1
|
Endo N, Hisahara A, Kameda Y, Mochizuki K, Kitajima M, Yasojima M, Daigo F, Takemori H, Nakamura M, Matsuda R, Iwamoto R, Nojima Y, Ihara M, Tanaka H. Enabling quantitative comparison of wastewater surveillance data across methods through data standardization without method standardization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176073. [PMID: 39250965 DOI: 10.1016/j.scitotenv.2024.176073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Wastewater surveillance for COVID-19 and other pathogens has expanded globally. Rapid development and availability of various assays has facilitated swift adoption of wastewater surveillance in localities with diverse requirements. However, it presents challenges in comparing data due to methodological variations. Using surrogates for recovery control to address quantification biases has limitations as the recovery of surrogates and target pathogens often diverges significantly. Using non-spiked field-obtained wastewater samples as reference samples in an inter-lab study, this article proposes a straightforward, inexpensive, and most representative way of measuring relative quantification biases that occurs in analyzing field wastewater samples. Five labs participated in the study, testing five types of assays, resulting in a total of seven methods of lab-assay combinations. Each method quantified the concentration of SARS-CoV-2 and pepper mild mottle virus (PMMoV) RNAs in two types of reference samples. The results showed significant variations in quantification among methods, but the relative quantification biases were consistent across reference samples. This suggests that relative quantification biases measured with the reference samples are contingent on methods rather than wastewater samples, and that the once-determined method-specific factors can be used to correct for quantification biases in routine wastewater surveillance results. Subsequent data standardization was performed on year-long observational data from seven cities, serving as a preliminary validation of the proposed approach. This process demonstrated the potential for quantitative data comparison through the bias correction factors obtained in this inter-lab study.
Collapse
Affiliation(s)
- Noriko Endo
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan.
| | - Aika Hisahara
- Water and Sewage Management Department, Water and Disaster Management Bureau, Ministry of Land, Infrastructure, Transportation and Tourism, Japan
| | - Yukiko Kameda
- NJS Co., Ltd., 1-1-1, Shibaura, Minato-ku, Tokyo, Japan
| | | | - Masaaki Kitajima
- Division of Environmental Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan; Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Makoto Yasojima
- Shimadzu Techno-Research, Inc., 1 Nishinokyo Shimoai-cho, Nakagyo-ku, Kyoto 604-8436, Japan
| | - Fumi Daigo
- Shimadzu Techno-Research, Inc., 1 Nishinokyo Shimoai-cho, Nakagyo-ku, Kyoto 604-8436, Japan
| | - Hiroaki Takemori
- Shimadzu Techno-Research, Inc., 1 Nishinokyo Shimoai-cho, Nakagyo-ku, Kyoto 604-8436, Japan
| | - Masafumi Nakamura
- Hiyoshi Corporation, 908 Kitanosho, Omihachiman, Shiga 523-8555, Japan
| | - Ryo Matsuda
- Hiyoshi Corporation, 908 Kitanosho, Omihachiman, Shiga 523-8555, Japan
| | - Ryo Iwamoto
- AdvanSentinel Inc., 3-1-8, Doshomachi, Chuo-ku, Osaka 541-0045, Japan; Shionogi & Co., Ltd., 3-1-8, Doshomachi, Chuo-ku, Osaka 541-0045, Japan
| | - Yasuhiro Nojima
- Kitasato Research Center for Environmental Science, 1-15-1, Kitazato, Minami-ku, Sagamihara-shi, Kanagawa 252-0329, Japan
| | - Masaru Ihara
- Faculty of Agriculture and Marine Science, Kochi University, 200 Monobe-Otsu, Nankoku, Kochi 783-8502, Japan
| | - Hiroaki Tanaka
- Water and Civil Engineering Division, Shinshu University, 4-17-1, Wakasato, Nagano 380-8553, Japan
| |
Collapse
|
2
|
Siri Y, Sthapit N, Malla B, Raya S, Haramoto E. Comparative performance of electronegative membrane filtration and automated concentrating pipette for detection of antibiotic resistance genes and microbial markers in river water samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176109. [PMID: 39255938 DOI: 10.1016/j.scitotenv.2024.176109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
The target viral and bacterial concentrations in river water are essential for environmental monitoring and public health studies. Filtration-based methods are commonly employed, yet challenges arise due to recoverability and filter pore size. This study aimed to compare the performance of electronegative membrane filtration (EMF) and automated Concentrating Pipette (CP) Select (InnovaPrep) methods for quantifying antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and bacterial and viral markers in river water samples. Fifty-four river water samples were collected from upstream and downstream locations in a river in Japan. The CP Select method was modified by adding MgCl2 and using different tips. The recovery efficiencies for total coliforms and Escherichia coli were assessed, and class 1 integron-integrase gene (intI1), 16S rRNA, gene encoding sulfonamide resistance (sul1), cross-assembly phage (crAssphage), pepper mild mottle virus (PMMoV), and Escherichia coli gene (sfmD) were detected. CP Select showed recovery efficiencies of 45 %-63 % for total coliforms and 17 %-35 % for E. coli. The intI1, 16S rRNA, sul1, crAssphage, PMMoV, and sfmD concentrations using the modified CP Select method were 10.1 ± 0.5, 8.7 ± 0.2, 7.7 ± 0.2, 6.7 ± 0.2, 5.4 ± 0.2, and 3.5 ± 0.5 log10 copies/L, respectively. Higher intI1 and sul1 concentrations were observed downstream, with the highest contribution percentage (22 % and 21 %) using CP Select or EMF. The modified CP Select method with 0.05 μm tips yielded more quantifiable results for all target genes and greater PMMoV concentrations (p < 0.05). Positive correlations were found among bacterial, ARG/MGE, and viral markers (Spearman's ρ = 0.71 for 16S rRNA and sfmD, 0.88 for intI1 and sul1, and 0.64 for PMMoV and crAssphage). The modified CP Select method demonstrated effective recovery of bacteria and quantification of ARGs, MGEs, and microbial markers in river water. Further studies are required to validate these methods and confirm their applicability in diverse environmental contexts.
Collapse
Affiliation(s)
- Yadpiroon Siri
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Niva Sthapit
- Department of Civil and Environmental Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sunayana Raya
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
3
|
Hall GJ, Page EJ, Rhee M, Hay C, Krause A, Langenbacher E, Ruth A, Grenier S, Duran AP, Kamara I, Iskander JK, Alsayyid F, Thomas DL, Bock E, Porta N, Pharo J, Osterink BA, Zelmanowitz S, Fleischmann CM, Liyanage D, Gray JP. Wastewater Surveillance of US Coast Guard Installations and Seagoing Military Vessels to Mitigate the Risk of COVID-19 Outbreaks, March 2021-August 2022. Public Health Rep 2024; 139:699-707. [PMID: 38561999 PMCID: PMC11504356 DOI: 10.1177/00333549241236644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVES Military training centers and seagoing vessels are often environments at high risk for the spread of COVID-19 and other contagious diseases, because military trainees and personnel arrive after traveling from many parts of the country and live in congregate settings. We examined whether levels of SARS-CoV-2 genetic material in wastewater correlated with SARS-CoV-2 infections among military personnel living in communal barracks and vessels at US Coast Guard training centers in the United States. METHODS The Coast Guard developed and established 3 laboratories with wastewater testing capability at Coast Guard training centers from March 2021 through August 2022. We analyzed wastewater from barracks housing trainees and from 4 Coast Guard vessels for the presence of SARS-CoV-2 genes N and E and quantified the results relative to levels of a fecal indicator virus, pepper mild mottle virus. We compared quantified data with the timing of medically diagnosed COVID-19 infection among (1) military personnel who had presented with symptoms or had been discovered through contact tracing and had medical tests and (2) military personnel who had been discovered through routine surveillance by positive SARS-CoV-2 antigen or polymerase chain reaction test results. RESULTS Levels of viral genes in wastewater at Coast Guard locations were best correlated with diagnosed COVID-19 cases when wastewater testing was performed twice weekly with passive samplers deployed for the entire week; such testing detected ≥1 COVID-19 case 69.8% of the time and ≥3 cases 88.3% of the time. Wastewater assessment in vessels did not continue because of logistical constraints. CONCLUSION Wastewater testing is an effective tool for measuring the presence and patterns of SARS-CoV-2 infections among military populations. Success with wastewater testing for SARS-CoV-2 infections suggests that other diseases may be assessed with similar approaches.
Collapse
Affiliation(s)
- Gregory J. Hall
- Department of Chemical and Environmental Sciences, US Coast Guard Academy, New London, CT, USA
| | - Eric J. Page
- Department of Physics, US Coast Guard Academy, New London, CT, USA
| | - Min Rhee
- Department of Chemical and Environmental Sciences, US Coast Guard Academy, New London, CT, USA
| | - Clara Hay
- Department of Chemical and Environmental Sciences, US Coast Guard Academy, New London, CT, USA
| | - Amelia Krause
- Department of Chemical and Environmental Sciences, US Coast Guard Academy, New London, CT, USA
| | - Emma Langenbacher
- Department of Chemical and Environmental Sciences, US Coast Guard Academy, New London, CT, USA
| | - Allison Ruth
- Department of Chemical and Environmental Sciences, US Coast Guard Academy, New London, CT, USA
| | - Steve Grenier
- Department of Civil and Environmental Engineering, US Coast Guard Academy, New London, CT, USA
| | - Alexander P. Duran
- Office of Environmental Safety, US Coast Guard Academy, New London, CT, USA
| | - Ibrahim Kamara
- Occupational Medicine and Quality Improvement Division, US Coast Guard Headquarters, Washington, DC, USA
| | - John K. Iskander
- Preventive Medicine and Population Health, US Coast Guard Headquarters, Washington, DC, USA
| | - Fahad Alsayyid
- Coast Guard Medical Directorate, US Coast Guard, Cape May, NJ, USA
| | - Dana L. Thomas
- Health, Safety, and Work-Life Service Center, US Coast Guard Headquarters, Washington, DC, USA
| | - Edward Bock
- Health, Safety, and Work-Life Service Center, US Coast Guard, Norfolk, VA, USA
| | - Nicholas Porta
- Health, Safety, and Work-Life Service Center, US Coast Guard, Norfolk, VA, USA
| | - Jessica Pharo
- Health, Safety, and Work-Life Service Center, US Coast Guard, Norfolk, VA, USA
| | - Beth A. Osterink
- Health, Safety, and Work-Life Service Center, US Coast Guard, Norfolk, VA, USA
| | - Sharon Zelmanowitz
- Department of Civil and Environmental Engineering, US Coast Guard Academy, New London, CT, USA
| | - Corinna M. Fleischmann
- Department of Civil and Environmental Engineering, US Coast Guard Academy, New London, CT, USA
| | - Dilhara Liyanage
- Department of Chemical and Environmental Sciences, US Coast Guard Academy, New London, CT, USA
| | - Joshua P. Gray
- Department of Chemical and Environmental Sciences, US Coast Guard Academy, New London, CT, USA
| |
Collapse
|
4
|
Boukadida C, Peralta-Prado A, Chávez-Torres M, Romero-Mora K, Rincon-Rubio A, Ávila-Ríos S, Garrido-Rodríguez D, Reyes-Terán G, Pinto-Cardoso S. Alterations of the gut microbiome in HIV infection highlight human anelloviruses as potential predictors of immune recovery. MICROBIOME 2024; 12:204. [PMID: 39420423 PMCID: PMC11483978 DOI: 10.1186/s40168-024-01925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND HIV-1 infection is characterized by a massive depletion of mucosal CD4 T cells that triggers a cascade of events ultimately linking gut microbial dysbiosis to HIV-1 disease progression and pathogenesis. The association between HIV infection and the enteric virome composition is less characterized, although viruses are an essential component of the gut ecosystem. Here, we performed a cross-sectional analysis of the fecal viral (eukaryotic viruses and bacteriophages) and bacterial microbiome in people with HIV (PWH) and in HIV-negative individuals. To gain further insight into the association between the gut microbiome composition, HIV-associated immunodeficiency, and immune recovery, we carried out a longitudinal study including 14 PWH who initiated antiretroviral therapy (ART) and were followed for 24 months with samplings performed at baseline (before ART) and at 2, 6, 12, and 24 months post-ART initiation. RESULTS Our data revealed a striking expansion in the abundance and prevalence of several human virus genomic sequences (Anelloviridae, Adenoviridae, and Papillomaviridae) in stool samples of PWH with severe immunodeficiency (CD4 < 200). We also noted a decreased abundance of sequences belonging to two plant viruses from the Tobamovirus genus, a reduction in bacterial alpha diversity, and a decrease in Inoviridae bacteriophage sequences. Short-term ART (24 months) was linked to a significant decrease in human Anelloviridae sequences. Remarkably, the detection of Anellovirus sequences at baseline independently predicted poor immune recovery, as did low CD4 T cell counts. The bacterial and bacteriophage populations were unique to each PWH with individualized trajectories; we found no discernable pattern of clustering after 24 months on ART. CONCLUSION Advanced HIV-1 infection was associated with marked alterations in the virome composition, in particular a remarkable expansion of human anelloviruses, with a gradual restoration after ART initiation. In addition to CD4 T cell counts, anellovirus sequence detection might be useful to predict and monitor immune recovery. This study confirms data on the bacteriome and expands our knowledge on the viral component of the gut microbiome in HIV-1 infection. Video Abstract.
Collapse
Affiliation(s)
- Celia Boukadida
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Amy Peralta-Prado
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Monserrat Chávez-Torres
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Karla Romero-Mora
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Alma Rincon-Rubio
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Santiago Ávila-Ríos
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Daniela Garrido-Rodríguez
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Gustavo Reyes-Terán
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
- Comisión Coordinadora de Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Ciudad de México, México
| | - Sandra Pinto-Cardoso
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México.
| |
Collapse
|
5
|
Owusu-Agyeman I, Perez-Zabaleta M, Cetecioglu Z. The fate of severe acute respiratory syndrome coronavirus-2 and pepper mild mottle virus at various stages of wastewater treatment process. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117097. [PMID: 39332205 DOI: 10.1016/j.ecoenv.2024.117097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/06/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
This study investigated the efficiency of the treatment processes of wastewater treatment plants (WWTPs) to remove severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and pepper mild mottle virus (PMMoV) from the wastewater and sewage sludge, as well as the influence of the mode of operation on the quality of the treated wastewater. SARS-CoV-2 and PMMoV were detected and quantified at different stages of the wastewater and sludge treatment process of three major WWTPs in Stockholm, Sweden. The results showed that primary, biological, and advanced membrane treatment processes are effective in removing SARS-CoV-2 from the wastewater with removal efficiencies of 99-100 % for all WWTPs, while the virus was accumulated in the primary and waste-activated sludges due to higher affinity to biosolids. Operation strategies such as bypass reintroduced the virus into the treated wastewater. The WWTPs achieved relatively low PMMoV removal efficiencies (63-87 %) most probably due to the robust capsid structure of the virus. Anaerobic digestion could not completely remove SARS-CoV-2 and PMMoV from the sludge leading to increased levels of SARS-CoV-2 and PMMoV in dewatered sludge. The study gives an overview of WWTPs' role in tackling pathogen spread in society in the event of a pandemic and disease breakout.
