1
|
Dias M, Gomes B, Pena P, Cervantes R, Beswick A, Duchaine C, Kolk A, Madsen AM, Oppliger A, Pogner C, Duquenne P, Wouters IM, Crook B, Viegas C. Filling the knowledge gap: Scoping review regarding sampling methods, assays, and further requirements to assess airborne viruses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174016. [PMID: 38908595 DOI: 10.1016/j.scitotenv.2024.174016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Assessment of occupational exposure to viruses is crucial to identify virus reservoirs and sources of dissemination at an early stage and to help prevent spread between employees and to the general population. Measuring workers' exposure can facilitate assessment of the effectiveness of protective and mitigation measures in place. The aim of this scoping review is to give an overview of available methods and those already implemented for airborne virus' exposure assessment in different occupational and indoor environments. The results retrieved from the different studies may contribute to the setting of future standards and guidelines to ensure a reliable risk characterization in the occupational environments crucial for the implementation of effective control measures. The search aimed at selecting studies between January 1st 2010 and June 30th 2023 in the selected databases. Fifty papers on virus exposure assessment fitted the eligibility criteria and were selected for data extraction. Overall, this study identified gaps in knowledge regarding virus assessment and pinpointed the needs for further research. Several discrepancies were found (transport temperatures, elution steps, …), as well as a lack of publication of important data related to the exposure conditions (contextual information). With the available information, it is impossible to compare results between studies employing different methods, and even if the same methods are used, different conclusions/recommendations based on the expert judgment have been reported due to the lack of consensus in the contextual information retrieved and/or data interpretation. Future research on the field targeting sampling methods and in the laboratory regarding the assays to employ should be developed bearing in mind the different goals of the assessment.
Collapse
Affiliation(s)
- Marta Dias
- H&TRC - Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Portugal; NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal
| | - Bianca Gomes
- H&TRC - Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Portugal; CE3C-Center for Ecology, Evolution and Environmental Change, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Pedro Pena
- H&TRC - Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Portugal; NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal
| | - Renata Cervantes
- H&TRC - Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Portugal; NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal
| | - Alan Beswick
- Health and Safety Executive Science and Research Centre, Buxton SK17 9JN, UK
| | - Caroline Duchaine
- Département de biochimie, microbiologie et bio-informatique, Université Laval, Québec, Canada
| | - Annette Kolk
- Institute for Occupational Safety and Health of the German Social Accident Insurance, Alte Heerstraße 111, 53757 Sankt Augustin, Germany
| | - Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | | | | | | | - Inge M Wouters
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Brian Crook
- Health and Safety Executive Science and Research Centre, Buxton SK17 9JN, UK
| | - Carla Viegas
- H&TRC - Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Portugal; NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal.
| |
Collapse
|
2
|
Johnson M, Barnes MA. Macrobial airborne environmental DNA analysis: A review of progress, challenges, and recommendations for an emerging application. Mol Ecol Resour 2024; 24:e13998. [PMID: 39113622 DOI: 10.1111/1755-0998.13998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 10/10/2024]
Abstract
In the context of looming global biodiversity loss, effective species detection represents a critical concern for ecological research and management. Environmental DNA (eDNA) analysis, which refers to the collection and taxonomic identification of genetic fragments that are shed from an organism into its surroundings, emerged approximately 15 years ago as a sensitive tool for species detection. Today, one of the frontiers of eDNA research concerns the collection and analysis of genetic material in dust and other airborne materials, termed airborne eDNA analysis. As the study of airborne eDNA matures, it is an appropriate time to review the foundational and emerging studies that make up the current literature, and use the reviewed literature to summarize, synthesize, and forecast the major challenges and opportunities for this advancing research front. Specifically, we use the "ecology of eDNA" framework to organize our findings across the origin, state, transport, and fate of airborne genetic materials in the environment, and summarize what is so far known of their interactions with surrounding abiotic and biotic factors, including population and community ecologies and ecosystem processes. Within this work we identify key challenges, opportunities, and future directions associated with the application of airborne eDNA development. Lastly, we discuss the development of applications, partnerships, and messaging that promote development and growth of the field. Together, the broad potential of eDNA analysis and the rate at which research is accelerating in this field suggest that the sky's the limit for airborne eDNA science.
Collapse
Affiliation(s)
- Mark Johnson
- Engineer Research and Development Center, Champaign, Illinois, USA
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, Illinois, USA
| | - Matthew A Barnes
- Department of Natural Resources Management, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
3
|
Heida A, Maal-Bared R, Veillette M, Duchaine C, Reynolds KA, Ashraf A, Ogunseye OO, Jung Y, Shulman L, Ikner L, Betancourt W, Hamilton KA, Wilson AM. Quantitative microbial risk assessment (QMRA) tool for modelling pathogen infection risk to wastewater treatment plant workers. WATER RESEARCH 2024; 260:121858. [PMID: 38936269 DOI: 10.1016/j.watres.2024.121858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Wastewater treatment plants (WWTPs) provide vital services to the public by removing contaminants from wastewater prior to environmental discharge or reuse for beneficial purposes. WWTP workers occupationally exposed to wastewater can be at risk of respiratory or gastrointestinal diseases. The study objectives were to: (1) quantify pathogens and pathogen indicators in wastewater aerosols near different WWTP processes/unit operations, (2) develop a QMRA model for multi-pathogen and multi-exposure pathway risks, and (3) create a web-based application to perform and communicate risk calculations for wastewater workers. Case studies for seven different WWTP job tasks were performed investigating infection risk across nine different enteric and respiratory pathogens. It was observed that the ingestion risk among job tasks was highest for "walking the WWTP," which involved exposure from splashing, bioaerosols, and hand-to-mouth contact from touching contaminated surfaces. There was also a notable difference in exposure risk during peak (5:00am-9:00am) and non-peak hours (9:00am- 5:00am), with risks during the peak flow hours of the early morning assumed to be 5 times greater than non-peak hours. N95 respirator usage reduced median respiratory risks by 77 %. The developed tool performs multiple QMRA calculations to estimate WWTP workers' infection risks from accidental ingestion or inhalation of wastewater from multiple pathogens and exposure scenarios, which can inform risk management strategies to protect occupational health. However, more data are needed to reduce uncertainty in model estimates, including comparative data for pathogen concentrations in wastewater during peak and non-peak hours. QMRA tools will increase accessibility of risk models for utilization in decision-making.
Collapse
Affiliation(s)
- Ashley Heida
- School for Engineering of Matter, Transport and Energy, Arizona State University, 502 E Tyler Mall, Tempe, AZ 85287, USA; The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA
| | - Rasha Maal-Bared
- Bellevue Research and Testing Laboratory, CDM Smith, 14432 SE Eastgate Way Suite 100, Bellevue, WA 98007, USA
| | - Marc Veillette
- Department of biochemistry, microbiology and bioinformatics, Université Laval, Canada Research Chair on Bioaerosols, Quebec City, Canada
| | - Caroline Duchaine
- Department of biochemistry, microbiology and bioinformatics, Université Laval, Canada Research Chair on Bioaerosols, Quebec City, Canada
| | - Kelly A Reynolds
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Ahamed Ashraf
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Olusola O Ogunseye
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Yoonhee Jung
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Lester Shulman
- Central Virology Laboratory, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel; School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Luisa Ikner
- Department of Environmental Science, College of Agricultre, Life & Environmental Sciences, University of Arizona, Tucson, AZ, USA
| | - Walter Betancourt
- Department of Environmental Science, College of Agricultre, Life & Environmental Sciences, University of Arizona, Tucson, AZ, USA
| | - Kerry A Hamilton
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA
| | - Amanda M Wilson
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
4
|
Bøifot KO, Skogan G, Dybwad M. Sampling efficiency and nucleic acid stability during long-term sampling with different bioaerosol samplers. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:577. [PMID: 38795190 PMCID: PMC11127824 DOI: 10.1007/s10661-024-12735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/17/2024] [Indexed: 05/27/2024]
Abstract
Aerosol microbiome studies have received increased attention as technological advancements have made it possible to dive deeper into the microbial diversity. To enhance biomass collection for metagenomic sequencing, long-term sampling is a common strategy. While the impact of prolonged sampling times on microorganisms' culturability and viability is well-established, its effect on nucleic acid stability remains less understood but is essential to ensure representative sample collection. This study evaluated four air samplers (SKC BioSampler, SASS3100, Coriolis μ, BioSpot-VIVAS 300-P) against a reference sampler (isopore membrane filters) to identify nucleic acid stability during long-term sampling. Physical sampling efficiencies determined with a fluorescent tracer for three particle sizes (0.8, 1, and 3 μm), revealed high efficiencies (> 80% relative to reference) for BioSampler, SASS3100, and BioSpot-VIVAS for all particle sizes, and for Coriolis with 3 μm particles. Coriolis exhibited lower efficiency for 0.8 μm (7%) and 1 μm (50%) particles. During 2-h sampling with MS2 and Pantoea agglomerans, liquid-based collection with Coriolis and BioSampler showed a decrease in nucleic acid yields for all test conditions. BioSpot-VIVAS displayed reduced sampling efficiency for P. agglomerans compared to MS2 and the other air samplers, while filter-based collection with SASS3100 and isopore membrane filters, showed indications of DNA degradation for 1 μm particles of P. agglomerans after long-term sampling. These findings show that long-term air sampling affects nucleic acid stability in both liquid- and filter-based collection methods. These results highlight bias produced by bioaerosol collection and should be considered when selecting an air sampler and interpreting aerosol microbiome data.
Collapse
Affiliation(s)
- Kari Oline Bøifot
- Norwegian Defence Research Establishment, P.O. Box 25, NO-2027, Kjeller, Norway.
