colombia
| | - Yakeel T Quiroz
- Grupo de Neurociencias de Antioquia de la Universidad de Antioquia, Medellin, Colombia
- Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph F Arboleda-Velasquez
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, Phoenix, AZ, USA
- University of Arizona, Tucson, AZ, USA
| | - Robert W Mahley
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA.
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA.
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
21
|
Liu CC, Wang N, Chen Y, Inoue Y, Shue F, Ren Y, Wang M, Qiao W, Ikezu TC, Li Z, Zhao J, Martens Y, Doss SV, Rosenberg CL, Jeevaratnam S, Jia L, Raulin AC, Qi F, Zhu Y, Alnobani A, Knight J, Chen Y, Linares C, Kurti A, Fryer JD, Zhang B, Wu LJ, Kim BYS, Bu G. Cell-autonomous effects of APOE4 in restricting microglial response in brain homeostasis and Alzheimer's disease. Nat Immunol 2023; 24:1854-1866. [PMID: 37857825 DOI: 10.1038/s41590-023-01640-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 09/06/2023] [Indexed: 10/21/2023]
Abstract
Microglial involvement in Alzheimer's disease (AD) pathology has emerged as a risk-determining pathogenic event. While apolipoprotein E (APOE) is known to modify AD risk, it remains unclear how microglial apoE impacts brain cognition and AD pathology. Here, using conditional mouse models expressing apoE isoforms in microglia and central nervous system-associated macrophages (CAMs), we demonstrate a cell-autonomous effect of apoE3-mediated microglial activation and function, which are negated by apoE4. Expression of apoE3 in microglia/CAMs improves cognitive function, increases microglia surrounding amyloid plaque and reduces amyloid pathology and associated toxicity, whereas apoE4 expression either compromises or has no effects on these outcomes by impairing lipid metabolism. Single-cell transcriptomic profiling reveals increased antigen presentation and interferon pathways upon apoE3 expression. In contrast, apoE4 expression downregulates complement and lysosomal pathways, and promotes stress-related responses. Moreover, in the presence of mouse endogenous apoE, microglial apoE4 exacerbates amyloid pathology. Finally, we observed a reduction in Lgals3-positive responsive microglia surrounding amyloid plaque and an increased accumulation of lipid droplets in APOE4 human brains and induced pluripotent stem cell-derived microglia. Our findings establish critical isoform-dependent effects of microglia/CAM-expressed apoE in brain function and the development of amyloid pathology, providing new insight into how apoE4 vastly increases AD risk.
Collapse
Affiliation(s)
- Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Neurodegenerative Diseases Research Unit, Biogen, Cambridge, MA, USA.
| | - Na Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Yuanxin Chen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yasuteru Inoue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Francis Shue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yingxue Ren
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wenhui Qiao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Zonghua Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Jing Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yuka Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Sydney V Doss
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Lin Jia
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Fangfang Qi
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Yiyang Zhu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Alla Alnobani
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Joshua Knight
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yixing Chen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Cynthia Linares
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
22
|
Chaudhri EN, Abbott JM, Islam NN, Weber CA, Coban MA, Bilgili A, Squire JD, Mantia S, Wierenga KJ, Caulfield TR. Statistical Mechanics Metrics in Pairing and Parsing In Silico and Phenotypic Data of a Novel Genetic NFκB1 (c.T638A) Variant. Genes (Basel) 2023; 14:1855. [PMID: 37895204 PMCID: PMC10606260 DOI: 10.3390/genes14101855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Mutations in NFκB1, a transcriptional regulator of immunomodulating proteins, are a known cause of inborn errors of immunity. Our proband is a 22-year-old male with a diagnosis of common variable immunodeficiency (CVID), cytopenias with massive splenomegaly, and nodular regenerative hyperplasia of the liver. Genetic studies identified a novel, single-point mutation variant in NFκB1, c. T638A p. V213E. (2) Methods: Next-generation panel sequencing of the patient uncovered a novel single-point mutation in the NFκB1 gene that was modeled using the I-TASSER homology-modeling software, and molecular dynamics were assessed using the YASARA2 software (version 20.14.24). (3) Results: This variant replaces valine with glutamic acid at position 213 in the NFκB1 sequence. Molecular modeling and molecular dynamic studies showed altered dynamics in and around the rel homology domain, ankyrin regions, and death domain of the protein. We postulate that these changes alter overall protein function. (4) Conclusions: This case suggests the pathogenicity of a novel variant using protein-modeling techniques and molecular dynamic simulations.
Collapse
Affiliation(s)
- Eman N. Chaudhri
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; (E.N.C.); (J.M.A.); (N.N.I.); (C.A.W.); (A.B.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Jessica M. Abbott
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; (E.N.C.); (J.M.A.); (N.N.I.); (C.A.W.); (A.B.)
| | - Naeyma N. Islam
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; (E.N.C.); (J.M.A.); (N.N.I.); (C.A.W.); (A.B.)
| | - Caleb A. Weber
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; (E.N.C.); (J.M.A.); (N.N.I.); (C.A.W.); (A.B.)
| | - Mathew A. Coban
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Ahmet Bilgili
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; (E.N.C.); (J.M.A.); (N.N.I.); (C.A.W.); (A.B.)
| | | | - Sarah Mantia
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL 32224, USA (K.J.W.)
| | - Klaas J. Wierenga
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL 32224, USA (K.J.W.)
| | - Thomas R. Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; (E.N.C.); (J.M.A.); (N.N.I.); (C.A.W.); (A.B.)
| |
Collapse
|
23
|
Yang LG, March ZM, Stephenson RA, Narayan PS. Apolipoprotein E in lipid metabolism and neurodegenerative disease. Trends Endocrinol Metab 2023; 34:430-445. [PMID: 37357100 PMCID: PMC10365028 DOI: 10.1016/j.tem.2023.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/27/2023]
Abstract
Dysregulation of lipid metabolism has emerged as a central component of many neurodegenerative diseases. Variants of the lipid transport protein, apolipoprotein E (APOE), modulate risk and resilience in several neurodegenerative diseases including late-onset Alzheimer's disease (LOAD). Allelic variants of the gene, APOE, alter the lipid metabolism of cells and tissues and have been broadly associated with several other cellular and systemic phenotypes. Targeting APOE-associated metabolic pathways may offer opportunities to alter disease-related phenotypes and consequently, attenuate disease risk and impart resilience to multiple neurodegenerative diseases. We review the molecular, cellular, and tissue-level alterations to lipid metabolism that arise from different APOE isoforms. These changes in lipid metabolism could help to elucidate disease mechanisms and tune neurodegenerative disease risk and resilience.
Collapse
Affiliation(s)
- Linda G Yang
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Zachary M March
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Roxan A Stephenson
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Priyanka S Narayan
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA.; National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA; Center for Alzheimer's and Related Dementias (CARD), National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Lambert JC, Ramirez A, Grenier-Boley B, Bellenguez C. Step by step: towards a better understanding of the genetic architecture of Alzheimer's disease. Mol Psychiatry 2023; 28:2716-2727. [PMID: 37131074 PMCID: PMC10615767 DOI: 10.1038/s41380-023-02076-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/04/2023]
Abstract
Alzheimer's disease (AD) is considered to have a large genetic component. Our knowledge of this component has progressed over the last 10 years, thanks notably to the advent of genome-wide association studies and the establishment of large consortia that make it possible to analyze hundreds of thousands of cases and controls. The characterization of dozens of chromosomal regions associated with the risk of developing AD and (in some loci) the causal genes responsible for the observed disease signal has confirmed the involvement of major pathophysiological pathways (such as amyloid precursor protein metabolism) and opened up new perspectives (such as the central role of microglia and inflammation). Furthermore, large-scale sequencing projects are starting to reveal the major impact of rare variants - even in genes like APOE - on the AD risk. This increasingly comprehensive knowledge is now being disseminated through translational research; in particular, the development of genetic risk/polygenic risk scores is helping to identify the subpopulations more at risk or less at risk of developing AD. Although it is difficult to assess the efforts still needed to comprehensively characterize the genetic component of AD, several lines of research can be improved or initiated. Ultimately, genetics (in combination with other biomarkers) might help to redefine the boundaries and relationships between various neurodegenerative diseases.
