1
|
Feng S, Lin J, Zhang X, Hong X, Xu W, Wen Y, She F. Role of AlgC and GalU in the Intrinsic Antibiotic Resistance of Helicobacter pylori. Infect Drug Resist 2023; 16:1839-1847. [PMID: 37016632 PMCID: PMC10066898 DOI: 10.2147/idr.s403046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Purpose Helicobacter pylori is associated with the development of gastrointestinal diseases. However, its eradication is challenged by an increased rate of drug resistance. AlgC and GalU are important for the synthesis of UDP-glucose, which is a substrate for the synthesis of lipopolysaccharide (LPS) in H. pylori. In this study, we investigated the role of UDP-glucose in the intrinsic drug resistance in H. pylori. Methods Gene knockout strains or complementation strains, including ΔalgC, ΔgalU, ΔgalE, Δhp0045, ΔalgC/algC* and ΔgalU/galU* were constructed in Hp26695; and ΔalgC and ΔgalU were also constructed in two clinical drug-resistant strains, Hp008 and Hp135. The minimum inhibitory concentrations (MIC) of H. pylori to amoxicillin (AMO), tetracycline (TET), clarithromycin (CLA), metronidazole (MNZ), levofloxacin (LEV), and rifampicin (RIF) were measured using MIC Test Strips. Silver staining was performed to examine the role of AlgC and GalU in LPS synthesis. Ethidium bromide (EB) accumulation assay was performed to assess the outer membrane permeability of H. pylori strains. Results Knockout of algC and galU in H. pylori resulted in increased drug sensitivity to AMO, MNZ, CLA, LEV, and RIF; whereas knockout of hp0045 and galE, which are involved in GDP-fucose and UDP-galactose synthesis, respectively, did not significantly alter the drug sensitivity of H. pylori. Knockout of algC and galU in clinically drug-resistant strains resulted in significantly increased drug sensitivity to all the antibiotics, except MNZ. The lipid A-core structure was altered in ΔalgC and ΔgalU when their EB accumulation was higher than that in the wild type and complementation strains. Conclusion UDP-glucose may play an important role in increasing drug resistance to AMO, MNZ, CLA, LEV, TET, and RIF by maintaining the lipid A-core structure and decreasing membrane permeability. AlgC and GalU may serve as potential drug targets for decreasing antibiotic resistance in clinical isolates.
Collapse
Affiliation(s)
- Shunhang Feng
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School for Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Jiansheng Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School for Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Xiaoyan Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School for Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Xin Hong
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School for Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Wanyin Xu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School for Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Yancheng Wen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School for Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Feifei She
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School for Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
2
|
Wimmer S, Hoff K, Martin B, Grewer M, Denni L, Lascorz Massanet R, Raimondi MV, Bülbül EF, Melesina J, Hotop SK, Haupenthal J, Rohde H, Heisig P, Hirsch AKH, Brönstrup M, Sippl W, Holl R. Synthesis, biological evaluation, and molecular docking studies of aldotetronic acid-based LpxC inhibitors. Bioorg Chem 2023; 131:106331. [PMID: 36587505 DOI: 10.1016/j.bioorg.2022.106331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
In order to develop novel inhibitors of the bacterial deacetylase LpxC bearing a substituent to target the UDP binding site of the enzyme, a series of aldotetronic acid-based hydroxamic acids was accessed in chiral pool syntheses starting from 4,6-O-benzylidene-d-glucose and l-arabinitol. The synthesized hydroxamic acids were tested for LpxC inhibitory activity in vitro, revealing benzyl ether 17a ((2S,3S)-4-(benzyloxy)-N,3-dihydroxy-2-[(4-{[4-(morpholinomethyl)phenyl]ethynyl}benzyl)oxy]butanamide) as the most potent LpxC inhibitor. This compound was additionally tested for antibacterial activity against a panel of clinically relevant Gram-negative bacteria, bacterial uptake, and susceptibility to efflux pumps. Molecular docking studies were performed to rationalize the observed structure-activity relationships.
Collapse
Affiliation(s)
- Stefan Wimmer
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Katharina Hoff
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Benedikt Martin
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149 Münster, Germany
| | - Martin Grewer
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149 Münster, Germany
| | - Laura Denni
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Raquel Lascorz Massanet
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Maria Valeria Raimondi
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Emre F Bülbül
- Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Jelena Melesina
- Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Sven-Kevin Hotop
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Holger Rohde
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany; Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Heisig
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Bundesstr. 45, 20146 Hamburg, Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; Helmholtz International Lab for Anti-infectives, Germany; Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany; Helmholtz International Lab for Anti-infectives, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Ralph Holl
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany.
| |
Collapse
|
3
|
Yamamoto K, Yamamoto N, Ayukawa S, Yasutake Y, Ishiya K, Nakashima N. Scaffold size-dependent effect on the enhanced uptake of antibiotics and other compounds by Escherichia coli and Pseudomonas aeruginosa. Sci Rep 2022; 12:5609. [PMID: 35379875 PMCID: PMC8980104 DOI: 10.1038/s41598-022-09635-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/24/2022] [Indexed: 11/29/2022] Open
Abstract
The outer membrane of Gram-negative bacteria functions as an impermeable barrier to foreign compounds. Thus, modulating membrane transport can contribute to improving susceptibility to antibiotics and efficiency of bioproduction reactions. In this study, the cellular uptake of hydrophobic and large-scaffold antibiotics and other compounds in Gram-negative bacteria was investigated by modulating the homolog expression of bamB encoding an outer membrane lipoprotein and tolC encoding an outer membrane efflux protein via gene deletion and gene silencing. The potential of deletion mutants for biotechnological applications, such as drug screening and bioproduction, was also demonstrated. Instead of being subjected to gene deletion, wild-type bacterial cells were treated with cell-penetrating peptide conjugates of a peptide nucleic acid (CPP-PNA) against bamB and tolC homologs as antisense agents. Results revealed that the single deletion of bamB and tolC in Escherichia coli increased the uptake of large- and small-scaffold hydrophobic compounds, respectively. A bamB-and-tolC double deletion mutant had a higher uptake efficiency for certain antibiotics and other compounds with high hydrophobicity than each single deletion mutant. The CPP-PNA treated E. coli and Pseudomonas aeruginosa cells showed high sensitivity to various antibiotics. Therefore, these gene deletion and silencing approaches can be utilized in therapeutic and biotechnological fields.
Collapse
Affiliation(s)
- Kyosuke Yamamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo, 062-8517, Japan
| | - Nao Yamamoto
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1-M6-5 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Shotaro Ayukawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo, 062-8517, Japan
| | - Yoshiaki Yasutake
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo, 062-8517, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, 169-8555, Japan
| | - Koji Ishiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo, 062-8517, Japan
| | - Nobutaka Nakashima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo, 062-8517, Japan. .,School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1-M6-5 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
| |
Collapse
|
4
|
Fosfomycin Resistance Evolutionary Pathways of Stenotrophomonas maltophilia in Different Growing Conditions. Int J Mol Sci 2022; 23:ijms23031132. [PMID: 35163052 PMCID: PMC8835530 DOI: 10.3390/ijms23031132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/24/2022] Open
Abstract
The rise of multidrug-resistant Gram-negative pathogens and the lack of novel antibiotics to address this problem has led to the rescue of old antibiotics without a relevant use, such as fosfomycin. Stenotrophomonas maltophilia is a Gram-negative, non-fermenter opportunistic pathogen that presents a characteristic low susceptibility to several antibiotics of common use. Previous work has shown that while the so-far described mechanisms of fosfomycin resistance in most bacteria consist of the inactivation of the target or the transporters of this antibiotic, as well as the production of antibiotic-inactivating enzymes, these mechanisms are not selected in S. maltophilia fosfomycin-resistant mutants. In this microorganism, fosfomycin resistance is caused by the inactivation of enzymes belonging to its central carbon metabolism, hence linking metabolism with antibiotic resistance. Consequently, it is relevant to determine how different growing conditions, including urine and synthetic sputum medium that resemble infection, could impact the evolutionary pathways towards fosfomycin resistance in S. maltophilia. Our results show that S. maltophilia is able to acquire high-level fosfomycin resistance under all tested conditions. However, although some of the genetic changes leading to resistance are common, there are specific mutations that are selected under each of the tested conditions. These results indicate that the pathways of S. maltophilia evolution can vary depending on the infection point and provide information for understanding in more detail the routes of fosfomycin resistance evolution in S. maltophilia.
Collapse
|
5
|
Wesseling CMJ, Slingerland CJ, Veraar S, Lok S, Martin NI. Structure-Activity Studies with Bis-Amidines That Potentiate Gram-Positive Specific Antibiotics against Gram-Negative Pathogens. ACS Infect Dis 2021; 7:3314-3335. [PMID: 34766746 PMCID: PMC8669655 DOI: 10.1021/acsinfecdis.1c00466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Pentamidine, an FDA-approved
antiparasitic drug, was recently identified
as an outer membrane disrupting synergist that potentiates erythromycin,
rifampicin, and novobiocin against Gram-negative bacteria. The same
study also described a preliminary structure–activity relationship
using commercially available pentamidine analogues. We here report
the design, synthesis, and evaluation of a broader panel of bis-amidines
inspired by pentamidine. The present study both validates the previously
observed synergistic activity reported for pentamidine, while further
assessing the capacity for structurally similar bis-amidines to also
potentiate Gram-positive specific antibiotics against Gram-negative
pathogens. Among the bis-amidines prepared, a number of them were
found to exhibit synergistic activity greater than pentamidine. These
synergists were shown to effectively potentiate the activity of Gram-positive
specific antibiotics against multiple Gram-negative pathogens such
as Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas
aeruginosa, and Escherichia coli, including polymyxin- and carbapenem-resistant strains.
