1
|
Blair M, Garner E, Ji P, Pruden A. What is the Difference between Conventional Drinking Water, Potable Reuse Water, and Nonpotable Reuse Water? A Microbiome Perspective. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39258328 PMCID: PMC11428167 DOI: 10.1021/acs.est.4c04679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024]
Abstract
As water reuse applications expand, there is a need for more comprehensive means to assess water quality. Microbiome analysis could provide the ability to supplement fecal indicators and pathogen profiling toward defining a "healthy" drinking water microbiota while also providing insight into the impact of treatment and distribution. Here, we utilized 16S rRNA gene amplicon sequencing to identify signature features in the composition of microbiota across a wide spectrum of water types (potable conventional, potable reuse, and nonpotable reuse). A clear distinction was found in the composition of microbiota as a function of intended water use (e.g., potable vs nonpotable) across a very broad range of U.S. water systems at both the point of compliance (Betadisper p > 0.01; ANOSIM p < 0.01, r-stat = 0.71) and point of use (Betadisper p > 0.01; ANOSIM p < 0.01, r-stat = 0.41). Core and discriminatory analysis further served in identifying distinct differences between potable and nonpotable water microbiomes. Taxa were identified at both the phylum (Desulfobacterota, Patescibacteria, and Myxococcota) and genus (Aeromonas and NS11.12_marine_group) levels that effectively discriminated between potable and nonpotable waters, with the most discriminatory taxa being core/abundant in nonpotable waters (with few exceptions, such as Ralstonia being abundant in potable conventional waters). The approach and findings open the door to the possibility of microbial community signature profiling as a water quality monitoring approach for assessing efficacy of treatments and suitability of water for intended use/reuse application.
Collapse
Affiliation(s)
- Matthew
F. Blair
- Via
Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Emily Garner
- Wadsworth
Department of Civil and Environmental Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Pan Ji
- Via
Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Amy Pruden
- Via
Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
2
|
Norkaew S, Narikawa S, Nagashima U, Uemura R, Noda J. Efficacy of treating bacterial bioaerosols with weakly acidic hypochlorous water: A simulation chamber study. Heliyon 2024; 10:e26574. [PMID: 38434335 PMCID: PMC10907660 DOI: 10.1016/j.heliyon.2024.e26574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/25/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
The COVID-19 pandemic highlighted the dangers of airborne transmission and the risks of pathogen-containing small airborne droplet inhalation as an infection route. As a pathogen control, Weakly Acidic Hypochlorous Water (WAHW) is used for surface disinfection. However, there are limited assessments of air disinfection by WAHW against airborne pathogens like bioaerosols. This was an empirical study evaluating the disinfection efficacy of WAHW in an atmospheric simulation chamber system against four selected model bacteria. The strains tested included Staphylococcus aureus (SA), Escherichia coli (EC), Pseudomonas aeruginosa (PA), and Pseudomonas aeruginosa (PAO1). Each bacterial solution was nebulized into the chamber system as the initial step, and bioaerosol was collected into the liquid medium by a bio-sampler for colony forming units (CFU) determination. Secondly, the nebulized bacterial bioaerosol was exposed to nebulized double distilled water (DDW) as the control and nebulized 150 ppm of WAHW as the experimental groups. After the 3 and 30-min reaction periods, the aerosol mixture inside the chamber was sampled in liquid media and then cultured on agar plates with different dilution factors to determine the CFU. Survival rates were calculated by a pre-exposed CFU value as a reference point. The use of WAHW decreased bacterial survival rates to 1.65-30.15% compared to the DDW control. PAO1 showed the highest survival rates and stability at 3 min was higher than 30 min in all experiments. Statistical analysis indicated that bacteria survival rates were significantly reduced compared to the controls. This work verifies the bactericidal effects against Gram-positive/negative bioaerosols of WAHW treatment. As WAHW contains chlorine in the acid solution, residual chlorine air concentration is a concern and the disinfection effect at different concentrations also requires investigation. Future studies should identify optimal times to minimize the treated time range and require measurements in a real environment.
Collapse
Affiliation(s)
- Saowanee Norkaew
- Faculty of Public Health, Thammasat University, Khlong Nueng, Klong Luang, Pathum Thani, 12121, Thailand
- Research Unit in Occupational Ergonomics, Thammasat University, Khlong Nueng, Klong Luang, Pathum Thani, 12121, Thailand
| | - Sumiyo Narikawa
- School of Veterinary Medicine, Rakuno Gakuen University, Bunkyodai-Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| | - Ukyo Nagashima
- School of Veterinary Medicine, Rakuno Gakuen University, Bunkyodai-Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| | - Ryoko Uemura
- Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, GakuenKibanadai-Nishi, Miyazaki, 889-2192, Japan
| | - Jun Noda
- School of Veterinary Medicine, Rakuno Gakuen University, Bunkyodai-Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| |
Collapse
|
3
|
Sun X, Wang X, Han Q, Yu Q, Wanyan R, Li H. Bibliometric analysis of papers on antibiotic resistance genes in aquatic environments on a global scale from 2012 to 2022: Evidence from universality, development and harmfulness. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168597. [PMID: 37981129 DOI: 10.1016/j.scitotenv.2023.168597] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Antibiotic resistance genes (ARGs), emerging pollutants, are widely distributed in aquatic environments, and are tightly linked to human health. However, the research progress and trends in recent years on ARGs of aquatic environments are still unclear. This paper made a comprehensive understanding of the research advance, study trends and key topics of 1592 ARGs articles from 2012 to 2022 by bibliometrics. Publications on ARGs increased rapidly from 2012 to 2022, and scholars paid closer attention to the field of Environmental Sciences & Ecology. The most influential country and institution was mainly China and Chinese Academy of Sciences, respectively. The most articles (14.64 %) were published in the journal Science of the total environment. China and USA had the most cooperation, and USA was more inclined to international cooperation. PCR-based methods for water ARG research were the most widely used, followed by metagenomics. The most studied ARG types were sulfonamides, tetracyclines. Moreover, ARGs from wastewater and rivers were popularly concerned. Current topics mainly included pollution investigation, characteristics, transmission, reduction and risk identification of ARGs. Additionally, future research directions were proposed. Generally, by bibliometrics, this paper reviews the research hotspots and future directions of ARGs on a global scale, and summarizes the more important categories of ARGs, the pollution degree of ARGs in the relevant water environment and the research methods, which can provide a more comprehensive information for the future breakthrough of resistance mechanism, prevention and control standard formulation of ARGs.
Collapse
Affiliation(s)
- Xiaofang Sun
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaochen Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Ruijun Wanyan
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
4
|
Yang J, Hu Y, Zhang Y, Zhou S, Meng D, Xia S, Wang H. Deciphering the diversity and assemblage mechanisms of nontuberculous mycobacteria community in four drinking water distribution systems with different disinfectants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168176. [PMID: 37907107 DOI: 10.1016/j.scitotenv.2023.168176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
Nontuberculous mycobacteria (NTM) represent an emerging health concern due to their escalating infections worldwide. Although drinking water distribution systems (DWDSs) have been considered as NTM reservoirs and a potential infection route, NTM community at the species level remain largely elusive in DWDSs. This study employed high-throughput sequencing coupled with qPCR to profile NTM community and estimate their abundances at the species level in water and biofilm samples in four DWDSs using three different disinfectants (i.e. free chlorine, chloramine and chlorine dioxide). Results demonstrated the dominance of Mycobacterium paragordonae and Mycobacterium mucogenicum in both biofilm and water across four DWDSs, whereas Mycobacterium abscessus and Mycobacterium chelonae, the two clinically significant species, exhibited low abundance but high prevalence. Comparable NTM community was observed in biofilm across these four DWDSs. Distinct separation of NTM community between SH-chloramine DWDSs water and other DWDSs highlighted the selective pressure of chloramine on NTM community. Furthermore, the research revealed that biofilm and water exhibited distinct NTM community structures, with biofilm harboring more diverse NTM community. Certain NTM species displayed a preference for biofilm, such as Mycobacterium gordonae, while others, like Mycobacterium mucogenicum, were more abundant in water samples (P < 0.05). In terms of NTM community assembly, stochastic processes dominated biofilm, while comparable role of stochastic and deterministic processes was observed in water. In conclusion, this study offers a pioneering and comprehensive insight into the dynamics and assembly mechanisms of NTM community within four DWDSs treated with three distinct disinfectants. These findings serve as a critical foundation for assessing NTM exposure risks and devising effective management strategies within DWDSs.
Collapse
Affiliation(s)
- Jinhao Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuxing Hu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yue Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shuang Zhou
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Die Meng
- Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
5
|
Siponen S, Jayaprakash B, Hokajärvi AM, Gomez-Alvarez V, Inkinen J, Ryzhikov I, Räsänen P, Ikonen J, Pursiainen A, Kauppinen A, Kolehmainen M, Paananen J, Torvinen E, Miettinen IT, Pitkänen T. Composition of active bacterial communities and presence of opportunistic pathogens in disinfected and non-disinfected drinking water distribution systems in Finland. WATER RESEARCH 2024; 248:120858. [PMID: 37988808 PMCID: PMC10840642 DOI: 10.1016/j.watres.2023.120858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
Many factors, including microbiome structure and activity in the drinking water distribution system (DWDS), affect the colonization potential of opportunistic pathogens. The present study aims to describe the dynamics of active bacterial communities in DWDS and identify the factors that shape the community structures and activity in the selected DWDSs. Large-volume drinking water and hot water, biofilm, and water meter deposit samples were collected from five DWDSs. Total nucleic acids were extracted, and RNA was further purified and transcribed into its cDNA from a total of 181 water and biofilm samples originating from the DWDS of two surface water supplies (disinfected with UV and chlorine), two artificially recharged groundwater supplies (non-disinfected), and a groundwater supply (disinfected with UV and chlorine). In chlorinated DWDSs, concentrations of <0.02-0.97 mg/l free chlorine were measured. Bacterial communities in the RNA and DNA fractions were analysed using Illumina MiSeq sequencing with primer pair 341F-785R targeted to the 16S rRNA gene. The sequence libraries were analysed using QIIME pipeline, Program R, and MicrobiomeAnalyst. Not all bacterial cells were active based on their 16S rRNA content, and species richness was lower in the RNA fraction (Chao1 mean value 490) than in the DNA fraction (710). Species richness was higher in the two DWDSs distributing non-disinfected artificial groundwater (Chao1 mean values of 990 and 1 000) as compared to the two disinfected DWDSs using surface water (Chao1 mean values 190 and 460) and disinfected DWDS using ground water as source water (170). The difference in community structures between non-disinfected and disinfected water was clear in the beta-diversity analysis. Distance from the waterworks also affected the beta diversity of community structures, especially in disinfected distribution systems. The two most abundant bacteria in the active part of the community (RNA) and total bacterial community (DNA) belonged to the classes Alphaproteobacteria (RNA 28 %, DNA 44 %) and Gammaproteobacteria (RNA 32 %, DNA 30 %). The third most abundant and active bacteria class was Vampirovibrionia (RNA 15 %), whereas in the total community it was Paceibacteria (DNA 11 %). Class Nitrospiria was more abundant and active in both cold and hot water in DWDS that used chloramine disinfection compared to non-chlorinated or chlorine-using DWDSs. Thirty-eight operational taxonomic units (OTU) of Legionella, 30 of Mycobacterium, and 10 of Pseudomonas were detected among the sequences. The (RT)-qPCR confirmed the presence of opportunistic pathogens in the DWDSs studied as Legionella spp. was detected in 85 % (mean value 4.5 × 104 gene copies/100 ml), Mycobacterium spp. in 95 % (mean value 8.3 × 106 gene copies/100 ml), and Pseudomonas spp. in 78 % (mean value 1.6 × 105 gene copies/100 ml) of the water and biofilm samples. Sampling point inside the system (distance from the waterworks and cold/hot system) affected the active bacterial community composition. Chloramine as a chlorination method resulted in a recognizable community composition, with high abundance of bacteria that benefit from the excess presence of nitrogen. The results presented here confirm that each DWDS is unique and that opportunistic pathogens are present even in conditions when water quality is considered excellent.
Collapse
Affiliation(s)
- Sallamaari Siponen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, 70701 Kuopio, Finland; University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 1627, 70211 Kuopio, Finland.
| | | | - Anna-Maria Hokajärvi
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, 70701 Kuopio, Finland
| | - Vicente Gomez-Alvarez
- U.S. Environmental Protection Agency, Office of Research and Development, 26W. Martin Luther King Dr., Cincinnati, OH 45268, United States
| | - Jenni Inkinen
- University of Eastern Finland, Institute of Biomedicine, P.O. Box 1627, 70211 Kuopio, Finland
| | - Ivan Ryzhikov
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 1627, 70211 Kuopio, Finland
| | - Pia Räsänen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, 70701 Kuopio, Finland
| | - Jenni Ikonen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, 70701 Kuopio, Finland
| | - Anna Pursiainen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, 70701 Kuopio, Finland
| | - Ari Kauppinen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, 70701 Kuopio, Finland
| | - Mikko Kolehmainen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 1627, 70211 Kuopio, Finland
| | - Jussi Paananen
- University of Eastern Finland, Institute of Biomedicine, P.O. Box 1627, 70211 Kuopio, Finland
| | - Eila Torvinen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 1627, 70211 Kuopio, Finland
| | - Ilkka T Miettinen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, 70701 Kuopio, Finland
| | - Tarja Pitkänen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, 70701 Kuopio, Finland; University of Helsinki, Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, P.O. Box 66, 00014 Helsinki, Finland
| |
Collapse
|
6
|
Modra H, Ulmann V, Gersl M, Babak V, Konecny O, Hubelova D, Caha J, Kudelka J, Falkinham JO, Pavlik I. River Sediments Downstream of Villages in a Karstic Watershed Exhibited Increased Numbers and Higher Diversity of Nontuberculous Mycobacteria. MICROBIAL ECOLOGY 2023; 87:15. [PMID: 38102317 PMCID: PMC10724323 DOI: 10.1007/s00248-023-02326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
The impact of residential villages on the nontuberculous mycobacteria (NTM) in streams flowing through them has not been studied in detail. Water and sediments of streams are highly susceptible to anthropogenic inputs such as surface water flows. This study investigated the impact of seven residential villages in a karst watershed on the prevalence and species spectrum of NTM in water and sediments. Higher NTM species diversity (i.e., 19 out of 28 detected) was recorded downstream of the villages and wastewater treatment plants (WWTPs) compared to sampling sites upstream (i.e., 5). Significantly, higher Zn and lower silicon concentrations were detected in sediments inside the village and downstream of the WWTP's effluents. Higher phosphorus concentration in sediment was downstream of WWTPs compared to other sampling sites. The effluent from the WWTPs had a substantial impact on water quality parameters with significant increases in total phosphorus, anions (Cl-and N-NH3-), and cations (Na+ and K+). The results provide insights into NTM numbers and species diversity distribution in a karst watershed and the impact of urban areas. Although in this report the focus is on the NTM, it is likely that other water and sediment microbes will be influenced as well.