Collapse
Affiliation(s)
- Jean-Charles Lambert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France.
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurodegenerative diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
- Department of Psychiatry & Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Benjamin Grenier-Boley
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Céline Bellenguez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| |
Collapse
|
25
|
Li Y, Chang J, Chen X, Liu J, Zhao L. Advances in the Study of APOE and Innate Immunity in Alzheimer's Disease. J Alzheimers Dis 2023:JAD230179. [PMID: 37182889 DOI: 10.3233/jad-230179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Alzheimer's disease (AD) is a progressive degenerative disease of the nervous system (CNS) with an insidious onset. Clinically, it is characterized by a full range of dementia manifestations including memory impairment, aphasia, loss of speech, loss of use, loss of recognition, impairment of visuospatial skills, and impairment of executive function, as well as changes in personality and behavior. The exact cause of AD has not yet been identified. Nevertheless, modern research indicates that genetic factors contribute to 70% of human's risk of AD. Apolipoprotein (APOE) accounts for up to 90% of the genetic predisposition. APOE is a crucial gene that cannot be overstated. In addition, innate immunity plays a significant role in the etiology and treatment of AD. Understanding the different subtypes of APOE and their interconnections is of paramount importance. APOE and innate immunity, along with their relationship to AD, are primary research motivators for in-depth research and clinical trials. The exploration of novel technologies has led to an increasing trend in the study of AD at the cellular and molecular levels and continues to make more breakthroughs and progress. As of today, there is no effective treatment available for AD around the world. This paper aims to summarize and analyze the role of APOE and innate immunity, as well as development trends in recent years. It is anticipated that APOE and innate immunity will provide a breakthrough for humans to hinder AD progression in the near future.
Collapse
Affiliation(s)
- Yujiao Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jun Chang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xi Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jianwei Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
26
|
Andrews SJ, Renton AE, Fulton-Howard B, Podlesny-Drabiniok A, Marcora E, Goate AM. The complex genetic architecture of Alzheimer's disease: novel insights and future directions. EBioMedicine 2023; 90:104511. [PMID: 36907103 PMCID: PMC10024184 DOI: 10.1016/j.ebiom.2023.104511] [Citation(s) in RCA: 90] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a complex multifactorial neurodegenerative disorder and the most common form of dementia. AD is highly heritable, with heritability estimates of ∼70% from twin studies. Progressively larger genome-wide association studies (GWAS) have continued to expand our knowledge of AD/dementia genetic architecture. Until recently these efforts had identified 39 disease susceptibility loci in European ancestry populations. RECENT DEVELOPMENTS Two new AD/dementia GWAS have dramatically expanded the sample sizes and the number of disease susceptibility loci. The first increased total sample size to 1,126,563-with an effective sample size of 332,376-by predominantly including new biobank and population-based dementia datasets. The second, expands on an earlier GWAS from the International Genomics of Alzheimer's Project (IGAP) by increasing the number of clinically-defined AD cases/controls in addition to incorporating biobank dementia datasets, resulting in a total sample size to 788,989 and an effective sample size of 382,472. Collectively both GWAS identified 90 independent variants across 75 AD/dementia susceptibility loci, including 42 novel loci. Pathway analyses indicate the susceptibility loci are enriched for genes involved in amyloid plaque and neurofibrillary tangle formation, cholesterol metabolism, endocytosis/phagocytosis, and the innate immune system. Gene prioritization efforts for the novel loci identified 62 candidate causal genes. Many of the candidate genes from known and newly discovered loci play key roles in macrophages and highlight phagocytic clearance of cholesterol-rich brain tissue debris by microglia (efferocytosis) as a core pathogenetic hub and putative therapeutic target for AD. WHERE NEXT?: While GWAS in European ancestry populations have substantially enhanced our understanding of AD genetic architecture, heritability estimates from population based GWAS cohorts are markedly smaller than those from twin studies. While this missing heritability is likely due to a combination of factors, it highlights that our understanding of AD genetic architecture and genetic risk mechanisms remains incomplete. These knowledge gaps result from several underexplored areas in AD research. First, rare variants remain understudied due to methodological issues in identifying them and the cost of generating sufficiently powered whole exome/genome sequencing datasets. Second, sample sizes of non-European ancestry populations in AD GWAS remain small. Third, GWAS of AD neuroimaging and cerebrospinal fluid endophenotypes remains limited due to low compliance and high costs associated with measuring amyloid-β and tau levels and other disease-relevant biomarkers. Studies generating sequencing data, including diverse populations, and incorporating blood-based AD biomarkers are set to substantially improve our knowledge of AD genetic architecture.
Collapse
Affiliation(s)
- Shea J Andrews
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA.
| | - Alan E Renton
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian Fulton-Howard
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna Podlesny-Drabiniok
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edoardo Marcora
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison M Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
27
|
Raulin AC, Liu CC, Bu G. An assay to evaluate the capacity of cholesterol acceptors using BODIPY-cholesterol in cells. STAR Protoc 2023; 4:101976. [PMID: 36598853 PMCID: PMC9826879 DOI: 10.1016/j.xpro.2022.101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/14/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
Cholesterol is a structural component of cell membranes. Most cells are incapable of its catabolism, and intracellular cholesterol accumulation is linked to several disorders including cardiovascular and neurodegenerative diseases. Cholesterol efflux, essential to its metabolism, is dependent on acceptors such as apolipoproteins. Here, we describe an assay to evaluate the capacity of cholesterol acceptors. Cells are treated with an analog of cholesterol tagged with fluorescent BODIPY. Addition of an acceptor leads to BODIPY-cholesterol efflux, measured using a plate reader. For complete details on the use and execution of this protocol, please refer to Liu et al. (2021).1.
Collapse
Affiliation(s)
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
28
|
Lou T, Tao B, Chen M. Relationship of Apolipoprotein E with Alzheimer's Disease and Other Neurological Disorders: An Updated Review. Neuroscience 2023; 514:123-140. [PMID: 36736614 DOI: 10.1016/j.neuroscience.2023.01.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) and other neurodegenerative diseases, for which there is no effective cure, cause great social burden. Apolipoprotein E (APOE) is an important lipid transporter, which has been shown to have a close relationship with AD and other neurological disorders in an increasing number of studies, suggesting its potential as a therapeutic target. In this review, we summarize the recent advances in clinical and basic research on the role of APOE in the pathogenesis of multiple neurological diseases, with an emphasis on the new associations between APOE and AD, and between APOE and depression. The progress of APOE research in Parkinson's disease (PD) and some other neurological diseases is briefly discussed.
