1
|
Alvarez DDL, Hayashida R, Cavallaro MC, Santos DM, Santos LM, Müller C, Watanabe LFM, Bello VH, Krause-Sakate R, Hoback WW, Oliveira RCD. Susceptibility of Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) Mediterranean Populations Found in São Paulo, Brazil to 11 Insecticides and Characterization of Their Endosymbionts. INSECTS 2024; 15:670. [PMID: 39336637 PMCID: PMC11432688 DOI: 10.3390/insects15090670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024]
Abstract
The silverleaf whitefly, Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae), is a significant agricultural pest worldwide, impacting a variety of crop yields. Since the introduction of B. tabaci Mediterranean (MED) species in Brazil, limited research has measured the relative efficacy of the primary insecticides used in whitefly management. This study evaluated the susceptibility of three distinct B. tabaci MED populations to 11 insecticide active ingredients and characterized the bacterial endosymbionts within each population. The insecticides tested were acetamiprid, bifenthrin, cyantraniliprole, diafenthiuron, spiromesifen, imidacloprid, pymetrozine, pyriproxyfen, sulfoxaflor, and thiamethoxam. Results showed varying LC50 and LC90 values among tested insecticides and populations. Notably, populations varied in response to imidacloprid and thiamethoxam with some populations having a 6× higher tolerance. Sequencing data of endosymbionts revealed that individuals from the most susceptible B. tabaci population harbored Rickettsia and Arsenophonus, whereas these bacteria were not detected in the resistant populations. These findings highlight the need for frequent insecticide toxicity bioassays of distinct B. tabaci populations and the adoption of integrated pest management strategies to preserve the efficacy of insecticides for B. tabaci control. Additionally, the role of infection by endosymbionts to alter susceptibility should be further explored.
Collapse
Affiliation(s)
- Daniel de Lima Alvarez
- Crop Protection Department, School of Agronomic Sciences, São Paulo State University "Júlio de Mesquita Filho" (FCA/UNESP), Botucatu 18610-034, SP, Brazil
| | - Rafael Hayashida
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Michael C Cavallaro
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Daniel Mariano Santos
- Crop Protection Department, School of Agronomic Sciences, São Paulo State University "Júlio de Mesquita Filho" (FCA/UNESP), Botucatu 18610-034, SP, Brazil
| | - Lucas Moraes Santos
- Biotrop, Solutions in Biological Technologies, Curitiba 81460-020, PR, Brazil
| | | | | | - Vinicius Henrique Bello
- Department of Plant Pathology and Nematology, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, SP, Brazil
| | - Renate Krause-Sakate
- Crop Protection Department, School of Agronomic Sciences, São Paulo State University "Júlio de Mesquita Filho" (FCA/UNESP), Botucatu 18610-034, SP, Brazil
| | - William Wyatt Hoback
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Regiane Cristina de Oliveira
- Crop Protection Department, School of Agronomic Sciences, São Paulo State University "Júlio de Mesquita Filho" (FCA/UNESP), Botucatu 18610-034, SP, Brazil
| |
Collapse
|
2
|
Alsufyani T, Al-Otaibi N, Alotaibi NJ, M'sakni NH, Alghamdi EM. GC Analysis, Anticancer, and Antibacterial Activities of Secondary Bioactive Compounds from Endosymbiotic Bacteria of Pomegranate Aphid and Its Predator and Protector. Molecules 2023; 28:molecules28104255. [PMID: 37241995 DOI: 10.3390/molecules28104255] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Bacterial secondary metabolites are a valuable source of various molecules that have antibacterial and anticancer activity. In this study, ten endosymbiotic bacteria of aphids, aphid predators and ants were isolated. Bacterial strains were identified according to the 16S rRNA gene. Ethyl acetate fractions of methanol extract (EA-ME) were prepared from each isolated bacterium and tested for their antibacterial activities using the disk diffusion method. The EA-ME of three bacterial species, Planococcus sp., Klebsiella aerogenes, Enterococcus avium, from the pomegranate aphids Aphis punicae, Chrysoperia carnea, and Tapinoma magnum, respectively, exhibited elevated antibacterial activity against one or several of the five pathogenic bacteria tested. The inhibition zones ranged from 10.00 ± 0.13 to 20.00 ± 1.11 mm, with minimum inhibitory concentration (MIC) values ranging from 0.156 mg/mL to 1.25 mg/mL. The most notable antibacterial activity was found in the EA-ME of K. aerogenes against Klebsiella pneumonia and Escherichia coli, with an MIC value of 0.156 mg/mL. The cytotoxic activity of EA-ME was dependent on the cell line tested. The most significant cytotoxicity effect was observed for extracts of K. aerogenes and E. avium, at 12.5 µg/mL, against the epithelial cells of lung carcinoma (A549), with a cell reduction of 79.4% and 67.2%, respectively. For the EA-ME of K. aerogenes and Pantoea agglomerans at 12.5 µg/mL, 69.4% and 67.8% cell reduction were observed against human colon cancer (Hct116), respectively. Gas chromatography-mass spectrometry (GC-MS) analysis of three EA-ME revealed the presence of several bioactive secondary metabolites that have been reported previously to possess antibacterial and anticancer properties. To the best of our knowledge, this is the first study to examine the biological activities of endosymbiotic bacteria in aphids, aphid predators and ants. The promising data presented in this study may pave the way for alternative drugs to overcome the continued emergence of multidrug-resistant bacteria, and find alternative drugs to conventional cancer therapies.
Collapse
Affiliation(s)
- Taghreed Alsufyani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Najwa Al-Otaibi
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Noura J Alotaibi
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nour Houda M'sakni
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Laboratory of the Interfaces and Advanced Materials (LIMA), Science Faculty, Monastir University, P.O. Box 05019, Monastir 5019, Tunisia
| | - Eman M Alghamdi
- Chemistry Department, Faculty of Science, King Abdul Aziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Nencioni A, Pastorelli R, Bigiotti G, Cucu MA, Sacchetti P. Diversity of the Bacterial Community Associated with Hindgut, Malpighian Tubules, and Foam of Nymphs of Two Spittlebug Species (Hemiptera: Aphrophoridae). Microorganisms 2023; 11:microorganisms11020466. [PMID: 36838431 PMCID: PMC9967529 DOI: 10.3390/microorganisms11020466] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Spittlebugs are xylem-sap feeding insects that can exploit a nutrient-poor diet, thanks to mutualistic endosymbionts residing in various organs of their body. Although obligate symbioses in some spittlebug species have been quite well studied, little is known about their facultative endosymbionts, especially those inhabiting the gut. Recently, the role played by spittlebugs as vectors of the phytopathogenetic bacterium Xylella fastidiosa aroused attention to this insect group, boosting investigations aimed at developing effective yet sustainable control strategies. Since spittlebug nymphs are currently the main target of applied control, the composition of gut bacterial community of the juveniles of Philaenus spumarius and Lepyronia coleoptrata was investigated using molecular techniques. Moreover, bacteria associated with their froth, sampled from different host plants, were studied. Results revealed that Sodalis and Rickettsia bacteria are the predominant taxa in the gut of P. spumarius and L. coleoptrata nymphs, respectively, while Rhodococcus was found in both species. Our investigations also highlighted the presence of recurring bacteria in the froth. Furthermore, the foam hosted several bacterial species depending on the host plant, the insect species, or on soil contaminant. Overall, first findings showed that nymphs harbor a large and diverse bacterial community in their gut and froth, providing new accounts to the knowledge on facultative symbionts of spittlebugs.
Collapse
Affiliation(s)
- Anita Nencioni
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Roberta Pastorelli
- Research Center for Agriculture and Environment, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA-AA), Via di Lanciola 12/A, 50125 Florence, Italy
| | - Gaia Bigiotti
- Research Center for Agriculture and Environment, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA-AA), Via di Lanciola 12/A, 50125 Florence, Italy
| | - Maria Alexandra Cucu
- Research Center for Agriculture and Environment, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA-AA), Via di Lanciola 12/A, 50125 Florence, Italy
| | - Patrizia Sacchetti
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy
- Correspondence: ; Tel.: +39-055-2755554
| |
Collapse
|
4
|
Mancini E, Sabatelli S, Hu Y, Frasca S, Di Giulio A, Audisio P, Brown CD, Russell JA, Trizzino M. Uncovering Active Bacterial Symbionts in Three Species of Pollen-feeding Beetles (Nitidulidae: Meligethinae). MICROBIAL ECOLOGY 2023; 85:335-339. [PMID: 35059821 DOI: 10.1007/s00248-022-01964-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Microbial symbionts enable many phytophagous insects to specialize on plant-based diets through a range of metabolic services. Pollen comprises one-plant tissue consumed by such herbivores. While rich in lipids and proteins, its nutrient content is often imbalanced and difficult-to-access due to a digestibly recalcitrant cell wall. Pollen quality can be further degraded by harmful allelochemicals. To identify microbes that may aid in palynivory, we performed cDNA-based 16S rRNA metabarcoding on three related pollen beetles (Nitidulidae: Meligethinae) exhibiting different dietary breadths: Brassicogethes aeneus, B. matronalis, and Meligethes atratus. Nine bacterial symbionts (i.e., 97% OTUs) exhibited high metabolic activity during active feeding. Subsequent PCR surveys revealed varying prevalence of those from three Rickettsialles genera-Lariskella, Rickettsia, and Wolbachia-within beetle populations. Our findings lay the groundwork for future studies on the influence of phylogeny and diet on palynivorous insect microbiomes, and roles of symbionts in the use of challenging diets.
Collapse
Affiliation(s)
- Emiliano Mancini
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Viale dell'Università 32, 00185, Rome, Italy.
| | - Simone Sabatelli
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Viale dell'Università 32, 00185, Rome, Italy
| | - Yi Hu
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Sara Frasca
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Viale dell'Università 32, 00185, Rome, Italy
| | - Andrea Di Giulio
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146, Rome, Italy
| | - Paolo Audisio
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Viale dell'Università 32, 00185, Rome, Italy
| | - Christopher D Brown
- Department of Genetics, University of Pennsylvania, 538B 415, Curie Blvd, Philadelphia, PA, 19103, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
| | - Marco Trizzino
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 S 10TH street, Philadelphia, PA, 19107, USA
| |
Collapse
|
5
|
Kaavya K, Tharakan J, Joshi CO, Aneesh EM. Role of vertically transmitted viral and bacterial endosymbionts of Aedes mosquitoes. Does Paratransgenesis influence vector-borne disease control? Symbiosis 2022. [DOI: 10.1007/s13199-022-00836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Wu W, Shan HW, Li JM, Zhang CX, Chen JP, Mao Q. Roles of Bacterial Symbionts in Transmission of Plant Virus by Hemipteran Vectors. Front Microbiol 2022; 13:805352. [PMID: 35154053 PMCID: PMC8829006 DOI: 10.3389/fmicb.2022.805352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
The majority of plant viruses are transmitted by hemipteran insects. Bacterial symbionts in hemipteran hosts have a significant impact on the host life, physiology and ecology. Recently, the involvement of bacterial symbionts in hemipteran vector-virus and vector-plant interactions has been documented. Thus, the exploitation and manipulation of bacterial symbionts have great potential for plant viral disease control. Herein, we review the studies performed on the impact of symbiotic bacteria on plant virus transmission, including insect-bacterial symbiont associations, the role of these bacterial symbionts in viral acquisition, stability and release during viral circulation in insect bodies, and in viral vertical transmission. Besides, we prospect further studies aimed to understand tripartite interactions of the virus-symbiotic microorganisms-insect vector.
Collapse
|
7
|
Guo C, Peng X, Wang H, Zheng X, Hu P, Zhou J, Ding Z, Wang X, Yang Z. Bacterial diversity of Leptocybe invasa Fisher & La Salle (Hymenoptera: Eulophidae) from different geographical conditions in China. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21847. [PMID: 34596262 DOI: 10.1002/arch.21847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Insects harbor numerous endosymbionts, including bacteria, fungi, yeast, and viruses, which could affect the ecology and behavior of their hosts. However, data regarding the effect of environmental factors on endosymbiotic bacteria of Leptocybe invasa (Hymenoptera: Eulophidae) are quite rare. In this study, we assessed the diversity of endosymbiotic bacteria of L. invasa from 10 different geographic populations collected across China through the Illumina MiSeq platform. A total of 547 OTUs were generated, which were annotated into 19 phyla, 33 classes, 75 orders, 137 families, and 274 genera. The dominant bacteria detected in L. invasa were Rickettsia, and Pantoea, Enterobacter, Pseudomonas, Acinetobacter, and Bacillus were also annotated among each population. Nevertheless, the endosymbiotic bacterial abundance and diversity varied among different populations, which was related to the local climate (annual mean high temperature). The bacterial function prediction analysis showed that these endosymbiotic bacteria were concentrated in metabolism, such as carbohydrate, amino acid, and energy metabolism. Overall, the results provide a comprehensive description of the endosymbiotic bacteria in 10 different populations of an important eucalyptus pest L. invasa, and help to understand the endosymbiotic bacterial diversity and adaptation of various conditions.