Collapse
Affiliation(s)
- Isaac Owusu-Agyeman
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm SE-106 91, Sweden.
| | - Mariel Perez-Zabaleta
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm SE-106 91, Sweden
| | - Zeynep Cetecioglu
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm SE-106 91, Sweden
| |
Collapse
|
6
|
Malla B, Shrestha S, Sthapit N, Hirai S, Raya S, Rahmani AF, Angga MS, Siri Y, Ruti AA, Haramoto E. Beyond COVID-19: Wastewater-based epidemiology for multipathogen surveillance and normalization strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174419. [PMID: 38960169 DOI: 10.1016/j.scitotenv.2024.174419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/29/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Wastewater-based epidemiology (WBE) is a critical tool for monitoring community health. Although much attention has focused on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a causative agent of coronavirus disease 2019 (COVID-19), other pathogens also pose significant health risks. This study quantified the presence of SARS-CoV-2, influenza A virus (Inf-A), and noroviruses of genogroups I (NoV-GI) and II (NoV-GII) in wastewater samples collected weekly (n = 170) from July 2023 to February 2024 from five wastewater treatment plants (WWTPs) in Yamanashi Prefecture, Japan, by quantitative PCR. Inf-A RNA exhibited localized prevalence with positive ratios of 59 %-82 % in different WWTPs, suggesting regional outbreaks within specific areas. NoV-GI (94 %, 160/170) and NoV-GII (100 %, 170/170) RNA were highly prevalent, with NoV-GII (6.1 ± 0.8 log10 copies/L) consistently exceeding NoV-GI (5.4 ± 0.7 log10 copies/L) RNA concentrations. SARS-CoV-2 RNA was detected in 100 % of the samples, with mean concentrations of 5.3 ± 0.5 log10 copies/L in WWTP E and 5.8 ± 0.4 log10 copies/L each in other WWTPs. Seasonal variability was evident, with higher concentrations of all pathogenic viruses during winter. Non-normalized and normalized virus concentrations by fecal indicator bacteria (Escherichia coli and total coliforms), an indicator virus (pepper mild mottle virus (PMMoV)), and turbidity revealed significant positive associations with the reported disease cases. Inf-A and NoV-GI + GII RNA concentrations showed strong correlations with influenza and acute gastroenteritis cases, particularly when normalized to E. coli (Spearman's ρ = 0.70-0.81) and total coliforms (ρ = 0.70-0.81), respectively. For SARS-CoV-2, non-normalized concentrations showed a correlation of 0.61, decreasing to 0.31 when normalized to PMMoV, suggesting that PMMoV is unsuitable. Turbidity normalization also yielded suboptimal results. This study underscored the importance of selecting suitable normalization parameters tailored to specific pathogens for accurate disease trend monitoring using WBE, demonstrating its utility beyond COVID-19 surveillance.
Collapse
Affiliation(s)
- Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sadhana Shrestha
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Niva Sthapit
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Soichiro Hirai
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sunayana Raya
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Aulia Fajar Rahmani
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Made Sandhyana Angga
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Yadpiroon Siri
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Annisa Andarini Ruti
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
7
|
Mercier É, D'Aoust PM, Eid W, Hegazy N, Kabir P, Wan S, Pisharody L, Renouf E, Stephenson S, Graber TE, MacKenzie AE, Delatolla R. Sewer transport conditions and their role in the decay of endogenous SARS-CoV-2 and pepper mild mottle virus from source to collection. Int J Hyg Environ Health 2024; 263:114477. [PMID: 39378553 DOI: 10.1016/j.ijheh.2024.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/06/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
This study presents a comprehensive analysis of the decay patterns of endogenous SARS-CoV-2 and Pepper mild mottle virus (PMMoV) within wastewaters spiked with stool from infected patients expressing COVID-19 symptoms, and hence explores the decay of endogenous SARS-CoV-2 and PMMoV targets in wastewaters from source to collection of the sample. Stool samples from infected patients were used as endogenous viral material to more accurately mirror real-world decay processes compared to more traditionally used lab-propagated spike-ins. As such, this study includes data on early decay stages of endogenous viral targets in wastewaters that are typically overlooked when performing decay studies on wastewaters harvested from wastewater treatment plants that contain already-degraded endogenous material. The two distinct sewer transport conditions of dynamic suspended sewer transport and bed and near-bed sewer transport were simulated in this study at temperatures of 4 °C, 12 °C and 20 °C to elucidate decay under these two dominant transport conditions within wastewater infrastructure. The dynamic suspended sewer transport was simulated over 35 h, representing typical flow conditions, whereas bed and near-bed transport extended to 60 days to reflect the prolonged settling of solids in sewer systems during reduced flow periods. In dynamic suspended sewer transport, no decay was observed for SARS-CoV-2, PMMoV, or total RNA over the 35-h period, and temperature ranging from 4 °C to 20 °C had no noticeable effect. Conversely, experiments simulating bed and near-bed transport conditions revealed significant decreases in SARS-CoV-2 and total RNA concentrations by day 2, and PMMoV concentrations by day 3. Only PMMoV exhibited a clear trend of increasing decay constant with higher temperatures, suggesting that while temperature influences decay dynamics, its impact may be less significant than previously assumed, particularly for endogenous RNA that is bound to dissolved organic matter in wastewater. First order decay models were inadequate for accurately fitting decay curves of SARS-CoV-2, PMMoV, and total RNA in bed and near-bed transport conditions. F-tests confirmed the superior fit of the two-phase decay model compared to first order decay models across temperatures of 4 °C-20 °C. Finally, and most importantly, total RNA normalization emerged as an appropriate approach for correcting the time decay of SARS-CoV-2 exposed to bed and near-bed transport conditions. These findings highlight the importance of considering decay from the point of entry in the sewers, sewer transport conditions, and normalization strategies when assessing and modelling the impact of viral decay rates in wastewater systems. This study also emphasizes the need for ongoing research into the diverse and multifaceted factors that influence these decay rates, which is crucial for accurate public health monitoring and response strategies.
Collapse
Affiliation(s)
- Élisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Walaa Eid
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Nada Hegazy
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Pervez Kabir
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Shen Wan
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Lakshmi Pisharody
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Elizabeth Renouf
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Sean Stephenson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada.
| |
Collapse
|
8
|
Hayes EK, Gagnon GA. From capture to detection: A critical review of passive sampling techniques for pathogen surveillance in water and wastewater. WATER RESEARCH 2024; 261:122024. [PMID: 38986282 DOI: 10.1016/j.watres.2024.122024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/05/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024]
Abstract
Water quality, critical for human survival and well-being, necessitates rigorous control to mitigate contamination risks, particularly from pathogens amid expanding urbanization. Consequently, the necessity to maintain the microbiological safety of water supplies demands effective surveillance strategies, reliant on the collection of representative samples and precise measurement of contaminants. This review critically examines the advancements of passive sampling techniques for monitoring pathogens in various water systems, including wastewater, freshwater, and seawater. We explore the evolution from conventional materials to innovative adsorbents for pathogen capture and the shift from culture-based to molecular detection methods, underscoring the adaptation of this field to global health challenges. The comparison highlights passive sampling's efficacy over conventional techniques like grab sampling and its potential to overcome existing sampling challenges through the use of innovative materials such as granular activated carbon, thermoplastics, and polymer membranes. By critically evaluating the literature, this work identifies standardization gaps and proposes future research directions to augment passive sampling's efficiency, specificity, and utility in environmental and public health surveillance.
Collapse
Affiliation(s)
- Emalie K Hayes
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Graham A Gagnon
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
9
|
Zambrana W, Huang C, Solis D, Sahoo MK, Pinsky BA, Boehm AB. Spatial and temporal variation in respiratory syncytial virus (RSV) subtype RNA in wastewater and relation to clinical specimens. mSphere 2024; 9:e0022424. [PMID: 38926903 PMCID: PMC11288019 DOI: 10.1128/msphere.00224-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Respiratory syncytial virus (RSV) causes a large burden of respiratory illness globally. It has two subtypes, RSV A and RSV B, but little is known regarding the predominance of these subtypes during different seasons and their impact on morbidity and mortality. Using molecular methods, we quantified RSV A and RSV B RNA in wastewater solids across multiple seasons and metropolitan areas to gain insight into the predominance of RSV subtypes. We determined the predominant subtype for each group using the proportion of RSV A to total RSV (RSV A + RSV B) in each wastewater sample (PA,WW) and conducted a comparative analysis temporally, spatially, and against clinical specimens. A median PA,WW of 0.00 in the first season and 0.58 in the second season indicated a temporal shift in the predominant subtype. Spatially, while we observed dominance of the same subtype, PA,WW was higher in some areas (PA,WW = 0.58-0.88). The same subtype predominated in wastewater and clinical samples, but clinical samples showed higher levels of RSV A (RSV A positivity in clinical samples = 0.79, median PA,WW = 0.58). These results suggest that wastewater, alongside clinical data, holds promise for enhanced subtype surveillance.IMPORTANCERespiratory syncytial virus (RSV) causes a large burden of respiratory illness globally. It has two subtypes, RSV A and RSV B, but little is known regarding the predominance of these subtypes during different seasons and their impact on morbidity and mortality. The study illustrates that information on subtype predominance can be gleaned from wastewater. As a biological composite sample from the entire contributing population, wastewater monitoring of RSV A and B can complement clinical surveillance of RSV.
Collapse
Affiliation(s)
- Winnie Zambrana
- Department of Civil & Environmental Engineering, Stanford University, Stanford, California, USA
| | - ChunHong Huang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Daniel Solis
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Malaya K. Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin A. Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Alexandria B. Boehm
- Department of Civil & Environmental Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
10
|
Holland SC, Smith MF, Holland LA, Maqsood R, Hu JC, Murugan V, Driver EM, Halden RU, Lim ES. Wastewater and clinical surveillance of respiratory viral pathogens on a university campus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174981. [PMID: 39053521 DOI: 10.1016/j.scitotenv.2024.174981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/07/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Areas of dense population congregation are prone to experience respiratory virus outbreaks. We monitored wastewater and clinic patients for the presence of respiratory viruses on a large, public university campus. Campus sewer systems were monitored in 16 locations for the presence of viruses using next generation sequencing over 22 weeks in 2023. During this period, we detected a surge in human adenovirus (HAdV) levels in wastewater. Hence, we initiated clinical surveillance at an on-campus clinic from patients presenting with acute respiratory infection. From whole genome sequencing of 123 throat and/or nasal swabs collected, we identified an outbreak of HAdV, specifically of HAdV-E4 and HAdV-B7 genotypes overlapping in time. The temporal dynamics and proportions of HAdV genotypes found in wastewater were corroborated in clinical infections. We tracked specific single nucleotide polymorphisms (SNPs) found in clinical virus sequences and showed that they arose in wastewater signals concordant with the time of clinical presentation, linking community transmission of HAdV to the outbreak. This study demonstrates how wastewater-based epidemiology can be integrated with surveillance at ambulatory healthcare settings to monitor areas prone to respiratory virus outbreaks and provide public health guidance.
Collapse
Affiliation(s)
- Steven C Holland
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Matthew F Smith
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - LaRinda A Holland
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Rabia Maqsood
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - James C Hu
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Vel Murugan
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Erin M Driver
- Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Rolf U Halden
- Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Efrem S Lim
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
11
|
Ahmed W, Schoen ME, Soller J, Harrison JC, Hamilton KA, Gebrwold M, Simpson SL, Payyappat S, Cassidy M, Harrison N, Besley C. Site-specific risk-based threshold (RBT) concentrations for sewage-associated markers in estuarine swimming waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172448. [PMID: 38615775 DOI: 10.1016/j.scitotenv.2024.172448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
This study establishes site-specific risk-based threshold (RBT) concentrations for sewage-associated markers, including Bacteroides HF183 (HF183), Lachnospiraceae Lachno3 (Lachno3), cross-assembly phage (CrAssphage), and pepper mild mottle virus (PMMoV), utilizing quantitative microbial risk assessment (QMRA) for recreational estuarine waters (EW). The QMRA model calculates a RBT concentration corresponding to a selected target illness risk for ingestion of EW contaminated with untreated sewage. RBT concentrations were estimated considering site-specific decay rates and concentrations of markers and reference pathogen (human norovirus; HNoV), aiding in the identification of high-risk days during the swimming season. Results indicated varying RBT concentrations for fresh (Day 0) and aged (Days 1 to 10) sewage contamination scenarios over 10 days. HF183 exhibited the highest RBT concentration (26,600 gene copis (GC)/100 mL) initially but decreased rapidly with aging (2570 to 3120 GC/100 mL on Day 10) depending on the decay rates, while Lachno3 and CrAssphage remained relatively stable. PMMoV, despite lower initial RBT (3920 GC/100 mL), exhibited increased RBT (4700 to 6440 GC/100 mL) with aging due to its slower decay rate compared to HNoV. Sensitivity analysis revealed HNoV concentrations as the most influential parameter. Comparison of marker concentrations in estuarine locations with RBT concentrations showed instances of marker exceedance, suggesting days of potential higher risks. The observed discrepancies between bacterial and viral marker concentrations in EW highlight the need for optimized sample concentration method and simultaneous measurement of multiple markers for enhanced risk predictions. Future research will explore the utility of multiple markers in risk management. Overall, this study contributes to better understanding human health risks in recreational waters, aiding regulators, and water quality managers in effective decision-making for risk prioritization and mitigation strategies.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Mary E Schoen
- Soller Environmental, LLC, 3022 King St, Berkeley, CA 94703, USA
| | - Jeffrey Soller
- Soller Environmental, LLC, 3022 King St, Berkeley, CA 94703, USA
| | - Joanna Ciol Harrison
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA
| | - Kerry A Hamilton
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ 85281, USA
| | - Metasebia Gebrwold
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Stuart L Simpson
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Sudhi Payyappat
- Sydney Water, 2 Parramatta Square, Parramatta, NSW 2150, Australia
| | - Michele Cassidy
- Sydney Water, 2 Parramatta Square, Parramatta, NSW 2150, Australia
| | - Nathan Harrison
- Sydney Water, 2 Parramatta Square, Parramatta, NSW 2150, Australia
| | - Colin Besley
- Sydney Water, 2 Parramatta Square, Parramatta, NSW 2150, Australia
| |
Collapse
|
12
|
Miura T, Kadoya SS, Miura Y, Takino H, Akiba M, Sano D, Masuda T. Pepper mild mottle virus intended for use as a process indicator for drinking water treatment: Present forms and quantitative relations to norovirus and rotavirus in surface water. WATER RESEARCH 2024; 257:121713. [PMID: 38733963 DOI: 10.1016/j.watres.2024.121713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
Pepper mild mottle virus (PMMoV) has been proposed as a potential indicator of human enteric viruses in environmental water and for viral removal during drinking water treatment. To investigate the occurrence and present forms of PMMoV and quantitative relations to norovirus GII and rotavirus A (RVA) in surface waters, 147 source water samples were collected from 21 drinking water treatment plants (DWTPs) in Japan between January 2018 and January 2021, and the concentrations of viruses in suspended and dissolved fractions were measured using real-time RT-PCR. PMMoV was detected in 81-100 % of samples in each sample month and observed concentrations ranged from 3.0 to 7.0 log10 copies/L. The concentrations of PMMoV were higher in dissolved fraction compared to suspended fractions, while different partitioning was observed for NoV GII depending on seasons. The concentrations of PMMoV were basically higher than those of norovirus GII (1.9-5.3 log10 copies/L) and RVA (1.9-6.6 log10 copies/L), while in 18 samples, RVA presented higher concentrations than PMMoV. Partial regions of VP7, VP4, and VP6 of the RVA in the 18 samples were amplified using nested PCR, and the genotypes were determined using an amplicon-based next-generation sequencing approach. We found that these source water samples included not only human RVA but also various animal RVA and high genetic diversity due to the existence of animal RVA was associated with a higher RVA concentration than PMMoV. Our findings suggest that PMMoV can be used as an indicator of norovirus GII and human RVA in drinking water sources and that the indicator performance should be evaluated by comparing to zoonotic viruses as well as human viruses.
