1
|
Zhang Y, Li J, Chen Y, Yang J, Chen Z, Wang X. Rapid start-up and stable operation of pilot scale denitrification-partial nitritation/anammox process for treating electroplating tail wastewater. BIORESOURCE TECHNOLOGY 2024; 409:131192. [PMID: 39094960 DOI: 10.1016/j.biortech.2024.131192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
This study explored a novel economical and efficient process for treating actual low-ammonia nitrogen electroplating tail wastewater. A pilot scale system of denitrification-partial nitrification/anaerobic ammonium oxidation (DN-PN/A) was constructed and operated for 190 days. The partial nitrification (PN) reactor, filled with zeolite, increased free ammonia concentration beyond the nitrite oxidizing bacteria threshold and successfully supplied NO2--N, with nitrite accumulation rate exceeding 90 %. Over 109 days, the total nitrogen removal rate achieved was 80.2 ± 7.41 %, and the chemical oxygen demand removal rate reached 79.68 ± 9.53 %. The dominant functional bacteria were Nitrosomonas (5.45 %) and Candidatus Anammoxoglobus (28.84 %) in PN reactor and anaerobic ammonium oxidation (Anammox) reactor. This process, characterized by rapid start-up, strong shock resistance, and low cost, alleviates the pressure of ammonium pollution control, promotes the sustainable development of the electroplating industry and has the potential for application in the treatment of other industrial wastewater.
Collapse
Affiliation(s)
- Yu Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, 510006, China
| | - Jiayi Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, 510006, China
| | - Yongxing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, 510006, China
| | - Junfeng Yang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, 510006, China
| | - Zhenguo Chen
- School of Environment, South China Normal University, Guangzhou 510006, China; Hua An Biotech Co., Ltd., Foshan 528300, China
| | - Xiaojun Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, 510006, China.
| |
Collapse
|
2
|
Ashade AO, Obayori OS, Salam LB, Fashola MO, Nwaokorie FO. Effects of anthropogenic activities on the microbial community diversity of Ologe Lagoon sediment in Lagos State, Nigeria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:918. [PMID: 39256206 DOI: 10.1007/s10661-024-13025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024]
Abstract
The impact of pollution on the Ologe Lagoon was assessed by comparing physicochemical properties, hydrocarbon concentrations and microbial community structures of the sediments obtained from distinct sites of the lagoon. The locations were the human activity site (OLHAS), industrial-contaminated sites (OLICS) and relatively undisturbed site (OLPS). The physicochemical properties, heavy metal concentrations and hydrocarbon profiles were determined using standard methods. The microbial community structures of the sediments were determined using shotgun next-generation sequencing (NGS), taxonomic profiling was performed using centrifuge and statistical analysis was done using statistical analysis for metagenomics profile (STAMP) and Microsoft Excel. The result showed acidic pH across all sampling points, while the nitrogen content at OLPS was low (7.44 ± 0.085 mg/L) as compared with OLHAS (44.380 ± 0.962 mg/L) and OLICS (59.485 ± 0.827 mg/L). The levels of the cadmium, lead and nickel in the three sites were above the regulatory limits. The gas chromatography flame ionization detector (GC-FID) profile revealed hydrocarbon contaminations with nC14 tetradecane > alpha xylene > nC9 nonane > acenaphthylene more enriched at OLPS. Structurally, the sediments metagenomes consisted of 43 phyla,75 classes each, 165, 161, 166 orders, 986, 927 and 866 bacterial genera and 1476, 1129, 1327 species from OLHAS, OLICS and OLPS, respectively. The dominant phyla in the sediments were Proteobacteria, Firmicutes, Actinobacteria, and Chloroflexi. The principal component ordination (PCO) showed that OLPS microbial community had a total variance of 87.7% PCO1, setting it apart from OLHAS and OLICS. OLICS and OLHAS were separated by PCO2 accounting for 12.3% variation, and the most polluted site is the OLPS.
Collapse
Affiliation(s)
| | | | - Lateef Babatunde Salam
- Department of Biological Sciences, Microbiology Unit, Elizade University, Ilara-Mokin, Ondo State, Nigeria
| | | | | |
Collapse
|
3
|
Jiang C, Wu J, Ye J, Hong Y. High throughput amplicon analysis reveals potential novel ammonia oxidizing prokaryotes in the eutrophic Jiaozhou Bay. MARINE POLLUTION BULLETIN 2024; 200:116046. [PMID: 38246016 DOI: 10.1016/j.marpolbul.2024.116046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/07/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Ammonia-oxidizing prokaryotes (AOPs) are the major contributors of ammonia oxidization with widely distribution. Here we investigated the phylogenetic diversity, community composition, and regulating factors of AOPs in Jiaozhou Bay (JZB) with high-throughput sequencing of amoA gene. Phylogenetic analysis showed most of the OTUs could not be clustered with any known AOPs, indicating there might exist putative novel AOPs. With new developed protocols for AOP community analysis, we confirmed that only 3 OTUs of ammonia-oxidizing archaea (AOA) could be affiliated to known Nitrosopumilaceae and Nitrososphaera, and the other OTUs were identified as novel AOA based on the threshold. All abstained OTUs of ammonia-oxidizing bacteria (AOB) were identified as novel clusters based on the threshold. Further analysis showed the novel AOPs had different distribution characteristics related to environmental factors. The high abundance and widespread distribution of these novel AOPs indicated that they played an important role in ammonia conversion in eutrophic JZB.