Collapse
Affiliation(s)
- Chunhui Guo
- College of Forestry, Guangxi University, Nanning, China
| | - Xin Peng
- College of Forestry, Guangxi University, Nanning, China
| | - Hantang Wang
- College of Forestry, Guangxi University, Nanning, China
| | - Xialin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Ping Hu
- College of Forestry, Guangxi University, Nanning, China
| | - Jing Zhou
- College of Forestry, Guangxi University, Nanning, China
| | - Zhirou Ding
- College of Forestry, Guangxi University, Nanning, China
| | - Xue Wang
- College of Forestry, Guangxi University, Nanning, China
| | - Zhende Yang
- College of Forestry, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, Forestry College, Guangxi University, Nanning, China
| |
Collapse
|
8
|
Bao XY, Yan JY, Yao YL, Wang YB, Visendi P, Seal S, Luan JB. Lysine provisioning by horizontally acquired genes promotes mutual dependence between whitefly and two intracellular symbionts. PLoS Pathog 2021; 17:e1010120. [PMID: 34843593 PMCID: PMC8659303 DOI: 10.1371/journal.ppat.1010120] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/09/2021] [Accepted: 11/16/2021] [Indexed: 11/18/2022] Open
Abstract
Horizontal gene transfer is widespread in insects bearing intracellular symbionts. Horizontally transferred genes (HTGs) are presumably involved in amino acid synthesis in sternorrhynchan insects. However, their role in insect-symbiont interactions remains largely unknown. We found symbionts Portiera, Hamiltonella and Rickettsia possess most genes involved in lysine synthesis in the whitefly Bemisia tabaci MEAM1 although their genomes are reduced. Hamiltonella maintains a nearly complete lysine synthesis pathway. In contrast, Portiera and Rickettsia require the complementation of whitefly HTGs for lysine synthesis and have lysE, encoding a lysine exporter. Furthermore, each horizontally transferred lysine gene of ten B. tabaci cryptic species shares an evolutionary origin. We demonstrated that Hamiltonella did not alter the titers of Portiera and Rickettsia or lysine gene expression of Portiera, Rickettsia and whiteflies. Hamiltonella also did not impact on lysine levels or protein localization in bacteriocytes harboring Portiera and ovaries infected with Rickettsia. Complementation with whitefly lysine synthesis HTGs rescued E. coli lysine gene knockout mutants. Silencing whitefly lysA in whiteflies harboring Hamiltonella reduced lysine levels, adult fecundity and titers of Portiera and Rickettsia without influencing the expression of Hamiltonella lysA. Furthermore, silencing whitefly lysA in whiteflies lacking Hamiltonella reduced lysine levels, adult fecundity and titers of Portiera and Rickettsia in ovarioles. Therefore, we, for the first time, demonstrated an essential amino acid lysine synthesized through HTGs is important for whitefly reproduction and fitness of both obligate and facultative symbionts, and it illustrates the mutual dependence between whitefly and its two symbionts. Collectively, this study reveals that acquisition of horizontally transferred lysine genes contributes to coadaptation and coevolution between B. tabaci and its symbionts.
Collapse
Affiliation(s)
- Xi-Yu Bao
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Jin-Yang Yan
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Ya-Lin Yao
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yan-Bin Wang
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Paul Visendi
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Susan Seal
- Agriculture, Health and Environment Department, Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, United Kingdom
| | - Jun-Bo Luan
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- * E-mail:
| |
Collapse
|
9
|
Milenovic M, Ghanim M, Hoffmann L, Rapisarda C. Whitefly endosymbionts: IPM opportunity or tilting at windmills? JOURNAL OF PEST SCIENCE 2021; 95:543-566. [PMID: 34744550 PMCID: PMC8562023 DOI: 10.1007/s10340-021-01451-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 05/23/2023]
Abstract
Whiteflies are sap-sucking insects responsible for high economic losses. They colonize hundreds of plant species and cause direct feeding damage and indirect damage through transmission of devastating viruses. Modern agriculture has seen a history of invasive whitefly species and populations that expand to novel regions, bringing along fierce viruses. Control efforts are hindered by fast virus transmission, insecticide-resistant populations, and a wide host range which permits large natural reservoirs for whiteflies. Augmentative biocontrol by parasitoids while effective in suppressing high population densities in greenhouses falls short when it comes to preventing virus transmission and is ineffective in the open field. A potential source of much needed novel control strategies lays within a diverse community of whitefly endosymbionts. The idea to exploit endosymbionts for whitefly control is as old as identification of these bacteria, yet it still has not come to fruition. We review where our knowledge stands on the aspects of whitefly endosymbiont evolution, biology, metabolism, multitrophic interactions, and population dynamics. We show how these insights are bringing us closer to the goal of better integrated pest management strategies. Combining most up to date understanding of whitefly-endosymbiont interactions and recent technological advances, we discuss possibilities of disrupting and manipulating whitefly endosymbionts, as well as using them for pest control.
Collapse
Affiliation(s)
- Milan Milenovic
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 41, Rue du Brill, L-4422 Belvaux, Luxembourg
- Dipartimento di Agricoltura, Università degli Studi di Catania, Alimentazione e Ambiente (Di3A), via Santa Sofia 100, 95123 Catania, Italy
| | - Murad Ghanim
- Department of Entomology, Volcani Center, ARO, HaMaccabim Road 68, PO Box 15159, 7528809 Rishon Le Tsiyon, Israel
| | - Lucien Hoffmann
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 41, Rue du Brill, L-4422 Belvaux, Luxembourg
| | - Carmelo Rapisarda
- Dipartimento di Agricoltura, Università degli Studi di Catania, Alimentazione e Ambiente (Di3A), via Santa Sofia 100, 95123 Catania, Italy
| |
Collapse
|
10
|
The Gut Microbiota of the Insect Infraorder Pentatomomorpha (Hemiptera: Heteroptera) for the Light of Ecology and Evolution. Microorganisms 2021; 9:microorganisms9020464. [PMID: 33672230 PMCID: PMC7926433 DOI: 10.3390/microorganisms9020464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/05/2023] Open
Abstract
The stinkbugs of the infraorder Pentatomomorpha are a group of important plant sap-feeding insects, which host diverse microorganisms. Some are located in their complex morphological midgut compartments, while some within the specialized bacteriomes of insect hosts. This perpetuation of symbioses through host generations is reinforced via the diverse routes of vertical transmission or environmental acquisition of the symbionts. These symbiotic partners, reside either through the extracellular associations in midgut or intracellular associations in specialized cells, not only have contributed nutritional benefits to the insect hosts but also shaped their ecological and evolutionary basis. The stinkbugs and gut microbe symbioses present a valuable model that provides insights into symbiotic interactions between agricultural insects and microorganisms and may become potential agents for insect pest management.
Collapse
|
11
|
Deng J, Yu Y, Wang X, Liu Q, Huang X. The Ubiquity and Development-Related Abundance Dynamics of Ophiocordyceps Fungi in Soft Scale Insects. Microorganisms 2021; 9:microorganisms9020404. [PMID: 33669243 PMCID: PMC7919808 DOI: 10.3390/microorganisms9020404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 11/16/2022] Open
Abstract
Mutual relationships with symbionts play a crucial role in the evolution and ecology of plant-feeding hemipteran insects. However, there was no specific dominant bacterium observed in soft scales (Coccidae) in the previous studies, it is still unclear whether soft scales have specific primary symbionts. In this study, a nuclear ribosomal internal transcribed spacer (ITS)gene fragment was used to analyze the diversity of fungal communities in 28 Coccidae species based on next-generation sequencing (NGS). Furthermore, samples from different developmental stages of Ceroplastes japonicus were sequenced to illustrate the dynamics of fungal community. Our results showed that Coccidae-associated Ophiocordyceps fungi (COF) were prevalent in all 28 tested species with high relative abundance. Meanwhile, the first and second instars of C. japonicus, two important stages for growth and development, had high relative abundance of COF, while the relative abundances in other stages were low, ranging from 0.68% to 2.07%. The result of fluorescent in situ hybridization showed that the COF were widely present in hemolymph and vertically transmitted from mother to offspring. Our study confirms that the COF have intimate associations with the growth and development of soft scales, and provides new evidence to support that COF are primary fungal symbionts for Coccidae.
Collapse
|
12
|
Zhao D, Zhang Z, Niu H, Guo H. Win by Quantity: a Striking Rickettsia-Bias Symbiont Community Revealed by Seasonal Tracking in the Whitefly Bemisia tabaci. MICROBIAL ECOLOGY 2021; 81:523-534. [PMID: 32968841 DOI: 10.1007/s00248-020-01607-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Maintaining an adaptive seasonality is a basic ecological requisite for cold-blooded organism insects which usually harbor various symbionts. However, how coexisting symbionts coordinate in insects during seasonal progress is still unknown. The whitefly Bemisia tabaci in China harbors the obligate symbiont Portiera that infects each individual, as well as various facultative symbionts. In this study, we investigated whitefly populations in cucumber and cotton fields from May to December 2019, aiming to reveal the fluctuations of symbiont infection frequencies, symbiont coordination in multiple infected individuals, and host plants effects on symbiont infections. The results indicated that the facultative symbionts Hamiltonella (H), Rickettsia (R), and Cardinium (C) exist in field whiteflies, with single (H) and double (HC and HR) infections occurring frequently. Infection frequencies of Hamiltonella (always 100%) and Cardinium (29.50-34.38%) remained steady during seasonal progression. Rickettsia infection frequency in the cucumber whitefly population decreased from 64.47% in summer to 35.29% in winter. Significantly lower Rickettsia infection frequency (15.55%) was identified in cotton whitefly populations and was not subject to seasonal fluctuation. Nevertheless, Rickettsia had a significantly quantitative advantage in the symbiont community of whitefly individuals and populations from both cucumber and cotton field all through the seasons. Moreover, higher Portiera and Hamiltonella densities were found in HC and HR whitefly than in H whitefly, suggesting these symbionts may contribute to producing nutrients for their symbiont partners. These results provide ample cues to further explore the interactions between coexisting symbionts, the coevolutionary relationship between symbionts and host symbiont-induced effects on host plant use.
Collapse
Affiliation(s)
- Dongxiao Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50, Zhongling Street, Nanjing, 210014, China
| | - Zhichun Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50, Zhongling Street, Nanjing, 210014, China
| | - Hongtao Niu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50, Zhongling Street, Nanjing, 210014, China
| | - Huifang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50, Zhongling Street, Nanjing, 210014, China.
| |
Collapse
|
13
|
Cardoso A, Gómez-Zurita J. Food Resource Sharing of Alder Leaf Beetle Specialists (Coleoptera: Chrysomelidae) as Potential Insect-Plant Interface for Horizontal Transmission of Endosymbionts. ENVIRONMENTAL ENTOMOLOGY 2020; 49:1402-1414. [PMID: 33315074 PMCID: PMC7734963 DOI: 10.1093/ee/nvaa111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 06/12/2023]
Abstract
Recent studies suggest that endosymbionts of herbivore insects can be horizontally transferred to other herbivores feeding on the same host plants, whereby the plant acts as an intermediate stage in the chain of transmission. If this mechanism operates, it is also expected that insect communities sharing the same host plant will have higher chances to share their endosymbionts. In this study, we use a high-throughput 16S rRNA metabarcoding approach to investigate the presence, diversity, and potential sharing of endosymbionts in several species of leaf beetles (Coleoptera: Chrysomelidae) of a local community specialized on an alder diet in North America. Rickettsia and Wolbachia were predominant in the sample, with strong evidence for each species having their own dominant infection, of either or both types of bacteria. However, all species shared a much lower proportion of a particular Wolbachia type, compatible with the same strain dominant in one of the species of leaf beetles. Crucially, the same 16S rRNA haplotype of Wolbachia was found on alder leaf extracts. The combined evidence and the absence of this strain in a syntopic species of leaf beetle feeding on a different host plant support the hypothesis that at least the initial stages of the mechanism that would allow horizontal transmission of endosymbionts across species feeding on the same plant is possible. The accessibility and characteristics of endosymbiont associations of this system make it suitable for deeper analyses of their diversity and transmission in natural conditions.