Collapse
Affiliation(s)
- Tianwen Lou
- The First Clinical Medical College, Anhui Medical University, Hefei, China; Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Borui Tao
- The First Clinical Medical College, Anhui Medical University, Hefei, China; Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ming Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
29
|
Miyashita A, Kikuchi M, Hara N, Ikeuchi T. Genetics of Alzheimer's disease: an East Asian perspective. J Hum Genet 2023; 68:115-124. [PMID: 35641666 PMCID: PMC9968656 DOI: 10.1038/s10038-022-01050-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/20/2022] [Accepted: 05/16/2022] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is an age-related multifactorial neurodegenerative disorder. Advances in genome technology, including next generation sequencing have uncovered complex genetic effects in AD by analyzing both common and rare functional variants. Multiple lines of evidence suggest that the pathogenesis of AD is influenced by multiple genetic components rather than single genetic factor. Previous genetic studies on AD have predominantly included European ancestry cohorts; hence, the non-European population may be underrepresented, potentially leading to reduced diversity in AD genetic research. Additionally, ethnic diversity may result in dissimilar effects of genetic determinants in AD. APOE genotypes are a well-established genetic risk factor in AD, with the East Asian population having a higher risk of AD associated with the APOE ε4 allele. To date, seven genome-wide association studies (GWAS) have been conducted in East Asians, which report a total of 26 AD-associated loci. Several rare variants, including the p.H157Y variant in TREM2, and the p.G186R and p.R274W variants in SHARPIN are associated with risk of AD in East Asians. Extending genetic studies to diverse populations, including East Asians is necessary, which could yield more comprehensive insights into AD, and here we review the recent findings regarding the genetic determinants of AD from an East Asian perspective.
Collapse
Affiliation(s)
- Akinori Miyashita
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masataka Kikuchi
- Department of Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Norikazu Hara
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan.
| |
Collapse
|
30
|
GBA1 Gene Mutations in α-Synucleinopathies-Molecular Mechanisms Underlying Pathology and Their Clinical Significance. Int J Mol Sci 2023; 24:ijms24032044. [PMID: 36768367 PMCID: PMC9917178 DOI: 10.3390/ijms24032044] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
α-Synucleinopathies comprise a group of neurodegenerative diseases characterized by altered accumulation of a protein called α-synuclein inside neurons and glial cells. This aggregation leads to the formation of intraneuronal inclusions, Lewy bodies, that constitute the hallmark of α-synuclein pathology. The most prevalent α-synucleinopathies are Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). To date, only symptomatic treatment is available for these disorders, hence new approaches to their therapy are needed. It has been observed that GBA1 mutations are one of the most impactful risk factors for developing α-synucleinopathies such as PD and DLB. Mutations in the GBA1 gene, which encodes a lysosomal hydrolase β-glucocerebrosidase (GCase), cause a reduction in GCase activity and impaired α-synuclein metabolism. The most abundant GBA1 gene mutations are N370S or N409S, L444P/L483P and E326K/E365K. The mechanisms by which GCase impacts α-synuclein aggregation are poorly understood and need to be further investigated. Here, we discuss some of the potential interactions between α-synuclein and GCase and show how GBA1 mutations may impact the course of the most prevalent α-synucleinopathies.
Collapse
|
31
|
Schultheis N, Becker R, Berhanu G, Kapral A, Roseman M, Shah S, Connell A, Selleck S. Regulation of autophagy, lipid metabolism, and neurodegenerative pathology by heparan sulfate proteoglycans. Front Genet 2023; 13:1012706. [PMID: 36699460 PMCID: PMC9870329 DOI: 10.3389/fgene.2022.1012706] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Heparan sulfate modified proteins or proteoglycans (HSPGs) are an abundant class of cell surface and extracellular matrix molecules. They serve important co-receptor functions in the regulation of signaling as well as membrane trafficking. Many of these activities directly affect processes associated with neurodegeneration including uptake and export of Tau protein, disposition of Amyloid Precursor Protein-derived peptides, and regulation of autophagy. In this review we focus on the impact of HSPGs on autophagy, membrane trafficking, mitochondrial quality control and biogenesis, and lipid metabolism. Disruption of these processes are a hallmark of Alzheimer's disease (AD) and there is evidence that altering heparan sulfate structure and function could counter AD-associated pathological processes. Compromising presenilin function in several systems has provided instructive models for understanding the molecular and cellular underpinnings of AD. Disrupting presenilin function produces a constellation of cellular deficits including accumulation of lipid, disruption of autophagosome to lysosome traffic and reduction in mitochondrial size and number. Inhibition of heparan sulfate biosynthesis has opposing effects on all these cellular phenotypes, increasing mitochondrial size, stimulating autophagy flux to lysosomes, and reducing the level of intracellular lipid. These findings suggest a potential mechanism for countering pathology found in AD and related disorders by altering heparan sulfate structure and influencing cellular processes disrupted broadly in neurodegenerative disease. Vertebrate and invertebrate model systems, where the cellular machinery of autophagy and lipid metabolism are conserved, continue to provide important translational guideposts for designing interventions that address the root cause of neurodegenerative pathology.
Collapse
Affiliation(s)
- Nicholas Schultheis
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Robert Becker
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Gelila Berhanu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Alexander Kapral
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Matthew Roseman
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Shalini Shah
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Alyssa Connell
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Scott Selleck
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
32
|
Rasmussen KL, Tybjærg-Hansen A, Nordestgaard BG, Frikke-Schmidt R. Associations of Alzheimer Disease-Protective APOE Variants With Age-Related Macular Degeneration. JAMA Ophthalmol 2023; 141:13-21. [PMID: 36394841 PMCID: PMC9673029 DOI: 10.1001/jamaophthalmol.2022.4602] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022]
Abstract
Importance The association of major lipid genes with and their potential as drug targets for age-related macular degeneration (AMD) is unknown. These associations are important to study because AMD is the leading cause of irreversible late-onset blindness in high-income countries. Objective To determine whether the full range of structural genetic variation in apolipoprotein E (APOE), a master gene in peripheral and cerebral lipid metabolism, is associated with risk of AMD. Design, Setting, and Participants This cohort study used data from the Copenhagen City Heart Study (CCHS) and the Copenhagen General Population Study (CGPS) cohorts. Participants were followed from study inclusion at the time of blood sampling to occurrence of event, death, emigration, or December 7, 2018, whichever came first. For participants in CCHS, the APOE gene was sequenced, and 9 variants with a heterozygote frequency of at least 0.0002 were genotyped in the CGPS. Observers were masked to patient groupings. Data were analyzed from March to September 2021. Exposures The exposure was APOE status, and the direct gene product in plasma, apoE levels, was measured in all participants. Main Outcomes and Measures Cox regression was applied to estimate risk of AMD associated with APOE genotype. Results A total of 105 546 participants (mean [SD] age, 57.7 [13.4] years; 58 140 [55%] female participants) were included. Compared with participants with the common ɛ33 genotype, risk of AMD was lower in participants with ε44 (multifactorially adjusted hazard ratio [aHR], 0.66; 95% CI, 0.45-0.96) and ε43 (aHR, 0.80; 95% CI, 0.71-0.90) genotypes and higher in the ε32 (aHR, 1.15; 95% CI, 1.00-1.31) genotype. Compared with noncarriers, risk of AMD was higher for participants with Gly145Asp (aHR, 3.53; 95% CI, 1.14-10.96) and Arg154Cys (aHR, 4.52; 95% CI, 1-13-18.13) heterozygotes. Results were similar after further adjustment for lipid traits and after adjustment for the APOE ε2/ε3/ε4 variant. Combining all common and rare structural variants in a weighted allele score, risk of AMD per 1-mg/dL genetically higher plasma apoE was increased in the adjusted model (aHR, 1.12; 95% CI, 1.05-1.19), the adjusted model plus APOE ɛ2/ɛ3/ɛ4 status (aHR, 1.82; 95% CI, 1.20-2.76), and the adjusted model in individuals with the ε33 genotype only (aHR, 1.77; 95% CI, 1.14-2.75). Conclusions and Relevance These findings highlight that structural variation in APOE beyond the ε2/ε3/ε4 variants may be important for risk of AMD in a population of European ancestry. Rare functional ɛ2-like variants in APOE have previously been reported to have protective associations for Alzheimer disease but the present findings suggest a simultaneous high risk of AMD. This would limit the drug target potential of mechanisms resembling these variants.
