1
|
Tsypyshev DO, Klabukov AM, Razgulaeva DN, Galochkina AV, Shtro AA, Borisevich SS, Khomenko TM, Volcho KP, Komarova NI, Salakhutdinov NF. Design, synthesis and antiviral evaluation of triazole-linked 7-hydroxycoumarin-monoterpene conjugates as inhibitors of RSV replication. RSC Med Chem 2024:d4md00728j. [PMID: 39760101 PMCID: PMC11696315 DOI: 10.1039/d4md00728j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/24/2024] [Indexed: 01/07/2025] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory infections in babies across the world. Irrespective of progress in the development of RSV vaccines, effective small molecule drugs are still not available on the market. Based on our previous data we designed and synthesized triazole-linked coumarin-monoterpene hybrids and showed that they are indeed effective in inhibiting the RSV replication. The most effective compounds are active against both RSV serotypes, A and B, with IC50 in the low micromolar or submicromolar range of concentrations. These are the most active coumarin derivatives found so far. Compound 45 combining 3,7-dimethyloctane and cyclopentane-annealed coumarin fragments has a selectivity index of 160 for serotype A and 1147 for serotype B. According to the results of the time-of-addition experiments, the conjugates are active at the early stages of the virus cycle. Based on biological evaluation and molecular modeling data, RSV F protein is a possible target.
Collapse
Affiliation(s)
- Dmitry O Tsypyshev
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry 9, Akademika Lavrentieva Ave. 630090 Novosibirsk Russia
| | - Artem M Klabukov
- Laboratory of Chemotherapy for Viral Infections, Smorodintsev Research Institute of Influenza Professor Popova Str., 15/17 197376 St. Petersburg Russia
| | - Daria N Razgulaeva
- Laboratory of Chemotherapy for Viral Infections, Smorodintsev Research Institute of Influenza Professor Popova Str., 15/17 197376 St. Petersburg Russia
| | - Anastasia V Galochkina
- Laboratory of Chemotherapy for Viral Infections, Smorodintsev Research Institute of Influenza Professor Popova Str., 15/17 197376 St. Petersburg Russia
| | - Anna A Shtro
- Laboratory of Chemotherapy for Viral Infections, Smorodintsev Research Institute of Influenza Professor Popova Str., 15/17 197376 St. Petersburg Russia
| | - Sophia S Borisevich
- Laboratory of Physical Chemistry, Ufa Chemistry Institute of the Ufa Federal Research Center 71, Octyabrya pr 450054 Ufa Russia
| | - Tatyana M Khomenko
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry 9, Akademika Lavrentieva Ave. 630090 Novosibirsk Russia
| | - Konstantin P Volcho
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry 9, Akademika Lavrentieva Ave. 630090 Novosibirsk Russia
| | - Nina I Komarova
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry 9, Akademika Lavrentieva Ave. 630090 Novosibirsk Russia
| | - Nariman F Salakhutdinov
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry 9, Akademika Lavrentieva Ave. 630090 Novosibirsk Russia
| |
Collapse
|
2
|
Hadj Mohamed A, Ricco C, Pinon A, Lagarde N, Goya-Jorge E, Mouhsine H, Msaddek M, Liagre B, Sylla-Iyarreta Veitía M. A Promising Approach to Target Colorectal Cancer Using Hybrid Triarylmethanes. ChemMedChem 2024; 19:e202400151. [PMID: 39135463 DOI: 10.1002/cmdc.202400151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Aiming to create an innovative series of anti-colorectal cancer agents, we designed in this work hybrid triarylmethane compounds. Three hybrid triarylmethanes and their corresponding N-oxide analogues were successfully synthesized using an efficient procedure that involved connecting two triarylmethane molecules, through mono-, bi-, and triethylene glycol fragments. In our pursuit to develop more soluble molecules, we synthesized a hybrid triarylmethane featuring a lysine-based spacer through a convergent strategy involving 7 steps. All hybrid compounds were assessed for their antiproliferative activity on human HT-29 and HCT116 colorectal cancer (CRC) cell lines. Three pyridine N-oxide analogs demonstrated notable antiproliferative potential among the set of tested compounds, with IC50 values ranging from 18 to 24 μM on both human CRC cell lines analyzed. A cytotoxicity study conducted on murine fibroblasts revealed that these three active compounds were not toxic at the IC50 values, indicating their suitability for further drug development. A docking study was conducted on two representative compounds, one for each series and protein kinase B (AKT) was identified as a potential target of their in anti-cancer effects. A computational drug-likeness study predicted favourable oral and intestinal absorption efficiency.
Collapse
Affiliation(s)
- Ameni Hadj Mohamed
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (GBCM, EA 7528) Conservatoire national des arts et métiers, HESAM Université, 2 rue Conté, 75003, Paris, France
- Laboratoire de Chimie hétérocyclique, produits naturels et réactivité (LR11ES39) Université de Monastir Avenue de l'environnement, 5019, Monastir, Tunisie
| | - Christophe Ricco
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (GBCM, EA 7528) Conservatoire national des arts et métiers, HESAM Université, 2 rue Conté, 75003, Paris, France
| | - Aline Pinon
- LABCiS, UR 22722, Faculté de Pharmacie, Univ. Limoges, F-87000, Limoges, France
| | - Nathalie Lagarde
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (GBCM, EA 7528) Conservatoire national des arts et métiers, HESAM Université, 2 rue Conté, 75003, Paris, France
| | - Elizabeth Goya-Jorge
- Intestinal Regenerative Medicine Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, 27607, Raleigh, NC, USA
| | - Hadley Mouhsine
- Peptinov, Pépinière Paris Santé Cochin, Hôpital Cochin, 29 rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Moncef Msaddek
- Laboratoire de Chimie hétérocyclique, produits naturels et réactivité (LR11ES39) Université de Monastir Avenue de l'environnement, 5019, Monastir, Tunisie
| | - Bertrand Liagre
- LABCiS, UR 22722, Faculté de Pharmacie, Univ. Limoges, F-87000, Limoges, France
| | - Maité Sylla-Iyarreta Veitía
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (GBCM, EA 7528) Conservatoire national des arts et métiers, HESAM Université, 2 rue Conté, 75003, Paris, France
| |
Collapse
|
3
|
Lee SK, Lee DR, Min DE, Park SH, Kim DG, Kim EJ, Choi BK, Kwon KB. Ethanolic Extract from Echinacea purpurea (L.) Moench Inhibits Influenza A/B and Respiratory Syncytial Virus Infection in vitro: Preventive Agent for Viral Respiratory Infections. Prev Nutr Food Sci 2024; 29:332-344. [PMID: 39371516 PMCID: PMC11450288 DOI: 10.3746/pnf.2024.29.3.332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 10/08/2024] Open
Abstract
Among the most frequent causes of respiratory infections in humans are influenza A virus H1N1 (H1N1), influenza B virus (IVB), and respiratory syncytial virus (RSV). Echinacea is a perennial wildflower belonging to the Asteraceae family. Echinacea purpurea (L.) Moench is a species belonging to the Echinacea genus. Its characteristic compound, chicoric acid (CA), is known for its physiological activities, including antiviral effects and immune enhancement. Activities of E. purpurea 60% ethanol extract (EPE) and CA in inhibiting infections caused by H1N1, IVB, and RSV subtype A (RSV-A) were evaluated through plaque inhibition tests, quantification of viral gene expression, and analysis of transmission electron microscopy (TEM) images. Additionally, inhibitory activities of EPE and CA for hemagglutination and neuraminidase (NA) of H1N1 and IVB were determined. In the plaque reduction assays, both EPE and CA reduced infectivity against H1N1, IVB, and RSV-A. Furthermore, quantitative real-time polymerase chain reaction analysis revealed that EPE and CA reduced gene expression levels for H1N1, IVB, and RSV-A, whereas TEM image analysis confirmed their inhibitory effects on host cell infection by these viruses. Hemagglutination assays exhibited the ability of EPE and CA to hinder H1N1 and IVB attachment to host cell receptors. Furthermore, EPE and CA displayed inhibition activity against the NA of H1N1 and IVB. These findings suggest that EPE and CA can suppress the infection and propagation of H1N1, IVB, and RSV-A, demonstrating their potential as preventive and therapeutic agents for viral respiratory infections or as ingredients for health functional foods.
Collapse
Affiliation(s)
- Sung-Kwon Lee
- Research Institute, NUON Co., Ltd., Gyeonggi 13201, Korea
| | - Dong-Ryung Lee
- Research Institute, NUON Co., Ltd., Gyeonggi 13201, Korea
| | - Da-Eun Min
- Research Institute, NUON Co., Ltd., Gyeonggi 13201, Korea
| | | | - Deok-Geun Kim
- Research Institute, NUON Co., Ltd., Gyeonggi 13201, Korea
| | - Eun-Ji Kim
- Research Institute, NUON Co., Ltd., Gyeonggi 13201, Korea
| | - Bong-Keun Choi
- Research Institute, NUON Co., Ltd., Gyeonggi 13201, Korea
| | - Kang-Beom Kwon
- Department of Physiology, College of Korean Medicine, Wonkwang University, Jeonbuk 54538, Korea
- Ilwonbio Co., Ltd., Jeonbuk 54538, Korea
| |
Collapse
|
4
|
Mitra D, Paul M, Thatoi H, Das Mohapatra PK. Potentiality of bioactive compounds as inhibitor of M protein and F protein function of human respiratory syncytial virus. In Silico Pharmacol 2023; 12:5. [PMID: 38148755 PMCID: PMC10749291 DOI: 10.1007/s40203-023-00178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/03/2023] [Indexed: 12/28/2023] Open
Abstract
The human respiratory syncytial virus (RSV) creates a pandemic every year in several countries in the world. Lack of target therapeutics and absence of vaccines have prompted scientists to create novel vaccines or small chemical treatments against RSV's numerous targets. The matrix (M) protein and fusion (F) glycoprotein of RSV are well characterized and attractive drug targets. Five bioactive compounds from Alnus japonica (Thunb.) Steud. were taken into consideration as lead compounds. Drug-likeness characters of them showed the drugs are non-toxic and non-mutagenic and mostly lipophobic. Molecular docking reveals that all bioactive compounds have better binding and better inhibitory effect than ribavirin which is currently used against RSV. Praecoxin A appeared as the best lead compound between them. It creates 7 different types of bonds with amino acids of M protein and 5 different types of bonds with amino acids of F protein. Van der Waals interactions highly influenced the binding energies. Molecular dynamic simulations represent the non-deviated and less fluctuating nature of praecoxin A. Principal Component Analysis showed praecoxin A complex with RSV matrix protein is more stable than ribavirin complex. This study will help to develop a new drug to inhibit RSV. All ligands were minimized through semi-empirical PM3 process with MOPAC. Toxicity was tested by ProTox-II server. Molecular docking studies were carried out using AutoDock 4.2. Molecular dynamics simulations for 100 ns were carried out through GROMACS 5.12 MD and GROMOS96 43a1 force field. The graphs were produced by GROMACS's XMGrace program. Graphical abstract
Collapse
Affiliation(s)
- Debanjan Mitra
- Department of Microbiology, Raiganj University, Raiganj, West Bengal 733134 India
| | - Manish Paul
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, Odisha 757003 India
| | - Hrudayanath Thatoi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, Odisha 757003 India
| | | |
Collapse
|
5
|
Issmail L, Ramsbeck D, Jäger C, Henning T, Kleinschmidt M, Buchholz M, Grunwald T. Identification and evaluation of a novel tribenzamide derivative as an inhibitor targeting the entry of the respiratory syncytial virus. Antiviral Res 2023; 211:105547. [PMID: 36682463 DOI: 10.1016/j.antiviral.2023.105547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
Human respiratory syncytial virus (RSV) is the leading cause of severe lower respiratory tract infections in infants, the elderly, and the immunocompromised, yet no licensed vaccine and only limited therapeutic options for prevention and treatment are available, which poses a global health challenge and emphasizes the urgent medical need for novel antiviral agents. In the current study, a novel potent small molecule inhibitor of RSV was identified by performing a screening and structure optimization campaign, wherein a naturally occurring dicaffeoylquinic acid (DCQA) compound served as a chemical starting point. The reported benzamide derivative inhibitor, designated as 2f, was selected for its improved stability and potent antiviral activity from a series of investigated structurally related compounds. 2f was well tolerated by cells and able to inhibit RSV infection with a half maximal inhibitory concentration (IC50) of 35 nM and a favorable selectivity index (SI) of 3742. Although the exact molecular target for 2f is not known, in vitro mechanism of action investigations revealed that the compound inhibits the early stage of infection by interacting with RSV virion and interferes primarily with the attachment and potentially with the virus-cell fusion step. Moreover, intranasal administration of 2f to mice simultaneously or prior to intranasal infection with RSV significantly decreased viral load in the lungs, pointing to the in vivo potential of the compound. Our results suggest that 2f is a viable candidate for further preclinical development and evaluation as an antiviral agent against RSV infections.