Collapse
Affiliation(s)
- Anabela Cardoso
- Institute of Evolutionary Biology (CSIC-University Pompeu Fabra), Passeig Marítim de la Barceloneta, Barcelona, Spain
| | - Jesús Gómez-Zurita
- Institute of Evolutionary Biology (CSIC-University Pompeu Fabra), Passeig Marítim de la Barceloneta, Barcelona, Spain
| |
Collapse
|
14
|
Andreason SA, Shelby EA, Moss JB, Moore PJ, Moore AJ, Simmons AM. Whitefly Endosymbionts: Biology, Evolution, and Plant Virus Interactions. INSECTS 2020; 11:insects11110775. [PMID: 33182634 PMCID: PMC7696030 DOI: 10.3390/insects11110775] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 11/16/2022]
Abstract
Whiteflies (Hemiptera: Aleyrodidae) are sap-feeding global agricultural pests. These piercing-sucking insects have coevolved with intracellular endosymbiotic bacteria that help to supplement their nutrient-poor plant sap diets with essential amino acids and carotenoids. These obligate, primary endosymbionts have been incorporated into specialized organs called bacteriomes where they sometimes coexist with facultative, secondary endosymbionts. All whitefly species harbor the primary endosymbiont Candidatus Portiera aleyrodidarum and have a variable number of secondary endosymbionts. The secondary endosymbiont complement harbored by the cryptic whitefly species Bemisia tabaci is particularly complex with various assemblages of seven different genera identified to date. In this review, we discuss whitefly associated primary and secondary endosymbionts. We focus on those associated with the notorious B. tabaci species complex with emphasis on their biological characteristics and diversity. We also discuss their interactions with phytopathogenic begomoviruses (family Geminiviridae), which are transmitted exclusively by B. tabaci in a persistent-circulative manner. Unraveling the complex interactions of these endosymbionts with their insect hosts and plant viruses could lead to advancements in whitefly and whitefly transmitted virus management.
Collapse
Affiliation(s)
- Sharon A. Andreason
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC 29414, USA;
| | - Emily A. Shelby
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (P.J.M.); (A.J.M.)
| | - Jeanette B. Moss
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (P.J.M.); (A.J.M.)
| | - Patricia J. Moore
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (P.J.M.); (A.J.M.)
| | - Allen J. Moore
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (P.J.M.); (A.J.M.)
| | - Alvin M. Simmons
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC 29414, USA;
- Correspondence:
| |
Collapse
|
15
|
Tissue Tropisms and Transstadial Transmission of a Rickettsia Endosymbiont in the Highland Midge, Culicoides impunctatus (Diptera: Ceratopogonidae). Appl Environ Microbiol 2020; 86:AEM.01492-20. [PMID: 32801177 PMCID: PMC7531967 DOI: 10.1128/aem.01492-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/31/2020] [Indexed: 11/20/2022] Open
Abstract
Microbial symbionts of disease vectors have garnered recent attention due to their ability to alter vectorial capacity. Their consideration as a means of arbovirus control depends on symbiont vertical transmission, which leads to spread of the bacteria through a population. Previous work has identified a Rickettsia symbiont present in several species of biting midges (Culicoides spp.), which transmit bluetongue and Schmallenberg arboviruses. However, symbiont transmission strategies and host effects remain underexplored. In this study, we describe the presence of Rickettsia in the ovarian suspensory ligament of Culicoides impunctatus. Infection of this organ suggests the connective tissue surrounding developing eggs is important for ensuring vertical transmission of the symbiont in midges and possibly other insects. Additionally, our results indicate Rickettsia localization in the fat body of Culicoides impunctatus. As the arboviruses spread by midges often replicate in the fat body, this location implies possible symbiont-virus interactions to be further investigated. Rickettsia is a genus of intracellular bacteria which can manipulate host reproduction and alter sensitivity to natural enemy attack in a diverse range of arthropods. The maintenance of Rickettsia endosymbionts in insect populations can be achieved through both vertical and horizontal transmission routes. For example, the presence of the symbiont in the follicle cells and salivary glands of Bemisia whiteflies allows Belli group Rickettsia transmission via the germ line and plants, respectively. However, the transmission routes of other Rickettsia bacteria, such as those in the Torix group of the genus, remain underexplored. Through fluorescence in situ hybridization (FISH) and transmission electron microscopy (TEM) screening, this study describes the pattern of Torix Rickettsia tissue tropisms in the highland midge, Culicoides impunctatus (Diptera: Ceratopogonidae). Of note is the high intensity of infection of the ovarian suspensory ligament, suggestive of a novel germ line targeting strategy. Additionally, localization of the symbiont in tissues of several developmental stages suggests transstadial transmission is a major route for ensuring maintenance of Rickettsia within C. impunctatus populations. Aside from providing insights into transmission strategies, the presence of Rickettsia bacteria in the fat body of larvae indicates potential host fitness and vector capacity impacts to be investigated in the future. IMPORTANCE Microbial symbionts of disease vectors have garnered recent attention due to their ability to alter vectorial capacity. Their consideration as a means of arbovirus control depends on symbiont vertical transmission, which leads to spread of the bacteria through a population. Previous work has identified a Rickettsia symbiont present in several species of biting midges (Culicoides spp.), which transmit bluetongue and Schmallenberg arboviruses. However, symbiont transmission strategies and host effects remain underexplored. In this study, we describe the presence of Rickettsia in the ovarian suspensory ligament of Culicoides impunctatus. Infection of this organ suggests the connective tissue surrounding developing eggs is important for ensuring vertical transmission of the symbiont in midges and possibly other insects. Additionally, our results indicate Rickettsia localization in the fat body of Culicoides impunctatus. As the arboviruses spread by midges often replicate in the fat body, this location implies possible symbiont-virus interactions to be further investigated.
Collapse
|
16
|
Ren FR, Sun X, Wang TY, Yao YL, Huang YZ, Zhang X, Luan JB. Biotin provisioning by horizontally transferred genes from bacteria confers animal fitness benefits. THE ISME JOURNAL 2020; 14:2542-2553. [PMID: 32572143 PMCID: PMC7490365 DOI: 10.1038/s41396-020-0704-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/01/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022]
Abstract
Insect symbionts are widespread in nature and lateral gene transfer is prevalent in insect symbiosis. However, the function of horizontally transferred genes (HTGs) in insect symbiosis remains speculative, including the mechanism that enables insects to feed on plant phloem deficient in B vitamins. Previously, we found there is redundancy in biotin synthesis pathways from both whitefly Bemisia tabaci and symbiotic Hamiltonella due to the presence of whitefly HTGs. Here, we demonstrate that elimination of Hamiltonella decreased biotin levels but elevated the expression of horizontally transferred biotin genes in whiteflies. HTGs proteins exhibit specific expression patterns in specialized insect cells called bacteriocytes housing symbionts. Complementation with whitefly HTGs rescued E. coli biotin gene knockout mutants. Furthermore, silencing whitefly HTGs in Hamiltonella-infected whiteflies reduced biotin levels and hindered adult survival and fecundity, which was partially rescued by biotin supplementation. Each of horizontally transferred biotin genes are conserved in various laboratory cultures and species of whiteflies with geographically diverse distributions, which shares an evolutionary origin. We provide the first experimental evidence that biotin synthesized through acquired HTGs is important in whiteflies and may be as well in other animals. Our findings suggest that B vitamin provisioning in animal-microbe symbiosis frequently evolved from bacterial symbionts to animal hosts through horizontal gene transfer events. This study will also shed light on how the animal genomes evolve through functional transfer of genes with bacterial origin in the wider contexts of microbial ecology.
Collapse
Affiliation(s)
- Fei-Rong Ren
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiang Sun
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Tian-Yu Wang
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ya-Lin Yao
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yan-Zhen Huang
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xue Zhang
- China Agricultural University, Beijing, 100083, China
| | - Jun-Bo Luan
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
17
|
New insights into the transovarial transmission of the symbiont Rickettsia in whiteflies. SCIENCE CHINA-LIFE SCIENCES 2020; 64:1174-1186. [PMID: 33021711 DOI: 10.1007/s11427-020-1801-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 08/17/2020] [Indexed: 01/09/2023]
Abstract
Endosymbiont transmission via eggs to future host generations has been recognized as the main strategy for its persistence in insect hosts; however, the mechanisms for transmission have yet to be elucidated. Here, we describe the dynamic locations of Rickettsia in the ovarioles and eggs during oogenesis and embryogenesis in a globally significant pest whitefly Bemisia tabaci. Field populations of the whitefly have a high prevalence of Rickettsia, and in all Rickettsia-infected individuals, the bacterium distributes in the body cavity of the host, especially in the midgut, fat body, hemocytes, hemolymph, and near bacteriocytes. The distribution of Rickettsia was subjected to dynamic changes in the ovary during oogenesis, and our ultrastructural observations indicated that the bacteria infect host ovarioles during early developmental stages via two routes: (i) invasion of the tropharium by endocytosis and then transmission into vitellarium via nutritive cord and (ii) entry into vitellarium by hijacking bacteriocyte translocation. Most of the Rickettsia are degraded in the oocyte cytoplasm in late-stage oogenesis. However, a few reside beneath the vitelline envelope of mature eggs, spread into the embryo, and proliferate during embryogenesis to sustain high-fidelity transmission to the next generation. Our findings provide novel insights into the maternal transmission underpinning the persistence and spread of insect symbionts.
Collapse
|
18
|
Cellular Localization of Two Rickettsia Symbionts in the Digestive System and within the Ovaries of the Mirid Bug, Macrolophous pygmaeus. INSECTS 2020; 11:insects11080530. [PMID: 32823761 PMCID: PMC7469188 DOI: 10.3390/insects11080530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022]
Abstract
Simple Summary Like most insects, those that feed on both prey and plant materials harbor symbiotic bacteria in their body. Yet the involvement of bacteria in the feeding habits of these omnivorous consumers has yet to be investigated. In the present study, we took the first step toward testing the hypothesis that bacterial symbionts are involved in the feeding habits of the omnivorous bug Macrolophus pygmaeus. We (I) characterized the microbiome (the assembly of bacteria and fungi) of M. pygmaeus, and (II) determined the identity and location of the most dominant bacteria species within the host body. We found that M. pygmaeus microbiome is dominated by two Rickettsia species, R. belli and R. limoniae. These bacteria are found in high numbers in the digestive system of the bug, each exhibiting a unique distribution pattern, and for the most part, do not share the same cells in the gut. These results strongly suggest that the host bug may gain some nutritional benefits by hosting the two dominant symbiotic bacteria in its gut. Abstract Bacterial symbionts in arthropods are common, vary in their effects, and can dramatically influence the outcome of biological control efforts. Macrolophus pygmaeus (Heteroptera: Miridae), a key component of biological control programs, is mainly predaceous but may also display phytophagy. M. pygmaeus hosts symbiotic Wolbachia, which induce cytoplasmic incompatibility, and two Rickettsia species, R. bellii and R. limoniae, which are found in all individuals tested. To test possible involvement of the two Rickettsia species in the feeding habits of M. pygmaeus, we first showed that the microbiome of the insect is dominated by these three symbionts, and later described the distribution pattern of the two Rickettsia species in its digestive system. Although both Rickettsia species were located in certain gut bacteriocyes, in caeca and in Malpighian tubules of both sexes, each species has a unique cellular occupancy pattern and specific distribution along digestive system compartments. Infrequently, both species were found in a cell. In females, both Rickettsia species were detected in the germarium, the apical end of the ovarioles within the ovaries, but not in oocytes. Although the cause for these Rickettsia distribution patterns is yet unknown, it is likely linked to host nutrition while feeding on prey or plants.
Collapse
|
19
|
Transovarial Transmission of Bacteriome-Associated Symbionts in the Cicada Pycna repanda (Hemiptera: Cicadidae). Appl Environ Microbiol 2020; 86:AEM.02957-19. [PMID: 32276978 DOI: 10.1128/aem.02957-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/06/2020] [Indexed: 11/20/2022] Open
Abstract
Although transovarial transmission of bacteriome-associated symbionts in hemipteran insects is extremely important for maintaining intimate host-symbiont associations, our knowledge of cellular mechanisms underlying the transmission process is quite limited. We investigated bacterial communities of salivary glands, bacteriomes, and digestive and reproductive organs and clarified the transovarial transmission of bacteriome-associated symbionts of the mountain-habitat specialist Pycna repanda using integrated methods. The bacterial communities among different gut tissues and those of bacteriomes of males and females both show similarity, whereas differences are exhibited among bacterial communities in testes and ovaries. The primary symbionts "Candidatus Sulcia muelleri" (hereafter "Ca Sulcia") and "Candidatus Hodgkinia cicadicola" (hereafter "Ca Hodgkinia") were not only restricted to but also dominant in the bacteriomes and ovaries. "Ca Hodgkinia" cells in the bacteriomes of both sexes exhibited different colors by histological and electron microscopy. Also considering the results of a restriction fragment length polymorphism (RFLP)-based cloning approach, we hypothesize that "Ca Hodgkinia" may have split into cytologically different cellular lineages within this cicada species. Regarding the dominant secondary symbionts, Rickettsia was detected in the salivary glands, digestive organs, and testes, whereas Arsenophonus was detected in the bacteriomes and ovaries. Our results show that Arsenophonus can coexist with "Ca Sulcia" and "Ca Hodgkinia" within bacteriomes and can be transovarially transmitted with these obligate symbionts together from mother to offspring in cicadas, but it is not harbored in the cytoplasm of "Ca Sulcia." The change in the shape of "Ca Sulcia" and "Ca Hodgkinia" during the transovarial transmission process is hypothesized to be related to the limited space and novel microenvironment.IMPORTANCE Cicadas establish an intimate symbiosis with microorganisms to obtain essential nutrients that are extremely deficient in host plant sap. Previous studies on bacterial communities of cicadas mainly focused on a few widely distributed species, but knowledge about mountain-habitat species is quite poor. We initially revealed the physical distribution of the primary symbionts "Ca Sulcia" and "Ca Hodgkinia" and the dominant secondary symbionts Rickettsia and Arsenophonus in the mountain-habitat specialist Pycna repanda and then clarified the transovarial transmission process of bacteriome-associated symbionts in this species. Our observations suggest that "Ca Hodgkinia" may have split into cytologically distinct lineages within this cicada species, and related cicadas might have developed complex mechanisms for the vertical transmission of the bacteriome-associated symbionts. We also revealed that Arsenophonus can be transovarially transmitted in auchenorrhynchan insects when it is not harbored in the cytoplasm of other endosymbionts. Our results highlight transovarial transmission mechanisms of bacteriome-associated symbionts in sap-feeding insects.