Collapse
Affiliation(s)
- Takayuki Miura
- Department of Environmental Health, National Institute of Public Health, Wako, Japan.
| | - Syun-Suke Kadoya
- Department of Civil and Environmental Engineering, Tohoku University, Japan; Department of Urban Engineering, The University of Tokyo, Japan
| | - Yohei Miura
- Department of Civil and Environmental Engineering, Tohoku University, Japan
| | - Hiroyuki Takino
- Department of Environmental Health, National Institute of Public Health, Wako, Japan
| | - Michihiro Akiba
- Department of Environmental Health, National Institute of Public Health, Wako, Japan
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Tohoku University, Japan
| | | |
Collapse
|
13
|
Solomon T, Idris O, Nwaubani D, Baral R, Sherchan SP. Comparative analysis of membrane filter diameters for detection of selected viruses in wastewater samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:173973. [PMID: 38876339 DOI: 10.1016/j.scitotenv.2024.173973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Wastewater serves as a valuable source of information as it contains biological markers that have been shed by infected individuals and from other biological organisms such as plants and animals. Wastewater has been proven to indicate the presence of emerging pathogens in a community before the manifestation of clinical symptoms. Several methods of concentration and nucleic acid extraction have been employed all around the world without a unified method. One such method involves the use of the adsorption extraction method (AE-method), which involves the use of electronegative membrane filters of different pore sizes. The membrane filters also differ by diameter, but no study has been reported on the effect of diameter on capture efficiency. This study was aimed at evaluating the comparative capture efficiency of two different membrane filter diameters of 45 and 90 mm with pore sizes of 0.45 μm for the detection of indicator and pathogenic viruses. Primary influent samples were obtained from two wastewater treatment plants in Baltimore, Maryland, between April 27 and June 29, 2023. A total of twenty samples were processed using 45- and 90-mm membrane filters. Nucleic acids were extracted from the filters using the QIAmp Viral RNA Mini Kit and assayed for four different targets: PMMoV, Norovirus (GI and GII), and CrAssphage by RT-qPCR. The result showed that 45 mm membrane filters had a higher combined mean capture efficiency in log10 gene copies per liter (gc/l) for crAssphage (7.40) than 90 mm membrane filters (7.10). Similarly, the 45-mm filter had higher mean capture efficiency for Norovirus GI (4.67) than the 90-mm filter (1.84) and likewise for Norovirus GII (2.14, 1.04). On the contrary, 90-mm membrane filters were observed to have better capture of PMMoV (6.84) compared to 45-mm membrane filters (6.69). This result therefore implies that 45-mm membrane filters could be more efficient for wastewater surveillance studies through the AE method for indicator viruses like CrAssphage and human disease-causing viruses like Norovirus.
Collapse
Affiliation(s)
- Tamunobelema Solomon
- Center of Research Excellence in Wastewater based epidemiology, Morgan State University, Baltimore, MD 21251, United States of America; BioEnvironmental Science Program, Morgan State University, Baltimore, MD 21251, United States of America
| | - Oladele Idris
- BioEnvironmental Science Program, Morgan State University, Baltimore, MD 21251, United States of America
| | - Daniel Nwaubani
- BioEnvironmental Science Program, Morgan State University, Baltimore, MD 21251, United States of America
| | - Rakshya Baral
- BioEnvironmental Science Program, Morgan State University, Baltimore, MD 21251, United States of America
| | - Samendra P Sherchan
- Center of Research Excellence in Wastewater based epidemiology, Morgan State University, Baltimore, MD 21251, United States of America; BioEnvironmental Science Program, Morgan State University, Baltimore, MD 21251, United States of America.
| |
Collapse
|
14
|
Smith MF, Maqsood R, Sullins RA, Driver EM, Halden RU, Lim ES. Seasonality of respiratory, enteric, and urinary viruses revealed by wastewater genomic surveillance. mSphere 2024; 9:e0010524. [PMID: 38712930 PMCID: PMC11237574 DOI: 10.1128/msphere.00105-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/05/2024] [Indexed: 05/08/2024] Open
Abstract
Wastewater surveillance can reveal population-level infectious disease burden and emergent public health threats can be reliably assessed through wastewater surveillance. While molecular methods for wastewater monitoring of microorganisms have traditionally relied on PCR-based approaches, next-generation sequencing (NGS) can provide deeper insights via genomic analyses of multiple diverse pathogens. We conducted a year-long sequencing surveillance of 1,408 composite wastewater samples collected from 12 neighborhood-level access points in the greater Tempe area, Arizona, USA, and show that variation in wastewater viruses is driven by seasonal time and location. The temporal dynamics of viruses in wastewater were influenced cyclically, with the most dissimilarity between samples 23 weeks apart (i.e., winter vs summer, spring vs fall). We identified diverse urinary and enteric viruses including polyomaviruses, astroviruses, and noroviruses, and showed that their genotypes/subtypes shifted across seasons. We show that while wastewater data of certain respiratory viruses like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strongly correlate with clinical case rates, laboratory-reported case incidences were discordant with surges of high viral load in wastewater for other viruses like human coronavirus 229E. These results demonstrate the utility of wastewater sequencing for informing decision-making in public health.IMPORTANCEWastewater surveillance can provide insights into the spread of pathogens in communities. Advances in next-generation sequencing (NGS) methodologies allow for more precise detection of viruses in wastewater. Long-term wastewater surveillance of viruses is an important tool for public health preparedness. This system can act as a public health observatory that gives real-time early warning for infectious disease outbreaks and improved response times.
Collapse
Affiliation(s)
- Matthew F Smith
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Rabia Maqsood
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Regan A Sullins
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Erin M Driver
- Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Rolf U Halden
- Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Efrem S Lim
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- National Centre for Infectious Diseases, Singapore, Singapore
| |
Collapse
|
15
|
Ahmed W, Korajkic A, Gabrewold M, Payyappat S, Cassidy M, Harrison N, Besley C. Assessing the nucleic acid decay of human wastewater markers and enteric viruses in estuarine waters in Sydney, Australia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171389. [PMID: 38432386 PMCID: PMC11070875 DOI: 10.1016/j.scitotenv.2024.171389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
This research investigated the in-situ decay rates of four human wastewater-associated markers (Bacteroides HF183 (HF183), Lachnospiraceae Lachno3 (Lachno3), cross-assembling phage (crAssphage), pepper mild mottle virus (PMMoV) and three enteric viruses (human adenovirus 40/41 (HAdV 40/41), enterovirus (EV) and human norovirus GII (HNoV GII) in two estuarine water environments (Davidson Park (DP) and Hen and Chicken Bay (HCB) in temperate Sydney, NSW, Australia, employing qPCR and RT-qPCR assays. The study also aimed to compare decay rates observed in mesocosms with previously published laboratory microcosms, providing insights into the persistence of markers and viruses in estuarine environments. Results indicated varying decay rates between DP and HCB mesocosms, with HF183 exhibiting relatively faster decay rates compared to other markers and enteric viruses in sunlight and dark mesocosms. In DP mesocosms, HF183 decayed the fastest, contrasting with PMMoV, which exhibited the slowest. Sunlight induced higher decay rates for all markers and viruses in DP mesocosms. In HCB sunlight mesocosms, HF183 nucleic acid decayed most rapidly compared to other markers and enteric viruses. In dark mesocosms, crAssphage showed the fastest decay, while PMMoV decayed at the slowest rate in both sunlight and dark mesocosms. Comparisons with laboratory microcosms revealed faster decay of markers and enteric viruses in laboratory microcosms than the mesocosms, except for crAssphage and HAdV 40/41 in dark, and PMMoV in sunlight mesocosms. The study concludes that decay rates of markers and enteric viruses vary between estuarine mesocosms, emphasizing the impact of sunlight exposure, which was potentially influenced by the elevated turbidity at HCB estuarine waters. The generated decay rates contribute valuable insights for establishing site-specific risk-based thresholds of human wastewater-associated markers.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Asja Korajkic
- United States Environmental Protection Agency, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, United States
| | - Metasebia Gabrewold
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Sudhi Payyappat
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Michele Cassidy
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Nathan Harrison
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Colin Besley
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| |
Collapse
|
16
|
Hotta C, Fujinuma Y, Ogawa T, Akita M, Ogawa T. Surveillance of Wastewater to Monitor the Prevalence of Gastroenteritis Viruses in Chiba Prefecture (2014-2019). J Epidemiol 2024; 34:195-202. [PMID: 37211397 PMCID: PMC10918334 DOI: 10.2188/jea.je20220305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND In Japan, sentinel surveillance is used to monitor the trend of infectious gastroenteritis. Another method of pathogen surveillance, wastewater-based epidemiology, has been used recently because it can help to monitor infectious disease without relying on patient data. Here, we aimed to determine the viral trends reflected in the number of reported patients and number of gastroenteritis virus-positive samples. We focused on gastroenteritis viruses present in wastewater and investigated the usefulness of wastewater surveillance for the surveillance of infectious gastroenteritis. METHODS Real-time polymerase chain reaction was used for viral gene detection in wastewater. The number of reported patients per pediatric sentinel site and number of viral genome copies were compared for correlation potential. The number of gastroenteritis virus-positive samples reported by National Epidemiological Surveillance of Infectious Disease (NESID) and the status of gastroenteritis viruses detected in wastewater were also evaluated. RESULTS Genes of norovirus genotype I, norovirus genotype II, sapovirus, astrovirus, rotavirus group A, and rotavirus group C were detected in wastewater samples. Viruses were detected in wastewater during periods when no gastroenteritis virus-positive samples were reported to NESID. CONCLUSION Norovirus genotype II and other gastroenteritis viruses were detected in wastewater even during periods when no gastroenteritis virus-positive samples were found. Therefore, surveillance using wastewater can complement sentinel surveillance and is an effective tool for the surveillance of infectious gastroenteritis.
Collapse
Affiliation(s)
- Chiemi Hotta
- Division of Virology and Medical Zoology, Chiba Prefectural Institute of Public Health, Chiba, Japan
| | - Yuki Fujinuma
- Division of Virology and Medical Zoology, Chiba Prefectural Institute of Public Health, Chiba, Japan
| | - Takashi Ogawa
- Division of Virology and Medical Zoology, Chiba Prefectural Institute of Public Health, Chiba, Japan
| | - Mamiko Akita
- Division of Virology and Medical Zoology, Chiba Prefectural Institute of Public Health, Chiba, Japan
| | - Tomoko Ogawa
- Division of Virology and Medical Zoology, Chiba Prefectural Institute of Public Health, Chiba, Japan
| |
Collapse
|
17
|
Holland SC, Smith MF, Holland LA, Maqsood R, Hu JC, Murugan V, Driver EM, Halden RU, Lim ES. Human adenovirus outbreak at a university campus monitored by wastewater and clinical surveillance. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.27.24304990. [PMID: 38586006 PMCID: PMC10996756 DOI: 10.1101/2024.03.27.24304990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Areas of dense population congregation are prone to experience respiratory virus outbreaks. We monitored wastewater and clinic patients for the presence of respiratory viruses on a large, public university campus. Campus sewer systems were monitored in 16 locations for the presence of viruses using next generation sequencing over 22 weeks in 2023. During this period, we detected a surge in human adenovirus (HAdV) levels in wastewater. Hence, we initiated clinical surveillance at an on-campus clinic from patients presenting with acute respiratory infection. From whole genome sequencing of 123 throat and/or nasal swabs collected, we identified an outbreak of HAdV, specifically of HAdV-E4 and HAdV-B7 genotypes overlapping in time. The temporal dynamics and proportions of HAdV genotypes found in wastewater were corroborated in clinical infections. We tracked specific single nucleotide polymorphisms (SNPs) found in clinical virus sequences and showed that they arose in wastewater signals concordant with the time of clinical presentation, linking community transmission of HAdV to the outbreak. This study demonstrates how wastewater-based epidemiology can be integrated with surveillance at ambulatory healthcare settings to monitor areas prone to respiratory virus outbreaks and provide public health guidance.
Collapse
Affiliation(s)
- Steven C. Holland
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Matthew F. Smith
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - LaRinda A. Holland
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Rabia Maqsood
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - James C. Hu
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Vel Murugan
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Erin M. Driver
- Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Rolf U. Halden
- Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Efrem S. Lim
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- National Centre for Infectious Diseases, Singapore
| |
Collapse
|
18
|
Peng L, Yang F, Shi J, Pan L, Liu Y, Mao D, Luo Y. Molecular characterization of human bocavirus in municipal wastewaters using amplicon target sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170674. [PMID: 38316309 DOI: 10.1016/j.scitotenv.2024.170674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Human bocavirus (HBoV) is an emerging health concern worldwide, associated with range of clinical manifestations, including gastroenteritis and respiratory infections. Therefore, it is crucial to comprehend and minimize their prevalence in different systems. In this study, we conducted regular sampling throughout the year in two different sizes and work processes of wastewater treatment plants (WWTPs) in Tianjin, China. Our objective was to investigate the occurrence, prevalence, and endurance of HBoV in wastewater, while also evaluating the efficacy of amplicon target sequencing in directly detecting HBoV in wastewater. At two WWTPs, HBoV2 (45.51 %-45.67 %) and HBoV3 (38.30 %-40.25 %) were the most common genotypes identified, and the mean concentration range of HBoV was 2.54-7.40 log10 equivalent copies/l as determined by multiplex real-time quantitative PCR assay. A positive rate of HBoV was found in 96.6 % (29/30) samples of A-WWTP, and 96.6 % (26/27) samples of B-WWTP. The phylogenetic analysis indicated that the nucleotide similarity between the HBoV DNA sequences to the reference HBoV sequences published globally ranged from 90.14 %-100 %. A significant variation in the read abundance of HBoV2 and HBoV3 in two wastewater treatment plants (p < 0.05) was detected, specifically in the Winter and Summer seasons. The findings revealed a strong correlation between the genotypes detected in wastewater and the clinical data across various regions in China. In addition, it is worth mentioning that HBoV4 was exclusively detected in wastewater and not found in the clinical samples from patients. This study highlights the high prevalence of human bocavirus in municipal wastewater. This finding illustrates that amplicon target sequencing can amplify a wide variety of viruses, enabling the identification of newly discovered viruses.
