1
|
Pinto G, Rodrigues D, Macieira M, Gião MS, Reis CM, Woolhouse S, Azeredo J. Removal of virus from hands: a study on the role of hand wash and drying. J Hosp Infect 2024:S0195-6701(24)00332-3. [PMID: 39413974 DOI: 10.1016/j.jhin.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Proper hand hygiene is highly important to control pathogens' transmission. Although the effect of washing and drying on hands' bacterial contamination has been reported, studies on viruses are scarce. AIM To assess the viral load of artificially contaminated hands after washing and after drying. METHODS 30 volunteers filled a questionnaire about hand hygiene and participated in microbial assays, testing five different drying approaches, using the whole hand methodology to quantify viruses on hands. Bacterial assays were also performed for comparison purposes. RESULTS For both virus and bacteria contaminations, the washing step promoted a significant reduction of the microbial load, while the drying step only promoted slight reductions regardless of the drying method used. Moreover, hand dryers and paper towels didn't induce the re-contamination of washed hands. CONCLUSIONS Hand washing promoted a reduction of the microbial load in hands, while none of the different drying methods significantly reduced hands microbial load.
Collapse
Affiliation(s)
- Graça Pinto
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Braga Guimarães, Portugal
| | - Diana Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Braga Guimarães, Portugal
| | - Mariana Macieira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Braga Guimarães, Portugal
| | | | | | | | - Joana Azeredo
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Braga Guimarães, Portugal.
| |
Collapse
|
2
|
Fan Y, Nishimura H, Sakata S, Okada Y, Ebihara S, Tang JW, Kohzuki M. Minimal influenza virus transmission from touching contaminated face masks: a laboratory study. Sci Rep 2024; 14:20211. [PMID: 39215108 PMCID: PMC11364630 DOI: 10.1038/s41598-024-70615-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
The risk of virus transmission via the touching of contaminated masks has long been assumed by infection control teams. Yet, robust evidence to support this belief has been lacking. This risk was investigated in a laboratory setting by measuring the amount of viable influenza virus successfully transferred from artificially contaminated medical (surgical) mask surfaces to a human finger used to swipe their outer surface under various experimental conditions. Despite being exposed to high levels of virus contamination on the masks, very little or no viable virus was successfully transferred from the mask to the finger in these experiments.
Collapse
Affiliation(s)
- Yuxuan Fan
- Clinical Research Division, Virus Research Center, Sendai Medical Center, National Hospital Organization, 2-11-12 Miyagino, Miyagino, Sendai, 983-8520, Japan
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Rehabilitation, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji Univeristy, Shanghai, China
| | - Hidekazu Nishimura
- Clinical Research Division, Virus Research Center, Sendai Medical Center, National Hospital Organization, 2-11-12 Miyagino, Miyagino, Sendai, 983-8520, Japan.
| | | | - Yasuhiro Okada
- Personal Health Care Products Research, Kao Corporation, Tokyo, Japan
| | - Satoru Ebihara
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Julian W Tang
- Department of Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, UK.
- Respiratory Sciences, University of Leicester, Leicester, UK.
| | - Masahiro Kohzuki
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Japan
- Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| |
Collapse
|
3
|
Adhikari S, Anthony S, Baleinamau P, Coriakula J, Daurewa T, Devi R, Gavidi S, Horwitz P, Hunter EC, Jenkins A, Jupiter S, Lalamacuata M, Mailautoka K, Mangubhai S, Naivalu K, Naivalulevu T, Naivalulevu V, Nasim N, Naucunivanua S, Negin J, van Nimwegen P, Ratu A, Ravoka M, Tukana A, van de Vossenberg J, Wilson D, Thomas J. An assessment of latrine front-end characteristics and associated surface E. coli indicated faecal contamination in rural Fiji. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52948-52962. [PMID: 39164561 PMCID: PMC11379791 DOI: 10.1007/s11356-024-34668-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024]
Abstract
In Fiji, 90% of the population has access to basic sanitation; however, there are still persistent health risks from endemic faecal-oral diseases such as typhoid fever. There is a need to assess the contribution of existing sanitation facilities in the faecal pathogen transmission pathway. This study was conducted as part of a larger planetary health study across 29 rural communities within five river catchments. This specific research aimed to characterise latrine front-ends, both infrastructure and usage behaviour, and to assess the faecal contamination levels on various frequently contacted latrine surfaces in rural Fiji. A sanitation survey, along with observation and latrine swab sampling, was conducted in households over three phases: baseline (n = 311) (Aug-Dec 2019), endline (n = 262) (Jun-Sep 2022) and an in-depth front-end study (n = 12) (Oct-Nov 2022). Of 311 households, almost all had pedestal-type latrines, predominately cistern-flush (83%), followed by pour-flush (13%), and then hole-type (pit) latrines (4%). Washable latrine floors had significantly higher E. coli densities (6.7 × 102 CFU/25 cm2) compared to non-washable floors (1.3 × 102 CFU/25 cm2) (p = 0.05), despite washable floors indicating improved latrines. The in-depth front-end analysis found that moist latrine surfaces had significantly elevated E. coli densities (1.2 × 103 CFU/25 cm2) compared to the dry ones (14.3 CFU/25 cm2) (p < 0.001), highlighting the importance of maintaining dry latrine surfaces. Latrine floors and mid-walls were the most frequently contaminated surfaces, emphasising the need to clean and disinfect these surfaces. Only 46% of the households reported always using soap for handwashing after defecation, exacerbating the risk of transmitting faecal pathogens. This study highlights that latrine cleanliness and hygiene are as crucial as latrine infrastructures for the effective disruption of faecal pathogens transmission during latrine use.
Collapse
Affiliation(s)
- Sabita Adhikari
- School of Civil Engineering, The University of Sydney, Darlington, NSW, 2006, Australia.
| | - Shylett Anthony
- Fiji Institute of Pacific Health Research, College of Medicine, Nursing & Health Sciences, Fiji National University, Hoodless House, Suva, Fiji
| | - Ponipate Baleinamau
- Fiji Institute of Pacific Health Research, College of Medicine, Nursing & Health Sciences, Fiji National University, Hoodless House, Suva, Fiji
| | - Jeremaia Coriakula
- Fiji Institute of Pacific Health Research, College of Medicine, Nursing & Health Sciences, Fiji National University, Hoodless House, Suva, Fiji
| | - Thompson Daurewa
- Fiji Institute of Pacific Health Research, College of Medicine, Nursing & Health Sciences, Fiji National University, Hoodless House, Suva, Fiji
| | - Rachel Devi
- Fiji Institute of Pacific Health Research, College of Medicine, Nursing & Health Sciences, Fiji National University, Hoodless House, Suva, Fiji
| | - Sikeli Gavidi
- Fiji Institute of Pacific Health Research, College of Medicine, Nursing & Health Sciences, Fiji National University, Hoodless House, Suva, Fiji
| | - Pierre Horwitz
- Centre for People, Place, and Planet, Edith Cowan University, Joondalup, WA, Australia
| | - Erin C Hunter
- Department of Public Health Sciences, College of Behavioural, Social and Health Sciences, Clemson University, Clemson, USA
| | - Aaron Jenkins
- Centre for People, Place, and Planet, Edith Cowan University, Joondalup, WA, Australia
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Stacy Jupiter
- Wildlife Conservation Society, Melanesia Program, Suva, Fiji
| | - Maria Lalamacuata
- Fiji Institute of Pacific Health Research, College of Medicine, Nursing & Health Sciences, Fiji National University, Hoodless House, Suva, Fiji
| | - Kinikoto Mailautoka
- Fiji Institute of Pacific Health Research, College of Medicine, Nursing & Health Sciences, Fiji National University, Hoodless House, Suva, Fiji
| | - Sangeeta Mangubhai
- Wildlife Conservation Society, Fiji Program, Suva, Fiji
- Talanoa Consulting, 42 Knollys Street, Suva, Fiji
| | - Kelera Naivalu
- Fiji Institute of Pacific Health Research, College of Medicine, Nursing & Health Sciences, Fiji National University, Hoodless House, Suva, Fiji
| | - Timoci Naivalulevu
- Fiji Institute of Pacific Health Research, College of Medicine, Nursing & Health Sciences, Fiji National University, Hoodless House, Suva, Fiji
| | - Vilisi Naivalulevu
- Fiji Institute of Pacific Health Research, College of Medicine, Nursing & Health Sciences, Fiji National University, Hoodless House, Suva, Fiji
| | - Nabeela Nasim
- School of Civil Engineering, The University of Sydney, Darlington, NSW, 2006, Australia
| | | | - Joel Negin
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | | | - Anaseini Ratu
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Mereia Ravoka
- Wildlife Conservation Society, Fiji Program, Suva, Fiji
| | - Andrew Tukana
- Wildlife Conservation Society, Fiji Program, Suva, Fiji
| | - Jack van de Vossenberg
- Water Supply, Sanitation and Environmental Engineering Department, IHE Delft Institute of Water Education, Delft, The Netherlands
| | - Donald Wilson
- Fiji Institute of Pacific Health Research, College of Medicine, Nursing & Health Sciences, Fiji National University, Hoodless House, Suva, Fiji
| | - Jacqueline Thomas
- School of Civil Engineering, The University of Sydney, Darlington, NSW, 2006, Australia
| |
Collapse
|
4
|
Itarte M, Calvo M, Martínez-Frago L, Mejías-Molina C, Martínez-Puchol S, Girones R, Medema G, Bofill-Mas S, Rusiñol M. Assessing environmental exposure to viruses in wastewater treatment plant and swine farm scenarios with next-generation sequencing and occupational risk approaches. Int J Hyg Environ Health 2024; 259:114360. [PMID: 38555823 DOI: 10.1016/j.ijheh.2024.114360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
Occupational exposure to pathogens can pose health risks. This study investigates the viral exposure of workers in a wastewater treatment plant (WWTP) and a swine farm by analyzing aerosol and surfaces samples. Viral contamination was evaluated using quantitative polymerase chain reaction (qPCR) assays, and target enrichment sequencing (TES) was performed to identify the vertebrate viruses to which workers might be exposed. Additionally, Quantitative Microbial Risk Assessment (QMRA) was conducted to estimate the occupational risk associated with viral exposure for WWTP workers, choosing Human Adenovirus (HAdV) as the reference pathogen. In the swine farm, QMRA was performed as an extrapolation, considering a hypothetical zoonotic virus with characteristics similar to Porcine Adenovirus (PAdV). The modelled exposure routes included aerosol inhalation and oral ingestion through contaminated surfaces and hand-to-mouth contact. HAdV and PAdV were widespread viruses in the WWTP and the swine farm, respectively, by qPCR assays. TES identified human and other vertebrate viruses WWTP samples, including viruses from families such as Adenoviridae, Circoviridae, Orthoherpesviridae, Papillomaviridae, and Parvoviridae. In the swine farm, most of the identified vertebrate viruses were porcine viruses belonging to Adenoviridae, Astroviridae, Circoviridae, Herpesviridae, Papillomaviridae, Parvoviridae, Picornaviridae, and Retroviridae. QMRA analysis revealed noteworthy risks of viral infections for WWTP workers if safety measures are not taken. The probability of illness due to HAdV inhalation was higher in summer compared to winter, while the greatest risk from oral ingestion was observed in workspaces during winter. Swine farm QMRA simulation suggested a potential occupational risk in the case of exposure to a hypothetical zoonotic virus. This study provides valuable insights into WWTP and swine farm worker's occupational exposure to human and other vertebrate viruses. QMRA and NGS analyses conducted in this study will assist managers in making evidence-based decisions, facilitating the implementation of protection measures, and risk mitigation practices for workers.
Collapse
Affiliation(s)
- Marta Itarte
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain.
| | - Miquel Calvo
- Secció d'Estadística, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Lola Martínez-Frago
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Cristina Mejías-Molina
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Sandra Martínez-Puchol
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Rosina Girones
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | | | - Sílvia Bofill-Mas
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Rusiñol
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
5
|
Paddy EN, Afolabi OOD, Sohail M. Exploring toilet plume bioaerosol exposure dynamics in public toilets using a Design of Experiments approach. Sci Rep 2024; 14:10665. [PMID: 38724540 PMCID: PMC11082142 DOI: 10.1038/s41598-024-61039-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Bioaerosols generated during toilet flushing can contribute to the spread of airborne pathogens and cross-contamination in indoor environments. This presents an increased risk of fomite-mediated or aerosol disease transmission. This study systematically investigated the factors contributing to increased bioaerosol exposure following toilet flushing and developed an empirical model for predicting the exposure-relevant bioaerosol concentration. Air in a toilet cubicle was sampled by impaction after seeding with Clostridium difficile spores. Design of Experiments (DoE) main effects screening and full factorial design approaches were then employed to investigate the significant factors that heighten the risk of exposure to bioaerosols post-flush. Our findings reveal that the inoculated bacterial concentration (C), time elapsed after flushing (t), lateral distance (d), and mechanical ventilation (v) are significant predictors of bioaerosol concentration, with p-values < 0.05. The interaction term, C × d showed a marked increase in bioaerosol concentration up to 232 CFU/m3 at the closest proximity and highest pathogen load. The interplay of C and t (C × t) demonstrated a time-dependent attenuation of bioaerosol viability, with concentrations peaking at 241 CFU/m3 immediately post-flush and notably diminishing over time. The lateral distance and time post-flush (d × t) interaction also revealed a gradual decrease in bioaerosol concentration, highlighting the effectiveness of spatial and temporal dilution in mitigating bioaerosol exposure risks. Furthermore, there is an immediate rise in relative humidity levels post-flush, impacting the air quality in the toilet environment. This study not only advances our understanding of exposure pathways in determining bioaerosol exposure, but also offers pivotal insights for designing targeted interventions to reduce bioaerosol exposure. Recommendations include designing public toilets with antimicrobial surfaces, optimizing ventilation, and initiating timely disinfection protocols to prioritise surfaces closest to the toilet bowl during peak exposure periods, thereby promoting healthier indoor environments and safeguarding public health in high-traffic toilet settings.