Collapse
Affiliation(s)
- Katrine L. Rasmussen
- Department of Clinical Biochemistry, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev, Denmark
- The Copenhagen City Heart Study, Frederiksberg Hospital, Frederiksberg, Denmark
| | - Børge G. Nordestgaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev, Denmark
- The Copenhagen City Heart Study, Frederiksberg Hospital, Frederiksberg, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital–Herlev Gentofte, Herlev, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev, Denmark
| |
Collapse
|
33
|
Lozupone M, Imbimbo BP, Balducci C, Lo Vecchio F, Bisceglia P, Latino RR, Leone M, Dibello V, Solfrizzi V, Greco A, Daniele A, Watling M, Seripa D, Panza F. Does the imbalance in the apolipoprotein E isoforms underlie the pathophysiological process of sporadic Alzheimer's disease? Alzheimers Dement 2023; 19:353-368. [PMID: 35900209 DOI: 10.1002/alz.12728] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/18/2023]
Abstract
Human apolipoprotein E (apoE) is a 299-amino acid secreted glycoprotein binding cholesterol and phospholipids, and with three common isoforms (APOE ε2, APOE ε3, and APOE ε4). The exact mechanism by which APOE gene variants increase/decrease Alzheimer's disease (AD) risk is not fully understood, but APOE isoforms differently affect brain homeostasis and neuroinflammation, blood-brain barrier (BBB) permeability, glial function, synaptogenesis, oral/gut microbiota, neural networks, amyloid beta (Aβ) deposition, and tau-mediated neurodegeneration. In this perspective, we propose a comprehensive interpretation of APOE-mediated effects within AD pathophysiology, describing some specific cellular, biochemical, and epigenetic mechanisms and updating the different APOE-targeting approaches being developed as potential AD therapies. Intracisternal adeno-associated viral-mediated delivery of APOE ε2 is being tested in AD APOE ε4/ε4 carriers, while APOE mimetics are being used in subjects with perioperative neurocognitive disorders. Other approaches including APOE ε4 antisense oligonucleotides, anti-APOE ε4 monoclonal antibodies, APOE ε4 structure correctors, and APOE-Aβ interaction inhibitors produced positive results in transgenic AD mouse models.
Collapse
Affiliation(s)
- Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | | | - Claudia Balducci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milan, Italy
| | - Filomena Lo Vecchio
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Paola Bisceglia
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Raffaela Rita Latino
- Complex Structure of Neurology, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Maurizio Leone
- Complex Structure of Neurology, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Vittorio Dibello
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Vincenzo Solfrizzi
- "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari "Aldo Moro, Bari, Italy
| | - Antonio Greco
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, Italy.,Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Mark Watling
- CNS & Pain Department, TranScrip Ltd, Reading, UK
| | - Davide Seripa
- Hematology and Stem Cell Transplant Unit, "Vito Fazzi" Hospital, Lecce, Italy
| | - Francesco Panza
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis,", Research Hospital, Castellana Grotte, Bari, Italy
| |
Collapse
|
34
|
Roberts BR, Laffoon SB, Roberts AM, Porter T, Fowler C, Masters CL, Dratz EA, Laws SM. Discovery of a Missense Mutation (Q222K) of the APOE Gene from the Australian Imaging, Biomarker and Lifestyle Study. J Alzheimers Dis Rep 2023; 7:165-172. [PMID: 36891255 PMCID: PMC9986708 DOI: 10.3233/adr-220075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
After age, polymorphisms of the Apolipoprotein E (APOE) gene are the biggest risk factor for the development of Alzheimer's disease (AD). During our investigation to discovery biomarkers in plasma, using 2D gel electrophoresis, we found an individual with and unusual apoE isoelectric point compared to APOE ɛ2, ɛ3, and ɛ4 carriers. Whole exome sequencing of APOE from the donor confirmed a single nucleotide polymorphism (SNP) in exon 4, translating to a rare Q222K missense mutation. The apoE ɛ4 (Q222K) mutation did not form dimers or complexes observed for apoE ɛ2 & ɛ3 proteins.
Collapse
Affiliation(s)
- Blaine R Roberts
- Emory School of Medicine, Department of Biochemistry, Department of Neurology, Atlanta, GA, USA.,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Scott B Laffoon
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Anne M Roberts
- Emory School of Medicine, Department of Biochemistry, Department of Neurology, Atlanta, GA, USA.,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Chris Fowler
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Colin L Masters
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Edward A Dratz
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Simon M Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
35
|
Chen X, Holtzman DM. Emerging roles of innate and adaptive immunity in Alzheimer's disease. Immunity 2022; 55:2236-2254. [PMID: 36351425 PMCID: PMC9772134 DOI: 10.1016/j.immuni.2022.10.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/15/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, with characteristic extracellular amyloid-β (Aβ) deposition and intracellular accumulation of hyperphosphorylated, aggregated tau. Several key regulators of innate immune pathways are genetic risk factors for AD. While these genetic risk factors as well as in vivo data point to key roles for microglia, emerging evidence also points to a role of the adaptive immune response in disease pathogenesis. We review the roles of innate and adaptive immunity, their niches, their communication, and their contributions to AD development and progression. We also summarize the cellular compositions and physiological functions of immune cells in the parenchyma, together with those in the brain border structures that form a dynamic disease-related immune niche. We propose that both innate and adaptive immune responses in brain parenchyma and border structures could serve as important therapeutic targets for treating both the pre-symptomatic and the symptomatic stages of AD.
Collapse
Affiliation(s)
- Xiaoying Chen
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
36
|
Wang N, Wang M, Jeevaratnam S, Rosenberg C, Ikezu TC, Shue F, Doss SV, Alnobani A, Martens YA, Wren M, Asmann YW, Zhang B, Bu G, Liu CC. Opposing effects of apoE2 and apoE4 on microglial activation and lipid metabolism in response to demyelination. Mol Neurodegener 2022; 17:75. [PMID: 36419137 PMCID: PMC9682675 DOI: 10.1186/s13024-022-00577-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Abnormal lipid accumulation has been recognized as a key element of immune dysregulation in microglia whose dysfunction contributes to neurodegenerative diseases. Microglia play essential roles in the clearance of lipid-rich cellular debris upon myelin damage or demyelination, a common pathogenic event in neuronal disorders. Apolipoprotein E (apoE) plays a pivotal role in brain lipid homeostasis; however, the apoE isoform-dependent mechanisms regulating microglial response upon demyelination remain unclear. METHODS To determine how apoE isoforms impact microglial response to myelin damage, 2-month-old apoE2-, apoE3-, and apoE4-targeted replacement (TR) mice were fed with normal diet (CTL) or 0.2% cuprizone (CPZ) diet for four weeks to induce demyelination in the brain. To examine the effects on subsequent remyelination, the cuprizone diet was switched back to regular chow for an additional two weeks. After treatment, brains were collected and subjected to immunohistochemical and biochemical analyses to assess the myelination status, microglial responses, and their capacity for myelin debris clearance. Bulk RNA sequencing was performed on the corpus callosum (CC) to address the molecular mechanisms underpinning apoE-mediated microglial activation upon demyelination. RESULTS We demonstrate dramatic isoform-dependent differences in the activation and function of microglia upon cuprizone-induced demyelination. ApoE2 microglia were hyperactive and more efficient in clearing lipid-rich myelin debris, whereas apoE4 microglia displayed a less activated phenotype with reduced clearance efficiency, compared with apoE3 microglia. Transcriptomic profiling revealed that key molecules known to modulate microglial functions had differential expression patterns in an apoE isoform-dependent manner. Importantly, apoE4 microglia had excessive buildup of lipid droplets, consistent with an impairment in lipid metabolism, whereas apoE2 microglia displayed a superior ability to metabolize myelin enriched lipids. Further, apoE2-TR mice had a greater extent of remyelination; whereas remyelination was compromised in apoE4-TR mice. CONCLUSIONS Our findings provide critical mechanistic insights into how apoE isoforms differentially regulate microglial function and the maintenance of myelin dynamics, which may inform novel therapeutic avenues for targeting microglial dysfunctions in neurodegenerative diseases.