Collapse
Affiliation(s)
- Charlotte M. J. Wesseling
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Cornelis J. Slingerland
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Shanice Veraar
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Samantha Lok
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Nathaniel I. Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| |
Collapse
|
6
|
Rybenkov VV, Zgurskaya HI, Ganguly C, Leus IV, Zhang Z, Moniruzzaman M. The Whole Is Bigger than the Sum of Its Parts: Drug Transport in the Context of Two Membranes with Active Efflux. Chem Rev 2021; 121:5597-5631. [PMID: 33596653 PMCID: PMC8369882 DOI: 10.1021/acs.chemrev.0c01137] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell envelope plays a dual role in the life of bacteria by simultaneously protecting it from a hostile environment and facilitating access to beneficial molecules. At the heart of this ability lie the restrictive properties of the cellular membrane augmented by efflux transporters, which preclude intracellular penetration of most molecules except with the help of specialized uptake mediators. Recently, kinetic properties of the cell envelope came into focus driven on one hand by the urgent need in new antibiotics and, on the other hand, by experimental and theoretical advances in studies of transmembrane transport. A notable result from these studies is the development of a kinetic formalism that integrates the Michaelis-Menten behavior of individual transporters with transmembrane diffusion and offers a quantitative basis for the analysis of intracellular penetration of bioactive compounds. This review surveys key experimental and computational approaches to the investigation of transport by individual translocators and in whole cells, summarizes key findings from these studies and outlines implications for antibiotic discovery. Special emphasis is placed on Gram-negative bacteria, whose envelope contains two separate membranes. This feature sets these organisms apart from Gram-positive bacteria and eukaryotic cells by providing them with full benefits of the synergy between slow transmembrane diffusion and active efflux.
Collapse
Affiliation(s)
- Valentin V Rybenkov
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Inga V Leus
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Zhen Zhang
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Mohammad Moniruzzaman
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
7
|
Stevens M, Howe C, Ray AM, Washburn A, Chitre S, Sivinski J, Park Y, Hoang QQ, Chapman E, Johnson SM. Analogs of nitrofuran antibiotics are potent GroEL/ES inhibitor pro-drugs. Bioorg Med Chem 2020; 28:115710. [PMID: 33007545 PMCID: PMC7914298 DOI: 10.1016/j.bmc.2020.115710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 01/14/2023]
Abstract
In two previous studies, we identified compound 1 as a moderate GroEL/ES inhibitor with weak to moderate antibacterial activity against Gram-positive and Gram-negative bacteria including Bacillus subtilis, methicillin-resistant Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, and SM101 Escherichia coli (which has a compromised lipopolysaccharide biosynthetic pathway making bacteria more permeable to drugs). Extending from those studies, we developed two series of analogs with key substructures resembling those of known antibacterials, nitroxoline (hydroxyquinoline moiety) and nifuroxazide/nitrofurantoin (bis-cyclic-N-acylhydrazone scaffolds). Through biochemical and cell-based assays, we identified potent GroEL/ES inhibitors that selectively blocked E. faecium, S. aureus, and E. coli proliferation with low cytotoxicity to human colon and intestine cells in vitro. Initially, only the hydroxyquinoline-bearing analogs were found to be potent inhibitors in our GroEL/ES-mediated substrate refolding assays; however, subsequent testing in the presence of an E. coli nitroreductase (NfsB) in situ indicated that metabolites of the nitrofuran-bearing analogs were potent GroEL/ES inhibitor pro-drugs. Consequently, this study has identified a new target of nitrofuran-containing drugs, and is the first reported instance of such a unique class of GroEL/ES chaperonin inhibitors. The intriguing results presented herein provide impetus for expanded studies to validate inhibitor mechanisms and optimize this antibacterial class using the respective GroEL/ES chaperonin systems and nitroreductases from E. coli and the ESKAPE bacteria.
Collapse
Affiliation(s)
- Mckayla Stevens
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Chris Howe
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Anne-Marie Ray
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Alex Washburn
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Siddhi Chitre
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Jared Sivinski
- The University of Arizona, College of Pharmacy, Department of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ 85721, United States
| | - Yangshin Park
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States; Stark Neurosciences Research Institute, Indiana University School of Medicine. 320 W. 15th Street, Suite 414, Indianapolis, IN 46202, United States; Department of Neurology, Indiana University School of Medicine. 635 Barnhill Drive, Indianapolis, IN 46202, United States
| | - Quyen Q Hoang
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States; Stark Neurosciences Research Institute, Indiana University School of Medicine. 320 W. 15th Street, Suite 414, Indianapolis, IN 46202, United States; Department of Neurology, Indiana University School of Medicine. 635 Barnhill Drive, Indianapolis, IN 46202, United States
| | - Eli Chapman
- The University of Arizona, College of Pharmacy, Department of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ 85721, United States
| | - Steven M Johnson
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States.
| |
Collapse
|
8
|
Zgurskaya HI, Rybenkov VV. Permeability barriers of Gram-negative pathogens. Ann N Y Acad Sci 2020; 1459:5-18. [PMID: 31165502 PMCID: PMC6940542 DOI: 10.1111/nyas.14134] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022]
Abstract
Most clinical antibiotics do not have efficacy against Gram-negative pathogens, mainly because these cells are protected by the permeability barrier comprising the two membranes with active efflux. The emergence of multidrug-resistant Gram-negative strains threatens the utility even of last resort therapeutic treatments. Significant efforts at different levels of resolution are currently focused on finding a solution to this nonpermeation problem and developing new approaches to the optimization of drug activities against multidrug-resistant pathogens. The exceptional efficiency of the Gram-negative permeability barrier is the result of a complex interplay between the two opposing fluxes of drugs across the two membranes. In this review, we describe the current state of understanding of the problem and the recent advances in theoretical and empirical approaches to characterization of drug permeation and active efflux in Gram-negative bacteria.
Collapse
Affiliation(s)
- Helen I Zgurskaya
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma
| | - Valentin V Rybenkov
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
9
|
Sawyer WS, Wang L, Uehara T, Tamrakar P, Prathapam R, Mostafavi M, Metzger LE, Feng B, Baxter Rath CM. Targeted lipopolysaccharide biosynthetic intermediate analysis with normal-phase liquid chromatography mass spectrometry. PLoS One 2019; 14:e0211803. [PMID: 30735516 PMCID: PMC6368293 DOI: 10.1371/journal.pone.0211803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 01/21/2019] [Indexed: 01/22/2023] Open
Abstract
Lipopolysacharride (LPS) forms the outer leaflet of the outer membrane in Gram-negative bacteria and contributes to the permeability barrier and immune response. In this study, we established a method for monitoring the LPS biosynthetic intermediates of the Raetz pathway (lpxA-lpxK) in Escherichia coli. Metabolites from compound-treated cells and genetically-perturbed cells were extracted from whole cells and concentrated by mixed-mode weak anion exchange (WAX) solid-phase extraction (SPE) prior to analysis by normal phase (NP)LC-MS/MS. Data was normalized to cell density and an internal standard prior to comparison against untreated cells in order to determine fold accumulation and depletion for affected metabolites. Using this LC-MS/MS method, we were able to reliably monitor changes in levels of the LPS intermediates in response to compound-treatment and genetic modification. In addition, we found that deletion of periplasmic CDP-diacylglycerol pyrophosphatase dramatically increased levels of the UDP-containing LPS intermediates, suggesting the enzymatic breakdown during sample preparation. This assay allows for probing a key essential pathway in Gram-negative bacteria in an effort to discover antibacterial agents that inhibit enzymes in the LPS biosynthetic pathway.
Collapse
Affiliation(s)
- William S. Sawyer
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, CA, United States of America
| | - Lisha Wang
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, CA, United States of America
| | - Tsuyoshi Uehara
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, CA, United States of America
| | - Pramila Tamrakar
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, CA, United States of America
| | - Ramadevi Prathapam
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, CA, United States of America
| | - Mina Mostafavi
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, CA, United States of America
| | - Louis E. Metzger
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, CA, United States of America
| | - Brian Feng
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, CA, United States of America
| | - Christopher M. Baxter Rath
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, CA, United States of America
- * E-mail:
| |
Collapse
|
10
|
Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019; 119:1323-1455. [PMID: 30192523 PMCID: PMC6405328 DOI: 10.1021/acs.chemrev.8b00201] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
11
|
Lee PS, Lapointe G, Madera AM, Simmons RL, Xu W, Yifru A, Tjandra M, Karur S, Rico A, Thompson K, Bojkovic J, Xie L, Uehara K, Liu A, Shu W, Bellamacina C, McKenney D, Morris L, Tonn GR, Osborne C, Benton BM, McDowell L, Fu J, Sweeney ZK. Application of Virtual Screening to the Identification of New LpxC Inhibitor Chemotypes, Oxazolidinone and Isoxazoline. J Med Chem 2018; 61:9360-9370. [PMID: 30226381 DOI: 10.1021/acs.jmedchem.8b01287] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This report summarizes the identification and synthesis of novel LpxC inhibitors aided by computational methods that leveraged numerous crystal structures. This effort led to the identification of oxazolidinone and isoxazoline inhibitors with potent in vitro activity against P. aeruginosa and other Gram-negative bacteria. Representative compound 13f demonstrated efficacy against P. aeruginosa in a mouse neutropenic thigh infection model. The antibacterial activity against K. pneumoniae could be potentiated by Gram-positive antibiotics rifampicin (RIF) and vancomycin (VAN) in both in vitro and in vivo models.