- Department of Analytical, Environmental and Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| | - Gunnar Skogan
- Norwegian Defence Research Establishment, P.O. Box 25, NO-2027, Kjeller, Norway
| | - Marius Dybwad
- Norwegian Defence Research Establishment, P.O. Box 25, NO-2027, Kjeller, Norway
- Department of Analytical, Environmental and Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| |
Collapse
|
5
|
Kang S, Lee JY, Cho KS. Implications of PM 2.5 chemical composition in modulating microbial community dynamics during spring in Seoul. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123834. [PMID: 38518971 DOI: 10.1016/j.envpol.2024.123834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Particulate matter with an aerodynamic diameter of 2.5 μm or less (PM2.5) harbors a diverse microbial community. To assess the ecological dynamics and potential health risks associated with airborne microorganisms, it is crucial to understand the factors influencing microbial communities within PM2.5. This study investigated the influence of abiotic parameters, including air pollutants, PM2.5 chemical composition (water-soluble ions and organics), and meteorological variables, on microbial communities in PM2.5 samples collected in Seoul during the spring season. Results revealed a significant correlation between air pollutants and water-soluble ions of PM2.5 with microbial α-diversity indices. Additionally, air pollutants exerted a dominant effect on the microbial community structure, with stronger correlations observed for fungi than bacteria, whereas meteorological variables including temperature, pressure, wind speed, and humidity exerted a limited influence on fungal α-diversity. Furthermore, the results revealed specific water-soluble ions, such as SO42-, NO3-, and NH4+, as important factors influencing fungal α-diversity, whereas K+ negatively correlated with both microbial α-diversity. Moreover, PM2.5 microbial diversity was affected by organic compounds within PM2.5, with fatty acids exhibited a positive correlation with fungal diversity, while dicarboxylic acids exhibited a negative correlation with it. Furthermore, network analysis revealed direct links between air pollutants and dominant bacterial and fungal genera. The air pollutants exhibited a strong correlation with bacterial genera, such as Arthrospira and Clostridium, and fungal genera, including Aureobasidium and Cladosporium. These results will contribute to our understanding of the ecological dynamics of airborne microorganisms and provide insights into the potential risks associated with PM2.5 exposure.
Collapse
Affiliation(s)
- Sookyung Kang
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Ji Yi Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
6
|
Roy CJ. Aerobiology-A New Open Access Journal. AEROBIOLOGY 2023; 1:1-2. [PMID: 37662559 PMCID: PMC10471951 DOI: 10.3390/aerobiology1010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
It is simultaneously professionally humbling and an absolute pleasure to be associated with the launch of a new open access journal, with added emphasis in a scientific field as rich and diverse as aerobiology [...]
Collapse
Affiliation(s)
- Chad J Roy
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
7
|
Ouyang H, Wang L, Sapkota D, Yang M, Morán J, Li L, Olson BA, Schwartz M, Hogan CJ, Torremorell M. Control technologies to prevent aerosol-based disease transmission in animal agriculture production settings: a review of established and emerging approaches. Front Vet Sci 2023; 10:1291312. [PMID: 38033641 PMCID: PMC10682736 DOI: 10.3389/fvets.2023.1291312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Transmission of infectious agents via aerosols is an ever-present concern in animal agriculture production settings, as the aerosol route to disease transmission can lead to difficult-to-control and costly diseases, such as porcine respiratory and reproductive syndrome virus and influenza A virus. It is increasingly necessary to implement control technologies to mitigate aerosol-based disease transmission. Here, we review currently utilized and prospective future aerosol control technologies to collect and potentially inactivate pathogens in aerosols, with an emphasis on technologies that can be incorporated into mechanically driven (forced air) ventilation systems to prevent aerosol-based disease spread from facility to facility. Broadly, we find that control technologies can be grouped into three categories: (1) currently implemented technologies; (2) scaled technologies used in industrial and medical settings; and (3) emerging technologies. Category (1) solely consists of fibrous filter media, which have been demonstrated to reduce the spread of PRRSV between swine production facilities. We review the mechanisms by which filters function and are rated (minimum efficiency reporting values). Category (2) consists of electrostatic precipitators (ESPs), used industrially to collect aerosol particles in higher flow rate systems, and ultraviolet C (UV-C) systems, used in medical settings to inactivate pathogens. Finally, category (3) consists of a variety of technologies, including ionization-based systems, microwaves, and those generating reactive oxygen species, often with the goal of pathogen inactivation in aerosols. As such technologies are typically first tested through varied means at the laboratory scale, we additionally review control technology testing techniques at various stages of development, from laboratory studies to field demonstration, and in doing so, suggest uniform testing and report standards are needed. Testing standards should consider the cost-benefit of implementing the technologies applicable to the livestock species of interest. Finally, we examine economic models for implementing aerosol control technologies, defining the collected infectious particles per unit energy demand.
Collapse
Affiliation(s)
- Hui Ouyang
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
- Department of Mechanical Engineering, University of Texas-Dallas, Richardson, TX, United States
| | - Lan Wang
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Deepak Sapkota
- Department of Mechanical Engineering, University of Texas-Dallas, Richardson, TX, United States
| | - My Yang
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - José Morán
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Li Li
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Bernard A. Olson
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Mark Schwartz
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
- Schwartz Farms, Sleepy Eye, MN, United States
| | - Christopher J. Hogan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Montserrat Torremorell
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
8
|
Sajjad B, Hussain S, Rasool K, Hassan M, Almomani F. Comprehensive insights into advances in ambient bioaerosols sampling, analysis and factors influencing bioaerosols composition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122473. [PMID: 37659632 DOI: 10.1016/j.envpol.2023.122473] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/20/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
While the study of bioaerosols has a long history, it has garnered heightened interest in the past few years, focusing on both culture-dependent and independent sampling and analysis approaches. Observations have been made regarding the seasonal fluctuations in microbial communities and their connection to particular ambient atmospheric factors. The study of airborne microbial communities is important in public health and atmospheric processes. Nevertheless, the establishment of standardized protocols for evaluating airborne microbial communities and utilizing microbial taxonomy as a means to identify distinct bioaerosols sources and seasonal patterns remains relatively unexplored. This article discusses the challenges and limitations of ambient bioaerosols sampling and analysis, including the lack of standardized methods and the heterogeneity of sources. Future prospects in the field of bioaerosols, including the use of high-throughput sequencing technologies, omics studies, spectroscopy and fluorescence-based monitoring to provide comprehensive incite on metabolic capacity, and activity are also presented. Furthermore, the review highlights the factors that affect bioaerosols composition, including seasonality, atmospheric conditions, and pollution levels. Overall, this review provides a valuable resource for researchers, policymakers, and stakeholders interested in understanding and managing bioaerosols in various environments.
Collapse
Affiliation(s)
- Bilal Sajjad
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar; Department of Chemical Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Sabir Hussain
- Department of Environmental Science, Institute of Space Technology, Islamabad, Pakistan
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar.
| | - Mujtaba Hassan
- Department of Environmental Science, Institute of Space Technology, Islamabad, Pakistan
| | - Fares Almomani
- Department of Chemical Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
| |
Collapse
|
9
|
Ouradou A, Veillette M, Bélanger Cayouette A, Corbin S, Boulanger C, Dorner S, Duchaine C, Bédard E. Effect of odor treatment systems on bioaerosol microbial concentration and diversity from wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162419. [PMID: 36858219 DOI: 10.1016/j.scitotenv.2023.162419] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/30/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Biofiltration, activated carbon and chemical scrubbing are technologies used for odor control in wastewater treatment plants. These systems may also influence the airborne microbial load in treated air. The study objectives were to 1) evaluate the capacity of three odor control system technologies to reduce the airborne concentration of total bacteria, Legionella, L. pneumophila, non-tuberculous mycobacteria (NTM) and Cladosporium in winter and summer seasons and 2) to describe the microbial ecology of the biofiltration system and evaluate its impact on treated air microbial diversity. A reduction of the total bacterial concentration up to 25 times was observed after odor treatment. Quantification by qPCR revealed the presence of Legionella spp. in all air samples ranging between 26 and 1140 GC/m3, while L. pneumophila was not detected except for three samples below the limit of quantification. A significant increase of up to 25-fold of Legionella spp. was noticed at the outlet of two of the three treatment systems. NTM were ubiquitously detected before air treatment (up to 2500 GC/m3) and were significantly reduced by all 3 systems (up to 13-fold). Cladosporium was measured at low concentrations for each system (< 190 GC/m3), with 68 % of the air samples below the limit of detection. Biodiversity results revealed that biofiltration system is an active process that adapts to air pollutants over time. Legionella spp. were detected in significant abundance in the air once treated in winter (up to 27 %). Nevertheless, the abundance of protozoan hosts is low and does not explain the multiplication of Legionella spp. The season remains the most influential factor shaping biodiversity. In summer only, air biofiltration caused a significant enrichment of the biodiversity. Although odor control technologies are not designed for bacterial mitigation, findings from this study suggest their potential to reduce the abundance of some genera harboring pathogenic species.
Collapse
Affiliation(s)
- A Ouradou
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montréal, QC, Canada.
| | - M Veillette
- Research Center of the University Institute of Cardiology and Pneumology of Quebec-University Laval, Québec, QC, Canada.
| | - A Bélanger Cayouette
- Research Center of the University Institute of Cardiology and Pneumology of Quebec-University Laval, Québec, QC, Canada; Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, University Laval, Québec, QC, Canada.
| | - S Corbin
- City of Repentigny, Repentigny, QC, Canada.
| | | | - S Dorner
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montréal, QC, Canada.
| | - C Duchaine
- Research Center of the University Institute of Cardiology and Pneumology of Quebec-University Laval, Québec, QC, Canada; Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, University Laval, Québec, QC, Canada; Canada Research Chair on Bioaerosols, University Laval, Québec, QC, Canada.
| | - E Bédard
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montréal, QC, Canada.
| |
Collapse
|
10
|
Hou J, Fujiyoshi S, Perera IU, Nishiuchi Y, Nakajima M, Ogura D, Yarimizu K, Maruyama F. Perspectives on Sampling and New Generation Sequencing Methods for Low-Biomass Bioaerosols in Atmospheric Environments. J Indian Inst Sci 2023; 103:1-11. [PMID: 37362849 PMCID: PMC10176311 DOI: 10.1007/s41745-023-00380-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/13/2023] [Indexed: 06/28/2023]
Abstract
Bioaerosols play essential roles in the atmospheric environment and can affect human health. With a few exceptions (e.g., farm or rainforest environments), bioaerosol samples from wide-ranging environments typically have a low biomass, including bioaerosols from indoor environments (e.g., residential homes, offices, or hospitals), outdoor environments (e.g., urban or rural air). Some specialized environments (e.g., clean rooms, the Earth's upper atmosphere, or the international space station) have an ultra-low-biomass. This review discusses the primary sources of bioaerosols and influencing factors, the recent advances in air sampling techniques and the new generation sequencing (NGS) methods used for the characterization of low-biomass bioaerosol communities, and challenges in terms of the bias introduced by different air samplers when samples are subjected to NGS analysis with a focus on ultra-low biomass. High-volume filter-based or liquid-based air samplers compatible with NGS analysis are required to improve the bioaerosol detection limits for microorganisms. A thorough understanding of the performance and outcomes of bioaerosol sampling using NGS methods and a robust protocol for aerosol sample treatment for NGS analysis are needed. Advances in NGS techniques and bioinformatic tools will contribute toward the precise high-throughput identification of the taxonomic profiles of bioaerosol communities and the determination of their functional and ecological attributes in the atmospheric environment. In particular, long-read amplicon sequencing, viability PCR, and meta-transcriptomics are promising techniques for discriminating and detecting pathogenic microorganisms that may be active and infectious in bioaerosols and, therefore, pose a threat to human health. Supplementary Information The online version contains supplementary material available at 10.1007/s41745-023-00380-x.