Collapse
Affiliation(s)
- Cuihong Jiang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Jiaqi Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Xiang Y, Zhou T, Deng S, Shao Z, Liu Y, He Q, Chai H. Nitrite improved nitrification efficiency and enriched ammonia-oxidizing archaea and bacteria in the simultaneous nitrification and denitrification process. WATER RESEARCH X 2023; 21:100204. [PMID: 38098882 PMCID: PMC10719579 DOI: 10.1016/j.wroa.2023.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 12/17/2023]
Abstract
Simultaneous nitrification and denitrification (SND) is effective and energy-saving for wastewater treatment. As an inevitable intermediate product in the SND process, nitrite affects the efficiency of ammonia oxidation and the composition of nitrifiers. To investigate the impact of nitrite on ammonia oxidation efficiency, two reactors performing SND were respectively operated without nitrite (R1 as control) and with 20 mg N/L nitrite addition (R2 as experimental). The total nitrogen removal efficiency was 74.5% in R1 while 99.0% in R2. With nitrite addition (i.e., 20 mg N/L), the ammonia removal rate in R2 increased to 4.5 times of that in R1. The ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) contributed to respective around 46.9% and 41.8% ammonia removal in R2 based on the results of experiments with specific inhibitors. The number of respective AOA and AOB ammonia monooxygenase gene (amoA) copies increased by 280 and 30 times due to nitrite addition, according to the qPCR results. The high-throughput sequencing results illustrated the increase of dominant AOB species from 0.40% in R1 to 1.59% in R2 and the phylogenetic tree analysis revealed a close link to Nitrosospira multiformis. These results indicated that the ammonia removal efficiency was improved and AOA/AOB were enriched by nitrite addition. The specific nitrite reductases in AOA and AOB boosted the adaptation of nitrite addition. This study demonstrated the positive impacts of nitrite addition on the ammonia removal efficiency and rate in the SND process.
Collapse
Affiliation(s)
- Yu Xiang
- School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Tengzhi Zhou
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Siping Deng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhiyu Shao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Hongxiang Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| |
Collapse
|
5
|
Yu C, Zhu Z, Meng K, Zhang H, Xu M. Unveiling the impact and mechanisms of Cd-driven ecological assembly and coexistence of bacterial communities in coastal sediments of Yellow Sea. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132309. [PMID: 37639798 DOI: 10.1016/j.jhazmat.2023.132309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/30/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
The microbial community assembly processes and underlying mechanisms in response to heavy metal accumulation in coastal sediments remain underexplored. In this study, the heavy metal concentration in samples were found below the marine sediment quality standards. Through partial Mantel tests and linear regression analysis, Cd was identified as the major influencing factor, displaying strongest correlation with the bacterial community in the sediments. The class Desulfuromonadia was identified as a biomarker which showed enrichment in the sediments with high Cd content. Additionally, the results of null model and the neutral community model demonstrated the prominent role of stochastic processes in the assembly of bacterial community. However, with the increase in Cd concentration, the influence of selection processes intensified, resulting in a decline in species migration rate and subsequent reduction in ecological niche width. Furthermore, the intensified competition and an increase in keystone species among bacterial populations further enhanced the stability of the microbial co-occurrence network in response to high Cd concentration. This study offers an insight into the effects of heavy metal on microbial assembly and coexistence, which are conducive to marine ecosystem management and conservation.
Collapse
Affiliation(s)
- Chengfeng Yu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing 210023, China
| | - Zhiyong Zhu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing 210023, China
| | - Kun Meng
- Jiangsu Yunfan Testing Technology Co., Ltd., Nanjing 210033, China
| | - Huan Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing 210023, China.
| | - Min Xu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing 210023, China.
| |
Collapse
|
6
|
Nathani NM, Mootapally C, Sharma P, Solomon S, Kumar R, Fulke AB, Kumar M. Microbial machinery dealing diverse aromatic compounds: Decoded from pelagic sediment ecogenomics in the gulfs of Kathiawar Peninsula and Arabian Sea. ENVIRONMENTAL RESEARCH 2023; 225:115603. [PMID: 36863652 DOI: 10.1016/j.envres.2023.115603] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 05/25/2023]
Abstract
Aromatic hydrocarbons are persistent pollutants in aquatic systems as endocrine disruptors, significantly impacting natural ecosystems and human health. Microbes perform as natural bioremediators to remove and regulate aromatic hydrocarbons in the marine ecosystem. The present study focuses upon the comparative diversity and abundance of various hydrocarbon-degrading enzymes and their pathways from deep sediments along the Gulf of Kathiawar Peninsula and Arabian Sea, India. The elucidation of large number of degradation pathways in the study area under the presence of a wide range of pollutants whose fate needs to be addressed. Sediment core samples were collected, and the whole microbiome was sequenced. Analysis of the predicted ORFs (open reading frames) against the AromaDeg database revealed 2946 aromatic hydrocarbon-degrading enzyme sequences. Statistical analysis portrayed that the Gulfs were more diverse in degradation pathways compared to the open sea, with the Gulf of Kutch being more prosperous and more diverse than the Gulf of Cambay. The vast majority of the annotated ORFs belonged to groups of dioxygenases that included catechol, gentisate, and benzene dioxygenases, along with Rieske (2Fe-2S) and vicinal oxygen chelate (VOC) family proteins. From the sampling sites, only 960 of the total predicted genes were given taxonomic annotations, which mention the presence of many under-explored marine microorganism-derived hydrocarbon degrading genes and pathways. Through the present study, we tried to unveil the array of catabolic pathways of aromatic hydrocarbon degradation and genes from a marine ecosystem that upholds economic and ecological significance in India. Thus, this study provides vast opportunities and strategies for microbial resource recovery in marine ecosystems, which can be investigated to explore aromatic hydrocarbon degradation and their potential mechanisms under various oxic or anoxic environments. Future studies should focus on aromatic hydrocarbon degradation by considering degradation pathways, biochemical analysis, enzymatic, metabolic, and genetic systems, and regulations.