Collapse
Affiliation(s)
- Helena Modra
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Vit Ulmann
- Public Health Institute Ostrava, Partyzanske Nam. 7, 702 00, Ostrava, Czech Republic
| | - Milan Gersl
- Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Vladimir Babak
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Ondrej Konecny
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Dana Hubelova
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Jan Caha
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Jan Kudelka
- Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | | | - Ivo Pavlik
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
| |
Collapse
|
7
|
Ke Y, Sun W, Liu S, Zhu Y, Yan S, Chen X, Xie S. Seasonal variations of biofilm C, N and S cycling genes in a pilot-scale chlorinated drinking water distribution system. WATER RESEARCH 2023; 247:120759. [PMID: 37897999 DOI: 10.1016/j.watres.2023.120759] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Biofilms in drinking water distribution systems (DWDS) host diverse microorganisms. However, the functional attributes of DWDS biofilms and their associations with seasonality remain unclear. This study aims to characterize variations in the microbial metabolic traits of DWDS biofilms collected during different seasons, using a pilot-scale DWDS in dark under plug-flow conditions during one-year operation period. Network analysis was used to predict the functional gene hosts. The overall functional attributes determined by shotgun metagenomics exhibited significant differences among seasons. Genes associated with aromatic metabolism, fatty acid biosynthesis and degradation, and capsular extracellular polymeric substance (EPS) were significantly upregulated in summer owing to the higher temperatures and chlorine in the influent of the DWDS. Moreover, the pathways associated with nitrogen, sulfur, glycolysis, and tricarboxylic acid (TCA) cycling, as well as carbon fixation were reconstructed and displayed according to the sampling season. Nitrogen reduction pathways [dissimilatory nitrate reduction to ammonium (DNRA) 73 %, assimilatory nitrate reduction to ammonium (ANRA) 21 %] were identified in DWDS biofilms, but nitrogen oxidation pathways were not. Sulfur cycling were involved in diverse pathways and genes. Glycolysis and TCA cycling offered electron donors and energy sources for nitrogen and sulfur reduction in biofilms. Carbon fixation was observed in DWDS biofilms, with the predominant pathway for fixing carbon dioxide being the reductive citrate cycle (38 %). Constructed functional gene networks composed of carbon, nitrogen, and sulfur cycling-related genes demonstrated synergistic effects (Positive proportion: 63.52-71.09 %). In addition, from spring to autumn, the network complexity decreased and network modularity increased. The assembly mechanism of carbon, nitrogen and sulfur cycling-related genes was driven by stochastic processes for all samples. These results highlight the diverse functional genes in DWDS biofilms, their synergetic interrelationships, and the seasonality effect on functional attributes.
Collapse
Affiliation(s)
- Yanchu Ke
- School of Environment, Tsinghua University, Beijing 100084, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| | - Shuming Liu
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China
| | - Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
8
|
Zhao Y, Huang F, Wang W, Gao R, Fan L, Wang A, Gao SH. Application of high-throughput sequencing technologies and analytical tools for pathogen detection in urban water systems: Progress and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165867. [PMID: 37516185 DOI: 10.1016/j.scitotenv.2023.165867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
The ubiquitous presence of pathogenic microorganisms, such as viruses, bacteria, fungi, and protozoa, in urban water systems poses a significant risk to public health. The emergence of infectious waterborne diseases mediated by urban water systems has become one of the leading global causes of mortality. However, the detection and monitoring of these pathogenic microorganisms have been limited by the complexity and diversity in the environmental samples. Conventional methods were restricted by long assay time, high benchmarks of identification, and narrow application sceneries. Novel technologies, such as high-throughput sequencing technologies, enable potentially full-spectrum detection of trace pathogenic microorganisms in complex environmental matrices. This review discusses the current state of high-throughput sequencing technologies for identifying pathogenic microorganisms in urban water systems with a concise summary. Furthermore, future perspectives in pathogen research emphasize the need for detection methods with high accuracy and sensitivity, the establishment of precise detection standards and procedures, and the significance of bioinformatics software and platforms. We have compiled a list of pathogens analysis software/platforms/databases that boast robust engines and high accuracy for preference. We highlight the significance of analyses by combining targeted and non-targeted sequencing technologies, short and long reads technologies, sequencing technologies, and bioinformatic tools in pursuing upgraded biosafety in urban water systems.
Collapse
Affiliation(s)
- Yanmei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Fang Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenxiu Wang
- Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China.
| | - Rui Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
9
|
Yu Y, Song J, Liu X, Chen B, Zhang C, Zhang S. Tea polyphenols and catechins postpone evolution of antibiotic resistance genes and alter microbial community under stress of tetracycline. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114675. [PMID: 36822060 DOI: 10.1016/j.ecoenv.2023.114675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Relying on the high mobility of water flow, the dissemination of antibiotic resistance genes (ARGs) in the water tends to be exacerbated and enlarged. It caused negative impacts on a wider scope of the environment. The ARGs dissemination monitoring and the methods efficiently reducing their concentration in water became the focus of interest. Green chemicals with antibacterial effects such as tea polyphenols (TPs) and catechins (CA) have been considered as auxiliary disinfectants for ARGs removal in the water environment. However, the antibacterial performance of TPs and CA under the stress of external antibiotics still lacks sufficient research. The results show that more operational taxonomic units can be observed in water samples with TPs and CA than in those without the ingredients under pressure of tetracycline. An unexpected increase along with the increase of ARGs concentrations and the diversity of microbial communities under the low-concentration TPs or CA (1 mg/L). Besides, under the stress of tetracycline, the inhibition of TPs was detected to be strengthened for increase of inti1 and tetC but weakened towards for the increase of tetA. Whilst CA substantially diminished abundances of tetC and tetA under tetracycline pressure. This research demonstrated that TPs and CA are able to assuage development of ARGs under the pressure of antibiotic in water system.
Collapse
Affiliation(s)
- Yaqin Yu
- Dept. of Civil Engineering, Yancheng Institute of Technology, Xiwangdadao 1#, Yancheng 224003, China
| | - Jiajun Song
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xingxiang Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Bin Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Chenxi Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
10
|
Gabrielli M, Dai Z, Delafont V, Timmers PHA, van der Wielen PWJJ, Antonelli M, Pinto AJ. Identifying Eukaryotes and Factors Influencing Their Biogeography in Drinking Water Metagenomes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3645-3660. [PMID: 36827617 PMCID: PMC9996835 DOI: 10.1021/acs.est.2c09010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The biogeography of eukaryotes in drinking water systems is poorly understood relative to that of prokaryotes or viruses, limiting the understanding of their role and management. A challenge with studying complex eukaryotic communities is that metagenomic analysis workflows are currently not as mature as those that focus on prokaryotes or viruses. In this study, we benchmarked different strategies to recover eukaryotic sequences and genomes from metagenomic data and applied the best-performing workflow to explore the factors affecting the relative abundance and diversity of eukaryotic communities in drinking water distribution systems (DWDSs). We developed an ensemble approach exploiting k-mer- and reference-based strategies to improve eukaryotic sequence identification and identified MetaBAT2 as the best-performing binning approach for their clustering. Applying this workflow to the DWDS metagenomes showed that eukaryotic sequences typically constituted small proportions (i.e., <1%) of the overall metagenomic data with higher relative abundances in surface water-fed or chlorinated systems with high residuals. The α and β diversities of eukaryotes were correlated with those of prokaryotic and viral communities, highlighting the common role of environmental/management factors. Finally, a co-occurrence analysis highlighted clusters of eukaryotes whose members' presence and abundance in DWDSs were affected by disinfection strategies, climate conditions, and source water types.
Collapse
Affiliation(s)
- Marco Gabrielli
- Dipartimento
di Ingegneria Civile e Ambientale—Sezione Ambientale, Politecnico di Milano, Milan 20133, Italy
| | - Zihan Dai
- Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Vincent Delafont
- Laboratoire
Ecologie et Biologie des Interactions (EBI), Equipe Microorganismes,
Hôtes, Environnements, Université
de Poitiers, Poitiers 86073, France
| | - Peer H. A. Timmers
- KWR
Watercycle Research Institute, 3433 PE Nieuwegein, The Netherlands
- Department
of Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Paul W. J. J. van der Wielen
- KWR
Watercycle Research Institute, 3433 PE Nieuwegein, The Netherlands
- Laboratory
of Microbiology, Wageningen University, 6700 HB Wageningen, The Netherlands
| | - Manuela Antonelli
- Dipartimento
di Ingegneria Civile e Ambientale—Sezione Ambientale, Politecnico di Milano, Milan 20133, Italy
| | - Ameet J. Pinto
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
11
|
Gomez-Alvarez V, Siponen S, Kauppinen A, Hokajärvi AM, Tiwari A, Sarekoski A, Miettinen IT, Torvinen E, Pitkänen T. A comparative analysis employing a gene- and genome-centric metagenomic approach reveals changes in composition, function, and activity in waterworks with different treatment processes and source water in Finland. WATER RESEARCH 2023; 229:119495. [PMID: 37155494 PMCID: PMC10125003 DOI: 10.1016/j.watres.2022.119495] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The emergence and development of next-generation sequencing technologies (NGS) has made the analysis of the water microbiome in drinking water distribution systems (DWDSs) more accessible and opened new perspectives in microbial ecology studies. The current study focused on the characterization of the water microbiome employing a gene- and genome-centric metagenomic approach to five waterworks in Finland with different raw water sources, treatment methods, and disinfectant. The microbial communities exhibit a distribution pattern of a few dominant taxa and a large representation of low-abundance bacterial species. Changes in the community structure may correspond to the presence or absence and type of disinfectant residual which indicates that these conditions exert selective pressure on the microbial community. The Archaea domain represented a small fraction (up to 2.5%) and seemed to be effectively controlled by the disinfection of water. Their role particularly in non-disinfected DWDS may be more important than previously considered. In general, non-disinfected DWDSs harbor higher microbial richness and maintaining disinfectant residual is significantly important for ensuring low microbial numbers and diversity. Metagenomic binning recovered 139 (138 bacterial and 1 archaeal) metagenome-assembled genomes (MAGs) that had a >50% completeness and <10% contamination consisting of 20 class representatives in 12 phyla. The presence and occurrence of nitrite-oxidizing bacteria (NOB)-like microorganisms have significant implications for nitrogen biotransformation in drinking water systems. The metabolic and functional complexity of the microbiome is evident in DWDSs ecosystems. A comparative analysis found a set of differentially abundant taxonomic groups and functional traits in the active community. The broader set of transcribed genes may indicate an active and diverse community regardless of the treatment methods applied to water. The results indicate a highly dynamic and diverse microbial community and confirm that every DWDS is unique, and the community reflects the selection pressures exerted at the community structure, but also at the levels of functional properties and metabolic potential.
Collapse
Affiliation(s)
- Vicente Gomez-Alvarez
- Office of Research and Development, U.S. Environmental Protection Agency, 26W. Martin Luther King Dr., Cincinnati, OH 45268, United States
- Corresponding author. (V. Gomez-Alvarez)
| | - Sallamaari Siponen
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio 70701, Finland
- Department of Environmental and Biological Sciences, Kuopio 70211, Finland
| | - Ari Kauppinen
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio 70701, Finland
| | - Anna-Maria Hokajärvi
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio 70701, Finland
| | - Ananda Tiwari
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio 70701, Finland
- Faculty of Veterinary Medicine, Department Food Hygiene and Environmental Health, University of Helsinki, Helsinki 00790, Finland
| | - Anniina Sarekoski
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio 70701, Finland
- Faculty of Veterinary Medicine, Department Food Hygiene and Environmental Health, University of Helsinki, Helsinki 00790, Finland
| | - Ilkka T. Miettinen
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio 70701, Finland
| | - Eila Torvinen
- Department of Environmental and Biological Sciences, Kuopio 70211, Finland
| | - Tarja Pitkänen
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio 70701, Finland
- Faculty of Veterinary Medicine, Department Food Hygiene and Environmental Health, University of Helsinki, Helsinki 00790, Finland
- Corresponding author at: Finnish Institute for Health and Welfare, Department of Health Security, Kuopio 70701, Finland. (T. Pitkänen)
| |
Collapse
|
12
|
Wei X, Huang Z, Jiang L, Li Y, Zhang X, Leng Y, Jiang C. Charting the landscape of the environmental exposome. IMETA 2022; 1:e50. [PMID: 38867899 PMCID: PMC10989948 DOI: 10.1002/imt2.50] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/13/2022] [Accepted: 07/30/2022] [Indexed: 06/14/2024]
Abstract
The exposome depicts the total exposures in the lifetime of an organism. Human exposome comprises exposures from environmental and humanistic sources. Biological, chemical, and physical environmental exposures pose potential health threats, especially to susceptible populations. Although still in its nascent stage, we are beginning to recognize the vast and dynamic nature of the exposome. In this review, we systematically summarize the biological and chemical environmental exposomes in three broad environmental matrices-air, soil, and water; each contains several distinct subcategories, along with a brief introduction to the physical exposome. Disease-related environmental exposures are highlighted, and humans are also a major source of disease-related biological exposures. We further discuss the interactions between biological, chemical, and physical exposomes. Finally, we propose a list of outstanding challenges under the exposome research framework that need to be addressed to move the field forward. Taken together, we present a detailed landscape of environmental exposome to prime researchers to join this exciting new field.