Collapse
Affiliation(s)
- Na Wang
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Minghui Wang
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Suren Jeevaratnam
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Cassandra Rosenberg
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Tadafumi C. Ikezu
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Francis Shue
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Sydney V. Doss
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Alla Alnobani
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Yuka A. Martens
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Melissa Wren
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Yan W. Asmann
- grid.417467.70000 0004 0443 9942Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Bin Zhang
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
37
|
Raulin AC, Doss SV, Trottier ZA, Ikezu TC, Bu G, Liu CC. ApoE in Alzheimer’s disease: pathophysiology and therapeutic strategies. Mol Neurodegener 2022; 17:72. [PMID: 36348357 PMCID: PMC9644639 DOI: 10.1186/s13024-022-00574-4] [Citation(s) in RCA: 160] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia worldwide, and its prevalence is rapidly increasing due to extended lifespans. Among the increasing number of genetic risk factors identified, the apolipoprotein E (APOE) gene remains the strongest and most prevalent, impacting more than half of all AD cases. While the ε4 allele of the APOE gene significantly increases AD risk, the ε2 allele is protective relative to the common ε3 allele. These gene alleles encode three apoE protein isoforms that differ at two amino acid positions. The primary physiological function of apoE is to mediate lipid transport in the brain and periphery; however, additional functions of apoE in diverse biological functions have been recognized. Pathogenically, apoE seeds amyloid-β (Aβ) plaques in the brain with apoE4 driving earlier and more abundant amyloids. ApoE isoforms also have differential effects on multiple Aβ-related or Aβ-independent pathways. The complexity of apoE biology and pathobiology presents challenges to designing effective apoE-targeted therapeutic strategies. This review examines the key pathobiological pathways of apoE and related targeting strategies with a specific focus on the latest technological advances and tools.
Collapse
|
38
|
Romero-Molina C, Garretti F, Andrews SJ, Marcora E, Goate AM. Microglial efferocytosis: Diving into the Alzheimer's disease gene pool. Neuron 2022; 110:3513-3533. [PMID: 36327897 DOI: 10.1016/j.neuron.2022.10.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
Abstract
Genome-wide association studies and functional genomics studies have linked specific cell types, genes, and pathways to Alzheimer's disease (AD) risk. In particular, AD risk alleles primarily affect the abundance or structure, and thus the activity, of genes expressed in macrophages, strongly implicating microglia (the brain-resident macrophages) in the etiology of AD. These genes converge on pathways (endocytosis/phagocytosis, cholesterol metabolism, and immune response) with critical roles in core macrophage functions such as efferocytosis. Here, we review these pathways, highlighting relevant genes identified in the latest AD genetics and genomics studies, and describe how they may contribute to AD pathogenesis. Investigating the functional impact of AD-associated variants and genes in microglia is essential for elucidating disease risk mechanisms and developing effective therapeutic approaches.
Collapse
Affiliation(s)
- Carmen Romero-Molina
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesca Garretti
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shea J Andrews
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Edoardo Marcora
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
39
|
Rossi SL, Subramanian P, Bu G, Di Polo A, Golde TE, Bovenkamp DE. Common features of neurodegenerative disease: exploring the brain-eye connection and beyond (Part 1): the 2021 pre-symposium of the 15th international conference on Alzheimer's and Parkinson's diseases. Mol Neurodegener 2022; 17:68. [PMID: 36310167 PMCID: PMC9620636 DOI: 10.1186/s13024-022-00570-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Sharyn L. Rossi
- grid.453152.40000 0000 8621 6363BrightFocus Foundation, 22512 Gateway Center Dr, 20871 Clarksburg, MD USA
| | - Preeti Subramanian
- grid.453152.40000 0000 8621 6363BrightFocus Foundation, 22512 Gateway Center Dr, 20871 Clarksburg, MD USA
| | - Guojun Bu
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL USA
| | - Adriana Di Polo
- grid.14848.310000 0001 2292 3357Departments of Neuroscience and Ophthalmology, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), University of Montreal, Montreal, QC Canada
| | - Todd E. Golde
- grid.189967.80000 0001 0941 6502Departments of Pharmacology & Chemical Biology, and Neurology, Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, GA USA
| | - Diane E. Bovenkamp
- grid.453152.40000 0000 8621 6363BrightFocus Foundation, 22512 Gateway Center Dr, 20871 Clarksburg, MD USA
| |
Collapse
|
40
|
Fernández-Calle R, Konings SC, Frontiñán-Rubio J, García-Revilla J, Camprubí-Ferrer L, Svensson M, Martinson I, Boza-Serrano A, Venero JL, Nielsen HM, Gouras GK, Deierborg T. APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. Mol Neurodegener 2022; 17:62. [PMID: 36153580 PMCID: PMC9509584 DOI: 10.1186/s13024-022-00566-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/29/2022] [Indexed: 02/06/2023] Open
Abstract
ApoE is the major lipid and cholesterol carrier in the CNS. There are three major human polymorphisms, apoE2, apoE3, and apoE4, and the genetic expression of APOE4 is one of the most influential risk factors for the development of late-onset Alzheimer's disease (AD). Neuroinflammation has become the third hallmark of AD, together with Amyloid-β plaques and neurofibrillary tangles of hyperphosphorylated aggregated tau protein. This review aims to broadly and extensively describe the differential aspects concerning apoE. Starting from the evolution of apoE to how APOE's single-nucleotide polymorphisms affect its structure, function, and involvement during health and disease. This review reflects on how APOE's polymorphisms impact critical aspects of AD pathology, such as the neuroinflammatory response, particularly the effect of APOE on astrocytic and microglial function and microglial dynamics, synaptic function, amyloid-β load, tau pathology, autophagy, and cell-cell communication. We discuss influential factors affecting AD pathology combined with the APOE genotype, such as sex, age, diet, physical exercise, current therapies and clinical trials in the AD field. The impact of the APOE genotype in other neurodegenerative diseases characterized by overt inflammation, e.g., alpha- synucleinopathies and Parkinson's disease, traumatic brain injury, stroke, amyotrophic lateral sclerosis, and multiple sclerosis, is also addressed. Therefore, this review gathers the most relevant findings related to the APOE genotype up to date and its implications on AD and CNS pathologies to provide a deeper understanding of the knowledge in the APOE field.