Collapse
Affiliation(s)
- Neelam M Nathani
- School of Applied Sciences & Technology (SAST-GTU), Gujarat Technological University, Ahmedabad, 382424, Gujarat, India; Department of Life Sciences, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, 364001, Gujarat, India
| | - Chandrashekar Mootapally
- School of Applied Sciences & Technology (SAST-GTU), Gujarat Technological University, Ahmedabad, 382424, Gujarat, India; Department of Marine Science, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, 364001, Gujarat, India
| | - Parth Sharma
- School of Applied Sciences & Technology (SAST-GTU), Gujarat Technological University, Ahmedabad, 382424, Gujarat, India
| | - Solly Solomon
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science & Technology, Kochi, 682022, Kerala, India; Cochin Base of Fishery Survey of India, Post Box 853 Kochangady, Cochin, 682005, Kerala, India
| | - Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| | - Abhay B Fulke
- Microbiology Division, CSIR - National Institute of Oceanography (CSIR-NIO), Regional Centre, Andheri (West), Maharashtra, 400053, India
| | - Manish Kumar
- Sustainability Cluster, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico.
| |
Collapse
|
7
|
Marshall AJ, Phillips L, Longmore A, Hayden HL, Heidelberg KB, Tang C, Mele P. Temporal profiling resolves the drivers of microbial nitrogen cycling variability in coastal sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159057. [PMID: 36174701 DOI: 10.1016/j.scitotenv.2022.159057] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Here we describe the potential for sediment microbial nitrogen-cycling gene (DNA) and activity (RNA) abundances to spatially resolve coastal areas impacted by seasonal variability in external nutrient inputs. Three sites were chosen within a nitrogen-limited embayment, Port Phillip Bay (PPB), Australia that reflect variability in both proximity to external nutrient inputs and the dominant form of available nitrogen. At three sediment depths (0-1; 1-5; 5-10 cm) across a 2 year study key genes involved in nitrification (archaeal amoA and bacterial β-amoA), nitrite reduction (clade I nirS and cluster I nirK, archaeal nirK-a), anaerobic oxidation of ammonium (anammox 16S rRNA phylogenetic marker) and nitrogen fixation (nifH) were quantified. Sediments impacted by a dominance of organic nitrogen inputs were characterised at all time-points and to sediment depths of 10 cm by the highest transcript abundances of archaeal amoA and archaeal nirk-a. Proximity to a dominance of external nitrate inputs was associated with the highest transcript abundances of nirS which temporally co-varied with seasonal changes in sediment nitrate. Sediments isolated from external inputs displayed the greatest depth-specific decrease in quantifiable transcript abundances. In these isolated sediments bacterial β-amoA transcripts were temporally associated with increased sediment ammonium levels. Across this nitrogen limited system variability in the abundance of bacterial β-amoA, archaeal amoA, archaeal nirk-a or nirS transcripts from the sediment surface (0-1 and 5 cm) demonstrated a capacity to improve our ability to monitor coastal zones impacted by anthropogenic nitrogen inputs. Specifically, the spatial detection sensitivity of bacterial β-amoA transcripts could be developed as a metric to determine spatiotemporal impacts of large external loading events. This temporal study demonstrates a capacity for microbial activity metrics to facilitate coastal management strategies through greater spatial resolution of areas impacted by external nutrient inputs.
Collapse
Affiliation(s)
- Alexis J Marshall
- La Trobe University, AgriBio Centre for AgriBiosciences, 5 Ring Road Bundoora, Australia; Department of Jobs, Precincts and Regions, AgriBio, Centre for AgriBiosciences, 5 Ring Road Bundoora, Australia.
| | - Lori Phillips
- Department of Jobs, Precincts and Regions, AgriBio, Centre for AgriBiosciences, 5 Ring Road Bundoora, Australia
| | - Andrew Longmore
- Centre for Aquatic Pollution Identification and Management, Melbourne University, Parkville, Australia
| | - Helen L Hayden
- Department of Jobs, Precincts and Regions, AgriBio, Centre for AgriBiosciences, 5 Ring Road Bundoora, Australia
| | - Karla B Heidelberg
- The University of Southern California, Department of Biology, Los Angeles, CA 90089, United States of America
| | - Caixian Tang
- La Trobe University, AgriBio Centre for AgriBiosciences, 5 Ring Road Bundoora, Australia
| | - Pauline Mele
- La Trobe University, AgriBio Centre for AgriBiosciences, 5 Ring Road Bundoora, Australia; Department of Jobs, Precincts and Regions, AgriBio, Centre for AgriBiosciences, 5 Ring Road Bundoora, Australia
| |
Collapse
|
8
|
Changes in the bacterial community in port waters during ship’s ballast water discharge. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02963-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
9
|
Xing P, Zhao Y, Guan D, Li L, Zhao B, Ma M, Jiang X, Tian C, Cao F, Li J. Effects of Bradyrhizobium Co-Inoculated with Bacillus and Paenibacillus on the Structure and Functional Genes of Soybean Rhizobacteria Community. Genes (Basel) 2022; 13:1922. [PMID: 36360159 PMCID: PMC9689485 DOI: 10.3390/genes13111922] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 10/31/2023] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) are widely used to improve soil nutrients and promote plant growth and health. However, the growth-promoting effect of a single PGPR on plants is limited. Here, we evaluated the effect of applying rhizobium Bradyrhizobium japonicum 5038 (R5038) and two PGPR strains, Bacillus aryabhattai MB35-5 (BA) and Paenibacillus mucilaginosus 3016 (PM), alone or in different combinations on the soil properties and rhizosphere bacterial community composition of soybean (Glycine max). Additionally, metagenomic sequencing was performed to elucidate the profile of functional genes. Inoculation with compound microbial inoculant containing R5038 and BA (RB) significantly improved nodule nitrogenase activity and increased soil nitrogen content, and urease activity increased the abundance of the nitrogen cycle genes and Betaproteobacteria and Chitinophagia in the rhizosphere. In the treatment of inoculant-containing R5038 and PM (RP), significant changes were found for the abundance of Deltaproteobacteria and Gemmatimonadetes and the phosphorus cycle genes, and soil available phosphorus and phosphatase activity were increased. The RBP inoculants composed of three strains (R5038, BA and PM) significantly affected soybean biomass and the N and P contents of the rhizosphere. Compared with RB and RP, RBP consistently increased soybean nitrogen content, and dry weight. Overall, these results showed that several PGPR with different functions could be combined into composite bacterial inoculants, which coordinately modulate the rhizosphere microbial community structure and improve soybean growth.