Collapse
Affiliation(s)
- Liang Peng
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Jingliang Shi
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Liuzhu Pan
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yixin Liu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China; State Key Laboratory of Pollution Control and Resource reuse, School of the Environment, Nanjing university, Nanjing 210093, China.
| |
Collapse
|
19
|
Leisman KP, Owen C, Warns MM, Tiwari A, Bian GZ, Owens SM, Catlett C, Shrestha A, Poretsky R, Packman AI, Mangan NM. A modeling pipeline to relate municipal wastewater surveillance and regional public health data. WATER RESEARCH 2024; 252:121178. [PMID: 38309063 DOI: 10.1016/j.watres.2024.121178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/18/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
As COVID-19 becomes endemic, public health departments benefit from improved passive indicators, which are independent of voluntary testing data, to estimate the prevalence of COVID-19 in local communities. Quantification of SARS-CoV-2 RNA from wastewater has the potential to be a powerful passive indicator. However, connecting measured SARS-CoV-2 RNA to community prevalence is challenging due to the high noise typical of environmental samples. We have developed a generalized pipeline using in- and out-of-sample model selection to test the ability of different correction models to reduce the variance in wastewater measurements and applied it to data collected from treatment plants in the Chicago area. We built and compared a set of multi-linear regression models, which incorporate pepper mild mottle virus (PMMoV) as a population biomarker, Bovine coronavirus (BCoV) as a recovery control, and wastewater system flow rate into a corrected estimate for SARS-CoV-2 RNA concentration. For our data, models with BCoV performed better than those with PMMoV, but the pipeline should be used to reevaluate any new data set as the sources of variance may change across locations, lab methods, and disease states. Using our best-fit model, we investigated the utility of RNA measurements in wastewater as a leading indicator of COVID-19 trends. We did this in a rolling manner for corrected wastewater data and for other prevalence indicators and statistically compared the temporal relationship between new increases in the wastewater data and those in other prevalence indicators. We found that wastewater trends often lead other COVID-19 indicators in predicting new surges.
Collapse
Affiliation(s)
- Katelyn Plaisier Leisman
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
| | - Christopher Owen
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Maria M Warns
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
| | - Anuj Tiwari
- Discovery Partners Institute, University of Illinois Chicago, Chicago, IL, USA
| | - George Zhixin Bian
- Department of Computer Science, Northwestern University, Evanston, IL, USA
| | - Sarah M Owens
- Biosciences, Argonne National Laboratory, Lemont, IL, USA
| | - Charlie Catlett
- Discovery Partners Institute, University of Illinois Chicago, Chicago, IL, USA; Computing, Environment, and Life Sciences, Argonne National Laboratory, Lemont, IL, USA
| | - Abhilasha Shrestha
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois Chicago, Chicago, IL, USA
| | - Rachel Poretsky
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Aaron I Packman
- Center for Water Research, Northwestern University, Evanston, IL, USA; Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Niall M Mangan
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA; Center for Water Research, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
20
|
Malla B, Shrestha S, Haramoto E. Optimization of the 5-plex digital PCR workflow for simultaneous monitoring of SARS-CoV-2 and other pathogenic viruses in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169746. [PMID: 38159741 DOI: 10.1016/j.scitotenv.2023.169746] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Wastewater-based epidemiology is a valuable tool for monitoring pathogenic viruses in the environment, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19). While quantitative polymerase chain reaction (qPCR) is widely used for pathogen surveillance in wastewater, it can be affected by inhibition and is limited to relative quantification. Digital PCR (dPCR) offers potential solutions to these limitations. In this study, a 5-plex dPCR workflow was optimized for the simultaneous detection of SARS-CoV-2, influenza A virus, enteroviruses (EnV), and noroviruses of genogroups I (NoV-GI) and GII (NoV-GII) in wastewater samples. Wastewater samples (n = 36) were collected from a wastewater treatment plant in Japan between August and October 2022. The optimization included the evaluation of singleplex and 5-plex dPCR assays, and two different concentration methods, extraction kits, and dPCR approaches. The performance of singleplex and 5-plex dPCR assays showed comparable linearity and reliability, with the 5-plex assays showing greater efficiency. The polyethylene glycol (PEG) precipitation method showed better performance over the centrifugation method, two-step reverse transcription (RT)-dPCR over the one-step RT-dPCR, and AllPrep PowerViral DNA/RNA Kit showed better performance than the QIAamp Viral RNA Mini Kit. The optimal workflow therefore included PEG precipitation, the AllPrep PowerViral DNA/RNA Kit, and two-step RT-dPCR. This workflow was selected to monitor the presence of SARS-CoV-2 and other pathogenic viruses in wastewater samples in a 5-plex dPCR approach, yielding promising results. SARS-CoV-2 RNA was detected in the majority of samples, with NoV-GI, NoV-GII, and EnV also being detected. The successful optimization and application of the 5-plex dPCR assay for pathogen surveillance in wastewater offers significant benefits, including enhanced community health assessment and more effective responses to public health threats.
Collapse
Affiliation(s)
- Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sadhana Shrestha
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
21
|
Rezaeitavabe F, Rezaie M, Modayil M, Pham T, Ice G, Riefler G, Coschigano KT. Beyond linear regression: Modeling COVID-19 clinical cases with wastewater surveillance of SARS-CoV-2 for the city of Athens and Ohio University campus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169028. [PMID: 38061656 DOI: 10.1016/j.scitotenv.2023.169028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 01/18/2024]
Abstract
Wastewater-based surveillance has emerged as a detection tool for population-wide infectious diseases, including coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Infected individuals shed the virus, which can be detected in wastewater using molecular techniques such as reverse transcription-digital polymerase chain reaction (RT-dPCR). This study examined the association between the number of clinical cases and the concentration of SARS-CoV-2 in wastewater beyond linear regression and for various normalizations of viral loads. Viral loads were measured in a total of 446 wastewater samples during the period from August 2021 to April 2022. These samples were collected from nine different locations, with 220 samples taken from four specific sites within the city of Athens and 226 samples from five sites within Ohio University. The correlation between COVID-19 cases and wastewater viral concentrations, which was estimated using the Pearson correlation coefficient, was statistically significant and ranged from 0.6 to 0.9. In addition, time-lagged cross correlation was applied to identify the lag time between clinical and wastewater data, estimated 4 to 7 days. While we also explored the effect on the correlation coefficients of various normalizations of viral loads accounting for procedural loss or amount of fecal material and of estimated lag times, these alternative specifications did not change our substantive conclusions. Additionally, several linear and non-linear regression models were applied to predict the COVID-19 cases given wastewater data as input. The non-linear approach was found to yield the highest R-squared and Pearson correlation and lowest Mean Absolute Error values between the predicted and actual number of COVID-19 cases for both aggregated OHIO Campus and city data. Our results provide support for previous studies on correlation and time lag and new evidence that non-linear models, approximated with artificial neural networks, should be implemented for WBS of contagious diseases.
Collapse
Affiliation(s)
- Fatemeh Rezaeitavabe
- Ohio University, Russ College of Engineering, Department of Civil and Environmental Engineering, Athens, OH 45701, USA
| | - Mehdi Rezaie
- Kansas State University, Department of Physics, Manhattan, KS 66506, USA
| | - Maria Modayil
- Ohio University, Division of Diversity and Inclusion, Athens, OH 45701, USA; Ohio University, College of Health Sciences and Professions, Department of Interdisciplinary Health Studies, Athens, OH 45701, USA
| | - Tuyen Pham
- Ohio University, Voinovich School of Leadership and Public Service, Athens, OH 45701, USA
| | - Gillian Ice
- Ohio University, College of Health Sciences and Professions, Department of Interdisciplinary Health Studies, Athens, OH 45701, USA; Ohio University, Heritage College of Osteopathic Medicine, Department of Social Medicine, Athens, OH 45701, USA
| | - Guy Riefler
- Ohio University, Russ College of Engineering, Department of Civil and Environmental Engineering, Athens, OH 45701, USA
| | - Karen T Coschigano
- Ohio University, Heritage College of Osteopathic Medicine, Department of Biomedical Sciences, Athens, OH 45701, USA.
| |
Collapse
|
22
|
Thakali O, Mercier É, Eid W, Wellman M, Brasset-Gorny J, Overton AK, Knapp JJ, Manuel D, Charles TC, Goodridge L, Arts EJ, Poon AFY, Brown RS, Graber TE, Delatolla R, DeGroot CT. Real-time evaluation of signal accuracy in wastewater surveillance of pathogens with high rates of mutation. Sci Rep 2024; 14:3728. [PMID: 38355869 PMCID: PMC10866965 DOI: 10.1038/s41598-024-54319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/11/2024] [Indexed: 02/16/2024] Open
Abstract
Wastewater surveillance of coronavirus disease 2019 (COVID-19) commonly applies reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to quantify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA concentrations in wastewater over time. In most applications worldwide, maximal sensitivity and specificity of RT-qPCR has been achieved, in part, by monitoring two or more genomic loci of SARS-CoV-2. In Ontario, Canada, the provincial Wastewater Surveillance Initiative reports the average copies of the CDC N1 and N2 loci normalized to the fecal biomarker pepper mild mottle virus. In November 2021, the emergence of the Omicron variant of concern, harboring a C28311T mutation within the CDC N1 probe region, challenged the accuracy of the consensus between the RT-qPCR measurements of the N1 and N2 loci of SARS-CoV-2. In this study, we developed and applied a novel real-time dual loci quality assurance and control framework based on the relative difference between the loci measurements to the City of Ottawa dataset to identify a loss of sensitivity of the N1 assay in the period from July 10, 2022 to January 31, 2023. Further analysis via sequencing and allele-specific RT-qPCR revealed a high proportion of mutations C28312T and A28330G during the study period, both in the City of Ottawa and across the province. It is hypothesized that nucleotide mutations in the probe region, especially A28330G, led to inefficient annealing, resulting in reduction in sensitivity and accuracy of the N1 assay. This study highlights the importance of implementing quality assurance and control criteria to continually evaluate, in near real-time, the accuracy of the signal produced in wastewater surveillance applications that rely on detection of pathogens whose genomes undergo high rates of mutation.
Collapse
Affiliation(s)
- Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Élisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Walaa Eid
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Martin Wellman
- The Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON, K1Y 4E9, Canada
| | - Julia Brasset-Gorny
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Alyssa K Overton
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Jennifer J Knapp
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Douglas Manuel
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
- Department of Family Medicine, University of Ottawa, 75 Laurier Ave. E, Ottawa, ON, K1N 6N5, Canada
- School of Epidemiology and Public Health, University of Ottawa, 75 Laurier Ave. E, Ottawa, ON, K1N 6N5, Canada
| | - Trevor C Charles
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Lawrence Goodridge
- Department of Food Science, Canadian Research Institute for Food Safety, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Eric J Arts
- Department of Microbiology and Immunology, Western University, London, ON, N6A 3K7, Canada
| | - Art F Y Poon
- Department of Microbiology and Immunology, Western University, London, ON, N6A 3K7, Canada
| | - R Stephen Brown
- School of Environmental Studies and Department of Chemistry, Queen's University, Kingston, ON, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Christopher T DeGroot
- Department of Mechanical and Materials Engineering, Western University, London, ON, N6A 5B9, Canada.
| |
Collapse
|
23
|
Maksimović O, Bačnik K, Rivarez MPS, Vučurović A, Mehle N, Ravnikar M, Gutiérrez-Aguirre I, Kutnjak D. Virome analysis of irrigation water sources provides extensive insights into the diversity and distribution of plant viruses in agroecosystems. WATER RESEARCH 2024; 249:120712. [PMID: 38134622 DOI: 10.1016/j.watres.2023.120712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 12/24/2023]
Abstract
Plant viruses pose a significant threat to agriculture. Several are stable outside their hosts, can enter water bodies and remain infective for prolonged periods of time. Even though the quality of irrigation water is of increasing importance in the context of plant health, the presence of plant viruses in irrigation waters is understudied. In this study, we conducted a large-scale high-throughput sequencing (HTS)-based virome analysis of irrigation and surface water sources to obtain complete information about the abundance and diversity of plant viruses in such waters. We detected nucleic acids of plant viruses from 20 families, discovered several novel plant viruses from economically important taxa, like Tobamovirus and observed the influence of the water source on the present virome. By comparing viromes of water and surrounding plants, we observed presence of plant viruses in both compartments, especially in cases of large-scale outbreaks, such as that of tomato mosaic virus. Moreover, we demonstrated that water virome data can extensively inform us about the distribution and diversity of plant viruses for which only limited information is available from plants. Overall, the results of the study provided extensive insights into the virome of irrigation waters from the perspective of plant health. It also suggested that an HTS-based water virome surveillance system could be used to detect potential plant disease outbreaks and to survey the distribution and diversity of plant viruses in the ecosystem.
Collapse
Affiliation(s)
- Olivera Maksimović
- National Institute of Biology, Večna pot 111, Ljubljana 1000, Slovenia; Jožef Stefan International Postgraduate School, Slovenia
| | - Katarina Bačnik
- National Institute of Biology, Večna pot 111, Ljubljana 1000, Slovenia
| | - Mark Paul Selda Rivarez
- National Institute of Biology, Večna pot 111, Ljubljana 1000, Slovenia; Department of Entomology and Plant Pathology, North Carolina State University, USA; College of Agriculture and Agri-Industries, Caraga State University, Philippines
| | - Ana Vučurović
- National Institute of Biology, Večna pot 111, Ljubljana 1000, Slovenia
| | - Nataša Mehle
- National Institute of Biology, Večna pot 111, Ljubljana 1000, Slovenia; School for Viticulture and Enology, University of Nova Gorica, Slovenia
| | - Maja Ravnikar
- National Institute of Biology, Večna pot 111, Ljubljana 1000, Slovenia
| | | | - Denis Kutnjak
- National Institute of Biology, Večna pot 111, Ljubljana 1000, Slovenia.
| |
Collapse
|
24
|
Hernández-Zepeda C, Negrete-Alcalde LJ, Rosiles-González G, Carrillo-Jovel VH, Abney SE, Betancourt WQ, Gerba CP, Chaidez-Quiroz C, Wilson AM. Human adenovirus-associated health risk in the recreational waters of the Yal-ku lagoon in the Mexican Caribbean. JOURNAL OF WATER AND HEALTH 2024; 22:372-384. [PMID: 38421631 PMCID: wh_2024_309 DOI: 10.2166/wh.2024.309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The study objective was to evaluate human faecal contamination impacts in the Yal-ku lagoon in the Mexican Caribbean and to estimate adenovirus infection and illness risks associated with recreational exposure during water activities. A total of 20 water samples (10 from each site × two sites) (50 L) were collected monthly over a period of 12 months from two selected sampling sites in the swimming area of the Yal-ku lagoon. The occurrence of faecal-associated viruses was explored, and human adenovirus (HAdV) and pepper mild mottle virus (PMMoV) concentrations were quantified. A quantitative microbial risk assessment (QMRA) model was used to estimate exposure and subsequent adenovirus infection and illness risk for 1 h of swimming or snorkelling. Somatic and F + -specific coliphages occurred in 100% of the samples. Both HAdV and PMMoV were detected at a 60% frequency thereby indicating persistent faecal inputs. PMMoV concentrations (44-370 GC/L) were relatively lower than the concentrations of HAdV (64-1,000 GC/L). Estimated mean adenovirus risks were greater for snorkelling than for swimming by roughly one to two orders of magnitude and estimated mean illness risks for snorkelling were >32/1,000. Human faecal contamination is frequent in the Yal-ku lagoon, which is associated with human gastrointestinal illness.