Collapse
|
20
|
Brumin M, Lebedev G, Kontsedalov S, Ghanim M. Levels of the endosymbiont Rickettsia in the whitefly Bemisia tabaci are influenced by the expression of vitellogenin. INSECT MOLECULAR BIOLOGY 2020; 29:241-255. [PMID: 31825546 DOI: 10.1111/imb.12629] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 12/01/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Bacterial endosymbionts play essential roles in the biology of their arthropod hosts by interacting with internal factors in the host. The whitefly Bemisia tabaci is a worldwide agricultural pest and a supervector for more than 100 plant viruses. Like many other arthropods, Be. tabaci harbours a primary endosymbiont, Porteira aleyrodidarum, and an array of secondary endosymbionts that coexist with Portiera inside bacteriocyte cells. Unlike all of the other secondary symbionts that infect Be. tabaci, Rickettsia has been shown to be an exception by infecting insect organs and not colocalizing with Portiera, and has been shown to significantly impact the insect biology and its interactions with the environment. Little is known about the molecular interactions that underlie insect-symbiont interactions in general, and particularly Be. tabaci-Rickettsia interactions. Here we performed transcriptomic analysis and identified vitellogenin as an important protein that influences the levels of Rickettsia in Be. tabaci. Vitellogenin expression levels were lower in whole insects, but higher in midguts of Rickettsia-infected insects. Immunocapture-PCR assay showed interaction between vitellogenin and Rickettsia, whereas silencing of vitellogenin resulted in nearly complete disappearance of Rickettsia from midguts. Altogether, these results suggest that vitellogenin plays an important role in influencing the levels of Rickettsia in Be. tabaci.
Collapse
Affiliation(s)
- M Brumin
- Department of Entomology, The Volcani Center, Rishon LeZion, Israel
| | - G Lebedev
- Department of Entomology, The Volcani Center, Rishon LeZion, Israel
| | - S Kontsedalov
- Department of Entomology, The Volcani Center, Rishon LeZion, Israel
| | - M Ghanim
- Department of Entomology, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
21
|
Fazeli B, Mirhosseini A, Hashemi Z, Taheri H. Detection of Rickettsia Endosymbiont Bemisia Tabaci in the Amputated Limbs of Three Buerger's Disease Patients. Int Med Case Rep J 2020; 13:33-40. [PMID: 32110116 PMCID: PMC7035904 DOI: 10.2147/imcrj.s225839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/04/2020] [Indexed: 11/23/2022] Open
Abstract
Until recently, the aetiology of Buerger’s disease (BD) has been unknown. Although there is a close relationship between BD and smoking, it cannot explain the low prevalence of BD among smokers or the disease’s geographical distribution. Infectious pathogens, such as Rickettsial infection, have also been suggested as the trigger of BD development, but this theory has neither been proven nor ruled out. The aim of this study was to evaluate the footprint of Rickettsial infection in tissue specimens obtained from amputees with Buerger’s disease. Forty-nine tissue biopsies were obtained from three below-the-knee amputees who also had a diagnosis of BD according to Olin’s criteria (between 14–21 biopsies for each patient). After extraction of DNA from the tissue samples, the existence of 16srRNA was evaluated using a PCR test. The sequence of PCR products was evaluated using Geneious 11.1.2 software and NCBI blast. The 16srRNA was found in 3 to 7 samples from each patient. The sequence of the PCR products had a 98% homology with Rickettsia Tabaci. The sequences of the three patients were aligned, and no difference was found in the sequence of 16srRNA amongst the patients. Rickettsia Tabaci is a pathogen that infects tobacco leaves. Thus, BD might be an infectious disease for which smoking could be the route of pathogen entry into the bloodstreams of the sufferers. However, further studies are highly recommended to confirm this hypothesis.
Collapse
Affiliation(s)
- Bahare Fazeli
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Vascular Independent Research and Education, European Foundation, Milan, Italy
| | - Ali Mirhosseini
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Hashemi
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
22
|
Abstract
Microorganisms that reside within or transmit through arthropod reproductive tissues have profound impacts on host reproduction, health and evolution. In this Review, we discuss select principles of the biology of microorganisms in arthropod reproductive tissues, including bacteria, viruses, protists and fungi. We review models of specific symbionts, routes of transmission, and the physiological and evolutionary outcomes for both hosts and microorganisms. We also identify areas in need of continuing research, to answer the fundamental questions that remain in fields within and beyond arthropod-microorganism associations. New opportunities for research in this area will drive a broader understanding of major concepts as well as the biodiversity, mechanisms and translational applications of microorganisms that interact with host reproductive tissues.
Collapse
|
23
|
Santos-Garcia D, Mestre-Rincon N, Zchori-Fein E, Morin S. Inside out: microbiota dynamics during host-plant adaptation of whiteflies. ISME JOURNAL 2020; 14:847-856. [PMID: 31896788 PMCID: PMC7031279 DOI: 10.1038/s41396-019-0576-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
Abstract
While most insect herbivores are selective feeders, a small proportion of them feed on a wide range of plants. This polyphagous habit requires overcoming a remarkable array of defenses, which often necessitates an adaptation period. Efforts for understanding the mechanisms involved mostly focus on the insect’s phenotypic plasticity. Here, we hypothesized that the adaptation process might partially rely on transient associations with bacteria. To test this, we followed in a field-like experiment, the adaptation process of Bemisia tabaci, a generalist sap feeder, to pepper (a less-suitable host), after switching from watermelon (a suitable host). Amplicon sequencing of 16S rRNA transcripts from hundreds of dissected guts revealed the presence of active “core” and “transient” bacterial communities, dominated by the phyla Proteobacteria, Actinobacteria, and Firmicutes, and increasing differences between populations grown on watermelon and pepper. Insects grown on pepper for over two generations presented a significant increase in specific genera, mainly Mycobacterium, with a predicted enrichment in degradative pathways of xenobiotics and secondary metabolites. This result correlated with a significant increase in the insect’s survival on pepper. Taken together, our findings suggest that gut-associated bacteria can provide an additional flexible metabolic “tool-box” to generalist sap feeders for facilitating a quick host switching process.
Collapse
Affiliation(s)
- Diego Santos-Garcia
- Department of Entomology, The Hebrew University of Jerusalem, P.O. Box 12, 76100, Rehovot, Israel.
| | - Natividad Mestre-Rincon
- Department of Entomology, The Hebrew University of Jerusalem, P.O. Box 12, 76100, Rehovot, Israel
| | - Einat Zchori-Fein
- Department of Entomology, Newe-Ya'ar Research Center, ARO, Ramat-Yishai, Israel
| | - Shai Morin
- Department of Entomology, The Hebrew University of Jerusalem, P.O. Box 12, 76100, Rehovot, Israel
| |
Collapse
|
24
|
Abstract
Prokaryotes commonly undergo genome reduction, particularly in the case of symbiotic bacteria. Genome reductions tend toward the energetically favorable removal of unnecessary, redundant, or nonfunctional genes. However, without mechanisms to compensate for these losses, deleterious mutation and genetic drift might otherwise overwhelm a population. Among the mechanisms employed to counter gene loss and share evolutionary success within a population, gene transfer agents (GTAs) are increasingly becoming recognized as important contributors. Although viral in origin, GTA particles package fragments of their "host" genome for distribution within a population of cells, often in a synchronized manner, rather than selfishly packaging genes necessary for their spread. Microbes as diverse as archaea and alpha-proteobacteria have been known to produce GTA particles, which are capable of transferring selective advantages such as virulence factors and antibiotic resistance. In this review, we discuss the various types of GTAs identified thus far, focusing on a defined set of symbiotic alpha-proteobacteria known to carry them. Drawing attention to the predicted presence of these genes, we discuss their potential within the selective marine and terrestrial environments occupied by mutualistic, parasitic, and endosymbiotic microbes.
Collapse
Affiliation(s)
- Steen Christensen
- Department of Biological Sciences, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Laura R Serbus
- Department of Biological Sciences, Florida International University, Miami, FL, USA. .,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
25
|
Kanakala S, Kontsedalov S, Lebedev G, Ghanim M. Plant-Mediated Silencing of the Whitefly Bemisia tabaci Cyclophilin B and Heat Shock Protein 70 Impairs Insect Development and Virus Transmission. Front Physiol 2019; 10:557. [PMID: 31133883 PMCID: PMC6517521 DOI: 10.3389/fphys.2019.00557] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 04/24/2019] [Indexed: 01/09/2023] Open
Abstract
The whitefly B. tabaci is a global pest and transmits extremely important plant viruses especially begomoviruses, that cause substantial crop losses. B. tabaci is one of the top invasive species worldwide and have developed resistance to all major pesticide classes. One of the promising alternative ways for controlling this pest is studying its genetic makeup for identifying specific target proteins which are critical for its development and ability to transmit viruses. Tomato yellow leaf curl virus (TYLCV) is the most economically important and well-studied begomovirus transmitted by B. tabaci, in a persistent-circulative manner. Recently, we reported that B. tabaci Cyclophilin B (CypB) and heat shock protein 70 proteins (hsp70) interact and co-localize with TYLCV in the whitefly midgut, on the virus transmission pathway, and that both proteins have a significant role in virus transmission. Here, we extended the previous work and used the Tobacco rattle virus (TRV) plant-mediated RNA silencing system for knocking down both genes and testing the effect of their silencing on whitefly viability and virus transmission. Portions of these two genes were cloned into TRV constructs and tomato plants were infected and used for whitefly feeding and transmission experiments. Following whitefly feeding on TRV-plants, the expression levels of cypB and hsp70 in adult B. tabaci significantly decreased over 72 h feeding period. The knockdown in the expression of both genes was further shown in the first generation of silenced whiteflies, where phenotypic abnormalities in the adult, wing, nymph and bacteriosomes development and structure were observed. Additionally, high mortality rates that reached more than 80% among nymphs and adults were obtained. Finally, silenced whitefly adults with both genes showed decreased ability to transmit TYLCV under lab conditions. Our results suggest that plant-mediated silencing of both cypB and hsp70 have profound effects on whitefly development and its ability to transmit TYLCV.
Collapse
Affiliation(s)
- Surapathrudu Kanakala
- Department of Entomology, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Svetlana Kontsedalov
- Department of Entomology, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Galina Lebedev
- Department of Entomology, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Murad Ghanim
- Department of Entomology, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
26
|
Skaljac M, Vogel H, Wielsch N, Mihajlovic S, Vilcinskas A. Transmission of a Protease-Secreting Bacterial Symbiont Among Pea Aphids via Host Plants. Front Physiol 2019; 10:438. [PMID: 31057424 PMCID: PMC6479166 DOI: 10.3389/fphys.2019.00438] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/01/2019] [Indexed: 12/02/2022] Open
Abstract
Aphids are economically important pest insects that damage plants by phloem feeding and the transmission of plant viruses. Their ability to feed exclusively on nutritionally poor phloem sap is dependent on the obligatory symbiotic bacterium Buchnera aphidicola, but additional facultative symbionts may also be present, a common example of which is Serratia symbiotica. Many Serratia species secrete extracellular enzymes, so we hypothesised that S. symbiotica may produce proteases that help aphids to feed on plants. Molecular analysis, including fluorescence in situ hybridization (FISH), revealed that S. symbiotica colonises the gut, salivary glands and mouthparts (including the stylet) of the pea aphid Acyrthosiphon pisum, providing a mechanism to transfer the symbiont into host plants. S. symbiotica was also detected in plant tissues wounded by the penetrating stylet and was transferred to naïve aphids feeding on plants containing this symbiont. The maintenance of S. symbiotica by repeated transmission via plants may explain the high frequency of this symbiont in aphid populations. Proteomic analysis of the supernatant from a related but cultivable S. symbiotica strain cultured in liquid medium revealed the presence of known and novel proteases including metalloproteases. The corresponding transcripts encoding these S. symbiotica enzymes were detected in A. pisum and in plants carrying the symbiont, although the mRNA was much more abundant in the aphids. Our data suggest that enzymes from S. symbiotica may facilitate the digestion of plant proteins, thereby helping to suppress plant defense, and that the symbionts are important mediators of aphid–plant interactions.