Collapse
Affiliation(s)
- Leila Issmail
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Daniel Ramsbeck
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI-MWT, Halle, Saale, Germany
| | - Christian Jäger
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI-MWT, Halle, Saale, Germany
| | - Tanja Henning
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Martin Kleinschmidt
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI-MWT, Halle, Saale, Germany
| | - Mirko Buchholz
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI-MWT, Halle, Saale, Germany
| | - Thomas Grunwald
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany.
| |
Collapse
|
6
|
Mechanism of Cross-Resistance to Fusion Inhibitors Conferred by the K394R Mutation in Respiratory Syncytial Virus Fusion Protein. J Virol 2021; 95:e0120521. [PMID: 34379500 PMCID: PMC8475503 DOI: 10.1128/jvi.01205-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fusion glycoprotein (F) is essential for respiratory syncytial virus (RSV) entry and has become an attractive target for anti-RSV drug development. Despite the promising prospect of RSV F inhibitors, issues of drug resistance remain challenging. In this study, we established a dual-luciferase protocol for RSV fusion inhibitor discovery. A small-molecule inhibitor, salvianolic acid R (LF-6), was identified to inhibit virus-cell and cell-cell fusion mediated by the RSV F protein. Sequence analysis of the resultant resistant viruses identified a K394R mutation in the viral F protein. The K394R mutant virus also conferred cross-resistance to multiple RSV fusion inhibitors, including several inhibitors undergoing clinical trials. Our study further showed that K394R mutation not only increased the triggering rate of F protein in prefusion conformation but also enhanced the fusion activity of F protein, both of which were positively correlated with resistance to fusion inhibitors. Moreover, the K394R mutation also showed cooperative effects with other escape mutations to increase the fusion activity of F protein. By substitution of K394 into different amino acids, we found that K394R or K394H substitution resulted in hyperfusiogenic F proteins, whereas F variants with other substitutions exhibited less fusion activity. Both K394R and K394H in F protein exhibited cross-resistance to RSV fusion inhibitors. Collectively, these findings reveal a positive correlation between the membrane fusion activity of F protein and the resistance of corresponding inhibitors. All of the results demonstrate that K394R in F protein confers cross-resistance to fusion inhibitors through destabilizing F protein and increasing its membrane fusion activity. IMPORTANCE Respiratory syncytial virus (RSV) causes serious respiratory tract disease in children and the elderly. Therapeutics against RSV infection are urgently needed. This study reports the discovery of a small-molecule inhibitor of RSV fusion glycoprotein by using a dual-luciferase protocol. The escape mutation (K394R) of this compound also confers cross-resistance to multiple RSV fusion inhibitors that have been reported previously, including two candidates currently in clinical development. The combination of K394R with other escape mutations can increase the resistance of F protein to these inhibitors through destabilizing F protein and enhancing the membrane fusion activity of F protein. By amino acid deletion or substitution, we found that a positively charged residue at the 394th site is crucial for the fusion ability of F protein, as well as for the cross-resistance against RSV fusion inhibitors. These results reveal the mechanism of cross-resistance conferred by the K394R mutation and the possible cross-resistance risk of RSV fusion inhibitors.
Collapse
|
7
|
Pu J, Zhou JT, Liu P, Yu F, He X, Lu L, Jiang S. Viral Entry Inhibitors Targeting Six-Helical Bundle Core Against Highly Pathogenic Enveloped Viruses with Class I Fusion Proteins. Curr Med Chem 2021; 29:700-718. [PMID: 33992055 DOI: 10.2174/0929867328666210511015808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 11/22/2022]
Abstract
TypeⅠ enveloped viruses bind to cell receptors through surface glycoproteins to initiate infection or undergo receptor-mediated endocytosis. They also initiate membrane fusion in the acidic environment of endocytic compartments, releasing genetic material into the cell. In the process of membrane fusion, envelope protein exposes fusion peptide, followed by insertion into the cell membrane or endosomal membrane. Further conformational changes ensue in which the type 1 envelope protein forms a typical six-helix bundle structure, shortening the distance between viral and cell membranes so that fusion can occur. Entry inhibitors targeting viral envelope proteins, or host factors, are effective antiviral agents and have been widely studied. Some have been used clinically, such as T20 and Maraviroc for human immunodeficiency virus 1 (HIV-1) or Myrcludex B for hepatitis D virus (HDV). This review focuses on entry inhibitors that target the six-helical bundle core against highly pathogenic enveloped viruses with class I fusion proteins, including retroviruses, coronaviruses, influenza A viruses, paramyxoviruses, and filoviruses.
Collapse
Affiliation(s)
- Jing Pu
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Joey Tianyi Zhou
- Institute of High Performance Computing, The Agency for Science, Technology and Research, Singapore
| | - Ping Liu
- Institute of High Performance Computing, The Agency for Science, Technology and Research, Singapore
| | - Fei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Xiaoyang He
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| |
Collapse
|
8
|
|
9
|
Stray K, Perron M, Porter DP, Anderson F, Lewis SA, Perry J, Miller M, Cihlar T, DeVincenzo J, Chien JW, Jordan R. Drug Resistance Assessment Following Administration of Respiratory Syncytial Virus (RSV) Fusion Inhibitor Presatovir to Participants Experimentally Infected With RSV. J Infect Dis 2021; 222:1468-1477. [PMID: 31971597 DOI: 10.1093/infdis/jiaa028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/21/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Presatovir is an oral respiratory syncytial virus (RSV) fusion inhibitor targeting RSV F protein. In a double-blind, placebo-controlled study in healthy adults experimentally infected with RSV (Memphis-37b), presatovir significantly reduced viral load and clinical disease severity in a dose-dependent manner. METHODS Viral RNA from nasal wash samples was amplified and the F gene sequenced to monitor presatovir resistance. Effects of identified amino acid substitutions on in vitro susceptibility to presatovir, viral fitness, and clinical outcome were assessed. RESULTS Twenty-eight treatment-emergent F substitutions were identified. Of these, 26 were tested in vitro; 2 were not due to lack of recombinant virus recovery. Ten substitutions did not affect presatovir susceptibility, and 16 substitutions reduced RSV susceptibility to presatovir (2.9- to 410-fold). No substitutions altered RSV susceptibility to palivizumab or ribavirin. Frequency of phenotypically resistant substitutions was higher with regimens containing lower presatovir dose and shorter treatment duration. Participants with phenotypic presatovir resistance had significantly higher nasal viral load area under the curve relative to those without, but substitutions did not significantly affect peak viral load or clinical manifestations of RSV disease. CONCLUSIONS Emergence of presatovir-resistant RSV occurred during therapy but did not significantly affect clinical efficacy in participants with experimental RSV infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Jason Perry
- Gilead Sciences, Inc, Foster City, California, USA
| | | | - Tomas Cihlar
- Gilead Sciences, Inc, Foster City, California, USA
| | - John DeVincenzo
- Department of Pediatrics, University of Tennessee College of Medicine, Memphis, Tennessee, USA.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee College of Medicine, Memphis, Tennessee, USA.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| | | | | |
Collapse
|
10
|
Elawar F, Oraby AK, Kieser Q, Jensen LD, Culp T, West FG, Marchant DJ. Pharmacological targets and emerging treatments for respiratory syncytial virus bronchiolitis. Pharmacol Ther 2020; 220:107712. [PMID: 33121940 DOI: 10.1016/j.pharmthera.2020.107712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022]
Abstract
RSV infection of the lower respiratory tract in infants is the leading cause of pediatric hospitalizations and second to malaria in causing infant deaths worldwide. RSV also causes substantial morbidity in immunocompromised and elderly populations. The only available therapeutic is a prophylactic drug called Palivizumab that is a humanized monoclonal antibody, given to high-risk infants. However, this intervention is expensive and has a limited impact on annual hospitalization rates caused by RSV. No vaccine is available, nor are efficacious antivirals to treat an active infection, and there is still no consensus on how infants with bronchiolitis should be treated during hospital admission. In this comprehensive review, we briefly outline the function of the RSV proteins and their suitability as therapeutic targets. We then discuss the most promising drug candidates, their inhibitory mechanisms, and whether they are in the process of clinical trials. We also briefly discuss the reasons for some of the failures in RSV therapeutics and vaccines. In summary, we provide insight into current antiviral development and the considerations toward producing licensed antivirals and therapeutics.