Collapse
Affiliation(s)
- Xin Wei
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Zinuo Huang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Liuyiqi Jiang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Yueer Li
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Xinyue Zhang
- Department of GeneticsStanford UniversityStanfordCaliforniaUSA
| | - Yuxin Leng
- Department of Intensive Care UnitPeking University Third HospitalBeijingChina
| | - Chao Jiang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| |
Collapse
|
13
|
Batista AMM, Siqueira JCD, Meynet P, Werner D, Garcia GPP, Davenport RJ, Pereira AD, Siniscalchi LAB, Araújo JCD, Mota Filho CR. Diversity and dynamics of bacterial communities in the drinking water distribution network of a mid-sized city in Brazil. JOURNAL OF WATER AND HEALTH 2022; 20:1733-1747. [PMID: 36573676 DOI: 10.2166/wh.2022.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This study assessed the bacterial community composition of a drinking water system (DWS) serving a mid-sized city (120,000 inhabitants) in Brazil. Water samples, including raw and treated water, were collected at seven points throughout the DWS. DNA was extracted and analysed using high-throughput sequencing (Ion Torrent). Free chlorine and turbidity were measured in situ. Results showed that the highest relative abundance of 16S rRNA genes was from phyla Proteobacteria, followed by Bacteroidetes and Actinobacteria. The next most abundant phylum was Cyanobacteria, represented by Arthronema, Calothrix, and Synechococcus. An interesting observation was that the DNA-based analysis suggested a bacterial community change in the distribution network, with treated reservoir water being very different from the network samples. This suggests active microbiology within the distribution network and a tendency for bacterial diversity to decrease after chlorine disinfection but increase after pipeline distribution. In raw water, a predominance of Proteobacteria was observed with reduced Cyanobacteria, showing a negative correlation. In treated water, Proteobacteria were negatively correlated with Bacteroidetes. Finally, 16S rRNA genes from Firmicutes (especially Staphylococcus) had a high abundance in the chlorinated water, which may indicate the phylum's resistance to chlorine residuals. Opportunistic pathogens, e.g., Mycobacteria, Legionella, and Staphylococcus, were also observed.
Collapse
Affiliation(s)
- Ana Maria Moreira Batista
- Department of Natural Resources, Environmental Sciences and Technologies, State University of Minas Gerais (João Monlevade Unit), Brasília Avenue, 1304 - Bau, 35930-314 João Monlevade, Minas Gerais, Brazil; Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-010 Belo Horizonte, Minas Gerais, Brazil E-mail:
| | - Juliano Curi de Siqueira
- Department of Environmental Engineering, Federal University of Lavras, Aquenta Sol, 37200-900, Lavras, Minas Gerais, Brazil
| | - Paola Meynet
- School of Civil Engineering and Geosciences, Newcastle University, NE1 7RU Newcastle upon Tyne, UK
| | - David Werner
- School of Civil Engineering and Geosciences, Newcastle University, NE1 7RU Newcastle upon Tyne, UK
| | - Graziella Patricio Pereira Garcia
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-010 Belo Horizonte, Minas Gerais, Brazil E-mail:
| | - Russell J Davenport
- School of Civil Engineering and Geosciences, Newcastle University, NE1 7RU Newcastle upon Tyne, UK
| | - Alyne Duarte Pereira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-010 Belo Horizonte, Minas Gerais, Brazil E-mail:
| | | | - Juliana Calábria de Araújo
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-010 Belo Horizonte, Minas Gerais, Brazil E-mail:
| | - Cesar Rossas Mota Filho
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-010 Belo Horizonte, Minas Gerais, Brazil E-mail:
| |
Collapse
|
14
|
Bairoliya S, Goel A, Mukherjee M, Koh Zhi Xiang J, Cao B. Monochloramine Induces Release of DNA and RNA from Bacterial Cells: Quantification, Sequencing Analyses, and Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15791-15804. [PMID: 36215406 DOI: 10.1021/acs.est.2c06632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Monochloramine (MCA) is a widely used secondary disinfectant to suppress microbial growth in drinking water distribution systems. In monochloraminated drinking water, a significant amount of extracellular DNA (eDNA) has been reported, which has many implications ranging from obscuring DNA-based drinking water microbiome analyses to posing potential health concerns. To address this, it is imperative for us to know the origin of the eDNA in drinking water. Using Pseudomonas aeruginosa as a model organism, we report for the first time that MCA induces the release of nucleic acids from both biofilms and planktonic cells. Upon exposure to 2 mg/L MCA, massive release of DNA from suspended cells in both MilliQ water and 0.9% NaCl was directly visualized using live cell imaging in a CellASIC ONIX2 microfluidic system. Exposing established biofilms to MCA also resulted in DNA release from the biofilms, which was confirmed by increased detection of eDNA in the effluent. Intriguingly, massive release of RNA was also observed, and the extracellular RNA (eRNA) was also found to persist in water for days. Sequencing analyses of the eDNA revealed that it could be used to assemble the whole genome of the model organism, while in the water, certain fragments of the genome were more persistent than others. RNA sequencing showed that the eRNA contains non-coding RNA and mRNA, implying its role as a possible signaling molecule in environmental systems and a snapshot of the past metabolic state of the bacterial cells.
Collapse
Affiliation(s)
- Sakcham Bairoliya
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798, Singapore
| | - Apoorva Goel
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Manisha Mukherjee
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798, Singapore
| | - Jonas Koh Zhi Xiang
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798, Singapore
| |
Collapse
|
15
|
Hegarty B, Dai Z, Raskin L, Pinto A, Wigginton K, Duhaime M. A snapshot of the global drinking water virome: Diversity and metabolic potential vary with residual disinfectant use. WATER RESEARCH 2022; 218:118484. [PMID: 35504157 DOI: 10.1016/j.watres.2022.118484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 05/22/2023]
Abstract
Viruses are important drivers of microbial community ecology and evolution, influencing microbial mortality, metabolism, and horizontal gene transfer. However, the effects of viruses remain largely unknown in many environments, including in drinking water systems. Drinking water metagenomic studies have offered a whole community perspective of bacterial impacts on water quality, but have not yet considered the influences of viruses. In this study, we address this gap by mining viral DNA sequences from publicly available drinking water metagenomes from distribution systems in six countries around the world. These datasets provide a snapshot of the taxonomic diversity and metabolic potential of the global drinking water virome; and provide an opportunity to investigate the effects of geography, climate, and drinking water treatment practices on viral diversity. Both environmental conditions and differences in sample processing were found to influence the viral composition. Using free chlorine as the residual disinfectant was associated with clear differences in viral taxonomic diversity and metabolic potential, with significantly fewer viral populations and less even viral community structures than observed in distribution systems without residual disinfectant. Additionally, drinking water viruses carry antibiotic resistance genes (ARGs), as well as genes to survive oxidative stress and nitrogen limitation. Through this study, we have demonstrated that viral communities are diverse across drinking water systems and vary with the use of residual disinfectant. Our findings offer directions for future research to develop a more robust understanding of how virus-bacteria interactions in drinking water distribution systems affect water quality.
Collapse
Affiliation(s)
- Bridget Hegarty
- Department of Civil and Environmental Engineering, Environmental and Water Resources Engineering Building, University of Michigan, 1351 Beal Ave. 181, Ann Arbor, MI 48109-2125, USA
| | - Zihan Dai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lutgarde Raskin
- Department of Civil and Environmental Engineering, Environmental and Water Resources Engineering Building, University of Michigan, 1351 Beal Ave. 181, Ann Arbor, MI 48109-2125, USA
| | - Ameet Pinto
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Georgia
| | - Krista Wigginton
- Department of Civil and Environmental Engineering, Environmental and Water Resources Engineering Building, University of Michigan, 1351 Beal Ave. 181, Ann Arbor, MI 48109-2125, USA.
| | - Melissa Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105N University Ave., 4068 Biological Sciences Building, Ann Arbor, MI 48109-1085, USA.
| |
Collapse
|
16
|
Faucher SP, Matthews S, Nickzad A, Vounba P, Shetty D, Bédard É, Prévost M, Déziel E, Paranjape K. Toxoflavin secreted by Pseudomonas alcaliphila inhibits the growth of Legionella pneumophila and Vermamoeba vermiformis. WATER RESEARCH 2022; 216:118328. [PMID: 35364354 DOI: 10.1016/j.watres.2022.118328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/07/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Legionella pneumophila is a natural inhabitant of water systems. From there, it can be transmitted to humans by aerosolization resulting in severe pneumonia. Most large outbreaks are caused by cooling towers colonized with L. pneumophila. The resident microbiota of the cooling tower is a key determinant for the colonization and growth of L. pneumophila. In our preceding study, the genus Pseudomonas correlated negatively with the presence of L. pneumophila in cooling towers, but it was not clear which species was responsible. Therefore, we identified the Pseudomonas species inhabiting 14 cooling towers using a Pseudomonas-specific 16S rRNA amplicon sequencing strategy. We found that cooling towers that are free of L. pneumophila contained a high relative abundance of members from the Pseudomonas alcaliphila/oleovorans phylogenetic cluster. P. alcaliphila JCM 10630 inhibited the growth of L. pneumophila on agar plates. Analysis of the P. alcaliphila genome revealed the presence of a gene cluster predicted to produce toxoflavin. L. pneumophila growth was inhibited by pure toxoflavin and by extracts from P. alcaliphila culture found to contain toxoflavin by liquid chromatography coupled with mass spectrometry. In addition, toxoflavin inhibits the growth of Vermameoba vermiformis, a host cell of L. pneumophila. Our study indicates that P. alcaliphila may be important to restrict growth of L. pneumophila in water systems through the production of toxoflavin. A sufficiently high concentration of toxoflavin is likely not achieved in the bulk water but might have a local inhibitory effect such as near or in biofilms.
Collapse
Affiliation(s)
- Sebastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Sara Matthews
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Arvin Nickzad
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - Passoret Vounba
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Deeksha Shetty
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Émilie Bédard
- Department of Civil Engineering, Polytechnique Montréal, Montréal, Québec, Canada
| | - Michele Prévost
- Department of Civil Engineering, Polytechnique Montréal, Montréal, Québec, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - Kiran Paranjape
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Webster TM, McFarland A, Gebert MJ, Oliverio AM, Nichols LM, Dunn RR, Hartmann EM, Fierer N. Structure and Functional Attributes of Bacterial Communities in Premise Plumbing Across the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14105-14114. [PMID: 34606240 DOI: 10.1021/acs.est.1c03309] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microbes that thrive in premise plumbing can have potentially important effects on human health. Yet, how and why plumbing-associated microbial communities vary across broad spatial scales remain undetermined. We characterized the bacterial communities in 496 showerheads collected from across the continental United States. The overall community structure, determined by 16S rRNA gene amplicon sequencing, revealed high levels of bacterial diversity. Although a large fraction of the observed variation in community composition could not be explained, differences in bacterial community composition were associated with water supply (private well water vs public municipal water), water source (groundwater vs surface water), and associated differences in water chemistry (pH and chlorine). Most notably, showerheads in homes supplied with public water had higher abundances of Blastomonas, Mycobacterium, and Porphyrobacter, while Pseudorhodoplanes, Novosphingobium, and Nitrospira were more abundant in those receiving private well water. We conducted shotgun metagenomic analyses on 92 of these samples to assess differences in genomic attributes. Public water-sourced showerheads had communities enriched in genes related to lipid and xenobiotic metabolisms, virulence factors, and antibiotic resistance. In contrast, genes associated with oxidative stress and membrane transporters were over-represented in communities from private well water-sourced showerheads compared to those supplied by public water systems. These results highlight the broad diversity of bacteria found in premise plumbing across the United States and the role of the water source and treatment in shaping the microbial community structure and functional potential.
Collapse
Affiliation(s)
- Tara M Webster
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Alexander McFarland
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Matthew J Gebert
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80302, United States
| | - Angela M Oliverio
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80302, United States
| | - Lauren M Nichols
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina 27607, United States
- Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen 1050, Denmark
| | - Erica M Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80302, United States
| |
Collapse
|
18
|
Pfaller S, King D, Mistry JH, Alexander M, Abulikemu G, Pressman JG, Wahman DG, Donohue MJ. Chloramine Concentrations within Distribution Systems and Their Effect on Heterotrophic Bacteria, Mycobacterial Species, and Disinfection Byproducts. WATER RESEARCH 2021; 205:117689. [PMID: 34607086 PMCID: PMC8682803 DOI: 10.1016/j.watres.2021.117689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 06/06/2023]
Abstract
Chloramine is a secondary disinfectant used to maintain microbial control throughout public water distribution systems. This study investigated the relationship between chloramine concentration, heterotrophic bacteria, and specific Mycobacterium species. Sixty-four water samples were collected at four locations within the utility's distribution network on four occasions. Water samples were analyzed for total chlorine and monochloramine. Traditional culture methods were applied for heterotrophic bacteria and nontuberculous mycobacteria (NTM), and specific quantitative polymerase chain reaction (qPCR) assays were used to detect and quantify Mycobacterium avium, M. intracellulare, and M. abscessus. Total chlorine and monochloramine concentrations decreased between the distribution entry point (4.7 mg/L and 3.4 mg/L as Cl2, respectively) to the maximum residence time location (1.7 mg/L and 1.1 mg/L as Cl2, respectively). Results showed that heterotrophic bacteria and NTM counts increased by two logs as the water reached the average residence time (ART) location. Microbiological detection frequencies among all samples were: 86% NTMs, 66% heterotrophic bacteria, 64% M. abscessus, 48% M. intracellulare, and 2% M. avium. This study shows that heterotrophic bacteria and NTM are weakly correlated with disinfectant residual concentration, R2=0.18 and R2=0.04, respectively. Considering that specific NTMs have significant human health effects, these data fill a critical knowledge gap regarding chloramine's impact on heterotrophic bacteria and Mycobacterial species survival within public drinking water distribution systems.