Collapse
Affiliation(s)
- Jianjian Hou
- Microbial Genomics and Ecology, Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, 739-0046 Japan
| | - So Fujiyoshi
- Microbial Genomics and Ecology, Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, 739-0046 Japan
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Hiroshima, 739-0046 Japan
| | - Ishara Uhanie Perera
- Microbial Genomics and Ecology, Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, 739-0046 Japan
| | - Yukiko Nishiuchi
- Microbial Genomics and Ecology, Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, 739-0046 Japan
| | - Makiko Nakajima
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Hiroshima, 739-0046 Japan
- Department of Architectural Engineering, Faculty of Engineering, Hiroshima Institute of Technology, Hiroshima, 731-5193 Japan
| | - Daisuke Ogura
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Hiroshima, 739-0046 Japan
- Department of Architecture and Architectural Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8540 Japan
| | - Kyoko Yarimizu
- Microbial Genomics and Ecology, Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, 739-0046 Japan
| | - Fumito Maruyama
- Microbial Genomics and Ecology, Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, 739-0046 Japan
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Hiroshima, 739-0046 Japan
| |
Collapse
|
11
|
Métris KL, Métris J. Aircraft surveys for air eDNA: probing biodiversity in the sky. PeerJ 2023; 11:e15171. [PMID: 37077310 PMCID: PMC10108859 DOI: 10.7717/peerj.15171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/13/2023] [Indexed: 04/21/2023] Open
Abstract
Air is a medium for dispersal of environmental DNA (eDNA) carried in bioaerosols, yet the atmosphere is mostly unexplored as a source of genetic material encompassing all domains of life. In this study, we designed and deployed a robust, sterilizable hardware system for airborne nucleic acid capture featuring active filtration of a quantifiable, controllable volume of air and a high-integrity chamber to protect the sample from loss or contamination. We used our hardware system on an aircraft across multiple height transects over major aerosolization sources to collect air eDNA, coupled with high-throughput amplicon sequencing using multiple DNA metabarcoding markers targeting bacteria, plants, and vertebrates to test the hypothesis of large-scale genetic presence of these bioaerosols throughout the planetary boundary layer in the lower troposphere. Here, we demonstrate that the multi-taxa DNA assemblages inventoried up to 2,500 m using our airplane-mounted hardware system are reflective of major aerosolization sources in the survey area and show previously unreported airborne species detections (i.e., Allium sativum L). We also pioneer an aerial survey flight grid standardized for atmospheric sampling of genetic material and aeroallergens using a light aircraft and limited resources. Our results show that air eDNA from terrestrial bacteria, plants, and vertebrates is detectable up to high altitude using our airborne air sampler and demonstrate the usefulness of light aircraft in monitoring campaigns. However, our work also underscores the need for improved marker choices and reference databases for species in the air column, particularly eukaryotes. Taken together, our findings reveal strong connectivity or mixing of terrestrial-associated eDNA from ground level aerosolization sources and the atmosphere, and we recommend that parameters and indices considering lifting action, atmospheric instability, and potential for convection be incorporated in future surveys for air eDNA. Overall, this work establishes a foundation for light aircraft campaigns to comprehensively and economically inventory bioaerosol emissions and impacts at scale, enabling transformative future opportunities in airborne DNA technology.
Collapse
Affiliation(s)
- Kimberly L. Métris
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Airborne Science LLC, Clemson, SC, United States
| | | |
Collapse
|
12
|
Tedeschini E, Pasqualini S, Emiliani C, Marini E, Valecchi A, Laoreti C, Ministrini S, Camilloni B, Castronari R, Patoia L, Merante F, Baglioni S, De Robertis E, Pirro M, Mencacci A, Pasqualini L. Monitoring of indoor bioaerosol for the detection of SARS-CoV-2 in different hospital settings. Front Public Health 2023; 11:1169073. [PMID: 37151587 PMCID: PMC10157290 DOI: 10.3389/fpubh.2023.1169073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Background Spore Trap is an environmental detection technology, already used in the field of allergology to monitor the presence and composition of potentially inspirable airborne micronic bioparticulate. This device is potentially suitable for environmental monitoring of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in hospital, as well as in other high-risk closed environments. The aim of the present study is to investigate the accuracy of the Spore Trap system in detecting SARS-CoV-2 in indoor bioaerosol of hospital rooms. Methods The Spore Trap was placed in hospital rooms hosting patients with documented SARS-CoV-2 infection (n = 36) or, as a negative control, in rooms where patients with documented negativity to a Real-Time Polymerase Chain Reaction molecular test for SARS-CoV-2 were admitted (n = 10). The monitoring of the bioaerosol was carried on for 24 h. Collected samples were analyzed by real-time polymerase chain reaction. Results The estimated sensitivity of the Spore Trap device for detecting SARS-CoV-2 in an indoor environment is 69.4% (95% C.I. 54.3-84.4%), with a specificity of 100%. Conclusion The Spore Trap technology is effective in detecting airborne SARS-CoV-2 virus with excellent specificity and high sensitivity, when compared to previous reports. The SARS-CoV-2 pandemic scenario has suggested that indoor air quality control will be a priority in future public health management and will certainly need to include an environmental bio-investigation protocol.
Collapse
Affiliation(s)
- Emma Tedeschini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Stefania Pasqualini
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia, Italy
| | - Carla Emiliani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia, Italy
| | - Ettore Marini
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Perugia, Italy
| | - Alessandro Valecchi
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Perugia, Italy
| | - Chiara Laoreti
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Perugia, Italy
| | - Stefano Ministrini
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Perugia, Italy
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- *Correspondence: Stefano Ministrini
| | - Barbara Camilloni
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Perugia, Italy
| | - Roberto Castronari
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Perugia, Italy
| | - Lucio Patoia
- Ospedale S.G. Battista – Azienda Unità Sanitaria Umbria 2, Foligno, Italy
| | - Francesco Merante
- Ospedale S.G. Battista – Azienda Unità Sanitaria Umbria 2, Foligno, Italy
| | - Stefano Baglioni
- S.C. Pneumologia, Ospedale Santa Maria della Misericordia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Edoardo De Robertis
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia, Italy
| | - Matteo Pirro
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia, Italy
| | - Antonella Mencacci
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia, Italy
| | - Leonella Pasqualini
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
13
|
Zhang Y, Liu B, Tong Z. Adenosine triphosphate (ATP) bioluminescence-based strategies for monitoring atmospheric bioaerosols. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2022; 72:1327-1340. [PMID: 36226866 DOI: 10.1080/10962247.2022.2101566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 06/16/2023]
Abstract
Bioaerosols play a momentous role in the transmission of human infectious diseases, so there has been increasing concern over their exposure in recent years. Bioaerosol monitor is crucial in environmental fields. Based on the universal existence of Adenosine triphosphate (ATP) in bioaerosols, ATP bioluminescence can be used as a powerful technique to detect bioaerosols without interference from non-bioaerosols. When ATP is released from bioaerosols, they can quantify microbial biomass by ATP bioluminescence. In this review, we provide the latest methodological improvements that enable more reliable quantification of bioaerosols in complex environmental samples, especially the use of ATP bioluminescence in this era of technological advancement via the following routes: lower sample content for the trace existence of bioaerosols in the atmosphere, higher sensitivity of ATP bioluminescence reaction system and shorter process times. We also highlight the new techniques in improving the efficiencies of these monitoring processes. The purpose of this paper is to make more people realize the great potential of the ATP bioluminescence system for monitoring airborne microorganisms. Additionally, the present work intends to increase people's awareness of developing novel technology combined with ATP bioluminescence reaction system to realize rapid, real-time, and sensitive sensing of bioaerosols.Implications: The ATP bioluminescence methodology can not only eliminate the interference of co-existing nonbiological (fluorescent or PM) but also significantly improve the efficiency of bioaerosol. Recent progresses, such as the application of ATP fluorescence technology in bioaerosol monitoring, indicating that the efficiency and sensitivity are possible to be further improved. Nevertheless, there is no reviews address these advances and deeply analyze the application of ATP fluorescence technology in this field. his contribution will attract wide attention from both academic and industrial communities of this field, as well as researchers engaging in environmental monitoring. Furthermore, the strategies and techniques of studying the ATP bioluminescence reviewed here is instructive for environment monitoring in various fields. Therefore, in view of significance and broad interest, we feel strongly that our critical review is very essential to the field of public health security, pharmaceutics, anti-bioterrorism, etc., and would like it to be published in Journal of the Air & Waste Management Association.