Collapse
Affiliation(s)
- Elizabeth N Paddy
- School of Architecture, Building and Civil Engineering, Loughborough University, Loughborough, Leicestershire, UK.
| | - Oluwasola O D Afolabi
- School of Architecture, Building and Civil Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - M Sohail
- School of Architecture, Building and Civil Engineering, Loughborough University, Loughborough, Leicestershire, UK
| |
Collapse
|
6
|
Hervé RC, Bryant C, Sutton L, Cox C, Gião MS, Keevil CW, Wilks SA. Impact of different hand-drying methods on surrounding environment: aerosolization of virus and bacteria, and transfer to surfaces. J Hosp Infect 2024; 147:197-205. [PMID: 38521417 DOI: 10.1016/j.jhin.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/27/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND In recent years, hand drying has been highlighted as a key step in appropriate hand hygiene, as moisture on hands can increase the transfer of micro-organisms from hands to surfaces and vice versa. AIM To understand bacterial and viral aerosolization following hand drying, and study the transfer of micro-organisms from hands to surfaces after drying using different methods. METHODS Groups of five volunteers had their hands pre-washed with soap, rinsed and dried, then inoculated with a concentrated mixture of Pseudomonas fluorescens and MS2 bacteriophage. Volunteers entered an empty washroom, one at a time, and rinsed their hands with water or washed their hands with soap prior to drying with a jet dryer or paper towels. Each volunteer applied one hand successively to various surfaces, while their other hand was sampled using the glove juice method. Both residual bacteria and viruses were quantified from the washroom air, surface swabs and hand samples. FINDINGS P. fluorescens and MS2 bacteriophages were rarely aerosolized while drying hands for any of the drying methods studied. Results also showed limited, and similar, transfer of both micro-organisms studied on to surfaces for all drying methods. CONCLUSION The use of jet dryers or paper towels produces low levels of aerosolization when drying hands in a washroom. Similarly, all drying methods result in low transfer to surfaces. While the coronavirus disease 2019 pandemic raised concerns regarding public washrooms, this study shows that all methods tested are hygienic solutions for dry washed hands.
Collapse
Affiliation(s)
- R C Hervé
- School of Biological Sciences, University of Southampton, Southampton, UK.
| | - C Bryant
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - L Sutton
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - C Cox
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - M S Gião
- Dyson Technology Ltd, Malmesbury, UK
| | - C W Keevil
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - S A Wilks
- School of Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
7
|
Grembi JA, Nguyen AT, Riviere M, Heitmann GB, Patil A, Athni TS, Djajadi S, Ercumen A, Lin A, Crider Y, Mertens A, Karim MA, Islam MO, Miah R, Famida SL, Hossen MS, Mutsuddi P, Ali S, Rahman MZ, Hussain Z, Shoab AK, Haque R, Rahman M, Unicomb L, Luby SP, Arnold BF, Bennett A, Benjamin-Chung J. Influence of hydrometeorological risk factors on child diarrhea and enteropathogens in rural Bangladesh. PLoS Negl Trop Dis 2024; 18:e0012157. [PMID: 38739632 PMCID: PMC11115220 DOI: 10.1371/journal.pntd.0012157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/23/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND A number of studies have detected relationships between weather and diarrhea. Few have investigated associations with specific enteric pathogens. Understanding pathogen-specific relationships with weather is crucial to inform public health in low-resource settings that are especially vulnerable to climate change. OBJECTIVES Our objectives were to identify weather and environmental risk factors associated with diarrhea and enteropathogen prevalence in young children in rural Bangladesh, a population with high diarrheal disease burden and vulnerability to weather shifts under climate change. METHODS We matched temperature, precipitation, surface water, and humidity data to observational longitudinal data from a cluster-randomized trial that measured diarrhea and enteropathogen prevalence in children 6 months-5.5 years from 2012-2016. We fit generalized additive mixed models with cubic regression splines and restricted maximum likelihood estimation for smoothing parameters. RESULTS Comparing weeks with 30°C versus 15°C average temperature, prevalence was 3.5% higher for diarrhea, 7.3% higher for Shiga toxin-producing Escherichia coli (STEC), 17.3% higher for enterotoxigenic E. coli (ETEC), and 8.0% higher for Cryptosporidium. Above-median weekly precipitation (median: 13mm; range: 0-396mm) was associated with 29% higher diarrhea (adjusted prevalence ratio 1.29, 95% CI 1.07, 1.55); higher Cryptosporidium, ETEC, STEC, Shigella, Campylobacter, Aeromonas, and adenovirus 40/41; and lower Giardia, sapovirus, and norovirus prevalence. Other associations were weak or null. DISCUSSION Higher temperatures and precipitation were associated with higher prevalence of diarrhea and multiple enteropathogens; higher precipitation was associated with lower prevalence of some enteric viruses. Our findings emphasize the heterogeneity of the relationships between hydrometeorological variables and specific enteropathogens, which can be masked when looking at composite measures like all-cause diarrhea. Our results suggest that preventive interventions targeted to reduce enteropathogens just before and during the rainy season may more effectively reduce child diarrhea and enteric pathogen carriage in rural Bangladesh and in settings with similar meteorological characteristics, infrastructure, and enteropathogen transmission.
Collapse
Affiliation(s)
- Jessica A. Grembi
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Anna T. Nguyen
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Marie Riviere
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Gabriella Barratt Heitmann
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Arusha Patil
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Tejas S. Athni
- Harvard Medical School, Harvard University, Boston, Massachusetts, United States of America
| | - Stephanie Djajadi
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Ayse Ercumen
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Audrie Lin
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Yoshika Crider
- King Center on Global Development, Stanford University, Stanford, California, United States of America
| | - Andrew Mertens
- Harvard Medical School, Harvard University, Boston, Massachusetts, United States of America
| | - Md Abdul Karim
- Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Md Ohedul Islam
- Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Rana Miah
- Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Syeda L. Famida
- Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Md Saheen Hossen
- Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Palash Mutsuddi
- Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Shahjahan Ali
- Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Md Ziaur Rahman
- Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Zahir Hussain
- Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Abul K. Shoab
- Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Rashidul Haque
- Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Mahbubur Rahman
- Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Leanne Unicomb
- Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Stephen P. Luby
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Benjamin F. Arnold
- Francis I. Proctor Foundation and Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States of America
| | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, California, United States of America
- PATH, Seattle, Washington, United States of America
| | - Jade Benjamin-Chung
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| |
Collapse
|
8
|
Abney SE, Higham CA, Wilson AM, Ijaz MK, McKinney J, Reynolds KA, Gerba CP. Transmission of Viruses from Restroom Use: A Quantitative Microbial Risk Assessment. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:65-78. [PMID: 38372960 DOI: 10.1007/s12560-023-09580-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/30/2023] [Indexed: 02/20/2024]
Abstract
Restroom use has been implicated in a number of viral outbreaks. In this study, we apply quantitative microbial risk assessment to quantify the risk of viral transmission by contaminated restroom fomites. We estimate risk from high-touch fomite surfaces (entrance/exit door, toilet seat) for three viruses of interest (SARS-CoV-2, adenovirus, norovirus) through eight exposure scenarios involving differing user behaviors, and the use of hand sanitizer following each scenario. We assessed the impacts of several sequences of fomite contacts in the restroom, reflecting the variability of human behavior, on infection risks for these viruses. Touching of the toilet seat was assumed to model adjustment of the seat (open vs. closed), a common touch point in single-user restrooms (home, small business, hospital). A Monte Carlo simulation was conducted for each exposure scenario (10,000 simulations each). Norovirus resulted in the highest probability of infection for all exposure scenarios with fomite surfaces. Post-restroom automatic-dispensing hand sanitizer use reduced the probability of infection for each virus by up to 99.75%. Handwashing within the restroom, an important risk-reduction intervention, was not found to be as effective as use of a non-touch hand sanitizer dispenser for reducing risk to near or below 1/1,000,000, a commonly used risk threshold for comparison.
Collapse
Affiliation(s)
- Sarah E Abney
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Ciara A Higham
- EPSRC Centre for Doctoral Training in Fluid Dynamics, University of Leeds, Leeds, UK
| | - Amanda M Wilson
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - M Khalid Ijaz
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, USA
| | - Julie McKinney
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, USA
| | - Kelly A Reynolds
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Charles P Gerba
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
9
|
Behzadinasab S, Williams MD, Falkinham Iii JO, Ducker WA. Antimicrobial mechanism of cuprous oxide (Cu 2O) coatings. J Colloid Interface Sci 2023; 652:1867-1877. [PMID: 37688933 DOI: 10.1016/j.jcis.2023.08.136] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/11/2023]
Abstract
Some very effective antimicrobial coatings exploit copper or cuprous oxide (Cu2O) as the active agent. The aim of this study is to determine which species is the active antimicrobial - dissolved ions, the Cu2O solid, or reactive oxygen species. Copper ions were leached from Cu2O into various solutions and the leachate tested for both dissolved copper and the efficacy in killing Pseudomonas aeruginosa. The concentration of copper species leached from Cu2O into aqueous solution varied greatly with the composition of the aqueous solution. For a range of solution buffers, killing of P. aeruginosa was highly correlated with the concentration of copper in the leachate. Further, 10 µL bacterial suspension droplets were placed on Cu2O coatings, with or without a polymer barrier layer, and tested for bacterial kill. Killing occurred without contact between bacterium and solid, demonstrating that contact with Cu2O is not necessary. We therefore conclude that soluble copper species are the antimicrobial agent, and that the most potent species is Cu+. The solid quickly raises and sustains the concentration of soluble copper species near the bacterium. Killing via soluble copper ions rather than contact should allow copper coatings to kill bacteria even when fouled, which is an important practical consideration.
Collapse
Affiliation(s)
- Saeed Behzadinasab
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Myra D Williams
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | | | - William A Ducker
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
10
|
Meister TL, Kirchhoff L, Brüggemann Y, Todt D, Steinmann J, Steinmann E. Stability of pathogens on banknotes and coins: A narrative review. J Med Virol 2023; 95:e29312. [PMID: 38100621 DOI: 10.1002/jmv.29312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/28/2023] [Accepted: 11/25/2023] [Indexed: 12/17/2023]
Abstract
For the prevention of infectious diseases, knowledge about potential transmission routes is essential. Pathogens can be transmitted directly (i.e. respiratory droplets, hand-to-hand contact) or indirectly via contaminated surfaces (fomites). In particular, frequently touched objects/surfaces may serve as transmission vehicles for different clinically relevant bacterial, fungal, and viral pathogens. Banknotes and coins offer ample surface area and are frequently exchanged between individuals. Consequently, many concerns have been raised in the recent past, that banknotes and coins could serve as vectors for the transmission of disease-causing microorganisms. This review summarizes the latest research on the potential of paper currency and coins to serve as sources of pathogenic viral, bacterial, and fungal agents. In contrast to the current perception of banknotes and coins as important transmission vehicles, current evidence suggests, that banknotes and coins do not pose a particular risk of pathogen infection for the public.
Collapse
Affiliation(s)
- Toni Luise Meister
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Lisa Kirchhoff
- Institute of Medical Microbiology, University Hospital of Essen, Essen, Germany
| | - Yannick Brüggemann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital of Essen, Essen, Germany
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, General Hospital Nürnberg, Paracelsus Medical University, Nuremberg, Germany
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
11
|
Jung Y, Abney SE, Reynolds KA, Gerba CP, Wilson AM. Evaluating infection risks and importance of hand hygiene during the household laundry process using a quantitative microbial risk assessment approach. Am J Infect Control 2023; 51:1377-1383. [PMID: 37271422 DOI: 10.1016/j.ajic.2023.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Contaminated laundry contributes to infectious disease spread in residential and home health care settings. The objectives were to (1) evaluate pathogen transmission risks for individuals doing laundry, and (2) compare hand hygiene timing to reduce risks. METHODS A quantitative microbial risk assessment using experimental data from a laundry washing effectiveness study was applied to estimate infection risks from SARS-CoV-2, rotavirus, norovirus, nontyphoidal Salmonella, and Escherichia coli in 4 laundry scenarios: 1 baseline scenario (no hand hygiene event) and 3 hand hygiene scenarios (scenario 1: after moving dirty clothes to the washing machine, scenario 2: after moving washed clothes to the dryer, and scenario 3: hand hygiene events following scenario 1 and 2). RESULTS The average infection risks for the baseline scenario were all greater than 2 common risk thresholds (1.0×10-6and 1.0×10-4). For all organisms, scenario 1 yielded greater risk reductions (39.95%-99.86%) than scenario 2 (1.35%-55.25%). Scenario 3 further reduced risk, achieving 1.0×10-6(SARS-CoV-2) and 1.0×10-4risk thresholds (norovirus and E. coli). CONCLUSIONS The modeled results suggest individuals should reduce hand-to-facial orifice (eyes, nose, and mouth) contacts and conduct proper hand hygiene when handling contaminated garments. More empirical data are needed to confirm the estimated risks. DATA AVAILABILITY STATEMENT The data and code that support the findings of this study can be retrieved via a Creative Commons Zero v1.0 Universal license in GitHub at https://github.com/yhjung1231/Laundry-QMRAproject-2022.git DOI: http://doi.org/10.5281/zenodo.7122065.
Collapse
Affiliation(s)
- Yoonhee Jung
- Department of Community, Environment & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, AZ, USA.
| | - Sarah E Abney
- García-Robles Fulbright Program, Centro de Investigación Científica de Yucatán, Yucatán, Mexico
| | - Kelly A Reynolds
- Department of Community, Environment & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, AZ, USA
| | - Charles P Gerba
- Department of Environmental Science, College of Agriculture and Life Sciences, University of Arizona, AZ, USA
| | - Amanda M Wilson
- Department of Community, Environment & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, AZ, USA
| |
Collapse
|
12
|
Watson F, Chewins J, Wilks S, Keevil B. An automated contact model for transmission of dry surface biofilms of Acinetobacter baumannii in healthcare. J Hosp Infect 2023; 141:175-183. [PMID: 37348564 DOI: 10.1016/j.jhin.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Dry surface biofilms (DSBs) have been recognized across environmental and equipment surfaces in hospitals and could explain how microbial contamination can survive for an extended period and may play a key role in the transmission of hospital-acquired infections. Despite little being known on how they form and proliferate in clinical settings, DSB models for disinfectant efficacy testing exist. AIM In this study we develop a novel biofilm model to represent formation within hospitals, by emulating patient to surface interactions. METHODS The model generates a DSB through the transmission of artificial human sweat (AHS) and clinically relevant pathogens using a synthetic thumb capable of emulating human contact. The DNA, glycoconjugates and protein composition of the model biofilm, along with structural features of the micro-colonies was determined using fluorescent stains visualized by epifluorescence microscopy and compared with published clinical data. RESULTS Micrographs revealed the heterogeneity of the biofilm across the surface; and reveal protein as the principal component within the matrix, followed by glycoconjugates and DNA. The model repeatably transferred trace amounts of micro-organisms and AHS, every 5 min for up to 120 h on to stainless-steel coupons to generate a biofilm model averaging 1.16 × 103 cfu/cm2 falling within the reported range for clinical DSB (4.20 × 102 to 1.60 × 107 bacteria/cm2). CONCLUSION Our in vitro DSB model exhibits many phenotypical characteristics and traits to those reported in situ. The model highlights key features often overlooked and the potential for downstream applications such as antibiofilm claims using more realistic microbial challenges.