Collapse
Affiliation(s)
- Stacy Pfaller
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response. Cincinnati, OH 45268
| | - Dawn King
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response. Cincinnati, OH 45268
| | - Jatin H Mistry
- United States Environmental Protection Agency, Region 6. Dallas, TX 75270
| | - Matthew Alexander
- United States Environmental Protection Agency, Office of Water Cincinnati, OH 45268
| | | | - Jonathan G Pressman
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response. Cincinnati, OH 45268
| | - David G Wahman
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response. Cincinnati, OH 45268
| | - Maura J Donohue
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response. Cincinnati, OH 45268.
| |
Collapse
|
19
|
Ghosh S, Zhu NJ, Milligan E, Falkinham JO, Pruden A, Edwards MA. Mapping the Terrain for Pathogen Persistence and Proliferation in Non-potable Reuse Distribution Systems: Interactive Effects of Biofiltration, Disinfection, and Water Age. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12561-12573. [PMID: 34448580 DOI: 10.1021/acs.est.1c02121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Diverse pathogens can potentially persist and proliferate in reclaimed water distribution systems (RWDSs). The goal of this study was to evaluate interactive effects of reclaimed water treatments and water age on persistence and proliferation of multiple fecal (e.g., Klebsiella, Enterobacter) and non-fecal (e.g., Legionella, mycobacteria) gene markers in RWDSs. Six laboratory-scale RWDSs were operated in parallel receiving the influent with or without biologically active carbon (BAC) filtration + chlorination, chloramination, or no disinfectant residual. After 3 years of operation, the RWDSs were subject to sacrificial sampling and shotgun metagenomic sequencing. We developed an in-house metagenome-derived pathogen quantification pipeline, validated by quantitative polymerase chain reaction and mock community analysis, to estimate changes in abundance of ∼30 genera containing waterborne pathogens. Microbial community composition in the RWDS bulk water, biofilm, and sediments was clearly shaped by BAC filtration, disinfectant conditions, and water age. Key commonalities were noted in the ecological niches occupied by fecal pathogen markers in the RWDSs, while non-fecal pathogen markers were more varied in their distribution. BAC-filtration + chlorine was found to most effectively control the widest range of target genera. However, filtration alone or chlorine secondary disinfection alone resulted in proliferation of some of these genera containing waterborne pathogens.
Collapse
Affiliation(s)
- Sudeshna Ghosh
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Ni Joyce Zhu
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Erin Milligan
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Joseph O Falkinham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Amy Pruden
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Marc A Edwards
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
20
|
Taviani E, Pedro O. Impact of the aquatic pathobiome in low-income and middle-income countries (LMICs) quest for safe water and sanitation practices. Curr Opin Biotechnol 2021; 73:220-224. [PMID: 34492621 DOI: 10.1016/j.copbio.2021.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 11/03/2022]
Abstract
Microbial contamination of surface waters is of particular relevance in low-income and middle-income countries (LMICs) since they often represent the only available source of water for drinking and domestic use. In the recent years, a growing urbanization, profound demographic shifts and drastic climate events have greatly affected LMICs capacity to reach access to safe drinking water and sanitation practices, and to protect citizens' health from risks associated to the exposure and use of contaminated water. Detailed phylogenetic and microbiological information on the exact composition of pathogenic organisms in urban and peri-urban water is scarce, especially in rapidly changing settings of sub-Saharan Africa. In this review we aim to highlight how large-scale water pathobiome studies can support the LMICs challenge to global access to safe water and sanitation practices.
Collapse
Affiliation(s)
- Elisa Taviani
- Center for Biotechnology, University Eduardo Mondlane, Maputo, Mozambique.
| | - Olivia Pedro
- Center for Biotechnology, University Eduardo Mondlane, Maputo, Mozambique
| |
Collapse
|
21
|
Tekle YI, Lyttle JM, Blasingame MG, Wang F. Comprehensive comparative genomics reveals over 50 phyla of free-living and pathogenic bacteria are associated with diverse members of the amoebozoa. Sci Rep 2021; 11:8043. [PMID: 33850182 PMCID: PMC8044228 DOI: 10.1038/s41598-021-87192-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
The Amoebozoa, a group containing predominantly amoeboid unicellular protists has been shown to play an important ecological role in controlling environmental bacteria. Amoebozoans not only graze bacteria but also serve as a safe niche for bacterial replication and harbor endosymbiotic bacteria including dangerous human pathogens. Despite their importance, only a few lineages of Amoebozoa have been studied in this regard. In this research, we conducted a comprehensive genomic and transcriptomic study with expansive taxon sampling by including representatives from the three known clades of the Amoebozoa. We used culture independent whole culture and single cell genomics/transcriptomics to investigate the association of bacteria with diverse amoebozoans. Relative to current published evidence, we recovered the largest number of bacterial phyla (64) and human pathogen genera (51) associated with the Amoebozoa. Using single cell genomics/transcriptomics we were able to determine up to 24 potential endosymbiotic bacterial phyla, some potentially endosymbionts. This includes the majority of multi-drug resistant pathogens designated as major public health threats. Our study demonstrates amoebozoans are associated with many more phylogenetically diverse bacterial phyla than previously recognized. It also shows that all amoebozoans are capable of harboring far more dangerous human pathogens than presently documented, making them of primal public health concern.
Collapse
Affiliation(s)
- Yonas I Tekle
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA, 30314, USA.
| | - Janae M Lyttle
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA, 30314, USA
| | - Maya G Blasingame
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA, 30314, USA
| | - Fang Wang
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA, 30314, USA
| |
Collapse
|
22
|
Bal Krishna KC, Sathasivan A, Ginige MP. An assessment of the persistence of putative pathogenic bacteria in chloraminated water distribution systems. WATER RESEARCH 2021; 190:116677. [PMID: 33310436 DOI: 10.1016/j.watres.2020.116677] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/21/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
This study investigated how a chloramine loss and nitrifying conditions influenced putative pathogenic bacterial diversity in bulk water and biofilm of a laboratory- and a full-scale chloraminated water distribution systems. Fifty-four reference databases containing full-length 16S rRNA gene sequences obtained from the National Centre for Biotechnology Information database were prepared to represent fifty-four pathogenic bacterial species listed in the World Health Organisation and Australian Drinking Water Quality Guidelines. When 16S rRNA gene sequences of all samples were screened against the fifty-four reference pathogenic databases, a total of thirty-one putative pathogenic bacteria were detected in both laboratory- and full-scale systems where total chlorine residuals ranged between 0.03 - 2.2 mg/L. Pathogenic bacterial species Mycolicibacterium fortuitum and Pseudomonas aeruginosa were noted in all laboratory (i.e. in bulk water and biofilm) and in bulk water of full-scale samples and Mycolicibacterium fortuitum dominated when chloramine residuals were high. Other different pathogenic bacterial species were observed dominant with decaying chloramine residuals. This study for the first time reports the diverse abundance of putative pathogenic bacteria resilient towards chloramine and highlights that metagenomics surveillance of drinking water can serve as a rapid assessment and an early warning of outbreaks of a large number of putative pathogenic bacteria.
Collapse
Affiliation(s)
- K C Bal Krishna
- School of Engineering, Western Sydney University, Locked Bag 1797, Penrith, NSW 2750, Australia.
| | - Arumugam Sathasivan
- School of Engineering, Western Sydney University, Locked Bag 1797, Penrith, NSW 2750, Australia
| | - Maneesha P Ginige
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA, 6913, Australia
| |
Collapse
|
23
|
Gomez-Alvarez V, Liu H, Pressman JG, Wahman DG. Metagenomic Profile of Microbial Communities in a Drinking Water Storage Tank Sediment after Sequential Exposure to Monochloramine, Free Chlorine, and Monochloramine. ACS ES&T WATER 2021; 1:1283-1294. [PMID: 34337601 PMCID: PMC8318090 DOI: 10.1021/acsestwater.1c00016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Sediment accumulation in drinking water storage facilities may lead to water quality degradation, including biological growth and disinfectant decay. The current research evaluated the microbiome present in a sediment after sequential exposure to monochloramine, free chlorine, and monochloramine. Chemical profiles within the sediment based on microelectrodes showed evidence of nitrification, and monochloramine slowly penetrated the sediment but was not measurable at lower depths. A metagenomic approach was used to characterize the microbial communities and functional potential of top (0-1 cm) and bottom (1-2 cm) layers in sediment cores. Differential abundance analysis revealed both an enrichment and depletion associated with depth of microbial populations. We assembled 30 metagenome-assembled genomes (MAGs) representing bacterial and archaeal microorganisms. Most metabolic functions were represented in both layers, suggesting the capability of the microbiomes to respond to environmental fluctuations. However, niche-specific abundance differences were identified in biotransformation processes (e.g., nitrogen). Metagenome-level analyses indicated that nitrification and denitrification can potentially occur simultaneously in the sediments, but the exact location of their occurrence within the sediment will depend on the localized physicochemical conditions. Even though monochloramine was maintained in the bulk water there was limited penetration into the sediment, and the microbial community remained functionally diverse and active.
Collapse
Affiliation(s)
- Vicente Gomez-Alvarez
- Center for Environmental Solutions & Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Hong Liu
- Oak Ridge Institute for Science and Education (ORISE), Post-Doctoral Fellow at U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Jonathan G Pressman
- Center for Environmental Solutions & Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - David G Wahman
- Center for Environmental Solutions & Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| |
Collapse
|
24
|
Vavourakis CD, Heijnen L, Peters MCFM, Marang L, Ketelaars HAM, Hijnen WAM. Spatial and Temporal Dynamics in Attached and Suspended Bacterial Communities in Three Drinking Water Distribution Systems with Variable Biological Stability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14535-14546. [PMID: 33135888 DOI: 10.1021/acs.est.0c04532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microbial presence and regrowth in drinking water distribution systems (DWDSs) is routinely monitored to assess the biological stability of drinking water without a residual disinfectant, but the conventional microbiological culture methods currently used target only a very small fraction of the complete DWDS microbiome. Here, we sequenced 16S rRNA gene amplicons to elucidate the attached and suspended prokaryotic community dynamics within three nonchlorinated DWDSs with variable regrowth conditions distributing similarly treated surface water from the same source. One rural location, with less regrowth related issues, differed most strikingly from the other two urban locations by the exclusive presence of Pseudonocardia (Actinobacteria) in the biofilm and the absence of Limnobacter (Betaproteobacteriales) in the water and loose deposits during summer. There was a dominant seasonal effect on the drinking water microbiomes at all three locations. For one urban location, it was established that the most significant changes in the microbial community composition on a spatial scale occurred shortly after freshly treated water entered the DWDS. However, summerly regrowth of Limnobacter, one of the dominant genera in the distributed drinking water, already occurred in the clean water reservoir at the treatment plant before further distribution. The highlighted bacterial lineages within these highly diverse DWDS communities might be important new indicators for undesirable regrowth conditions affecting the final drinking water quality.
Collapse
Affiliation(s)
| | - Leo Heijnen
- KWR Watercycle Research Institute, Groningenhaven 7, 3433PE Nieuwegein, The Netherlands
| | | | - Leonie Marang
- Evides Water Company, P.O. Box 4472, 3006 AL, Rotterdam, The Netherlands
| | - Henk A M Ketelaars
- Evides Water Company, P.O. Box 4472, 3006 AL, Rotterdam, The Netherlands
| | - Wim A M Hijnen
- Evides Water Company, P.O. Box 4472, 3006 AL, Rotterdam, The Netherlands
| |
Collapse
|
25
|
Jiang R, Wang JG, Zhu T, Zou B, Wang DQ, Rhee SK, An D, Ji ZY, Quan ZX. Use of Newly Designed Primers for Quantification of Complete Ammonia-Oxidizing (Comammox) Bacterial Clades and Strict Nitrite Oxidizers in the Genus Nitrospira. Appl Environ Microbiol 2020; 86:e01775-20. [PMID: 32826214 PMCID: PMC7531962 DOI: 10.1128/aem.01775-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/08/2020] [Indexed: 02/01/2023] Open
Abstract
Complete ammonia-oxidizing (comammox) bacteria play key roles in environmental nitrogen cycling and all belong to the genus Nitrospira, which was originally believed to include only strict nitrite-oxidizing bacteria (sNOB). Thus, differential estimation of sNOB abundance from that of comammox Nitrospira has become problematic, since both contain nitrite oxidoreductase genes that serve as common targets for sNOB detection. Herein, we developed novel comammox Nitrospira clade A- and B-specific primer sets targeting the α-subunit of the ammonia monooxygenase gene (amoA) and a sNOB-specific primer set targeting the cyanase gene (cynS) for quantitative PCR (qPCR). The high coverage and specificity of these primers were checked by use of metagenome and metatranscriptome data sets. Efficient and specific amplification with these primers was demonstrated using various environmental samples. Using the newly designed primers, we successfully estimated the abundances of comammox Nitrospira and sNOB in samples from two chloramination-treated drinking water systems and found that, in most samples, comammox Nitrospira clade A was the dominant type of Nitrospira and also served as the primary ammonia oxidizer. Compared with other ammonia oxidizers, comammox Nitrospira had a higher abundance in process water samples in these two drinking water systems. We also demonstrated that sNOB can be readily misrepresented by an earlier method, calculated by subtracting the comammox Nitrospira abundance from the total Nitrospira abundance, especially when the comammox Nitrospira proportion is relatively high. The new primer sets were successfully applied to comammox Nitrospira and sNOB quantification, which may prove useful in understanding the roles of Nitrospira in nitrification in various ecosystems.IMPORTANCENitrospira is a dominant nitrite-oxidizing bacterium in many artificial and natural environments. The discovery of complete ammonia oxidizers in the genus Nitrospira prevents the use of previously identified primers targeting the Nitrospira 16S rRNA gene or nitrite oxidoreductase (nxr) gene for differential determination of strict nitrite-oxidizing bacteria (sNOB) in the genus Nitrospira and among comammox bacteria in this genus. We designed three novel primer sets that enabled quantification of comammox Nitrospira clades A and B and sNOB with high coverage, specificity, and accuracy in various environments. With the designed primer sets, sNOB and comammox Nitrospira were differentially estimated in drinking water systems, and we found that comammox clade A predominated over sNOB and other ammonia oxidizers in process water samples. Accurate quantification of comammox Nitrospira and sNOB by use of the newly designed primers will provide essential information for evaluating the contribution of Nitrospira to nitrification in various ecosystems.