Collapse
Affiliation(s)
- Yueqi Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, People's Republic of China
| | - Bing Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, People's Republic of China
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing, People's Republic of China
| |
Collapse
|
14
|
Grogan SN, Han TT, Mainelis G. Development and initial testing of an active low-power, ferroelectric film-based bioaerosol sampler. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2022; 56:1132-1145. [PMID: 37168518 PMCID: PMC10168024 DOI: 10.1080/02786826.2022.2128985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/15/2022] [Indexed: 05/13/2023]
Abstract
This article introduces REAS (Rutgers Electrostatic Active Sampler), a new active bioaerosol sampler using permanently polarized ferroelectric film (e.g., PVDF) to capture charge-carrying bioaerosol particles. While REAS operates on an electrostatic collection principle, due to its unique materials and design, it does not require external power to charge incoming particles or to create an electrostatic collection field. The sampler consists of a polarized film wound in a spiral configuration with oppositely polarized film sides positioned 2.25 mm apart. The film and its holder are inserted into a 3D-printed housing cylinder to connect to a pump. The device has an open channel design, creating virtually no pressure drop, which allows for longer sampling times on the same battery charge compared to filter samplers. When REAS was tested in different field environments, the physical collection efficiency ranged from 19 ± 2% in a laboratory environment at 1 L/min to 41 ± 0.1% in residence at 0.1 L/min. When REAS was used to capture culturable bacteria and fungi over a 24-hr period, the concentrations determined by REAS were not different from those determined by an Institute of Medicine sampler (IOM, SKC, Inc.). The concentrations determined by both samplers were lower than those measured by a SAS Super 180 Sampler (SAS, Bioscience International), except for outdoor fungi. However, the SAS was used as a grab sampler to avoid overloading or desiccating the plates, while both REAS and IOM continuously sampled for 24 hrs. Further studies will explore improvements to the REAS sample elution protocols.
Collapse
Affiliation(s)
- Sydonia N.C.M. Grogan
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
- Current affiliation: Population Health Sciences, School of Public Health, Georgia State University, Atlanta, Georgia, USA
| | - Taewon T. Han
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Gediminas Mainelis
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
15
|
Manibusan S, Mainelis G. Passive Bioaerosol Samplers: A Complementary Tool for Bioaerosol Research. A Review. JOURNAL OF AEROSOL SCIENCE 2022; 163:105992. [PMID: 36386279 PMCID: PMC9648171 DOI: 10.1016/j.jaerosci.2022.105992] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bioaerosols consist of airborne particles of biological origin. They play an important role in our environment and may cause negative health effects. The presence of biological aerosol is typically determined using active samplers. While passive bioaerosol samplers are used much less frequently in bioaerosol investigations, they offer certain advantages, such as simple design, low cost, and long sampling duration. This review discusses different types of passive bioaerosol samplers, including their collection mechanisms, advantages and disadvantages, applicability in different sampling environments, and available sample elution and analysis methods. Most passive samplers are based on gravitational settling and electrostatic capture mechanism or their combination. We discuss the agar settle plate, dustfall collector, Personal Aeroallergen Sampler (PAAS), and settling filters among the gravity-based samplers. The described electrostatics-based samplers include electrostatic dust cloths (EDC) and Rutgers Electrostatic Passive Sampler (REPS). In addition, the review also discusses passive opportunity samplers using preexisting airflow, such as filters in HVAC systems. Overall, passive bioaerosol sampling technologies are inexpensive, easy to operate, and can continuously sample for days and even weeks which is not easily accomplished by active sampling devices. Although passive sampling devices are usually treated as qualitative tools, they still provide information about bioaerosol presence and diversity, especially over longer time scales. Overall, this review suggests that the use of passive bioaerosol samplers alongside active collection devices can aid researchers in developing a more comprehensive understanding of biological presence and dynamics, especially over extended time scales and multiple locations.
Collapse
Affiliation(s)
- Sydonia Manibusan
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, New Jersey 08901-8551, USA
| | - Gediminas Mainelis
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, New Jersey 08901-8551, USA
| |
Collapse
|
16
|
Ang AXY, Luhung I, Ahidjo BA, Drautz‐Moses DI, Tambyah PA, Mok CK, Lau KJX, Tham SM, Chu JJH, Allen DM, Schuster SC. Airborne SARS-CoV-2 surveillance in hospital environment using high-flowrate air samplers and its comparison to surface sampling. INDOOR AIR 2022; 32:e12930. [PMID: 34519380 PMCID: PMC8653264 DOI: 10.1111/ina.12930] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/15/2021] [Accepted: 09/02/2021] [Indexed: 05/18/2023]
Abstract
Reliable methods to detect the presence of SARS-CoV-2 at venues where people gather are essential for epidemiological surveillance to guide public policy. Communal screening of air in a highly crowded space has the potential to provide early warning on the presence and potential transmission of SARS-CoV-2 as suggested by studies early in the epidemic. As hospitals and public facilities apply varying degrees of restrictions and regulations, it is important to provide multiple methodological options to enable environmental SARS-CoV-2 surveillance under different conditions. This study assessed the feasibility of using high-flowrate air samplers combined with RNA extraction kit designed for environmental sample to perform airborne SARS-CoV-2 surveillance in hospital setting, tested by RT-qPCR. The success rate of the air samples in detecting SARS-CoV-2 was then compared with surface swab samples collected in the same proximity. Additionally, positive RT-qPCR samples underwent viral culture to assess the viability of the sampled SARS-CoV-2. The study was performed in inpatient ward environments of a quaternary care university teaching hospital in Singapore housing active COVID-19 patients within the period of February to May 2020. Two types of wards were tested, naturally ventilated open-cohort ward and mechanically ventilated isolation ward. Distances between the site of air sampling and the patient cluster in the investigated wards were also recorded. No successful detection of airborne SARS-CoV-2 was recorded when 50 L/min air samplers were used. Upon increasing the sampling flowrate to 150 L/min, our results showed a high success rate in detecting the presence of SARS-CoV-2 from the air samples (72%) compared to the surface swab samples (9.6%). The positive detection rate of the air samples along with the corresponding viral load could be associated with the distance between sampling site and patient. The furthest distance from patient with PCR-positive air samples was 5.5 m. The airborne SARS-CoV-2 detection was comparable between the two types of wards with 60%-87.5% success rate. High prevalence of the virus was found in toilet areas, both on surfaces and in air. Finally, no successful culture attempt was recorded from the environmental air or surface samples.
Collapse
Affiliation(s)
- Alicia XY Ang
- Department of MedicineDivision of Infectious DiseasesNational University HospitalSingaporeSingapore
| | - Irvan Luhung
- Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological UniversitySingaporeSingapore
| | - Bintou A. Ahidjo
- Department of Microbiology and ImmunologyNational University of SingaporeSingaporeSingapore
- BSL3 Core FacilityYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Daniela I. Drautz‐Moses
- Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological UniversitySingaporeSingapore
| | - Paul A. Tambyah
- Department of MedicineDivision of Infectious DiseasesNational University HospitalSingaporeSingapore
- Department of MedicineInfectious Disease Translational Research ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Chee Keng Mok
- Department of Microbiology and ImmunologyNational University of SingaporeSingaporeSingapore
- BSL3 Core FacilityYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Kenny JX Lau
- Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological UniversitySingaporeSingapore
| | - Sai Meng Tham
- Department of MedicineDivision of Infectious DiseasesNational University HospitalSingaporeSingapore
| | - Justin Jang Hann Chu
- Department of Microbiology and ImmunologyNational University of SingaporeSingaporeSingapore
- BSL3 Core FacilityYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of MedicineInfectious Disease Translational Research ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - David M. Allen
- Department of MedicineDivision of Infectious DiseasesNational University HospitalSingaporeSingapore
- Department of MedicineInfectious Disease Translational Research ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Stephan C. Schuster
- Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
17
|
Compendium of analytical methods for sampling, characterization and quantification of bioaerosols. ADV ECOL RES 2022. [DOI: 10.1016/bs.aecr.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Ang AX, Luhung I, Ahidjo BA, Drautz-Moses DI, Tambyah PA, Mok CK, Lau KJ, Tham SM, Chu JJH, Allen DM, Schuster SC. Airborne SARS-CoV-2 surveillance in hospital environment using high-flowrate air samplers and its comparison to surface sampling. INDOOR AIR 2022; 32:e12930. [PMID: 34519380 DOI: 10.1111/ina.v32.110.1111/ina.12930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/15/2021] [Accepted: 09/02/2021] [Indexed: 05/18/2023]
Abstract
Reliable methods to detect the presence of SARS-CoV-2 at venues where people gather are essential for epidemiological surveillance to guide public policy. Communal screening of air in a highly crowded space has the potential to provide early warning on the presence and potential transmission of SARS-CoV-2 as suggested by studies early in the epidemic. As hospitals and public facilities apply varying degrees of restrictions and regulations, it is important to provide multiple methodological options to enable environmental SARS-CoV-2 surveillance under different conditions. This study assessed the feasibility of using high-flowrate air samplers combined with RNA extraction kit designed for environmental sample to perform airborne SARS-CoV-2 surveillance in hospital setting, tested by RT-qPCR. The success rate of the air samples in detecting SARS-CoV-2 was then compared with surface swab samples collected in the same proximity. Additionally, positive RT-qPCR samples underwent viral culture to assess the viability of the sampled SARS-CoV-2. The study was performed in inpatient ward environments of a quaternary care university teaching hospital in Singapore housing active COVID-19 patients within the period of February to May 2020. Two types of wards were tested, naturally ventilated open-cohort ward and mechanically ventilated isolation ward. Distances between the site of air sampling and the patient cluster in the investigated wards were also recorded. No successful detection of airborne SARS-CoV-2 was recorded when 50 L/min air samplers were used. Upon increasing the sampling flowrate to 150 L/min, our results showed a high success rate in detecting the presence of SARS-CoV-2 from the air samples (72%) compared to the surface swab samples (9.6%). The positive detection rate of the air samples along with the corresponding viral load could be associated with the distance between sampling site and patient. The furthest distance from patient with PCR-positive air samples was 5.5 m. The airborne SARS-CoV-2 detection was comparable between the two types of wards with 60%-87.5% success rate. High prevalence of the virus was found in toilet areas, both on surfaces and in air. Finally, no successful culture attempt was recorded from the environmental air or surface samples.