Collapse
Affiliation(s)
- Farah Elawar
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Ahmed K Oraby
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Misr University for Science &Technology, Al-Motamayez District, 6th of October City, P.O. Box 77, Egypt
| | - Quinten Kieser
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Lionel D Jensen
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Tyce Culp
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Frederick G West
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - David J Marchant
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
11
|
Inhibitory Effect of PIK-24 on Respiratory Syncytial Virus Entry by Blocking Phosphatidylinositol-3 Kinase Signaling. Antimicrob Agents Chemother 2020; 64:AAC.00608-20. [PMID: 32718963 DOI: 10.1128/aac.00608-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
Phosphoinositide-3 kinase signaling modulates many cellular processes, including cell survival, proliferation, differentiation, and apoptosis. Currently, it is known that the establishment of respiratory syncytial virus infection requires phosphoinositide-3 kinase signaling. However, the regulatory pattern of phosphoinositide-3 kinase signaling or its corresponding molecular mechanism during respiratory syncytial virus entry remains unclear. Here, the involvement of phosphoinositide-3 kinase signaling in respiratory syncytial virus entry was studied. PIK-24, a novel compound designed with phosphoinositide-3 kinase as a target, had potent anti-respiratory syncytial virus activity both in vitro and in vivo PIK-24 significantly reduced viral entry into the host cell through blocking the late stage of the fusion process. In a mouse model, PIK-24 effectively reduced the viral load and alleviated inflammation in lung tissue. Subsequent studies on the antiviral mechanism of PIK-24 revealed that viral entry was accompanied by phosphoinositide-3 kinase signaling activation, downstream RhoA and cofilin upregulation, and actin cytoskeleton rearrangement. PIK-24 treatment significantly reversed all these effects. The disruption of actin cytoskeleton dynamics or the modulation of phosphoinositide-3 kinase activity by knockdown also affected viral entry efficacy. Altogether, it is reasonable to conclude that the antiviral activity of PIK-24 depends on the phosphoinositide-3 kinase signaling and that the use of phosphoinositide-3 kinase signaling to regulate actin cytoskeleton rearrangement plays a key role in respiratory syncytial virus entry.
Collapse
|
12
|
Ricco C, Abdmouleh F, Riccobono C, Guenineche L, Martin F, Goya-Jorge E, Lagarde N, Liagre B, Ali MB, Ferroud C, Arbi ME, Veitía MSI. Pegylated triarylmethanes: Synthesis, antimicrobial activity, anti-proliferative behavior and in silico studies. Bioorg Chem 2020; 96:103591. [PMID: 32004896 DOI: 10.1016/j.bioorg.2020.103591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
Abstract
We describe herein the synthesis, characterization and biological studies of novel PEGylated triarylmethanes. Non-symmetrical and symmetrical triarylmethanes series have been synthesized by Friedel-Crafts hydroxyalkylation or directly from bisacodyl respectively followed by a functionalization with PEG fragments in order to increase bioavailability and biological effectiveness. The antimicrobial activity was investigated against Gram-positive and Gram-negative foodborne pathogens and against Candida albicans, an opportunistic pathogenic yeast. The anti-biocidal activity was also studied using Staphylococcus aureus as a reference bacterium. Almost all PEGylated molecules displayed an antifungal activity comparable with fusidic acid with MIC values ranging from 6.25 to 50 μg/mL. Compounds also revealed a promising antibiofilm activity with biofilm eradication percentages values above 80% for the best molecules (compounds 4d and 7). Compounds 7 and 8b showed a modest antiproliferative activity against human colorectal cancer cell lines HT-29. Finally, in silico molecular docking studies revealed DHFR and DNA gyrase B as potential anti-bacterial targets and in silico predictions of ADME suggested adequate drug-likeness profiles for the synthetized triarylmethanes.
Collapse
Affiliation(s)
- Christophe Ricco
- Equipe de Chimie Moléculaire du Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (EA 7528), Conservatoire National des Arts et Métiers (Cnam), 2 Rue Conté, HESAM Université, 75003 Paris, France
| | - Fatma Abdmouleh
- Equipe de Chimie Moléculaire du Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (EA 7528), Conservatoire National des Arts et Métiers (Cnam), 2 Rue Conté, HESAM Université, 75003 Paris, France; Laboratoire de Biotechnologie Microbienne et d'Ingénierie des Enzymes (LBMIE). Centre de Biotechnologie de Sfax, Université de Sfax, Route de Sidi Mansour Km 6, BP 1177, 3018 Sfax, Tunisia
| | - Charlotte Riccobono
- Equipe de Chimie Moléculaire du Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (EA 7528), Conservatoire National des Arts et Métiers (Cnam), 2 Rue Conté, HESAM Université, 75003 Paris, France
| | - Léna Guenineche
- Equipe de Chimie Moléculaire du Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (EA 7528), Conservatoire National des Arts et Métiers (Cnam), 2 Rue Conté, HESAM Université, 75003 Paris, France
| | - Frédérique Martin
- Laboratoire PEIRENE, EA 7500, Département de Biochimie et de Biologie Moléculaire. Faculté de Pharmacie, Université de Limoges, 2, Rue du Dr Marcland, 87025 Limoges, CEDEX, France
| | - Elizabeth Goya-Jorge
- ProtoQSAR SL. CEEI (Centro Europeo de Empresas Innovadoras), Parque Tecnológico de Valencia, Av. Benjamin Franklin 12, 46980 Paterna, Valencia, Spain
| | - Nathalie Lagarde
- Equipe de Chimie Moléculaire du Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (EA 7528), Conservatoire National des Arts et Métiers (Cnam), 2 Rue Conté, HESAM Université, 75003 Paris, France
| | - Bertrand Liagre
- Laboratoire PEIRENE, EA 7500, Département de Biochimie et de Biologie Moléculaire. Faculté de Pharmacie, Université de Limoges, 2, Rue du Dr Marcland, 87025 Limoges, CEDEX, France
| | - Mamdouh Ben Ali
- Laboratoire de Biotechnologie Microbienne et d'Ingénierie des Enzymes (LBMIE). Centre de Biotechnologie de Sfax, Université de Sfax, Route de Sidi Mansour Km 6, BP 1177, 3018 Sfax, Tunisia
| | - Clotilde Ferroud
- Equipe de Chimie Moléculaire du Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (EA 7528), Conservatoire National des Arts et Métiers (Cnam), 2 Rue Conté, HESAM Université, 75003 Paris, France
| | - Mehdi El Arbi
- Laboratoire de Biotechnologie Microbienne et d'Ingénierie des Enzymes (LBMIE). Centre de Biotechnologie de Sfax, Université de Sfax, Route de Sidi Mansour Km 6, BP 1177, 3018 Sfax, Tunisia
| | - Maité Sylla-Iyarreta Veitía
- Equipe de Chimie Moléculaire du Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (EA 7528), Conservatoire National des Arts et Métiers (Cnam), 2 Rue Conté, HESAM Université, 75003 Paris, France.
| |
Collapse
|
13
|
Joshi S, Bawage S, Tiwari P, Kirby D, Perrie Y, Dennis V, Singh SR. Liposomes: a promising carrier for respiratory syncytial virus therapeutics. Expert Opin Drug Deliv 2019; 16:969-980. [DOI: 10.1080/17425247.2019.1652268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Sameer Joshi
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, USA
| | - Swapnil Bawage
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Pooja Tiwari
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Daniel Kirby
- Aston Pharmacy School, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Vida Dennis
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, USA
| | - Shree R Singh
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, USA
| |
Collapse
|
14
|
Status of antiviral therapeutics against rabies virus and related emerging lyssaviruses. Curr Opin Virol 2019; 35:1-13. [PMID: 30753961 DOI: 10.1016/j.coviro.2018.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022]
Abstract
Rabies virus (RABV) constitutes a major social and economic burden associated with 60 000 deaths annually worldwide. Although pre-exposure and post-exposure treatment options are available, they are efficacious only when initiated before the onset of clinical symptoms. Aggravating the problem, the current RABV vaccine does not cross-protect against the emerging zoonotic phylogroup II lyssaviruses. A requirement for an uninterrupted cold chain and high cost of the immunoglobulin component of rabies prophylaxis generate an unmet need for the development of RABV-specific antivirals. We discuss desirable anti-RABV drug profiles, past efforts to address the problem and inhibitor candidates identified, and examine how the rapidly expanding structural insight into RABV protein organization has illuminated novel druggable target candidates and paved the way to structure-aided drug optimization. Special emphasis is given to the viral RNA-dependent RNA polymerase complex as a promising target for direct-acting broad-spectrum RABV inhibitors.
Collapse
|
15
|
Hijano DR, Maron G, Hayden RT. Respiratory Viral Infections in Patients With Cancer or Undergoing Hematopoietic Cell Transplant. Front Microbiol 2018; 9:3097. [PMID: 30619176 PMCID: PMC6299032 DOI: 10.3389/fmicb.2018.03097] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/29/2018] [Indexed: 12/25/2022] Open
Abstract
Survival rates for pediatric cancer have steadily improved over time but it remains a significant cause of morbidity and mortality among children. Infections are a major complication of cancer and its treatment. Community acquired respiratory viral infections (CRV) in these patients increase morbidity, mortality and can lead to delay in chemotherapy. These are the result of infections with a heterogeneous group of viruses including RNA viruses, such as respiratory syncytial virus (RSV), influenza virus (IV), parainfluenza virus (PIV), metapneumovirus (HMPV), rhinovirus (RhV), and coronavirus (CoV). These infections maintain a similar seasonal pattern to those of immunocompetent patients. Clinical manifestations vary significantly depending on the type of virus and the type and degree of immunosuppression, ranging from asymptomatic or mild disease to rapidly progressive fatal pneumonia Infections in this population are characterized by a high rate of progression from upper to lower respiratory tract infection and prolonged viral shedding. Use of corticosteroids and immunosuppressive therapy are risk factors for severe disease. The clinical course is often difficult to predict, and clinical signs are unreliable. Accurate prognostic viral and immune markers, which have become part of the standard of care for systemic viral infections, are currently lacking; and management of CRV infections remains controversial. Defining effective prophylactic and therapeutic strategies is challenging, especially considering, the spectrum of immunocompromised patients, the variety of respiratory viruses, and the presence of other opportunistic infections and medical problems. Prevention remains one of the most important strategies against these viruses. Early diagnosis, supportive care and antivirals at an early stage, when available and indicated, have proven beneficial. However, with the exception of neuraminidase inhibitors for influenza infection, there are no accepted treatments. In high-risk patients, pre-emptive treatment with antivirals for upper respiratory tract infection (URTI) to decrease progression to LRTI is a common strategy. In the future, viral load and immune markers may prove beneficial in predicting severe disease, supporting decision making and monitor treatment in this population.