Collapse
Affiliation(s)
- Patrick S Lee
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Guillaume Lapointe
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Ann Marie Madera
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Robert L Simmons
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Wenjian Xu
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Aregahegn Yifru
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Meiliana Tjandra
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Subramanian Karur
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Alice Rico
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Katherine Thompson
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Jade Bojkovic
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Lili Xie
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Kyoko Uehara
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Amy Liu
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Wei Shu
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Cornelia Bellamacina
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - David McKenney
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Laura Morris
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - George R Tonn
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Colin Osborne
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Bret M Benton
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Laura McDowell
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Jiping Fu
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Zachary K Sweeney
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| |
Collapse
|
12
|
A Metagenome-Wide Association Study and Arrayed Mutant Library Confirm Acetobacter Lipopolysaccharide Genes Are Necessary for Association with Drosophila melanogaster. G3-GENES GENOMES GENETICS 2018; 8:1119-1127. [PMID: 29487183 PMCID: PMC5873903 DOI: 10.1534/g3.117.300530] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A metagenome wide association (MGWA) study of bacterial host association determinants in Drosophila predicted that LPS biosynthesis genes are significantly associated with host colonization. We were unable to create site-directed mutants for each of the predicted genes in Acetobacter, so we created an arrayed transposon insertion library using Acetobacter fabarum DsW_054 isolated from Drosophila. Creation of the A. fabarum DsW_054 gene knock-out library was performed by combinatorial mapping and Illumina sequencing of random transposon insertion mutants. Transposon insertion locations for 6,418 mutants were successfully mapped, including hits within 63% of annotated genes in the A. fabarum DsW_054 genome. For 45/45 members of the library, insertion sites were verified by arbitrary PCR and Sanger sequencing. Mutants with insertions in four different LPS biosynthesis genes were selected from the library to validate the MGWA predictions. Insertion mutations in two genes biosynthetically upstream of Lipid-A formation, lpxC and lpxB, show significant differences in host association, whereas mutations in two genes encoding LPS biosynthesis functions downstream of Lipid-A biosynthesis had no effect. These results suggest an impact of bacterial cell surface molecules on the bacterial capacity for host association. Also, the transposon insertion mutant library will be a useful resource for ongoing research on the genetic basis for Acetobacter traits.
Collapse
|
13
|
He J, Tu Q, Ge Y, Qin Y, Cui B, Hu X, Wang Y, Deng Y, Wang K, Van Nostrand JD, Li J, Zhou J, Li Y, Zhou X. Taxonomic and Functional Analyses of the Supragingival Microbiome from Caries-Affected and Caries-Free Hosts. MICROBIAL ECOLOGY 2018; 75:543-554. [PMID: 28932895 DOI: 10.1007/s00248-017-1056-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
Caries is one of the most prevalent and costly infectious diseases affecting humans of all ages. It is initiated by cariogenic supragingival dental plaques forming on saliva-coated tooth surfaces, yet the etiology remains elusive. To determine which microbial populations may predispose a patient to caries, we report here an in-depth and comprehensive view of the microbial community associated with supragingival dental plaque collected from the healthy teeth of caries patients and healthy adults. We found that microbial communities from caries patients had a higher evenness and inter-individual variations but simpler ecological networks compared to healthy controls despite the overall taxonomic structure being similar. Genera including Selenomonas, Treponema, Atopobium, and Bergeriella were distributed differently between the caries and healthy groups with disturbed co-occurrence patterns. In addition, caries and healthy subjects carried different Treponema, Atopobium, and Prevotella species. Moreover, distinct populations of 13 function genes involved in organic acid synthesis, glycan biosynthesis, complex carbohydrate degradation, amino acid synthesis and metabolism, purine and pyrimidine metabolism, isoprenoid biosynthesis, lipid metabolism, and co-factor biosynthesis were present in each of the healthy and caries groups. Our results suggested that the fundamental differences in dental plaque ecology partially explained the patients' susceptibility to caries, and could be used for caries risk prediction in the future.
Collapse
Affiliation(s)
- Jinzhi He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qichao Tu
- Department of Marine Sciences, Ocean College, Zhejiang University, Hangzhou, Zhejiang, China
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Yichen Ge
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yujia Qin
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Bomiao Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoyu Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuxia Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ye Deng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Kun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Joy D Van Nostrand
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA.
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.
- Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Yan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Affiliation(s)
- Dmitrii V. Kalinin
- Institut für Organische Chemie, Universität Hamburg, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
| | - Ralph Holl
- Institut für Organische Chemie, Universität Hamburg, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems
| |
Collapse
|
15
|
Bush K, Page MGP. What we may expect from novel antibacterial agents in the pipeline with respect to resistance and pharmacodynamic principles. J Pharmacokinet Pharmacodyn 2017; 44:113-132. [DOI: 10.1007/s10928-017-9506-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/20/2017] [Indexed: 12/25/2022]
|
16
|
Breaking the Permeability Barrier of Escherichia coli by Controlled Hyperporination of the Outer Membrane. Antimicrob Agents Chemother 2016; 60:7372-7381. [PMID: 27697764 DOI: 10.1128/aac.01882-16] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022] Open
Abstract
In Gram-negative bacteria, a synergistic relationship between slow passive uptake of antibiotics across the outer membrane and active efflux transporters creates a permeability barrier, which efficiently reduces the effective concentrations of antibiotics in cells and, hence, their activities. To analyze the relative contributions of active efflux and the passive barrier to the activities of antibiotics, we constructed Escherichia coli strains with controllable permeability of the outer membrane. The strains expressed a large pore that does not discriminate between compounds on the basis of their hydrophilicity and sensitizes cells to a variety of antibacterial agents. We found that the efficacies of antibiotics in these strains were specifically affected by either active efflux or slow uptake, or both, and reflect differences in the properties of the outer membrane barrier, the repertoire of efflux pumps, and the inhibitory activities of antibiotics. Our results identify antibiotics which are the best candidates for the potentiation of activities through efflux inhibition and permeabilization of the outer membrane.
Collapse
|
17
|
A High-Throughput Approach To Identify Compounds That Impair Envelope Integrity in Escherichia coli. Antimicrob Agents Chemother 2016; 60:5995-6002. [PMID: 27458225 DOI: 10.1128/aac.00537-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/17/2016] [Indexed: 12/24/2022] Open
Abstract
The envelope of Gram-negative bacteria constitutes an impenetrable barrier to numerous classes of antimicrobials. This intrinsic resistance, coupled with acquired multidrug resistance, has drastically limited the treatment options against Gram-negative pathogens. The aim of the present study was to develop and validate an assay for identifying compounds that increase envelope permeability, thereby conferring antimicrobial susceptibility by weakening of the cell envelope barrier in Gram-negative bacteria. A high-throughput whole-cell screening platform was developed to measure Escherichia coli envelope permeability to a β-galactosidase chromogenic substrate. The signal produced by cytoplasmic β-galactosidase-dependent cleavage of the chromogenic substrate was used to determine the degree of envelope permeabilization. The assay was optimized by using known envelope-permeabilizing compounds and E. coli gene deletion mutants with impaired envelope integrity. As a proof of concept, a compound library comprising 36 peptides and 45 peptidomimetics was screened, leading to identification of two peptides that substantially increased envelope permeability. Compound 79 reduced significantly (from 8- to 125-fold) the MICs of erythromycin, fusidic acid, novobiocin and rifampin and displayed synergy (fractional inhibitory concentration index, <0.2) with these antibiotics by checkerboard assays in two genetically distinct E. coli strains, including the high-risk multidrug-resistant, CTX-M-15-producing sequence type 131 clone. Notably, in the presence of 0.25 μM of this peptide, both strains were susceptible to rifampin according to the resistance breakpoints (R > 0.5 μg/ml) for Gram-positive bacterial pathogens. The high-throughput screening platform developed in this study can be applied to accelerate the discovery of antimicrobial helper drug candidates and targets that enhance the delivery of existing antibiotics by impairing envelope integrity in Gram-negative bacteria.
Collapse
|
18
|
Gronow S, Brade H. Invited review: Lipopolysaccharide biosynthesis: which steps do bacteria need to survive? ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519010070010301] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A detailed knowledge of LPS biosynthesis is of the utmost importance in understanding the function of the outer membrane of Gram-negative bacteria. The regulation of LPS biosynthesis affects many more compartments of the bacterial cell than the outer membrane and thus contributes to the understanding of the physiology of Gram-negative bacteria in general, on the basis of which only mechanisms of virulence and antibiotic resistance can be studied to find new targets for antibacterial treatment. The study of LPS biosynthesis is also an excellent example to demonstrate the limitations of `genomics' and `proteomics', since secondary gene products can be studied only by the combined tools of molecular genetics, enzymology and analytical structural biochemistry. Thus, the door to the field of `glycomics' is opened.