Collapse
Affiliation(s)
- F Watson
- School of Biological Sciences, University of Southampton, Southampton, UK; Bioquell UK Ltd, Andover, UK.
| | | | - S Wilks
- School of Biological Sciences, University of Southampton, Southampton, UK; School of Health Sciences, University of Southampton, Southampton, UK
| | - B Keevil
- School of Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
13
|
Pageau G, Levasseur M, Paniconi T, Jubinville E, Goulet-Beaulieu V, Boivin G, Jean J. The possibility of spreading herpes simplex virus type 1 via food handling and sharing. J Appl Microbiol 2023; 134:lxad224. [PMID: 37827542 DOI: 10.1093/jambio/lxad224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/11/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023]
Abstract
AIMS Herpes simplex virus type 1 (HSV-1) is an enveloped virus that causes recurrent and incurable diseases in 67% of the world population. Although it is not listed as a foodborne virus, some studies have shown that it can be recovered from surfaces as well as food. METHODS AND RESULTS We investigated its persistence at -20°C, 4°C, 20°C, or 37°C for up to 7 days on stainless steel, aluminum, glass, polypropylene, cheddar cheese, sliced almond, and apple skin and in cola soft drink, orange juice, coffee, and milk, as well as its transferability from stainless steel to dry or moistened nitrile or latex gloves over time at typical ambient temperatures. Based on the plaque assay on Vero cells, HSV-1 persisted at least 24 h on all surfaces and at least 1 h on food matrices but was inactivated quickly in cola soft drink. Temperature and pH affected HSV-1 infectivity. Transfer of HSV-1 at a contact pressure of 1 kg cm2-1 for 10 s occurred only on latex, especially moistened. CONCLUSIONS Our data on the persistence of HSV-1 on food-related surfaces suggest that some risk may be associated with sharing foods with infected carriers.
Collapse
Affiliation(s)
- Gabrielle Pageau
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec G1V 0A6, Canada
| | - Marianne Levasseur
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec G1V 0A6, Canada
| | - Teresa Paniconi
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec G1V 0A6, Canada
| | - Eric Jubinville
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec G1V 0A6, Canada
| | - Valérie Goulet-Beaulieu
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec G1V 0A6, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases of the CHUQ-CHUL and Laval University, Quebec City, Quebec G1V 4G2, Canada
| | - Julie Jean
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec G1V 0A6, Canada
| |
Collapse
|
14
|
Prado T, Magalhães MGP, Moreira DA, Brandão ML, Fumian TM, Ferreira FC, Chame M, Leomil L, Degrave WMS, Leite JPG, Miagostovich MP. Microbiome and virome on indoor surfaces of an Antarctic research ship. Mem Inst Oswaldo Cruz 2023; 118:e230084. [PMID: 37672426 PMCID: PMC10481937 DOI: 10.1590/0074-02760230084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Few studies have focused on microbial diversity in indoor environments of ships, as well as the role of the microbiome and its ecological interconnections. In this study, we investigated the microbiome and virome present on the internal surfaces of a polar ship in different stages (beginning, during, and at the end) of the Brazilian Antarctic expedition in order to evaluate abundance of microorganisms in different periods. OBJECTIVES AND METHODS We used shotgun metagenomic analysis on pooled samples from sampling surfaces in the ship's interior to track the microbial diversity. FINDINGS Considering the total fraction of the microbiome, the relative abundance of bacteria, eukaryotes, viruses, and archaea was 83.7%, 16.2%, 0.04%, and 0.002%, respectively. Proteobacteria was the most abundant bacterial phyla, followed by Firmicutes, Actinobacteria, and Bacteroidetes. Concerning the virome, the greatest richness of viral species was identified during the middle of the trip, including ten viral families after de novo assembly: Autographiviridae, Chrysoviridae, Genomoviridae, Herelleviridae, Myoviridae, Partitiviridae, Podoviridae, Potyviridae, Siphoviridae, and Virgaviridae. MAIN CONCLUSIONS This study contributed to the knowledge of microbial diversity in naval transportation facilities, and variations in the abundance of microorganisms probably occurred due to factors such as the number of passengers and activities on the ship.
Collapse
Affiliation(s)
- Tatiana Prado
- Fundação Oswaldo Cruz-Fiocruz, Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Rio de Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Laboratório de Genômica Aplicada e BioInovações, Rio de Janeiro, RJ, Brasil
| | | | - Daniel Andrade Moreira
- Fundação Oswaldo Cruz-Fiocruz, Laboratório de Genômica Aplicada e BioInovações, Rio de Janeiro, RJ, Brasil
| | - Martha Lima Brandão
- Fundação Oswaldo Cruz-Fiocruz, Projeto FioAntar/VPPIS, Rio de Janeiro, RJ, Brasil
| | - Tulio Machado Fumian
- Fundação Oswaldo Cruz-Fiocruz, Laboratório de Virologia Comparada e Ambiental, Rio de Janeiro, RJ, Brasil
| | - Fernando Cesar Ferreira
- Fundação Oswaldo Cruz-Fiocruz, Laboratório de Virologia Comparada e Ambiental, Rio de Janeiro, RJ, Brasil
| | - Marcia Chame
- Fundação Oswaldo Cruz-Fiocruz, Plataforma Institucional para Biodiversidade e Saúde Animal, Rio de Janeiro, RJ, Brasil
| | - Luciana Leomil
- Serviço Nacional de Aprendizagem Industrial, Centro Tecnológico para Indústria Química e Têxtil, Biotecnologia, Parque Tecnológico da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | - José Paulo Gagliardi Leite
- Fundação Oswaldo Cruz-Fiocruz, Laboratório de Virologia Comparada e Ambiental, Rio de Janeiro, RJ, Brasil
| | | |
Collapse
|
15
|
Cooper DK, Sobolik JS, Kovacevic J, Rock CM, Sajewski ET, Guest JL, Lopman BA, Jaykus LA, Leon JS. Combined Infection Control Interventions Protect Essential Food Workers from Occupational Exposures to SARS-CoV-2 in the Agricultural Environment. Appl Environ Microbiol 2023; 89:e0012823. [PMID: 37310232 PMCID: PMC10370312 DOI: 10.1128/aem.00128-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023] Open
Abstract
Essential food workers experience elevated risks of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection due to prolonged occupational exposures in food production and processing areas, shared transportation (car or bus), and employer-provided shared housing. Our goal was to quantify the daily cumulative risk of SARS-CoV-2 infection for healthy susceptible produce workers and to evaluate the relative reduction in risk attributable to food industry interventions and vaccination. We simulated daily SARS-CoV-2 exposures of indoor and outdoor produce workers through six linked quantitative microbial risk assessment (QMRA) model scenarios. For each scenario, the infectious viral dose emitted by a symptomatic worker was calculated across aerosol, droplet, and fomite-mediated transmission pathways. Standard industry interventions (2-m physical distancing, handwashing, surface disinfection, universal masking, ventilation) were simulated to assess relative risk reductions from baseline risk (no interventions, 1-m distance). Implementation of industry interventions reduced an indoor worker's relative infection risk by 98.0% (0.020; 95% uncertainty interval [UI], 0.005 to 0.104) from baseline risk (1.00; 95% UI, 0.995 to 1.00) and an outdoor worker's relative infection risk by 94.5% (0.027; 95% UI, 0.013 to 0.055) from baseline risk (0.487; 95% UI, 0.257 to 0.825). Integrating these interventions with two-dose mRNA vaccinations (86 to 99% efficacy), representing a worker's protective immunity to infection, reduced the relative infection risk from baseline for indoor workers by 99.9% (0.001; 95% UI, 0.0002 to 0.005) and outdoor workers by 99.6% (0.002; 95% UI, 0.0003 to 0.005). Consistent implementation of combined industry interventions, paired with vaccination, effectively mitigates the elevated risks from occupationally acquired SARS-CoV-2 infection faced by produce workers. IMPORTANCE This is the first study to estimate the daily risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection across a variety of indoor and outdoor environmental settings relevant to food workers (e.g., shared transportation [car or bus], enclosed produce processing facility and accompanying breakroom, outdoor produce harvesting field, shared housing facility) through a linked quantitative microbial risk assessment framework. Our model has demonstrated that the elevated daily SARS-CoV-2 infection risk experienced by indoor and outdoor produce workers can be reduced below 1% when vaccinations (optimal vaccine efficacy, 86 to 99%) are implemented with recommended infection control strategies (e.g., handwashing, surface disinfection, universal masking, physical distancing, and increased ventilation). Our novel findings provide scenario-specific infection risk estimates that can be utilized by food industry managers to target high-risk scenarios with effective infection mitigation strategies, which was informed through more realistic and context-driven modeling estimates of the infection risk faced by essential food workers daily. Bundled interventions, particularly if they include vaccination, yield significant reductions (>99%) in daily SARS-CoV-2 infection risk for essential food workers in enclosed and open-air environments.
Collapse
Affiliation(s)
- D. Kane Cooper
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Julia S. Sobolik
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Jovana Kovacevic
- Food Innovation Center, Oregon State University, Portland, Oregon, USA
| | - Channah M. Rock
- Department of Soil, Water and Environmental Science, University of Arizona, Tucson, Arizona, USA
| | | | - Jodie L. Guest
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Ben A. Lopman
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Lee-Ann Jaykus
- Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Juan S. Leon
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Liao J, Ling Z, Zhang Y. Indoor particle dispersion due to hand dryer in public washroom: an in silico study. Sci Rep 2023; 13:11554. [PMID: 37463924 DOI: 10.1038/s41598-023-37804-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/28/2023] [Indexed: 07/20/2023] Open
Abstract
Hand dryer in public washroom has been reported likely to be a reservoir of drug-resistant bacteria. When a hand dryer being used, the high-velocity air jet from the dryer outlet can carry aerosol particles to hand surfaces, the user, and indoor space. This in silico study considered the effect of different airflow speed of hand dryers on the dispersion of particles in different diameters with and without the user. The aim of this study was to apply the computational fluid dynamics (CFD) method based on the discrete phase model to investigate the trajectory of indoor particles from the hand dryer in public washroom. The CFD results showed that, when the user was using the hand dryer, 42.3% of the particles were distributed on the wall against the user, and 31.6% were distributed on the user's body, including their hands. When no one was standing in front of the hand dryer, 87.6% of the particles fell on the ground. The blocking of user's hand dispersed the particles to a wide range, particularly for the larger diameter particles which were scattered on the user's body or on the ground. In addition, the dispersion proportion of particles did not vary with the speed of airflow, but the area of particles distribution became larger as the speed increased. Our findings suggest that the contamination of the indoor environment caused by the hand dryer could not be ignored, incorporating filters into hand dryers is essential. Furthermore, our work offers valuable insights for optimizing the design of hand dryers.
Collapse
Affiliation(s)
- Jing Liao
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhongjian Ling
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, China
| | - Yongou Zhang
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, China.
| |
Collapse
|
17
|
Nygren E, Gonzales Strömberg L, Logenius J, Husmark U, Löfström C, Bergström B. Potential sources of contamination on textiles and hard surfaces identified as high-touch sites near the patient environment. PLoS One 2023; 18:e0287855. [PMID: 37418451 PMCID: PMC10328241 DOI: 10.1371/journal.pone.0287855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023] Open
Abstract
The hospital environment represents an important mediator for the transmission of healthcare-associated infections through direct and indirect hand contact with hard surfaces and textiles. In this study, bacteria on high-touch sites, including textiles and hard surfaces in two care wards in Sweden, were identified using microbiological culture methods and 16S rDNA sequencing. During a cross-sectional study, 176 high-touch hard surfaces and textiles were identified and further analysed using microbiological culture for quantification of total aerobic bacteria, Staphylococcus aureus, Clostridium difficile and Enterobacteriacae. The bacterial population structures were further analysed in 26 samples using 16S rDNA sequencing. The study showed a higher frequency of unique direct hand-textile contacts (36 per hour), compared to hard surfaces (2.2 per hour). Hard surfaces met the recommended standard of ≤ 5 CFU/cm2 for aerobic bacteria and ≤ 1 CFU/cm2 for S. aureus (53% and 35%, respectively) to a higher extent compared to textiles (19% and 30%, respectively) (P = 0.0488). The number of bacterial genera was higher on textiles than on the hard surfaces. Staphylococcus (30.4%) and Corynebacterium (10.9%) were the most representative genera for textiles and Streptococcus (13.3%) for hard surfaces. The fact that a big percentage of the textiles did not fulfil the criteria for cleanliness, combined with the higher bacterial diversity, compared to hard surfaces, are indicators that textiles were bacterial reservoirs and potential risk vectors for bacterial transmission. However, since most of the bacteria found in the study belonged to the normal flora, it was not possible to draw conclusions of textiles and hard surfaces as sources of healthcare associated infections.
Collapse
Affiliation(s)
- Erik Nygren
- RISE Research Institutes of Sweden, Agriculture and Food, Borås, Sweden
| | | | | | | | | | | |
Collapse
|
18
|
Dixit S, Varshney S, Gupta D, Sharma S. Textiles as fomites in the healthcare system. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12569-2. [PMID: 37199751 DOI: 10.1007/s00253-023-12569-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
Nosocomial infections or healthcare-associated infections (HAIs) are acquired under medical care in healthcare facilities. In hospital environments, the transmission of infectious diseases through textiles such as white coats, bed linen, curtains, and towels are well documented. Textile hygiene and infection control measures have become more important in recent years due to the growing concerns about textiles as fomites in healthcare settings. However, systematic research in this area is lacking; the factors contributing to the transmission of infections through textiles needs to be better understood. The review aims to critically explore textiles as contaminants in healthcare systems, and to identify potential risks they may pose to patients and healthcare workers. It delineates different factors affecting bacterial adherence on fabrics, such as surface properties of bacteria and fabrics, and environmental factors. It also identifies areas that require further research to reduce the risk of HAIs and improve textile hygiene practices. Finally, the review elaborates on the strategies currently employed, and those that can be employed to limit the spread of nosocomial infections through fabrics. Implementing textile hygiene practices effectively in healthcare facilities requires a thorough analysis of factors affecting fabric-microbiome interactions, followed by designing newer fabrics that discourage pathogen load. KEY POINTS: • Healthcare textiles act as a potential reservoir of nosocomial pathogens • Survival of pathogens is affected by surface properties of fabric and bacteria • Guidelines required for fabrics that discourage microbial load, for hospital use.