Collapse
Affiliation(s)
- Pengfei Xing
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Yubin Zhao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products, Ministry of Agriculture, Beijing 100081, China
| | - Dawei Guan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Li Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Baisuo Zhao
- Laboratory of Quality & Safety Risk Assessment for Microbial Products, Ministry of Agriculture, Beijing 100081, China
| | - Mingchao Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products, Ministry of Agriculture, Beijing 100081, China
| | - Xin Jiang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products, Ministry of Agriculture, Beijing 100081, China
| | - Changfu Tian
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Fengming Cao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products, Ministry of Agriculture, Beijing 100081, China
| | - Jun Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products, Ministry of Agriculture, Beijing 100081, China
| |
Collapse
|
10
|
Liu G, Bai Z, Cui G, He W, Kongling Z, Ji G, Gong H, Li D. Effects of Land Use on the Soil Microbial Community in the Songnen Grassland of Northeast China. Front Microbiol 2022; 13:865184. [PMID: 35879955 PMCID: PMC9307977 DOI: 10.3389/fmicb.2022.865184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
Land use change obviously changes the plant community composition and soil properties of grasslands and thus affects multiple functions and services of grassland ecosystems. However, the response mechanisms of soil microorganisms, key drivers of the nutrient cycle and other soil functions during changes in grassland use type and associated vegetation are not well understood. In this study, Illumina high-throughput sequencing was used to analyze the changes in the soil microbial community structure of four grassland use types: exclosure (EL), mowed land (ML), grazed land (GL), and farmland (FL) in the Songnen Plain of Northeast China. The results showed that the FL and EL had significantly higher soil total nitrogen (TN) and lower soil electrical conductivity (EC) and pH than GL and ML. In contrast, the GL and ML had higher soil bulk density (BD) and organic matter, respectively, than the other land use types. In addition, the values of the Shannon diversity and Pielou’s evenness indexes were highest in the EL of all the land use types. Based on the high-throughput sequencing results, we observed high levels of α diversity in the FL for both bacteria and fungi. A structural equation model (SEM) revealed that pH and EC had a direct and positive effect on the bacterial community structure and composition. In addition, plant taxonomic diversity (according to the Shannon diversity and Pielou’s evenness indexes) indirectly affected the bacterial community composition via soil pH and EC. Notably, fungal composition was directly and positively correlated with soil nutrients and the value of Pielou’s evenness index changed with land use type. In conclusion, soil properties and/or plant diversity might drive the changes in the soil microbial community structure and composition in different grassland use types.
Collapse
Affiliation(s)
- Guofu Liu
- Department of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhenjian Bai
- Department of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Guowen Cui
- Department of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- *Correspondence: Guowen Cui,
| | - Wenhua He
- Qiqihar Grassland Station, Qiqihar, China
| | - Zelai Kongling
- Department of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Guoxu Ji
- Department of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hao Gong
- Department of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Dandan Li
- Department of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
11
|
Zhu D, Sethupathy S, Gao L, Nawaz MZ, Zhang W, Jiang J, Sun J. Microbial diversity and community structure in deep-sea sediments of South Indian Ocean. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45793-45807. [PMID: 35152353 DOI: 10.1007/s11356-022-19157-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Microbial communities composed of bacteria, archaea and fungi play a pivotal role in driving the biogeochemical cycles in the marine ecosystem. Despite the vastness of the South Indian Ocean, only a few studies reported the simultaneous analysis of bacterial, archaeal and fungal diversity therein, particularly archaeal and fungal communities in deep-sea environments received less attention previously. In this study, microbial diversity, community composition and dynamics in microbial community structure in eight deep-sea sediment samples collected from different sites at varying depths of the South Indian Ocean were explored using Next-Generation Sequencing. In total, 21 bacterial phyla representing 541 OTUs were identified from the eight samples, where phylum Proteobacteria was found as the most abundant bacterial phylum in five out of eight samples. Firmicutes and Chloroflexi were the dominant phyla in the rest of the three samples. In the case of archaea, uncultured species belonging to the phyla Thaumarchaeota and Euryarchaeota were the abundant taxa in all the samples. Similarly, Ascomycota and Basidiomycota were the most abundant fungal phyla present therein. In all the eight samples studied here, about 10-58% and 19-26% OTUs in archaeal and fungal communities were mapped to unclassified taxa respectively, suggesting the lack of representation in databases. Co-occurrence network analysis further revealed that bacterial communities tend to be more dynamic than archaeal and fungal communities. This study provides interesting insights into the microbial diversity, community composition and dynamics in microbial community structure in the deep-sea sediments of the South Indian Ocean.
Collapse
Affiliation(s)
- Daochen Zhu
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Sivasamy Sethupathy
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Lu Gao
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Muhammad Zohaib Nawaz
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Jianxiong Jiang
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jianzhong Sun
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| |
Collapse
|
12
|
Lake microbiome and trophy fluctuations of the ancient hemp rettery. Sci Rep 2022; 12:8846. [PMID: 35614182 PMCID: PMC9132974 DOI: 10.1038/s41598-022-12761-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
Lake sediments not only store the long-term ecological information including pollen and microfossils but are also a source of sedimentary DNA (sedDNA). Here, by the combination of traditional multi-proxy paleolimnological methods with the whole-metagenome shotgun-sequencing of sedDNA we were able to paint a comprehensive picture of the fluctuations in trophy and bacterial diversity and metabolism of a small temperate lake in response to hemp retting, across the past 2000 years. Hemp retting (HR), a key step in hemp fibre production, was historically carried out in freshwater reservoirs and had a negative impact on the lake ecosystems. In Lake Slone, we identified two HR events, during the late stage of the Roman and Early Medieval periods and correlated these to the increased trophy and imbalanced lake microbiome. The metagenomic analyses showed a higher abundance of Chloroflexi, Planctomycetes and Bacteroidetes and a functional shift towards anaerobic metabolism, including degradation of complex biopolymers such as pectin and cellulose, during HR episodes. The lake eutrophication during HR was linked to the allochthonous, rather than autochthonous carbon supply—hemp straws. We also showed that the identification of HR based on the palynological analysis of hemp pollen may be inconclusive and we suggest the employment of the fibre count analysis as an additional and independent proxy.