Collapse
Affiliation(s)
- Marisa Skaljac
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Heiko Vogel
- Entomology Department, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Natalie Wielsch
- Entomology Department, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sanja Mihajlovic
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Andreas Vilcinskas
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany.,Institute for Insect Biotechnology, Justus-Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
27
|
Shi PQ, Wang L, Liu Y, An X, Chen XS, Ahmed MZ, Qiu BL, Sang W. Infection dynamics of endosymbionts reveal three novel localization patterns of Rickettsia during the development of whitefly Bemisia tabaci. FEMS Microbiol Ecol 2018; 94:5076031. [DOI: 10.1093/femsec/fiy165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/17/2018] [Indexed: 01/06/2023] Open
Affiliation(s)
- Pei-Qiong Shi
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou 510640, China
| | - Lei Wang
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou 510640, China
| | - Yuan Liu
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou 510640, China
| | - Xuan An
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou 510640, China
| | - Xiao-Sheng Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510640, China
| | - Muhammad Z Ahmed
- Florida Department of Agriculture and Consumer Services, Division of Plant Industry, 1911 SW 34th Street, Gainesville, FL 32614-7100, USA
| | - Bao-Li Qiu
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou 510640, China
| | - Wen Sang
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou 510640, China
| |
Collapse
|
28
|
Li YH, Ahmed MZ, Li SJ, Lv N, Shi PQ, Chen XS, Qiu BL. Plant-mediated horizontal transmission of Rickettsia endosymbiont between different whitefly species. FEMS Microbiol Ecol 2018; 93:4562589. [PMID: 29069333 DOI: 10.1093/femsec/fix138] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 10/18/2017] [Indexed: 01/24/2023] Open
Abstract
A growing number of studies have revealed the presence of closely related endosymbionts in phylogenetically distant arthropods, indicating horizontal transmission of these bacteria. Here we investigated the interspecific horizontal transmission of Rickettsia between two globally invasive whitefly species, Bemisia tabaci MEAM1 and B. tabaci MED, via cotton plants. We found both scattered and confined distribution patterns of Rickettsia in these whiteflies. After entering cotton leaves, Rickettsia was restricted to the leaf phloem vessels and could be taken up by both species of the Rickettsia-free whitefly adults, but only the scattered pattern was observed in the recipient whiteflies. Both the relative quantity of Rickettsia and the efficiency of transmitting Rickettsia into cotton leaves were significantly higher in MEAM1 females than in MED females. The retention time of Rickettsia transmitted from MEAM1 into cotton leaves was at least 5 days longer than that of MED. Phylogenetic analysis based on 16S rRNA and gltA genes confirmed that the Rickettsia extracted from the donor MEAM1, the cotton leaves, the recipient MEAM1 and the recipient MED were all identical. We conclude that cotton plants can mediate horizontal transmission of Rickettsia between different insect species, and that the transmission dynamics of Rickettsia vary with different host whitefly species.
Collapse
Affiliation(s)
- Yi-Han Li
- Key Laboratory of Bio-Pesticide Creation and Application, South China Agricultural University, Guangzhou 510640, China.,Engineering Technology Research Center of Agricultural Pest Biocontrol, Guangdong Province, Guangzhou 510640, China
| | - Muhammad Z Ahmed
- Florida Department of Agriculture and Consumer Services, Division of Plant Industry, 1911 SW 34th Street, Gainesville, FL 32614-7100, USA
| | - Shao-Jian Li
- Key Laboratory of Bio-Pesticide Creation and Application, South China Agricultural University, Guangzhou 510640, China.,Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ning Lv
- Key Laboratory of Bio-Pesticide Creation and Application, South China Agricultural University, Guangzhou 510640, China.,Engineering Technology Research Center of Agricultural Pest Biocontrol, Guangdong Province, Guangzhou 510640, China
| | - Pei-Qiong Shi
- Key Laboratory of Bio-Pesticide Creation and Application, South China Agricultural University, Guangzhou 510640, China.,Engineering Technology Research Center of Agricultural Pest Biocontrol, Guangdong Province, Guangzhou 510640, China
| | - Xiao-Sheng Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510640, China
| | - Bao-Li Qiu
- Key Laboratory of Bio-Pesticide Creation and Application, South China Agricultural University, Guangzhou 510640, China.,Engineering Technology Research Center of Agricultural Pest Biocontrol, Guangdong Province, Guangzhou 510640, China
| |
Collapse
|
29
|
Sseruwagi P, Wainaina J, Ndunguru J, Tumuhimbise R, Tairo F, Guo JY, Vrielink A, Blythe A, Kinene T, De Marchi B, Kehoe MA, Tanz S, Boykin LM. The first transcriptomes from field-collected individual whiteflies ( Bemisia tabaci, Hemiptera: Aleyrodidae): a case study of the endosymbiont composition. Gates Open Res 2018. [PMID: 29608200 DOI: 10.12688/gatesopenres.12783.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Bemisia tabaci species ( B. tabaci), or whiteflies, are the world's most devastating insect pests. They cause billions of dollars (US) of damage each year, and are leaving farmers in the developing world food insecure. Currently, all publically available transcriptome data for B. tabaci are generated from pooled samples, which can lead to high heterozygosity and skewed representation of the genetic diversity. The ability to extract enough RNA from a single whitefly has remained elusive due to their small size and technological limitations. Methods: In this study, we optimised a single whitefly RNA extraction procedure, and sequenced the transcriptome of four individual adult Sub-Saharan Africa 1 (SSA1) B. tabaci. Transcriptome sequencing resulted in 39-42 million raw reads. De novo assembly of trimmed reads yielded between 65,000-162,000 Contigs across B. tabaci transcriptomes. Results: Bayesian phylogenetic analysis of mitochondrion cytochrome I oxidase (mtCOI) grouped the four whiteflies within the SSA1 clade. BLASTn searches on the four transcriptomes identified five endosymbionts; the primary endosymbiont Portiera aleyrodidarum and four secondary endosymbionts: Arsenophonus, Wolbachia, Rickettsia, and Cardinium spp. that were predominant across all four SSA1 B. tabaci samples with prevalence levels of between 54.1 to 75%. Amino acid alignments of the NusG gene of P. aleyrodidarum for the SSA1 B. tabaci transcriptomes of samples WF2 and WF2b revealed an eleven amino acid residue deletion that was absent in samples WF1 and WF2a. Comparison of the protein structure of the NusG protein from P. aleyrodidarum in SSA1 with known NusG structures showed the deletion resulted in a shorter D loop. Conclusions: The use of field-collected specimens means time and money will be saved in future studies using single whitefly transcriptomes in monitoring vector and viral interactions. Our method is applicable to any small organism where RNA quantity has limited transcriptome studies.
Collapse
Affiliation(s)
- Peter Sseruwagi
- Mikocheni Agriculture Research Institute (MARI), Dar es Salaam, P.O. Box 6226, Tanzania
| | - James Wainaina
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, WA, 6009, Australia
| | - Joseph Ndunguru
- Mikocheni Agriculture Research Institute (MARI), Dar es Salaam, P.O. Box 6226, Tanzania
| | - Robooni Tumuhimbise
- National Agricultural Research Laboratories, P.O. Box 7065, Kampala Kawanda - Senge Rd, Kampala, Uganda
| | - Fred Tairo
- Mikocheni Agriculture Research Institute (MARI), Dar es Salaam, P.O. Box 6226, Tanzania
| | - Jian-Yang Guo
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.,State Key Laboratory for the Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Alice Vrielink
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, WA, 6009, Australia
| | - Amanda Blythe
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, WA, 6009, Australia
| | - Tonny Kinene
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, WA, 6009, Australia
| | - Bruno De Marchi
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, WA, 6009, Australia.,Faculdade de Ciências Agronômicas, Universidade Estadual Paulista , Botucatu, Brazil
| | - Monica A Kehoe
- Department of Primary Industries and Regional Development, DPIRD Diagnostic Laboratory Services, South Perth, WA, Australia
| | - Sandra Tanz
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, WA, 6009, Australia
| | - Laura M Boykin
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
30
|
Sseruwagi P, Wainaina J, Ndunguru J, Tumuhimbise R, Tairo F, Guo JY, Vrielink A, Blythe A, Kinene T, De Marchi B, Kehoe MA, Tanz S, Boykin LM. The first transcriptomes from field-collected individual whiteflies ( Bemisia tabaci, Hemiptera: Aleyrodidae): a case study of the endosymbiont composition. Gates Open Res 2018; 1:16. [PMID: 29608200 PMCID: PMC5872585 DOI: 10.12688/gatesopenres.12783.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2018] [Indexed: 11/23/2022] Open
Abstract
Background: Bemisia tabaci species (
B. tabaci), or whiteflies, are the world’s most devastating insect pests. They cause billions of dollars (US) of damage each year, and are leaving farmers in the developing world food insecure. Currently, all publically available transcriptome data for
B. tabaci are generated from pooled samples, which can lead to high heterozygosity and skewed representation of the genetic diversity. The ability to extract enough RNA from a single whitefly has remained elusive due to their small size and technological limitations. Methods: In this study, we optimised a single whitefly RNA extraction procedure, and sequenced the transcriptome of four individual adult Sub-Saharan Africa 1 (SSA1)
B. tabaci. Transcriptome sequencing resulted in 39-42 million raw reads.
De novo assembly of trimmed reads yielded between 65,000-162,000 Contigs across
B. tabaci transcriptomes. Results: Bayesian phylogenetic analysis of mitochondrion cytochrome I oxidase (mtCOI) grouped the four whiteflies within the SSA1 clade. BLASTn searches on the four transcriptomes identified five endosymbionts; the primary endosymbiont
Portiera aleyrodidarum and four secondary endosymbionts:
Arsenophonus, Wolbachia, Rickettsia, and
Cardinium spp. that were predominant across all four SSA1 B.
tabaci samples with prevalence levels of between 54.1 to 75%. Amino acid alignments of the
NusG gene of
P. aleyrodidarum for the SSA1
B. tabaci transcriptomes of samples WF2 and WF2b revealed an eleven amino acid residue deletion that was absent in samples WF1 and WF2a. Comparison of the protein structure of the
NusG protein from
P. aleyrodidarum in SSA1 with known
NusG structures showed the deletion resulted in a shorter D loop. Conclusions: The use of field-collected specimens means time and money will be saved in future studies using single whitefly transcriptomes in monitoring vector and viral interactions. Our method is applicable to any small organism where RNA quantity has limited transcriptome studies.
Collapse
Affiliation(s)
- Peter Sseruwagi
- Mikocheni Agriculture Research Institute (MARI), Dar es Salaam, P.O. Box 6226, Tanzania
| | - James Wainaina
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, WA, 6009, Australia
| | - Joseph Ndunguru
- Mikocheni Agriculture Research Institute (MARI), Dar es Salaam, P.O. Box 6226, Tanzania
| | - Robooni Tumuhimbise
- National Agricultural Research Laboratories, P.O. Box 7065, Kampala Kawanda - Senge Rd, Kampala, Uganda
| | - Fred Tairo
- Mikocheni Agriculture Research Institute (MARI), Dar es Salaam, P.O. Box 6226, Tanzania
| | - Jian-Yang Guo
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.,State Key Laboratory for the Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Alice Vrielink
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, WA, 6009, Australia
| | - Amanda Blythe
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, WA, 6009, Australia
| | - Tonny Kinene
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, WA, 6009, Australia
| | - Bruno De Marchi
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, WA, 6009, Australia.,Faculdade de Ciências Agronômicas, Universidade Estadual Paulista , Botucatu, Brazil
| | - Monica A Kehoe
- Department of Primary Industries and Regional Development, DPIRD Diagnostic Laboratory Services, South Perth, WA, Australia
| | - Sandra Tanz
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, WA, 6009, Australia
| | - Laura M Boykin
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
31
|
Sseruwagi P, Wainaina J, Ndunguru J, Tumuhimbise R, Tairo F, Guo JY, Vrielink A, Blythe A, Kinene T, De Marchi B, Kehoe MA, Tanz S, Boykin LM. The first transcriptomes from field-collected individual whiteflies (Bemisia tabaci, Hemiptera: Aleyrodidae). Gates Open Res 2018; 1:16. [DOI: 10.12688/gatesopenres.12783.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2018] [Indexed: 11/20/2022] Open
Abstract
Background: Bemisia tabaci species (B. tabaci), or whiteflies, are the world’s most devastating insect pests. They cause billions of dollars (US) of damage each year, and are leaving farmers in the developing world food insecure. Currently, all publically available transcriptome data for B. tabaci are generated from pooled samples, which can lead to high heterozygosity and skewed representation of the genetic diversity. The ability to extract enough RNA from a single whitefly has remained elusive due to their small size and technological limitations. Methods: In this study, we optimised a single whitefly RNA extraction procedure, and sequenced the transcriptome of four individual adult Sub-Saharan Africa 1 (SSA1) B. tabaci. Transcriptome sequencing resulted in 39-42 million raw reads. De novo assembly of trimmed reads yielded between 65,000-162,000 Contigs across B. tabaci transcriptomes. Results: Bayesian phylogenetic analysis of mitochondrion cytochrome I oxidase (mtCOI) grouped the four whiteflies within the SSA1 clade. BLASTn searches on the four transcriptomes identified five endosymbionts; the primary endosymbiont Portiera aleyrodidarum and four secondary endosymbionts: Arsenophonus, Wolbachia, Rickettsia, and Cardinium spp. that were predominant across all four SSA1 B. tabaci samples with prevalence levels of between 54.1 to 75%. Amino acid alignments of the NusG gene of P. aleyrodidarum for the SSA1 B. tabaci transcriptomes of samples WF2 and WF2b revealed an eleven amino acid residue deletion that was absent in samples WF1 and WF2a. Comparison of the protein structure of the NusG protein from P. aleyrodidarum in SSA1 with known NusG structures showed the deletion resulted in a shorter D loop. Conclusions: The use of field-collected specimens means time and money will be saved in future studies using single whitefly transcriptomes in monitoring vector and viral interactions. Our method is applicable to any small organism where RNA quantity has limited transcriptome studies.