Collapse
Affiliation(s)
- Rosalía Fernández-Calle
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Sabine C. Konings
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Javier Frontiñán-Rubio
- Oxidative Stress and Neurodegeneration Group, Faculty of Medicine, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Juan García-Revilla
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Martina Svensson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Isak Martinson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Antonio Boza-Serrano
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Luís Venero
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Henrietta M. Nielsen
- Department of Biochemistry and Biophysics at, Stockholm University, Stockholm, Sweden
| | - Gunnar K. Gouras
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
41
|
Bu G. APOE targeting strategy in Alzheimer's disease: lessons learned from protective variants. Mol Neurodegener 2022; 17:51. [PMID: 35922805 PMCID: PMC9351235 DOI: 10.1186/s13024-022-00556-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- Guojun Bu
- Molecular Neurodegeneration, Jacksonville, USA.
| |
Collapse
|
42
|
Liu CC, Zhao J, Fu Y, Inoue Y, Ren Y, Chen Y, Doss SV, Shue F, Jeevaratnam S, Bastea L, Wang N, Martens YA, Qiao W, Wang M, Zhao N, Jia L, Yamazaki Y, Yamazaki A, Rosenberg CL, Wang Z, Kong D, Li Z, Kuchenbecker LA, Trottier ZA, Felton L, Rogers J, Quicksall ZS, Linares C, Knight J, Chen Y, Kurti A, Kanekiyo T, Fryer JD, Asmann YW, Storz P, Wang X, Peng J, Zhang B, Kim BYS, Bu G. Peripheral apoE4 enhances Alzheimer's pathology and impairs cognition by compromising cerebrovascular function. Nat Neurosci 2022; 25:1020-1033. [PMID: 35915180 PMCID: PMC10009873 DOI: 10.1038/s41593-022-01127-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/22/2022] [Indexed: 12/21/2022]
Abstract
The ε4 allele of the apolipoprotein E (APOE) gene, a genetic risk factor for Alzheimer's disease, is abundantly expressed in both the brain and periphery. Here, we present evidence that peripheral apoE isoforms, separated from those in the brain by the blood-brain barrier, differentially impact Alzheimer's disease pathogenesis and cognition. To evaluate the function of peripheral apoE, we developed conditional mouse models expressing human APOE3 or APOE4 in the liver with no detectable apoE in the brain. Liver-expressed apoE4 compromised synaptic plasticity and cognition by impairing cerebrovascular functions. Plasma proteome profiling revealed apoE isoform-dependent functional pathways highlighting cell adhesion, lipoprotein metabolism and complement activation. ApoE3 plasma from young mice improved cognition and reduced vessel-associated gliosis when transfused into aged mice, whereas apoE4 compromised the beneficial effects of young plasma. A human induced pluripotent stem cell-derived endothelial cell model recapitulated the plasma apoE isoform-specific effect on endothelial integrity, further supporting a vascular-related mechanism. Upon breeding with amyloid model mice, liver-expressed apoE4 exacerbated brain amyloid pathology, whereas apoE3 reduced it. Our findings demonstrate pathogenic effects of peripheral apoE4, providing a strong rationale for targeting peripheral apoE to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| | - Jing Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yuan Fu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yasuteru Inoue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yingxue Ren
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Yuanxin Chen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Sydney V Doss
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Francis Shue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Ligia Bastea
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Na Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yuka A Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Wenhui Qiao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Minghui Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Lin Jia
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yu Yamazaki
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Akari Yamazaki
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Zhen Wang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dehui Kong
- Department of Biology, University of North Dakota, Grand Forks, ND, USA
| | - Zonghua Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Lindsey Felton
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Justin Rogers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Cynthia Linares
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Joshua Knight
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yixing Chen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - John D Fryer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yan W Asmann
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Xusheng Wang
- Department of Biology, University of North Dakota, Grand Forks, ND, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
43
|
Le Guen Y, Belloy ME, Grenier-Boley B, de Rojas I, Castillo-Morales A, Jansen I, Nicolas A, Bellenguez C, Dalmasso C, Küçükali F, Eger SJ, Rasmussen KL, Thomassen JQ, Deleuze JF, He Z, Napolioni V, Amouyel P, Jessen F, Kehoe PG, van Duijn C, Tsolaki M, Sánchez-Juan P, Sleegers K, Ingelsson M, Rossi G, Hiltunen M, Sims R, van der Flier WM, Ramirez A, Andreassen OA, Frikke-Schmidt R, Williams J, Ruiz A, Lambert JC, Greicius MD, Arosio B, Benussi L, Boland A, Borroni B, Caffarra P, Daian D, Daniele A, Debette S, Dufouil C, Düzel E, Galimberti D, Giedraitis V, Grimmer T, Graff C, Grünblatt E, Hanon O, Hausner L, Heilmann-Heimbach S, Holstege H, Hort J, Jürgen D, Kuulasmaa T, van der Lugt A, Masullo C, Mecocci P, Mehrabian S, de Mendonça A, Moebus S, Nacmias B, Nicolas G, Olaso R, Papenberg G, Parnetti L, Pasquier F, Peters O, Pijnenburg YAL, Popp J, Rainero I, Ramakers I, Riedel-Heller S, Scarmeas N, Scheltens P, Scherbaum N, Schneider A, Seripa D, Soininen H, Solfrizzi V, Spalletta G, Squassina A, van Swieten J, Tegos TJ, Tremolizzo L, Verhey F, Vyhnalek M, Wiltfang J, Boada M, García-González P, Puerta R, Real LM, Álvarez V, Bullido MJ, Clarimon J, García-Alberca JM, Mir P, Moreno F, Pastor P, Piñol-Ripoll G, Molina-Porcel L, Pérez-Tur J, Rodríguez-Rodríguez E, Royo JL, Sánchez-Valle R, Dichgans M, Rujescu D. Association of Rare APOE Missense Variants V236E and R251G With Risk of Alzheimer Disease. JAMA Neurol 2022; 79:652-663. [PMID: 35639372 PMCID: PMC9157381 DOI: 10.1001/jamaneurol.2022.1166] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Importance The APOE ε2 and APOE ε4 alleles are the strongest protective and risk-increasing, respectively, genetic variants for late-onset Alzheimer disease (AD). However, the mechanisms linking APOE to AD-particularly the apoE protein's role in AD pathogenesis and how this is affected by APOE variants-remain poorly understood. Identifying missense variants in addition to APOE ε2 and APOE ε4 could provide critical new insights, but given the low frequency of additional missense variants, AD genetic cohorts have previously been too small to interrogate this question robustly. Objective To determine whether rare missense variants on APOE are associated with AD risk. Design, Setting, and Participants Association with case-control status was tested in a sequenced discovery sample (stage 1) and followed up in several microarray imputed cohorts as well as the UK Biobank whole-exome sequencing resource using a proxy-AD phenotype (stages 2 and 3). This study combined case-control, family-based, population-based, and longitudinal AD-related cohorts that recruited referred and volunteer participants. Stage 1 included 37 409 nonunique participants of European or admixed European ancestry, with 11 868 individuals with AD and 11 934 controls passing analysis inclusion criteria. In stages 2 and 3, 475 473 participants were considered across 8 cohorts, of which 84 513 individuals with AD and proxy-AD and 328 372 controls passed inclusion criteria. Selection criteria were cohort specific, and this study was performed a posteriori on individuals who were genotyped. Among the available genotypes, 76 195 were excluded. All data were retrieved between September 2015 and November 2021 and analyzed between April and November 2021. Main Outcomes and Measures In primary analyses, the AD risk associated with each missense variant was estimated, as appropriate, with either linear mixed-model regression or logistic regression. In secondary analyses, associations were estimated with age at onset using linear mixed-model regression and risk of conversion to AD using competing-risk regression. Results A total of 544 384 participants were analyzed in the primary case-control analysis; 312 476 (57.4%) were female, and the mean (SD; range) age was 64.9 (15.2; 40-110) years. Two missense variants were associated with a 2-fold to 3-fold decreased AD risk: APOE ε4 (R251G) (odds ratio, 0.44; 95% CI, 0.33-0.59; P = 4.7 × 10-8) and APOE ε3 (V236E) (odds ratio, 0.37; 95% CI, 0.25-0.56; P = 1.9 × 10-6). Additionally, the cumulative incidence of AD in carriers of these variants was found to grow more slowly with age compared with noncarriers. Conclusions and Relevance In this genetic association study, a novel variant associated with AD was identified: R251G always coinherited with ε4 on the APOE gene, which mitigates the ε4-associated AD risk. The protective effect of the V236E variant, which is always coinherited with ε3 on the APOE gene, was also confirmed. The location of these variants confirms that the carboxyl-terminal portion of apoE plays an important role in AD pathogenesis. The large risk reductions reported here suggest that protein chemistry and functional assays of these variants should be pursued, as they have the potential to guide drug development targeting APOE.