Collapse
|
13
|
Qi L, Li L, Yin L, Zhang W. Study on the properties of denitrifying carbon sources from cellulose plants and their nitrogen removal mechanisms. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:719-730. [PMID: 35100149 DOI: 10.2166/wst.2021.626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carbon sources of cellulose plants are promising materials that enhance the activities of denitrifying bacteria in the groundwater system. To further verify the denitrification performance of cellulose plants and the main factors of affecting the denitrifying system, six cellulose plants from agricultural wastes (wood chip, corn cob, rice husk, corn straw, wheat straw, and sugar cane) were selected for bioavailable organic matter leaching experiments, carbon denitrification experiments, functional bacteria identification, and analysis experiments. The results show that the extracts of cellulose plants contain a mixed carbon sources system including small molecular organic acids, sugars, nitrogen-containing organic components, and esters. The qPCR results showed that the denitrifying bacteria had obvious advantages compared to anaerobic ammonia-oxidizing bacteria during the stable period; the denitrification experiment showed that each of six cellulose plants removed more than 80% of nitrogen, and the denitrification rates reached 1.00-2.00 mg N cm-3·d-1. The supplement of cellulose plants promotes the metabolism rate of denitrifying bacteria, and the additional denitrifying bacteria have little effect on nitrate removal. In summary, the expected denitrification reaction occurred in the cellulose plant system, which is suitable as a carbon source material for water body nitrogen pollution remediation.
Collapse
Affiliation(s)
- Liang Qi
- School of Engineering, Westlake University, Hangzhou 310024, China E-mail: ; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, Hangzhou 310024, China
| | - Ling Li
- School of Engineering, Westlake University, Hangzhou 310024, China E-mail: ; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, Hangzhou 310024, China
| | - Lin Yin
- School of Earth Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Wen Zhang
- School of Engineering, Westlake University, Hangzhou 310024, China E-mail: ; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, Hangzhou 310024, China; School of Earth Science and Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
14
|
Liu G, Bai Z, Shah F, Cui G, Xiao Z, Gong H, Li D, Lin Y, Li B, Ji G, Shah S. Compositional and structural changes in soil microbial communities in response to straw mulching and plant revegetation in an abandoned artificial pasture in Northeast China. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
15
|
Zhang X, Meng H, Yang Y, Lan W, Wang W, Lam PKS, Li XY, Gu JD. Diversity, abundance, and distribution of anammox bacteria in shipping channel sediment of Hong Kong by analysis of DNA and RNA. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1705-1718. [PMID: 33433766 DOI: 10.1007/s10646-020-02332-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Anammox bacteria have been detected in various ecosystems, but their occurrence and community composition along the shipping channels have not been reported. In this study, anammox bacteria were recovered by PCR-amplified biomarker hzsB gene from the genomic DNA of the sediment samples. Phylogenetic tree revealed that Candidatus Scalindua and Ca. Brocadia dominated the anammox community of the Hong Kong channels; Ca. Scalindua spp. was present abundantly at the sites farther from the shore, whereas Ca. Jettenia and Ca. Kuenenia were detected as the minor members in the estuarine sediments near the shipping terminals. The highest values of Shannon-Wiener index and Chao1 were identified in the sediments along the Urmston road (UR), suggesting the highest α-diversity and species richness of anammox bacteria. PCoA analysis indicated that anammox bacterial communities along UR and Tai Hong (TH) channel were site-specific because these samples were grouped and clearly separated from the other samples. The maximum diversity of anammox bacteria was detected in UR samples, ranging from 6.28 × 105 to 1.28 × 106 gene copies per gram of dry sediment. A similar pattern of their transcriptional activities was also observed among these channels. Pearson's moment correlation and redundancy analysis indicated that NH4+-N was a strong factor shaping the community structure, which showed significant positive correlation with the anammox bacterial abundance and anammox transcriptional activities (p < 0.01, r > 0.8). Also, NH4+-N, (NO3- + NO2-)-N, and NH4+/NOX were additional key environmental factors that influenced the anammox community diversity and distribution. This study yields a better understanding of the ecological distribution of anammox bacteria and the dominant genera in selective niche.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China
| | - Han Meng
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, The People's Republic of China
| | - Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, 510275, The People's Republic of China
| | - Wensheng Lan
- Shenzhen R&D Key Laboratory of Alien Pest Detection Technology, The Shenzhen Academy of Inspection and Quarantine, Food Inspection and Quarantine Center of Shenzhen Customs, 1011 Fuqiang Road, Shenzhen, 518045, The People's Republic of China
| | - Weidong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Agro-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, People's Republic of China
| | - Paul K S Lam
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, SAR, The People's Republic of China
| | - Xiao-Yan Li
- Department of Civil and Environmental Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, The People's Republic of China
| | - Ji-Dong Gu
- Environmental Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, The People's Republic of China.