Collapse
Affiliation(s)
- Diego R. Hijano
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, United States
| | - Gabriela Maron
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, United States
| | - Randall T. Hayden
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
16
|
Cockerill GS, Good JAD, Mathews N. State of the Art in Respiratory Syncytial Virus Drug Discovery and Development. J Med Chem 2018; 62:3206-3227. [DOI: 10.1021/acs.jmedchem.8b01361] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- G. Stuart Cockerill
- ReViral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, United Kingdom
| | - James A. D. Good
- ReViral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, United Kingdom
| | - Neil Mathews
- ReViral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, United Kingdom
| |
Collapse
|
17
|
Abstract
Sepsis in children is typically presumed to be bacterial in origin until proven otherwise, but frequently bacterial cultures ultimately return negative. Although viruses may be important causative agents of culture-negative sepsis worldwide, the incidence, disease burden and mortality of viral-induced sepsis is poorly elucidated. Consideration of viral sepsis is critical as its recognition carries implications on appropriate use of antibacterial agents, infection control measures, and, in some cases, specific, time-sensitive antiviral therapies. This review outlines our current understanding of viral sepsis in children and addresses its epidemiology and pathophysiology, including pathogen-host interaction during active infection. Clinical manifestation, diagnostic testing, and management options unique to viral infections will be outlined.
Collapse
Affiliation(s)
- Neha Gupta
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert Richter
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stephen Robert
- Division of Pediatric Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Michele Kong
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
18
|
Mantero M, Rogliani P, Cazzola M, Blasi F, Di Pasquale M. Emerging antibacterial and antiviral drugs for treating respiratory tract infections. Expert Opin Emerg Drugs 2018; 23:185-199. [DOI: 10.1080/14728214.2018.1504020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Marco Mantero
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Internal Medicine Department, Respiratory Unit and Regional Adult Cystic Fibrosis Center,IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Rogliani
- Respiratory Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mario Cazzola
- Respiratory Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Internal Medicine Department, Respiratory Unit and Regional Adult Cystic Fibrosis Center,IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marta Di Pasquale
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Internal Medicine Department, Respiratory Unit and Regional Adult Cystic Fibrosis Center,IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
19
|
Pickens JA, Tripp RA. Verdinexor Targeting of CRM1 is a Promising Therapeutic Approach against RSV and Influenza Viruses. Viruses 2018; 10:E48. [PMID: 29361733 PMCID: PMC5795461 DOI: 10.3390/v10010048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
Two primary causes of respiratory tract infections are respiratory syncytial virus (RSV) and influenza viruses, both of which remain major public health concerns. There are a limited number of antiviral drugs available for the treatment of RSV and influenza, each having limited effectiveness and each driving selective pressure for the emergence of drug-resistant viruses. Novel broad-spectrum antivirals are needed to circumvent problems with current disease intervention strategies, while improving the cytokine-induced immunopathology associated with RSV and influenza infections. In this review, we examine the use of Verdinexor (KPT-335, a novel orally bioavailable drug that functions as a selective inhibitor of nuclear export, SINE), as an antiviral with multifaceted therapeutic potential. KPT-335 works to (1) block CRM1 (i.e., Chromosome Region Maintenance 1; exportin 1 or XPO1) mediated export of viral proteins critical for RSV and influenza pathogenesis; and (2) repress nuclear factor κB (NF-κB) activation, thus reducing cytokine production and eliminating virus-associated immunopathology. The repurposing of SINE compounds as antivirals shows promise not only against RSV and influenza virus but also against other viruses that exploit the nucleus as part of their viral life cycle.
Collapse
Affiliation(s)
- Jennifer A Pickens
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.
| | - Ralph A Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
20
|
Ha MN, Delpeut S, Noyce RS, Sisson G, Black KM, Lin LT, Bilimoria D, Plemper RK, Privé GG, Richardson CD. Mutations in the Fusion Protein of Measles Virus That Confer Resistance to the Membrane Fusion Inhibitors Carbobenzoxy-d-Phe-l-Phe-Gly and 4-Nitro-2-Phenylacetyl Amino-Benzamide. J Virol 2017; 91:e01026-17. [PMID: 28904193 PMCID: PMC5686717 DOI: 10.1128/jvi.01026-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/27/2017] [Indexed: 11/20/2022] Open
Abstract
The inhibitors carbobenzoxy (Z)-d-Phe-l-Phe-Gly (fusion inhibitor peptide [FIP]) and 4-nitro-2-phenylacetyl amino-benzamide (AS-48) have similar efficacies in blocking membrane fusion and syncytium formation mediated by measles virus (MeV). Other homologues, such as Z-d-Phe, are less effective but may act through the same mechanism. In an attempt to map the site of action of these inhibitors, we generated mutant viruses that were resistant to the inhibitory effects of Z-d-Phe-l-Phe-Gly. These 10 mutations were localized to the heptad repeat B (HRB) region of the fusion protein, and no changes were observed in the viral hemagglutinin, which is the receptor attachment protein. Mutations were validated in a luciferase-based membrane fusion assay, using transfected fusion and hemagglutinin expression plasmids or with syncytium-based assays in Vero, Vero-SLAM, and Vero-Nectin 4 cell lines. The changes I452T, D458N, D458G/V459A, N462K, N462H, G464E, and I483R conferred resistance to both FIP and AS-48 without compromising membrane fusion. The inhibitors did not block hemagglutinin protein-mediated binding to the target cell. Edmonston vaccine/laboratory and IC323 wild-type strains were equally affected by the inhibitors. Escape mutations were mapped upon a three-dimensional (3D) structure modeled from the published crystal structure of parainfluenzavirus 5 fusion protein. The most effective mutations were situated in a region located near the base of the globular head and its junction with the alpha-helical stalk of the prefusion protein. We hypothesize that the fusion inhibitors could interfere with the structural changes that occur between the prefusion and postfusion conformations of the fusion protein.IMPORTANCE Due to lapses in vaccination worldwide that have caused localized outbreaks, measles virus (MeV) has regained importance as a pathogen. Antiviral agents against measles virus are not commercially available but could be useful in conjunction with MeV eradication vaccine programs and as a safeguard in oncolytic viral therapy. Three decades ago, the small hydrophobic peptide Z-d-Phe-l-Phe-Gly (FIP) was shown to block MeV infections and syncytium formation in monkey kidney cell lines. The exact mechanism of its action has yet to be determined, but it does appear to have properties similar to those of another chemical inhibitor, AS-48, which appears to interfere with the conformational change in the viral F protein that is required to elicit membrane fusion. Escape mutations were used to map the site of action for FIP. Knowledge gained from these studies could help in the design of new inhibitors against morbilliviruses and provide additional knowledge concerning the mechanism of virus-mediated membrane fusion.
Collapse
Affiliation(s)
- Michael N Ha
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, IWK Health Centre, Canadian Center for Vaccinology, Goldbloom Pavilion, Halifax, Nova Scotia, Canada
| | - Sébastien Delpeut
- Department of Pediatrics, IWK Health Centre, Canadian Center for Vaccinology, Goldbloom Pavilion, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ryan S Noyce
- Department of Pediatrics, IWK Health Centre, Canadian Center for Vaccinology, Goldbloom Pavilion, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Gary Sisson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Karen M Black
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Darius Bilimoria
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Vertex Pharmaceuticals (Canada) Incorporated, Laval, Quebec, Canada
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Gilbert G Privé
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Christopher D Richardson
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, IWK Health Centre, Canadian Center for Vaccinology, Goldbloom Pavilion, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
21
|
Discovery of methylsulfonyl indazoles as potent and orally active respiratory syncytial Virus(RSV) fusion inhibitors. Eur J Med Chem 2017; 138:1147-1157. [DOI: 10.1016/j.ejmech.2017.07.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 11/22/2022]
|
22
|
Roymans D, Alnajjar SS, Battles MB, Sitthicharoenchai P, Furmanova-Hollenstein P, Rigaux P, Berg JVD, Kwanten L, Ginderen MV, Verheyen N, Vranckx L, Jaensch S, Arnoult E, Voorzaat R, Gallup JM, Larios-Mora A, Crabbe M, Huntjens D, Raboisson P, Langedijk JP, Ackermann MR, McLellan JS, Vendeville S, Koul A. Therapeutic efficacy of a respiratory syncytial virus fusion inhibitor. Nat Commun 2017; 8:167. [PMID: 28761099 PMCID: PMC5537225 DOI: 10.1038/s41467-017-00170-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 06/07/2017] [Indexed: 01/16/2023] Open
Abstract
Respiratory syncytial virus is a major cause of acute lower respiratory tract infection in young children, immunocompromised adults, and the elderly. Intervention with small-molecule antivirals specific for respiratory syncytial virus presents an important therapeutic opportunity, but no such compounds are approved today. Here we report the structure of JNJ-53718678 bound to respiratory syncytial virus fusion (F) protein in its prefusion conformation, and we show that the potent nanomolar activity of JNJ-53718678, as well as the preliminary structure–activity relationship and the pharmaceutical optimization strategy of the series, are consistent with the binding mode of JNJ-53718678 and other respiratory syncytial virus fusion inhibitors. Oral treatment of neonatal lambs with JNJ-53718678, or with an equally active close analog, efficiently inhibits established acute lower respiratory tract infection in the animals, even when treatment is delayed until external signs of respiratory syncytial virus illness have become visible. Together, these data suggest that JNJ-53718678 is a promising candidate for further development as a potential therapeutic in patients at risk to develop respiratory syncytial virus acute lower respiratory tract infection. Respiratory syncytial virus causes lung infections in children, immunocompromised adults, and in the elderly. Here the authors show that a chemical inhibitor to a viral fusion protein is effective in reducing viral titre and ameliorating infection in rodents and neonatal lambs.