Collapse
Affiliation(s)
- Cecilia Hernández-Zepeda
- Unidad de Ciencias del Agua, Centro de Investigación Científica de Yucatán, A.C., Calle 8, No 39, Mz 29, SM 64, CP 77524, Cancún, Quintana Roo, México E-mail:
| | - Luis Jorge Negrete-Alcalde
- Unidad de Ciencias del Agua, Centro de Investigación Científica de Yucatán, A.C., Calle 8, No 39, Mz 29, SM 64, CP 77524, Cancún, Quintana Roo, México
| | - Gabriela Rosiles-González
- Unidad de Ciencias del Agua, Centro de Investigación Científica de Yucatán, A.C., Calle 8, No 39, Mz 29, SM 64, CP 77524, Cancún, Quintana Roo, México
| | - Victor Hugo Carrillo-Jovel
- Unidad de Ciencias del Agua, Centro de Investigación Científica de Yucatán, A.C., Calle 8, No 39, Mz 29, SM 64, CP 77524, Cancún, Quintana Roo, México
| | - Sarah E Abney
- Water and Energy Sustainable Technology (WEST) Center, The University of Arizona, 2959 West Calle Agua Nueva, Tucson, AZ 85745, USA
| | - Walter Q Betancourt
- Water and Energy Sustainable Technology (WEST) Center, The University of Arizona, 2959 West Calle Agua Nueva, Tucson, AZ 85745, USA
| | - Charles P Gerba
- Water and Energy Sustainable Technology (WEST) Center, The University of Arizona, 2959 West Calle Agua Nueva, Tucson, AZ 85745, USA
| | - Cristóbal Chaidez-Quiroz
- Centro de Investigación en Alimentación y Desarrollo A.C., Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Culiacán, Sinaloa, México
| | - Amanda M Wilson
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
25
|
Ahmed W, Korajkic A, Smith WJ, Payyappat S, Cassidy M, Harrison N, Besley C. Comparing the decay of human wastewater-associated markers and enteric viruses in laboratory microcosms simulating estuarine waters in a temperate climatic zone using qPCR/RT-qPCR assays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:167845. [PMID: 37879463 PMCID: PMC11070876 DOI: 10.1016/j.scitotenv.2023.167845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
This study investigated the decay rates of wastewater-associated markers and enteric viruses in laboratory microcosms mimicking estuarine water environments in temperate Sydney, NSW, Australia using qPCR and RT-qPCR assays. The results demonstrated the reduction in concentrations of Bacteroides HF183, Lachnospiraceae Lachno3, cross-assembly phage (crAssphage), pepper mild mottle virus (PMMoV), human adenovirus (HAdV 40/41), and enterovirus (EV) over a span of 42 days under spring/summer temperatures, presence/absence of microbiota, and different light conditions. The study found that HF183, Lachno3, crAssphage, PMMoV, HAdV 40/41, and EV exhibited varying decay rates depending on the experimental conditions. The average T90 values ranged from a few days to several months, indicating the rapid decay or prolonged persistence of these markers and enteric viruses in the estuarine environment. Furthermore, the study examined the effects of indigenous microbiota and spring/summer temperatures on wastewater-associated markers and enteric viruses decay rates. It was found that the presence of microbiota and temperature significantly influenced the decay rates of HF183 and PMMoV. Additionally, the study compared the effects of artificial sunlight and spring/summer temperatures on marker decay rates. Bacterial markers decayed faster than viral markers, although among viral markers crAssphage decay rates were relatively faster when compared to PMMoV. The exposure to artificial sunlight significantly accelerated the decay rates of bacterial markers, viral markers, and enteric viruses. Temperature also had an impact on the decay rates of Lachno3, crAssphage, and HAdV 40/41. In conclusion, this study provides valuable insights into the decay rates of wastewater-associated markers and enteric viruses under different experimental conditions that mimicked temperate environmental conditions. The findings contribute to our understanding of the fate and persistence of these markers in the environment which is crucial for assessing and managing risks from contamination by untreated human wastewater.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Asja Korajkic
- United States Environmental Protection Agency, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, United States
| | - Wendy J Smith
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Sudhi Payyappat
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Michele Cassidy
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Nathan Harrison
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Colin Besley
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| |
Collapse
|
26
|
Katayama YA, Hayase S, Iwamoto R, Kuroita T, Okuda T, Kitajima M, Masago Y. Simultaneous extraction and detection of DNA and RNA from viruses, prokaryotes, and eukaryotes in wastewater using a modified COPMAN. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167866. [PMID: 37863234 DOI: 10.1016/j.scitotenv.2023.167866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Wastewater surveillance can offer a comprehensive grasp of infectious disease prevalence and human health because wastewater contains various human-derived microbial pathogens, including viruses, bacteria, and fungi. However, methods capable of simultaneous detection of multiple groups of targets in the automated systems and large-scale surveillance are still under development. Here, we demonstrated the modification, involving the addition of bead-beating, to the existing COPMAN (COagulation and Proteolysis method using MAgnetic beads for detection of Nucleic acids in wastewater) enabled enhanced detection of various microorganisms, including SARS-CoV-2. The modified method, termed bead-beating COPMAN (BB-COPMAN), was evaluated through spike-and-recovery experiments and comparative analysis against three previously reported methods for simultaneous DNA/RNA detection. Our study targeted a range of microorganisms, including enveloped and non-enveloped RNA viruses (SARS-CoV-2, PMMoV), a DNA virus (crAssphage), archaea, gram-negative and gram-positive bacteria (E. coli, Lachnospiraceae), antibiotic resistance gene (ampC), and fungi (Candida albicans). The recovery rates of BB-COPMAN for gram-negative and gram-positive bacteria were 17 and 2.1-fold higher, respectively, compared to the method for DNA/RNA detection. Additionally, BB-COPMAN exhibited the highest extraction efficiency among the tested methods, achieving 1.2-5.7 times more DNA and 1.1-69 times more RNA yield on average. BB-COPMAN allowed the detection of SARS-CoV-2 from all nine samples and PMMoV at concentrations 39-97 times higher than other methods. Moreover, BB-COPMAN detected larger amounts of DNA for four out of six DNA targets than the previously reported DNA/RNA detection method. These results demonstrated that BB-COPMAN enables enhanced detection of multiple targets in a single flow of nucleic acid extraction, making the method well-suited for automated systems. In conclusion, BB-COPMAN is a promising method in wastewater surveillance for assessing the prevalence of wide range of pathogenic microorganisms.
Collapse
Affiliation(s)
- Yuka Adachi Katayama
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Shin Hayase
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Ryo Iwamoto
- Shionogi & Co., Ltd., Head Office, 3-1-8 Doshomachi, Chuo-ku, Osaka 541-0045, Japan; AdvanSentinel Inc., 3-1-8 Doshomachi, Chuo-ku, Osaka 541-0045, Japan
| | - Tomohiro Kuroita
- Shionogi & Co., Ltd., Head Office, 3-1-8 Doshomachi, Chuo-ku, Osaka 541-0045, Japan; AdvanSentinel Inc., 3-1-8 Doshomachi, Chuo-ku, Osaka 541-0045, Japan
| | - Tomohiko Okuda
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Yusaku Masago
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan.
| |
Collapse
|
27
|
Senaratna KYK, Bhatia S, Giek GS, Lim CMB, Gangesh GR, Peng LC, Wong JCC, Ng LC, Gin KYH. Estimating COVID-19 cases on a university campus based on Wastewater Surveillance using machine learning regression models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167709. [PMID: 37832657 DOI: 10.1016/j.scitotenv.2023.167709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/20/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
Wastewater Surveillance (WS) is a crucial tool in the management of COVID-19 pandemic. The surveillance is based on enumerating SARS-CoV-2 RNA concentrations in the community's sewage. In this study, we used WS data to develop a regression model for estimating the number of active COVID-19 cases on a university campus. Eight univariate and multivariate regression model types i.e. Linear Regression (LM), Polynomial Regression (PR), Generalised Additive Model (GAM), Locally Estimated Scatterplot Smoothing Regression (LOESS), K Nearest Neighbours Regression (KNN), Support Vector Regression (SVR), Artificial Neural Networks (ANN) and Random Forest (RF) were developed and compared. We found that the multivariate RF regression model, was the most appropriate for predicting the prevalence of COVID-19 infections at both a campus level and hostel-level. We also found that smoothing the normalised SARS-CoV-2 data and employing multivariate modelling, using student population as a second independent variable, significantly improved the performance of the models. The final RF campus level model showed good accuracy when tested using previously unseen data; correlation coefficient of 0.97 and a mean absolute error (MAE) of 20 %. In summary, our non-intrusive approach has the ability to complement projections based on clinical tests, facilitating timely follow-up and response.
Collapse
Affiliation(s)
- Kavindra Yohan Kuhatheva Senaratna
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Sumedha Bhatia
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Goh Shin Giek
- Department of Civil & Environmental Engineering, National University of Singapore, Engineering Drive 2, Singapore 117576, Singapore
| | - Chun Min Benjamin Lim
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - G Reuben Gangesh
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Lim Cheh Peng
- Office of Risk Management and Compliance, National University of Singapore, Singapore 119077, Singapore
| | - Judith Chui Ching Wong
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05/08, Singapore 138667, Singapore
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05/08, Singapore 138667, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Civil & Environmental Engineering, National University of Singapore, Engineering Drive 2, Singapore 117576, Singapore.
| |
Collapse
|
28
|
Canh VD, Nga TTV, Lien NT, Katayama H. Development of a simple and low-cost method using Moringa seeds for efficient virus concentration in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167101. [PMID: 37716673 DOI: 10.1016/j.scitotenv.2023.167101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Effective virus concentration methods are essential for detecting pathogenic viruses in environmental waters and play a crucial role in wastewater-based epidemiology. However, the current methods are often expensive, complicated, and time-consuming, which limits their practical application. In this study, a simple and low-cost method was developed using the extract of Moringa oleifera (MO) seeds (MO method) to recover both enveloped and non-enveloped viruses, including pepper mild mottle virus (PMMoV), murine norovirus (MNV), Aichivirus (AiV), murine hepatitis virus (MHV), and influenza A virus subtype H1N1[H1N1] in wastewater. The optimal conditions for the MO method were determined to be a concentration of MO extract at the UV280 value of 0.308 cm-1 and an elution buffer (0.05 M KH2PO4, 1 M NaCl, 0.1 % Tween80 [v/v]) for recovering the tested viruses in wastewater. Compared to other commonly used virus concentration methods such as InnovaPrep, HA, PEG, and Centricon, the MO method was found to be more efficient and cost-effective in recovering the tested viruses. Moreover, the MO method was successfully applied to detect various types of viruses (PMMoV, AiV, norovirus of genotype II [NoV II], enterovirus [EV], influenza A virus [matrix gene] [IAV], and SARS-CoV-2) in raw wastewater. Thus, the developed MO method could offer a simple, low-cost, and efficient tool to concentrate viruses in wastewater.
Collapse
Affiliation(s)
- Vu Duc Canh
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Tran Thi Viet Nga
- Faculty of Environmental Engineering, Hanoi University of Civil Engineering, 55 Giai Phong Road, Hai Ba Trung, Hanoi, Viet Nam
| | - Nguyen Thuy Lien
- Faculty of Environmental Engineering, Hanoi University of Civil Engineering, 55 Giai Phong Road, Hai Ba Trung, Hanoi, Viet Nam
| | - Hiroyuki Katayama
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
29
|
Hata A, Meuchi Y, Liu M, Torii S, Katayama H. Activity- and gene-based quantification of enteric viruses, F- specific RNA phage genogroups, pepper mild mottle virus, and Escherichia coli in surface water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166338. [PMID: 37591377 DOI: 10.1016/j.scitotenv.2023.166338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Polymerase chain reaction (PCR) is widely applied for the monitoring of pathogenic viruses in water environments. To date, several pretreatments to selectively detect genes from infectious viruses via PCR have been developed. This study was aimed to characterize and validate methods for quantifying active viruses and indicators and to evaluate the proportion of their active fractions in surface water (n = 42). Active E. coli and F-specific RNA phage (FRNAPH) genogroups were quantified using culture assays. In addition to these microbes, norovirus genogroups I (GI) and II, Aichi virus 1, and pepper mild mottle virus (PMMoV) were quantified by (reverse transcription)-quantitative PCR (RT-qPCR) with and without cis-dichlorodiammineplatinum (CDDP) treatment to exclude genes in inactive viruses. CDDP-RT-qPCR showed concentrations and detection frequencies comparable to or higher than culture assays. Consequently, although CDDP-RT-qPCR can suggest the presence of an inactive virus, it can also overestimate the activity of the virus in the environment. Differences between culture and CDDP-RT-qPCR and between CDDP-RT-qPCR and RT-qPCR varied among the viruses. CDDP-RT-qPCR showed a concentration comparable to the culture assay (within 1 log10 difference) in 93 % of positive samples for GI-FRNAPH but in <63 % of positive samples for GII- and GIII-FRNAPHs. GII-NoV was detected from 5 and 30 out of 42 samples via CDDP-RT-qPCR and RT-qPCR, respectively, and was suggested as inactivated by 2.0 log10 or higher in most of the samples. By contrast, concentrations of PMMoV determined by these two assays were not notably different. It is suggested that the operational conditions of wastewater treatment plants around the sites, rather than environmental stresses, affected the microbial inactivation. To better understand the infectivity of viruses in the environment, it is important to investigate them using sensitive detection methods at various sites, including the source of contamination.
Collapse
Affiliation(s)
- Akihiko Hata
- Department of Environmental and Civil Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| | - Yuno Meuchi
- Department of Environmental and Civil Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Miaomiao Liu
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shotaro Torii
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyuki Katayama
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
30
|
Chettleburgh C, Ma SX, Swinwood-Sky M, McDougall H, Kireina D, Taggar G, McBean E, Parreira V, Goodridge L, Habash M. Evaluation of four human-associated fecal biomarkers in wastewater in Southern Ontario. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166542. [PMID: 37660819 DOI: 10.1016/j.scitotenv.2023.166542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/26/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Human fecal biomarkers (HFBs) have a longstanding history in the field of microbial source tracking (MST) serving as indicators of human fecal contamination in drinking and recreational water. Further, HFBs have aided in recent efforts to monitor human pathogen transmission within communities. The dilution of wastewater from various sources throughout the sewershed cannot be controlled and human fecal biomarkers (HFBs) can be used to normalize target human pathogen concentrations so that fluctuations in fecal matter in wastewater can be accounted for. In the current study, we monitored the prevalence of four HFBs - including two viruses, Pepper mild mottle virus (PMMoV), cross-assembly phage (crAssphage), as well as two human-associated Bacteroides markers, HF183 and BacHuman - in wastewater samples from ten Southern Ontario wastewater treatment plants and evaluated their temporal and spatial variation in context of environmental factors that may impact the ability of HFB to normalize pathogen concentrations in wastewater. Environmental variables including precipitation, wastewater flow rate, temperature, and concentrated mass were also analyzed for their potential correlation with HFB variation in wastewater. The four HFBs were detected at high concentrations across all 10 sampling locations. The median concentrations across all sampling sites were: PMMoV 3.6 Log gene copies (GC)/mL; crAssphage 5.0 Log GC/mL; HF183 6.8 Log GC/mL and BacHuman 6.9 Log GC/mL. All HFBs were found to be similarly stratified across all 10 sites, and the bacterial markers were consistently found at higher concentration compared to the viral HFBs at all sites. The coefficient of variation (CV) for each HFB was used to characterize the variability of each biomarker at each sewershed. BacHuman and crAssphage were found to have lower CV than PMMoV and HF183, indicating that BacHuman and crAssphage may perform better in reflecting the variations in abundance of human feces in wastewater or MST applications.