Collapse
Affiliation(s)
- Sabine Gronow
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany,
| | - Helmut Brade
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| |
Collapse
|
19
|
A Transposon Screen Identifies Genetic Determinants of Vibrio cholerae Resistance to High-Molecular-Weight Antibiotics. Antimicrob Agents Chemother 2016; 60:4757-63. [PMID: 27216069 DOI: 10.1128/aac.00576-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/19/2016] [Indexed: 12/22/2022] Open
Abstract
Gram-negative bacteria are notoriously resistant to a variety of high-molecular-weight antibiotics due to the limited permeability of their outer membrane (OM). The basis of OM barrier function and the genetic factors required for its maintenance remain incompletely understood. Here, we employed transposon insertion sequencing to identify genes required for Vibrio cholerae resistance to vancomycin and bacitracin, antibiotics that are thought to be too large to efficiently penetrate the OM. The screen yielded several genes whose protein products are predicted to participate in processes important for OM barrier functions and for biofilm formation. In addition, we identified a novel factor, designated vigA (for vancomycin inhibits growth), that has not previously been characterized or linked to outer membrane function. The vigA open reading frame (ORF) codes for an inner membrane protein, and in its absence, cells became highly sensitive to glycopeptide antibiotics (vancomycin and ramoplanin) and bacitracin but not to other large antibiotics or detergents. In contrast to wild-type (WT) cells, the vigA mutant was stained with fluorescent vancomycin. These observations suggest that VigA specifically prevents the periplasmic accumulation of certain large antibiotics without exerting a general role in the maintenance of OM integrity. We also observed marked interspecies variability in the susceptibilities of Gram-negative pathogens to glycopeptides and bacitracin. Collectively, our findings suggest that the OM barrier is not absolute but rather depends on specific OM-antibiotic interactions.
Collapse
|
20
|
GroEL/ES inhibitors as potential antibiotics. Bioorg Med Chem Lett 2016; 26:3127-3134. [PMID: 27184767 DOI: 10.1016/j.bmcl.2016.04.089] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 01/11/2023]
Abstract
We recently reported results from a high-throughput screening effort that identified 235 inhibitors of the Escherichia coli GroEL/ES chaperonin system [Bioorg. Med. Chem. Lett.2014, 24, 786]. As the GroEL/ES chaperonin system is essential for growth under all conditions, we reasoned that targeting GroEL/ES with small molecule inhibitors could be a viable antibacterial strategy. Extending from our initial screen, we report here the antibacterial activities of 22 GroEL/ES inhibitors against a panel of Gram-positive and Gram-negative bacteria, including E. coli, Bacillus subtilis, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter cloacae. GroEL/ES inhibitors were more effective at blocking the proliferation of Gram-positive bacteria, in particular S. aureus, where lead compounds exhibited antibiotic effects from the low-μM to mid-nM range. While several compounds inhibited the human HSP60/10 refolding cycle, some were able to selectively target the bacterial GroEL/ES system. Despite inhibiting HSP60/10, many compounds exhibited low to no cytotoxicity against human liver and kidney cell lines. Two lead candidates emerged from the panel, compounds 8 and 18, that exhibit >50-fold selectivity for inhibiting S. aureus growth compared to liver or kidney cell cytotoxicity. Compounds 8 and 18 inhibited drug-sensitive and methicillin-resistant S. aureus strains with potencies comparable to vancomycin, daptomycin, and streptomycin, and are promising candidates to explore for validating the GroEL/ES chaperonin system as a viable antibiotic target.
Collapse
|
21
|
Tangherlini G, Torregrossa T, Agoglitta O, Köhler J, Melesina J, Sippl W, Holl R. Synthesis and biological evaluation of enantiomerically pure glyceric acid derivatives as LpxC inhibitors. Bioorg Med Chem 2016; 24:1032-44. [DOI: 10.1016/j.bmc.2016.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/13/2016] [Accepted: 01/15/2016] [Indexed: 10/22/2022]
|
22
|
Jana SK, Löppenberg M, Daniliuc CG, Holl R. Synthesis and biological evaluation of C-ethynyl furanosides as LpxC inhibitors. Tetrahedron 2015. [DOI: 10.1016/j.tet.2014.12.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Jenkins RJ, Heslip KA, Meagher JL, Stuckey JA, Dotson GD. Structural basis for the recognition of peptide RJPXD33 by acyltransferases in lipid A biosynthesis. J Biol Chem 2014; 289:15527-35. [PMID: 24742680 PMCID: PMC4140908 DOI: 10.1074/jbc.m114.564278] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/15/2014] [Indexed: 01/28/2023] Open
Abstract
UDP-N-acetylglucosamine acyltransferase (LpxA) and UDP-3-O-(acyl)-glucosamine acyltransferase (LpxD) constitute the essential, early acyltransferases of lipid A biosynthesis. Recently, an antimicrobial peptide inhibitor, RJPXD33, was identified with dual affinity for LpxA and LpxD. To gain a fundamental understanding of the molecular basis of inhibitor binding, we determined the crystal structure of LpxA from Escherichia coli in complex with RJPXD33 at 1.9 Å resolutions. Our results suggest that the peptide binds in a unique modality that mimics (R)-β-hydroxyacyl pantetheine binding to LpxA and displays how the peptide binds exclusive of the native substrate, acyl-acyl carrier protein. Acyltransferase binding studies with photo-labile RJPXD33 probes and truncations of RJPXD33 validated the structure and provided fundamental insights for future design of small molecule inhibitors. Overlay of the LpxA-RJPXD33 structure with E. coli LpxD identified a complementary peptide binding pocket within LpxD and serves as a model for further biochemical characterization of RJPXD33 binding to LpxD.
Collapse
Affiliation(s)
- Ronald J Jenkins
- From the Department of Medicinal Chemistry, College of Pharmacy, and
| | - Kyle A Heslip
- From the Department of Medicinal Chemistry, College of Pharmacy, and
| | - Jennifer L Meagher
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Jeanne A Stuckey
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Garry D Dotson
- From the Department of Medicinal Chemistry, College of Pharmacy, and
| |
Collapse
|
24
|
Kocharunchitt C, King T, Gobius K, Bowman JP, Ross T. Global genome response of Escherichia coli O157∶H7 Sakai during dynamic changes in growth kinetics induced by an abrupt downshift in water activity. PLoS One 2014; 9:e90422. [PMID: 24594867 PMCID: PMC3940904 DOI: 10.1371/journal.pone.0090422] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/30/2014] [Indexed: 01/10/2023] Open
Abstract
The present study was undertaken to investigate growth kinetics and time-dependent change in global expression of Escherichia coli O157∶H7 Sakai upon an abrupt downshift in water activity (aw). Based on viable count data, shifting E. coli from aw 0.993 to aw 0.985 or less caused an apparent loss, then recovery, of culturability. Exponential growth then resumed at a rate characteristic for the aw imposed. To understand the responses of this pathogen to abrupt osmotic stress, we employed an integrated genomic and proteomic approach to characterize its cellular response during exposure to a rapid downshift but still within the growth range from aw 0.993 to aw 0.967. Of particular interest, genes and proteins with cell envelope-related functions were induced during the initial loss and subsequent recovery of culturability. This implies that cells undergo remodeling of their envelope composition, enabling them to adapt to osmotic stress. Growth at low aw, however, involved up-regulating additional genes and proteins, which are involved in the biosynthesis of specific amino acids, and carbohydrate catabolism and energy generation. This suggests their important role in facilitating growth under such stress. Finally, we highlighted the ability of E. coli to activate multiple stress responses by transiently inducing the RpoE and RpoH regulons to control protein misfolding, while simultaneously activating the master stress regulator RpoS to mediate long-term adaptation to hyperosmolality. This investigation extends our understanding of the potential mechanisms used by pathogenic E. coli to adapt, survive and grow under osmotic stress, which could potentially be exploited to aid the selection and/or development of novel strategies to inactivate this pathogen.