| |
Collapse
|
16
|
Guo J, Zhou Y, Guo H, Min W. Saline and alkaline stresses alter soil properties and composition and structure of gene-based nitrifier and denitrifier communities in a calcareous desert soil. BMC Microbiol 2021; 21:246. [PMID: 34521348 PMCID: PMC8442331 DOI: 10.1186/s12866-021-02313-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Saline and alkaline stresses damages the health of soil systems. Meanwhile, little is known about how saline or alkaline stress affects soil nitrifier and denitrifier communities. Therefore, we compared the responses of gene-based nitrifier and denitrifier communities to chloride (CS), sulfate (SS), and alkaline (AS) stresses with those in a no-stress control (CK) in pots with a calcareous desert soil. RESULTS Compared with CK, saline and alkaline stress decreased potential nitrification rate (PNR) and NO3-N; increased pH, salinity, water content, and NH4-N; and decreased copy numbers of amoA-AOA and amoA-AOB genes but increased those of denitrifier nirS and nosZ genes. Copies of nirK increased in SS and AS but decreased in CS. There were more copies of amoA-AOB than of amoA-AOA and of nirS than of nirK or nosZ. Compared with CK, SS and AS decreased operational taxonomic units (OTUs) of amoA-AOB but increased those of nirS and nosZ, whereas CS decreased nirK OTUs but increased those of nosZ. The numbers of OTUs and amoA-AOB genes were greater than those of amoA-AOA. There were positive linear relations between PNR and amoA-AOA and amoA-AOB copies. Compared with CK, the Chao 1 index of amoA-AOA and amoA-AOB decreased in AS, that of nirK increased in CS and SS, but that of nirS and nosZ increased in all treatments. The Shannon index of amoA-AOB decreased but that of nirS increased in CS and SS, whereas the index of nirK decreased in all treatments. Saline and alkaline stress greatly affected the structure of nitrifier and denitrifier communities and decreased potential biomarkers of nirS-type; however, AS increased those of nirK- and nosZ-type, and SS decreased those of nosZ-type. Soil water content, pH, and salinity were important in shaping amoA-AOA and denitrifier communities, whereas soil water and pH were important to amoA-AOB communities. CONCLUSION These results indicate that the nitrifier and denitrifier communities respond to saline and alkaline stresses conditions. Communities of amoA-AOA and amoA-AOB contribute to nitrification in alluvial gray desert soil, and those of nirS are more important in denitrification than those of nirK or nosZ.
Collapse
Affiliation(s)
- Jiaxin Guo
- Department of Resources and Environmental Science, Agriculture College, Shihezi University, Box #425, Shihezi, Xinjiang, 832003, People's Republic of China
| | - Yongxue Zhou
- Department of Resources and Environmental Science, Agriculture College, Shihezi University, Box #425, Shihezi, Xinjiang, 832003, People's Republic of China
| | - Huijuan Guo
- Department of Resources and Environmental Science, Agriculture College, Shihezi University, Box #425, Shihezi, Xinjiang, 832003, People's Republic of China
| | - Wei Min
- Department of Resources and Environmental Science, Agriculture College, Shihezi University, Box #425, Shihezi, Xinjiang, 832003, People's Republic of China.
| |
Collapse
|
17
|
Bernhard AE, Beltz J, Giblin AE, Roberts BJ. Biogeography of ammonia oxidizers in New England and Gulf of Mexico salt marshes and the potential importance of comammox. ISME COMMUNICATIONS 2021; 1:9. [PMID: 36717686 PMCID: PMC9723745 DOI: 10.1038/s43705-021-00008-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 02/03/2023]
Abstract
Few studies have focused on broad scale biogeographic patterns of ammonia oxidizers in coastal systems, yet understanding the processes that govern them is paramount to understanding the mechanisms that drive biodiversity, and ultimately impact ecosystem processes. Here we present a meta-analysis of 16 years of data of ammonia oxidizer abundance, diversity, and activity in New England (NE) salt marshes and 5 years of data from marshes in the Gulf of Mexico (GoM). Potential nitrification rates were more than 80x higher in GoM compared to NE marshes. However, nitrifier abundances varied between regions, with ammonia-oxidizing archaea (AOA) and comammox bacteria significantly greater in GoM, while ammonia-oxidizing bacteria (AOB) were more than 20x higher in NE than GoM. Total bacterial 16S rRNA genes were also significantly greater in GoM marshes. Correlation analyses of rates and abundance suggest that AOA and comammox are more important in GoM marshes, whereas AOB are more important in NE marshes. Furthermore, ratios of nitrifiers to total bacteria in NE were as much as 80x higher than in the GoM, suggesting differences in the relative importance of nitrifiers between these systems. Communities of AOA and AOB were also significantly different between the two regions, based on amoA sequences and DNA fingerprints (terminal restriction fragment length polymorphism). Differences in rates and abundances may be due to differences in salinity, temperature, and N loading between the regions, and suggest significantly different N cycling dynamics in GoM and NE marshes that are likely driven by strong environmental differences between the regions.
Collapse
Affiliation(s)
- A E Bernhard
- Department of Biology, Connecticut College, New London, CT, USA.