Collapse
Affiliation(s)
- Dirk Roymans
- Janssen Infectious Diseases and Vaccines, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Sarhad S Alnajjar
- College of Veterinary Medicine, Iowa State University, 1800 Christensen Dr, Ames, IA, 50010, USA
| | - Michael B Battles
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, 1 Rope Ferry Road, Hanover, NH, 03755, USA
| | | | | | - Peter Rigaux
- Janssen Infectious Diseases and Vaccines, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Joke Van den Berg
- Janssen Infectious Diseases and Vaccines, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Leen Kwanten
- Janssen Infectious Diseases and Vaccines, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Marcia Van Ginderen
- Janssen Infectious Diseases and Vaccines, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Nick Verheyen
- Janssen Infectious Diseases and Vaccines, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Luc Vranckx
- Janssen Infectious Diseases and Vaccines, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Steffen Jaensch
- Computational Biology, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Eric Arnoult
- Computational Chemistry, Janssen R&D LLC, 1400 Mckean Road, Spring House, PA, 19477, USA
| | - Richard Voorzaat
- Janssen Vaccines and Prevention, Newtonweg 1, 2333-CP, Leiden, The Netherlands
| | - Jack M Gallup
- College of Veterinary Medicine, Iowa State University, 1800 Christensen Dr, Ames, IA, 50010, USA
| | - Alejandro Larios-Mora
- College of Veterinary Medicine, Iowa State University, 1800 Christensen Dr, Ames, IA, 50010, USA
| | - Marjolein Crabbe
- Non-Clinical Statistics, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Dymphy Huntjens
- Clinical Pharmacology and Pharmacometrics, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Pierre Raboisson
- Janssen Infectious Diseases and Vaccines, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | | | - Mark R Ackermann
- College of Veterinary Medicine, Iowa State University, 1800 Christensen Dr, Ames, IA, 50010, USA
| | - Jason S McLellan
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, 1 Rope Ferry Road, Hanover, NH, 03755, USA
| | - Sandrine Vendeville
- Janssen Infectious Diseases and Vaccines, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Anil Koul
- Janssen Infectious Diseases and Vaccines, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| |
Collapse
|
23
|
Jorquera PA, Tripp RA. Respiratory syncytial virus: prospects for new and emerging therapeutics. Expert Rev Respir Med 2017; 11:609-615. [PMID: 28574729 DOI: 10.1080/17476348.2017.1338567] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Respiratory syncytial virus (RSV) is the major cause of lower respiratory tract infections (LRTI) in infants, the elderly, and the immunocompromised. Although the development of a RSV vaccine has been a priority for >50 years, there is still no vaccine available. Treatment of RSV LRTI has remained mostly supportive, i.e. hydration and oxygenation. Palivizumab and ribavirin are the only options currently available for prevention and treatment of RSV infection, but evidence suggests that they are not fully effective. This creates a significant unmet medical need for new therapeutics for prevention and treatment of RSV worldwide. Areas covered: This article reviews the antiviral drugs and monoclonal antibodies (mAb) for RSV that are in different stages of clinical development. Expert commentary: Over the last 10 years, new antiviral drugs and mAb have shown clinical promise against RSV, and may become available in the coming years. Although the RSV fusion protein has been the most popular target for inhibitors and mAbs, new approaches targeting other viral proteins have shown promising results. To overcome the emergence of RSV escape mutants, combination antiviral therapy may be explored in the future.
Collapse
Affiliation(s)
- Patricia A Jorquera
- a Department of Infectious Disease, College of Veterinary Medicine , University of Georgia , Athens , GA , USA
| | - Ralph A Tripp
- a Department of Infectious Disease, College of Veterinary Medicine , University of Georgia , Athens , GA , USA
| |
Collapse
|
24
|
Shook BC, Lin K. Recent Advances in Developing Antiviral Therapies for Respiratory Syncytial Virus. Top Curr Chem (Cham) 2017; 375:40. [DOI: 10.1007/s41061-017-0129-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/01/2017] [Indexed: 01/23/2023]
|
25
|
Drug candidates and model systems in respiratory syncytial virus antiviral drug discovery. Biochem Pharmacol 2017; 127:1-12. [DOI: 10.1016/j.bcp.2016.09.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/16/2016] [Indexed: 12/11/2022]
|
26
|
Liu Q, Zhou YH, Ye F, Yang ZQ. Antivirals for Respiratory Viral Infections: Problems and Prospects. Semin Respir Crit Care Med 2016; 37:640-6. [PMID: 27486742 PMCID: PMC7171711 DOI: 10.1055/s-0036-1584803] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the past two decades, several newly emerging and reemerging viral respiratory pathogens including several influenza viruses (avian influenza and pandemic influenza), severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV), have continued to challenge medical and public health systems. Thereafter, the development of cost-effective, broad-spectrum antiviral agents is the urgent mission of both virologists and pharmacologists. Current antiviral developments have focused targets on viral entry, replication, release, and intercellular pathways essential for viral life cycle. Here, we review the current literature on challenges and prospects in the development of these antivirals.
Collapse
Affiliation(s)
- Qiang Liu
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, China
| | - Yuan-Hong Zhou
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, China
| | - Feng Ye
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, China
| | - Zhan-Qiu Yang
- State Key Laboratory of Virology, Institute of Medical Virology, School of Medicine, Wuhan University, Wuhan, China
| |
Collapse
|
27
|
McKimm-Breschkin JL, Fry AM. Meeting report: 4th ISIRV antiviral group conference: Novel antiviral therapies for influenza and other respiratory viruses. Antiviral Res 2016; 129:21-38. [PMID: 26872862 PMCID: PMC7132401 DOI: 10.1016/j.antiviral.2016.01.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 01/08/2023]
Abstract
The International Society for Influenza and other Respiratory Virus Diseases (isirv) held its 4th Antiviral Group Conference at the University of Texas on 2–4 June, 2015. With emerging resistance to the drugs currently licensed for treatment and prophylaxis of influenza viruses, primarily the neuraminidase inhibitor oseltamivir phosphate (Tamiflu) and the M2 inhibitors amantadine and rimantadine, and the lack of effective interventions against other respiratory viruses, the 3-day programme focused on the discovery and development of inhibitors of several virus targets and key host cell factors involved in virus replication or mediating the inflammatory response. Virus targets included the influenza haemagglutinin, neuraminidase and M2 proteins, and both the respiratory syncytial virus and influenza polymerases and nucleoproteins. Therapies for rhinoviruses and MERS and SARS coronaviruses were also discussed. With the emerging development of monoclonal antibodies as therapeutics, the potential implications of antibody-dependent enhancement of disease were also addressed. Topics covered all aspects from structural and molecular biology to preclinical and clinical studies. The importance of suitable clinical trial endpoints and regulatory issues were also discussed from the perspectives of both industry and government. This meeting summary provides an overview, not only for the conference participants, but also for those interested in the current status of antivirals for respiratory viruses. The International Society for Influenza and other Respiratory Viruses held an Antiviral Group conference in June, 2015. This report covers oral presentations, including therapies against influenza and respiratory syncytial virus infections. Therapies for rhinovirus, MERS and SARS coronavirus infections were also topics at the conference. Some speakers focused on monoclonal antibodies as therapeutics and antibody-dependent enhancement of disease. The importance of suitable clinical trial endpoints and regulatory issues were also discussed.
Collapse
Affiliation(s)
| | - Alicia M Fry
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
28
|
Battles MB, Langedijk JP, Furmanova-Hollenstein P, Chaiwatpongsakorn S, Costello HM, Kwanten L, Vranckx L, Vink P, Jaensch S, Jonckers THM, Koul A, Arnoult E, Peeples ME, Roymans D, McLellan JS. Molecular mechanism of respiratory syncytial virus fusion inhibitors. Nat Chem Biol 2016; 12:87-93. [PMID: 26641933 PMCID: PMC4731865 DOI: 10.1038/nchembio.1982] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/29/2015] [Indexed: 12/21/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of pneumonia and bronchiolitis in young children and the elderly. Therapeutic small molecules have been developed that bind the RSV F glycoprotein and inhibit membrane fusion, yet their binding sites and molecular mechanisms of action remain largely unknown. Here we show that these inhibitors bind to a three-fold-symmetric pocket within the central cavity of the metastable prefusion conformation of RSV F. Inhibitor binding stabilizes this conformation by tethering two regions that must undergo a structural rearrangement to facilitate membrane fusion. Inhibitor-escape mutations occur in residues that directly contact the inhibitors or are involved in the conformational rearrangements required to accommodate inhibitor binding. Resistant viruses do not propagate as well as wild-type RSV in vitro, indicating a fitness cost for inhibitor escape. Collectively, these findings provide new insight into class I viral fusion proteins and should facilitate development of optimal RSV fusion inhibitors.
Collapse
Affiliation(s)
- Michael B Battles
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | | | | | - Supranee Chaiwatpongsakorn
- Center for Vaccines & Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Heather M Costello
- Center for Vaccines & Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Leen Kwanten
- Respiratory Infections Research, Janssen Infectious Diseases & Vaccines BVBA, Beerse, Belgium
| | - Luc Vranckx
- Respiratory Infections Research, Janssen Infectious Diseases & Vaccines BVBA, Beerse, Belgium
| | - Paul Vink
- Discovery Sciences, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Steffen Jaensch
- Discovery Sciences, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Tim H M Jonckers
- Medicinal Chemistry Department, Janssen Infectious Diseases & Vaccines BVBA, Beerse, Belgium
| | - Anil Koul
- Respiratory Infections Research, Janssen Infectious Diseases & Vaccines BVBA, Beerse, Belgium
| | - Eric Arnoult
- Computational Chemistry, Janssen R&DLLC, Spring House, Pennsylvania, USA
| | - Mark E Peeples
- Center for Vaccines & Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Dirk Roymans
- Respiratory Infections Research, Janssen Infectious Diseases & Vaccines BVBA, Beerse, Belgium
| | - Jason S McLellan
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
29
|
Abstract
Since the discovery that certain small viral membrane proteins, collectively termed as viroporins, can permeabilize host cellular membranes and also behave as ion channels, attempts have been made to link this feature to specific biological roles. In parallel, most viroporins identified so far are virulence factors, and interest has focused toward the discovery of channel inhibitors that would have a therapeutic effect, or be used as research tools to understand the biological roles of viroporin ion channel activity. However, this paradigm is being shifted by the difficulties inherent to small viral membrane proteins, and by the realization that protein-protein interactions and other diverse roles in the virus life cycle may represent an equal, if not, more important target. Therefore, although targeting the channel activity of viroporins can probably be therapeutically useful in some cases, the focus may shift to their other functions in following years. Small-molecule inhibitors have been mostly developed against the influenza A M2 (IAV M2 or AM2). This is not surprising since AM2 is the best characterized viroporin to date, with a well-established biological role in viral pathogenesis combined the most extensive structural investigations conducted, and has emerged as a validated drug target. For other viroporins, these studies are still mostly in their infancy, and together with those for AM2, are the subject of the present review.
Collapse
|
30
|
Nye S, Whitley RJ, Kong M. Viral Infection in the Development and Progression of Pediatric Acute Respiratory Distress Syndrome. Front Pediatr 2016; 4:128. [PMID: 27933286 PMCID: PMC5121220 DOI: 10.3389/fped.2016.00128] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/11/2016] [Indexed: 12/21/2022] Open
Abstract
Viral infections are an important cause of pediatric acute respiratory distress syndrome (ARDS). Numerous viruses, including respiratory syncytial virus (RSV) and influenza A (H1N1) virus, have been implicated in the progression of pneumonia to ARDS; yet the incidence of progression is unknown. Despite acute and chronic morbidity associated with respiratory viral infections, particularly in "at risk" populations, treatment options are limited. Thus, with few exceptions, care is symptomatic. In addition, mortality rates for viral-related ARDS have yet to be determined. This review outlines what is known about ARDS secondary to viral infections including the epidemiology, the pathophysiology, and diagnosis. In addition, emerging treatment options to prevent infection, and to decrease disease burden will be outlined. We focused on RSV and influenza A (H1N1) viral-induced ARDS, as these are the most common viruses leading to pediatric ARDS, and have specific prophylactic and definitive treatment options.