Collapse
Affiliation(s)
- Alicia Xy Ang
- Department of Medicine, Division of Infectious Diseases, National University Hospital, Singapore, Singapore
| | - Irvan Luhung
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Bintou A Ahidjo
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
- BSL3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniela I Drautz-Moses
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Paul A Tambyah
- Department of Medicine, Division of Infectious Diseases, National University Hospital, Singapore, Singapore
- Department of Medicine, Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chee Keng Mok
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
- BSL3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kenny Jx Lau
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Sai Meng Tham
- Department of Medicine, Division of Infectious Diseases, National University Hospital, Singapore, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
- BSL3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David M Allen
- Department of Medicine, Division of Infectious Diseases, National University Hospital, Singapore, Singapore
- Department of Medicine, Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Stephan C Schuster
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
19
|
Apangu GP, Frisk CA, Petch GM, Muggia L, Pallavicini A, Hanson M, Skjøth CA. Environmental DNA reveals diversity and abundance of Alternaria species in neighbouring heterogeneous landscapes in Worcester, UK. AEROBIOLOGIA 2022; 38:457-481. [PMID: 36471880 PMCID: PMC9715499 DOI: 10.1007/s10453-022-09760-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/28/2022] [Indexed: 05/05/2023]
Abstract
UNLABELLED Alternaria is a pathogenic and allergenic fungus affecting 400 plant species and 334 million people globally. This study aimed at assessing the diversity of Alternaria species in airborne samples collected from closely located (7 km apart) and heterogeneous sites (rural, urban and unmanaged grassland) in Worcester and Lakeside, the UK. A secondary objective was to examine how the ITS1 subregion varies from ITS2 in Alternaria species diversity and composition. Airborne spores were collected using Burkard 7-day and multi-vial Cyclone samplers for the period 5 July 2016-9 October 2019. Air samples from the Cyclone were amplified using the ITS1and ITS2 subregions and sequenced using Illumina MiSeq platform whereas those from the Burkard sampler were identified and quantified using optical microscopy. Optical microscopy and eDNA revealed a high abundance of Alternaria in the rural, urban and unmanaged sites. ITS1 and ITS2 detected five and seven different Alternaria species at the three sampling sites, respectively. A. dactylidicola, A. metachromatica and A. infectoria were the most abundant. The rural, urban and unmanaged grassland sites had similar diversity (PERMANOVA) of the species due to similarity in land use and proximity of the sites. Overall, the study showed that heterogeneous and neighbouring sites with similar land uses can have similar Alternaria species. It also demonstrated that an eDNA approach can complement the classical optical microscopy method in providing more precise information on fungal species diversity in an environment for targeted management. Similar studies can be replicated for other allergenic and pathogenic fungi. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10453-022-09760-9.
Collapse
Affiliation(s)
- Godfrey Philliam Apangu
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ Worcester UK
- Present Address: Protecting Crops and the Environment, Rothamsted Research, West Common, Harpenden, AL5 2JQ Hertfordshire UK
| | - Carl Alexander Frisk
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ Worcester UK
- Present Address: Department of Urban Greening and Vegetation Ecology, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Geoffrey M. Petch
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ Worcester UK
| | - Lucia Muggia
- Department of Life Sciences, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy
| | - Mary Hanson
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ Worcester UK
| | - Carsten Ambelas Skjøth
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ Worcester UK
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| |
Collapse
|
20
|
Uetake J, Tobo Y, Kobayashi S, Tanaka K, Watanabe S, DeMott PJ, Kreidenweis SM. Visualization of the seasonal shift of a variety of airborne pollens in western Tokyo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147623. [PMID: 34023597 DOI: 10.1016/j.scitotenv.2021.147623] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 05/15/2023]
Abstract
Airborne pollens cause pollinosis and have the potential to affect microphysics in clouds; however, the number of monitored species has been very limited due to technical difficulties for the morphotype identification. In this study, we applied an eDNA approach to the airborne pollen communities in the suburbs of the Tokyo metropolitan area in Japan, within a mixed urban, rural, and mountain landscape, revealing pollen seasonality of various taxa (a total of 78 families across the period) in the spring season (February to May). Those taxa distinctly shifted in the season, especially in the beginning of February and the middle of April. Air temperature shift was an obvious key factor to affect the airborne pollen community, while the influence of other meteorological factors, such as wind speed, humidity, and precipitation, was not clear. Taxonomic classification of major Amplicon Sequence Variants (ASVs) indicates multiple pollen sources, including natural forest, planted forest, roadside, park lands, and horticultural activities. Most major ASV belongs to Japanese cedar (Cryptomeria japonica), which is the most notable allergen that causes pollinosis in Japan, peaking in mid-February to March. Backward trajectory analysis of air masses suggests that the Japanese cedar and other Cupressaceae plantation forests in the western mountains were a significant source of airborne pollen communities detected at our sampling site. Other major plant pollen sources, including Japanese zelkova (Zelkova serrata) and ginkgo (Ginkgo biloba), emanated from the nearby parks or roadside regions. This study's approach enables us to visualize the phenology of multiple pollen, including timing and duration. Long-term monitoring of this type would provide additional insight into understanding the role of climate change on pollen transmission and links to flowering events.
Collapse
Affiliation(s)
- Jun Uetake
- Colorado State University, Department of Atmospheric Sciences, 80523, USA; National Institute of Polar Research, Tachikawa, Tokyo 190-8518, Japan.
| | - Yutaka Tobo
- National Institute of Polar Research, Tachikawa, Tokyo 190-8518, Japan; SOKENDAI, Tachikawa, Tokyo 190-8518, Japan
| | | | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Paul J DeMott
- Colorado State University, Department of Atmospheric Sciences, 80523, USA
| | | |
Collapse
|
21
|
Borges JT, Nakada LYK, Maniero MG, Guimarães JR. SARS-CoV-2: a systematic review of indoor air sampling for virus detection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40460-40473. [PMID: 33630259 PMCID: PMC7905194 DOI: 10.1007/s11356-021-13001-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/12/2021] [Indexed: 05/03/2023]
Abstract
In a post-pandemic scenario, indoor air monitoring may be required seeking to safeguard public health, and therefore well-defined methods, protocols, and equipment play an important role. Considering the COVID-19 pandemic, this manuscript presents a literature review on indoor air sampling methods to detect viruses, especially SARS-CoV-2. The review was conducted using the following online databases: Web of Science, Science Direct, and PubMed, and the Boolean operators "AND" and "OR" to combine the following keywords: air sampler, coronavirus, COVID-19, indoor, and SARS-CoV-2. This review included 25 published papers reporting sampling and detection methods for SARS-CoV-2 in indoor environments. Most of the papers focused on sampling and analysis of viruses in aerosols present in contaminated areas and potential transmission to adjacent areas. Negative results were found in 10 studies, while 15 papers showed positive results in at least one sample. Overall, papers report several sampling devices and methods for SARS-CoV-2 detection, using different approaches for distance, height from the floor, flow rates, and sampled air volumes. Regarding the efficacy of each mechanism as measured by the percentage of investigations with positive samples, the literature review indicates that solid impactors are more effective than liquid impactors, or filters, and the combination of various methods may be recommended. As a final remark, determining the sampling method is not a trivial task, as the samplers and the environment influence the presence and viability of viruses in the samples, and thus a case-by-case assessment is required for the selection of sampling systems.
Collapse
Affiliation(s)
- João Tito Borges
- Department of Infrastructure and Environment, School of Civil Engineering, Architecture and Urban Design, University of Campinas (InfrA, FEC, UNICAMP), Rua Saturnino de Brito, 224, Cidade Universitária, Campinas, SP, 13083889, Brazil
| | - Liane Yuri Kondo Nakada
- Department of Infrastructure and Environment, School of Civil Engineering, Architecture and Urban Design, University of Campinas (InfrA, FEC, UNICAMP), Rua Saturnino de Brito, 224, Cidade Universitária, Campinas, SP, 13083889, Brazil
| | - Milena Guedes Maniero
- Department of Infrastructure and Environment, School of Civil Engineering, Architecture and Urban Design, University of Campinas (InfrA, FEC, UNICAMP), Rua Saturnino de Brito, 224, Cidade Universitária, Campinas, SP, 13083889, Brazil
| | - José Roberto Guimarães
- Department of Infrastructure and Environment, School of Civil Engineering, Architecture and Urban Design, University of Campinas (InfrA, FEC, UNICAMP), Rua Saturnino de Brito, 224, Cidade Universitária, Campinas, SP, 13083889, Brazil.
| |
Collapse
|
22
|
Abstract
Human health is regulated by complex interactions among the genome, the microbiome, and the environment. While extensive research has been conducted on the human genome and microbiome, little is known about the human exposome. The exposome comprises the totality of chemical, biological, and physical exposures that individuals encounter over their lifetimes. Traditional environmental and biological monitoring only targets specific substances, whereas exposomic approaches identify and quantify thousands of substances simultaneously using nontargeted high-throughput and high-resolution analyses. The quantified self (QS) aims at enhancing our understanding of human health and disease through self-tracking. QS measurements are critical in exposome research, as external exposures impact an individual's health, behavior, and biology. This review discusses both the achievements and the shortcomings of current research and methodologies on the QS and the exposome and proposes future research directions.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA;
| | - Peng Gao
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA;
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA;
| |
Collapse
|
23
|
Mori S, Ishiguro S, Miyazaki S, Okubo T, Omori R, Kai A, Sugiyama K, Kawashiro A, Sumi M, Thapa J, Nakamura S, Katoh C, Yamaguchi H. Usefulness of a 3D-printing air sampler for capturing live airborne bacteria and exploring the environmental factors that can influence bacterial dynamics. Res Microbiol 2021; 172:103864. [PMID: 34273486 DOI: 10.1016/j.resmic.2021.103864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
We created a handmade 3D-printed air sampler to effectively collect live airborne bacteria, and determined which environmental factors influenced the bacteria. Bacterial colony forming units (CFUs) in the air samples (n=37) were monitored by recording the environmental changes occurring over time, then determining the presence/absence of correlations among such changes. The bacterial CFUs changed sharply and were significantly correlated with the DNA concentrations, indicating that the captured bacteria made up most of the airborne bacteria. Spearman's rank correlation analysis revealed significant correlations between the bacterial CFU values and some environmental factors (humidity, wind speed, insolation, and 24-h rainfall). Similarly the significant associations of CFU with humidity and wind speed were also found by multiple regression analysis with box-cox transformation. Among our panel of airborne bacteria (952 strains), 70 strains were identified as soil-derived Bacillus via the production of Escherichia coli- and Staphylococcus aureus-growth inhibiting antibiotics and by 16S rDNA typing. Soil-derived protozoa were also isolated from the air samples. We conclude that the airborne bacteria mainly derived from soil can alter in number according to environmental changes. Our sampler, which was created by easy-to-customize 3D printing, is a useful device for understanding the dynamics of live airborne bacteria.