Collapse
Affiliation(s)
- Shweta Dixit
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Swati Varshney
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Deepti Gupta
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
19
|
Powers JE, Mureithi M, Mboya J, Campolo J, Swarthout JM, Pajka J, Null C, Pickering AJ. Effects of High Temperature and Heavy Precipitation on Drinking Water Quality and Child Hand Contamination Levels in Rural Kenya. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6975-6988. [PMID: 37071701 PMCID: PMC10157894 DOI: 10.1021/acs.est.2c07284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Climate change may impact human health through the influence of weather on environmental transmission of diarrhea. Previous studies have found that high temperatures and heavy precipitation are associated with increased diarrhea prevalence, but the underlying causal mechanisms have not been tested and validated. We linked measurements of Escherichia coli in source water (n = 1673), stored drinking water (n = 9692), and hand rinses from children <2 years old (n = 2634) with publicly available gridded temperature and precipitation data (at ≤0.2 degree spatial resolution and daily temporal resolution) by the GPS coordinates and date of sample collection. Measurements were collected over a 3-year period across a 2500 km2 area in rural Kenya. In drinking water sources, high 7-day temperature was associated with a 0.16 increase in log10 E. coli levels (p < 0.001, 95% CI: 0.07, 0.24), while heavy 7-day total precipitation was associated with a 0.29 increase in log10 E. coli levels (p < 0.001, 95% CI: 0.13, 0.44). In household stored drinking water, heavy 7-day precipitation was associated with a 0.079 increase in log10 E. coli levels (p = 0.042, 95% CI: 0.07, 0.24). Heavy precipitation did not increase E. coli levels among respondents who treated their water, suggesting that water treatment can mitigate effects on water quality. On child hands, high 7-day temperature was associated with a 0.39 decrease in log10 E. coli levels (p < 0.001, 95% CI: -0.52, -0.27). Our findings provide insight on how climate change could impact environmental transmission of bacterial pathogens in Kenya. We suggest water treatment is especially important after heavy precipitation (particularly when preceded by dry periods) and high temperatures.
Collapse
Affiliation(s)
- Julie E Powers
- University of California, Berkeley, Berkeley, California 94704, United States
| | - Maryanne Mureithi
- Innovations for Poverty Action, Sandalwood Lane, Nairobi 00500, Kenya
| | - John Mboya
- Innovations for Poverty Action, Sandalwood Lane, Nairobi 00500, Kenya
| | - Jake Campolo
- Farmers Business Network, San Carlos, California 94070, United States
| | | | - Joseph Pajka
- Tufts University, Medford, Massachusetts 02155, United States
| | - Clair Null
- Mathematica, Washington, D.C. 20002, United States
| | - Amy J Pickering
- University of California, Berkeley, Berkeley, California 94704, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
20
|
Szpiro L, Bourgeay C, Hoareau AL, Julien T, Menard C, Marie Y, Rosa-Calatrava M, Moules V. Antiviral Activity of Active Materials: Standard and Finger-Pad-Based Innovative Experimental Approaches. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2889. [PMID: 37049183 PMCID: PMC10096329 DOI: 10.3390/ma16072889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Environmental surfaces, including high-touch surfaces (HITS), bear a high risk of becoming fomites and can participate in viral dissemination through contact and transmission to other persons, due to the capacity of viruses to persist on such contaminated surface before being transferred to hands or other supports at sufficient concentration to initiate infection through direct contact. Interest in the development of self-decontaminating materials as additional safety measures towards preventing viral infectious disease transmission has been growing. Active materials are expected to reduce the viral charge on surfaces over time and consequently limit viral transmission capacity through direct contact. In this study, we compared antiviral activities obtained using three different experimental procedures by assessing the survival of an enveloped virus (influenza virus) and non-enveloped virus (feline calicivirus) over time on a reference surface and three active materials. Our data show that experimental test conditions can have a substantial impact of over 1 log10 on the antiviral activity of active material for the same contact period, depending on the nature of the virus. We then developed an innovative and reproducible approach based on finger-pad transfer to evaluate the antiviral activity of HITS against a murine norovirus inoculum under conditions closely reflecting real-life surface exposure.
Collapse
Affiliation(s)
- Lea Szpiro
- VirHealth SAS, Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Joint Technology Research Laboratory on Pathogenic Respiratory Viruses (PRV TEchLab), Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
| | - Clara Bourgeay
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Joint Technology Research Laboratory on Pathogenic Respiratory Viruses (PRV TEchLab), Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- International Associated Laboratory RespiVir, Université Claude Bernard Lyon 1, 69008 Lyon, France
- International Associated Laboratory RespiVir, University Laval, Québec, QC G1V 0A6, Canada
| | - Alexandre Loic Hoareau
- VirHealth SAS, Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
| | - Thomas Julien
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Joint Technology Research Laboratory on Pathogenic Respiratory Viruses (PRV TEchLab), Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- International Associated Laboratory RespiVir, Université Claude Bernard Lyon 1, 69008 Lyon, France
- International Associated Laboratory RespiVir, University Laval, Québec, QC G1V 0A6, Canada
| | - Camille Menard
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Joint Technology Research Laboratory on Pathogenic Respiratory Viruses (PRV TEchLab), Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- International Associated Laboratory RespiVir, Université Claude Bernard Lyon 1, 69008 Lyon, France
- International Associated Laboratory RespiVir, University Laval, Québec, QC G1V 0A6, Canada
| | - Yana Marie
- VirHealth SAS, Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
| | - Manuel Rosa-Calatrava
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Joint Technology Research Laboratory on Pathogenic Respiratory Viruses (PRV TEchLab), Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- International Associated Laboratory RespiVir, Université Claude Bernard Lyon 1, 69008 Lyon, France
- International Associated Laboratory RespiVir, University Laval, Québec, QC G1V 0A6, Canada
| | - Vincent Moules
- VirHealth SAS, Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
- Joint Technology Research Laboratory on Pathogenic Respiratory Viruses (PRV TEchLab), Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
| |
Collapse
|
21
|
Nelson S, Hardison R, Limmer R, Marx J, Taylor B, James R, Stewart M, Lee S, Calfee M, Ryan S, Howard M. Efficacy of detergent-based cleaning and wiping against SARS-CoV-2 on high-touch surfaces. Lett Appl Microbiol 2023; 76:ovad033. [PMID: 36906280 PMCID: PMC11417498 DOI: 10.1093/lambio/ovad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/15/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
Efficacy of cleaning methods against SARS-CoV-2 suspended in either 5% soil load (SARS-soil) or simulated saliva (SARS-SS) was evaluated immediately (hydrated virus, T0) or 2 hours post-contamination (dried virus, T2). Hard water dampened wiping (DW) of surfaces, resulted in 1.77-3.91 log reduction (T0) or 0.93-2.41 log reduction (T2). Incorporating surface pre-wetting by spraying with a detergent solution (D + DW) or hard water (W + DW) just prior to dampened wiping did not unilaterally increase efficacy against infectious SARS-CoV-2, however, the effect was nuanced with respect to surface, viral matrix, and time. Cleaning efficacy on porous surfaces (seat fabric, SF) was low. W + DW on stainless steel (SS) was as effective as D + DW for all conditions except SARS-soil at T2 on SS. DW was the only method that consistently resulted in > 3-log reduction of hydrated (T0) SARS-CoV-2 on SS and ABS plastic. These results suggest that wiping with a hard water dampened wipe can reduce infectious virus on hard non-porous surfaces. Pre-wetting surfaces with surfactants did not significantly increase efficacy for the conditions tested. Surface material, presence or absence of pre-wetting, and time post-contamination affect efficacy of cleaning methods.
Collapse
Affiliation(s)
- S.W. Nelson
- Bioscience Center, Battelle Memorial Institute, Columbus, OH 43201, USA
| | - R.L. Hardison
- Bioscience Center, Battelle Memorial Institute, Columbus, OH 43201, USA
| | - R. Limmer
- Battelle Eastern Science and Technology Center, Aberdeen, MD 21001, USA
| | - J. Marx
- Battelle Eastern Science and Technology Center, Aberdeen, MD 21001, USA
| | - B.M. Taylor
- Battelle Eastern Science and Technology Center, Aberdeen, MD 21001, USA
| | - R.R. James
- Bioscience Center, Battelle Memorial Institute, Columbus, OH 43201, USA
| | - M.J. Stewart
- U.S. EPA, Office of Research and Development, Durham, NC 27711, USA
| | - S.D. Lee
- U.S. EPA, Office of Research and Development, Durham, NC 27711, USA
| | - M.W. Calfee
- U.S. EPA, Office of Research and Development, Durham, NC 27711, USA
| | - S.P. Ryan
- U.S. EPA, Office of Research and Development, Durham, NC 27711, USA
| | - M.W. Howard
- Bioscience Center, Battelle Memorial Institute, Columbus, OH 43201, USA
| |
Collapse
|
22
|
Transfer efficiency of an enveloped virus, human coronavirus 229E, from various hard surface fomites to finger pads of the hands. Infect Control Hosp Epidemiol 2023; 44:335-337. [PMID: 34612187 DOI: 10.1017/ice.2021.428] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Respiratory viruses can be transmitted by fomite contact, but no data currently exist on the transfer of enveloped viruses. The transfer efficiency of human coronavirus from various hard surfaces ranged from 0.46% to 49.0%. This information can be used to model the fomite transmission of enveloped viruses.
Collapse
|
23
|
Murray AF, Bryan D, Garfinkel DA, Jorgensen CS, Tang N, Liyanage W, Lass EA, Yang Y, Rack PD, Denes TG, Gilbert DA. Antimicrobial properties of a multi-component alloy. Sci Rep 2022; 12:21427. [PMID: 36503913 PMCID: PMC9741758 DOI: 10.1038/s41598-022-25122-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
High traffic touch surfaces such as doorknobs, countertops, and handrails can be transmission points for the spread of pathogens, emphasizing the need to develop materials that actively self-sanitize. Metals are frequently used for these surfaces due to their durability, but many metals also possess antimicrobial properties which function through a variety of mechanisms. This work investigates metallic alloys comprised of several metals which individually possess antimicrobial properties, with the target of achieving broad-spectrum, rapid sanitation through synergistic activity. An entropy-motivated stabilization paradigm is proposed to prepare scalable alloys of copper, silver, nickel and cobalt. Using combinatorial sputtering, thin-film alloys were prepared on 100 mm wafers with ≈50% compositional grading of each element across the wafer. The films were then annealed and investigated for alloy stability. Antimicrobial activity testing was performed on both the as-grown alloys and the annealed films using four microorganisms-Phi6, MS2, Bacillus subtilis and Escherichia coli-as surrogates for human viral and bacterial pathogens. Testing showed that after 30 s of contact with some of the test alloys, Phi6, an enveloped, single-stranded RNA bacteriophage that serves as a SARS-CoV-2 surrogate, was reduced up to 6.9 orders of magnitude (> 99.9999%). Additionally, the non-enveloped, double-stranded DNA bacteriophage MS2, and the Gram-negative E. coli and Gram-positive B. subtilis bacterial strains showed a 5.0, 6.4, and 5.7 log reduction in activity after 30, 20 and 10 min, respectively. Antimicrobial activity in the alloy samples showed a strong dependence on the composition, with the log reduction scaling directly with the Cu content. Concentration of Cu by phase separation after annealing improved activity in some of the samples. The results motivate a variety of themes which can be leveraged to design ideal antimicrobial surfaces.
Collapse
Affiliation(s)
- Anne F Murray
- Department of Food Science, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Daniel Bryan
- Department of Food Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - David A Garfinkel
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Cameron S Jorgensen
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Nan Tang
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Wlnc Liyanage
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Eric A Lass
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Ying Yang
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Philip D Rack
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Thomas G Denes
- Department of Food Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Dustin A Gilbert
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
24
|
Fakunle AG, Jafta N, Smit LAM, Naidoo RN. Indoor bacterial and fungal aerosols as predictors of lower respiratory tract infections among under-five children in Ibadan, Nigeria. BMC Pulm Med 2022; 22:471. [PMID: 36494686 PMCID: PMC9733100 DOI: 10.1186/s12890-022-02271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study aimed to investigate the association between exposure to diverse indoor microbial aerosols and lower respiratory tract infections (LRTI) among children aged 1 to 59 months in Ibadan, Nigeria. METHODS One hundred and seventy-eight (178) hospital-based LRTI cases among under-five children were matched for age (± 3 months), sex and geographical location with 180 community-based controls (under-five children without LRTI). Following consent from caregivers of eligible participants, a child's health questionnaire, clinical proforma and standardized home-walkthrough checklist were used to collect data. Participant homes were visited and sampled for indoor microbial exposures using active sampling approach by Anderson sampler. Indoor microbial count (IMC), total bacterial count (TBC), and total fungal count (TFC) were estimated and dichotomized into high (> median) and low (≤ median) exposures. Alpha diversity measures including richness (R), Shannon (H) and Simpson (D) indices were also estimated. Conditional logistic regression models were used to test association between exposure to indoor microbial aerosols and LRTI risk among under-five children. RESULTS Significantly higher bacterial and fungal diversities were found in homes of cases (R = 3.00; H = 1.04; D = 2.67 and R = 2.56; H = 0.82; D = 2.33) than homes of controls (R = 2.00; H = 0.64; D = 1.80 and R = 1.89; H = 0.55; D = 1.88) p < 0.001, respectively. In the multivariate models, higher categories of exposure to IMC (aOR = 2.67, 95% CI 1.44-4.97), TBC (aOR = 2.51, 95% CI 1.36-4.65), TFC (aOR = 2.75, 95% CI 1.54-4.89), bacterial diversity (aOR = 1.87, 95% CI 1.08-3.24) and fungal diversity (aOR = 3.00, 95% CI 1.55-5.79) were independently associated with LRTI risk among under-five children. CONCLUSIONS This study suggests an increased risk of LRTI when children under the age of five years are exposed to high levels of indoor microbial aerosols.
Collapse
Affiliation(s)
- Adekunle Gregory Fakunle
- Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, 321 George Campbell Building Howard College Campus, Durban, 4041, South Africa.