Collapse
Affiliation(s)
- Steven Nye
- The University of Alabama at Birmingham , Birmingham, AL , USA
| | | | - Michele Kong
- The University of Alabama at Birmingham , Birmingham, AL , USA
| |
Collapse
|
31
|
GS-5806 Inhibits a Broad Range of Respiratory Syncytial Virus Clinical Isolates by Blocking the Virus-Cell Fusion Process. Antimicrob Agents Chemother 2015; 60:1264-73. [PMID: 26666922 DOI: 10.1128/aac.01497-15] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/05/2015] [Indexed: 12/22/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infections in infants and young children. In addition, RSV causes significant morbidity and mortality in hospitalized elderly and immunocompromised patients. Currently, only palivizumab, a monoclonal antibody against the RSV fusion (F) protein, and inhaled ribavirin are approved for the prophylactic and therapeutic treatment of RSV, respectively. Therefore, there is a clinical need for safe and effective therapeutic agents for RSV infections. GS-5806, discovered via chemical optimization of a hit from a high-throughput antiviral-screening campaign, selectively inhibits a diverse set of 75 RSV subtype A and B clinical isolates (mean 50% effective concentration [EC50] = 0.43 nM). The compound maintained potency in primary human airway epithelial cells and exhibited low cytotoxicity in human cell lines and primary cell cultures (selectivity > 23,000-fold). Time-of-addition and temperature shift studies demonstrated that GS-5806 does not block RSV attachment to cells but interferes with virus entry. Follow-up experiments showed potent inhibition of RSV F-mediated cell-to-cell fusion. RSV A and B variants resistant to GS-5806, due to mutations in F protein (RSV A, L138F or F140L/N517I, and RSV B, F488L or F488S), were isolated and showed cross-resistance to other RSV fusion inhibitors, such as VP-14637, but remained fully sensitive to palivizumab and ribavirin. In summary, GS-5806 is a potent and selective RSV fusion inhibitor with antiviral activity against a diverse set of RSV clinical isolates. The compound is currently under clinical investigation for the treatment of RSV infection in pediatric, immunocompromised, and elderly patients.
Collapse
|
32
|
Ohol YM, Wang Z, Kemble G, Duke G. Direct Inhibition of Cellular Fatty Acid Synthase Impairs Replication of Respiratory Syncytial Virus and Other Respiratory Viruses. PLoS One 2015; 10:e0144648. [PMID: 26659560 PMCID: PMC4684246 DOI: 10.1371/journal.pone.0144648] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 11/20/2015] [Indexed: 02/06/2023] Open
Abstract
Fatty acid synthase (FASN) catalyzes the de novo synthesis of palmitate, a fatty acid utilized for synthesis of more complex fatty acids, plasma membrane structure, and post-translational palmitoylation of host and viral proteins. We have developed a potent inhibitor of FASN (TVB-3166) that reduces the production of respiratory syncytial virus (RSV) progeny in vitro from infected human lung epithelial cells (A549) and in vivo from mice challenged intranasally with RSV. Addition of TVB-3166 to the culture medium of RSV-infected A549 cells reduces viral spread without inducing cytopathic effects. The antiviral effect of the FASN inhibitor is a direct consequence of reducing de novo palmitate synthesis; similar doses are required for both antiviral activity and inhibition of palmitate production, and the addition of exogenous palmitate to TVB-3166-treated cells restores RSV production. TVB-3166 has minimal effect on RSV entry but significantly reduces viral RNA replication, protein levels, viral particle formation and infectivity of released viral particles. TVB-3166 substantially impacts viral replication, reducing production of infectious progeny 250-fold. In vivo, oral administration of TVB-3166 to RSV-A (Long)-infected BALB/c mice on normal chow, starting either on the day of infection or one day post-infection, reduces RSV lung titers 21-fold and 9-fold respectively. Further, TVB-3166 also inhibits the production of RSV B, human parainfluenza 3 (PIV3), and human rhinovirus 16 (HRV16) progeny from A549, HEp2 and HeLa cells respectively. Thus, inhibition of FASN and palmitate synthesis by TVB-3166 significantly reduces RSV progeny both in vitro and in vivo and has broad-spectrum activity against other respiratory viruses. FASN inhibition may alter the composition of regions of the host cell membrane where RSV assembly or replication occurs, or change the membrane composition of RSV progeny particles, decreasing their infectivity.
Collapse
Affiliation(s)
- Yamini M. Ohol
- 3-V Biosciences, Menlo Park, California, United States of America
| | - Zhaoti Wang
- 3-V Biosciences, Menlo Park, California, United States of America
| | - George Kemble
- 3-V Biosciences, Menlo Park, California, United States of America
| | - Gregory Duke
- 3-V Biosciences, Menlo Park, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
DeVincenzo JP, McClure MW, Symons JA, Fathi H, Westland C, Chanda S, Lambkin-Williams R, Smith P, Zhang Q, Beigelman L, Blatt LM, Fry J. Activity of Oral ALS-008176 in a Respiratory Syncytial Virus Challenge Study. N Engl J Med 2015; 373:2048-58. [PMID: 26580997 DOI: 10.1056/nejmoa1413275] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infection is a cause of substantial morbidity and mortality. There is no known effective therapy. METHODS We conducted a randomized, double-blind, clinical trial in healthy adults inoculated with RSV. Participants received the oral nucleoside analogue ALS-008176 or placebo 12 hours after confirmation of RSV infection or 6 days after inoculation. Treatment was administered every 12 hours for 5 days. Viral load, disease severity, resistance, and safety were measured throughout the 28-day study period, with measurement beginning before inoculation. The primary end point was the area under the curve (AUC) for viral load, which was assessed immediately before administration of the first dose through the 12th day after inoculation in participants infected with RSV. RESULTS A total of 62 participants received placebo or one of three ALS-008176 dosing regimens: 1 loading dose of 750 mg followed by 9 maintenance doses of 500 mg (group 1), 1 loading dose of 750 mg followed by 9 maintenance doses of 150 mg (group 2), or 10 doses of 375 mg (group 3). In the 35 infected participants (23 of whom were treated with ALS-008176), the AUCs for viral load for groups 1, 2, and 3 and the placebo group were 59.9, 73.7, 133.4, and 500.9 log10 plaque-forming-unit equivalents × hours per milliliter, respectively (P≤0.001). The time to nondetectability on polymerase-chain-reaction assay (P<0.001), the peak viral load (P≤0.001), the AUC for symptom score (P<0.05), and the AUC for mucus weight were lower in all groups receiving ALS-008176 than in the placebo group. Antiviral activity was greatest in the two groups that received a loading dose--viral clearance was accelerated (P≤0.05), and the AUC for viral load decreased by 85 to 88% as compared with the placebo group. Within this small trial, no viral rebound or resistance was identified. There were no serious adverse events, and there was no need for premature discontinuation of the study drug. CONCLUSIONS In this RSV challenge study, more rapid RSV clearance and a greater reduction of viral load, with accompanying improvements in the severity of clinical disease, were observed in the groups treated with ALS-008176 than in the placebo group. (Funded by Alios BioPharma; ClinicalTrials.gov number, NCT02094365.).
Collapse
Affiliation(s)
- John P DeVincenzo
- From the Departments of Pediatrics, Microbiology, Immunology, and Biochemistry, University of Tennessee College of Medicine, and the Children's Foundation Research Institute at Le Bonheur Children's Hospital - both in Memphis (J.P.D.); Alios BioPharma, South San Francisco (M.W.M., J.A.S., C.W., S.C., Q.Z., L.B., L.M.B., J.F.); Retroscreen Virology, London (H.F., R.L.-W.); d3 Medicine, Parsippany, NJ (P.S.); and the University at Buffalo School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY (P.S.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abraha HY, Lanctôt KL, Paes B. Risk of respiratory syncytial virus infection in preterm infants: reviewing the need for prevention. Expert Rev Respir Med 2015; 9:779-99. [PMID: 26457970 DOI: 10.1586/17476348.2015.1098536] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Premature infants are at substantial risk for a spectrum of morbidities that are gestational age dependent. Respiratory syncytial virus (RSV) infection is most common in the first two years of life with the highest burden in children aged <6 months. Preterm infants ≤35 weeks' gestation are handicapped by incomplete immunological and pulmonary maturation and immature premorbid lung function with the added risk of bronchopulmonary dysplasia. Superimposed RSV infection incites marked neutrophilic airway inflammation and innate immunological responses that further compromise normal airway modeling. This review addresses the epidemiology and burden of RSV disease, focusing on the preterm population. Risk factors that determine RSV-disease severity and hospitalization and the impact on healthcare resource utilization and potential long-term respiratory sequelae are discussed. The importance of disease prevention and the evidence-based rationale for prophylaxis with palivizumab is explored, while awaiting the development of a universal vaccine.
Collapse
Affiliation(s)
- Haben Y Abraha
- a Medical Outcomes and Research in Economics (MORE®) Research Group, Sunnybrook Health Sciences Centre , University of Toronto , Toronto , Ontario , Canada
| | - Krista L Lanctôt
- a Medical Outcomes and Research in Economics (MORE®) Research Group, Sunnybrook Health Sciences Centre , University of Toronto , Toronto , Ontario , Canada
| | - Bosco Paes
- b Division of Neonatology, Department of Pediatrics , McMaster University , Hamilton , Ontario , Canada
| |
Collapse
|
35
|
Weisshaar M, Cox R, Plemper RK. Blocking Respiratory Syncytial Virus Entry: A Story with Twists. DNA Cell Biol 2015; 34:505-10. [PMID: 25961744 PMCID: PMC4523043 DOI: 10.1089/dna.2015.2896] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022] Open
Abstract
Respiratory syncytial virus (RSV) is responsible for majority of infant hospitalizations due to viral infections. Despite its clinical importance, no vaccine against RSV or effective antiviral therapy is available. Several structural classes of small-molecule RSV entry inhibitor have been described and one compound has advanced to clinical testing. Mutations in either one of two resistance hot spots in the F protein mediate unusual pan-resistance to all of these inhibitor classes. Based on the biochemical characterization of resistant viruses and structural insight into the RSV F trimer, we propose a kinetic escape model as the origin of pan-resistance. Since a resistant RSV remained pathogenic in the mouse model, pan-resistance mutations could emerge rapidly in circulating RSV strains. We evaluate clinical implications and discuss consequences for the design of future RSV drug discovery campaigns.