Collapse
Affiliation(s)
- Chawalit Kocharunchitt
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
- * E-mail:
| | - Thea King
- Commonwealth Scientific and Industrial Research Organisation Animal, Food and Health Sciences, North Ryde, New South Wales, Australia
| | - Kari Gobius
- Commonwealth Scientific and Industrial Research Organisation Animal, Food and Health Sciences, Werribee, Victoria, Australia
| | - John P. Bowman
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Tom Ross
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
25
|
Szermerski M, Melesina J, Wichapong K, Löppenberg M, Jose J, Sippl W, Holl R. Synthesis, biological evaluation and molecular docking studies of benzyloxyacetohydroxamic acids as LpxC inhibitors. Bioorg Med Chem 2014; 22:1016-28. [DOI: 10.1016/j.bmc.2013.12.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/21/2013] [Accepted: 12/18/2013] [Indexed: 11/28/2022]
|
26
|
Lázár V, Pal Singh G, Spohn R, Nagy I, Horváth B, Hrtyan M, Busa-Fekete R, Bogos B, Méhi O, Csörgő B, Pósfai G, Fekete G, Szappanos B, Kégl B, Papp B, Pál C. Bacterial evolution of antibiotic hypersensitivity. Mol Syst Biol 2013; 9:700. [PMID: 24169403 PMCID: PMC3817406 DOI: 10.1038/msb.2013.57] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/25/2013] [Indexed: 12/15/2022] Open
Abstract
The evolution of resistance to a single antibiotic is frequently accompanied by increased resistance to multiple other antimicrobial agents. In sharp contrast, very little is known about the frequency and mechanisms underlying collateral sensitivity. In this case, genetic adaptation under antibiotic stress yields enhanced sensitivity to other antibiotics. Using large-scale laboratory evolutionary experiments with Escherichia coli, we demonstrate that collateral sensitivity occurs frequently during the evolution of antibiotic resistance. Specifically, populations adapted to aminoglycosides have an especially low fitness in the presence of several other antibiotics. Whole-genome sequencing of laboratory-evolved strains revealed multiple mechanisms underlying aminoglycoside resistance, including a reduction in the proton-motive force (PMF) across the inner membrane. We propose that as a side effect, these mutations diminish the activity of PMF-dependent major efflux pumps (including the AcrAB transporter), leading to hypersensitivity to several other antibiotics. More generally, our work offers an insight into the mechanisms that drive the evolution of negative trade-offs under antibiotic selection.
Collapse
Affiliation(s)
- Viktória Lázár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Gajinder Pal Singh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Réka Spohn
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - István Nagy
- Genomics Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Balázs Horváth
- Genomics Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Mónika Hrtyan
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Róbert Busa-Fekete
- Linear Accelerator Laboratory, University of Paris-Sud, CNRS, Orsay, France
| | - Balázs Bogos
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Orsolya Méhi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Bálint Csörgő
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - György Pósfai
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Gergely Fekete
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Balázs Szappanos
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Balázs Kégl
- Linear Accelerator Laboratory, University of Paris-Sud, CNRS, Orsay, France
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| |
Collapse
|
27
|
Holler TP, Evdokimov AG, Narasimhan L. Structural biology approaches to antibacterial drug discovery. Expert Opin Drug Discov 2013; 2:1085-101. [PMID: 23484874 DOI: 10.1517/17460441.2.8.1085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Antibacterial drug discovery has undertaken a major experiment in the 12 years since the first bacterial genomes were sequenced. Genome mining has identified hundreds of potential targets that have been distilled to a relatively small number of broad-spectrum targets ('low-hanging fruit') using the genetics tools of modern microbiology. Prosecuting these targets with high-throughput screens has led to a disappointingly small number of lead series that have mostly evaporated under closer scrutiny. In the meantime, multi-drug resistant pathogens are becoming a serious challenge in the clinic and the community and the number of pharmaceutical firms pursuing antibacterial discovery has declined. Filling the antibacterial development pipeline with novel chemical series is a significant challenge that will require the collaboration of scientists from many disciplines. Fortunately, advancements in the tools of structural biology and of in silico modeling are opening up new avenues of research that may help deal with the problems associated with discovering novel antibiotics.
Collapse
Affiliation(s)
- Tod P Holler
- Pfizer Global Research and Development, 2800 Plymouth Road, Ann Arbor, MI 48105, USA +1 734 622 5954 ; +1 734 622 2963 ; Tod.Holler@pfizer. com
| | | | | |
Collapse
|
28
|
Oddo A, Holl R. Design and stereoselective synthesis of a C-aryl furanoside as a conformationally constrained CHIR-090 analogue. Carbohydr Res 2012; 359:59-64. [DOI: 10.1016/j.carres.2012.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/10/2012] [Accepted: 06/11/2012] [Indexed: 01/09/2023]
|
29
|
McAllister LA, Montgomery JI, Abramite JA, Reilly U, Brown MF, Chen JM, Barham RA, Che Y, Chung SW, Menard CA, Mitton-Fry M, Mullins LM, Noe MC, O'Donnell JP, Oliver RM, Penzien JB, Plummer M, Price LM, Shanmugasundaram V, Tomaras AP, Uccello DP. Heterocyclic methylsulfone hydroxamic acid LpxC inhibitors as Gram-negative antibacterial agents. Bioorg Med Chem Lett 2012; 22:6832-8. [PMID: 23046961 DOI: 10.1016/j.bmcl.2012.09.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/04/2012] [Accepted: 09/17/2012] [Indexed: 11/19/2022]
Abstract
The synthesis and antibacterial activity of heterocyclic methylsulfone hydroxamates is presented. Compounds in this series are potent inhibitors of the LpxC enzyme, a key enzyme involved in the production of lipopolysaccharide (LPS) found in the outer membrane of Gram-negative bacteria. SAR evaluation of compounds in this series revealed analogs with potent antibacterial activity against challenging Gram-negative species such as Pseudomonas aeruginosa and Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Laura A McAllister
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, CT 06340, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Vidaillac C, Benichou L, Duval RE. In vitro synergy of colistin combinations against colistin-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae isolates. Antimicrob Agents Chemother 2012; 56:4856-61. [PMID: 22751540 PMCID: PMC3421898 DOI: 10.1128/aac.05996-11] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 06/24/2012] [Indexed: 01/22/2023] Open
Abstract
Colistin resistance, although uncommon, is increasingly being reported among Gram-negative clinical pathogens, and an understanding of its impact on the activity of antimicrobials is now evolving. We evaluated the potential for synergy of colistin plus trimethoprim, trimethoprim-sulfamethoxazole (1/19 ratio), or vancomycin against 12 isolates of Acinetobacter baumannii (n = 4), Pseudomonas aeruginosa (n = 4), and Klebsiella pneumoniae (n = 4). The strains included six multidrug-resistant clinical isolates, K. pneumoniae ATCC 700603, A. baumannii ATCC 19606, P. aeruginosa ATCC 27853, and their colistin-resistant derivatives (KPm1, ABm1, and PAm1, respectively). Antimicrobial susceptibilities were assessed by broth microdilution and population analysis profiles. The potential for synergy of colistin combinations was evaluated using a checkerboard assay, as well as static time-kill experiments at 0.5× and 0.25× MIC. The MIC ranges of vancomycin, trimethoprim, and trimethoprim-sulfamethoxazole (1/19) were ≥128, 4 to ≥128, and 2/38 to >128/2,432 μg/ml, respectively. Colistin resistance demonstrated little impact on vancomycin, trimethoprim, or trimethoprim-sulfamethoxazole MIC values. Isolates with subpopulations heterogeneously resistant to colistin were observed to various degrees in all tested isolates. In time-kill assays, all tested combinations were synergistic against KPm1 at 0.25× MIC and 0.5× MIC and ABm1 and PAm1 at 0.5× MIC. In contrast, none of the tested combinations demonstrated synergy against any colistin-susceptible P. aeruginosa isolates and clinical strains of K. pneumoniae isolates. Only colistin plus trimethoprim or trimethoprim-sulfamethoxazole was synergistic and bactericidal at 0.5× MIC against K. pneumoniae ATCC 700603. Colistin resistance seems to promote the in vitro activity of unconventional colistin combinations. Additional experiments are warranted to understand the clinical significance of these observations.
Collapse
|
31
|
Conserved residues of the putative L6 loop of Escherichia coli BamA play a critical role in the assembly of β-barrel outer membrane proteins, including that of BamA itself. J Bacteriol 2012; 194:4662-8. [PMID: 22753067 DOI: 10.1128/jb.00825-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many members of the Omp85 family of proteins form essential β-barrel outer membrane protein (OMP) biogenesis machinery in Gram-negative bacteria, chloroplasts, and mitochondria. In Escherichia coli, BamA, a member of the Omp85 family, folds into an outer membrane-embedded β-barrel domain and a soluble periplasmic polypeptide-transport-associated (POTRA) domain. Although the high-resolution structures of only the BamA POTRA domain of E. coli are available, the crystal structure of FhaC, an Omp85 family member and a component of the two-partner secretion system in Bordetella pertussis, suggests that the BamA β-barrel likely folds into a 16-stranded β-barrel. The FhaC β-barrel is occluded by an N-terminal α-helix and a large β-barrel loop, L6, which carries residues that are highly conserved among the Omp85 family members. Deletion of L6 in FhaC did not affect its biogenesis but abolished its secretion function. In this study, we tested the hypothesis that the conserved residues of the putative L6 loop, which presumably folds back into the lumen of the BamA β-barrel like the FhaC counterpart, play an important role in OMP and/or BamA biogenesis. The conserved (641)RGF(643) residues of L6 were either deleted or replaced with alanine in various permutations. Phenotypic and biochemical characterization of various BamA L6 mutants revealed that the conserved RGF residues are critical for OMP biogenesis. Moreover, three BamA L6 alterations, ΔRGF, AAA, and AGA, produced a conditional lethal phenotype, concomitant with severely reduced BamA levels and folding defects. Thus, the conserved (641)RGF(643) residues of the BamA L6 loop are important for BamA folding and biogenesis.