- Department of Public Health, College of Health Sciences, Osun State University, Osogbo, Osun State, Nigeria.
| | - Nkosana Jafta
- Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, 321 George Campbell Building Howard College Campus, Durban, 4041, South Africa
| | - Lidwien A M Smit
- Institute for Risk Assessment (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Rajen N Naidoo
- Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, 321 George Campbell Building Howard College Campus, Durban, 4041, South Africa.
| |
Collapse
|
25
|
Roberts SC, Havill NL, Flores RM, Hendrix Ii CA, Williams MJ, Feinn RS, Choi SJ, Martinello RA, Marks AM, Murray TS. Disinfection of Virtual Reality Devices in Health Care Settings: In Vitro Assessment and Survey Study. J Med Internet Res 2022; 24:e42332. [PMID: 36269222 PMCID: PMC9756115 DOI: 10.2196/42332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Virtual reality (VR) devices are increasingly used in health care settings. The use among patients has the potential to unintentionally transmit pathogens between patients and hospital staff. No standard operating procedure for disinfection exists to ensure safe use between patients. OBJECTIVE This study aims to determine the efficacy of disinfectants on VR devices in order to ensure safe use in health care settings. METHODS Three types of bacteria were inoculated onto porous and nonporous surfaces of 2 VR devices: the Meta Oculus Quest and Meta Oculus Quest 2. Disinfection was performed using either isopropyl alcohol or alcohol-free quaternary ammonium wipes. A quantitative culture was used to assess the adequacy of disinfection. A survey was separately sent out to VR device technicians at other pediatric health care institutes to compare the methods of disinfection and how they were established. RESULTS Both products achieved adequate disinfection of the treated surfaces; however, a greater log-kill was achieved on nonporous surfaces than on the porous surfaces. Alcohol performed better than quaternary ammonium on porous surfaces. The survey respondents reported a wide variability in disinfection processes with only 1 person reporting an established standard operating procedure. CONCLUSIONS Disinfection can be achieved through the use of either isopropyl alcohol or quaternary ammonium products. Porous surfaces showed lesser log-kill rates than the nonporous surfaces, indicating that the use of an added barrier may be of benefit and should be a point of future research. Given the variability in the disinfection process across health care systems, a standard operating procedure is proposed.
Collapse
Affiliation(s)
- Scott C Roberts
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
- Department of Infection Prevention, Yale New Haven Hospital, New Haven, CT, United States
| | - Nancy L Havill
- Department of Infection Prevention, Yale New Haven Hospital, New Haven, CT, United States
| | - Rosa M Flores
- Department of Infection Prevention, Yale New Haven Hospital, New Haven, CT, United States
| | - Curtis Anthony Hendrix Ii
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | | | - Richard S Feinn
- Department of Medical Sciences, Frank H Netter MD School of Medicine, Quinnipiac University, North Haven, CT, United States
| | - Steven J Choi
- Department of Infection Prevention, Yale New Haven Hospital, New Haven, CT, United States
| | - Richard A Martinello
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
- Department of Infection Prevention, Yale New Haven Hospital, New Haven, CT, United States
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, United States
| | - Asher M Marks
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, United States
| | - Thomas S Murray
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
26
|
Abney SE, Wilson AM, Ijaz MK, McKinney J, Reynolds KA, Gerba CP. Minding the matrix: The importance of inoculum suspensions on finger transfer efficiency of virus. J Appl Microbiol 2022; 133:3083-3093. [PMID: 35916494 DOI: 10.1111/jam.15758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 01/07/2023]
Abstract
AIMS The aim of this study was to determine how the transfer efficiency of MS-2 coliphage from the toilet seat to hands and fingertip to lip differs according to the suspension of the inoculum. METHODS AND RESULTS Hands were sampled after lifting a toilet seat which was inoculated with MS-2 on the underneath side. MS-2 was suspended in a spectrum of proteinaceous and non-proteinaceous solutions. Transfer efficiencies were greatest with the ASTM tripartite soil load (3.02% ± 4.03) and lowest with phosphate-buffered saline (PBS) (1.10% ± 0.81) for hand-to-toilet seat contacts. Finger-to-lip transfer rates were significantly different (p < 0.05) depending on suspension matrix, with PBS yielding the highest transfer (52.53% ± 4.48%) and tryptose soy broth (TSB) the lowest (23.15% ± 24.27%). Quantitative microbial risk assessment was used to estimate the probability of infection from adenovirus and norovirus from finger contact with a toilet seat. CONCLUSIONS The greatest transfer as well as the largest variation of transfer were measured for finger-to-lip contacts as opposed to toilet seat-to-finger contacts. These factors influence the estimation of the probability of infection from micro-activity, that is, toilet seat adjustment. SIGNIFICANCE AND IMPACT Viruses may be transferred from various human excreta with differing transfer efficiencies, depending on the protein content.
Collapse
Affiliation(s)
- Sarah E Abney
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
| | - Amanda M Wilson
- Department of Community, Environment, and Policy, University of Arizona, Tucson, Arizona, USA
| | - M Khalid Ijaz
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, New Jersey, USA.,Department of Biology, Medgar Evers College of the City University of New York (CUNY), Brooklyn, New York, USA
| | - Julie McKinney
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, New Jersey, USA
| | - Kelly A Reynolds
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA.,Department of Community, Environment, and Policy, University of Arizona, Tucson, Arizona, USA
| | - Charles P Gerba
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
27
|
Nunayon SS, Wang M, Zhang HH, Lai ACK. Evaluating the efficacy of a rotating upper-room UVC-LED irradiation device in inactivating aerosolized Escherichia coli under different disinfection ranges, air mixing, and irradiation conditions. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129791. [PMID: 36027747 DOI: 10.1016/j.jhazmat.2022.129791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Cost-effective and safe air disinfection methods are urgently needed in various environmental public settings. A novel UVC-based disinfection system was designed and tested to provide a promising solution because of its effective inactivation of indoor bioaerosols at a low cost. UVC light-emitting diodes (UVC-LEDs) were utilized as the irradiation source. This system has the unique feature of rotating the UVC-LEDs to generate a "scanning irradiation" zone. Escherichia coli was aerosolized into an experimental chamber, exposed to UVC-LEDs, and sampled using an impactor. Effects of air mixing (well-mixed vs. poorly-mixed), transmission range (short vs. long), and irradiation mode (stationary vs. rotating) were evaluated. The system performs significantly well under the poorly-mixed condition. The results obtained from the short disinfection range indicate that the rotating UVC was approximately 70.5 % more effective than the stationary UVC for the poorly-mixed case. Further, we evaluated the performance of the long disinfection range under a poorly-mixed situation, and the disinfection efficacy was 84.6 % higher for the rotating irradiation than that of the stationary. About 0.59-1.34 J/m2 UV dose can be used to obtain one-log inactivation of E. coli. In conclusion, the novel rotating upper-room UVC-LED system is effective in reducing indoor pathogen transmission, and our findings are highly significant to a growing field where LEDs are applied for disinfection.
Collapse
Affiliation(s)
- Sunday S Nunayon
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Minghao Wang
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Hui H Zhang
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Alvin C K Lai
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
28
|
Baker CA, Hamilton AN, Chandran S, Poncet AM, Gibson KE. Transfer of Phi6 Bacteriophage Between Human Skin and Surfaces Common to Consumer-Facing Environments. J Appl Microbiol 2022; 133:3719-3727. [PMID: 36083101 DOI: 10.1111/jam.15809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
AIMS This study aimed to determine the extent of Phi6 (Φ6) transfer between skin and surfaces relevant to consumer-facing environments based on inoculum matrix, surface type, and contact time. METHODS AND RESULTS Φ6 transfer rates were determined from skin-to-fomite and fomite-to-skin influenced by inoculum matrix (artificial saliva and tripartite), surface type (aluminum, plastic, stainless steel, touchscreen, vinyl, and wood) and contact time (5 and 10 s). Significant differences in estimated means were observed based on surface type (both transfer directions), inoculum matrix (skin-to-fomite), and contact time (both transfer directions). During a sequential transfer experiment from fomite-to-skin, the maximum number of consecutive transfer events observed was 3.33 ± 1.19, 2.33 ± 1.20, and 1.67 ± 1.21 for plastic, touchscreen, and vinyl, respectively. CONCLUSIONS Contact time significantly impacted Φ6 transfer rates, which may be attributed to skin absorption dynamics. Surface type should be considered for assessing Φ6 transfer rates. SIGNIFICANCE AND IMPACT OF THE STUDY Although the persistence of Φ6 on fomites has been characterized, limited data is available regarding the transfer of Φ6 amongst skin and fomites. Determining Φ6 transfer rates for surfaces in consumer-facing environments based on these factors is needed to better inform future virus transmission mitigation strategies.
Collapse
Affiliation(s)
- Christopher A Baker
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 72704, Fayetteville, AR.,Current address: U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, 20740, Maryland
| | - Allyson N Hamilton
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 72704, Fayetteville, AR
| | - Sahaana Chandran
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 72704, Fayetteville, AR
| | - Aurelie M Poncet
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas System Division of Agriculture, 72701, Fayetteville, AR
| | - Kristen E Gibson
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 72704, Fayetteville, AR
| |
Collapse
|
29
|
Zhang X, Wu J, Smith LM, Li X, Yancey O, Franzblau A, Dvonch JT, Xi C, Neitzel RL. Monitoring SARS-CoV-2 in air and on surfaces and estimating infection risk in buildings and buses on a university campus. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:751-758. [PMID: 35477766 PMCID: PMC9045468 DOI: 10.1038/s41370-022-00442-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Evidence is needed on the presence of SARS-CoV-2 in various types of environmental samples and on the estimated transmission risks in non-healthcare settings on campus. OBJECTIVES The objective of this research was to collect data on SARS-CoV-2 viral load and to examine potential infection risks of people exposed to the virus in publicly accessible non-healthcare environments on a university campus. METHODS Air and surface samples were collected using wetted wall cyclone bioaerosol samplers and swab kits, respectively, in a longitudinal environmental surveillance program from August 2020 until April 2021 on the University of Michigan Ann Arbor campus. Quantitative rRT-PCR with primers and probes targeting gene N1 were used for SARS-CoV-2 RNA quantification. The RNA concentrations were used to estimate the probability of infection by quantitative microbial risk assessment modeling and Monte-Carlo simulation. RESULTS In total, 256 air samples and 517 surface samples were collected during the study period, among which positive rates were 1.6% and 1.4%, respectively. Point-biserial correlation showed that the total case number on campus was significantly higher in weeks with positive environmental samples than in non-positive weeks (p = 0.001). The estimated probability of infection was about 1 per 100 exposures to SARS-CoV-2-laden aerosols through inhalation and as high as 1 per 100,000 exposures from contacting contaminated surfaces in simulated scenarios. SIGNIFICANCE Viral shedding was demonstrated by the detection of viral RNA in multiple air and surface samples on a university campus. The low overall positivity rate indicated that the risk of exposure to SARS-CoV-2 at monitored locations was low. Risk modeling results suggest that inhalation is the predominant route of exposure compared to surface contact, which emphasizes the importance of protecting individuals from airborne transmission of SARS-CoV-2 and potentially other respiratory infectious diseases. IMPACT Given the reoccurring epidemics caused by highly infectious respiratory viruses in recent years, our manuscript reinforces the importance of monitoring environmental transmission by the simultaneous sampling and integration of multiple environmental surveillance matrices for modeling and risk assessment.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Jianfeng Wu
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Lauren M Smith
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Xin Li
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Olivia Yancey
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Alfred Franzblau
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - J Timothy Dvonch
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Chuanwu Xi
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | - Richard L Neitzel
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
30
|
Wilson AM, Jones RM. Exploring spatial averaging of contamination in fomite microbial transfer models and implications for dose. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:759-766. [PMID: 34743183 PMCID: PMC8571976 DOI: 10.1038/s41370-021-00398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND When modeling exposures from contact with fomites, there are many choices in defining the sizes of compartments representing environmental surfaces and hands, and the portions of compartments involved in contacts. These choices impact dose estimates, yet there is limited guidance for selection of these model parameters. OBJECTIVE The study objective was to explore methods for representing environmental surface and hand contact areas in exposure models and implications for estimated doses. METHODS A simple scenario was used: an individual using their hands to contact their face and two microbially contaminated environmental surfaces. Four models were developed to explore different compartmentalization strategies: (1) hands and environmental surfaces each represented by one compartment, (2) hands represented by two compartments (fingertips vs. non-fingertip areas) while environmental surfaces were represented by one compartment, (3) hands represented by a single compartment and environmental surfaces represented by two compartments, and (4) hands and environmental surfaces each represented by two compartments. Sensitivity analyses were conducted to evaluate the influence of heterogeneous surface contact frequency, hand contact type, and hand dominance on dose. RESULTS Estimated doses were greatest when hand areas and environmental surfaces were each represented by two compartments, indicating that surface area "dilutes" contaminant concentration and decreases estimated dose. SIGNIFICANCE Model compartment designations for hands and environmental surfaces affect dose estimation, but more human behavior data are needed. IMPACT STATEMENT A common problem for exposure models describing exposures via hand-to-surface contacts occurs in the way that estimated contamination across human skin (usually hands) or across environmental surfaces is spatially averaged, as opposed to accounting for concentration changes across specific parts of the hand or individual surfaces. This can lead to the dilution of estimated contaminants and biases in estimated doses in risk assessments. The magnitude of these biases and implications for the accuracy in risk assessments are unknown. We quantify differences in dose for various strategies of compartmentalizing environmental surfaces and hands to inform guidance on future exposure model development.
Collapse
Affiliation(s)
- Amanda M Wilson
- Rocky Mountain Center for Occupational and Environmental Health, University of Utah, Salt Lake City, UT, USA.
- Department of Family and Preventive Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA.
- Department of Community, Environment & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, 85721, USA.
| | - Rachael M Jones
- Rocky Mountain Center for Occupational and Environmental Health, University of Utah, Salt Lake City, UT, USA
- Department of Family and Preventive Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
31
|
Unger K, Dietz L, Horve P, Van Den Wymelenberg K, Lin A, Kinney E, Kea B. Evaluating fomite risk of brown paper bags storing personal protective equipment exposed to SARS-CoV-2: A quasi-experimental study. PLoS One 2022; 17:e0273433. [PMID: 36026512 PMCID: PMC9417035 DOI: 10.1371/journal.pone.0273433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Literature is lacking on the safety of storing contaminated PPE in paper bags for reuse, potentially increasing exposure to frontline healthcare workers (HCW) and patients. The aim of this study is to evaluate the effectiveness of paper bags as a barrier for fomite transmission of SARS-CoV-2 by storing face masks, respirators, and face shields. METHODS This quasi-experimental study evaluated the presence of SARS-CoV-2 on the interior and exterior surfaces of paper bags containing PPE that had aerosolized exposures in clinical and simulated settings. Between May and October 2020, 30 unique PPE items were collected from COVID-19 units at two urban hospitals. Exposed PPE, worn by either an infected patient or HCW during a SARS-CoV-2 aerosolizing event, were placed into an unused paper bag. Samples were tested at 30-minute and 12-hour intervals. RESULTS A total of 177 swabs were processed from 30 PPE samples. We found a 6.8% positivity rate among all samples across both collection sites. Highest positivity rates were associated with ventilator disconnection and exposure to respiratory droplets from coughing. Positivity rates differed between hospital units. Total positivity rates were similar between 30-minute (6.7%) and 12-hour (6.9%) sample testing time intervals. Control samples exposed to inactivated SARS-CoV-2 droplets had higher total viral counts than samples exposed to nebulized aerosols. CONCLUSIONS Data suggests paper bags are not a significant fomite risk for SARS-CoV-2 transmission. However, controls demonstrated a risk with droplet exposure. Data can inform guidelines for storing and re-using PPE in situations of limited supplies during future pandemics.