Collapse
|
32
|
Shan HW, Deng WH, Luan JB, Zhang MJ, Zhang Z, Liu SS, Liu YQ. Thermal sensitivity of bacteriocytes constrains the persistence of intracellular bacteria in whitefly symbiosis under heat stress. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:706-716. [PMID: 28585771 DOI: 10.1111/1758-2229.12554] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
Temperature affects the persistence of diverse symbionts of insects. Our previous study indicates that the whitefly symbionts confined within bacteriocytes or scattered throughout the body cavity outside bacteriocytes may have differential thermal sensitivity. However, the underlying mechanisms remain largely unknown. Here, we report that following continuous heat stress, Portiera and Hamiltonella were almost completely depleted in two species of Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) of the Bemisia tabaci whitefly cryptic species complex. Meanwhile, proliferation of bacteriocytes was severely inhibited and approximately 50% of the nymphs had lost one of the two bacteriomes. While cell size of bacteriocytes was increased, cell number was severely decreased leading to reduction of total volume of bacteriocytes. Moreover, bacteriocyte organelles and associated symbionts were lysed, and huge amount of electron-dense inclusions accumulated. Eventually, Portiera and Hamiltonella failed to be transmitted to the next generation. In contrast, Rickettsia could be detected although at a reduced level, and successfully transmitted to eggs. The results suggest that the thermal sensitivity of bacteriocytes may limit thermal tolerance and vertical transmission of the associated symbionts, and consequently different patterns of distribution of symbionts may affect their capacity to tolerate unfavourable temperatures and persistence in the host.
Collapse
Affiliation(s)
- Hong-Wei Shan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen-Hao Deng
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun-Bo Luan
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Min-Jing Zhang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen Zhang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yin-Quan Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
33
|
Czosnek H, Hariton-Shalev A, Sobol I, Gorovits R, Ghanim M. The Incredible Journey of Begomoviruses in Their Whitefly Vector. Viruses 2017; 9:E273. [PMID: 28946649 PMCID: PMC5691625 DOI: 10.3390/v9100273] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 12/21/2022] Open
Abstract
Begomoviruses are vectored in a circulative persistent manner by the whitefly Bemisia tabaci. The insect ingests viral particles with its stylets. Virions pass along the food canal and reach the esophagus and the midgut. They cross the filter chamber and the midgut into the haemolymph, translocate into the primary salivary glands and are egested with the saliva into the plant phloem. Begomoviruses have to cross several barriers and checkpoints successfully, while interacting with would-be receptors and other whitefly proteins. The bulk of the virus remains associated with the midgut and the filter chamber. In these tissues, viral genomes, mainly from the tomato yellow leaf curl virus (TYLCV) family, may be transcribed and may replicate. However, at the same time, virus amounts peak, and the insect autophagic response is activated, which in turn inhibits replication and induces the destruction of the virus. Some begomoviruses invade tissues outside the circulative pathway, such as ovaries and fat cells. Autophagy limits the amounts of virus associated with these organs. In this review, we discuss the different sites begomoviruses need to cross to complete a successful circular infection, the role of the coat protein in this process and the sites that balance between virus accumulation and virus destruction.
Collapse
Affiliation(s)
- Henryk Czosnek
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| | - Aliza Hariton-Shalev
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| | - Iris Sobol
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| | - Rena Gorovits
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| | - Murad Ghanim
- Department of Entomology, Agricultural Research Organization, Volcani Center, HaMaccabim Road 68, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
34
|
Morris J, Shiller J, Mann R, Smith G, Yen A, Rodoni B. Novel 'Candidatus Liberibacter' species identified in the Australian eggplant psyllid, Acizzia solanicola. Microb Biotechnol 2017; 10:833-844. [PMID: 28387006 PMCID: PMC5481521 DOI: 10.1111/1751-7915.12707] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/27/2017] [Indexed: 12/04/2022] Open
Abstract
A novel candidate species of the liberibacter genus, 'Candidatus Liberibacter brunswickensis' (CLbr), was identified in the Australian eggplant psyllid, Acizzia solanicola. This is the first discovery of a species belonging to the liberibacter genus in Australia and the first report of a liberibacter species in the psyllid genus Acizzia. This new candidate liberibacter species has not been associated with plant disease, unlike other psyllid-vectored species in the genus including 'Candidatus Liberibacter asiaticus' (CLas), 'Candidatus Liberibacter africanus' (CLaf) and 'Ca. Liberibacter solanacearum' (CLso). This study describes novel generic liberibacter genus primers, used to screen Australian psyllids for the presence of microflora that may confound diagnosis of exotic pathogens. CLbr forms a unique clade in the liberibacter genus based on phylogenetic analysis of the 16S ribosomal ribonucleic acid (rRNA) region and multilocus sequence analysis (MLSA) of seven highly conserved genes, dnaG, gyrB, mutS, nusG, rplA, rpoB and tufB. The MLSA mapping approach described in this article was able to discriminate between two 'Ca. Liberibacter' species within a metagenomic data set and represents a novel approach to detecting and differentiating unculturable species of liberibacter. Further, CLbr can confound the Li et al. (2006) quantitative PCR (qPCR) diagnostic tests for CLas and CLaf.
Collapse
Affiliation(s)
- Jacqueline Morris
- Plant Biosecurity Cooperative Research Centre, LPO Box 5012, Bruce, Australian Capital Territory, 2617, Australia
- La Trobe University, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia
- Agriculture Victoria, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia
| | - Jason Shiller
- Plant Biosecurity Cooperative Research Centre, LPO Box 5012, Bruce, Australian Capital Territory, 2617, Australia
- Agriculture Victoria, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia
- INRA/Université d'Angers - IRHS Batiment C, 42 rue Georges Morel, Beaucouzé, 49071, France
| | - Rachel Mann
- Plant Biosecurity Cooperative Research Centre, LPO Box 5012, Bruce, Australian Capital Territory, 2617, Australia
- Agriculture Victoria, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia
| | - Grant Smith
- Plant Biosecurity Cooperative Research Centre, LPO Box 5012, Bruce, Australian Capital Territory, 2617, Australia
- Plant & Food Research Lincol, Gerald St, Lincoln, 7608, New Zealand
- Better Border Biosecurity, Lincoln, 7608, New Zealand
| | - Alan Yen
- Plant Biosecurity Cooperative Research Centre, LPO Box 5012, Bruce, Australian Capital Territory, 2617, Australia
- La Trobe University, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia
- Agriculture Victoria, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia
| | - Brendan Rodoni
- Plant Biosecurity Cooperative Research Centre, LPO Box 5012, Bruce, Australian Capital Territory, 2617, Australia
- La Trobe University, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia
- Agriculture Victoria, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia
| |
Collapse
|
35
|
Bacterial diversity of bacteriomes and organs of reproductive, digestive and excretory systems in two cicada species (Hemiptera: Cicadidae). PLoS One 2017; 12:e0175903. [PMID: 28437427 PMCID: PMC5402938 DOI: 10.1371/journal.pone.0175903] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/02/2017] [Indexed: 02/01/2023] Open
Abstract
Cicadas form intimate symbioses with bacteria to obtain nutrients that are scarce in the xylem fluid they feed on. The obligate symbionts in cicadas are purportedly confined to specialized bacteriomes, but knowledge of bacterial communities associated with cicadas is limited. Bacterial communities in the bacteriomes and organs of reproductive, digestive and excretory systems of two cicada species (Platypleura kaempferi and Meimuna mongolica) were investigated using different methods, and the bacterial diversity and distribution patterns of dominant bacteria in different tissues were compared. Within each species, the bacterial communities of testes are significantly different from those of bacteriomes and ovaries. The dominant endosymbiont Candidatus Sulcia muelleri is found not only in the bacteriomes and reproductive organs, but also in the "filter chamber + conical segment" of both species. The transmission mode of this endosymbiont in the alimentary canal and its effect on physiological processes merits further study. A novel bacterium of Rhizobiales, showing ~80% similarity to Candidatus Hodgkinia cicadicola, is dominant in the bacteriomes and ovaries of P. kaempferi. Given that the genome of H. cicadicola exhibits rapid sequence evolution, it is possible that this novel bacterium is a related endosymbiont with beneficial trophic functions similar to that of H. cicadicola in some other cicadas. Failure to detect H. cicadicola in M. mongolica suggests that it has been subsequently replaced by another bacterium, a yeast or gut microbiota which compensates for the loss of H. cicadicola. The distribution of this novel Rhizobiales species in other cicadas and its identification require further investigation to help establish the definition of the bacterial genus Candidatus Hodgkinia and to provide more information on sequence divergence of related endosymbionts of cicadas. Our results highlight the complex bacterial communities of cicadas, and are informative for further studies of the interactions and co-evolution of insect-microbial symbioses in Cicadoidea.
Collapse
|
36
|
Genetic characterization of spotted fever group rickettsiae in questing ixodid ticks collected in Israel and environmental risk factors for their infection. Parasitology 2017; 144:1088-1101. [PMID: 28330517 DOI: 10.1017/s0031182017000336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study aimed to genetically characterize spotted fever group rickettsiae (SFGR) in questing ixodid ticks from Israel and to identify risk factors associated with SFGR-positive ticks using molecular techniques and geographic information systems (GIS) analysis. 1039 ticks from the genus Rhipicephalus were collected during 2014. 109/1039 (10·49%) carried SFGR-DNA of either Rickettsia massiliae (95), 'Candidatus Rickettsia barbariae' (8) or Rickettsia conorii (6). Higher prevalence of SFGR was found in Rhipicephalus turanicus (18·00%) compared with Rhipicephalus sanguineus sensu lato (3·22%). Rickettsia massiliae was the most commonly detected species and the most widely disseminated throughout Israel (87·15% of all Rickettsia-positive ticks). GIS analysis revealed that Central and Northern coastal regions are at high risk for SFGR. The presence of ticks was significantly associated with normalized difference vegetation index and temperature variation over the course of the year. The presence of rickettsiae was significantly associated with brown type soils, higher land surface temperature and higher precipitation. The latter parameters may contribute to infection of the tick with SFGR. Health care professionals should be aware of the possible exposure of local communities and travellers to R. massillae. Molecular and geographical information can help professionals to identify areas that are susceptible to SFGR-infected ticks.
Collapse
|
37
|
Extensive genetic diversity of Rickettsiales bacteria in multiple mosquito species. Sci Rep 2016; 6:38770. [PMID: 27934910 PMCID: PMC5146937 DOI: 10.1038/srep38770] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/10/2016] [Indexed: 12/30/2022] Open
Abstract
Rickettsiales are important zoonotic pathogens, causing severe disease in humans globally. Although mosquitoes are an important vector for diverse pathogens, with the exception of members of the genus Wolbachia little is known about their role in the transmission of Rickettsiales. Herein, Rickettsiales were identified by PCR in five species of mosquitoes (Anopheles sinensis, Armigeres subalbatus, Aedes albopictus, Culex quinquefasciatus and Cu. tritaeniorhynchus) collected from three Chinese provinces during 2014–2015. Subsequent phylogenetic analyses of the rrs, groEL and gltA genes revealed the presence of Anaplasma, Ehrlichia, Candidatus Neoehrlichia, and Rickettsia bacteria in mosquitoes, comprising nine documented and five tentative species bacteria, as well as three symbionts/endosybionts. In addition, bacteria were identified in mosquito eggs, larvae, and pupae sampled from aquatic environments. Hence, these data suggest that Rickettsiales circulate widely in mosquitoes in nature. Also of note was that Ehrlichia and Rickettsia bacteria were detected in each life stage of laboratory cultured mosquitoes, suggesting that Rickettsiales may be maintained in mosquitoes through both transstadial and transovarial transmission. In sum, these data indicate that mosquitoes may have played an important role in the transmission and evolution of Rickettsiales in nature.