Collapse
Affiliation(s)
- Ran Jiang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Jian-Gong Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Ting Zhu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Bin Zou
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Dan-Qi Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, Cheongju, Republic of Korea
| | - Dong An
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Zhi-Yuan Ji
- Hangzhou Water Holding Group Co., Ltd., Hangzhou, China
| | - Zhe-Xue Quan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Maguvu TE, Bezuidenhout CC, Kritzinger R, Tsholo K, Plaatjie M, Molale-Tom LG, Mienie CM, Coertze RD. Combining physicochemical properties and microbiome data to evaluate the water quality of South African drinking water production plants. PLoS One 2020; 15:e0237335. [PMID: 32790793 PMCID: PMC7425920 DOI: 10.1371/journal.pone.0237335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022] Open
Abstract
Anthropogenic activities in catchments used for drinking water production largely contaminates source waters, and this may impact the quality of the final drinking water product. These contaminants may also affect taxonomic and functional profiles of the bacterial communities in the drinking water. Here, we report an integrated insight into the microbiome and water quality of four water treatment plants (NWC, NWE, WCA and NWG) that supply portable water to communities in South Africa. A new scoring system based on combined significant changes of physicochemical parameters and microbial abundance from raw to treated water was used to evaluate the effectiveness of the treatment plants at water purification. Physicochemical parameters which include total soluble solids, turbidity, pH, nitrites and phosphorus among others, were measured in source, treated, and distributed water. There were general statistically significant (P ≤ 0.05) differences between raw and treated water, demonstrating the effectiveness of the purification process. Illumina sequencing of the 16S rRNA gene was used for taxonomic profiling of the microbial communities and this data was used to infer functional attributes of the communities. Structure and composition of the bacterial communities differed significantly (P < 0.05) among the treatment plants, only NWE and NWG showed no significant differences (P > 0.05), this correlated with the predicted functional profile of the microbial communities obtained from Phylogenetic Investigation of Communities by Reconstruction of Observed States (PICRUSt), as well as the likely pollutants of source water. Bacteroidetes, Chlorobi and Fibrobacteres significantly differed (P < 0.05) between raw and distributed water. PICRUSt inferred a number of pathways involved in the degradation of xenobiotics such as Dichlorodiphenyltrichloroethane, atrazine and polycyclic aromatic hydrocarbons. More worryingly, was the presence of pathways involved in beta-lactam resistance, potential pathogenic Escherichia coli infection, Vibrio cholerae infection, and Shigellosis. Also present in drinking and treated water were OTUs associated with a number of opportunistic pathogens.
Collapse
Affiliation(s)
- Tawanda E. Maguvu
- Unit for Environmental Sciences and Management - Microbiology, North-West University, Potchefstroom, South Africa
- * E-mail:
| | - Cornelius C. Bezuidenhout
- Unit for Environmental Sciences and Management - Microbiology, North-West University, Potchefstroom, South Africa
| | - Rinaldo Kritzinger
- Unit for Environmental Sciences and Management - Microbiology, North-West University, Potchefstroom, South Africa
| | - Karabo Tsholo
- Unit for Environmental Sciences and Management - Microbiology, North-West University, Potchefstroom, South Africa
| | - Moitshepi Plaatjie
- Unit for Environmental Sciences and Management - Microbiology, North-West University, Potchefstroom, South Africa
| | - Lesego G. Molale-Tom
- Unit for Environmental Sciences and Management - Microbiology, North-West University, Potchefstroom, South Africa
| | - Charlotte M. Mienie
- Unit for Environmental Sciences and Management - Microbiology, North-West University, Potchefstroom, South Africa
| | - Roelof D. Coertze
- Unit for Environmental Sciences and Management - Microbiology, North-West University, Potchefstroom, South Africa
| |
Collapse
|
27
|
Potgieter SC, Dai Z, Venter SN, Sigudu M, Pinto AJ. Microbial Nitrogen Metabolism in Chloraminated Drinking Water Reservoirs. mSphere 2020; 5:e00274-20. [PMID: 32350093 PMCID: PMC7193043 DOI: 10.1128/msphere.00274-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 01/04/2023] Open
Abstract
Ammonia availability due to chloramination can promote the growth of nitrifying organisms, which can deplete chloramine residuals and result in operational problems for drinking water utilities. In this study, we used a metagenomic approach to determine the identity and functional potential of microorganisms involved in nitrogen biotransformation within chloraminated drinking water reservoirs. Spatial changes in the nitrogen species included an increase in nitrate concentrations accompanied by a decrease in ammonium concentrations with increasing distance from the site of chloramination. This nitrifying activity was likely driven by canonical ammonia-oxidizing bacteria (i.e., Nitrosomonas) and nitrite-oxidizing bacteria (i.e., Nitrospira) as well as by complete-ammonia-oxidizing (i.e., comammox) Nitrospira-like bacteria. Functional annotation was used to evaluate genes associated with nitrogen metabolism, and the community gene catalogue contained mostly genes involved in nitrification, nitrate and nitrite reduction, and nitric oxide reduction. Furthermore, we assembled 47 high-quality metagenome-assembled genomes (MAGs) representing a highly diverse assemblage of bacteria. Of these, five MAGs showed high coverage across all samples, which included two Nitrosomonas, Nitrospira, Sphingomonas, and Rhizobiales-like MAGs. Systematic genome-level analyses of these MAGs in relation to nitrogen metabolism suggest that under ammonia-limited conditions, nitrate may be also reduced back to ammonia for assimilation. Alternatively, nitrate may be reduced to nitric oxide and may potentially play a role in regulating biofilm formation. Overall, this study provides insight into the microbial communities and their nitrogen metabolism and, together with the water chemistry data, improves our understanding of nitrogen biotransformation in chloraminated drinking water distribution systems.IMPORTANCE Chloramines are often used as a secondary disinfectant when free chlorine residuals are difficult to maintain. However, chloramination is often associated with the undesirable effect of nitrification, which results in operational problems for many drinking water utilities. The introduction of ammonia during chloramination provides a potential source of nitrogen either through the addition of excess ammonia or through chloramine decay. This promotes the growth of nitrifying microorganisms and provides a nitrogen source (i.e., nitrate) for the growth for other organisms. While the roles of canonical ammonia-oxidizing and nitrite-oxidizing bacteria in chloraminated drinking water systems have been extensively investigated, those studies have largely adopted a targeted gene-centered approach. Further, little is known about the potential long-term cooccurrence of complete-ammonia-oxidizing (i.e., comammox) bacteria and the potential metabolic synergies of nitrifying organisms with their heterotrophic counterparts that are capable of denitrification and nitrogen assimilation. This study leveraged data obtained for genome-resolved metagenomics over a time series to show that while nitrifying bacteria are dominant and likely to play a major role in nitrification, their cooccurrence with heterotrophic organisms suggests that nitric oxide production and nitrate reduction to ammonia may also occur in chloraminated drinking water systems.
Collapse
Affiliation(s)
- Sarah C Potgieter
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Zihan Dai
- Infrastructure and Environment Division, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | | | - Ameet J Pinto
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Pinel ISM, Moed DH, Vrouwenvelder JS, van Loosdrecht MCM. Bacterial community dynamics and disinfection impact in cooling water systems. WATER RESEARCH 2020; 172:115505. [PMID: 31986397 DOI: 10.1016/j.watres.2020.115505] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 06/10/2023]
Abstract
Understanding the bacterial dynamics in cooling towers is imperative for the assessment of disinfection efficiency and management of microbial risks linked to aerosol formation. The objective of this study was to evaluate the impact of feed water on the cooling water bacterial microbiome and investigate the survival ability of its members when exposed to continuous chlorine disinfection. Water from an industrial cooling water system (2600 m3/h) was collected over a 5-month period at 3 locations along the feed water line and 3 locations in the cooling tower. ATP measurements suggested that the average ATP-per-cell in the cooling tower evolved independently from the average ATP-per-cell in the feed water. Flow cytometry and 16S rRNA gene amplicon sequencing were then combined to quantify the bacterial dynamics in the whole system. A mass balance based equation was established to determine net growth and net decay of the cooling tower bacterial communities in order to evaluate the impact of continuous chlorination (0.35-0.41 mg Cl2/L residual chlorine). The results indicated that cooling tower main community members were determined by the input feed water microbiome and the bacterial community structure was further shaped by varying decay rates of the microorganisms. Notably, the order Obscuribacterales showed to be growing in the cooling tower in the presence of residual chlorine up to 0.4 mg Cl2/L, with a recurrent net growth of 260 ± 95%, taking into account the impact of the concentration factor. This conclusion was only possible thanks to the systematic analysis described in this paper and generates discussion about the resistance of Obscuribacterales to residual chlorine. The described mass balance approach provides a high level of understanding on bacterial dynamics and should be considered for future characterization studies of cooling towers in which accurate investigation of microbiome changes is essential.
Collapse
Affiliation(s)
- I S M Pinel
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands.
| | - D H Moed
- Evides Industriewater, Schaardijk 150, 3063, NH, Rotterdam, the Netherlands.
| | - J S Vrouwenvelder
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands; Division of Biological and Environmental Science and Engineering (BESE), Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - M C M van Loosdrecht
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands.
| |
Collapse
|
29
|
Paduano S, Marchesi I, Casali ME, Valeriani F, Frezza G, Vecchi E, Sircana L, Romano Spica V, Borella P, Bargellini A. Characterisation of Microbial Community Associated with Different Disinfection Treatments in Hospital hot Water Networks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2158. [PMID: 32213901 PMCID: PMC7143765 DOI: 10.3390/ijerph17062158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 12/16/2022]
Abstract
Many disinfection treatments can be adopted for controlling opportunistic pathogens in hospital water networks in order to reduce infection risk for immunocompromised patients. Each method has limits and strengths and it could determine modifications on bacterial community. The aim of our investigation was to study under real-life conditions the microbial community associated with different chemical (monochloramine, hydrogen peroxide, chlorine dioxide) and non-chemical (hyperthermia) treatments, continuously applied since many years in four hot water networks of the same hospital. Municipal cold water, untreated secondary, and treated hot water were analysed for microbiome characterization by 16S amplicon sequencing. Cold waters had a common microbial profile at genera level. The hot water bacterial profiles differed according to treatment. Our results confirm the effectiveness of disinfection strategies in our hospital for controlling potential pathogens such as Legionella, as the investigated genera containing opportunistic pathogens were absent or had relative abundances ≤1%, except for non-tuberculous mycobacteria, Sphingomonas, Ochrobactrum and Brevundimonas. Monitoring the microbial complexity of healthcare water networks through 16S amplicon sequencing is an innovative and effective approach useful for Public Health purpose in order to verify possible modifications of microbiota associated with disinfection treatments.
Collapse
Affiliation(s)
- Stefania Paduano
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (I.M.); (M.E.C.); (G.F.); (P.B.)
| | - Isabella Marchesi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (I.M.); (M.E.C.); (G.F.); (P.B.)
| | - Maria Elisabetta Casali
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (I.M.); (M.E.C.); (G.F.); (P.B.)
- University Hospital Policlinico of Modena, 41124 Modena, Italy; (E.V.); (L.S.)
| | - Federica Valeriani
- Department of Movement, Human and Health Sciences, Public Health Unit, University of Rome ‘Foro Italico’, 00135 Rome, Italy; (F.V.); (V.R.S.)
| | - Giuseppina Frezza
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (I.M.); (M.E.C.); (G.F.); (P.B.)
| | - Elena Vecchi
- University Hospital Policlinico of Modena, 41124 Modena, Italy; (E.V.); (L.S.)
| | - Luca Sircana
- University Hospital Policlinico of Modena, 41124 Modena, Italy; (E.V.); (L.S.)
| | - Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, Public Health Unit, University of Rome ‘Foro Italico’, 00135 Rome, Italy; (F.V.); (V.R.S.)
| | - Paola Borella
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (I.M.); (M.E.C.); (G.F.); (P.B.)
| | - Annalisa Bargellini
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (I.M.); (M.E.C.); (G.F.); (P.B.)
| |
Collapse
|
30
|
Li W, Tan Q, Zhou W, Chen J, Li Y, Wang F, Zhang J. Impact of substrate material and chlorine/chloramine on the composition and function of a young biofilm microbial community as revealed by high-throughput 16S rRNA sequencing. CHEMOSPHERE 2020; 242:125310. [PMID: 31896192 DOI: 10.1016/j.chemosphere.2019.125310] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
The bacterial composition of biofilms in drinking water distribution systems is significantly impacted by the disinfection regime and substrate material. However, studies that have addressed the changes in the biofilm community during the early stage of formation (less than 10 weeks) were not yet adequate. Here, we explore the effects of the substrate materials (cast iron, stainless steel, copper, polyvinyl chloride, and high density polyethylene) and different disinfectants (chlorine and chloramine) on the community composition and function of young biofilm by using 16S rDNA sequencing. The results showed that Alphaproteobacteria (39.14%-80.87%) and Actinobacteria (5.90%-40.03%) were the dominant classes in chlorine-disinfection samples, while Alphaproteobacteria (17.46%-74.18%) and Betaproteobacteria (3.79%-68.50%) became dominant in a chloraminated group. The infrequently discussed genus Phreatobacter became predominant in the chlorinated samples, but it was inhibited by chloramine and copper ions. The key driver of the community composition was indicated as different disinfectants according to principle coordination analysis (PCoA) and Permutational multivariate analysis of variance (Adonis test), and the bacterial community changed significantly over time. Communities of biofilms grown on cast iron showed a great distance from the other materials according to Bray-Curtis dissimilarity, and they had a unique dominant genus, Dechloromonas. A metagenomics prediction based on 16S rDNA was used to detect the functional pathways of antibiotic biosynthesis and beta-lactam resistance, and it revealed that several pathways were significantly different in terms of their chlorinated and chloraminated groups.