Collapse
Affiliation(s)
- Marco Weisshaar
- Institute for Biomedical Sciences, Georgia State University , Atlanta, Georgia
| | - Robert Cox
- Institute for Biomedical Sciences, Georgia State University , Atlanta, Georgia
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University , Atlanta, Georgia
| |
Collapse
|
36
|
Torres J, Surya W, Li Y, Liu DX. Protein-Protein Interactions of Viroporins in Coronaviruses and Paramyxoviruses: New Targets for Antivirals? Viruses 2015; 7:2858-83. [PMID: 26053927 PMCID: PMC4488717 DOI: 10.3390/v7062750] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/21/2015] [Accepted: 05/28/2015] [Indexed: 12/13/2022] Open
Abstract
Viroporins are members of a rapidly growing family of channel-forming small polypeptides found in viruses. The present review will be focused on recent structural and protein-protein interaction information involving two viroporins found in enveloped viruses that target the respiratory tract; (i) the envelope protein in coronaviruses and (ii) the small hydrophobic protein in paramyxoviruses. Deletion of these two viroporins leads to viral attenuation in vivo, whereas data from cell culture shows involvement in the regulation of stress and inflammation. The channel activity and structure of some representative members of these viroporins have been recently characterized in some detail. In addition, searches for protein-protein interactions using yeast-two hybrid techniques have shed light on possible functional roles for their exposed cytoplasmic domains. A deeper analysis of these interactions should not only provide a more complete overview of the multiple functions of these viroporins, but also suggest novel strategies that target protein-protein interactions as much needed antivirals. These should complement current efforts to block viroporin channel activity.
Collapse
Affiliation(s)
- Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Yan Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
37
|
Simões EAF, DeVincenzo JP, Boeckh M, Bont L, Crowe JE, Griffiths P, Hayden FG, Hodinka RL, Smyth RL, Spencer K, Thirstrup S, Walsh EE, Whitley RJ. Challenges and opportunities in developing respiratory syncytial virus therapeutics. J Infect Dis 2015; 211 Suppl 1:S1-S20. [PMID: 25713060 PMCID: PMC4345819 DOI: 10.1093/infdis/jiu828] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Two meetings, one sponsored by the Wellcome Trust in 2012 and the other by the Global Virology Foundation in 2013, assembled academic, public health and pharmaceutical industry experts to assess the challenges and opportunities for developing antivirals for the treatment of respiratory syncytial virus (RSV) infections. The practicalities of clinical trials and establishing reliable outcome measures in different target groups were discussed in the context of the regulatory pathways that could accelerate the translation of promising compounds into licensed agents. RSV drug development is hampered by the perceptions of a relatively small and fragmented market that may discourage major pharmaceutical company investment. Conversely, the public health need is far too large for RSV to be designated an orphan or neglected disease. Recent advances in understanding RSV epidemiology, improved point-of-care diagnostics, and identification of candidate antiviral drugs argue that the major obstacles to drug development can and will be overcome. Further progress will depend on studies of disease pathogenesis and knowledge provided from controlled clinical trials of these new therapeutic agents. The use of combinations of inhibitors that have different mechanisms of action may be necessary to increase antiviral potency and reduce the risk of resistance emergence.
Collapse
Affiliation(s)
- Eric A F Simões
- Department of Pediatrics, University of Colorado School of Medicine, and Colorado School of Public Health, Aurora
| | - John P DeVincenzo
- Department of Pediatrics, Division of Infectious Diseases, and Department of Microbiology, Immunology and Biochemistry, University of Tennessee School of Medicine Children's Foundation Research Institute at Le Bonheur Children's Hospital, Memphis
| | - Michael Boeckh
- Fred Hutchinson Cancer Research Center and University of Washington, Seattle
| | - Louis Bont
- Department of Pediatrics and Laboratory of Translational Immunology, University Medical Center Utrecht, The Netherlands
| | - James E Crowe
- Department of Pediatrics and the Vanderbilt Vaccine Center, Vanderbilt University, Nashville, Tennessee
| | - Paul Griffiths
- Centre for Virology, University College London Medical School
| | - Frederick G Hayden
- Department of Medicine, University of Virginia School of Medicine, Charlottesville
| | - Richard L Hodinka
- Clinical Virology Laboratory, Children's Hospital of Philadelphia, Pennsylvania
| | - Rosalind L Smyth
- Department of Pediatrics, University College London Institute of Child Health
| | | | - Steffen Thirstrup
- NDA Advisory Services Ltd, Leatherhead, United Kingdom Department of Health Sciences, University of Copenhagen, Denmark
| | - Edward E Walsh
- Department of Medicine, Infectious Diseases Unit, Rochester General Hospital, New York
| | - Richard J Whitley
- Department of Pediatrics, Microbiology, Medicine and Neurosurgery, University of Alabama at Birmingham
| |
Collapse
|
38
|
Melero JA, Mas V. The Pneumovirinae fusion (F) protein: A common target for vaccines and antivirals. Virus Res 2015; 209:128-35. [PMID: 25738581 DOI: 10.1016/j.virusres.2015.02.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/05/2015] [Accepted: 02/23/2015] [Indexed: 11/17/2022]
Abstract
The Pneumovirinae fusion (F) protein mediates fusion of the virus and cell membrane, an essential step for entry of the viral genome in the cell cytoplasm and initiation of a new infectious cycle. Accordingly, potent inhibitors of virus infectivity have been found among antibodies and chemical compounds that target the Pneumovirinae F protein. Recent developments in structure-based vaccines have led to a deeper understanding of F protein antigenicity, unveiling new conformations and epitopes which should assist in development of efficacious vaccines. Similarly, structure-based studies of potent antiviral inhibitors have provided information about their mode of action and mechanisms of resistance. The advantages and disadvantages of the different options to battle against important pathogens, such as human respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV) are summarized and critically discussed in this review.
Collapse
Affiliation(s)
- José A Melero
- Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain.
| | - Vicente Mas
- Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| |
Collapse
|
39
|
Bond S, Draffan AG, Fenner JE, Lambert J, Lim CY, Lin B, Luttick A, Mitchell JP, Morton CJ, Nearn RH, Sanford V, Anderson KH, Mayes PA, Tucker SP. 1,2,3,9b-Tetrahydro-5H-imidazo[2,1-a]isoindol-5-ones as a new class of respiratory syncytial virus (RSV) fusion inhibitors. Part 2: Identification of BTA9881 as a preclinical candidate. Bioorg Med Chem Lett 2015; 25:976-81. [DOI: 10.1016/j.bmcl.2014.11.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 11/25/2022]
|
40
|
Bond S, Draffan AG, Fenner JE, Lambert J, Lim CY, Lin B, Luttick A, Mitchell JP, Morton CJ, Nearn RH, Sanford V, Stanislawski PC, Tucker SP. The discovery of 1,2,3,9b-tetrahydro-5H-imidazo[2,1-a]isoindol-5-ones as a new class of respiratory syncytial virus (RSV) fusion inhibitors. Part 1. Bioorg Med Chem Lett 2015; 25:969-75. [DOI: 10.1016/j.bmcl.2014.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 11/30/2022]
|
41
|
Mackman RL, Sangi M, Sperandio D, Parrish JP, Eisenberg E, Perron M, Hui H, Zhang L, Siegel D, Yang H, Saunders O, Boojamra C, Lee G, Samuel D, Babaoglu K, Carey A, Gilbert BE, Piedra PA, Strickley R, Iwata Q, Hayes J, Stray K, Kinkade A, Theodore D, Jordan R, Desai M, Cihlar T. Discovery of an oral respiratory syncytial virus (RSV) fusion inhibitor (GS-5806) and clinical proof of concept in a human RSV challenge study. J Med Chem 2015; 58:1630-43. [PMID: 25574686 DOI: 10.1021/jm5017768] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
GS-5806 is a novel, orally bioavailable RSV fusion inhibitor discovered following a lead optimization campaign on a screening hit. The oral absorption properties were optimized by converting to the pyrazolo[1,5-a]-pyrimidine heterocycle, while potency, metabolic, and physicochemical properties were optimized by introducing the para-chloro and aminopyrrolidine groups. A mean EC50 = 0.43 nM was found toward a panel of 75 RSV A and B clinical isolates and dose-dependent antiviral efficacy in the cotton rat model of RSV infection. Oral bioavailability in preclinical species ranged from 46 to 100%, with evidence of efficient penetration into lung tissue. In healthy human volunteers experimentally infected with RSV, a potent antiviral effect was observed with a mean 4.2 log10 reduction in peak viral load and a significant reduction in disease severity compared to placebo. In conclusion, a potent, once daily, oral RSV fusion inhibitor with the potential to treat RSV infection in infants and adults is reported.
Collapse
Affiliation(s)
- Richard L Mackman
- Gilead Sciences , 333 Lakeside Drive, Foster City, California 94404, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Matharu D, Flaherty DP, Simpson DS, Schroeder CE, Chung D, Yan D, Noah J, Jonsson CB, White EL, Aubé J, Plemper R, Severson WE, Golden JE. Optimization of potent and selective quinazolinediones: inhibitors of respiratory syncytial virus that block RNA-dependent RNA-polymerase complex activity. J Med Chem 2014; 57:10314-28. [PMID: 25399509 PMCID: PMC4281105 DOI: 10.1021/jm500902x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Indexed: 12/12/2022]
Abstract
A quinazolinedione-derived screening hit 2 was discovered with cellular antiviral activity against respiratory syncytial virus (CPE EC50 = 2.1 μM), moderate efficacy in reducing viral progeny (4.2 log at 10 μM), and marginal cytotoxic liability (selectivity index, SI ∼ 24). Scaffold optimization delivered analogs with improved potency and selectivity profiles. Most notable were compounds 15 and 19 (EC50 = 300-500 nM, CC50 > 50 μM, SI > 100), which significantly reduced viral titer (>400,000-fold), and several analogs were shown to block the activity of the RNA-dependent RNA-polymerase complex of RSV.