| | - J Beltz
- Department of Biology, Connecticut College, New London, CT, USA
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - A E Giblin
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - B J Roberts
- Louisiana Universities Marine Consortium, Chauvin, LA, USA
| |
Collapse
|
18
|
Gu R, Sun P, Wang Y, Yu F, Jiao N, Xu D. Genetic Diversity, Community Assembly, and Shaping Factors of Benthic Microbial Eukaryotes in Dongshan Bay, Southeast China. Front Microbiol 2020; 11:592489. [PMID: 33424795 PMCID: PMC7785585 DOI: 10.3389/fmicb.2020.592489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/27/2020] [Indexed: 11/28/2022] Open
Abstract
Microbial eukaryotes are pivotal components of marine ecosystems. However, compared with the pelagic environments, the diversity distribution and the driving mechanisms of microbial eukaryotes in the marine sediments have rarely been explored. In this study, sediment cores were collected along a transect from inner to outer Dongshan Bay, Southeast China. By combining high throughput sequencing of small-subunit (SSU) rRNA gene with measurements on multiple environmental variables, the genetic diversity, community structure and assembly processes, and environmental shaping factors were investigated. Alveolata (mainly Ciliophora and Dinophyceae), Rhizaria (mainly Cercozoa), and Stramenopiles (mainly Bacillariophyta) were the most dominant groups in terms of both relative sequence abundance and operational taxonomic unit (OTU) richness. Grain size composition of the sediment was the primary factor determining the alpha diversity of microbial eukaryotes followed by sediment depth and heavy metal, including chromium (Cr), zinc (Zn), and plumbum (Pb). Geographic distance and water depth surpassed other environmental factors to be the primary factors shaping the microbial eukaryotic communities. Dispersal limitation was the primary driver of the microbial eukaryotic communities, followed by drift and homogeneous selection. Overall, our study shed new light on the spatial distribution patterns and controlling factors of benthic microbial eukaryotes in a subtropical bay which is subjected to increasing anthropogenic pressure.
Collapse
Affiliation(s)
- Rong Gu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Ping Sun
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, China
| | - Ying Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Fengling Yu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Dapeng Xu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| |
Collapse
|
19
|
Santos JP, Sousa AGG, Ribeiro H, Magalhães C. The Response of Estuarine Ammonia-Oxidizing Communities to Constant and Fluctuating Salinity Regimes. Front Microbiol 2020; 11:574815. [PMID: 33324363 PMCID: PMC7727400 DOI: 10.3389/fmicb.2020.574815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/02/2020] [Indexed: 01/04/2023] Open
Abstract
Aerobic nitrification is a fundamental nitrogen biogeochemical process that links the oxidation of ammonia to the removal of fixed nitrogen in eutrophicated water bodies. However, in estuarine environments there is an enormous variability of water physicochemical parameters that can affect the ammonia oxidation biological process. For instance, it is known that salinity can affect nitrification performance, yet there is still a lack of information on the ammonia-oxidizing communities behavior facing daily salinity fluctuations. In this work, laboratory experiments using upstream and downstream estuarine sediments were performed to address this missing gap by comparing the effect of daily salinity fluctuations with constant salinity on the activity and diversity of ammonia-oxidizing microorganisms (AOM). Activity and composition of AOM were assessed, respectively by using nitrogen stable isotope technique and 16S rRNA gene metabarcoding analysis. Nitrification activity was negatively affected by daily salinity fluctuations in upstream sediments while no effect was observed in downstream sediments. Constant salinity regime showed clearly higher rates of nitrification in upstream sediments while a similar nitrification performance between the two salinity regimes was registered in the downstream sediments. Results also indicated that daily salinity fluctuation regime had a negative effect on both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) community’s diversity. Phylogenetically, the estuarine downstream AOM were dominated by AOA (0.92–2.09%) followed by NOB (0.99–2%), and then AOB (0.2–0.32%); whereas NOB dominated estuarine upstream sediment samples (1.4–9.5%), followed by AOA (0.27–0.51%) and AOB (0.01–0.23%). Analysis of variance identified the spatial difference between samples (downstream and upstream) as the main drivers of AOA and AOB diversity. Our study indicates that benthic AOM inhabiting different estuarine sites presented distinct plasticity toward the salinity regimes tested. These findings help to improve our understanding in the dynamics of the nitrogen cycle of estuarine systems by showing the resilience and consequently the impact of different salinity regimes on the diversity and activity of ammonia oxidizer communities.
Collapse
Affiliation(s)
- João Pereira Santos
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal.,Department F.A. Forel for Environmental and Aquatic Sciences, Section of Earth and Environmental Sciences, Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - António G G Sousa
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| | - Hugo Ribeiro
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal.,Abel Salazar Institute of Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Catarina Magalhães
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal.,Faculdade de Ciências, Universidade do Porto, Porto, Portugal.,School of Science & Engineering, University of Waikato, Hamilton, New Zealand.,Ocean Frontier Institute, Dalhousie University, Halitax, NS, Canada
| |
Collapse
|
20
|
Monthly distribution of ammonia-oxidizing microbes in a tropical bay. J Microbiol 2020; 59:10-19. [PMID: 33201437 DOI: 10.1007/s12275-021-0287-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
Ammonia oxidation, performed by ammonia-oxidizing archaea (AOA) and bacteria (AOB), plays a critical role in the cycle of nitrogen in the ocean. For now, environmental variables controlling distribution of ammonia-oxidizing microbes are still largely unknown in oceanic environments. In this study, we used real-time quantitative PCR and high-throughput sequencing methods to investigate the abundance and diversity of AOA and AOB from sediment and water in Zhanjiang Bay. Phylogenic analysis revealed that the majority of AOA amoA sequences in water and sediment were affiliated with the genus Nitrosopumilus, whereas the Nitrosotalea cluster was only detected with low abundance in water. Nitrosomonas and Nitrosospira dominated AOB amoA sequences in water and sediment, respectively. The amoA copy numbers of both AOA and AOB varied significantly with month for both sediment and water. When water and sediment temperature dropped to 17-20°C in December and February, respectively, the copy number of AOB amoA genes increased markedly and was much higher than for AOA amoA genes. Also, AOA abundance in water peaked in December when water temperature was lowest (17-20°C). Stepwise multiple regression analyses revealed that temperature was the most key factor driving monthly changes of AOA or AOB abundance. It is inferred that low water temperature may inhibit growth of phytoplankton and other microbes and so reduce competition for a common substrate, ammonium.