Collapse
Affiliation(s)
- Kyirsty Unger
- Oregon Health & Science University, Portland, Oregon, United States of America
| | - Leslie Dietz
- University of Oregon, Eugene, Oregon, United States of America
| | - Patrick Horve
- University of Oregon, Eugene, Oregon, United States of America
| | | | - Amber Lin
- Oregon Health & Science University, Portland, Oregon, United States of America
| | - Erin Kinney
- School of Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Bory Kea
- Department of Emergency Medicine, Center for Policy and Emergency Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
| |
Collapse
|
32
|
Fanaselle W, Pouillot R, Papafragkou E, Liggins G, Williams L, Doren JMVAN. Evaluation of the Impact of Compliance with Mitigation Strategies and Frequency of Restaurant Surface Cleaning and Sanitizing on Control of Norovirus Transmission from Ill Food Employees Using an Existing Quantitative Risk Assessment Model. J Food Prot 2022; 85:1177-1191. [PMID: 35358310 DOI: 10.4315/jfp-21-423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/29/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Reduction of foodborne illness caused by norovirus (NoV) continues to be a focus for the food safety community. Using a previously published quantitative risk assessment model, we evaluated more than 60 scenarios examining the impact of implementation of and compliance with risk management strategies identified in the U.S. Food and Drug Administration Food Code for (a) surface cleaning and sanitizing, (b) hand hygiene, (c) exclusion, or (d) restriction of ill employees. Implementation of and compliance with hand hygiene and ill food employee exclusion strategies had the largest impact on the predicted number of highly contaminated food servings and associated consumer illnesses. In scenarios in which gloves were always worn and hand washing compliance was 90%, the model estimated reductions in the number of highly contaminated food servings and ill consumers to 39 and 43% of baseline estimates (i.e., typical practice), respectively. Reductions were smaller when gloves were never worn. Hand washing compliance after using the restroom strongly impacted predicted numbers of highly contaminated servings and consumer illnesses. Ten percent compliance with removing or excluding ill food employees was predicted to increase the number of highly contaminated food servings and ill consumers to 221 and 213% of baseline estimates, respectively. Ninety-four percent compliance with exclusion of ill food employees was predicted to decrease these numbers to 69 and 71% of baseline estimates, respectively. Surface cleaning in food establishments had a relatively small impact on these measures. Restriction of food employees (removed from contact with food and food contact equipment and utensils) was not effective for reducing NoV illness unless this restriction included additional provisions. The results from this study can help risk managers prioritize mitigation strategies and their implementation for controlling the transmission of NoV and subsequent consumer foodborne illness. HIGHLIGHTS
Collapse
Affiliation(s)
- Wendy Fanaselle
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, Maryland 20740, USA
| | - Régis Pouillot
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, Maryland 20740, USA
| | - Efstathia Papafragkou
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, Maryland 20740, USA
| | - Girvin Liggins
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, Maryland 20740, USA
| | - Laurie Williams
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, Maryland 20740, USA
| | - Jane M VAN Doren
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, Maryland 20740, USA
| |
Collapse
|
33
|
Brault A, Néré R, Prados J, Boudreault S, Bisaillon M, Marchand P, Couture P, Labbé S. Cellulosic copper nanoparticles and a hydrogen peroxide-based disinfectant trigger rapid inactivation of pseudoviral particles expressing the Spike protein of SARS-CoV-2, SARS-CoV, and MERS-CoV. Metallomics 2022; 14:mfac044. [PMID: 35731587 DOI: 10.1093/mtomcs/mfac044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022]
Abstract
Severe acute respiratory syndrome (SARS) is a viral respiratory infection caused by human coronaviruses that include SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV). Although their primary mode of transmission is through contaminated respiratory droplets from infected carriers, the deposition of expelled virus particles onto surfaces and fomites could contribute to viral transmission. Here, we use replication-deficient murine leukemia virus (MLV) pseudoviral particles expressing SARS-CoV-2, SARS-CoV, or MERS-CoV Spike (S) protein on their surface. These surrogates of native coronavirus counterparts serve as a model to analyze the S-mediated entry into target cells. Carboxymethyl cellulose (CMC) nanofibers that are combined with copper (Cu) exhibit strong antimicrobial properties. S-pseudovirions that are exposed to CMC-Cu nanoparticles (30 s) display a dramatic reduction in their ability to infect target Vero E6 cells, with ∼97% less infectivity as compared to untreated pseudovirions. In contrast, addition of the Cu chelator tetrathiomolybdate protects S-pseudovirions from CMC-Cu-mediated inactivation. When S-pseudovirions were treated with a hydrogen peroxide-based disinfectant (denoted SaberTM) used at 1:250 dilution, their infectivity was dramatically reduced by ∼98%. However, the combined use of SaberTM and CMC-Cu is the most effective approach to restrict infectivity of SARS-CoV-2-S, SARS-CoV-S, and MERS-CoV-S pseudovirions in Vero E6 cell assays. Together, these results show that cellulosic Cu nanoparticles enhance the effectiveness of diluted SaberTM sanitizer, setting up an improved strategy to lower the risk of surface- and fomite-mediated transmission of enveloped respiratory viruses.
Collapse
Affiliation(s)
- Ariane Brault
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Raphael Néré
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Jérôme Prados
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Simon Boudreault
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Martin Bisaillon
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | | | | | - Simon Labbé
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| |
Collapse
|
34
|
Mallick D, Gupta D, Sharma S. Transfer of bacteria between fabric and surrogate skin. Am J Infect Control 2022; 50:758-763. [PMID: 34774893 DOI: 10.1016/j.ajic.2021.10.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 11/01/2022]
Abstract
BACKGROUND Contaminated textiles serve as fomites in healthcare settings. The extent of transfer of pathogens from fabrics depends on the surface properties of the 2 contact surfaces. METHODS In the current study, the effect of surface energy and surface roughness of fabrics on the transfer of Escherichia coli and Staphylococcus aureus to and from textiles to surrogate skin were determined. Three fabrics (100% cotton, 100% polyester, and 50-50 blend of cotton and polyester) having identical constructional parameters, were characterised on the basis of surface roughness, and energy. Assessment of transfer of bacteria was carried out by bringing the matrix seeded with inoculum in contact with the sterilized matrix for a predetermined period of time, followed by dislodging of cells from the recipient surface by vortexing, and plating. RESULTS AND DISCUSSION Results showed that 100% polyester attracted the highest number of bacterial cells compared to the others. It also released the maximum number of bacteria upon coming in contact with surrogate skin. Properties of fabrics like absorbency, surface energy, and surface roughness, simultaneously affected transfer. CONCLUSIONS It is advisable to minimize the use of 100% polyester in healthcare settings to curb the transfer load of bacteria from one surface to another.
Collapse
|
35
|
Lam MI, Vojnits K, Zhao M, MacNaughton P, Pakpour S. The effect of indoor daylight spectrum and intensity on viability of indoor pathogens on different surface materials. INDOOR AIR 2022; 32:e13076. [PMID: 35904390 DOI: 10.1111/ina.13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Built environments play a key role in the transmission of infectious diseases. Ventilation rates, air temperature, and humidity affect airborne transmission while cleaning protocols, material properties and light exposure can influence viability of pathogens on surfaces. We investigated how indoor daylight intensity and spectrum through electrochromic (EC) windows can impact the growth rate and viability of indoor pathogens on different surface materials (polyvinyl chloride [PVC] fabric, polystyrene, and glass) compared to traditional blinds. Results showed that tinted EC windows let in higher energy, shorter wavelength daylight than those with clear window and blind. The growth rates of pathogenic bacteria and fungi were significantly lower in spaces with EC windows compared to blinds: nearly 100% growth rate reduction was observed when EC windows were in their clear state followed by 41%-100% reduction in bacterial growth rate and 26%-42% reduction in fungal growth rate when EC windows were in their darkest tint. Moreover, bacterial viabilities were significantly lower on PVC fabric when they were exposed to indoor light at EC-tinted window. These findings are deemed fundamental to the design of healthy modern buildings, especially those that encompass sick and vulnerable individuals.
Collapse
Affiliation(s)
- Man In Lam
- Faculty of Applied Science, School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Kinga Vojnits
- Faculty of Applied Science, School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Michael Zhao
- Faculty of Applied Science, School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Piers MacNaughton
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sepideh Pakpour
- Faculty of Applied Science, School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
36
|
Patel SN, Mokhashi N, Peck TJ, Cai LZ, Salabati M, Soares RR, Hinkle J, Chaudhary V, Kuriyan AE, Cohen MN, Hsu J, Garg SJ. Seasonal and environmental variations in endophthalmitis after intravitreal anti-vascular endothelial growth factor injection: a six-year review. Curr Eye Res 2022; 47:1288-1293. [PMID: 35759609 DOI: 10.1080/02713683.2022.2093383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE/AIM To evaluate seasonal and environmental variations on the incidence and outcomes of post-injection endophthalmitis. MATERIALS AND METHODS A single-center, retrospective cohort study was conducted including all patients diagnosed with post-injection endophthalmitis between 2013-2018. Associations between climate variables and endophthalmitis incidence were evaluated. RESULTS Of 423,297 injections administered, seasonal distribution in spring, summer, autumn, and winter was 26%, 27%, 25%, and 22%, respectively. Of 171 cases of endophthalmitis identified, seasonal distribution over the spring, summer, autumn, and fall was 25%, 23%, 26%, and 26%, respectively. Endophthalmitis incidence was not correlated with monthly precipitation (p = 0.45), monthly snowfall (p = 0.49), or monthly temperature (p = 0.65). Worse visual outcomes at initial endophthalmitis presentation were correlated with increased precipitation level (p = 0.025), but were not correlated with snowfall level (p = 0.228) or mean monthly temperature (p = 0.132). Although there were no seasonal variations of visual acuity at endophthalmitis presentation (p = 0.894), odds of final visual acuity returning to within two lines of pre-endophthalmitis visual acuity were worse among patients with endophthalmitis diagnosed in the spring (OR, 0.041; p = 0.016). CONCLUSION In contrast to previous work on post-cataract endophthalmitis, seasonal and weather factors were not associated with post-injection endophthalmitis risk or bacterial species isolated. Visual outcomes at initial endophthalmitis presentation were correlated with precipitation, and worse visual outcomes were seen in patients who developed endophthalmitis in the spring.
Collapse
Affiliation(s)
- Samir N Patel
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, PA
| | - Nikita Mokhashi
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Travis J Peck
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, PA
| | - Louis Z Cai
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, PA
| | - Mirataollah Salabati
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, PA
| | - Rebecca R Soares
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, PA
| | - John Hinkle
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, PA
| | - Varun Chaudhary
- Hamilton Regional Eye Institute, St Joseph's Healthcare Hamilton, Division of Ophthalmology, Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Ajay E Kuriyan
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, PA
| | - Michael N Cohen
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, PA
| | - Jason Hsu
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, PA
| | - Sunir J Garg
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
37
|
Natural Additives Improving Polyurethane Antimicrobial Activity. Polymers (Basel) 2022; 14:polym14132533. [PMID: 35808578 PMCID: PMC9269143 DOI: 10.3390/polym14132533] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 01/20/2023] Open
Abstract
In recent years, there has been a growing interest in using polymers with antibacterial and antifungal properties; therefore, the present review is focused on the effect of natural compounds on the antibacterial and antifungal properties of polyurethane (PUR). This topic is important because materials and objects made with this polymer can be used as antibacterial and antifungal ones in places where hygiene and sterile conditions are particularly required (e.g., in healthcare, construction industries, cosmetology, pharmacology, or food industries) and thus can become another possibility in comparison to commonly used disinfectants, which mostly show high toxicity to the environment and the human health. The review presents the possibilities of using natural extracts as antibacterial, antifungal, and antiviral additives, which, in contrast to the currently used antibiotics, have a much wider effect. Antibiotics fight bacterial infections by killing bacteria (bactericidal effect) or slowing and stopping their growth (bacteriostatic effect) and effect on different kinds of fungi, but they do not fight viruses; therefore, compounds of natural origin can find wide use as biocidal substances. Fungi grow in almost any environment, and they reproduce easily in dirt and wet spaces; thus, the development of antifungal PUR foams is focused on avoiding fungal infections and inhibiting growth. Polymers are susceptible to microorganism adhesion and, consequently, are treated and modified to inhibit fungal and bacterial growth. The ability of micro-organisms to grow on polyurethanes can cause human health problems during the use and storage of polymers, making it necessary to use additives that eliminate bacteria, viruses, and fungi.
Collapse
|
38
|
Sobolik JS, Sajewski ET, Jaykus LA, Cooper DK, Lopman BA, Kraay ANM, Ryan PB, Guest JL, Webb-Girard A, Leon JS. Decontamination of SARS-CoV-2 from cold-chain food packaging provides no marginal benefit in risk reduction to food workers. Food Control 2022; 136:108845. [PMID: 35075333 PMCID: PMC8770992 DOI: 10.1016/j.foodcont.2022.108845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 01/20/2023]
Abstract
Countries continue to debate the need for decontamination of cold-chain food packaging to reduce possible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) fomite transmission among frontline workers. While laboratory-based studies demonstrate persistence of SARS-CoV-2 on surfaces, the likelihood of fomite-mediated transmission under real-life conditions is uncertain. Using a quantitative microbial risk assessment model of a frozen food packaging facility, we simulated 1) SARS-CoV-2 fomite-mediated infection risks following worker exposure to contaminated plastic packaging; and 2) reductions in these risks from masking, handwashing, and vaccination. In a frozen food facility without interventions, SARS-CoV-2 infection risk to a susceptible worker from contact with contaminated packaging was 1.5 × 10-3 per 1h-period (5th - 95th percentile: 9.2 × 10-6, 1.2 × 10-2). Standard food industry infection control interventions, handwashing and masking, reduced risk (99.4%) to 8.5 × 10-6 risk per 1h-period (5th - 95th percentile: 2.8 × 10-8, 6.6 × 10-5). Vaccination of the susceptible worker (two doses Pfizer/Moderna, vaccine effectiveness: 86-99%) with handwashing and masking reduced risk to 5.2 × 10-7 risk per 1h-period (5th - 95th percentile: 1.8 × 10-9, 5.4 × 10-6). Simulating increased transmissibility of current and future variants (Delta, Omicron), (2-, 10-fold viral shedding) among a fully vaccinated workforce, handwashing and masking continued to mitigate risk (1.4 × 10-6 - 8.8 × 10-6 risk per 1h-period). Additional decontamination of frozen food plastic packaging reduced infection risks to 1.2 × 10-8 risk per 1h-period (5th - 95th percentile: 1.9 × 10-11, 9.5 × 10-8). Given that standard infection control interventions reduced risks well below 1 × 10-4 (World Health Organization water quality risk thresholds), additional packaging decontamination suggest no marginal benefit in risk reduction. Consequences of this decontamination may include increased chemical exposures to workers, food quality and hazard risks to consumers, and unnecessary added costs to governments and the global food industry.