Collapse
Affiliation(s)
| | | | | | | | - Devita Kireina
- Department of Food Science, Canada; Canadian Research Institute for Food Safety, Canada
| | - Gurleen Taggar
- Department of Food Science, Canada; Canadian Research Institute for Food Safety, Canada
| | - Edward McBean
- School of Engineering, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada
| | - Valeria Parreira
- Department of Food Science, Canada; Canadian Research Institute for Food Safety, Canada
| | - Lawrence Goodridge
- Department of Food Science, Canada; Canadian Research Institute for Food Safety, Canada
| | | |
Collapse
|
31
|
Shrestha S, Malla B, Haramoto E. Monitoring hand foot and mouth disease using long-term wastewater surveillance in Japan: Quantitative PCR assay development and application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165926. [PMID: 37527711 DOI: 10.1016/j.scitotenv.2023.165926] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/03/2023]
Abstract
Hand, foot, and mouth disease (HFMD) is a highly contagious disease that primarily affects children under five years of age. It is mainly caused by serotypes of Enterovirus A (EVA): EVA71, Coxsackievirus A types 6 (CVA6), 10 (CVA10), and 16 (CVA16). Despite being highly prevalent in Japan and other countries in the Asia-Pacific region, few studies have investigated HFMD pathogens in wastewater. The present study aimed to develop a highly sensitive and broadly reactive quantitative polymerase chain reaction (qPCR) assay of dominant serotype CVA6, to revise previously developed CVA6, CVA10, and CVA16 assays, and to test these assays in wastewater samples from Yamanashi Prefecture, Japan. The new-CVA6 qPCR assay was developed with maximal nucleotide percent identity among CVA6 isolates from Japan. The new-CVA6 and revised assays were highly sensitive and had the ability to quantify respective positive controls at levels as low as 1 copy/μL. Among the 53 grab influent samples collected between March 2022 and March 2023, EVA71, CVA10, and CVA16 RNA were not detected in any samples, whereas the new-CVA6 assay could detect CVA6 RNA in 38 % (20/53) of samples. CVA6 RNA was detected at a significantly higher concentration in the summer season (3.3 ± 0.8 log10 copies/L; 79 % (11/14)) than in autumn (2.7 ± 0.6 log10 copies/L; 69 % (9/13)). The seasonal trend of CVA6 RNA detection in wastewater aligned with the trend of HFMD case reports in the catchment of the wastewater treatment plant. This is the first study to report the detection and seasonal trends of the EVA serotypes associated with HFMD in wastewater samples in Japan. It provides evidence that wastewater-based epidemiology is applicable even for diseases that are prevalent only in specific population groups.
Collapse
Affiliation(s)
- Sadhana Shrestha
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
32
|
Shrestha S, Malla B, Angga MS, Sthapit N, Raya S, Hirai S, Rahmani AF, Thakali O, Haramoto E. Long-term SARS-CoV-2 surveillance in wastewater and estimation of COVID-19 cases: An application of wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165270. [PMID: 37400022 DOI: 10.1016/j.scitotenv.2023.165270] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
The role of wastewater-based epidemiology (WBE), a powerful tool to complement clinical surveillance, has increased as many grassroots-level facilities, such as municipalities and cities, are actively involved in wastewater monitoring, and the clinical testing of coronavirus disease 2019 (COVID-19) is downscaled widely. This study aimed to conduct long-term wastewater surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Yamanashi Prefecture, Japan, using one-step reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assay and estimate COVID-19 cases using a cubic regression model that is simple to implement. Influent wastewater samples (n = 132) from a wastewater treatment plant were collected normally once weekly between September 2020 and January 2022 and twice weekly between February and August 2022. Viruses in wastewater samples (40 mL) were concentrated by the polyethylene glycol precipitation method, followed by RNA extraction and RT-qPCR. The K-6-fold cross-validation method was used to select the appropriate data type (SARS-CoV-2 RNA concentration and COVID-19 cases) suitable for the final model run. SARS-CoV-2 RNA was successfully detected in 67 % (88 of 132) of the samples tested during the whole surveillance period, 37 % (24 of 65) and 96 % (64 of 67) of the samples collected before and during 2022, respectively, with concentrations ranging from 3.5 to 6.3 log10 copies/L. This study applied a nonnormalized SARS-CoV-2 RNA concentration and nonstandardized data for running the final 14-day (1 to 14 days) offset models to estimate weekly average COVID-19 cases. Comparing the parameters used for a model evaluation, the best model showed that COVID-19 cases lagged 3 days behind the SARS-CoV-2 RNA concentration in wastewater samples during the Omicron variant phase (year 2022). Finally, 3- and 7-day offset models successfully predicted the trend of COVID-19 cases from September 2022 until February 2023, indicating the applicability of WBE as an early warning tool.
Collapse
Affiliation(s)
- Sadhana Shrestha
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Made Sandhyana Angga
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Niva Sthapit
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sunayana Raya
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Soichiro Hirai
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Aulia Fajar Rahmani
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Ocean Thakali
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
33
|
Ahmed W, Payyappat S, Cassidy M, Harrison N, Besley C. Reduction of human fecal markers and enteric viruses in Sydney estuarine waters receiving wet weather overflows. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165008. [PMID: 37348731 DOI: 10.1016/j.scitotenv.2023.165008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
The current microbial source tracking (MST) study tracked the reduction of the culturable fecal indicator bacteria enterococci, four human fecal markers (Bacteroides HF183, Lachnospiraceae Lachno3, cross-assembly phage (CrAssphage) and pepper mild mottle virus (PMMoV)) along with four enteric viruses - human adenovirus 40/41 (HAdV 40/41), enterovirus (EV), human norovirus GI (HNoV GI) and GII (HNoV GII) post wet weather overflows (WWOs) at two estuarine water sites from two depths under separate six-day sampling campaigns over seven and 12 days in Sydney, NSW, Australia. Neither HNoV GI nor GII was detected, while 13.9 % (10/72) of estuarine water samples had detections of EV. Quantifiable concentrations (0.64 to 2.00 log10 gene copies (GC)/100 mL) for HAdV 40/41 were returned from 65.2 % (47/72) of samples collected across the two sites and two depths with 30 quantifications recorded in the surface layer samples. In contrast the presence of HF183, Lachno3, CrAssphage, and PMMoV markers was observed in all 36 (100 %) estuarine water samples collected from the surface layer from both sites. Detection frequencies of these markers were slightly lower at 1 m above the bottom surface. The concentrations of the human fecal markers were compared to established gastrointestinal (GI) risk benchmarks. The concentrations of HF183, Lachno3 and CrAssphage marker only exceeded the GI risk benchmark until day 3, while concentrations of PMMoV marker were indicative of exceedance of the GI risk benchmark on day 7 post WWOs that was much longer than indicated by culturable enterococci concentrations that were within this GI risk benchmark by day 2 and day 4 for the two sites, respectively.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Sudhi Payyappat
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Michele Cassidy
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Nathan Harrison
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Colin Besley
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| |
Collapse
|
34
|
Zheng K, Zhang R, Wan Q, Zhang G, Lu Y, Zheng H, Yan F, Peng J, Wu J. Pepper mild mottle virus can infect and traffick within Nicotiana benthamiana plants in non-virion forms. Virology 2023; 587:109881. [PMID: 37703796 DOI: 10.1016/j.virol.2023.109881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Virions are responsible for the long-distance transport of many viruses, such as Pepper mild mottle virus (PMMoV). Emerging evidence indicates viral traffic in the form of ribonucleoprotein complexes (RNP), yet comprehensive analysis is scarce. In this study, we inoculated plants with PMMoV-GFP, both with and without the coding sequence for the coat protein (CP). PMMoV-GFP was detected in systemic leaves, even in the absence of the CP, despite the presence of much smaller infection areas. Moreover, using leaf extracts from PMMoV-infected plants to perform a root-irrigation experiment, we confirmed that PMMoV can infect plants through root transmission. Diluting the leaf extracts significantly diminished infectivity, and attempts to compensate for the dilution of other components by adding virions above the original level proved ineffective. Our findings strongly indicate that PMMoV can infect and traffick within plants in non-virion forms. Future studies should aim to identify the specific forms involved.
Collapse
Affiliation(s)
- Kaiyue Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Ruihao Zhang
- Horticulture Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China
| | - Qionglian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China; School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi, 653100, Yunnan, China
| | - Ge Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Jian Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
35
|
Panizzolo M, Gea M, Carraro E, Gilli G, Bonetta S, Pignata C. Occurrence of human pathogenic viruses in drinking water and in its sources: A review. J Environ Sci (China) 2023; 132:145-161. [PMID: 37336605 DOI: 10.1016/j.jes.2022.07.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 06/21/2023]
Abstract
Since many waterborne diseases are caused by human pathogenic viruses, virus monitoring of drinking water (DW) and DW sources is crucial for public health. Therefore, the aim of this review was to describe the occurrence of human pathogenic viruses in DW and DW sources; the occurrence of two viruses proposed as novel indicators of human faecal contamination (Pepper mild mottle virus and Tobacco mosaic virus) was also reported. This research was focused on articles that assessed viral occurrence using molecular methods in the surface water used for DW production (SW-D), groundwater used for DW production (GW-D), DW and bottled-DW (BW). A total of 1544 studies published in the last 10 years were analysed, and 79 were ultimately included. In considering the detection methods, filtration is the most common concentration technique, while quantitative polymerase chain reaction is the most common quantification technique. Regarding virus occurrence in SW-D, GW-D, and DW, high percentages of positive samples were reported for adenovirus, polyomavirus and Pepper mild mottle virus. Viral genomes were frequently detected in SW-D and rarely in GW-D, suggesting that GW-D may be a safe DW source. Viral genomes were also detected in DW, posing a possible threat to human health. The lowest percentages of positive samples were found in Europe, while the highest were found in Asia and South America. Only three articles assessed viral occurrence in BW. This review highlights the lack of method standardization and the need for legislation updates.
Collapse
Affiliation(s)
- Marco Panizzolo
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Marta Gea
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy.
| | - Elisabetta Carraro
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Giorgio Gilli
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Silvia Bonetta
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy
| | - Cristina Pignata
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| |
Collapse
|
36
|
Mercier E, Pisharody L, Guy F, Wan S, Hegazy N, D’Aoust PM, Kabir MP, Nguyen TB, Eid W, Harvey B, Rodenburg E, Rutherford C, Mackenzie AE, Willmore J, Hui C, Paes B, Delatolla R, Thampi N. Wastewater-based surveillance identifies start to the pediatric respiratory syncytial virus season in two cities in Ontario, Canada. Front Public Health 2023; 11:1261165. [PMID: 37829087 PMCID: PMC10566629 DOI: 10.3389/fpubh.2023.1261165] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023] Open
Abstract
Introduction Detection of community respiratory syncytial virus (RSV) infections informs the timing of immunoprophylaxis programs and hospital preparedness for surging pediatric volumes. In many jurisdictions, this relies upon RSV clinical test positivity and hospitalization (RSVH) trends, which are lagging indicators. Wastewater-based surveillance (WBS) may be a novel strategy to accurately identify the start of the RSV season and guide immunoprophylaxis administration and hospital preparedness. Methods We compared citywide wastewater samples and pediatric RSVH in Ottawa and Hamilton between August 1, 2022, and March 5, 2023. 24-h composite wastewater samples were collected daily and 5 days a week at the wastewater treatment facilities in Ottawa and Hamilton, Ontario, Canada, respectively. RSV WBS samples were analyzed in real-time for RSV by RT-qPCR. Results RSV WBS measurements in both Ottawa and Hamilton showed a lead time of 12 days when comparing the WBS data set to pediatric RSVH data set (Spearman's ρ = 0.90). WBS identify early RSV community transmission and declared the start of the RSV season 36 and 12 days in advance of the provincial RSV season start (October 31) for the city of Ottawa and Hamilton, respectively. The differing RSV start dates in the two cities is likely associated with geographical and regional variation in the incidence of RSV between the cities. Discussion Quantifying RSV in municipal wastewater forecasted a 12-day lead time of the pediatric RSVH surge and an earlier season start date compared to the provincial start date. These findings suggest an important role for RSV WBS to inform regional health system preparedness, reduce RSV burden, and understand variations in community-related illness as novel RSV vaccines and monoclonal antibodies become available.
Collapse
Affiliation(s)
- Elisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Lakshmi Pisharody
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Fiona Guy
- Hamilton Health Sciences, McMaster Children’s Hospital, Hamilton, ON, Canada
| | - Shen Wan
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Nada Hegazy
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Patrick M. D’Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Md Pervez Kabir
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Tram Bich Nguyen
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Walaa Eid
- Research Institute, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Bart Harvey
- Hamilton Public Health Services, Hamilton, ON, Canada
| | | | | | - Alex E. Mackenzie
- Department of Pediatrics, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
| | | | - Charles Hui
- Department of Pediatrics, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
| | - Bosco Paes
- Department of Pediatrics (Neonatal Division), McMaster University, Hamilton, ON, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Nisha Thampi
- Department of Pediatrics, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
37
|
Wong CH, Zhang Z, Eid W, Plaza-Diaz J, Kabir P, Wan S, Jia JJ, Mercier E, Thakali O, Pisharody L, Hegazy N, Stephenson SE, Fang W, Nguyen TB, Ramsay NT, McKay RM, Corchis-Scott R, MacKenzie AE, Graber TE, D' Aoust PM, Delatolla R. Rapidly developed, optimized, and applied wastewater surveillance system for real-time monitoring of low-incidence, high-impact MPOX outbreak. JOURNAL OF WATER AND HEALTH 2023; 21:1264-1276. [PMID: 37756194 PMCID: wh_2023_145 DOI: 10.2166/wh.2023.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Recent MPOX viral resurgences have mobilized public health agencies around the world. Recognizing the significant risk of MPOX outbreaks, large-scale human testing, and immunization campaigns have been initiated by local, national, and global public health authorities. Recently, traditional clinical surveillance campaigns for MPOX have been complemented with wastewater surveillance (WWS), building on the effectiveness of existing wastewater programs that were built to monitor SARS-CoV-2 and recently expanded to include influenza and respiratory syncytial virus surveillance in wastewaters. In the present study, we demonstrate and further support the finding that MPOX viral fragments agglomerate in the wastewater solids fraction. Furthermore, this study demonstrates that the current, most commonly used MPOX assays are equally effective at detecting low titers of MPOX viral signal in wastewaters. Finally, MPOX WWS is shown to be more effective at passively tracking outbreaks and/or resurgences of the disease than clinical testing alone in smaller communities with low human clinical case counts of MPOX.