Collapse
Affiliation(s)
- Weiying Li
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Qiaowen Tan
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Jiping Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yue Li
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Feng Wang
- Institute of Water Environment Technology, MCC Huatian Engineering and Technology Corporation, Nanjing, Jiangsu, 210019, China
| | - Junpeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
31
|
Paranjape K, Bédard É, Whyte LG, Ronholm J, Prévost M, Faucher SP. Presence of Legionella spp. in cooling towers: the role of microbial diversity, Pseudomonas, and continuous chlorine application. WATER RESEARCH 2020; 169:115252. [PMID: 31726393 DOI: 10.1016/j.watres.2019.115252] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 05/25/2023]
Abstract
Legionnaires' disease (LD) is a severe pneumonia caused by several species of the genus Legionella, most frequently by Legionella pneumophila. Cooling towers are the most common source for large community-associated outbreaks. Colonization, survival, and proliferation of L. pneumophila in cooling towers are necessary for outbreaks to occur. These steps are affected by the chemical and physical parameters of the cooling tower environment. We hypothesize that the bacterial community residing in the cooling tower could also affect the presence of L. pneumophila. A 16S rRNA gene targeted amplicon sequencing approach was used to study the bacterial community of cooling towers and its relationship with the Legionella spp. and L. pneumophila communities. The results indicated that the water source shaped the bacterial community of cooling towers. Several taxa were enriched and positively correlated with Legionella spp. and L. pneumophila. In contrast, Pseudomonas showed a strong negative correlation with Legionella spp. and several other genera. Most importantly, continuous chlorine application reduced microbial diversity and promoted the presence of Pseudomonas creating a non-permissive environment for Legionella spp. This suggests that disinfection strategies as well as the resident microbial population influences the ability of Legionella spp. to colonize cooling towers.
Collapse
Affiliation(s)
- Kiran Paranjape
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Émilie Bédard
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada; Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Jennifer Ronholm
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada; Department of Animal Science, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Michèle Prévost
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Sébastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.
| |
Collapse
|
32
|
Ma X, Li G, Chen R, Yu Y, Tao H, Zhang G, Shi B. Revealing the changes of bacterial community from water source to consumers tap: A full-scale investigation in eastern city of China. J Environ Sci (China) 2020; 87:331-340. [PMID: 31791506 DOI: 10.1016/j.jes.2019.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
This study profiled the bacterial community variations of water from four water treatment systems, including coagulation, sedimentation, sand filtration, ozonation-biological activated carbon filtration (O3-BAC), disinfection, and the tap water after the distribution process in eastern China. The results showed that different water treatment processes affected the bacterial community structure in different ways. The traditional treatment processes, including coagulation, sedimentation and sand filtration, reduced the total bacterial count, while they had little effect on the bacterial community structure in the treated water (before disinfection). Compared to the traditional treatment process, O3-BAC reduced the relative abundance of Sphingomonas in the finished water. In addition, ozonation may play a role in reducing the relative abundance of Mycobacterium. NaClO and ClO2 had different effects on the bacterial community in the finished water. The relative abundance of some bacteria (e.g. Flavobacterium, Phreatobacter and Porphyrobacter) increased in the finished water after ClO2 disinfection. The relative abundance of Mycobacterium and Legionella, which have been widely reported as waterborne opportunistic pathogens, increased after NaClO disinfection. In addition, some microorganisms proliferated and grew in the distribution system, which could lead to turbidity increases in the tap water. Compared to those in the finished water, the relative abundance of Sphingomonas, Hyphomicrobium, Phreatobacter, Rheinheimera, Pseudomonas and Acinetobacter increased in the tap water disinfected with NaClO, while the relative abundance of Mycobacterium increased in the tap water disinfected with ClO2. Overall, this study provided the detailed variation in the bacterial community in the drinking water system.
Collapse
Affiliation(s)
- Xu Ma
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China
| | - Guiwei Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruya Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Tao
- College of Environmental Science and Engineering, Hohai University, Nanjing 210098, China
| | - Guangming Zhang
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China.
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
33
|
Inkinen J, Jayaprakash B, Siponen S, Hokajärvi AM, Pursiainen A, Ikonen J, Ryzhikov I, Täubel M, Kauppinen A, Paananen J, Miettinen IT, Torvinen E, Kolehmainen M, Pitkänen T. Active eukaryotes in drinking water distribution systems of ground and surface waterworks. MICROBIOME 2019; 7:99. [PMID: 31269979 PMCID: PMC6610866 DOI: 10.1186/s40168-019-0715-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/20/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Eukaryotes are ubiquitous in natural environments such as soil and freshwater. Little is known of their presence in drinking water distribution systems (DWDSs) or of the environmental conditions that affect their activity and survival. METHODS Eukaryotes were characterized by Illumina high-throughput sequencing targeting 18S rRNA gene (DNA) that estimates the total community and the 18S rRNA gene transcript (RNA) that is more representative of the active part of the community. DWDS cold water (N = 124), hot water (N = 40), and biofilm (N = 16) samples were collected from four cities in Finland. The sampled DWDSs were from two waterworks A-B with non-disinfected, recharged groundwater as source water and from three waterworks utilizing chlorinated water (two DWDSs of surface waterworks C-D and one of ground waterworks E). In each DWDS, samples were collected from three locations during four seasons of 1 year. RESULTS A beta-diversity analysis revealed that the main driver shaping the eukaryotic communities was the DWDS (A-E) (R = 0.73, P < 0.001, ANOSIM). The kingdoms Chloroplastida (green plants and algae), Metazoa (animals: rotifers, nematodes), Fungi (e.g., Cryptomycota), Alveolata (ciliates, dinoflagellates), and Stramenopiles (algae Ochrophyta) were well represented and active-judging based on the rRNA gene transcripts-depending on the surrounding conditions. The unchlorinated cold water of systems (A-B) contained a higher estimated total number of taxa (Chao1, average 380-480) than chlorinated cold water in systems C-E (Chao1 ≤ 210). Within each DWDS, unique eukaryotic communities were identified at different locations as was the case also for cold water, hot water, and biofilms. A season did not have a consistent impact on the eukaryotic community among DWDSs. CONCLUSIONS This study comprehensively characterized the eukaryotic community members within the DWDS of well-maintained ground and surface waterworks providing good quality water. The study gives an indication that each DWDS houses a unique eukaryotic community, mainly dependent on the raw water source and water treatment processes in place at the corresponding waterworks. In particular, disinfection as well as hot water temperature seemed to represent a strong selection pressure that controlled the number of active eukaryotic species.
Collapse
Affiliation(s)
- Jenni Inkinen
- Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | | | - Sallamaari Siponen
- Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box, 1627, FI-70211 Kuopio, Finland
| | - Anna-Maria Hokajärvi
- Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Anna Pursiainen
- Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Jenni Ikonen
- Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Ivan Ryzhikov
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box, 1627, FI-70211 Kuopio, Finland
| | - Martin Täubel
- Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Ari Kauppinen
- Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Jussi Paananen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ilkka T. Miettinen
- Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Eila Torvinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box, 1627, FI-70211 Kuopio, Finland
| | - Mikko Kolehmainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box, 1627, FI-70211 Kuopio, Finland
| | - Tarja Pitkänen
- Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| |
Collapse
|
34
|
Retrospective Analysis of Nontuberculous Mycobacterial Infection and Monochloramine Disinfection of Municipal Drinking Water in Michigan. mSphere 2019; 4:4/4/e00160-19. [PMID: 31270167 PMCID: PMC6609225 DOI: 10.1128/msphere.00160-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Infections by nontuberculous mycobacteria (NTM) result in significant morbidity, mortality, and health care costs. NTM are primarily acquired from environmental sources, including exposure to municipally treated drinking water. Higher levels of NTM have been reported in drinking water disinfected with monochloramine than in drinking water disinfected with chlorine. Our results suggest that municipal drinking water disinfection with monochloramine compared to chlorine is not associated with higher risk of NTM infection. This is important given that regulations that limit drinking water concentrations of disinfection by-products, which are formed primarily when chlorine disinfection is used, incentivize drinking water utilities to change from chlorine disinfection to monochloramine disinfection. Infections by nontuberculous mycobacteria (NTM) are primarily acquired from environmental sources, including exposure to municipally treated drinking water. Higher levels of NTM have been reported in drinking water disinfected with monochloramine than in that disinfected with chlorine. However, the relationships between water treatment practices and NTM infection are unclear. The objective of this study was to examine a possible relationship between residual disinfectant used for municipal drinking water treatment (monochloramine or chlorine) and NTM infection. We retrospectively reviewed NTM diagnostic tests performed at a single health care center during a 15-year period. Information on municipal water treatment practices, including disinfectant and primary source water type, was obtained for 140 cities. Based on a logistic regression model, municipal drinking water disinfection with monochloramine compared to chlorine was not associated with NTM infection (P = 0.24). An additional model variable examining water source showed that the likelihood of having an NTM infection was 1.46 times higher for patients residing in cities with drinking water derived from surface water than for those residing in cities with drinking water derived from groundwater (odds ratio [OR], 1.46; 95% confidence interval [CI], 1.03 to 2.08; P = 0.04). In an inverse propensity score weighted regression, monochloramine disinfection was also not associated with NTM infection. A moderate effect on NTM infection rates was observed in the weighted regression for municipal drinking water derived from surface water, though the results were not statistically significant (OR, 1.24; 95% CI, 0.92 to 1.69; P = 0.17). IMPORTANCE Infections by nontuberculous mycobacteria (NTM) result in significant morbidity, mortality, and health care costs. NTM are primarily acquired from environmental sources, including exposure to municipally treated drinking water. Higher levels of NTM have been reported in drinking water disinfected with monochloramine than in drinking water disinfected with chlorine. Our results suggest that municipal drinking water disinfection with monochloramine compared to chlorine is not associated with higher risk of NTM infection. This is important given that regulations that limit drinking water concentrations of disinfection by-products, which are formed primarily when chlorine disinfection is used, incentivize drinking water utilities to change from chlorine disinfection to monochloramine disinfection.
Collapse
|
35
|
Sanganyado E, Gwenzi W. Antibiotic resistance in drinking water systems: Occurrence, removal, and human health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:785-797. [PMID: 30897437 DOI: 10.1016/j.scitotenv.2019.03.162] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 05/19/2023]
Abstract
In recent years, there has been a growing interest on the occurrence of antibiotic-resistant bacteria (ARB) and antibiotic resistant genes (ARGs) in treated and untreated drinking water. ARB and ARGs pose a public health concern when they transfer antibiotic resistance (AR) to human pathogens. However, it is still unclear whether the presence of environmental ARB and ARGs in source water, drinking water treatment plants, and drinking water distribution systems has any significant impact on human exposure to pathogenic ARB. In this review, we critically examine the occurrence of AR in groundwater, surface water, and treated distributed water. This offered a new perspective on the human health threat posed by AR in drinking water and helped in crafting a strategy for monitoring AR effectively. Using existing data on removal of ARB and ARGs in drinking water treatment plants, presence and proliferation of AR in drinking water distribution systems, and mechanisms and pathways of AR transfer in drinking water treatment plants, we conclude that combining UV-irradiation with advanced oxidative processes (such as UV/chlorine, UV/H2O2, and H2O2/UV/TiO2) may enhance the removal of ARB and ARGs, while disinfection may promote horizontal gene transfer from environmental ARB to pathogens. The potential human health risks of AR were determined by examining human exposure to antibiotic resistant human pathogens and re-evaluating waterborne disease outbreaks and their links to environmental AR. We concluded that integrating disease outbreak analysis, human exposure modelling, and clinical data could provide critical information that can be used to estimate the dose-response relationships of pathogenic ARB in drinking water, which is required for accurate risk assessments.
Collapse
Affiliation(s)
- Edmond Sanganyado
- Marine Biology Institute, Shantou University, Shantou, Guangdong Province, China
| | - Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Soil Science and Agricultural Engineering, University of Zimbabwe, P.O. Box MP167, Mt. Pleasant, Harare, Zimbabwe.
| |
Collapse
|
36
|
Zhang S, He Z, Meng F. Floc-size effects of the pathogenic bacteria in a membrane bioreactor plant. ENVIRONMENT INTERNATIONAL 2019; 127:645-652. [PMID: 30991220 DOI: 10.1016/j.envint.2019.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
The size nature of sludge flocs could affect the occurrence and distribution of bacterial pathogens in wastewater treatment plants (WWTPs). In this study, the floc-size dependence of bacterial pathogens in the activated sludge of a WWTP was investigated using high-throughput metagenomic sequencing approaches. The results showed that a total of 423 pathogenic species belonging to 123 genera were identified in the three size-fractionated flocs. Also, we found that all the pathogens on the WHO's global priority pathogens list were detected in the size-fractionated flocs, with relative abundance of 0.4%, 0.3% and 0.3% for large-size, medium-size and small-size flocs, respectively, indicating the severe human and environmental health risks of activated sludge. Importantly, our results revealed that the pathogenic species showed a clear floc-size dependent distribution manner, leading to significant differences (P < 0.05) of pathogenic communities among the size-fractionated flocs. Additionally, by partitioning pathogens based on the occurrence and significant difference in abundances, we suggested the following distribution features: 1) large flocs-associated pathogens, such as Borrelia recurrentis, Actinobacillus ureae and Campylobacter gracilis; 2) medium flocs-associated pathogens, such as Mycobacterium szulgai and Ureaplasma urealyticum; and 3) small flocs-associated pathogens, such as Rickettsia akari, Staphylococcus anginosus and Helicobacter cinaedi. Overall, this study provides a comprehensive understanding of pathogens in activated sludge, which is expected to aid in assessment and management of pathogen risks.