Collapse
|
32
|
Brown MF, Reilly U, Abramite JA, Arcari JT, Oliver R, Barham RA, Che Y, Chen JM, Collantes EM, Chung SW, Desbonnet C, Doty J, Doroski M, Engtrakul JJ, Harris TM, Huband M, Knafels JD, Leach KL, Liu S, Marfat A, Marra A, McElroy E, Melnick M, Menard CA, Montgomery JI, Mullins L, Noe MC, O'Donnell J, Penzien J, Plummer MS, Price LM, Shanmugasundaram V, Thoma C, Uccello DP, Warmus JS, Wishka DG. Potent inhibitors of LpxC for the treatment of Gram-negative infections. J Med Chem 2012; 55:914-23. [PMID: 22175825 DOI: 10.1021/jm2014748] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this paper, we present the synthesis and SAR as well as selectivity, pharmacokinetic, and infection model data for representative analogues of a novel series of potent antibacterial LpxC inhibitors represented by hydroxamic acid.
Collapse
Affiliation(s)
- Matthew F Brown
- Worldwide Medicinal Chemistry, Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Page MGP. The role of the outer membrane of Gram-negative bacteria in antibiotic resistance: Ajax' shield or Achilles' heel? Handb Exp Pharmacol 2012:67-86. [PMID: 23090596 DOI: 10.1007/978-3-642-28951-4_5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been an enormous increase in our knowledge of the fundamental steps in the biosynthesis and assembly of the outer membrane of Gram-negative bacteria. Lipopolysaccharide is a major component of the outer membrane of Gram-negative bacteria as is peptidoglycan. Porins, efflux pumps and other transport proteins of the outer membrane are also present. It is clear that there are numerous essential proteins that have the potential to be targets for novel antimicrobial agents. Progress, however, has been slow. Much of the emphasis has been on cytoplasmic processes that were better understood earlier on, but have the drawback that two penetration barriers, with different permeability properties, have to be crossed. With the increased understanding of the late-stage events occurring in the periplasm, it may be possible to shift focus to these more accessible targets. Nevertheless, getting drugs across the outer membrane will remain a challenge to the ingenuity of the medicinal chemist.
Collapse
|
34
|
Abstract
Elongation factor P (EF-P) is posttranslationally modified at a conserved lysyl residue by the coordinated action of two enzymes, PoxA and YjeK. We have previously established the importance of this modification in Salmonella stress resistance. Here we report that, like poxA and yjeK mutants, Salmonella strains lacking EF-P display increased susceptibility to hypoosmotic conditions, antibiotics, and detergents and enhanced resistance to the compound S-nitrosoglutathione. The susceptibility phenotypes are largely explained by the enhanced membrane permeability of the efp mutant, which exhibits increased uptake of the hydrophobic dye 1-N-phenylnaphthylamine (NPN). Analysis of the membrane proteomes of wild-type and efp mutant Salmonella strains reveals few changes, including the prominent overexpression of a single porin, KdgM, in the efp mutant outer membrane. Removal of KdgM in the efp mutant background ameliorates the detergent, antibiotic, and osmosensitivity phenotypes and restores wild-type permeability to NPN. Our data support a role for EF-P in the translational regulation of a limited number of proteins that, when perturbed, renders the cell susceptible to stress by the adventitious overexpression of an outer membrane porin.
Collapse
|
35
|
Langklotz S, Baumann U, Narberhaus F. Structure and function of the bacterial AAA protease FtsH. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:40-8. [PMID: 21925212 DOI: 10.1016/j.bbamcr.2011.08.015] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 08/24/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
Abstract
Proteolysis of regulatory proteins or key enzymes of biosynthetic pathways is a universal mechanism to rapidly adjust the cellular proteome to particular environmental needs. Among the five energy-dependent AAA(+) proteases in Escherichia coli, FtsH is the only essential protease. Moreover, FtsH is unique owing to its anchoring to the inner membrane. This review describes the structural and functional properties of FtsH. With regard to its role in cellular quality control and regulatory circuits, cytoplasmic and membrane substrates of the FtsH protease are depicted and mechanisms of FtsH-dependent proteolysis are discussed.
Collapse
Affiliation(s)
- Sina Langklotz
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Germany
| | | | | |
Collapse
|
36
|
Mansoor UF, Vitharana D, Reddy PA, Daubaras DL, McNicholas P, Orth P, Black T, Siddiqui MA. Design and synthesis of potent Gram-negative specific LpxC inhibitors. Bioorg Med Chem Lett 2010; 21:1155-61. [PMID: 21273067 DOI: 10.1016/j.bmcl.2010.12.111] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/21/2010] [Accepted: 12/21/2010] [Indexed: 11/18/2022]
Abstract
Antibiotic resistant hospital acquired infections are on the rise, creating an urgent need for novel bactericidal drugs. Enzymes involved in lipopolysaccharide (LPS) biosynthesis are attractive antibacterial targets since LPS is the major structural component of the outer membrane of Gram-negative bacteria. Lipid A is an essential hydrophobic anchor of LPS and the first committed step in lipid A biosynthesis is catalyzed by a unique zinc dependent metalloamidase, UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC). LpxC is an attractive Gram-negative only target that has been chemically validated by potent bactericidal hydroxamate inhibitors that work by coordination of the enzyme's catalytic zinc ion. An exploratory chemistry effort focused on expanding the SAR around hydroxamic acid zinc-binding 'warheads' lead to the identification of novel compounds with enzyme potency and antibacterial activity similar to CHIR-090.
Collapse
Affiliation(s)
- U Faruk Mansoor
- Department of Chemistry, Merck Research Laboratories, 320 Bent Street, Cambridge, MA 02141, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Cole KE, Gattis SG, Angell HD, Fierke CA, Christianson DW. Structure of the metal-dependent deacetylase LpxC from Yersinia enterocolitica complexed with the potent inhibitor CHIR-090 . Biochemistry 2010; 50:258-65. [PMID: 21171638 DOI: 10.1021/bi101622a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first committed step of lipid A biosynthesis is catalyzed by UDP-(3-O-((R)-3-hydroxymyristoyl))-N-acetylglucosamine deacetylase, a metal-dependent deacetylase also known as LpxC. Because lipid A is essential for bacterial viability, the inhibition of LpxC is an appealing therapeutic strategy for the treatment of Gram-negative bacterial infections. Here we report the 1.79 Å resolution X-ray crystal structure of LpxC from Yersinia enterocolitica (YeLpxC) complexed with the potent hydroxamate inhibitor CHIR-090. This enzyme is a nearly identical orthologue of LpxC from Yersinia pestis (99.7% sequence identity), the pathogen that causes bubonic plague. Similar to the inhibition of LpxC from Escherichia coli, CHIR-090 inhibits YeLpxC via a two-step slow, tight-binding mechanism with an apparent K(i) of 0.54 ± 0.14 nM followed by conversion of the E·I to E·I* species with a rate constant of 0.11 ± 0.01 min(-1). The structure of the LpxC complex with CHIR-090 shows that the inhibitor hydroxamate group chelates the active site zinc ion, and the "tail" of the inhibitor binds in the hydrophobic tunnel in the active site. This hydrophobic tunnel is framed by a βαβ subdomain that exhibits significant conformational flexibility as it accommodates inhibitor binding. CHIR-090 displays a 27 mm zone of inhibition against Y. enterocolitica in a Kirby-Bauer antibiotic assay, which is comparable to its reported activity against other Gram-negative species including E. coli and Pseudomonas aeruginosa. This study demonstrates that the inhibition of LpxC should be explored as a potential therapeutic and/or prophylatic response to infection by weaponized Yersinia species.
Collapse
Affiliation(s)
- Kathryn E Cole
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, 19104-6323, United States
| | | | | | | | | |
Collapse
|
38
|
Effects of subminimum inhibitory concentrations of antibiotics on the Pasteurella multocida proteome: a systems approach. Comp Funct Genomics 2010:254836. [PMID: 18464924 PMCID: PMC2367384 DOI: 10.1155/2008/254836] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 02/19/2008] [Indexed: 12/04/2022] Open
Abstract
To identify key regulators of subminimum inhibitory concentration (sub-MIC) antibiotic response in the Pasteurella multocida proteome, we applied systems approaches. Using 2D-LC-ESI-MS2, we achieved 53% proteome coverage. To study the differential protein expression in response to sub-MIC antibiotics in the context of protein interaction networks, we inferred P. multocida Pm70 protein interaction network from orthologous proteins. We then overlaid the differential protein expression data onto the P. multocida protein interaction network to study the bacterial response. We identified proteins that could enhance antimicrobial activity. Overall compensatory response to antibiotics was characterized by altered expression of proteins involved in purine metabolism, stress response, and cell envelope permeability.