Collapse
Affiliation(s)
- Daljit
S. Matharu
- University
of Kansas Specialized Chemistry Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Daniel P. Flaherty
- University
of Kansas Specialized Chemistry Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Denise S. Simpson
- University
of Kansas Specialized Chemistry Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Chad E. Schroeder
- University
of Kansas Specialized Chemistry Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Donghoon Chung
- Center
for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, Kentucky 40202, United States
- Southern
Research Specialized Biocontainment Screening Center, Southern Research Institute, Birmingham, Alabama 35205, United States
| | - Dan Yan
- Institute
for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30303, United States
| | - James
W. Noah
- Southern
Research Specialized Biocontainment Screening Center, Southern Research Institute, Birmingham, Alabama 35205, United States
| | - Colleen B. Jonsson
- Center
for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, Kentucky 40202, United States
- Southern
Research Specialized Biocontainment Screening Center, Southern Research Institute, Birmingham, Alabama 35205, United States
| | - E. Lucile White
- Southern
Research Specialized Biocontainment Screening Center, Southern Research Institute, Birmingham, Alabama 35205, United States
| | - Jeffrey Aubé
- University
of Kansas Specialized Chemistry Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Richard
K. Plemper
- Institute
for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30303, United States
| | - William E. Severson
- Center
for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, Kentucky 40202, United States
- Southern
Research Specialized Biocontainment Screening Center, Southern Research Institute, Birmingham, Alabama 35205, United States
| | - Jennifer E. Golden
- University
of Kansas Specialized Chemistry Center, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
43
|
Gomez RS, Guisle-Marsollier I, Bohmwald K, Bueno SM, Kalergis AM. Respiratory Syncytial Virus: pathology, therapeutic drugs and prophylaxis. Immunol Lett 2014; 162:237-47. [PMID: 25268876 DOI: 10.1016/j.imlet.2014.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/21/2014] [Accepted: 09/08/2014] [Indexed: 11/16/2022]
Abstract
Human Respiratory Syncytial Virus (hRSV) is the leading cause of lower respiratory tract diseases, affecting particularly newborns and young children. This virus is able to modulate the immune response, generating a pro-inflammatory environment in the airways that causes obstruction and pulmonary alterations in the infected host. To date, no vaccines are available for human use and the first vaccine that reached clinical trials produced an enhanced hRSV-associated pathology 50 years ago, resulting in the death of two children. Currently, only two therapeutic approaches have been used to treat hRSV infection in high risk children: 1. Palivizumab, a humanized antibody against the F glycoprotein that reduces to half the number of hospitalized cases and 2. Ribavirin, which fails to have a significant therapeutic effect. A major caveat for these approaches is their high economical cost, which highlights the need of new and affordable therapeutic or prophylactic tools to treat or prevents hRSV infection. Accordingly, several efforts are in progress to understand the hRSV-associated pathology and to characterize the immune response elicited by this virus. Currently, preclinical and clinical trials are being conducted to evaluate safety and efficacy of several drugs and vaccines, which have shown promising results. In this article, we discuss the most important advances in the development of drugs and vaccines, which could eventually lead to better strategies to treat or prevent the detrimental inflammation triggered by hRSV infection.
Collapse
Affiliation(s)
- Roberto S Gomez
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Chile; INSERM U1064, Nantes, France
| | | | - Karen Bohmwald
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Chile
| | - Susan M Bueno
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Chile; INSERM U1064, Nantes, France
| | - Alexis M Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Chile; Departamento de Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile; INSERM U1064, Nantes, France.
| |
Collapse
|
44
|
Cross-resistance mechanism of respiratory syncytial virus against structurally diverse entry inhibitors. Proc Natl Acad Sci U S A 2014; 111:E3441-9. [PMID: 25092342 DOI: 10.1073/pnas.1405198111] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a leading pediatric pathogen that is responsible for a majority of infant hospitalizations due to viral disease. Despite its clinical importance, no vaccine prophylaxis against RSV disease or effective antiviral therapeutic is available. In this study, we established a robust high-throughput drug screening protocol by using a recombinant RSV reporter virus to expand the pool of RSV inhibitor candidates. Mechanistic characterization revealed that a potent newly identified inhibitor class blocks viral entry through specific targeting of the RSV fusion (F) protein. Resistance against this class was induced and revealed overlapping hotspots with diverse, previously identified RSV entry blockers at different stages of preclinical and clinical development. A structural and biochemical assessment of the mechanism of unique, broad RSV cross-resistance against structurally distinct entry inhibitors demonstrated that individual escape hotspots are located in immediate physical proximity in the metastable conformation of RSV F and that the resistance mutations lower the barrier for prefusion F triggering, resulting in an accelerated RSV entry kinetics. One resistant RSV recombinant remained fully pathogenic in a mouse model of RSV infection. By identifying molecular determinants governing the RSV entry machinery, this study spotlights a molecular mechanism of broad RSV resistance against entry inhibition that may affect the impact of diverse viral entry inhibitors presently considered for clinical use and outlines a proactive design for future RSV drug discovery campaigns.
Collapse
|
45
|
Abstract
Background Bronchiolitis is one of the major causes for hospital admissions in infants. Managing bronchiolitis, both in the outpatient and inpatient setting remains a challenge to the treating pediatrician. The effectiveness of various interventions used for infants with bronchiolitis remains unclear. Need and purpose To evaluate the evidence supporting the use of currently available treatment and preventive strategies for infants with bronchiolitis and to provide practical guidelines to the practitioners managing children with bronchiolitis. Methods A search of articles published on bronchiolitis was performed using PubMed. The areas of focus were diagnosis, treatment and prevention of bronchiolitis in children. Relevant information was extracted from English language studies published over the last 20 years. In addition, the Cochrane Database of Systematic Reviews was searched. Results and Conclusions Supportive care, comprising of taking care of oxygenation and hydration, remains the corner-stone of therapy in bronchiolitis. Pulse oximetry helps in guiding the need for oxygen administration. Several recent evidence-based reviews have suggested that bronchodilators or corticosteroids lack efficacy in bronchiolitis and should not be routinely used. A number of other novel therapies (such as nebulized hypertonic saline, heliox, CPAP, montelukast, surfactant, and inhaled furosemide) have been evaluated in clinical trials, and although most of them did not show any beneficial results, some like hypertonic saline, surfactant, CPAP have shown promising results.
Collapse
|
46
|
Sperandio D, Mackman R. Respiratory Syncytial Virus Fusion Inhibitors. SUCCESSFUL STRATEGIES FOR THE DISCOVERY OF ANTIVIRAL DRUGS 2013. [DOI: 10.1039/9781849737814-00029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Infections with the respiratory syncytical virus (RSV) are the leading cause of lower respiratory tract infections and a serious health concern in infants less than 2 years of age, the immunocompromised and the geriatric population. Numerous research programs directed at small‐molecule inhibitors of RSV have been initiated over the last 50 years. RSV inhibitors that target the fusion event have shown a lot of promise and are reviewed in this chapter. However, none of these programs have yet reached the market or late‐stage clinical development. Therefore, focus in this review is given to the challenges in the preclinical development phase and the ideal target product profile. The challenges in clinical development are also discussed, including the use of a new RSV challenge strain (Memphis 37), clinical trial design in immunosupressed patients, patients with chronic obstructive pulmonary disease (COPD) and chronic heart failure (CHF) and clinical trials in infants.
Collapse
Affiliation(s)
- David Sperandio
- Gilead Sciences, Inc. 333 Lakeside Drive, Foster City, CA 94404 USA
| | - Richard Mackman
- Gilead Sciences, Inc. 333 Lakeside Drive, Foster City, CA 94404 USA
| |
Collapse
|
47
|
Non-benzimidazole containing inhibitors of respiratory syncytial virus. Bioorg Med Chem Lett 2012; 23:827-33. [PMID: 23265891 DOI: 10.1016/j.bmcl.2012.11.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/16/2012] [Accepted: 11/18/2012] [Indexed: 11/20/2022]
Abstract
Several non-benzimidazole containing inhibitors of respiratory syncytial virus are described. Core template modification, analysis of antiviral activity, physicochemistry and optimisation of properties led to the thiazole-imidazole 13, that showed a good potency and pharmacokinetic profile in the rat.
Collapse
|
48
|
Serbin AV, Veselovskii AV, Tsvetkov VB. In vitro and in silico investigation of interferonogenic analogues of nucleic acids, artificially programmed to block the initial stages of HIV infection of cells. APPL BIOCHEM MICRO+ 2012. [DOI: 10.1134/s0003683812090049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Costello HM, Ray WC, Chaiwatpongsakorn S, Peeples ME. Targeting RSV with vaccines and small molecule drugs. Infect Disord Drug Targets 2012; 12:110-28. [PMID: 22335496 DOI: 10.2174/187152612800100143] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 01/01/2012] [Indexed: 12/21/2022]
Abstract
Respiratory syncytial virus (RSV) is the most significant cause of pediatric respiratory infections. Palivizumab (Synagis®), a humanized monoclonal antibody, has been used successfully for a number of years to prevent severe RSV disease in at-risk infants. However, despite intense efforts, there is no approved vaccine or small molecule drug for RSV. As an enveloped virus, RSV must fuse its envelope with the host cell membrane, which is accomplished through the actions of the fusion (F) glycoprotein, with attachment help from the G glycoprotein. Because of their integral role in initiation of infection and their accessibility outside the lipid bilayer, these proteins have been popular targets in the discovery and development of antiviral compounds and vaccines against RSV. This review examines advances in the development of antiviral compounds and vaccine candidates.
Collapse
Affiliation(s)
- Heather M Costello
- Center for Vaccines & Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | | | | | | |
Collapse
|
50
|
Collins PL, Melero JA. Progress in understanding and controlling respiratory syncytial virus: still crazy after all these years. Virus Res 2011; 162:80-99. [PMID: 21963675 PMCID: PMC3221877 DOI: 10.1016/j.virusres.2011.09.020] [Citation(s) in RCA: 338] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 01/25/2023]
Abstract
Human respiratory syncytial virus (RSV) is a ubiquitous pathogen that infects everyone worldwide early in life and is a leading cause of severe lower respiratory tract disease in the pediatric population as well as in the elderly and in profoundly immunosuppressed individuals. RSV is an enveloped, nonsegmented negative-sense RNA virus that is classified in Family Paramyxoviridae and is one of its more complex members. Although the replicative cycle of RSV follows the general pattern of the Paramyxoviridae, it encodes additional proteins. Two of these (NS1 and NS2) inhibit the host type I and type III interferon (IFN) responses, among other functions, and another gene encodes two novel RNA synthesis factors (M2-1 and M2-2). The attachment (G) glycoprotein also exhibits unusual features, such as high sequence variability, extensive glycosylation, cytokine mimicry, and a shed form that helps the virus evade neutralizing antibodies. RSV is notable for being able to efficiently infect early in life, with the peak of hospitalization at 2-3 months of age. It also is notable for the ability to reinfect symptomatically throughout life without need for significant antigenic change, although immunity from prior infection reduces disease. It is widely thought that re-infection is due to an ability of RSV to inhibit or subvert the host immune response. Mechanisms of viral pathogenesis remain controversial. RSV is notable for a historic, tragic pediatric vaccine failure involving a formalin-inactivated virus preparation that was evaluated in the 1960s and that was poorly protective and paradoxically primed for enhanced RSV disease. RSV also is notable for the development of a successful strategy for passive immunoprophylaxis of high-risk infants using RSV-neutralizing antibodies. Vaccines and new antiviral drugs are in pre-clinical and clinical development, but controlling RSV remains a formidable challenge.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antiviral Agents/administration & dosage
- Child
- Communicable Disease Control/organization & administration
- Cytokines/immunology
- Humans
- Immunity, Innate
- Infant
- RNA, Viral/genetics
- RNA, Viral/immunology
- Respiratory Syncytial Virus Infections/drug therapy
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Virus Infections/prevention & control
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus Vaccines/administration & dosage
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/immunology
- Vaccination
- Vaccines, Attenuated/administration & dosage
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/immunology
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Peter L. Collins
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - José A. Melero
- Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| |
Collapse
|