Collapse
Affiliation(s)
- Shaoqing Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Zhili He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; College of Agronomy, Hunan Agricultural University, Changsha 410128, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
37
|
Samba-Louaka A, Delafont V, Rodier MH, Cateau E, Héchard Y. Free-living amoebae and squatters in the wild: ecological and molecular features. FEMS Microbiol Rev 2019; 43:415-434. [DOI: 10.1093/femsre/fuz011] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
Free-living amoebae are protists frequently found in water and soils. They feed on other microorganisms, mainly bacteria, and digest them through phagocytosis. It is accepted that these amoebae play an important role in the microbial ecology of these environments. There is a renewed interest for the free-living amoebae since the discovery of pathogenic bacteria that can resist phagocytosis and of giant viruses, underlying that amoebae might play a role in the evolution of other microorganisms, including several human pathogens. Recent advances, using molecular methods, allow to bring together new information about free-living amoebae. This review aims to provide a comprehensive overview of the newly gathered insights into (1) the free-living amoeba diversity, assessed with molecular tools, (2) the gene functions described to decipher the biology of the amoebae and (3) their interactions with other microorganisms in the environment.
Collapse
Affiliation(s)
- Ascel Samba-Louaka
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
| | - Vincent Delafont
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
| | - Marie-Hélène Rodier
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
- Laboratoire de Parasitologie et Mycologie, CHU La Milétrie, 2 rue de la Milétrie, 86021 Poitiers Cedex, France
| | - Estelle Cateau
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
- Laboratoire de Parasitologie et Mycologie, CHU La Milétrie, 2 rue de la Milétrie, 86021 Poitiers Cedex, France
| | - Yann Héchard
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
| |
Collapse
|
38
|
Dowdell K, Haig SJ, Caverly LJ, Shen Y, LiPuma JJ, Raskin L. Nontuberculous mycobacteria in drinking water systems - the challenges of characterization and risk mitigation. Curr Opin Biotechnol 2019; 57:127-136. [PMID: 31003169 DOI: 10.1016/j.copbio.2019.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022]
Abstract
Nontuberculous mycobacteria (NTM) pulmonary infections are a growing concern worldwide, with a disproportionate incidence in persons with pre-existing health conditions. NTM have frequently been found in municipally-treated drinking water and building plumbing, leading to the hypothesis that an important source of NTM exposure is drinking water. The identification and quantification of NTM in environmental samples are complicated by genetic variability among NTM species, making it challenging to determine if clinically relevant NTM are present. Additionally, their unique cellular features and lifestyles make NTM and their nucleic acids difficult to recover. This review highlights a recent work focused on quantification and characterization of NTM and on understanding the influence of source water, treatment plants, distribution systems, and building plumbing on the abundance of NTM in drinking water.
Collapse
Affiliation(s)
- Katherine Dowdell
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sarah-Jane Haig
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lindsay J Caverly
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Yun Shen
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - John J LiPuma
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Lutgarde Raskin
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
39
|
Song P, Zhou B, Feng G, Brooks JP, Zhou H, Zhao Z, Liu Y, Li Y. The influence of chlorination timing and concentration on microbial communities in labyrinth channels: implications for biofilm removal. BIOFOULING 2019; 35:401-415. [PMID: 31142151 DOI: 10.1080/08927014.2019.1600191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Chlorination is an effective method to control biofilm formation in enclosed pipelines. To date, very little is known about how to control biofilms at the mesoscale in complex pipelines through chlorination. In this study, the dynamic of microbial communities was examined under different residual chlorine concentrations on the biofilms attached to labyrinth channels for drip irrigation using reclaimed water. The results indicated that the microbial phospholipid fatty acids, extracellular polymeric substances, microbial dynamics, and the ace and Shannon microbial diversity indices showed a gradual decrease after chlorination. However, chlorination increased microbial activity by 0.5-19.2%. The increase in the relative abundances of chloride-resistant bacteria (Acinetobacter and Thermomonas) could lead to a potential risk of chlorine resistance. Thus, keeping a low chlorine concentration (0.83 mg l-1 for 3 h) is effective for controlling biofilm formation in the labyrinth channels.
Collapse
Affiliation(s)
- Peng Song
- a College of Water Resources and Civil Engineering , China Agricultural University , Beijing , PR China
- b Genetics and Sustainable Agricultural Research Unit , United States Department of Agriculture , Starkville , MS , USA
| | - Bo Zhou
- a College of Water Resources and Civil Engineering , China Agricultural University , Beijing , PR China
- c College of Agricultural and Life Sciences , University of Wisconsin-Madison , Madison , WI , USA
| | - Gary Feng
- b Genetics and Sustainable Agricultural Research Unit , United States Department of Agriculture , Starkville , MS , USA
| | - John P Brooks
- b Genetics and Sustainable Agricultural Research Unit , United States Department of Agriculture , Starkville , MS , USA
| | - Hongxu Zhou
- a College of Water Resources and Civil Engineering , China Agricultural University , Beijing , PR China
| | - Zhirui Zhao
- d Research Center for Eco-environmental Sciences , Chinese Academy of Sciences , Beijing , PR China
| | - Yaoze Liu
- e Department of Environmental and Sustainable Engineering , University at Albany , Albany , NY , USA
| | - Yunkai Li
- a College of Water Resources and Civil Engineering , China Agricultural University , Beijing , PR China
| |
Collapse
|
40
|
Hao H, Shi DY, Yang D, Yang ZW, Qiu ZG, Liu WL, Shen ZQ, Yin J, Wang HR, Li JW, Wang H, Jin M. Profiling of intracellular and extracellular antibiotic resistance genes in tap water. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:340-345. [PMID: 30448547 DOI: 10.1016/j.jhazmat.2018.11.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 05/26/2023]
Abstract
Antibiotic resistance genes (ARGs) have gained global attention due to their public health threat. Extracelluar ARGs (eARGs) can result in the dissemination of antibiotic resistance via free-living ARGs in natural environments, where they promote ARB transmission in drinking water distribution systems. However, eARG pollution in tap water has not been well researched. In this study, concentrations of eARGs and intracellular ARGs (iARGs) in tap water, sampled at Tianjin, China, were investigated for one year. Fourteen eARG types were found at the highest concentration of 1.3 × 105 gene copies (GC)/L. TetC was detected in 66.7% of samples, followed by sul1, sul2, and qnrA with the same detection frequency of 41.7%. Fifteen iARGs (including tetA, tetB, tetM, tetQ, tetX, sul1, sul2, sul3, ermB, blaTEM, and qnrA) were continuously detected in all collected tap water samples with sul1 and sul2 the most abundant. Additionally, both eARG and iARG concentrations in tap water presented a seasonal pattern with most abundant prevalence in summer. The concentration of observed intracellular sulfonamide resistance genes showed a significantly positive correlation with total nitrogen concentrations. This study suggested that eARG and iARG pollution of drinking water systems pose a potential risk to human public health.
Collapse
Affiliation(s)
- Han Hao
- School of Environment Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Dan-Yang Shi
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Dong Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Zhong-Wei Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Zhi-Gang Qiu
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Wei-Li Liu
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Zhi-Qiang Shen
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Jing Yin
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Hua-Ran Wang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Jun-Wen Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Hui Wang
- School of Environment Science and Engineering, Tsinghua University, Beijing, 100084, China.
| | - Min Jin
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China.
| |
Collapse
|
41
|
Beatson SA, Bartley PB. Diving Deep Into Hospital-Acquired Legionella pneumophila With Whole-Genome Sequencing. Clin Infect Dis 2018; 64:1260-1262. [PMID: 28369254 DOI: 10.1093/cid/cix156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/20/2017] [Indexed: 01/16/2023] Open
Affiliation(s)
- Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul B Bartley
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Wesley-St Andrew's Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
42
|
Liu J, Zhao R, Zhang J, Zhang G, Yu K, Li X, Li B. Occurrence and Fate of Ultramicrobacteria in a Full-Scale Drinking Water Treatment Plant. Front Microbiol 2018; 9:2922. [PMID: 30568635 PMCID: PMC6290093 DOI: 10.3389/fmicb.2018.02922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/14/2018] [Indexed: 12/23/2022] Open
Abstract
Ultramicrobacteria (UMB) are omnipresent and numerically dominate in freshwater, as microbes can present in drinking water systems, however, the UMB communities that occur and their removal behaviors remain poorly characterized in drinking water treatment plants (DWTPs). To gain insights into these issues, we profiled bacterial cell density, community structure and functions of UMB and their counterpart large bacteria (LB) using flow cytometry and filtration paired with 16S rRNA gene high-throughput sequencing in a full-scale DWTP. Contrary to the reduction of bacterial density and diversity, the proportion of UMB in the total bacteria community increased as the drinking water treatment process progressed, and biological activated carbon facilitated bacterial growth. Moreover, UMB were less diverse than LB, and their community structure and predicted functions were significantly different. In the DWTP, UMB indicator taxa were mainly affiliated with α/β/γ-Proteobacteria, Deinococcus-Thermus, Firmicutes, Acidobacteria, and Dependentiae. In particular, the exclusive clustering of UMB at the phylum level, e.g., Parcubacteria, Elusimicrobia, and Saccharibacteria, confirmed the fact that the ultra-small size of UMB is a naturally and evolutionarily conserved trait. Additionally, the streamlined genome could be connected to UMB, such as candidate phyla radiation (CPR) bacteria, following a symbiotic or parasitic lifestyle, which then leads to the observed high connectedness, i.e., non-random intra-taxa co-occurrence patterns within UMB. Functional prediction analysis revealed that environmental information processing and DNA replication and repair likely contribute to the higher resistance of UMB to drinking water treatment processes in comparison to LB. Overall, the study provides valuable insights into the occurrence and fate of UMB regarding community structure, phylogenetic characteristics and potential functions in a full-scale DWTP, and it is a useful reference for beneficial manipulation of the drinking water microbiome.
Collapse
Affiliation(s)
- Jie Liu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Renxin Zhao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Jiayu Zhang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Guijuan Zhang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Xiaoyan Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| |
Collapse
|
43
|
Bruno A, Sandionigi A, Bernasconi M, Panio A, Labra M, Casiraghi M. Changes in the Drinking Water Microbiome: Effects of Water Treatments Along the Flow of Two Drinking Water Treatment Plants in a Urbanized Area, Milan (Italy). Front Microbiol 2018; 9:2557. [PMID: 30429832 PMCID: PMC6220058 DOI: 10.3389/fmicb.2018.02557] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/08/2018] [Indexed: 11/13/2022] Open
Abstract
While safe and of high quality, drinking water can host an astounding biodiversity of microorganisms, dismantling the belief of its "biological simplicity." During the very few years, we are witnessing an exponential growth in scientific publications, exploring the ecology hidden in drinking water treatment plants (DWTPs) and drinking water distribution system (DWDS). We focused on what happens to the microbial communities from source water (groundwater) throughout the main steps of the potabilization process of a DWTP, located in an urbanized area in Northern Italy. Samples were processed by a stringent water filtration to retain even the smallest environmental bacteria and then analyzed with High-Throughput DNA Sequencing (HTS) techniques. We showed that carbon filters harbored a microbial community seeding and shaping water microbiota downstream, introducing a significant variation on incoming (groundwater) microbial community. Chlorination did not instantly affect the altered microbiota. We were also able to correctly predict (through machine learning analysis) samples belonging to groundwater (overall accuracy was 0.71), but the assignation was not reliable with carbon filter samples, which were incorrectly predicted as chlorination samples. The presence and abundance of specific microorganisms allowed us to hypothesize their role as indicators. In particular, Candidatus Adlerbacteria (Parcubacteria), together with microorganisms belonging to Alphaproteobacteria and Gammaproteobacteria, characterized treated water, but not raw water. An exception, confirming our hypothesis, is given by the samples downstream the filters renewal, which had a composition resembling groundwater. Volatility analysis illustrated how carbon filters represented an ecosystem that is stable over time, probably bearing the environmental conditions that promote the survival and growth of this peculiar microbial community.
Collapse
Affiliation(s)
- Antonia Bruno
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Anna Sandionigi
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | - Antonella Panio
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Massimo Labra
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
- Bicocca cEnter of Science and Technology for FOOD, University of Milano-Bicocca, Milan, Italy
| | - Maurizio Casiraghi
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
44
|
Fish KE, Boxall JB. Biofilm Microbiome (Re)Growth Dynamics in Drinking Water Distribution Systems Are Impacted by Chlorine Concentration. Front Microbiol 2018; 9:2519. [PMID: 30459730 PMCID: PMC6232884 DOI: 10.3389/fmicb.2018.02519] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/03/2018] [Indexed: 12/21/2022] Open
Abstract
Biofilms are the dominant form of microbial loading (and organic material) within drinking water distribution systems (DWDS), yet our understanding of DWDS microbiomes is focused on the more easily accessible bulk-water. Disinfectant residuals are commonly provided to manage planktonic microbial activity in DWDS to safeguard water quality and public health, yet the impacts on the biofilm microbiome are largely unknown. We report results from a full-scale DWDS facility used to develop biofilms naturally, under one of three chlorine concentrations: Low, Medium, or High. Increasing the chlorine concentration reduced the bacterial concentration within the biofilms but quantities of fungi were unaffected. The chlorine regime was influential in shaping the community structure and composition of both taxa. There were microbial members common to all biofilms but the abundance of these varied such that at the end of the Growth phase the communities from each regime were distinct. Alpha-, Beta-, and Gamma-proteobacteria were the most abundant bacterial classes; Sordariomycetes, Leotiomycetes, and Microbotryomycetes were the most abundant classes of fungi. Mechanical cleaning was shown to immediately reduce the bacterial and fungal concentrations, followed by a lag effect on the microbiome with continued decreases in quantity and ecological indices after cleaning. However, an established community remained, which recovered such that the microbial compositions at the end of the Re-growth and initial Growth phases were similar. Interestingly, the High-chlorine biofilms showed a significant elevation in bacterial concentrations at the end of the Re-growth (after cleaning) compared the initial Growth, unlike the other regimes. This suggests adaptation to a form a resilient biofilm with potentially equal or greater risks to water quality as the other regimes. Overall, this study provides critical insights into the interaction between chlorine and the microbiome of DWDS biofilms representative of real networks, implications are made for the operation and maintenance of DWDS disinfectant and cleaning strategies.