Collapse
Affiliation(s)
- Julia S Sobolik
- Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | | | - Lee-Ann Jaykus
- Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - D Kane Cooper
- Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Ben A Lopman
- Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Alicia N M Kraay
- Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - P Barry Ryan
- Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Jodie L Guest
- Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Amy Webb-Girard
- Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Juan S Leon
- Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
39
|
Walker MD, Vincent JC, Benson L, Stone CA, Harris G, Ambler RE, Watts P, Slatter T, López-García M, King MF, Noakes CJ, Thomas RJ. Effect of Relative Humidity on Transfer of Aerosol-Deposited Artificial and Human Saliva from Surfaces to Artificial Finger-Pads. Viruses 2022; 14:v14051048. [PMID: 35632793 PMCID: PMC9146372 DOI: 10.3390/v14051048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 12/03/2022] Open
Abstract
Surface to hand transfer of viruses represents a potential mechanism for human exposure. An experimental process for evaluating the touch transfer of aerosol-deposited material is described based on controlling surface, tribological, and soft matter components of the transfer process. A range of high-touch surfaces were evaluated. Under standardized touch parameters (15 N, 1 s), relative humidity (RH) of the atmosphere around the contact transfer event significantly influenced transfer of material to the finger-pad. At RH < 40%, transfer from all surfaces was <10%. Transfer efficiency increased markedly as RH increased, reaching a maximum of approximately 50%. The quantity of material transferred at specific RHs above 40% was also dependent on roughness of the surface material and the properties of the aerosol-deposited material. Smooth surfaces, such as melamine and stainless steel, generated higher transfer efficiencies compared to those with textured roughness, such as ABS pinseal and KYDEX® plastics. Pooled human saliva was transferred at a lower rate compared to artificial saliva, indicating the role of rheological properties. The artificial saliva data were modeled by non-linear regression and the impact of environmental humidity and temperature were evaluated within a Quantitative Microbial Risk Assessment model using SARS-CoV-2 as an example. This illustrated that the trade-off between transfer efficiency and virus survival may lead to the highest risks of fomite transmissions in indoor environments with higher humidity.
Collapse
Affiliation(s)
- Maurice D. Walker
- Defence Science Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK; (M.D.W.); (J.C.V.); (C.A.S.); (G.H.); (R.E.A.); (P.W.)
| | - Jack C. Vincent
- Defence Science Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK; (M.D.W.); (J.C.V.); (C.A.S.); (G.H.); (R.E.A.); (P.W.)
| | - Lee Benson
- School of Civil Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK; (L.B.); (M.-F.K.); (C.J.N.)
| | - Corinne A. Stone
- Defence Science Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK; (M.D.W.); (J.C.V.); (C.A.S.); (G.H.); (R.E.A.); (P.W.)
| | - Guy Harris
- Defence Science Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK; (M.D.W.); (J.C.V.); (C.A.S.); (G.H.); (R.E.A.); (P.W.)
| | - Rachael E. Ambler
- Defence Science Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK; (M.D.W.); (J.C.V.); (C.A.S.); (G.H.); (R.E.A.); (P.W.)
| | - Pat Watts
- Defence Science Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK; (M.D.W.); (J.C.V.); (C.A.S.); (G.H.); (R.E.A.); (P.W.)
| | - Tom Slatter
- Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK;
| | - Martín López-García
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK;
| | - Marco-Felipe King
- School of Civil Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK; (L.B.); (M.-F.K.); (C.J.N.)
| | - Catherine J. Noakes
- School of Civil Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK; (L.B.); (M.-F.K.); (C.J.N.)
| | - Richard J. Thomas
- Defence Science Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK; (M.D.W.); (J.C.V.); (C.A.S.); (G.H.); (R.E.A.); (P.W.)
- Correspondence:
| |
Collapse
|
40
|
Butot S, Zuber S, Moser M, Baert L. Data on Transfer of Human Coronavirus SARS-CoV-2 from Foods and Packaging Materials to Gloves Indicate That Fomite Transmission Is of Minor Importance. Appl Environ Microbiol 2022; 88:e0233821. [PMID: 35285254 PMCID: PMC9004375 DOI: 10.1128/aem.02338-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is mainly transmitted via droplets and aerosols. To evaluate the role of transmission by fomites, SARS-CoV-2-specific data on transfer rates from surfaces to hands and from hands to face are lacking. Here, we generated quantitatively controlled transfer rates for SARS-CoV-2 from food items (lettuce, ham, and vegetarian meat alternative [VMA]) and packaging materials (cardboard and plastic) to gloves using a wet, dry, and frozen viral inoculum and from glove to glove using a wet viral inoculum. For biosafety reasons, the transfer from surfaces to hands and hands to face was simulated by using gloves. The cumulative transfer rate was calculated by using the data from the first transfer experiment, food or packaging material to glove, and combined with the transfer rate obtained from the second transfer experiment from glove to glove. The cumulative transfer rates from lettuce (4.7%) and ham (3.4%) were not significantly different (P > 0.05) but were significantly higher (P < 0.05) than that from VMA ("wet" or "frozen"). The wet cumulative transfer rate from VMA (1.3%) was significantly higher than the cumulative transfer rate from frozen VMA (0.0011%). No transfer from plastic or cardboard was observed with a dry inoculum. The plastic packaging under wet conditions provided the highest cumulative transfer rate (3.0%), while the cumulative transfer from frozen cardboard was very small (0.035%). Overall, the transfer rates determined in this study suggest a minor role of foods or food packaging materials in infection transmission. IMPORTANCE The observation of SARS-CoV-2 RNA in swab samples from frozen fish packages in China, confirmed only once by cell culture, led to the hypothesis that food contaminated with SARS-CoV-2 virus particles could be the source of an outbreak. Epidemiological evidence for fomites as infection source is scarce, but it is important for the food industry to evaluate this infection path with quantitative microbial risk assessment (QMRA), using measured viral transfer rates from surfaces to hands and face. The present study provides transfer data for SARS-CoV-2 from various types of foods and packaging materials using quantitative methods that take uncertainties related to the virus recovery from the different surfaces into consideration. The transfer data from this model system provide important input parameters for QMRA models to assess the risk of SARS-CoV-2 transmission from contaminated food items.
Collapse
Affiliation(s)
- S Butot
- Société des Produits Nestlé, Nestlé Research, Institute of Food Safety and Analytical Science, Lausanne, Switzerland
| | - S Zuber
- Société des Produits Nestlé, Nestlé Research, Institute of Food Safety and Analytical Science, Lausanne, Switzerland
| | - M Moser
- Société des Produits Nestlé, Nestlé Research, Institute of Food Safety and Analytical Science, Lausanne, Switzerland
| | - L Baert
- Société des Produits Nestlé, Nestlé Research, Institute of Food Safety and Analytical Science, Lausanne, Switzerland
| |
Collapse
|
41
|
Claytor S, Campbell R, Hattori A, Brown E, Hollis C, Schureck M, Atchley H, Stone J, Grady M, Yang B, Harris TR. Portable Ultraviolet-C Chambers for Inactivation of SARS-CoV-2. JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY 2022; 126:126056. [PMID: 39359735 PMCID: PMC11415011 DOI: 10.6028/jres.126.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 10/04/2024]
Abstract
The goal of this project was to create and optimize the performance of portable chambers for reliable ultraviolet (UV) disinfection of personal protective equipment (PPE) and enable its safe reuse. During unforeseen times of high demand for PPE, such as during the coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), single-use PPE supply can be quickly depleted. UV radiation has been shown to disinfect materials with high efficacy. This paper reports the design and construction of two 280 nm ultraviolet-C (UV-C) disinfection chambers in the form of portable chambers with 46 cm × 46 cm × 46 cm interior dimensions, one using light-emitting diodes and the other using mercury vapor lamps. This paper summarizes and presents a review of SARS-CoV-2 UV deactivation research during 2020 to 2021. Additionally, this paper discusses efforts to increase the uniformity and overall intensity of the UV-C radiation within the chambers through the installation of a UV-reflective, porous polytetrafluoroethylene (PTFE) material. A calculator prototype was additionally designed to calculate the reduction of SARS-CoV-2 as a result of UV-C disinfection, and the prototype code is presented. The paper describes the selection of UV-C radiation sources for the chambers and the chambers' mechanical and electrical design, PTFE installation, testing, and safety considerations.
Collapse
Affiliation(s)
| | | | | | - Eric Brown
- Georgia Tech Research Institute, Atlanta, GA 30318, USA
| | | | - Max Schureck
- Georgia Tech Research Institute, Atlanta, GA 30318, USA
| | | | - John Stone
- Georgia Tech Research Institute, Atlanta, GA 30318, USA
| | - Michael Grady
- Georgia Tech Research Institute, Atlanta, GA 30318, USA
| | - Benjamin Yang
- Georgia Tech Research Institute, Atlanta, GA 30318, USA
| | | |
Collapse
|
42
|
Gião MS, Vardoulakis S. Aerosols and Bacteria From Hand Washing and Drying in Indoor Air. Front Public Health 2022; 10:804825. [PMID: 35198523 PMCID: PMC8858938 DOI: 10.3389/fpubh.2022.804825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/10/2022] [Indexed: 11/14/2022] Open
Abstract
Effective hand drying is an important part of hand hygiene that can reduce the risk of infectious disease transmission through cross-contamination of surfaces by wet hands. However, hand drying methods may also cause aerosolisation of pathogenic microorganisms if they are present in washed hands. This study investigated experimentally the impact of washing hands and different hand drying methods on the concentration and size distribution of aerosols and bacteria in indoor air. In this experiment, aerosol and bacteria concentrations were measured in indoor air while volunteers rinsed their hands with water or washed with soap and water prior to drying them with paper towels or jet air dryers. Results showed that the concentration of aerosols and bacteria in air increased with people walking in the room and washing hands, with a further increase during the hand drying process. The concentration of aerosols decreased with particle size, with maximum concentrations after drying hands of 6.63 × 106 ± 6.49 × 105 and 2.28 × 104 ± 9.72 × 103 particles m−3 for sizes 0.3 to <0.5 and ≥5.0 μm, respectively. The concentration of bacteria in indoor air after drying hands increased to a maximum of 3.81 × 102 ± 1.48 × 102 CFU m−3 (jet air dryers) and 4.50 × 102 ± 4.35 × 101 CFU m−3 (paper towels). This study indicates that the increase of aerosols and bacteria in air after drying hands with jet air dryers or paper towels are comparable and not statistically different from concentrations associated with walking and washing hands in the same environment. This work can support the development of hand hygiene practices and guidelines for public washrooms.
Collapse
Affiliation(s)
| | - Sotiris Vardoulakis
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, ACT, Australia
- *Correspondence: Sotiris Vardoulakis
| |
Collapse
|
43
|
Lanzarini NM, Federigi I, Marinho Mata R, Neves Borges MD, Mendes Saggioro E, Cioni L, Verani M, Carducci A, Costa Moreira J, Ferreira Mannarino C, Pereira Miagostovich M. Human adenovirus in municipal solid waste leachate and quantitative risk assessment of gastrointestinal illness to waste collectors. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 138:308-317. [PMID: 34922305 DOI: 10.1016/j.wasman.2021.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Leachate is a variable effluent from waste management systems generated during waste collection and on landfills. Twenty-two leachate samples from waste collection trucks and a landfill were collected from March to December 2019 in the municipality of Rio de Janeiro (Brazil) and were analyzed for Human Adenovirus (HAdV), bacterial indicators and physico-chemical parameters. For viral analysis, samples were concentrated by ultracentrifugation and processed for molecular analysis using QIAamp Fast DNA Stool mini kit® for DNA extraction followed by nested-PCR and qPCR/PMA-qPCR TaqMan® system. HAdV was detected by nested-PCR in 100% (9/9) and 83.33% (12/13) of the truck and landfill leachate samples, respectively. Viral concentrations ranged from 8.31 × 101 to 6.68 × 107 genomic copies per 100 ml by qPCR and PMA-qPCR. HAdV species A, B, C, and F were characterized using nucleotide sequencing. HAdV were isolated in A549 culture cells in 100% (9/9) and 46.2% (6/13) from truck and landfill leachate samples, respectively. Regardless of the detection methods, HAdV concentration was predicted by the quantity of total suspended solids. A quantitative microbial risk assessment was performed to measure the probability of gastrointestinal (GI) illness attributable to inadvertent oral ingestion of truck leachate, revealing the higher probability of disease for the direct splashing into the oral cavity (58%) than for the gloved hand-to-mouth (33%). In a scenario where waste collectors do not wear gloves as protective personal equipment, the risk increases to 67%. This is the first study revealing infectious HAdV in solid waste leachate and indicates a potential health risk for waste collectors.
Collapse
Affiliation(s)
- Natália Maria Lanzarini
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, RJ, Brazil; Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, RJ, Brazil.
| | - Ileana Federigi
- Hygiene and Environmental Virology Laboratory, Department of Biology, University of Pisa, Via S. Zeno 35/39, Pisa 56127, Italy
| | - Rafaela Marinho Mata
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, RJ, Brazil; Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Maria Denise Neves Borges
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Enrico Mendes Saggioro
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Lorenzo Cioni
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56123 Pisa, Italy
| | - Marco Verani
- Hygiene and Environmental Virology Laboratory, Department of Biology, University of Pisa, Via S. Zeno 35/39, Pisa 56127, Italy
| | - Annalaura Carducci
- Hygiene and Environmental Virology Laboratory, Department of Biology, University of Pisa, Via S. Zeno 35/39, Pisa 56127, Italy
| | - Josino Costa Moreira
- Center for Studies on Workers' Health and Human Ecology, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Camille Ferreira Mannarino
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
44
|
Reynolds KA, Verhougstraete MP, Mena KD, Sattar SA, Scott EA, Gerba CP. Quantifying pathogen infection risks from household laundry practices. J Appl Microbiol 2022; 132:1435-1448. [PMID: 34465009 PMCID: PMC9290578 DOI: 10.1111/jam.15273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/23/2022]
Abstract
AIMS Contaminated laundry can spread infections. However, current directives for safe laundering are limited to healthcare settings and not reflective of domestic conditions. We aimed to use quantitative microbial risk assessment to evaluate household laundering practices (e.g., detergent selection, washing and drying temperatures, and sanitizer use) relative to log10 reductions in pathogens and infection risks during the clothes sorting, washer/dryer loading, folding and storing steps. METHODS AND RESULTS Using published data, we characterized laundry infection risks for respiratory and enteric pathogens relative to a single user contact scenario and a 1.0 × 10-6 acceptable risk threshold. For respiratory pathogens, risks following cold water wash temperatures (e.g. median 14.4℃) and standard detergents ranged from 2.2 × 10-5 to 2.2 × 10-7 . Use of advanced, enzymatic detergents reduced risks to 8.6 × 10-8 and 2.2 × 10-11 respectively. For enteric pathogens, however, hot water, advanced detergents, sanitizing agents and drying are needed to reach risk targets. SIGNIFICANCE AND IMPACT OF THE STUDY Conclusions provide guidance for household laundry practices to achieve targeted risk reductions, given a single user contact scenario. A key finding was that hand hygiene implemented at critical control points in the laundering process was the most significant driver of infection prevention, additionally reducing infection risks by up to 6 log10 .