Collapse
|
38
|
Hayashi M, Watanabe M, Yukuhiro F, Nomura M, Kageyama D. A Nightmare for Males? A Maternally Transmitted Male-Killing Bacterium and Strong Female Bias in a Green Lacewing Population. PLoS One 2016; 11:e0155794. [PMID: 27304213 PMCID: PMC4909225 DOI: 10.1371/journal.pone.0155794] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/04/2016] [Indexed: 11/18/2022] Open
Abstract
For maternally transmitted microbes, a female-biased host sex ratio is of reproductive advantage. Here we found a strong female bias in a field population of the green lacewing, Mallada desjardinsi (Insecta; Neuroptera). This bias was attributed to the predominance of individuals harboring a maternally inherited male-killing bacterium that was phylogenetically closely related to the plant-pathogenic Spiroplasma phoeniceum and Spiroplasma kunkelii. Among 35 laboratory-reared broods produced by wild-caught females, 21 broods (60%)—all infected with Spiroplasma—consisted of only females (940 individuals). Among 14 broods consisting of both males and females (516 and 635 individuals, respectively), 4 broods were doubly infected with Spiroplasma and Rickettsia, 6 broods were singly infected with Rickettsia, and 3 broods were uninfected (remaining one brood was unknown). Mortality during embryonic and larval development was prominent in all-female broods but not in normal sex ratio broods. Following antibiotic treatment on all-female broods, mortality was significantly reduced and the sex ratio was restored to 1:1. Strong expression and high prevalence of this male-killer is remarkable considering its low density (~10−5–10−4 cells per host mitochondrial gene copy based on quantitative PCR). In addition, a bacterium closely related to Rickettsia bellii was present in 25 of 34 broods (73.5%), irrespective of the sex ratio, with the infection density comparable to other cases of endosymbiosis (~10−2–10−1 cells per mitochondrial gene copy). Higher density of Rickettsia than Spiroplasma was also demonstrated by electron microscopy which visualized both Spiroplasma-like cells and Rickettsia-like cells inside and outside the ovarian cells.
Collapse
Affiliation(s)
- Masayuki Hayashi
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Masaya Watanabe
- Insect Microbe Research Unit, National Institute of Agrobiological Sciences, 1–2 Owashi, Tsukuba, Ibaraki, Japan
| | - Fumiko Yukuhiro
- Insect Microbe Research Unit, National Institute of Agrobiological Sciences, 1–2 Owashi, Tsukuba, Ibaraki, Japan
| | - Masashi Nomura
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Daisuke Kageyama
- Insect Microbe Research Unit, National Institute of Agrobiological Sciences, 1–2 Owashi, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
39
|
Kliot A, Ghanim M. Fluorescent in situ hybridization for the localization of viruses, bacteria and other microorganisms in insect and plant tissues. Methods 2016; 98:74-81. [PMID: 26678796 DOI: 10.1016/j.ymeth.2015.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/03/2015] [Accepted: 12/06/2015] [Indexed: 12/21/2022] Open
Abstract
Methods for the localization of cellular components such as nucleic acids, proteins, cellular vesicles and more, and the localization of microorganisms including viruses, bacteria and fungi have become an important part of any research program in biological sciences that enable the visualization of these components in fixed and live tissues without the need for complex processing steps. The rapid development of microscopy tools and technologies as well as related fluorescent markers and fluorophores for many cellular components, and the ability to design DNA and RNA sequence-based molecular probes and antibodies which can be visualized fluorescently, have rapidly advanced this field. This review will focus on some of the localizations methods which have been used in plants and insect pests in agriculture, and other microorganisms, which are rapidly advancing the research in agriculture-related fields.
Collapse
Affiliation(s)
- Adi Kliot
- Department of Entomology, The Volcani Center, Bet Dagan 50250, Israel
| | - Murad Ghanim
- Department of Entomology, The Volcani Center, Bet Dagan 50250, Israel.
| |
Collapse
|
40
|
Shan HW, Zhang CR, Yan TT, Tang HQ, Wang XW, Liu SS, Liu YQ. Temporal changes of symbiont density and host fitness after rifampicin treatment in a whitefly of the Bemisia tabaci species complex. INSECT SCIENCE 2016; 23:200-214. [PMID: 26412633 DOI: 10.1111/1744-7917.12276] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
Microbial symbionts are essential or important partners to phloem-feeding insects. Antibiotics have been used to selectively eliminate symbionts from their host insects and establish host lines with or without certain symbionts for investigating functions of the symbionts. In this study, using the antibiotic rifampicin we attempted to selectively eliminate certain symbionts from a population of the Middle East-Asia Minor 1 whitefly of the Bemisia tabaci species complex, which harbors the primary symbiont "Candidatus Portiera aleyrodidarum" and two secondary symbionts "Candidatus Hamiltonella defensa" and Rickettsia. Neither the primary nor the secondary symbionts were completely depleted in the adults (F0) that fed for 48 h on a diet treated with rifampicin at concentrations of 1-100 μg/mL. However, both the primary and secondary symbionts were nearly completely depleted in the offspring (F1) of the rifampicin-treated adults. Although the F1 adults produced some eggs (F2), most of the eggs failed to hatch and none of them reached the second instar, and consequently the rifampicin-treated whitefly colony vanished at the F2 generation. Interestingly, quantitative polymerase chain reaction assays showed that in the rifampicin-treated whiteflies, the density of the primary symbiont was reduced at an obviously slower pace than the secondary symbionts. Mating experiments between rifampicin-treated and untreated adults demonstrated that the negative effects of rifampicin on host fitness were expressed when the females were treated by the antibiotic, and whether males were treated or not by the antibiotic had little contribution to the negative effects. These observations indicate that with this whitefly population it is not feasible to selectively eliminate the secondary symbionts using rifampicin without affecting the primary symbiont and establish host lines for experimental studies. However, the extinction of the whitefly colony at the second generation after rifampicin treatment indicates the potential of the antibiotic as a control agent of the whitefly pest.
Collapse
Affiliation(s)
| | | | - Ting-Ting Yan
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hai-Qin Tang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yin-Quan Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Oogenesis in the Bemisia tabaci MEAM1 species complex. Micron 2016; 83:1-10. [PMID: 26826802 DOI: 10.1016/j.micron.2016.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 11/22/2022]
Abstract
The whitefly Bemisia tabaci MEAM1 species complex has invaded several parts of the world in the past 30 years and replaced native whitefly populations in the invaded regions, including certain areas of China. One of the possible reasons for the invasion is that MEAM1 whiteflies are more fecund than native species. However, the factors that affect the reproduction of the B. tabaci cryptic species are not clearly known. The regulation of oogenesis is thought to be one of the essential processes for egg formation and ovary development and could affect its population dynamics. In this study, the ovariole structure and oogenesis of the MEAM1 species complex was examined using light and transmission electron microscopy. Telotrophic ovarioles were observed in the MEAM1 species complex. Each ovariole had two well defined regions: the tropharium and the vitellarium. The tropharium always had more than ten trophocytes. The development of a single oocyte in the vitellarium has four phases: oocyte formation, previtellogenesis, vitellogenesis and choriogenesis. Two arrested oocytes, follicular cells and uncompleted oocytes were separated from the tropharium by microtubule and microfilaments. Early previtellogenesis oocytes absorbed nutrients and endosymbiont bacteria through a nutritive cord. However, the vitellogenesis of oocytes transmitted Vg through both the nutritive cord and the space between follicular cells. Each mature oocyte with deposited yolk proteins had only one bacteriocyte and was surrounded by a single layer of follicular cells. The oogenesis in the B. tabaci MEAM1 species complex concluded with the differentiation of oocytes, the transport of yolk and endosymbionts as well as the development and maturation of oocytes. This result provides important information that further defines the regulation of oogenesis in the B. tabaci complex.
Collapse
|
42
|
Kanakala S, Ghanim M. Implication of the Whitefly Bemisia tabaci Cyclophilin B Protein in the Transmission of Tomato yellow leaf curl virus. FRONTIERS IN PLANT SCIENCE 2016; 7:1702. [PMID: 27895657 PMCID: PMC5109225 DOI: 10.3389/fpls.2016.01702] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/28/2016] [Indexed: 05/05/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV) is a single-stranded (ssDNA) begomoviruses that causes severe damage to tomato and several other crops worldwide. TYLCV is exclusively transmitted by the sweetpotato whitefly, Bemisia tabaci in a persistent circulative and propagative manner. Previous studies have shown that the transmission, retention, and circulation of TYLCV in its vector involves interaction with insect and endosymbiont proteins, which aid in the transmission of the virus, or have a protective role in response to the presence of the virus in the insect body. However, only a low number of such proteins have been identified. Here, the role of B. tabaci Cyclophilin B (CypB) in the transmission of TYLCV protein was investigated. Cyclophilins are a large family of cellular prolyl isomerases that have many molecular roles including facilitating protein-protein interactions in the cell. One cyclophilin protein has been implicated in aphid-luteovirus interactions. We demonstrate that the expression of CypB from B. tabaci is altered upon TYLCV acquisition and retention. Further experiments used immunocapture-PCR and co-immunolocalization and demonstrated a specific interaction and colocalization between CypB and TYLCV in the the midgut, eggs, and salivary glands. Membrane feeding of anti-CypB antibodies and TYLCV-infected plants showed a decrease in TYLCV transmission, suggesting a critical role that CypB plays in TYLCV transmission. Further experiments, which used membrane feeding with the CypB inhibitor Cyclosporin A showed decrease in CypB-TYLCV colocalization in the midgut and virus transmission. Altogether, our results indicate that CypB plays an important role in TYLCV transmission by B. tabaci.
Collapse
|
43
|
Caspi-Fluger A, Inbar M, Steinberg S, Friedmann Y, Freund M, Mozes-Daube N, Zchori-Fein E. Characterization of the symbiont Rickettsia in the mirid bug Nesidiocoris tenuis (Reuter) (Heteroptera: Miridae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2014; 104:681-688. [PMID: 25062354 DOI: 10.1017/s0007485314000492] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nesidiocoris tenuis (Reuter) (Heteroptera: Miridae) is an omnivorous insect used for biological control. Augmentative release and conservation of N. tenuis have been used for pest control in tomato crops. Intracellular bacterial symbionts of arthropods are common in nature and have diverse effects on their hosts; in some cases they can dramatically affect biological control. Fingerprinting methods showed that the symbiotic complex associated with N. tenuis includes Wolbachia and Rickettsia. Rickettsia of N. tenuis was further characterized by sequencing the 16S rRNA and gltA bacterial genes, measuring its amount in different developmental stages of the insect by real-time polymerase chain reaction, and localizing the bacteria in the insect's body by fluorescence in situ hybridization. The Rickettsia in N. tenuis exhibited 99 and 96% similarity of both sequenced genes to Rickettsia bellii and Rickettsia reported from Bemisia tabaci, respectively. The highest amount of Rickettsia was measured in the 5th instar and adult, and the symbionts could be detected in the host gut and ovaries. Although the role played by Rickettsia in the biology of N. tenuis is currently unknown, their high amount in the adults and localization in the gut suggest that they may have a nutritional role in this insect.
Collapse
Affiliation(s)
- A Caspi-Fluger
- Department of Entomology, Newe-Ya'ar Research Center,ARO,Ramat-Yishay 30095,Israel
| | - M Inbar
- Department of Evolutionary and Environmental Biology,University of Haifa,Haifa 31905,Israel
| | - S Steinberg
- BioBee Sde Eliyahu Ltd,Kibbutz Sde Eliyahu 10810,Israel
| | - Y Friedmann
- Bio-Imaging Unit, The Alexander Silberman Institute of Life Sciences,The Hebrew University of Jerusalem,Jerusalem 91904,Israel
| | - M Freund
- BioBee Sde Eliyahu Ltd,Kibbutz Sde Eliyahu 10810,Israel
| | - N Mozes-Daube
- Department of Entomology, Newe-Ya'ar Research Center,ARO,Ramat-Yishay 30095,Israel
| | - E Zchori-Fein
- Department of Entomology, Newe-Ya'ar Research Center,ARO,Ramat-Yishay 30095,Israel
| |
Collapse
|
44
|
Gray S, Cilia M, Ghanim M. Circulative, "nonpropagative" virus transmission: an orchestra of virus-, insect-, and plant-derived instruments. Adv Virus Res 2014; 89:141-99. [PMID: 24751196 DOI: 10.1016/b978-0-12-800172-1.00004-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Species of plant viruses within the Luteoviridae, Geminiviridae, and Nanoviridae are transmitted by phloem-feeding insects in a circulative, nonpropagative manner. The precise route of virus movement through the vector can differ across and within virus families, but these viruses all share many biological, biochemical, and ecological features. All share temporal and spatial constraints with respect to transmission efficiency. The viruses also induce physiological changes in their plant hosts resulting in behavioral changes in the insects that optimize the transmission of virus to new hosts. Virus proteins interact with insect, endosymbiont, and plant proteins to orchestrate, directly and indirectly, virus movement in insects and plants to facilitate transmission. Knowledge of these complex interactions allows for the development of new tools to reduce or prevent transmission, to quickly identify important vector populations, and to improve the management of these economically important viruses affecting agricultural and natural plant populations.