Collapse
Affiliation(s)
- Katherine E Fish
- Pennine Water Group, Department of Civil and Structural Engineering, The University of Sheffield, Sheffield, United Kingdom.,NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
| | - Joby B Boxall
- Pennine Water Group, Department of Civil and Structural Engineering, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
45
|
Ma B, Qi J, Wang X, Ma M, Miao S, Li W, Liu R, Liu H, Qu J. Moderate KMnO 4-Fe(II) pre-oxidation for alleviating ultrafiltration membrane fouling by algae during drinking water treatment. WATER RESEARCH 2018; 142:96-104. [PMID: 29864651 DOI: 10.1016/j.watres.2018.05.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Although ultrafiltration (UF) membranes are highly beneficial for removing algae, the removal process causes serious UF membrane fouling. To avoid the unfavorable effects of algal cells that have been damaged by oxidants, our previous study reported a novel, moderate pre-oxidation method (KMnO4-Fe(II) process) that aimed to achieve a balance between the release of intracellular organic matter and enhanced algae removal. This study further investigated the performance of a UF membrane with KMnO4-Fe(II) pretreatment in the presence of algae-laden reservoir water after a long running time. We found that algae could be completely removed, membrane fouling was significantly alleviated, and the overall performance was much better than that of Fe(III) coagulation alone. The transmembrane pressure (TMP) during Fe(III) coagulation increased to 42.8 kPa, however, that of the KMnO4-Fe(II) process only increased to 25.1 kPa for after running for 90 d. The slower transmembrane pressure was attributed to the larger floc size, higher surface activity, and inactivation of algae. Although there was little effect on microorganism development, lower microorganism abundance (20.7%) was observed during the KMnO4-Fe(II) process than during coagulation alone (44.9%) due to the release of extracellular polymeric substances. We also found that the floc cake layer was easily removed by washing, and many of the original membrane pores were clearly observed. Further analysis demonstrated that the effluent quality was excellent, especially its turbidity, chromaticity, and Mn and Fe concentrations. Based on the outstanding UF membrane performance, it may be concluded that the KMnO4-Fe(II) process exhibits considerable potential for application in the treatment of algae-laden water.
Collapse
Affiliation(s)
- Baiwen Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing Qi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xing Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Ma
- Technology Institute of Beijing Waterworks Group Co., Ltd., Beijing 100012, China; Beijing Engineering Research Center for Drinking Water Quality, Beijing 100012, China
| | - Shiyu Miao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjiang Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruiping Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Huijuan Liu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Potgieter S, Pinto A, Sigudu M, du Preez H, Ncube E, Venter S. Long-term spatial and temporal microbial community dynamics in a large-scale drinking water distribution system with multiple disinfectant regimes. WATER RESEARCH 2018; 139:406-419. [PMID: 29673939 DOI: 10.1016/j.watres.2018.03.077] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 05/19/2023]
Abstract
Long-term spatial-temporal investigations of microbial dynamics in full-scale drinking water distribution systems are scarce. These investigations can reveal the process, infrastructure, and environmental factors that influence the microbial community, offering opportunities to re-think microbial management in drinking water systems. Often, these insights are missed or are unreliable in short-term studies, which are impacted by stochastic variabilities inherent to large full-scale systems. In this two-year study, we investigated the spatial and temporal dynamics of the microbial community in a large, full scale South African drinking water distribution system that uses three successive disinfection strategies (i.e. chlorination, chloramination and hypochlorination). Monthly bulk water samples were collected from the outlet of the treatment plant and from 17 points in the distribution system spanning nearly 150 km and the bacterial community composition was characterised by Illumina MiSeq sequencing of the V4 hypervariable region of the 16S rRNA gene. Like previous studies, Alpha- and Betaproteobacteria dominated the drinking water bacterial communities, with an increase in Betaproteobacteria post-chloramination. In contrast with previous reports, the observed richness, diversity, and evenness of the bacterial communities were higher in the winter months as opposed to the summer months in this study. In addition to temperature effects, the seasonal variations were also likely to be influenced by changes in average water age in the distribution system and corresponding changes in disinfectant residual concentrations. Spatial dynamics of the bacterial communities indicated distance decay, with bacterial communities becoming increasingly dissimilar with increasing distance between sampling locations. These spatial effects dampened the temporal changes in the bulk water community and were the dominant factor when considering the entire distribution system. However, temporal variations were consistently stronger as compared to spatial changes at individual sampling locations and demonstrated seasonality. This study emphasises the need for long-term studies to comprehensively understand the temporal patterns that would otherwise be missed in short-term investigations. Furthermore, systematic long-term investigations are particularly critical towards determining the impact of changes in source water quality, environmental conditions, and process operations on the changes in microbial community composition in the drinking water distribution system.
Collapse
Affiliation(s)
- Sarah Potgieter
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
| | - Ameet Pinto
- Department of Civil and Environmental Engineering, Northeastern University, Boston, USA
| | | | - Hein du Preez
- Scientific Services, Rand Water, Vereeniging, South Africa
| | - Esper Ncube
- Scientific Services, Rand Water, Vereeniging, South Africa
| | - Stephanus Venter
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
47
|
Borthong J, Omori R, Sugimoto C, Suthienkul O, Nakao R, Ito K. Comparison of Database Search Methods for the Detection of Legionella pneumophila in Water Samples Using Metagenomic Analysis. Front Microbiol 2018; 9:1272. [PMID: 29971047 PMCID: PMC6018159 DOI: 10.3389/fmicb.2018.01272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 05/24/2018] [Indexed: 12/12/2022] Open
Abstract
Metagenomic analysis has become a powerful tool to analyze bacterial communities in environmental samples. However, the detection of a specific bacterial species using metagenomic analysis remains difficult due to false positive detections of sequences shared between different bacterial species. In this study, 16S rRNA amplicon and shotgun metagenomic analyses were conducted on samples collected along a stream and ponds in the campus of Hokkaido University. We compared different database search methods for bacterial detection by focusing on Legionella pneumophila. In this study, we used L. pneumophila-specific nested PCR as a gold standard to evaluate the results of the metagenomic analysis. Comparison with the results from L. pneumophila-specific nested PCR indicated that a blastn search of shotgun reads against the NCBI-NT database led to false positive results and had problems with specificity. We also found that a blastn search of shotgun reads against a database of the catalase-peroxidase (katB) gene detected L. pneumophila with the highest area under the receiver operating characteristic curve among the tested search methods; indicating that a blastn search against the katB gene database had better diagnostic ability than searches against other databases. Our results suggest that sequence searches targeting long genes specifically associated with the bacterial species of interest is a prerequisite to detecting the bacterial species in environmental samples using metagenomic analyses.
Collapse
Affiliation(s)
- Jednipit Borthong
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Ryosuke Omori
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Chihiro Sugimoto
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Global Institute for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Orasa Suthienkul
- Faculty of Public Health, Thammasat University, Rangsit Campus, Pathumthani, Thailand
| | - Ryo Nakao
- Laboratory of Parasitology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kimihito Ito
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Global Institute for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.,Faculty of Public Health, Thammasat University, Rangsit Campus, Pathumthani, Thailand
| |
Collapse
|
48
|
Hou L, Zhou Q, Wu Q, Gu Q, Sun M, Zhang J. Spatiotemporal changes in bacterial community and microbial activity in a full-scale drinking water treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:449-459. [PMID: 29291559 DOI: 10.1016/j.scitotenv.2017.12.301] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/23/2017] [Accepted: 12/25/2017] [Indexed: 06/07/2023]
Abstract
To gain insight into the bacterial dynamics present in drinking water treatment (DWT) systems, the microbial community and activity in a full-scale DWT plant (DWTP) in Guangzhou, South China, were investigated using Illumina Hiseq sequencing analyses combined with cultivation-based techniques during the wet and dry seasons. Illumina sequencing analysis of 16S rRNA genes revealed a large shift in the proportion of Actinobacteria, Proteobacteria and Firmicutes during the treatment process, with the proportion of Actinobacteria decreased sharply, whereas that of Proteobacteria and Firmicutes increased and predominated in treated water. Both microbial activity and bacterial diversity during the treatment process showed obvious spatial variation, with higher levels observed during the dry season and lower levels during the wet season. Clustering analysis and principal component analysis indicated dramatic shifts in the bacterial community after chlorination, suggesting that chlorination was highly effective at influencing the bacterial community. The bacterial community structure of finished water primarily comprised Pseudomonas, Citrobacter, and Acinetobacter, and interestingly showed high similarity to biofilms on granular activated carbon. Additionally, the abundance of bacterial communities was relatively stable in finished water and did not change with the season. A large number of unique operational taxonomic units were shared during treatment steps, indicating the presence of a diverse core microbiome throughout the treatment process. Opportunistic pathogens, including Pseudomonas, Acinetobacter, Citrobacter, Mycobacterium, Salmonella, Staphylococcus, Legionella, Streptococcus and Enterococcus, were detected in water including finished water, suggesting a potential threat to drinking-water safety. We also detected bacteria isolated from each treatment step using the pure-culture method. In particular, two isolates, identified as Mycobacterium sp. and Blastococcus sp., which belong to the phylum Actinobacteria, were obtained from finished water during the dry season. Together, these results provided evidence of spatial and temporal variations in DWTPs and contributed to the beneficial manipulation of the drinking water microbiome.
Collapse
Affiliation(s)
- Luanfeng Hou
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
| | - Qin Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Qingping Wu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
| | - Qihui Gu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
| | - Ming Sun
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China; Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Jumei Zhang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China.
| |
Collapse
|
49
|
Uyaguari-Díaz MI, Croxen MA, Luo Z, Cronin KI, Chan M, Baticados WN, Nesbitt MJ, Li S, Miller KM, Dooley D, Hsiao W, Isaac-Renton JL, Tang P, Prystajecky N. Human Activity Determines the Presence of Integron-Associated and Antibiotic Resistance Genes in Southwestern British Columbia. Front Microbiol 2018; 9:852. [PMID: 29765365 PMCID: PMC5938356 DOI: 10.3389/fmicb.2018.00852] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 04/13/2018] [Indexed: 01/08/2023] Open
Abstract
The dissemination of antibiotic resistant bacteria from anthropogenic sources into the environment poses an emerging public health threat. Antibiotic resistance genes (ARGs) and gene-capturing systems such as integron-associated integrase genes (intI) play a key role in alterations of microbial communities and the spread of antibiotic resistant bacteria into the environment. In order to assess the effect of anthropogenic activities on watersheds in southwestern British Columbia, the presence of putative antibiotic resistance and integrase genes was analyzed in the microbiome of agricultural, urban influenced, and protected watersheds. A metagenomics approach and high-throughput quantitative PCR (HT qPCR) were used to screen for elements of resistance including ARGs and intI. Metagenomic sequencing of bacterial genomic DNA was used to characterize the resistome of microbial communities present in watersheds over a 1-year period. There was a low prevalence of ARGs relative to the microbial population (<1%). Analysis of the metagenomic sequences detected a total of 60 elements of resistance including 46 ARGs, intI1, and groEL/intI1 genes and 12 quaternary ammonium compounds (qac) resistance genes across all watershed locations. The relative abundance and richness of ARGs was found to be highest in agriculture impacted watersheds compared to urban and protected watersheds. A downstream transport pattern was observed in the impacted watersheds (urban and agricultural) during dry months. Similar to other reports, this study found a strong association between intI1 and ARGs (e.g., sul1), an association which may be used as a proxy for anthropogenic activities. Chemical analysis of water samples for three major groups of antibiotics was below the detection limit. However, the high richness and gene copy numbers (GCNs) of ARGs in impacted sites suggest that the effects of effluents on microbial communities are occurring even at low concentrations of antimicrobials in the water column. Antibiotic resistance and integrase genes in a year-long metagenomic study showed that ARGs were driven mainly by environmental factors from anthropogenized sites in agriculture and urban watersheds. Environmental factors such as land-use and water quality parameters accounted for 45% of the variability observed in watershed locations.
Collapse
Affiliation(s)
- Miguel I Uyaguari-Díaz
- Department of Pathology & Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada.,BC Centre for Disease Control Public Health Laboratory, Vancouver, BC, Canada
| | - Matthew A Croxen
- Provincial Laboratory for Public Health, Edmonton, AB, Canada.,Department of Laboratory Medicine and Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Zhiyao Luo
- BC Centre for Disease Control Public Health Laboratory, Vancouver, BC, Canada
| | - Kirby I Cronin
- Laboratory Services, Public Health Ontario, Toronto, ON, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Michael Chan
- BC Centre for Disease Control Public Health Laboratory, Vancouver, BC, Canada
| | - Waren N Baticados
- Department of Pathology & Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | | | - Shaorong Li
- Pacific Biological Station, Nanaimo, BC, Canada
| | | | - Damion Dooley
- Department of Pathology & Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - William Hsiao
- Department of Pathology & Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada.,BC Centre for Disease Control Public Health Laboratory, Vancouver, BC, Canada
| | - Judith L Isaac-Renton
- Department of Pathology & Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada.,BC Centre for Disease Control Public Health Laboratory, Vancouver, BC, Canada
| | - Patrick Tang
- Department of Pathology, Sidra Medical and Research Center, Doha, Qatar
| | - Natalie Prystajecky
- Department of Pathology & Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada.,BC Centre for Disease Control Public Health Laboratory, Vancouver, BC, Canada
| |
Collapse
|
50
|
Farhat N, Loubineaud E, Prest E, El-Chakhtoura J, Salles C, Bucs S, Trampé J, Van den Broek W, Van Agtmaal J, Van Loosdrecht M, Kruithof J, Vrouwenvelder J. Application of monochloramine for wastewater reuse: Effect on biostability during transport and biofouling in RO membranes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.01.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|