Collapse
Affiliation(s)
- Chandler H Wong
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada E-mail:
| | - Zhihao Zhang
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Walaa Eid
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Julio Plaza-Diaz
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Pervez Kabir
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Shen Wan
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Jian-Jun Jia
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Elisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Lakshmi Pisharody
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Nada Hegazy
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Sean E Stephenson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Wanting Fang
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Tram B Nguyen
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Nathan T Ramsay
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada
| | - R Michael McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Ryland Corchis-Scott
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Patrick M D' Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada
| |
Collapse
|
38
|
Angga MS, Malla B, Raya S, Kitajima M, Haramoto E. Optimization and performance evaluation of an automated filtration method for the recovery of SARS-CoV-2 and other viruses in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163487. [PMID: 37068668 PMCID: PMC10105377 DOI: 10.1016/j.scitotenv.2023.163487] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
A rapid virus concentration method is needed to get high throughput. Reliable results of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) detection in wastewater are necessary for applications in wastewater-based epidemiology. In this study, an automated filtration method using a concentrating pipette (CP Select; Innovaprep) was applied to detect SARS-CoV-2 in wastewater samples with several modifications to increase its sensitivity and throughput. The performance of the CP Select method was compared to other concentration methods (polyethylene glycol precipitation and direct capture using silica column) to evaluate its applicability to SARS-CoV-2 detection in wastewater. SARS-CoV-2 RNA was successfully detected in six of eight wastewater samples using the CP Select method, whereas other methods could detect SARS-CoV-2 RNA in all wastewater samples. Enteric viruses, such as noroviruses of genogroups I (NoVs-GI) and II (NoVs-GII) and enteroviruses, were tested, resulting in 100 % NoVs-GII detection using all concentration methods. As for NoVs-GI and enteroviruses, all methods gave comparable number of detected samples in wastewater samples. This study showed that the optimized CP Select method was less sensitive in SARS-CoV-2 detection in wastewater than other methods, whereas all methods were applicable to detect or recover other viruses in wastewater.
Collapse
Affiliation(s)
- Made Sandhyana Angga
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sunayana Raya
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
39
|
Meuchi Y, Nakada M, Kuroda K, Hanamoto S, Hata A. Applicability of F-specific bacteriophage subgroups, PMMoV and crAssphage as indicators of source specific fecal contamination and viral inactivation in rivers in Japan. PLoS One 2023; 18:e0288454. [PMID: 37450468 PMCID: PMC10348522 DOI: 10.1371/journal.pone.0288454] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
To date, several microbes have been proposed as potential source-specific indicators of fecal pollution. 16S ribosomal RNA gene markers of the Bacteroidales species are the most widely applied due to their predominance in the water environment and source specificity. F-specific bacteriophage (FPH) subgroups, especially FRNA phage genogroups, are also known as potential source-specific viral indicators. Since they can be quantified by both culture-based and molecular assays, they may also be useful as indicators for estimating viral inactivation in the environment. Pepper mild mottle virus (PMMoV) and crAssphage, which are frequently present in human feces, are also potentially useful as human-specific indicators of viral pollution. This study aimed to evaluate the applicability of FPH subgroups, PMMoV, and crAssphage as indicators of source-specific fecal contamination and viral inactivation using 108 surface water samples collected at five sites affected by municipal and pig farm wastewater. The host specificity of the FPH subgroups, PMMoV, and crAssphage was evaluated by principal component analysis (PCA) along with other microbial indicators, such as 16S ribosomal RNA gene markers of the Bacteroidales species. The viabilities (infectivity indices) of FRNA phage genogroups were estimated by comparing their numbers determined by infectivity-based and molecular assays. The PCA explained 58.2% of the total information and classified microbes into three groups: those considered to be associated with pig and human fecal contamination and others. Infective and gene of genogroup IV (GIV)-FRNA phage were assumed to be specific to pig fecal contamination, while the genes of GII-FRNA phage and crAssphage were identified to be specific to human fecal contamination. However, PMMoV, infective GI-FRNA phage, and FDNA phage were suggested to not be specific to human or pig fecal contamination. FRNA phage genogroups, especially the GIV-FRNA phage, were highly inactivated in the warm months in Japan (i.e., July to November). Comparing the infectivity index of several FRNA phage genogroups or other viruses may provide further insight into viral inactivation in the natural environment and by water treatments.
Collapse
Affiliation(s)
- Yuno Meuchi
- Graduate School of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Miu Nakada
- Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Keisuke Kuroda
- Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Seiya Hanamoto
- Environment Preservation Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Akihiko Hata
- Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| |
Collapse
|
40
|
Hayase S, Katayama YA, Hatta T, Iwamoto R, Kuroita T, Ando Y, Okuda T, Kitajima M, Natsume T, Masago Y. Near full-automation of COPMAN using a LabDroid enables high-throughput and sensitive detection of SARS-CoV-2 RNA in wastewater as a leading indicator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163454. [PMID: 37061063 PMCID: PMC10098305 DOI: 10.1016/j.scitotenv.2023.163454] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023]
Abstract
Wastewater-based epidemiology (WBE) is a promising tool to efficiently monitor COVID-19 prevalence in a community. For WBE community surveillance, automation of the viral RNA detection process is ideal. In the present study, we achieved near full-automation of a previously established method, COPMAN (COagulation and Proteolysis method using MAgnetic beads for detection of Nucleic acids in wastewater), which was then applied to detect SARS-CoV-2 in wastewater for half a year. The automation line employed the Maholo LabDroid and an automated-pipetting device to achieve a high-throughput sample-processing capability of 576 samples per week. SARS-CoV-2 RNA was quantified with the automated COPMAN using samples collected from two wastewater treatment plants in the Sagami River basin in Japan between 1 November 2021 and 24 May 2022, when the numbers of daily reported COVID-19 cases ranged from 0 to 130.3 per 100,000 inhabitants. The automated COPMAN detected SARS-CoV-2 RNA from 81 out of 132 samples at concentrations of up to 2.8 × 105 copies/L. These concentrations showed direct correlations with subsequently reported clinical cases (5-13 days later), as determined by Pearson's and Spearman's cross-correlation analyses. To compare the results, we also conducted testing with the EPISENS-S (Efficient and Practical virus Identification System with ENhanced Sensitivity for Solids, Ando et al., 2022), a previously reported detection method. SARS-CoV-2 RNA detected with EPISENS-S correlated with clinical cases only when using Spearman's method. Our automated COPMAN was shown to be an efficient method for timely and large-scale monitoring of viral RNA, making WBE more feasible for community surveillance.
Collapse
Affiliation(s)
- Shin Hayase
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Yuka Adachi Katayama
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Tomohisa Hatta
- Robotic Biology Institute, Inc., 2-5-10, Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Ryo Iwamoto
- AdvanSentinel Inc., 3-1-8 Doshomachi, Chuo-ku, Osaka 541-0045, Japan
| | - Tomohiro Kuroita
- AdvanSentinel Inc., 3-1-8 Doshomachi, Chuo-ku, Osaka 541-0045, Japan
| | - Yoshinori Ando
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Tomohiko Okuda
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Tohru Natsume
- Robotic Biology Institute, Inc., 2-5-10, Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Yusaku Masago
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan.
| |
Collapse
|
41
|
Ahmed W, Smith WJM, Sirikanchana K, Kitajima M, Bivins A, Simpson SL. Influence of membrane pore-size on the recovery of endogenous viruses from wastewater using an adsorption-extraction method. J Virol Methods 2023; 317:114732. [PMID: 37080396 PMCID: PMC10111872 DOI: 10.1016/j.jviromet.2023.114732] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/22/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023]
Abstract
The ongoing COVID-19 pandemic has emphasized the significance of wastewater surveillance in monitoring and tracking the spread of infectious diseases, including SARS-CoV-2. The wastewater surveillance approach detects genetic fragments from viruses in wastewater, which could provide an early warning of outbreaks in communities. In this study, we determined the concentrations of four types of endogenous viruses, including non-enveloped DNA (crAssphage and human adenovirus 40/41), non-enveloped RNA (enterovirus), and enveloped RNA (SARS-CoV-2) viruses, from wastewater samples using the adsorption-extraction (AE) method with electronegative HA membranes of different pore sizes (0.22, 0.45, and 0.80 µm). Our findings showed that the membrane with a pore size of 0.80 µm performed comparably to the membrane with a pore size of 0.45 µm for virus detection/quantitation (repeated measurement one-way ANOVA; p > 0.05). We also determined the recovery efficiencies of indigenous crAssphage and pepper mild mottle virus, which showed recovery efficiencies ranging from 50% to 94% and from 20% to 62%, respectively. Our results suggest that the use of larger pore size membranes may be beneficial for processing larger sample volumes, particularly for environmental waters containing low concentrations of viruses. This study offers valuable insights into the application of the AE method for virus recovery from wastewater, which is essential for monitoring and tracking infectious diseases in communities.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Wendy J M Smith
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, 54 Kampangpetch 6 Road, Laksi, Bangkok 10210, Thailand
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060 -8628, Japan
| | - Aaron Bivins
- Department of Civil and Environmental Engineering, Louisiana State University, 3255 Patrick F. Taylor Hall, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
42
|
Ando H, Ahmed W, Iwamoto R, Ando Y, Okabe S, Kitajima M. Impact of the COVID-19 pandemic on the prevalence of influenza A and respiratory syncytial viruses elucidated by wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:162694. [PMID: 36894088 PMCID: PMC9991320 DOI: 10.1016/j.scitotenv.2023.162694] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 05/23/2023]
Abstract
Since the COVID-19 pandemic, a decrease in the prevalence of Influenza A virus (IAV) and respiratory syncytial virus (RSV) has been suggested by clinical surveillance. However, there may be potential biases in obtaining an accurate overview of infectious diseases in a community. To elucidate the impact of the COVID-19 on the prevalence of IAV and RSV, we quantified IAV and RSV RNA in wastewater collected from three wastewater treatment plants (WWTPs) in Sapporo, Japan, between October 2018 and January 2023, using highly sensitive EPISENS™ method. From October 2018 to April 2020, the IAV M gene concentrations were positively correlated with the confirmed cases in the corresponding area (Spearman's r = 0.61). Subtype-specific HA genes of IAV were also detected, and their concentrations showed trends that were consistent with clinically reported cases. RSV A and B serotypes were also detected in wastewater, and their concentrations were positively correlated with the confirmed clinical cases (Spearman's r = 0.36-0.52). The detection ratios of IAV and RSV in wastewater decreased from 66.7 % (22/33) and 42.4 % (14/33) to 4.56 % (12/263) and 32.7 % (86/263), respectively in the city after the COVID-19 prevalence. The present study demonstrates the potential usefulness of wastewater-based epidemiology combined with the preservation of wastewater (wastewater banking) as a tool for better management of respiratory viral diseases.
Collapse
Affiliation(s)
- Hiroki Ando
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia
| | - Ryo Iwamoto
- Shionogi & Co. Ltd., 1-8, Doshomachi 3-Chome, Chuo-ku, Osaka, Osaka 541-0045, Japan; AdvanSentinel Inc., 1-8 Doshomachi 3-Chome, Chuo-ku, Osaka, Osaka 541-0045, Japan
| | - Yoshinori Ando
- Shionogi & Co. Ltd., 1-8, Doshomachi 3-Chome, Chuo-ku, Osaka, Osaka 541-0045, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| |
Collapse
|
43
|
Ahmed W, Payyappat S, Cassidy M, Harrison N, Besley C. Microbial source tracking of untreated human wastewater and animal scats in urbanized estuarine waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162764. [PMID: 36907409 DOI: 10.1016/j.scitotenv.2023.162764] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 05/06/2023]
Abstract
The study assessed the performance characteristics of host sensitivity, host specificity and concentration for seven human wastewater- and six animal scat-associated marker genes by analysing human wastewater and animal scat samples from urban catchments of the mega-coastal city of Sydney, Australia. Absolute host sensitivity was exhibited across three criteria used to assess seven human wastewater-associated marker genes of cross-assembly phage (CrAssphage), human adenovirus (HAdV), Bacteroides HF183 (HF183), human polyomavirus (HPyV), Lachnospiraceae (Lachno3), Methnobrevibacter smithii nifH (nifH) and pepper mild mottle virus (PMMoV). In contrast, only the horse scat-associated marker gene Bacteroides HoF597 (HoF597) exhibited absolute host sensitivity. The absolute host specificity value of 1.0 was returned for the wastewater-associated marker genes of HAdV, HPyV, nifH and PMMoV for each of the three applied host specificity calculation criteria, while values of >0.9 were returned for CrAssphage and Lachno3. Ruminants and cow scat-associated marker genes of BacR and CowM2, respectively exhibited the absolute host specificity value of 1.0. Concentrations of Lachno3 were greater in most human wastewater samples followed by CrAssphage, HF183, nifH, HPyV, PMMoV and HAdV. Human wastewater marker genes were detected in several scat samples from cats and dogs, and this suggests concordant sampling of animal scat-associated marker genes and at least two human wastewater-associated marker genes will be required to assist in interpretation of fecal sources in environmental waters. A greater prevalence, together with several samples with greater concentrations of human wastewater-associated marker genes PMMoV and CrAssphage warrant consideration by water quality managers for the detection of diluted human fecal pollution in estuarine waters.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Sudhi Payyappat
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Michele Cassidy
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Nathan Harrison
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Colin Besley
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| |
Collapse
|
44
|
Mehle N, Bačnik K, Bajde I, Brodarič J, Fox A, Gutiérrez-Aguirre I, Kitek M, Kutnjak D, Loh YL, Maksimović Carvalho Ferreira O, Ravnikar M, Vogel E, Vos C, Vučurović A. Tomato brown rugose fruit virus in aqueous environments - survival and significance of water-mediated transmission. FRONTIERS IN PLANT SCIENCE 2023; 14:1187920. [PMID: 37332729 PMCID: PMC10275568 DOI: 10.3389/fpls.2023.1187920] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023]
Abstract
Tomato brown rugose fruit virus (ToBRFV) has recently emerged as a major disease of tomatoes and peppers. ToBRFV is a seed- and contact-transmitted virus. In Slovenia, ToBRFV RNA was detected in samples of wastewater, river, and water used to irrigate plants. Even though the source of detected RNA could not be clearly established, this raised the question of the significance of the detection of ToBRFV in water samples and experimental studies were performed to address this question. The data presented here confirm that the release of virus particles from the roots of infected plants is a source of infectious ToBRFV particles in water and that the virus can remain infective up to four weeks in water stored at room temperature, while its RNA can be detected for much longer. These data also indicate that irrigation with ToBRFV-contaminated water can lead to plant infection. In addition, it has been shown that ToBRFV circulated in drain water in commercial tomato greenhouses from other European countries and that an outbreak of ToBRFV can be detected by regular monitoring of drain water. A simple method for concentrating ToBRFV from water samples and a comparison of the sensitivity of different methods, including the determination of the highest ToBRFV dilution still capable of infecting test plants, were also investigated. The results of our studies fill the knowledge gaps in the epidemiology and diagnosis of ToBRFV, by studying the role of water-mediated transmission, and provide a reliable risk assessment to identify critical points for monitoring and control.