Collapse
|
39
|
Chiu HC, Lin TL, Yang JC, Wang JT. Synergistic effect of imp/ostA and msbA in hydrophobic drug resistance of Helicobacter pylori. BMC Microbiol 2009; 9:136. [PMID: 19594901 PMCID: PMC2719649 DOI: 10.1186/1471-2180-9-136] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 07/13/2009] [Indexed: 11/22/2022] Open
Abstract
Background Contamination of endoscopy equipment by Helicobacter pylori (H. pylori) frequently occurs after endoscopic examination of H. pylori-infected patients. In the hospital, manual pre-cleaning and soaking in glutaraldehyde is an important process to disinfect endoscopes. However, this might not be sufficient to remove H. pylori completely, and some glutaraldehyde-resistant bacteria might survive and be passed to the next patient undergoing endoscopic examination through unidentified mechanisms. We identified an Imp/OstA protein associated with glutaraldehyde resistance in a clinical strain, NTUH-C1, from our previous study. To better understand and manage the problem of glutaraldehyde resistance, we further investigated its mechanism. Results The minimal inhibitory concentrations (MICs) of glutaraldehyde andexpression of imp/ostA RNA in 11 clinical isolates from the National Taiwan University Hospital were determined. After glutaraldehyde treatment, RNA expression in the strains with the MICs of 4–10 μg/ml was higher than that in strains with the MICs of 1–3 μg/ml. We examined the full-genome expression of strain NTUH-S1 after glutaraldehyde treatment using a microarray and found that 40 genes were upregulated and 31 genes were downregulated. Among the upregulated genes, imp/ostA and msbA, two putative lipopolysaccharide biogenesis genes, were selected for further characterization. The sensitivity to glutaraldehyde or hydrophobic drugs increased in both of imp/ostA and msbA single mutants. The imp/ostA and msbA double mutant was also hypersensitive to these chemicals. The lipopolysaccharide contents decreased in individual imp/ostA and msbA mutants and dramatically reduced in the imp/ostA and msbA double mutant. Outer membrane permeability assay demonstrated that the imp/ostA and msbA double mutation resulted in the increase of outer membrane permeability. Ethidium bromide accumulation assay demonstrated that MsbA was involved in efflux of hydrophobic drugs. Conclusion The expression levels of imp/ostA and msbA were correlated with glutaraldehyde resistance in clinical isolates after glutaraldehyde treatment. Imp/OstA and MsbA play a synergistic role in hydrophobic drugs resistance and lipopolysaccharide biogenesis in H. pylori.
Collapse
Affiliation(s)
- Hung-Chuan Chiu
- Department of Microbiology, National Taiwan University College of Medicine, Taipei City 10051, Taiwan, Republic of China.
| | | | | | | |
Collapse
|
40
|
Choi JH, May BC, Govaerts C, Cohen FE. Site-Directed Mutagenesis Demonstrates the Plasticity of the β Helix: Implications for the Structure of the Misfolded Prion Protein. Structure 2009; 17:1014-23. [DOI: 10.1016/j.str.2009.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 04/20/2009] [Accepted: 05/16/2009] [Indexed: 10/20/2022]
|
41
|
Mochalkin I, Knafels JD, Lightle S. Crystal structure of LpxC from Pseudomonas aeruginosa complexed with the potent BB-78485 inhibitor. Protein Sci 2008; 17:450-7. [PMID: 18287278 PMCID: PMC2248309 DOI: 10.1110/ps.073324108] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The cell wall in Gram-negative bacteria is surrounded by an outer membrane comprised of charged lipopolysaccharide (LPS) molecules that prevent entry of hydrophobic agents into the cell and protect the bacterium from many antibiotics. The hydrophobic anchor of LPS is lipid A, the biosynthesis of which is essential for bacterial growth and viability. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is an essential zinc-dependant enzyme that catalyzes the conversion of UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine to UDP-3-O-(R-3-hydroxymyristoyl)glucosamine and acetate in the biosynthesis of lipid A, and for this reason, LpxC is an attractive target for antibacterial drug discovery. Here we disclose a 1.9 A resolution crystal structure of LpxC from Pseudomonas aeruginosa (paLpxC) in a complex with the potent BB-78485 inhibitor. To our knowledge, this is the first crystal structure of LpxC with a small-molecule inhibitor that shows antibacterial activity against a wide range of Gram-negative pathogens. Accordingly, this structure can provide important information for lead optimization and rational design of the effective small-molecule LpxC inhibitors for successful treatment of Gram-negative infections.
Collapse
|
42
|
Möhrle V, Stadler M, Eberz G. Biosensor-guided screening for macrolides. Anal Bioanal Chem 2007; 388:1117-25. [PMID: 17497142 DOI: 10.1007/s00216-007-1300-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 04/05/2007] [Accepted: 04/05/2007] [Indexed: 12/01/2022]
Abstract
Macrolides are complex polyketides of microbial origin that possess an extraordinary variety of pharmacological properties, paired with an impressive structural diversity. Bioassays for specific detection of such compounds will be of advantage for a class-specific drug screening. The current paper describes a cell-based microbial biosensor, assigning a luminescence response to natural or chemically modified macrolides, independent from their biological activity. This biosensor is based on the coupling of the structural luciferase genes of Vibrio fischeri to the regulatory control mechanism of a bacterial erythromycin resistance operon. The bioassays is easy to handle and can be applied to various screening formats. The feasibility of the test system for natural products screening is exemplified by the isolation and characterization of picromycin from a Streptomyces species. Biosensor-guided screening for macrolides is based on macrolide-promoted expression of lux genes and induction of luminescence (independent of macrolide antibiotic activity).
Collapse
Affiliation(s)
- V Möhrle
- Bayer Technology Services GmbH, Leverkusen, Germany
| | | | | |
Collapse
|
43
|
Kadam RU, Shivange AV, Roy N. Escherichia coli versus Pseudomonas aeruginosa Deacetylase LpxC Inhibitors Selectivity: Surface and Cavity-Depth-Based Analysis. J Chem Inf Model 2007; 47:1215-24. [PMID: 17441707 DOI: 10.1021/ci6004806] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although Escherichia coli and Pseudomonas aeruginosa LpxC share sequence and functional similarity, E. coli LpxC inhibitiors are ineffective against P. aeruginosa LpxC. It was earlier speculated that inactivity of the inhibitors is due to intrinsic resistance possibly mediated by efflux pumps. However, a recent study has documented that the inactivity is due to failure of inhibitor(s) to inhibit the enzyme rather then intrinsic resistance. In this study, we carried out a surface and cavity-depth-based analysis on homology models of E. coli and P. aeruginosa LpxC to get some new insights into the ligand-binding features of these enzymes. The surface analysis of the P. aeruginosa LpxC model suggested that the LpxC catalytic domain (where inhibitors are supposed to bind) has several minor but potentially important structural differences as compared to E. coli LpxC. Molecular docking studies which could distinguish between the reported receptor affinities of the inhibitors additionally helped in the identification of key binding-site residues and interactions. These differences can be exploited for designing broad-spectrum LpxC inhibitors against this target.
Collapse
Affiliation(s)
- Rameshwar U Kadam
- Centre of Pharmacoinformatics and Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160062, India
| | | | | |
Collapse
|
44
|
Gennadios HA, Christianson DW. Binding of uridine 5'-diphosphate in the "basic patch" of the zinc deacetylase LpxC and implications for substrate binding. Biochemistry 2006; 45:15216-23. [PMID: 17176043 PMCID: PMC2527469 DOI: 10.1021/bi0619021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
LpxC is a zinc metalloenzyme that catalyzes the first committed step in the biosynthesis of lipid A, a vital component of the outer membrane of Gram-negative bacteria. Accordingly, the inhibition of LpxC is an attractive strategy for the treatment of Gram-negative bacterial infections. Here, we report the 2.7 A resolution X-ray crystal structure of LpxC from Aquifex aeolicus complexed with uridine 5'-diphosphate (UDP), and the 3.1 A resolution structure of LpxC complexed with pyrophosphate. The X-ray crystal structure of the LpxC-UDP complex provides the first view of interactions likely to be exploited by the substrate UDP group in the "basic patch" of the active site. The diphosphate group of UDP makes hydrogen bond interactions with strictly conserved residue K239 as well as solvent molecules. The ribose moiety of UDP interacts with partially conserved residue E197. The UDP uracil group hydrogen bonds with both the backbone NH group and the backbone carbonyl group of E160, and with the backbone NH group of K162 through an intervening water molecule. Finally, the alpha-phosphate and uracil groups of UDP interact with R143 and R262 through intervening water molecules. The structure of LpxC complexed with pyrophosphate reveals generally similar intermolecular interactions in the basic patch. Unexpectedly, diphosphate binding in both complexes is accompanied by coordination to an additional zinc ion, resulting in the identification of a new metal-binding site termed the E-site. The structures of the LpxC-UDP and LpxC-pyrophosphate complexes provide new insights with regard to substrate recognition in the basic patch and metal ion coordination in the active site of LpxC.