Collapse
Affiliation(s)
- Saaya Mori
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0812, Japan.
| | - Sakura Ishiguro
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0812, Japan.
| | - Satoru Miyazaki
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0812, Japan.
| | - Torahiko Okubo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0812, Japan.
| | - Ryosuke Omori
- Division of Bioresources Research Center for Zoonosis Control, Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan.
| | - Ayako Kai
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0812, Japan.
| | - Kyohei Sugiyama
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0812, Japan.
| | - Airi Kawashiro
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0812, Japan.
| | - Masato Sumi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0812, Japan.
| | - Jeewan Thapa
- Division of Bioresources Research Center for Zoonosis Control, Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan.
| | - Shinji Nakamura
- Division of Biomedical Imaging Research, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Chietsugu Katoh
- Department of Biomedical Science and Engineering, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0812, Japan.
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0812, Japan.
| |
Collapse
|
24
|
Sampling methods and assays applied in SARS-CoV-2 exposure assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021. [PMCID: PMC7886636 DOI: 10.1016/j.scitotenv.2021.145903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The SARS-CoV-2 exposure assessment is critical to implement control measures and guarantee safety of patients and workers from different occupational environments. The aim of this review article was to identify methodologies applied for SARS-CoV-2 sampling and analyses in environmental samples in different occupational and indoor environments. This study reports the search of available data published between May 29th 2020 and November 1st 2020. The search strategy used allowed the identification of 48 papers that comply with selected inclusion and exclusion criteria. The most described indoor environment consisted of health care facilities. From all the analyzed studies, 34 sampled surfaces, 27 sampled air (impactors and impingers being the most used), and 9 sampled water. All studies were based on molecular detection by qPCR of viral RNA extracted from collected samples. SARS-CoV-2 was detected in 44 out of the 48 studies. The results suggest that the sampling approach should include both active and passive sampling methods in order to overcome each method limitations. Concerning the assays used, although most studies were based on qPCR detection, the fact that the digital PCR technique allows SARS-CoV-2 detection at lower concentrations, indicates that this should be the chosen method for future detection studies.
Collapse
|
25
|
Martikainen MV, Tossavainen T, Täubel M, Wolczkiewicz K, Lähde A, Roponen M. Toxicological and microbiological characterization of cow stable dust. Toxicol In Vitro 2021; 75:105202. [PMID: 34166725 DOI: 10.1016/j.tiv.2021.105202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
Exposure to farm environment has been shown to both protect from allergic diseases and increase the risk of respiratory syndromes. Mechanisms have been previously investigated by using farm dust extracts or specific components of dust. The use of authentic farm dust would better reflect the natural exposure. The aim of our study was to highlight the importance of proper assessment of the cow stable dust characteristics before conducting further investigations. For this purpose, we characterized microbiome and size distribution of unprocessed cow stable dust and its toxicological properties, as they have been often overlooked in search of protective factors. Stable dust samples from four Finnish dairy farms were collected by utilizing two different collection methods. Toxicological potential was analysed by stimulating co-cultures of lung epithelial and macrophage-like cells with dust. Size and mass distributions of airborne particles in the stables and bacterial and fungal microbiota of the dust were analysed. Stimulation with dust did not affect viability, but heightened oxidative stress responses and cytokine secretion, and slightly reduced the metabolic activity. There were a few differences in responses between farms, however, the differences were mainly in the intensity and not in the direction of the response. Cellular responses induced by dusts collected by different sampling methods did not differ substantially. Unprocessed stable dust samples showed relatively low direct toxicity but were able to trigger immune responses in studied cell model. This suggest that these dust collection methods could be utilized when investigating e.g. asthma-protective mechanisms.
Collapse
Affiliation(s)
- Maria-Viola Martikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Tarleena Tossavainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Martin Täubel
- Environmental Health Unit, Department of Health Security, National Institute for Health and Welfare, Kuopio, Finland
| | - Kirsi Wolczkiewicz
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anna Lähde
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
26
|
Ratnesar-Shumate S, Bohannon K, Williams G, Holland B, Krause M, Green B, Freeburger D, Dabisch P. Comparison of the performance of aerosol sampling devices for measuring infectious SARS-CoV-2 aerosols. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2021; 55:975-986. [PMID: 38076006 PMCID: PMC10698689 DOI: 10.1080/02786826.2021.1910137] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 01/23/2024]
Abstract
To assess the risk of aerosol transmission of SARS-CoV-2, measurements of the airborne viral concentrations in proximity to infected individuals, the persistence of the virus in aerosols, and the dose of the virus needed to cause infection following inhalation are required. For studies aimed at quantifying these parameters, an aerosol sampling device needs to be employed. A number of recent studies have reported the detection of both genetic material and infectious SARS-CoV-2 virus in air samples collected in clinical settings. Previous studies have demonstrated that the efficiency of different samplers for collection and preservation of the infectivity of microorganisms can vary as a function of the specific microorganism. In the present study, the performance of eight common low-flow aerosol sampling devices were compared for their ability to collect and preserve the infectivity of airborne SARS-CoV-2 contained in small particle aerosols. The influence of sampling duration on recovery of infectious virus was also evaluated. Similar concentrations of infectious SARS-CoV-2 were measured in aerosols for the majority of the samplers tested, with the exception of the midget impingers, which measured significantly lower concentrations of SARS-CoV-2. Additionally, in three of the four impingers tested, additional clean airflow through the device following collection of infectious virus resulted in a decrease of the infectious concentration of virus over time, suggesting that virus was being inactivated and these devices may not be suitable for sampling for long durations. Further, RNA copies in the samples over time did not correspond with the losses of infectious SARS-CoV-2 observed in the impingers samples. These data can be utilized to inform interpretation of current studies on the SARS-CoV-2 viral loads in air samples, as well as inform sampling device selection in future studies.
Collapse
Affiliation(s)
| | - Kyle Bohannon
- Department of Homeland Security (DHS) Science and Technology Directorate (S&T), National Biodefense Analysis and Countermeasures Center (NBACC), Operated by Battelle National Biodefense Institute (BNBI) for the U.S., Frederick, Maryland, USA
| | - Gregory Williams
- Department of Homeland Security (DHS) Science and Technology Directorate (S&T), National Biodefense Analysis and Countermeasures Center (NBACC), Operated by Battelle National Biodefense Institute (BNBI) for the U.S., Frederick, Maryland, USA
| | - Brian Holland
- Department of Homeland Security (DHS) Science and Technology Directorate (S&T), National Biodefense Analysis and Countermeasures Center (NBACC), Operated by Battelle National Biodefense Institute (BNBI) for the U.S., Frederick, Maryland, USA
| | - Melissa Krause
- Department of Homeland Security (DHS) Science and Technology Directorate (S&T), National Biodefense Analysis and Countermeasures Center (NBACC), Operated by Battelle National Biodefense Institute (BNBI) for the U.S., Frederick, Maryland, USA
| | - Brian Green
- Department of Homeland Security (DHS) Science and Technology Directorate (S&T), National Biodefense Analysis and Countermeasures Center (NBACC), Operated by Battelle National Biodefense Institute (BNBI) for the U.S., Frederick, Maryland, USA
| | - Denise Freeburger
- Department of Homeland Security (DHS) Science and Technology Directorate (S&T), National Biodefense Analysis and Countermeasures Center (NBACC), Operated by Battelle National Biodefense Institute (BNBI) for the U.S., Frederick, Maryland, USA
| | - Paul Dabisch
- Department of Homeland Security (DHS) Science and Technology Directorate (S&T), National Biodefense Analysis and Countermeasures Center (NBACC), Operated by Battelle National Biodefense Institute (BNBI) for the U.S., Frederick, Maryland, USA
| |
Collapse
|
27
|
Siller P, Daehre K, Rosen K, Münch S, Bartel A, Funk R, Nübel U, Amon T, Roesler U. Low airborne tenacity and spread of ESBL-/AmpC-producing Escherichia coli from fertilized soil by wind erosion. Environ Microbiol 2021; 23:7497-7511. [PMID: 33655697 DOI: 10.1111/1462-2920.15437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/12/2021] [Indexed: 01/18/2023]
Abstract
ESBL-/AmpC-producing Escherichia coli from organic fertilizers were previously detected on soil surfaces of arable land and might be emitted by wind erosion. To investigate this potential environmental transmission path, we exposed ESBL-/AmpC-positive chicken litter, incorporated in agricultural soils, to different wind velocities in a wind tunnel and took air samples for microbiological analysis. No data exist concerning the airborne tenacity of ESBL-/AmpC-producing E. coli. Therefore, we explored the tenacity of two ESBL/AmpC E. coli strains and E. coli K12 in aerosol chamber experiments at different environmental conditions. In the wind tunnel, ESBL/AmpC-producing E. coli were detected in none of the air samples (n = 66). Non-resistant E. coli were qualitatively detected in 40.7% of air samples taken at wind velocities exceeding 7.3 m s-1 . Significantly increased emission of total viable bacteria with increasing wind velocity was observed. In the aerosol chamber trials, recovery rates of airborne E. coli ranged from 0.003% to 2.8%, indicating a low airborne tenacity. Concluding, an emission of ESBL/AmpC E. coli by wind erosion in relevant concentrations appears unlikely because of the low concentration in chicken litter compared with non-resistant E. coli and their low airborne tenacity, proven in the aerosol chamber trials.