Collapse
Affiliation(s)
- Yann Le Guen
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, California.,Institut du Cerveau, Paris Brain Institute, Paris, France
| | - Michael E Belloy
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, California
| | - Benjamin Grenier-Boley
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Itziar de Rojas
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Iris Jansen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.,Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije University, Amsterdam, the Netherlands
| | - Aude Nicolas
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Céline Bellenguez
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Carolina Dalmasso
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Estudios en Neurociencias y Sistemas Complejos (ENyS) CONICET-HEC-UNAJ, Universidad Nacional Arturo Jauretche, Florencio Varela, Argentina
| | - Fahri Küçükali
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Born-Bunge Institute, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah J Eger
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, California
| | - Katrine Laura Rasmussen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Qvist Thomassen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Zihuai He
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, California.,Quantitative Sciences Unit, Department of Medicine, Stanford University, Palo Alto, California
| | - Valerio Napolioni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Philippe Amouyel
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Patrick G Kehoe
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Cornelia van Duijn
- Department of Epidemiology, ErasmusMC, Rotterdam, the Netherlands.,Nuffield Department of Population Health Oxford University, Oxford, United Kingdom
| | - Magda Tsolaki
- 1st Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pascual Sánchez-Juan
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Alzheimer's Centre Reina Sofia-CIEN Foundation, Madrid, Spain
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Born-Bunge Institute, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences / Geriatrics, Uppsala University, Uppsala, Sweden.,Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada.,Department of Medicine and Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Giacomina Rossi
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Joensuu, Kuopio, Finland
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Alfredo Ramirez
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany.,Department of Psychiatry and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, The University of Texas Health Science Center at San Antonio
| | - Ole A Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Julie Williams
- UKDRI@Cardiff, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Agustín Ruiz
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Jean-Charles Lambert
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, California
| | | | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | - Delphine Daian
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Antonio Daniele
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Stéphanie Debette
- University Bordeaux, Inserm, Bordeaux Population Health Research Center, Bordeaux, France.,Department of Neurology, Bordeaux University Hospital, Bordeaux, France
| | - Carole Dufouil
- Inserm, Bordeaux Population Health Research Center, UMR 1219, University of Bordeaux, ISPED, CIC 1401-EC, Université de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Pole santé publique, Bordeaux, France
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Daniela Galimberti
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences / Geriatrics, Uppsala University, Uppsala, Sweden
| | - Timo Grimmer
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Psychiatry and Psychotherapy, Munich, Germany
| | - Caroline Graff
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Olivier Hanon
- Université de Paris, EA 4468, APHP, Hôpital Broca, Paris, France
| | - Lucrezia Hausner
- Department of Geriatric Psychiatry, Central Institute of Mental Health Mannheim, Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine, University Hospital Bonn, Bonn, Germany
| | - Henne Holstege
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.,Department of Clinical Genetics, VU University Medical Centre, Amsterdam, the Netherlands
| | - Jakub Hort
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic.,International Clinical Research Center, St Anne's University Hospital Brno, Brno, Czech Republic
| | - Deckert Jürgen
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Teemu Kuulasmaa
- Institute of Biomedicine, University of Eastern Finland, Joensuu, Kuopio, Finland
| | - Aad van der Lugt
- Department of Radiology and Nuclear Medicine, ErasmusMC, Rotterdam, the Netherlands
| | - Carlo Masullo
- Institute of Neurology, Catholic University of the Sacred Heart, Rome, Italy
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Shima Mehrabian
- Clinic of Neurology, UH Alexandrovska, Medical University Sofia, Sofia, Bulgaria
| | | | - Susanne Moebus
- Institute for Urban Public Health, University Hospital of University Duisburg-Essen, Essen, Germany
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Gael Nicolas
- Normandie Université, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and CNR-MAJ, Rouen, France
| | - Robert Olaso
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Goran Papenberg
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Lucilla Parnetti
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, University of Perugia, Perugia, Italy
| | - Florence Pasquier
- Université de Lille, Inserm 1172, CHU Clinical and Research Memory Research Centre (CMRR) of Distalz, Lille, France
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Psychiatry and Psychotherapy, Berlin, Germany
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Julius Popp
- Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland.,Department of Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Zurich, Switzerland.,Institute for Regenerative Medicine, University of Zürich, Zurich, Switzerland
| | - Innocenzo Rainero
- Department of Neuroscience "Rita Levi Montalcini," University of Torino, Torino, Italy
| | - Inez Ramakers
- Maastricht University, Department of Psychiatry and Neuropsychologie, Alzheimer Center Limburg, Maastricht, the Netherlands
| | - Steffi Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Leipzig, Germany
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece.,Taub Institute for Research in Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, New York
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Norbert Scherbaum
- LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Davide Seripa
- Laboratory for Advanced Hematological Diagnostics, Department of Hematology and Stem Cell Transplant, "Vito Fazzi" Hospital, Lecce, Italy
| | - Hilkka Soininen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Vincenzo Solfrizzi
- Interdisciplinary Department of Medicine, Geriatric Medicine and Memory Unit, University of Bari Aldo Moro, Bari, Italy
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas
| | - Alessio Squassina
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Thomas J Tegos
- 1st Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lucio Tremolizzo
- Neurology, "San Gerardo" Hospital, Monza and University of Milano-Bicocca, Milan, Italy
| | - Frans Verhey
- Maastricht University, Department of Psychiatry and Neuropsychologie, Alzheimer Center Limburg, Maastricht, the Netherlands
| | - Martin Vyhnalek
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic.,International Clinical Research Center, St Anne's University Hospital Brno, Brno, Czech Republic
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Goettingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany.,Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Mercè Boada
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo García-González
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Puerta
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Luis M Real
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain.,Depatamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Victoria Álvarez
- Laboratorio de Genética, Hospital Universitario Central de Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - María J Bullido
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigacion Sanitaria 'Hospital la Paz' (IdIPaz), Madrid, Spain
| | - Jordi Clarimon
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Neurology, II B Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José María García-Alberca
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Alzheimer Research Center & Memory Clinic, Andalusian Institute for Neuroscience, Málaga, Spain
| | - Pablo Mir
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Fermin Moreno
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Neurology, Hospital Universitario Donostia, San Sebastian, Spain.,Neurosciences Area, Instituto Biodonostia, San Sebastian, Spain
| | - Pau Pastor
- Fundació Docència i Recerca MútuaTerrassa, Terrassa, Spain.,Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Hospital Universitari Santa Maria de Lleida, Lleida, Spain.,Institut de Recerca Biomedica de Lleida (IRBLLeida), Lleida, Spain
| | - Laura Molina-Porcel
- Neurological Tissue Bank (Biobanc), Hospital Clinic IDIBAPS, Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clinic, Barcelona, Spain
| | - Jordi Pérez-Tur
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Unitat de Genètica Molecular, Institut de Biomedicina de València-CSIC, Valencia, Spain.,Unidad Mixta de Neurologia Genètica, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Eloy Rodríguez-Rodríguez
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | - Jose Luís Royo
- Depatamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Service of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Dan Rujescu
- Medical University of Vienna, Department of Psychiatry and Psychotherapy, Vienna, Austria
| |
Collapse
|
44
|
Abstract
The brain, as one of the most lipid-rich organs, heavily relies on lipid transport and distribution to maintain homeostasis and neuronal function. Lipid transport mediated by lipoprotein particles, which are complex structures composed of apolipoproteins and lipids, has been thoroughly characterized in the periphery. Although lipoproteins in the central nervous system (CNS) were reported over half a century ago, the identification of APOE4 as the strongest genetic risk factor for Alzheimer's disease has accelerated investigation of the biology and pathobiology of lipoproteins in the CNS. This review provides an overview of the different components of lipoprotein particles, in particular apolipoproteins, and their involvements in both physiological functions and pathological mechanisms in the CNS.