Collapse
Affiliation(s)
- Nataša Mehle
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- School for Viticulture and Enology, University of Nova Gorica, Vipava, Slovenia
| | - Katarina Bačnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Irena Bajde
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Jakob Brodarič
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Adrian Fox
- Fera Science Ltd., York, United Kingdom
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ion Gutiérrez-Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Miha Kitek
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | | | - Olivera Maksimović Carvalho Ferreira
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Elise Vogel
- Scientia Terrae Research Institute VZW, Sint-Katelijne-Waver, Belgium
- De Ceuster Meststoffen NV (DCM), Grobbendonk, Belgium
| | - Christine Vos
- Scientia Terrae Research Institute VZW, Sint-Katelijne-Waver, Belgium
| | - Ana Vučurović
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
45
|
Shirakawa D, Shirasaki N, Hu Q, Matsushita T, Matsui Y, Takagi H, Oka T. Investigation of removal and inactivation efficiencies of human sapovirus in drinking water treatment processes by applying an in vitro cell-culture system. WATER RESEARCH 2023; 236:119951. [PMID: 37060876 DOI: 10.1016/j.watres.2023.119951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Here, we examined the efficiencies of drinking water treatment processes for the removal and inactivation of human sapovirus (HuSaV). We applied a recently developed in vitro cell-culture system to produce purified solutions of HuSaV containing virus concentrations high enough to conduct virus-spiking experiments, to develop an integrated cell culture-polymerase chain reaction (ICC-PCR) assay to quantify the infectivity of HuSaV, and to conduct virus-spiking experiments. In virus-spiking coagulation-sedimentation-rapid sand filtration (CS-RSF) and coagulation-microfiltration (C-MF) experiments, HuSaV removals of 1.6-3.7-log10 and 1.2->4.3-log10, respectively, were observed. The removal ratios observed with CS-RSF were comparable and correlated with those of murine norovirus (MNV, a widely used surrogate for human noroviruses) and pepper mild mottle virus (PMMoV, a potential surrogate for human enteric viruses in physical and physicochemical drinking water treatment processes), and those observed with C-MF were higher than but still correlated with those of MNV and PMMoV, indicating that MNV and PMMoV are both potential surrogates for HuSaV in CS-RSF and C-MF. For astrovirus (AstV, a representative human enteric virus), removal ratios of 1.8-3.3-log10 and 1.1->4.0-log10 were observed with CS-RSF and C-MF, respectively. The removal ratios of AstV observed with CS-RSF were comparable and correlated with those of PMMoV, and those observed with C-MF were higher than but still correlated with those of PMMoV, indicating that PMMoV is a potential surrogate for AstV in CS-RSF and C-MF. When the efficacy of chlorine treatment was examined by using the developed ICC-PCR assay, 3.8-4.0-log10 inactivation of HuSaV was observed at a CT value (free-chlorine concentration [C] multiplied by contact time [T]) of 0.02 mg-Cl2·min/L. The infectivity reduction ratios of HuSaV were comparable with those of MNV. For AstV, 1.3-1.7-log10 and >3.4-log10 inactivation, as evaluated by ICC-PCR, was observed at CT values of 0.02 and 0.09 mg-Cl2·min/L, respectively. These results indicate that HuSaV and AstV are both highly sensitive to chlorine treatment and more sensitive than a chlorine-resistant virus, coxsackievirus B5 (1.3-log10 inactivation at a CT value of 0.4 mg-Cl2·min/L, as evaluated by the ICC-PCR assay).
Collapse
Affiliation(s)
- D Shirakawa
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
| | - N Shirasaki
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan.
| | - Q Hu
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
| | - T Matsushita
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
| | - Y Matsui
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
| | - H Takagi
- Management Department of Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, 208-0011, Japan
| | - T Oka
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 208-0011, Japan
| |
Collapse
|
46
|
Wang T, Wang C, Myshkevych Y, Mantilla-Calderon D, Talley E, Hong PY. SARS-CoV-2 wastewater-based epidemiology in an enclosed compound: A 2.5-year survey to identify factors contributing to local community dissemination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162466. [PMID: 36868271 PMCID: PMC9977070 DOI: 10.1016/j.scitotenv.2023.162466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Long-term (>2.5 years) surveillance of SARS-CoV-2 RNA concentrations in wastewater was conducted within an enclosed university compound. This study aims to demonstrate how coupling wastewater-based epidemiology (WBE) with meta-data can identify which factors contribute toward the dissemination of SARS-CoV-2 within a local community. Throughout the pandemic, the temporal dynamics of SARS-CoV-2 RNA concentrations were tracked by quantitative polymerase chain reaction and analyzed in the context of the number of positive swab cases, the extent of human movement, and intervention measures. Our findings suggest that during the early phase of the pandemic, when strict lockdown was imposed, the viral titer load in the wastewater remained below detection limits, with <4 positive swab cases reported over a 14-day period in the compound. After the lockdown was lifted and global travel gradually resumed, SARS-CoV-2 RNA was first detected in the wastewater on 12 August 2020 and increased in frequency thereafter, despite high vaccination rates and mandatory face-covering requirements in the community. Accompanied by a combination of the Omicron surge and significant global travel by community members, SARS-CoV-2 RNA was detected in most of the weekly wastewater samples collected in late December 2021 and January 2022. With the cease of mandatory face covering, SARS-CoV-2 was detected in at least two of the four weekly wastewater samples collected from May through August 2022. Retrospective Nanopore sequencing revealed the presence of the Omicron variant in the wastewater with a multitude of amino acid mutations, from which we could infer the likely geographical origins through bioinformatic analysis. This study demonstrated that long-term tracking of the temporal dynamics and sequencing of variants in wastewater would aid in identifying which factors contribute the most to SARS-CoV-2 dissemination within the local community, facilitating an appropriate public health response to control future outbreaks as we now live with endemic SARS-CoV-2.
Collapse
Affiliation(s)
- Tiannyu Wang
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Changzhi Wang
- Bioengineering Program, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yevhen Myshkevych
- Environmental Science and Engineering Program, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - David Mantilla-Calderon
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Erik Talley
- Health, Safety and Environment, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Pei-Ying Hong
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Bioengineering Program, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Environmental Science and Engineering Program, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
47
|
Corchis-Scott R, Geng Q, Al Riahi AM, Labak A, Podadera A, Ng KKS, Porter LA, Tong Y, Dixon JC, Menard SL, Seth R, McKay RM. Actionable wastewater surveillance: application to a university residence hall during the transition between Delta and Omicron resurgences of COVID-19. Front Public Health 2023; 11:1139423. [PMID: 37265515 PMCID: PMC10230041 DOI: 10.3389/fpubh.2023.1139423] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Wastewater surveillance has gained traction during the COVID-19 pandemic as an effective and non-biased means to track community infection. While most surveillance relies on samples collected at municipal wastewater treatment plants, surveillance is more actionable when samples are collected "upstream" where mitigation of transmission is tractable. This report describes the results of wastewater surveillance for SARS-CoV-2 at residence halls on a university campus aimed at preventing outbreak escalation by mitigating community spread. Another goal was to estimate fecal shedding rates of SARS-CoV-2 in a non-clinical setting. Passive sampling devices were deployed in sewer laterals originating from residence halls at a frequency of twice weekly during fall 2021 as the Delta variant of concern continued to circulate across North America. A positive detection as part of routine sampling in late November 2021 triggered daily monitoring and further isolated the signal to a single wing of one residence hall. Detection of SARS-CoV-2 within the wastewater over a period of 3 consecutive days led to a coordinated rapid antigen testing campaign targeting the residence hall occupants and the identification and isolation of infected individuals. With knowledge of the number of individuals testing positive for COVID-19, fecal shedding rates were estimated to range from 3.70 log10 gc ‧ g feces-1 to 5.94 log10 gc ‧ g feces-1. These results reinforce the efficacy of wastewater surveillance as an early indicator of infection in congregate living settings. Detections can trigger public health measures ranging from enhanced communications to targeted coordinated testing and quarantine.
Collapse
Affiliation(s)
- Ryland Corchis-Scott
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Qiudi Geng
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Abdul Monem Al Riahi
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Amr Labak
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Ana Podadera
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Kenneth K. S. Ng
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Lisa A. Porter
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| | - Yufeng Tong
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Jess C. Dixon
- Department of Kinesiology, University of Windsor, Windsor, ON, Canada
| | | | - Rajesh Seth
- Civil and Environmental Engineering, University of Windsor, Windsor, ON, Canada
| | - R. Michael McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
48
|
Kitakawa K, Kitamura K, Yoshida H. Monitoring Enteroviruses and SARS-CoV-2 in Wastewater Using the Polio Environmental Surveillance System in Japan. Appl Environ Microbiol 2023; 89:e0185322. [PMID: 36975804 PMCID: PMC10132113 DOI: 10.1128/aem.01853-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
In the global strategy for polio eradication, environmental surveillance (ES) has been established worldwide to monitor polioviruses. In addition, nonpolio enteroviruses are simultaneously isolated from wastewater under this ES program. Hence, ES can be used to monitor enteroviruses in sewage to supplement clinical surveillance. In response to the coronavirus disease 2019 (COVID-19) pandemic, we also monitored severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in sewage using the polio ES system in Japan. Enterovirus and SARS-CoV-2 were detected in sewage from January 2019 to December 2021 and from August 2020 to November 2021, respectively. Enterovirus species such as echoviruses and coxsackieviruses were frequently detected by ES in 2019, indicating the circulation of these viruses. After the onset of the COVID-19 pandemic, sewage enterovirus detection and related patient reports were notably reduced in 2020 to 2021, suggesting changes in the hygiene behaviors of the human population in response to the pandemic. Our comparative experiment with a total of 520 reverse transcription-quantitative PCR (RT-qPCR) assays for SARS-CoV-2 detection demonstrated that the solid-based method had a significantly higher detection rate than that of the liquid-based method (24.6% and 15.9%, respectively). Moreover, the resulting RNA concentrations were correlated with the number of new COVID-19 cases (Spearman's r = 0.61). These findings indicate that the existing polio ES system can be effectively used for enterovirus and SARS-CoV-2 sewage monitoring using different procedures such as virus isolation and molecular-based detection. IMPORTANCE Long-term efforts are required to implement surveillance programs for the ongoing COVID-19 pandemic, and they will be required even in the postpandemic era. We adopted the existing polio environmental surveillance (ES) system for SARS-CoV-2 sewage monitoring in Japan as a practical and cost-effective approach. Moreover, the ES system routinely detects enteroviruses from wastewater and, therefore, can be used for enterovirus monitoring. The liquid fraction of the sewage sample is used for poliovirus and enterovirus detection, and the solid fraction can be used for SARS-CoV-2 RNA detection. The present study demonstrates how the existing ES system can be used for monitoring enteroviruses and SARS-CoV-2 in sewage.
Collapse
Affiliation(s)
- Kazuhiro Kitakawa
- Department of Microbiology, Fukushima Prefectural Institute of Public Health, Fukushima, Japan
| | - Kouichi Kitamura
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiromu Yoshida
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
49
|
Yu M, Gao R, Lv X, Sui M, Li T. Inactivation of phage phiX174 by UV 254 and free chlorine: Structure impairment and function loss. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117962. [PMID: 37086557 DOI: 10.1016/j.jenvman.2023.117962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Disinfection is widely applied in water and wastewater treatment to inactivate viruses. However, the inactivation mechanism associated with viral structural alteration during disinfection is still not clear. In this work, inactivation of bacteriophage phiX174 by ultraviolet radiation (UV254) and free chlorine (FC), two most commonly used disinfection processes, was studied at the molecular level to investigate the relationship between phiX174 genome impairment and virus inactivation, and the correlation between protein impairment and function loss. Double-layer agar technique, quantitative real-time polymerase chain reaction (qPCR), real-time reverse transcription-polymerase chain reaction (RT-qPCR), and liquid chromatography-tandem mass spectrometry techniques (LC-MS/MS), together with structure impairment and function experiments were implemented to quantitatively analyze the inactivation and damage to genome and proteins of phiX174. Results showed that UV254 and FC could effectively inactivate phiX174 at the practical doses (UV254 dose of 30 mJ/cm2, and FC of 1-3 mg/L) used in water treatment plants, accompanied with the damage to viral genome and proteins. Specifically, a UV254 irradiation dose of 9.6 mJ/cm2, and FC at an initial concentration of 1 mg/L at 4 min could lead to a 4-log10 inactivation. Nevertheless, the combination of these two methods at selected doses played no significant synergistic disinfection effect. During UV254 disinfection, the proportion of phiX174 with damaged genome was similar with that of the inactivated phiX174. In addition, UV254 and FC could disrupt proteins of phiX174 such as H protein, thereby hindering the physiological function associated with these proteins. With these findings, it is suggested that UV254 and FC disinfection could hinder the injection of the viral genome into host cells, thus resulting in the inactivation of phiX174. This work provides a comprehensive study of the inactivation mechanism of phiX174, which can enhance the applicability of UV254 and FC in water treatment plants, and facilitate the design and optimization of disinfection technologies for virus control in drinking water and wastewater worldwide to ensure the biosafety.
Collapse
Affiliation(s)
- Miao Yu
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Rui Gao
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Xinyuan Lv
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Minghao Sui
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| | - Tian Li
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
50
|
Eifan S, Maniah K, Nour I, Hanif A, Yassin MT, Al-Ashkar I, Abid I. Pepper Mild Mottle Virus as a Potential Indicator of Fecal Contamination in Influents of Wastewater Treatment Plants in Riyadh, Saudi Arabia. Microorganisms 2023; 11:1038. [PMID: 37110461 PMCID: PMC10144068 DOI: 10.3390/microorganisms11041038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Several indicators of fecal pollution in water resources are continuously monitored for their reliability and, of particular interest, their correlation to human enteric viruses-not justified by traditional bacterial indicators. Pepper mild mottle virus (PMMoV) has recently been proposed as a successful viral surrogate of human waterborne viruses; however, in Saudi Arabia there are no available data in terms of its prevalence and concentration in water bodies. The concentration of PMMoV in three different wastewater treatment plants (King Saud University (KSU), Manfoha (MN), and Embassy (EMB) wastewater treatment plants (WWTP)) was measured using qRT-PCR during a one-year period and compared to the human adenovirus (HAdV), which is highly persistent and considered an indicator for viral-mediated fecal contamination. PMMoV was found in ~94% of the entire wastewater samples (91.6-100%), with concentrations ranging from 62 to 3.5 × 107 genome copies/l (GC/l). However, HAdV was detected in 75% of raw water samples (~67-83%). The HAdV concentration ranged between 1.29 × 103 GC/L and 1.26 × 107 GC/L. Higher positive correlation between PMMoV and HAdV concentrations was detected at MN-WWTP (r = 0.6148) than at EMB-WWTP (r = 0.207). Despite the lack of PMMoV and HAdV seasonality, a higher positive correlation (r = 0.918) of PMMoV to HAdV was recorded at KSU-WWTP in comparison to EMB-WWTP (r = 0.6401) around the different seasons. Furthermore, meteorological factors showed no significant influence on PMMoV concentrations (p > 0.05), thus supporting the use of PMMoV as a possible fecal indicator of wastewater contamination and associated public health issues, particularly at MN-WWTP. However, a continuous monitoring of the PMMoV distribution pattern and concentration in other aquatic environments, as well as its correlation to other significant human enteric viruses, is essential for ensuring its reliability and reproducibility as a fecal pollution indicator.
Collapse
Affiliation(s)
- Saleh Eifan
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (A.H.); (M.T.Y.); (I.A.)
| | - Khalid Maniah
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (A.H.); (M.T.Y.); (I.A.)
| | - Islam Nour
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (A.H.); (M.T.Y.); (I.A.)
| | - Atif Hanif
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (A.H.); (M.T.Y.); (I.A.)
| | - Mohamed Taha Yassin
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (A.H.); (M.T.Y.); (I.A.)
| | - Ibrahim Al-Ashkar
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Islem Abid
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (A.H.); (M.T.Y.); (I.A.)
| |
Collapse
|