Collapse
Affiliation(s)
- Paul Siller
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Katrin Daehre
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Kerstin Rosen
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Steffen Münch
- Leibniz Centre for Agricultural Landscape Research (ZALF), Working Group Landscape Pedology, Müncheberg, Germany
| | - Alexander Bartel
- Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany
| | - Roger Funk
- Leibniz Centre for Agricultural Landscape Research (ZALF), Working Group Landscape Pedology, Müncheberg, Germany
| | - Ulrich Nübel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,Braunschweig Integrated Center of Systems Biology (BRICS), Technical University, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Thomas Amon
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany.,Department of Engineering for Livestock Management, Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Potsdam, Germany
| | - Uwe Roesler
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
28
|
Bøifot KO, Gohli J, Skogan G, Dybwad M. Performance evaluation of high-volume electret filter air samplers in aerosol microbiome research. ENVIRONMENTAL MICROBIOME 2020; 15:14. [PMID: 33902714 PMCID: PMC8067322 DOI: 10.1186/s40793-020-00362-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/13/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Reliable identification and quantification of bioaerosols is fundamental in aerosol microbiome research, highlighting the importance of using sampling equipment with well-defined performance characteristics. Following advances in sequencing technology, shotgun metagenomic sequencing (SMS) of environmental samples is now possible. However, SMS of air samples is challenging due to low biomass, but with the use of high-volume air samplers sufficient DNA yields can be obtained. Here we investigate the sampling performance and comparability of two hand-portable, battery-operated, high-volume electret filter air samplers, SASS 3100 and ACD-200 Bobcat, previously used in SMS-based aerosol microbiome research. RESULTS SASS and Bobcat consistently delivered end-to-end sampling efficiencies > 80% during the aerosol chamber evaluation, demonstrating both as effective high-volume air samplers capable of retaining quantitative associations. Filter recovery efficiencies were investigated with manual and sampler-specific semi-automated extraction procedures. Bobcat semi-automated extraction showed reduced efficiency compared to manual extraction. Bobcat tended towards higher sampling efficiencies compared to SASS when combined with manual extraction. To evaluate real-world sampling performance, side-by-side SASS and Bobcat sampling was done in a semi-suburban outdoor environment and subway stations. SMS-based microbiome profiles revealed that highly abundant bacterial species had similar representation across samplers. While alpha diversity did not vary for the two samplers, beta diversity analyses showed significant within-pair variation in subway samples. Certain species were found to be captured only by one of the two samplers, particularly in subway samples. CONCLUSIONS SASS and Bobcat were both found capable of collecting sufficient aerosol biomass amounts for SMS, even at sampling times down to 30 min. Bobcat semi-automated filter extraction was shown to be less effective than manual filter extraction. For the most abundant species the samplers were comparable, but systematic sampler-specific differences were observed at species level. This suggests that studies conducted with these highly similar air samplers can be compared in a meaningful way, but it would not be recommended to combine samples from the two samplers in joint analyses. The outcome of this work contributes to improved selection of sampling equipment for use in SMS-based aerosol microbiome research and highlights the importance of acknowledging bias introduced by sampling equipment and sample recovery procedures.
Collapse
Affiliation(s)
- Kari Oline Bøifot
- Norwegian Defence Research Establishment FFI, P O Box 25, NO-2027, Kjeller, Norway
- Department of Analytics, Environmental & Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Jostein Gohli
- Norwegian Defence Research Establishment FFI, P O Box 25, NO-2027, Kjeller, Norway
| | - Gunnar Skogan
- Norwegian Defence Research Establishment FFI, P O Box 25, NO-2027, Kjeller, Norway
| | - Marius Dybwad
- Norwegian Defence Research Establishment FFI, P O Box 25, NO-2027, Kjeller, Norway.
- Department of Analytics, Environmental & Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
29
|
Kabir E, Azzouz A, Raza N, Bhardwaj SK, Kim KH, Tabatabaei M, Kukkar D. Recent Advances in Monitoring, Sampling, and Sensing Techniques for Bioaerosols in the Atmosphere. ACS Sens 2020; 5:1254-1267. [PMID: 32227840 DOI: 10.1021/acssensors.9b02585] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bioaerosols in the form of microscopic airborne particles pose pervasive risks to humans and livestock. As either fully active components (e.g., viruses, bacteria, and fungi) or as whole or part of inactive fragments, they are among the least investigated pollutants in nature. Their identification and quantification are essential to addressing related dangers and to establishing proper exposure thresholds. However, difficulties in the development (and selection) of detection techniques and an associated lack of standardized procedures make the sensing of bioaerosols challenging. Through a comprehensive literature search, this review examines the mechanisms of conventional and advanced bioaerosol detection methods. It also provides a roadmap for future research and development in the selection of suitable methodologies for bioaerosol detection. The development of sample collection and sensing technology make it possible for continuous and automated operation. However, intensive efforts should be put to overcome the limitations of current technology as most of the currently available options tend to suffer from lengthy sample acquisition times and/or nonspecificity of probe material.
Collapse
Affiliation(s)
- Ehsanul Kabir
- Department of Farm Power and Machinery, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M’Hannech II, 93002 Tétouan, Morocco
| | - Nadeem Raza
- Government Emerson College, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sanjeev Kumar Bhardwaj
- Center of Innovative and Applied Bioprocessing, (CIAB) [DBT, Govt. of India], Knowledge
City, Sector 81, Mohali, Punjab 140306, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Korea
| | - Meisam Tabatabaei
- Microbial Biotechnology Department, Agricultural Biotechnology Institute of Iran, Agricultural Research, Education, and Extension Organization (AREEO), 31535-1897 Karaj, Iran
| | - Deepak Kukkar
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Korea
| |
Collapse
|
30
|
Methods for Bioaerosol Characterization: Limits and Perspectives for Human Health Risk Assessment in Organic Waste Treatment. ATMOSPHERE 2020. [DOI: 10.3390/atmos11050452] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bioaerosol characterization represents a major challenge for the risk assessment and management of exposed people. One of the most important bioaerosol sources is the organic waste collection and treatment. This work analyzed and discussed the literature with the purpose of investigating the main techniques used nowadays for bioaerosol monitoring during organic waste treatment. The discussion includes an overview on the most efficient sampling, DNA extraction, and analysis methods, including both the cultural and the bio-molecular approach. Generally, an exhaustive biological risk assessment is not applied due to the organic waste heterogeneity, treatment complexity, and unknown aerosolized emission rate. However, the application of bio-molecular methods allows a better bioaerosol characterization, and it is desirable to be associated with standardized cultural methods. Risk assessment for organic waste workers generally includes the evaluation of the potential exposition to pathogens and opportunistic pathogens or to other microorganisms as biomarkers. In most cases, Saccharopolyspora rectivirgula, Legionella spp., Aspergillus spp., and Mycobacterium spp. are included. Future perspectives are focused on identifying common composting biomarkers, on investigating the causality process between chronic bioaerosol exposure and disease onset, and finally, on defining common exposure limits.
Collapse
|
31
|
Mbareche H, Veillette M, Bilodeau G, Duchaine C. Comparison of the performance of ITS1 and ITS2 as barcodes in amplicon-based sequencing of bioaerosols. PeerJ 2020; 8:e8523. [PMID: 32110484 PMCID: PMC7032056 DOI: 10.7717/peerj.8523] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/07/2020] [Indexed: 12/23/2022] Open
Abstract
This paper presents the performance of two eukaryotic genomic ribosomal regions, ITS1 and ITS2, in describing fungal diversity in aerosol samples using amplicon-based High-Throughput Sequencing (HTS). Composting sites, biomethanization facilities, and dairy farms, all affected by the presence of fungi, were visited to collect air samples. The amplicon-based HTS approach is a target enrichment method that relies on the amplification of a specific target using particular primers before sequencing. Thus, the results are highly dependent on the quality of amplification. For this reason, the authors of this paper used a shotgun metagenomic approach to compare its outcome with the amplicon-based method. Indeed, shotgun metagenomic does not rely on any amplification prior to sequencing, because all genes are sequenced without a specific target. In addition, culture methods were added to the analyses in biomethanization and dairy farms samples to validate their contribution to fungal diversity of aerosols. The results obtained are unequivocal towards ITS1 outperformance to ITS2 in terms of richness, and taxonomic coverage. The differential abundance analysis did demonstrate that some taxa were exclusively detected only by ITS2, and vice-versa for ITS1. However, the shotgun metagenomic approach showed a taxonomic profile more resembling to ITS1 than ITS2. Based on these results, neither of the barcodes evaluated is perfect in terms of distinguishing all species. Using both barcodes offers a broader view of the fungal aerosol population. However, with the actual knowledge, the authors strongly recommend using ITS1 as a universal fungal barcode for quick general analyses of diversity and when limited financial resources are available, primarily due its ability to capture taxonomic profiles similar to those obtained using the shotgun metagenomic. The culture comparison with amplicon-based sequencing showed the complementarity of both approaches in describing the most abundant taxa.
Collapse
Affiliation(s)
- Hamza Mbareche
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Quebec, Canada
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, Canada
| | - Marc Veillette
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Quebec, Canada
| | - Guillaume Bilodeau
- Canadian Food Inspection Agency, Pathogen Identification Research Lab, Ottawa, Canada
| | - Caroline Duchaine
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Quebec, Canada
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, Canada
| |
Collapse
|
32
|
Mainelis G. Bioaerosol Sampling: Classical Approaches, Advances, and Perspectives. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2020; 54:496-519. [PMID: 35923417 PMCID: PMC9344602 DOI: 10.1080/02786826.2019.1671950] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Bioaerosol sampling is an essential and integral part of any bioaerosol investigation. Since bioaerosols are very diverse in terms of their sizes, species, biological properties, and requirements for their detection and quantification, bioaerosol sampling is an active, yet challenging research area. This paper was inspired by the discussions during the 2018 International Aerosol Conference (IAC) (St. Louis, MO) regarding the need to summarize the current state of the art in bioaerosol research, including bioaerosol sampling, and the need to develop a more standardized set of guidelines for protocols used in bioaerosol research. The manuscript is a combination of literature review and perspectives: it discusses the main bioaerosol sampling techniques and then overviews the latest technical developments in each area; the overview is followed by the discussion of the emerging trends and developments in the field, including personal sampling, application of passive samplers, and advances toward improving bioaerosol detection limits as well as the emerging challenges such as collection of viruses and collection of unbiased samples for bioaerosol sequencing. The paper also discusses some of the practical aspects of bioaerosol sampling with particular focus on sampling aspects that could lead to bioaerosol determination bias. The manuscript concludes by suggesting several goals for bioaerosol sampling and development community to work towards and describes some of the grand bioaerosol challenges discussed at the IAC 2018.