Collapse
Affiliation(s)
- Stewart Gray
- Biological Integrated Pest Management Research Unit, USDA, ARS, Ithaca, New York, USA; Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA.
| | - Michelle Cilia
- Biological Integrated Pest Management Research Unit, USDA, ARS, Ithaca, New York, USA; Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA; Boyce Thompson Institute for Plant Research, Ithaca, New York, USA
| | - Murad Ghanim
- Department of Entomology, Volcani Center, Bet Dagan, Israel
| |
Collapse
|
45
|
Marubayashi JM, Kliot A, Yuki VA, Rezende JAM, Krause-Sakate R, Pavan MA, Ghanim M. Diversity and localization of bacterial endosymbionts from whitefly species collected in Brazil. PLoS One 2014; 9:e108363. [PMID: 25259930 PMCID: PMC4178154 DOI: 10.1371/journal.pone.0108363] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/25/2014] [Indexed: 11/25/2022] Open
Abstract
Whiteflies (Hemiptera: Aleyrodidae) are sap-sucking insect pests, and some cause serious damage in agricultural crops by direct feeding and by transmitting plant viruses. Whiteflies maintain close associations with bacterial endosymbionts that can significantly influence their biology. All whitefly species harbor a primary endosymbiont, and a diverse array of secondary endosymbionts. In this study, we surveyed 34 whitefly populations collected from the states of Sao Paulo, Bahia, Minas Gerais and Parana in Brazil, for species identification and for infection with secondary endosymbionts. Sequencing the mitochondrial Cytochrome Oxidase I gene revealed the existence of five whitefly species: The sweetpotato whitefly Bemisia tabaci B biotype (recently termed Middle East-Asia Minor 1 or MEAM1), the greenhouse whitefly Trialeurodes vaporariorum, B. tabaci A biotype (recently termed New World 2 or NW2) collected only from Euphorbia, the Acacia whitefly Tetraleurodes acaciae and Bemisia tuberculata both were detected only on cassava. Sequencing rRNA genes showed that Hamiltonella and Rickettsia were highly prevalent in all MEAM1 populations, while Cardinium was close to fixation in only three populations. Surprisingly, some MEAM1 individuals and one NW2 population were infected with Fritschea. Arsenopnohus was the only endosymbiont detected in T. vaporariorum. In T. acaciae and B. tuberculata populations collected from cassava, Wolbachia was fixed in B. tuberculata and was highly prevalent in T. acaciae. Interestingly, while B. tuberculata was additionally infected with Arsenophonus, T. acaciae was infected with Cardinium and Fritschea. Fluorescence in situ hybridization analysis on representative individuals showed that Hamiltonella, Arsenopnohus and Fritschea were localized inside the bacteriome, Cardinium and Wolbachia exhibited dual localization patterns inside and outside the bacteriome, and Rickettsia showed strict localization outside the bacteriome. This study is the first survey of whitely populations collected in Brazil, and provides further insights into the complexity of infection with secondary endosymionts in whiteflies.
Collapse
Affiliation(s)
- Julio Massaharu Marubayashi
- Department of Entomology, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
- Departamento de Fitossanidade, Faculdade de Ciencias Agronomicas, UNESP, Botucatu, Sao Paolo, Brazil
- * E-mail: (MG); (JMM)
| | - Adi Kliot
- Department of Entomology, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | | | | | - Renate Krause-Sakate
- Departamento de Fitossanidade, Faculdade de Ciencias Agronomicas, UNESP, Botucatu, Sao Paolo, Brazil
| | - Marcelo Agenor Pavan
- Departamento de Fitossanidade, Faculdade de Ciencias Agronomicas, UNESP, Botucatu, Sao Paolo, Brazil
| | - Murad Ghanim
- Department of Entomology, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
- * E-mail: (MG); (JMM)
| |
Collapse
|
46
|
Kliot A, Cilia M, Czosnek H, Ghanim M. Implication of the bacterial endosymbiont Rickettsia spp. in interactions of the whitefly Bemisia tabaci with tomato yellow leaf curl virus. J Virol 2014; 88:5652-60. [PMID: 24600010 PMCID: PMC4019100 DOI: 10.1128/jvi.00071-14] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/28/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Numerous animal and plant viruses are transmitted by arthropod vectors in a persistent, circulative manner. Tomato yellow leaf curl virus (TYLCV) is transmitted by the sweet potato whitefly Bemisia tabaci. We report here that infection with Rickettsia spp., a facultative endosymbiont of whiteflies, altered TYLCV-B. tabaci interactions. A B. tabaci strain infected with Rickettsia acquired more TYLCV from infected plants, retained the virus longer, and exhibited nearly double the transmission efficiency compared to an uninfected B. tabaci strain with the same genetic background. Temporal and spatial antagonistic relationships were discovered between Rickettsia and TYLCV within the whitefly. In different time course experiments, the levels of virus and Rickettsia within the insect were inversely correlated. Fluorescence in situ hybridization analysis of Rickettsia-infected midguts provided evidence for niche exclusion between Rickettsia and TYLCV. In particular, high levels of the bacterium in the midgut resulted in higher virus concentrations in the filter chamber, a favored site for virus translocation along the transmission pathway, whereas low levels of Rickettsia in the midgut resulted in an even distribution of the virus. Taken together, these results indicate that Rickettsia, by infecting the midgut, increases TYLCV transmission efficacy, adding further insights into the complex association between persistent plant viruses, their insect vectors, and microorganism tenants that reside within these insects. IMPORTANCE Interest in bacterial endosymbionts in arthropods and many aspects of their host biology in agricultural and human health systems has been increasing. A recent and relevant studied example is the influence of Wolbachia on dengue virus transmission by mosquitoes. In parallel with our recently studied whitefly-Rickettsia-TYLCV system, other studies have shown that dengue virus levels in the mosquito vector are inversely correlated with bacterial load. Our work here presents evidence of unifying principles between vectors of plant and animal viruses in a role for endosymbionts in manipulating vector biology and pathogen transmission. Our results demonstrate the influence of an interesting and prominent bacterial endosymbiont in Bemisia tabaci in TYLCV transmission, a worldwide disease infecting tomatoes. Besides its agricultural importance, this system provides interesting insights into Bemisia interaction with these newly discovered endosymbionts.
Collapse
Affiliation(s)
- Adi Kliot
- Department of Entomology, The Volcani Center, Bet Dagan, Israel
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Michelle Cilia
- USDA-Agricultural Research Service, Boyce Thompson Institute for Plant Research, Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| | - Henryk Czosnek
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Murad Ghanim
- Department of Entomology, The Volcani Center, Bet Dagan, Israel
| |
Collapse
|
47
|
Lalzar I, Friedmann Y, Gottlieb Y. Tissue tropism and vertical transmission ofCoxiellainRhipicephalus sanguineusandRhipicephalus turanicusticks. Environ Microbiol 2014; 16:3657-68. [DOI: 10.1111/1462-2920.12455] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 02/27/2014] [Accepted: 03/13/2014] [Indexed: 01/31/2023]
Affiliation(s)
- Itai Lalzar
- Koret School of Veterinary Medicine; The Robert H. Smith Faculty of Agriculture, Food and Environment; The Hebrew University of Jerusalem; Rehovot Israel
| | - Yael Friedmann
- Bio-Imaging Unit; The Alexander Silberman Institute of Life Sciences; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Yuval Gottlieb
- Koret School of Veterinary Medicine; The Robert H. Smith Faculty of Agriculture, Food and Environment; The Hebrew University of Jerusalem; Rehovot Israel
| |
Collapse
|
48
|
Su Q, Xie W, Wang S, Wu Q, Ghanim M, Zhang Y. Location of symbionts in the whitefly Bemisia tabaci affects their densities during host development and environmental stress. PLoS One 2014; 9:e91802. [PMID: 24632746 PMCID: PMC3954726 DOI: 10.1371/journal.pone.0091802] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/13/2014] [Indexed: 11/19/2022] Open
Abstract
Bacterial symbionts often enhance the physiological capabilities of their arthropod hosts and enable their hosts to expand into formerly unavailable niches, thus leading to biological diversification. Many arthropods, including the worldwide invasive whitefly Bemisia tabaci, have individuals simultaneously infected with symbionts of multiple genera that occur in different locations in the host. This study examined the population dynamics of symbionts that are located in different areas within B. tabaci. While densities of Portiera and Hamiltonella (which are located in bacteriocytes) appeared to be well-regulated during host development, densities of Rickettsia (which are not located in bacteriocytes) were highly variable among individual hosts during host development. Host mating did not significantly affect symbiont densities. Infection by Tomato yellow leaf curl virus did not affect Portiera and Hamiltonella densities in either sex, but increased Rickettsia densities in females. High and low temperatures did not affect Portiera and Hamiltonella densities, but low temperature (15°C) significantly suppressed Rickettsia densities whereas high temperature (35°C) had little effect on Rickettsia densities. The results are consistent with the view that the population dynamics of bacterial symbionts in B. tabaci are regulated by symbiont location within the host and that the regulation reflects adaptation between the bacteria and insect.
Collapse
Affiliation(s)
- Qi Su
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, People’s Republic of China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Murad Ghanim
- Department of Entomology, The Agricultural Research Organization (ARO), Volcani Center, Bet Dagan, Israel
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- * E-mail:
| |
Collapse
|
49
|
Kliot A, Kontsedalov S, Lebedev G, Brumin M, Cathrin PB, Marubayashi JM, Skaljac M, Belausov E, Czosnek H, Ghanim M. Fluorescence in situ hybridizations (FISH) for the localization of viruses and endosymbiotic bacteria in plant and insect tissues. J Vis Exp 2014:e51030. [PMID: 24637389 PMCID: PMC4130656 DOI: 10.3791/51030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) is a name given to a variety of techniques commonly used for visualizing gene transcripts in eukaryotic cells and can be further modified to visualize other components in the cell such as infection with viruses and bacteria. Spatial localization and visualization of viruses and bacteria during the infection process is an essential step that complements expression profiling experiments such as microarrays and RNAseq in response to different stimuli. Understanding the spatiotemporal infections with these agents complements biological experiments aimed at understanding their interaction with cellular components. Several techniques for visualizing viruses and bacteria such as reporter gene systems or immunohistochemical methods are time-consuming, and some are limited to work with model organisms and involve complex methodologies. FISH that targets RNA or DNA species in the cell is a relatively easy and fast method for studying spatiotemporal localization of genes and for diagnostic purposes. This method can be robust and relatively easy to implement when the protocols employ short hybridizing, commercially-purchased probes, which are not expensive. This is particularly robust when sample preparation, fixation, hybridization, and microscopic visualization do not involve complex steps. Here we describe a protocol for localization of bacteria and viruses in insect and plant tissues. The method is based on simple preparation, fixation, and hybridization of insect whole mounts and dissected organs or hand-made plant sections, with 20 base pairs short DNA probes conjugated to fluorescent dyes on their 5' or 3' ends. This protocol has been successfully applied to a number of insect and plant tissues, and can be used to analyze expression of mRNAs or other RNA or DNA species in the cell.
Collapse
Affiliation(s)
- Adi Kliot
- Department of Entomology, Volcani Center; Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem
| | | | | | | | | | | | - Marisa Skaljac
- Department of Entomology, Volcani Center; Department of Applied Sciences, Institute for Adriatic Crops and Karst Reclamation
| | | | - Henryk Czosnek
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem
| | | |
Collapse
|
50
|
Jing X, Wong ACN, Chaston JM, Colvin J, McKenzie CL, Douglas AE. The bacterial communities in plant phloem-sap-feeding insects. Mol Ecol 2014; 23:1433-1444. [DOI: 10.1111/mec.12637] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 12/06/2013] [Accepted: 12/13/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Xiangfeng Jing
- Department of Entomology; Comstock Hall; Cornell University; Ithaca NY 14853 USA
| | - Adam C-N Wong
- Department of Entomology; Comstock Hall; Cornell University; Ithaca NY 14853 USA
| | - John M. Chaston
- Department of Entomology; Comstock Hall; Cornell University; Ithaca NY 14853 USA
| | - John Colvin
- Agriculture, Health and Environment Group; Natural Resources Institute; University of Greenwich; Kent UK
| | - Cindy L. McKenzie
- ASDA-ARS; U.S. Horticultural Research Laboratory; 2001 South Rock Road Fort Pierce FL 34945 USA
| | - Angela E. Douglas
- Department of Entomology; Comstock Hall; Cornell University; Ithaca NY 14853 USA
- Department of Molecular Biology and Genetics; 526 Campus Road; Cornell University; Ithaca NY 14853 USA
| |
Collapse
|