Collapse
Affiliation(s)
- Kelly A. Reynolds
- The Mel and Enid Zuckerman College of Public HealthUniversity of ArizonaTucsonAZUSA
| | | | - Kristina D. Mena
- School of Public HealthThe University of Texas Health Science Center at HoustonEl PasoTXUSA
| | | | - Elizabeth A. Scott
- Center for Hygiene and Health, Department of BiologySimmons UniversityBostonMAUSA
| | - Charles P. Gerba
- Department of Environmental SciencesUniversity of ArizonaTucsonAZUSA
| |
Collapse
|
45
|
Hardison RL, Nelson SW, Barriga D, Ghere JM, Fenton GA, James RR, Stewart MJ, Lee SD, Calfee MW, Ryan SP, Howard MW. Efficacy of detergent-based cleaning methods against coronavirus MHV-A59 on porous and non-porous surfaces. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2022; 19:91-101. [PMID: 34878351 PMCID: PMC8965596 DOI: 10.1080/15459624.2021.2015075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study evaluated the efficacy of detergent-based surface cleaning methods against Murine Hepatitis Virus A59 (MHV) as a surrogate coronavirus for SARS-CoV-2. MHV (5% soil load in culture medium or simulated saliva) was inoculated onto four different high-touch materials [stainless steel (SS), Acrylonitrile Butadiene Styrene plastic (ABS), Formica, seat fabric (SF)]. Immediately and 2-hr post-inoculation, coupons were cleaned (damp wipe wiping) with and without pretreatment with detergent solution or 375 ppm hard water. Results identified that physical removal (no pretreatment) removed >2.3 log10 MHV on ABS, SS, and Formica when surfaces were cleaned immediately. Pretreatment with detergent or hard water increased effectiveness over wet wiping 2-hr post-inoculation; pretreatment with detergent significantly increased (p ≤ 0.05) removal of MHV in simulated saliva, but not in culture media, over hard water pretreatment (Formica and ABS). Detergent and hard water cleaning methods were ineffective on SF under all conditions. Overall, efficacy of cleaning methods against coronaviruses are material- and matrix-dependent; pre-wetting surfaces with detergent solutions increased efficacy against coronavirus suspended in simulated saliva. This study provides data highlighting the importance of incorporating a pre-wetting step prior to detergent cleaning and can inform cleaning strategies to reducing coronavirus surface transmission.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sang Don Lee
- U.S. Environmental Protection Agency, Durham, North Carolina
| | - M. Worth Calfee
- U.S. Environmental Protection Agency, Durham, North Carolina
| | - Shawn P. Ryan
- U.S. Environmental Protection Agency, Durham, North Carolina
| | | |
Collapse
|
46
|
Wilson AM, Sleeth DK, Schaefer C, Jones RM. Transmission of Respiratory Viral Diseases to Health Care Workers: COVID-19 as an Example. Annu Rev Public Health 2022; 43:311-330. [DOI: 10.1146/annurev-publhealth-052120-110009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Health care workers (HCWs) can acquire infectious diseases, including coronavirus disease 2019 (COVID-19), from patients. Herein, COVID-19 is used with the source–pathway–receptor framework as an example to assess evidence for the role of aerosol transmission and indirect contact transmission of viral respiratory infectious diseases. Evidence for both routes is strong for COVID-19 and other respiratory viruses, but aerosol transmission is likely dominant for COVID-19. Key knowledge gaps about transmission processes and control strategies include the distribution of viable virus among respiratory aerosols of different sizes, the mechanisms and efficiency by which virus deposited on the facial mucous membrane moves to infection sites inside the body, and the performance of source controls such as face coverings and aerosol containment devices. To ensure that HCWs are adequately protected from infection, guidelines and regulations must be updated to reflect the evidence that respiratory viruses are transmitted via aerosols. Expected final online publication date for the Annual Review of Public Health, Volume 43 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Amanda M. Wilson
- Department of Family and Preventive Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, USA;, ,
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson, Arizona, USA
| | - Darrah K. Sleeth
- Department of Family and Preventive Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, USA;, ,
| | - Camie Schaefer
- Department of Family and Preventive Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, USA;, ,
| | - Rachael M. Jones
- Department of Family and Preventive Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, USA;, ,
| |
Collapse
|
47
|
Xu J, Wang C, Fu SC, Chao CYH. The effect of head orientation and personalized ventilation on bioaerosol deposition from a cough. INDOOR AIR 2022; 32:e12973. [PMID: 34888956 DOI: 10.1111/ina.12973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Head orientations directly determine movement directions of exhaled pathogen-laden droplets, while there is a lack of research about the effect of the infected person's head orientations on respiratory disease transmission during close contact. This work experimentally investigated the effect of different head orientations of an infected person (IP) on the bioaerosol deposition on a healthy person (HP) during close contact. Also, the effectiveness of PV flow in reducing bioaerosol deposition on the HP under the IP's different head orientations was investigated. Bacteriophage T3 was employed to represent viruses inside the cough-generated aerosols. The bioaerosol depositions on different locations of the HP's upper body (chest, shoulder, and neck) and face (chin, mucous membranes, cheek, and forehead) were characterized by a cultivation method. Results showed that the IP's different head orientations resulted in significantly different deposition density on the HP. PV flow could reduce the bioaerosol deposition remarkably for most cases investigated. The effectiveness of PV flow in reducing deposition on the HP was significantly affected by the IP's head orientations. Findings suggest that changing head orientations can be a control measure to reduce the bioaerosol deposition. Personalized ventilation can be a potential method to reduce the bioaerosol deposition on the HP.
Collapse
Affiliation(s)
- Jingcui Xu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Cunteng Wang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Sau Chung Fu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Christopher Y H Chao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
- Department of Building Environment and Energy Engineering, Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
48
|
King M, Wilson AM, Weir MH, López‐García M, Proctor J, Hiwar W, Khan A, Fletcher LA, Sleigh PA, Clifton I, Dancer SJ, Wilcox M, Reynolds KA, Noakes CJ. Modeling fomite-mediated SARS-CoV-2 exposure through personal protective equipment doffing in a hospital environment. INDOOR AIR 2022; 32:e12938. [PMID: 34693567 PMCID: PMC8653260 DOI: 10.1111/ina.12938] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/20/2021] [Accepted: 09/18/2021] [Indexed: 06/08/2023]
Abstract
Self-contamination during doffing of personal protective equipment (PPE) is a concern for healthcare workers (HCW) following SARS-CoV-2-positive patient care. Staff may subconsciously become contaminated through improper glove removal; so, quantifying this exposure is critical for safe working procedures. HCW surface contact sequences on a respiratory ward were modeled using a discrete-time Markov chain for: IV-drip care, blood pressure monitoring, and doctors' rounds. Accretion of viral RNA on gloves during care was modeled using a stochastic recurrence relation. In the simulation, the HCW then doffed PPE and contaminated themselves in a fraction of cases based on increasing caseload. A parametric study was conducted to analyze the effect of: (1a) increasing patient numbers on the ward, (1b) the proportion of COVID-19 cases, (2) the length of a shift, and (3) the probability of touching contaminated PPE. The driving factors for the exposure were surface contamination and the number of surface contacts. The results simulate generally low viral exposures in most of the scenarios considered including on 100% COVID-19 positive wards, although this is where the highest self-inoculated dose is likely to occur with median 0.0305 viruses (95% CI =0-0.6 viruses). Dose correlates highly with surface contamination showing that this can be a determining factor for the exposure. The infection risk resulting from the exposure is challenging to estimate, as it will be influenced by the factors such as virus variant and vaccination rates.
Collapse
Affiliation(s)
| | - Amanda M. Wilson
- Department of Community, Environment, and PolicyMel and Enid Zuckerman College of Public HealthUniversity of ArizonaTucsonArizonaUSA
| | - Mark H. Weir
- Division of Environmental Health SciencesThe Ohio State UniversityColumbusOhioUSA
| | | | | | - Waseem Hiwar
- School of Civil EngineeringUniversity of LeedsLeedsUK
| | - Amirul Khan
- School of Civil EngineeringUniversity of LeedsLeedsUK
| | | | | | - Ian Clifton
- Department of Respiratory MedicineSt. James's HospitalUniversity of LeedsLeedsUK
| | - Stephanie J. Dancer
- School of Applied SciencesEdinburgh Napier UniversityEdinburghUK
- Department of MicrobiologyHairmyres HospitalNHS LanarkshireGlasgowG75 8RGUK
| | - Mark Wilcox
- Healthcare Associated Infections Research GroupLeeds Teaching Hospitals NHS Trust and University of LeedsLeedsUK
| | - Kelly A. Reynolds
- Department of Community, Environment, and PolicyMel and Enid Zuckerman College of Public HealthUniversity of ArizonaTucsonArizonaUSA
| | | |
Collapse
|
49
|
Nastasi N, Renninger N, Bope A, Cochran SJ, Greaves J, Haines SR, Balasubrahmaniam N, Stuart K, Panescu J, Bibby K, Hull NM, Dannemiller KC. Persistence of viable MS2 and Phi6 bacteriophages on carpet and dust. INDOOR AIR 2022; 32:e12969. [PMID: 34882845 DOI: 10.1111/ina.12969] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/11/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Resuspension of dust from flooring is a major source of human exposure to microbial contaminants, but the persistence of viruses on dust and carpet and the contribution to human exposure are often unknown. The goal of this work is to determine viability of MS2 and Phi6 bacteriophages on cut carpet, looped carpet, and house dust both over time and after cleaning. Bacteriophages were nebulized onto carpet or dust in artificial saliva. Viability was measured at 0, 1, 2, 3, 4, 24, and 48 h and after cleaning by vacuum, steam, hot water extraction, and disinfection. MS2 bacteriophages showed slower viability decay rates in dust (-0.11 hr-1 ), cut carpet (-0.20 hr-1 ), and looped carpet (-0.09 hr-1 ) compared to Phi6 (-3.36 hr-1 , -1.57 hr-1 , and -0.20 hr-1 , respectively). Viable viral concentrations were reduced to below the detection limit for steam and disinfection for both MS2 and Phi6 (p < 0.05), while vacuuming and hot water extraction showed no significant changes in concentration from uncleaned carpet (p > 0.05). These results demonstrate that MS2 and Phi6 bacteriophages can remain viable in carpet and dust for several hours to days, and cleaning with heat and disinfectants may be more effective than standard vacuuming.
Collapse
Affiliation(s)
- Nicholas Nastasi
- Environmental Sciences Graduate Program, Ohio State University, Columbus, OH, United States
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, Ohio State University, Columbus, OH, United States
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, United States
| | - Nicole Renninger
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, Ohio State University, Columbus, OH, United States
| | - Ashleigh Bope
- Environmental Sciences Graduate Program, Ohio State University, Columbus, OH, United States
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, Ohio State University, Columbus, OH, United States
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, United States
| | - Samuel J Cochran
- Environmental Sciences Graduate Program, Ohio State University, Columbus, OH, United States
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, Ohio State University, Columbus, OH, United States
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, United States
| | - Justin Greaves
- Department of Civil & Environmental Engineering & Earth Sciences, College of Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Sarah R Haines
- Department of Civil & Mineral Engineering, University of Toronto, Toronto, Canada
| | - Neeraja Balasubrahmaniam
- Environmental Sciences Graduate Program, Ohio State University, Columbus, OH, United States
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, Ohio State University, Columbus, OH, United States
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, United States
| | - Katelyn Stuart
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, United States
| | - Jenny Panescu
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, Ohio State University, Columbus, OH, United States
| | - Kyle Bibby
- Department of Civil & Environmental Engineering & Earth Sciences, College of Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Natalie M Hull
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, Ohio State University, Columbus, OH, United States
- Sustainability Institute, Ohio State University, Columbus, OH, United States
| | - Karen C Dannemiller
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, Ohio State University, Columbus, OH, United States
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, United States
- Sustainability Institute, Ohio State University, Columbus, OH, United States
| |
Collapse
|
50
|
Aragón A, Velasco MJ, Gavilán AM, Fernández-García A, Sanz JC. Mumps virus outbreak related to a water pipe (narghile) shared smoking. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2021; 39:503-505. [PMID: 34531159 DOI: 10.1016/j.eimce.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/05/2020] [Indexed: 06/13/2023]
Abstract
INTRODUCTION This study describes a mumps outbreak among a group of young people who shared a same narghile to smoking. Saliva and blood samples were obtained from 3 cases for RT-PCR and serology respectively. METHODS The notification of a mumps case started an epidemiological investigation. Information of other 6 additional symptomatic persons who had gathered with the case in a discotheque where they smoking in a same narghile was achieved. RT-PCR positive samples were genotyped by sequencing. RESULTS The 7 patients resided in 3 different municipalities, and they do not have get together for more than a month until the meeting in the discotheque. Four cases were confirmed by RT-PCR and/or IgM determinations. The genomic investigation showed identical nucleic sequences. CONCLUSIONS This outbreak is consequence of the common use of a narghile to smoking. The public usage of these water pipes should be regulated.
Collapse
Affiliation(s)
- Andrés Aragón
- Unidad Técnica 8 del Área de Salud Pública, Dirección General de Salud Pública, Consejería de Sanidad Comunidad de Madrid, Madrid. Spain.
| | - Manuel José Velasco
- Unidad Técnica 8 del Área de Salud Pública, Dirección General de Salud Pública, Consejería de Sanidad Comunidad de Madrid, Madrid. Spain
| | - Ana M Gavilán
- Laboratorio de Referencia e Investigación en Enfermedades Víricas Inmunoprevenibles, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain; Consorcio de Investigación Biomédica de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Aurora Fernández-García
- Laboratorio de Referencia e Investigación en Enfermedades Víricas Inmunoprevenibles, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain; Consorcio de Investigación Biomédica de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Carlos Sanz
- Consorcio de Investigación Biomédica de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Laboratorio Regional de Salud Pública de la Comunidad de Madrid, Dirección General de Salud Pública, Consejería de Sanidad Comunidad de Madrid, Madrid, Spain
| |
Collapse
|