Collapse
Affiliation(s)
- Gediminas Mainelis
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
33
|
Rufino de Sousa N, Sandström N, Shen L, Håkansson K, Vezozzo R, Udekwu KI, Croda J, Rothfuchs AG. A fieldable electrostatic air sampler enabling tuberculosis detection in bioaerosols. Tuberculosis (Edinb) 2020; 120:101896. [PMID: 32090857 PMCID: PMC7049907 DOI: 10.1016/j.tube.2019.101896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/05/2019] [Accepted: 12/15/2019] [Indexed: 01/03/2023]
Abstract
Tuberculosis (TB) infects about 25% of the world population and claims more human lives than any other infectious disease. TB is spread by inhalation of aerosols containing viable Mycobacterium tuberculosis expectorated or exhaled by patients with active pulmonary disease. Air-sampling technology could play an important role in TB control by enabling the detection of airborne M. tuberculosis, but tools that are easy to use and scalable in TB hotspots are lacking. We developed an electrostatic air sampler termed the TB Hotspot DetectOR (THOR) and investigated its performance in laboratory aerosol experiments and in a prison hotspot of TB transmission. We show that THOR collects aerosols carrying microspheres, Bacillus globigii spores and M. bovis BCG, concentrating these microparticles onto a collector piece designed for subsequent detection analysis. The unit was also successfully operated in the complex setting of a prison hotspot, enabling detection of a molecular signature for M. tuberculosis in the cough of inmates. Future deployment of this device may lead to a measurable impact on TB case-finding by screening individuals through the aerosols they generate.
Collapse
Affiliation(s)
- Nuno Rufino de Sousa
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Niklas Sandström
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Lei Shen
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Kathleen Håkansson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Rafaella Vezozzo
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| | - Klas I Udekwu
- Department of Molecular Biosciences, Wenner-Gren Institutet, Stockholms Universitet, Stockholm, Sweden
| | - Julio Croda
- School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Brazil; Oswaldo Cruz Foundation, Mato Grosso do Sul, Campo Grande, Brazil
| | | |
Collapse
|
34
|
Cox J, Mbareche H, Lindsley WG, Duchaine C. Field sampling of indoor bioaerosols. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2019; 54:572-584. [PMID: 31777412 PMCID: PMC6880939 DOI: 10.1080/02786826.2019.1688759] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 05/04/2023]
Abstract
Because bioaerosols are related to adverse health effects in exposed humans and indoor environments represent a unique framework of exposure, concerns about indoor bioaerosols have risen over recent years. One of the major issues in indoor bioaerosol research is the lack of standardization in the methodology, from air sampling strategies and sample treatment to the analytical methods applied. The main characteristics to consider in the choice of indoor sampling methods for bioaerosols are the sampler performance, the representativeness of the sampling, and the concordance with the analytical methods to be used. The selection of bioaerosol collection methods is directly dependent on the analytical methods, which are chosen to answer specific questions raised while designing a study for exposure assessment. In this review, the authors present current practices in the analytical methods and the sampling strategies, with specificity for each type of microbe (fungi, bacteria, archaea and viruses). In addition, common problems and errors to be avoided are discussed. Based on this work, recommendations are made for future efforts towards the development of viable bioaerosol samplers, standards for bioaerosol exposure limits, and making association studies to optimize the use of the big data provided by high-throughput sequencing methods.
Collapse
Affiliation(s)
- Jennie Cox
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, USA
| | - Hamza Mbareche
- Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Québec, Canada
| | - William G. Lindsley
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Caroline Duchaine
- Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Québec, Canada
| |
Collapse
|
35
|
Masotti F, Cattaneo S, Stuknytė M, De Noni I. Airborne contamination in the food industry: An update on monitoring and disinfection techniques of air. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
36
|
Abstract
Prokaryotic microbes can become aerosolized and deposited into new environments located thousands of kilometers away from their place of origin. The Mediterranean Sea is an oligotrophic to ultra-oligotrophic marginal sea, which neighbors northern Africa (a major source of natural aerosols) and Europe (a source of mostly anthropogenic aerosols). Previous studies demonstrated that airborne bacteria deposited during dust events over the Mediterranean Sea may significantly alter the ecology and function of the surface seawater layer, yet little is known about their abundance and diversity during ‘background’ non-storm conditions. Here, we describe the abundance and genetic diversity of airborne bacteria in 16 air samples collected over an East-West transect of the entire Mediterranean Sea during non-storm conditions in April 2011. The results show that airborne bacteria represent diverse groups with the most abundant bacteria from the Firmicutes (Bacilli and Clostridia) and Proteobacteria (Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria) phyla. Most of the bacteria in our samples have previously been observed in the air at other open ocean locations, in the air over the Mediterranean Sea during dust storms, and in the Mediterranean seawater. Airborne bacterial abundance ranged from 0.7 × 104 to 2.5 × 104 cells m−3 air, similar to abundances at other oceanic regimes. Our results demonstrate that airborne bacterial diversity is positively correlated with the mineral dust content in the aerosols and was spatially separated between major basins of the Mediterranean Sea. To our knowledge, this is the first comprehensive biogeographical dataset to assess the diversity and abundance of airborne microbes over the Mediterranean Sea. Our results shed light on the spatiotemporal distribution of airborne microbes and may have implications for dispersal and distribution of microbes (biogeography) in the ocean.
Collapse
|
37
|
Mbareche H, Morawska L, Duchaine C. On the interpretation of bioaerosol exposure measurements and impacts on health. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2019; 69:789-804. [PMID: 30821643 DOI: 10.1080/10962247.2019.1587552] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bioaerosols are recognized as one of the main transmission routes for infectious diseases and are responsible for other various types of health effects through inhalation and potential ingestion. Associating exposure with bioaerosol and health problems is challenging, and adequate exposure monitoring is a top priority for aerosol scientists. The multiple factors affecting bioaerosol content, the variability in the focus of each bioaerosol exposure study, and the variations in experimental design and the standardization of methods make bioaerosol exposure studies very difficult. Therefore, the health impacts of bioaerosol exposure are still poorly understood. This paper presents a brief description of a state-of-the-art development in bioaerosol exposure studies supported by studies on several related subjects. The main objective of this paper is to propose new considerations for bioaerosol exposure guidelines and the development of tools and study designs to better interpret bioaerosol data. The principal observations and findings are the discrepancy of the applicable methods in bioaerosol studies that makes result comparison impossible. Furthermore, the silo mentality helps in creating a bigger gap in the knowledge accumulated about bioaerosol exposure. Innovative and original ideas are presented for aerosol scientists and health scientists to consider and discuss. Although many examples cited herein are from occupational exposure, the discussion has relevance to any human environment. This work gives concrete suggestions for how to design a full bioaerosol study that includes all of the key elements necessary to help understand the real impacts of bioaerosol exposure in the short term. The creation of the proposed bioaerosol public database could give crucial information to control the public health. Implications: How can we move toward a bioaerosol exposure guidelines? The creation of the bioaerosol public database will help accumulate information for long-term association studies and help determine specific exposure biomarkers to bioaerosols. The implementation of such work will lead to a deeper understanding and more efficient utilization of bioaerosol studies to prevent public health hazards.
Collapse
Affiliation(s)
- Hamza Mbareche
- a Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec , Quebec City , Quebec , Canada
- b Département de biochimie, de microbiologie et de bio-informatique , Faculté des sciences et de génie, Université Laval , Quebec City , Quebec , Canada
| | - Lidia Morawska
- c School of Chemistry, Physics, and Mechanical Engineering, Department of Environmental Technologies , Queensland University of Technology , Brisbane , Queensland , Australia
| | - Caroline Duchaine
- a Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec , Quebec City , Quebec , Canada
- b Département de biochimie, de microbiologie et de bio-informatique , Faculté des sciences et de génie, Université Laval , Quebec City , Quebec , Canada
| |
Collapse
|
38
|
Mbareche H, Veillette M, Pilote J, Létourneau V, Duchaine C. Bioaerosols Play a Major Role in the Nasopharyngeal Microbiota Content in Agricultural Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16081375. [PMID: 30995814 PMCID: PMC6518280 DOI: 10.3390/ijerph16081375] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/09/2019] [Accepted: 04/13/2019] [Indexed: 12/21/2022]
Abstract
Background: Bioaerosols are a major concern for public health and sampling for exposure assessment purposes is challenging. The nasopharyngeal region could be a potent carrier of long-term bioaerosol exposure agents. This study aimed to evaluate the correlation between nasopharyngeal bacterial flora of swine workers and the swine barns bioaerosol biodiversity. Methods: Air samples from eight swine barns as well as nasopharyngeal swabs from pig workers (n = 25) and from a non-exposed control group (n = 29) were sequenced using 16S rRNA gene high-throughput sequencing. Wastewater treatment plants were used as the industrial, low-dust, non-agricultural environment control to validate the microbial link between the bioaerosol content (air) and the nasopharynxes of workers. Results: A multivariate analysis showed air samples and nasopharyngeal flora of pig workers cluster together, compared to the non-exposed control group. The significance was confirmed with the PERMANOVA statistical test (p-value of 0.0001). Unlike the farm environment, nasopharynx samples from wastewater workers did not cluster with air samples from wastewater treatment plants. The difference in the microbial community of nasopharynx of swine workers and a control group suggest that swine workers are carriers of germs found in bioaerosols. Conclusion: Nasopharynx sampling and microbiota could be used as a proxy of air sampling for exposure assessment studies or for the determination of exposure markers in highly contaminated agricultural environments.
Collapse
Affiliation(s)
- Hamza Mbareche
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec G1V 4G5, Canada.
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Québec G1V 0A6, Canada.
| | - Marc Veillette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec G1V 4G5, Canada.
| | - Jonathan Pilote
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec G1V 4G5, Canada.
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Québec G1V 0A6, Canada.
| | - Valérie Létourneau
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec G1V 4G5, Canada.
| | - Caroline Duchaine
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec G1V 4G5, Canada.
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Québec G1V 0A6, Canada.
| |
Collapse
|