Collapse
Affiliation(s)
| | - David W. Christianson
- To whom correspondence should be addressed: Tel: 215-898-5714. Fax: 215-573-2201. E-mail:
| |
Collapse
|
45
|
Gennadios HA, Whittington DA, Li X, Fierke CA, Christianson DW. Mechanistic inferences from the binding of ligands to LpxC, a metal-dependent deacetylase. Biochemistry 2006; 45:7940-8. [PMID: 16800620 PMCID: PMC2505344 DOI: 10.1021/bi060823m] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The metal-dependent deacetylase LpxC catalyzes the first committed step of lipid A biosynthesis in Gram-negative bacteria. Accordingly, LpxC is an attractive target for the development of inhibitors that may serve as potential new antibiotics for the treatment of Gram-negative bacterial infections. Here, we report the 2.7 A resolution X-ray crystal structure of LpxC complexed with the substrate analogue inhibitor TU-514 and the 2.0 A resolution structure of LpxC complexed with imidazole. The X-ray crystal structure of LpxC complexed with TU-514 allows for a detailed examination of the coordination geometry of the catalytic zinc ion and other enzyme-inhibitor interactions in the active site. The hydroxamate group of TU-514 forms a bidentate chelate complex with the zinc ion and makes hydrogen bond interactions with conserved active site residues E78, H265, and T191. The inhibitor C-4 hydroxyl group makes direct hydrogen bond interactions with E197 and H58. Finally, the C-3 myristate moiety of the inhibitor binds in the hydrophobic tunnel of the active site. These intermolecular interactions provide a foundation for understanding structural aspects of enzyme-substrate and enzyme-inhibitor affinity. Comparison of the TU-514 complex with cacodylate and imidazole complexes suggests a possible substrate diphosphate binding site and highlights residues that may stabilize the tetrahedral intermediate and its flanking transition states in catalysis. Evidence of a catalytic zinc ion in the native zinc enzyme coordinated by H79, H238, D242, and two water molecules with square pyramidal geometry is also presented. These results suggest that the native state of this metallohydrolase may contain a pentacoordinate zinc ion, which contrasts with the native states of archetypical zinc hydrolases such as thermolysin and carboxypeptidase A.
Collapse
Affiliation(s)
| | | | | | | | - David W. Christianson
- To whom correspondence should be addressed. Telephone: (215) 898-5714. Fax: (215) 573-2201.
| |
Collapse
|
46
|
Benndorf D, Thiersch M, Loffhagen N, Kunath C, Harms H. Pseudomonas putida KT2440 responds specifically to chlorophenoxy herbicides and their initial metabolites. Proteomics 2006; 6:3319-29. [PMID: 16637006 DOI: 10.1002/pmic.200500781] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Pseudomonas putida KT2440 is often used as a model to investigate toxicity mechanisms and adaptation to hazardous chemicals in bacteria. The objective of this paper was to test the impact of the chlorophenoxy herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-(2,4-dichlorophenoxy)propanoic acid (DCPP) and their metabolites 2,4-dichlorophenol (DCP) and 3,5-dichlorocatechol (DCC), on protein expression patterns and physiological parameters. Both approaches showed that DCC has a different mode of action and induces different responses than DCPP, 2,4-D and DCP. DCC was the most toxic compound and was active as an uncoupler of oxidative phosphorylation. It repressed the synthesis of ferric uptake regulator (Fur)-dependent proteins, e.g. fumarase C and L-ornithine N5-oxygenase, which are involved in oxidative stress response and iron uptake. DCPP, 2,4-D and DCP were less toxic than DCC. They disturbed oxidative phosphorylation to a lesser extent by a yet unknown mechanism. Furthermore, they repressed enzymes of energy-consuming biosynthetic pathways and induced membrane transporters for organic substrates. A TolC homologue component of multidrug resistance transporters was found to be induced, which is probably involved in the removal of lipophilic compounds from membranes.
Collapse
Affiliation(s)
- Dirk Benndorf
- Department of Environmental Microbiology, UFZ - Centre for Environmental Research Leipzig-Halle, Leipzig, Germany.
| | | | | | | | | |
Collapse
|
47
|
Meredith TC, Aggarwal P, Mamat U, Lindner B, Woodard RW. Redefining the requisite lipopolysaccharide structure in Escherichia coli. ACS Chem Biol 2006; 1:33-42. [PMID: 17163638 DOI: 10.1021/cb0500015] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gram-negative bacteria possess an asymmetric lipid bilayer surrounding the cell wall, the outer membrane (OM). The OM inner leaflet is primarily composed of various glycerophospholipids, whereas the outer leaflet predominantly contains the unique amphiphilic macromolecule, lipopolysaccharide (LPS or endotoxin). The majority of all gram-negative bacteria elaborate LPS containing at least one 2-keto 3-deoxy-D-manno-octulosonate (Kdo) molecule. The minimal LPS structure required for growth of Escherichia coli has long been recognized as two Kdo residues attached to lipid A, inextricably linking viability to toxicity. Here we report the construction and characterization of the nonconditional E. coli K-12 suppressor strain KPM22 that lacks Kdo and is viable despite predominantly elaborating the endotoxically inactive LPS precursor lipid IV(A). Our results challenge the established E. coli Kdo2-lipid A dogma, indicating that the previously observed and well-documented dependence of cell viability on the synthesis of Kdo stems from a lethal pleiotropy precipitated after the depletion of the carbohydrate, rather than an inherent need for the Kdo molecule itself as an indispensable structural component of the OM LPS layer. Inclusion of the inner membrane LPS transporter MsbA on a multicopy plasmid partially suppresses the lethal deltaKdo phenotype directly in the auxotrophic parent strain, suggesting increased rates of nonglycosylated lipid A transport can, in part, compensate for Kdo depletion. The unprecedented nature of a lipid IV(A) OM redefines the requisite LPS structure for viability in E. coli.
Collapse
Affiliation(s)
- Timothy C Meredith
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109-1065, USA
| | | | | | | | | |
Collapse
|
48
|
Woebking B, Reuter G, Shilling RA, Velamakanni S, Shahi S, Venter H, Balakrishnan L, van Veen HW. Drug-lipid A interactions on the Escherichia coli ABC transporter MsbA. J Bacteriol 2005; 187:6363-9. [PMID: 16159769 PMCID: PMC1236644 DOI: 10.1128/jb.187.18.6363-6369.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 06/22/2005] [Indexed: 11/20/2022] Open
Abstract
MsbA is an essential ATP-binding cassette half-transporter in the cytoplasmic membrane of the gram-negative Escherichia coli and is required for the export of lipopolysaccharides (LPS) to the outer membrane, most likely by transporting the lipid A core moiety. Consistent with the homology of MsbA to the multidrug transporter LmrA in the gram-positive Lactococcus lactis, our recent work in E. coli suggested that MsbA might interact with multiple drugs. To enable a more detailed analysis of multidrug transport by MsbA in an environment deficient in LPS, we functionally expressed MsbA in L. lactis. MsbA expression conferred an 86-fold increase in resistance to the macrolide erythromycin. A kinetic characterization of MsbA-mediated ethidium and Hoechst 33342 transport revealed apparent single-site kinetics and competitive inhibition of these transport reactions by vinblastine with K(i) values of 16 and 11 microM, respectively. We also detected a simple noncompetitive inhibition of Hoechst 33342 transport by free lipid A with a K(i) of 57 microM, in a similar range as the K(i) for vinblastine, underscoring the relevance of our LPS-less lactococcal model for studies on MsbA-mediated drug transport. These observations demonstrate the ability of heterologously expressed MsbA to interact with free lipid A and multiple drugs in the absence of auxiliary E. coli proteins. Our transport data provide further functional support for direct LPS-MsbA interactions as observed in a recent crystal structure for MsbA from Salmonella enterica serovar Typhimurium (C. L. Reyes and G. Chang, Science 308:1028-1031, 2005).
Collapse
Affiliation(s)
- Barbara Woebking
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ni Y, Chen RR. Accelerating whole-cell biocatalysis by reducing outer membrane permeability barrier. Biotechnol Bioeng 2005; 87:804-11. [PMID: 15329939 DOI: 10.1002/bit.20202] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Whole-cell biocatalysts are preferred in many biocatalysis applications. However, due to permeability barriers imposed by cell envelopes, whole-cell catalyzed reactions are reportedly 10-100-fold slower than reactions catalyzed by free enzymes. In this study, we accelerated whole-cell biocatalysis by reducing the membrane permeability barrier using molecular engineering approaches. Escherichia coli cells with genetically altered outer membrane structures were used. Specifically, a lipopolysaccarides mutant SM101 and a Braun's lipoprotein mutant E609L were used along with two model substrates that differ substantially in size and hydrophobicity, nitrocefin, and a tetrapeptide N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide. The reduction of the outer membrane permeability by genetic methods led to significant increases (up to 380%) in reaction rates of whole-cell catalyzed reactions. The magnitude of increase in biocatalysis rates was dependent on the substrates and on the nature of mutations introduced in the outer membrane structure. Notably, mutations in outer membrane can render the outer membrane completely permeable to one substrate, a barrierless condition that maximizes the reaction rate. The impact of the mutations introduced on the permeability barrier of the membranes was compared to the impact of polymixin B nonapeptide, a known potent permeabilizer acting on lipopolysaccharides. Our results suggest that genetic modifications to enhance the permeability of hydrophilic molecules should target the Lipid A region. However, strategies other than reduction of Lipid A synthesis should be considered. As we have demonstrated with tetrapeptide, membrane engineering can be much more effective in reducing a permeability barrier than are exogenous permeabilizers. This work, to our knowledge, is the first use of a molecular membrane engineering approach to address substrate permeability limitations encountered in biocatalysis applications.
Collapse
Affiliation(s)
- Ye Ni
- Chemical Engineering Department, Virginia Commonwealth University, 601 W. Main St., Richmond 23284-3028, USA
| | | |
Collapse
|
50
|
Arrieta O, Rodriguez-Reyna TS, Sotelo J. Pharmacological treatment of septic shock. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.10.5.601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|