Collapse
Affiliation(s)
| | - Yuka A Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA;
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA;
| |
Collapse
|
45
|
Rabinovici GD, Dubal DB. Rare APOE Missense Variants-Can We Overcome APOE ε4 and Alzheimer Disease Risk? JAMA Neurol 2022; 79:649-651. [PMID: 35639398 DOI: 10.1001/jamaneurol.2022.0854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Gil D Rabinovici
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco.,Memory and Aging Center, University of California, San Francisco, San Francisco.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco.,Associate Editor, JAMA Neurology
| | - Dena B Dubal
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco.,Associate Editor, JAMA Neurology
| |
Collapse
|
46
|
Nutrient-Response Pathways in Healthspan and Lifespan Regulation. Cells 2022; 11:cells11091568. [PMID: 35563873 PMCID: PMC9102925 DOI: 10.3390/cells11091568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular, small invertebrate and vertebrate models are a driving force in biogerontology studies. Using various models, such as yeasts, appropriate tissue culture cells, Drosophila, the nematode Caenorhabditis elegans and the mouse, has tremendously increased our knowledge around the relationship between diet, nutrient-response signaling pathways and lifespan regulation. In recent years, combinatorial drug treatments combined with mutagenesis, high-throughput screens, as well as multi-omics approaches, have provided unprecedented insights in cellular metabolism, development, differentiation, and aging. Scientists are, therefore, moving towards characterizing the fine architecture and cross-talks of growth and stress pathways towards identifying possible interventions that could lead to healthy aging and the amelioration of age-related diseases in humans. In this short review, we briefly examine recently uncovered knowledge around nutrient-response pathways, such as the Insulin Growth Factor (IGF) and the mechanistic Target of Rapamycin signaling pathways, as well as specific GWAS and some EWAS studies on lifespan and age-related disease that have enhanced our current understanding within the aging and biogerontology fields. We discuss what is learned from the rich and diverse generated data, as well as challenges and next frontiers in these scientific disciplines.
Collapse
|
47
|
Wareham LK, Liddelow SA, Temple S, Benowitz LI, Di Polo A, Wellington C, Goldberg JL, He Z, Duan X, Bu G, Davis AA, Shekhar K, Torre AL, Chan DC, Canto-Soler MV, Flanagan JG, Subramanian P, Rossi S, Brunner T, Bovenkamp DE, Calkins DJ. Solving neurodegeneration: common mechanisms and strategies for new treatments. Mol Neurodegener 2022; 17:23. [PMID: 35313950 PMCID: PMC8935795 DOI: 10.1186/s13024-022-00524-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Across neurodegenerative diseases, common mechanisms may reveal novel therapeutic targets based on neuronal protection, repair, or regeneration, independent of etiology or site of disease pathology. To address these mechanisms and discuss emerging treatments, in April, 2021, Glaucoma Research Foundation, BrightFocus Foundation, and the Melza M. and Frank Theodore Barr Foundation collaborated to bring together key opinion leaders and experts in the field of neurodegenerative disease for a virtual meeting titled "Solving Neurodegeneration". This "think-tank" style meeting focused on uncovering common mechanistic roots of neurodegenerative disease and promising targets for new treatments, catalyzed by the goal of finding new treatments for glaucoma, the world's leading cause of irreversible blindness and the common interest of the three hosting foundations. Glaucoma, which causes vision loss through degeneration of the optic nerve, likely shares early cellular and molecular events with other neurodegenerative diseases of the central nervous system. Here we discuss major areas of mechanistic overlap between neurodegenerative diseases of the central nervous system: neuroinflammation, bioenergetics and metabolism, genetic contributions, and neurovascular interactions. We summarize important discussion points with emphasis on the research areas that are most innovative and promising in the treatment of neurodegeneration yet require further development. The research that is highlighted provides unique opportunities for collaboration that will lead to efforts in preventing neurodegeneration and ultimately vision loss.
Collapse
Affiliation(s)
- Lauren K Wareham
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Sally Temple
- Neural Stem Cell Institute, NY, 12144, Rensselaer, USA
| | - Larry I Benowitz
- Department of Neurosurgery and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
| | - Cheryl Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, CA, Palo Alto, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, MA, Boston, USA
| | - Xin Duan
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Albert A Davis
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, USA
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, CA, 91125, Pasadena, USA
| | - M Valeria Canto-Soler
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado, Aurora, CO, USA
| | - John G Flanagan
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA
| | | | | | | | | | - David J Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
48
|
Martens YA, Zhao N, Liu CC, Kanekiyo T, Yang AJ, Goate AM, Holtzman DM, Bu G. ApoE Cascade Hypothesis in the pathogenesis of Alzheimer's disease and related dementias. Neuron 2022; 110:1304-1317. [PMID: 35298921 PMCID: PMC9035117 DOI: 10.1016/j.neuron.2022.03.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/08/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022]
Abstract
The ε4 allele of the apolipoprotein E gene (APOE4) is a strong genetic risk factor for Alzheimer's disease (AD) and several other neurodegenerative conditions, including Lewy body dementia (LBD). The three APOE alleles encode protein isoforms that differ from one another only at amino acid positions 112 and 158: apoE2 (C112, C158), apoE3 (C112, R158), and apoE4 (R112, R158). Despite progress, it remains unclear how these small amino acid differences in apoE sequence among the three isoforms lead to profound effects on aging and disease-related pathways. Here, we propose a novel "ApoE Cascade Hypothesis" in AD and age-related cognitive decline, which states that the biochemical and biophysical properties of apoE impact a cascade of events at the cellular and systems levels, ultimately impacting aging-related pathogenic conditions including AD. As such, apoE-targeted therapeutic interventions are predicted to be more effective by addressing the biochemical phase of the cascade.
Collapse
Affiliation(s)
- Yuka A Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Austin J Yang
- Division of Neuroscience, National Institute on Aging, Bethesda, MD, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
49
|
Affiliation(s)
- Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
50
|
Parhizkar S, Holtzman DM. APOE mediated neuroinflammation and neurodegeneration in Alzheimer's disease. Semin Immunol 2022; 59:101594. [PMID: 35232622 PMCID: PMC9411266 DOI: 10.1016/j.smim.2022.101594] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/14/2022] [Indexed: 01/15/2023]
Abstract
Neuroinflammation is a central mechanism involved in neurodegeneration as observed in Alzheimer's disease (AD), the most prevalent form of neurodegenerative disease. Apolipoprotein E4 (APOE4), the strongest genetic risk factor for AD, directly influences disease onset and progression by interacting with the major pathological hallmarks of AD including amyloid-β plaques, neurofibrillary tau tangles, as well as neuroinflammation. Microglia and astrocytes, the two major immune cells in the brain, exist in an immune-vigilant state providing immunological defense as well as housekeeping functions that promote neuronal well-being. It is becoming increasingly evident that under disease conditions, these immune cells become progressively dysfunctional in regulating metabolic and immunoregulatory pathways, thereby promoting chronic inflammation-induced neurodegeneration. Here, we review and discuss how APOE and specifically APOE4 directly influences amyloid-β and tau pathology, and disrupts microglial as well as astroglial immunomodulating functions leading to chronic inflammation that contributes to neurodegeneration in AD.
Collapse
Affiliation(s)
- Samira Parhizkar
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer Disease, Research Center, Washington University, St. Louis, MO 63110, USA
| | - David M. Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer Disease, Research Center, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|