Collapse
|
21
|
Cardarelli EL, Bargar JR, Francis CA. Diverse Thaumarchaeota Dominate Subsurface Ammonia-oxidizing Communities in Semi-arid Floodplains in the Western United States. MICROBIAL ECOLOGY 2020; 80:778-792. [PMID: 32535638 DOI: 10.1007/s00248-020-01534-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Subsurface microbial communities mediate biogeochemical transformations that drive both local and ecosystem-level cycling of essential elements, including nitrogen. However, their study has been largely limited to the deep ocean, terrestrial mines, caves, and topsoils (< 30 cm). Here, we present regional insights into the microbial ecology of aerobic ammonia oxidation within the terrestrial subsurface of five semi-arid riparian sites spanning a 900-km N-S transect. We sampled sediments, profiled communities to depths of ≤ 10 m, and compared them to reveal trends regionally within and surrounding the Upper Colorado River Basin (CRB). The diversity and abundance of ammonia-oxidizing microbial communities were evaluated in the context of subsurface geochemistry by applying a combination of amoA (encoding ammonia monooxygenase subunit A) gene sequencing, quantitative PCR, and geochemical techniques. Analysis of 898 amoA sequences from ammonia-oxidizing archaea (AOA) and bacteria (AOB) revealed extensive ecosystem-scale diversity, including archaeal amoA sequences from four of the five major AOA lineages currently found worldwide as well as distinct AOA ecotypes associated with naturally reduced zones (NRZs) and hydrogeochemical zones (unsaturated, capillary fringe, and saturated). Overall, AOA outnumber AOB by 2- to 5000-fold over this regional scale, suggesting that AOA may play a prominent biogeochemical role in nitrification within terrestrial subsurface sediments.
Collapse
Affiliation(s)
- Emily L Cardarelli
- Department of Earth System Science, Stanford University, Stanford, CA, 94305-4216, USA
| | - John R Bargar
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Christopher A Francis
- Department of Earth System Science, Stanford University, Stanford, CA, 94305-4216, USA.
| |
Collapse
|
22
|
Sun D, Tang X, Zhao M, Zhang Z, Hou L, Liu M, Wang B, Klümper U, Han P. Distribution and Diversity of Comammox Nitrospira in Coastal Wetlands of China. Front Microbiol 2020; 11:589268. [PMID: 33123118 PMCID: PMC7573150 DOI: 10.3389/fmicb.2020.589268] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Complete ammonia oxidizers (comammox), able to individually oxidize ammonia to nitrate, are considered to play a significant role in the global nitrogen cycle. However, the distribution of comammox Nitrospira in estuarine tidal flat wetland and the environmental drivers affecting their abundance and diversity remain unknown. Here, we present a large-scale investigation on the geographical distribution of comammox Nitrospira along the estuarine tidal flat wetlands of China, where comammox Nitrospira were successfully detected in 9 of the 16 sampling sites. The abundance of comammox Nitrospira ranged from 4.15 × 105 to 6.67 × 106 copies/g, 2.21- to 5.44-folds lower than canonical ammonia oxidizers: ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). Phylogenetic analysis based on the alpha subunit of the ammonia monooxygenase encoding gene (amoA) revealed that comammox Nitrospira Clade A, mainly originating from upstream river inputs, accounts for more than 80% of the detected comammox Nitrospira, whereas comammox Nitrospira clade B were rarely detected. Comammox Nitrospira abundance and dominant comammox Nitrospira OTUs varied within the estuarine samples, showing a geographical pattern. Salinity and pH were the most important environmental drivers affecting the distribution of comammox Nitrospira in estuarine tidal flat wetlands. The abundance of comammox Nitrospira was further negatively correlated with high ammonia and nitrite concentrations. Altogether, this study revealed the existence, abundance and distribution of comammox Nitrospira and the driving environmental factors in estuarine ecosystems, thus providing insights into the ecological niches of this recently discovered nitrifying consortium and their contributions to nitrification in global estuarine environments.
Collapse
Affiliation(s)
- Dongyao Sun
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Xiufeng Tang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Mengyue Zhao
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Zongxiao Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, China.,Institute of Eco-Chongming, East China Normal University, Shanghai, China
| | - Baozhan Wang
- Key Laboratory of Microbiology for Agricultural Environment (Ministry of Agriculture), College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Uli Klümper
- Institute for Hydrobiology, Technische Universität Dresden, Dresden, Germany
| | - Ping Han
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, China.,State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China.,Institute of Eco-Chongming, East China Normal University, Shanghai, China
| |
Collapse
|
23
|
Wang L, Luo Z, Zhen Z, Yan Y, Yan C, Ma X, Sun L, Wang M, Zhou X, Hu A. Bacterial community colonization on tire microplastics in typical urban water environments and associated impacting factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114922. [PMID: 32554087 DOI: 10.1016/j.envpol.2020.114922] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/17/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Only limited information is available on bacterial communities' dynamics on tire microplastics in urban water environments. This study exploited 16S rDNA high-throughput sequencing to characterize bacterial communities on tire microplastics, using three different tire brands and tire sizes, in two typical urban water environments, including an influent pond of constructed wetland (CW) and its subsequent effluent into a landscape river (LR) during three different periods, namely, 1 month, 3 and 6 months. Results showed that the abundance of bacterial colonization on tire microplastics will increase over time. Proteobacteria, Bacteroidetes were the dominant bacteria at a phylum level, although they exhibited dynamic changes. At a genus level, the identifiable bacteria found in tire microplastics was generally the common bacteria in wastewater discharge, such as Aquabacterium and Denitratisoma. Additionally, alpha diversity showed no significant differences in bacterial communities at the same locations. While beta diversity showed that the bacterial communities on the tire microplastics in the two locations was different. BugBase revealed that tire microplastics could support pathogenic bacteria in urban water environments. PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) indicated that the abundance of microorganisms associated with metabolism and degradation increased with time. Moreover, the ambient environmental factors were the main influencing factors of bacterial communities on tire microplastics. Herein, the contribution rate of nutrient salts (NO2-N, NO3-N, NH4-N, CODcr) was approximately 63%, and that of environmental physical factors of T and pH was 50%. While physicochemical factors, including particle size, contact angle, element content only had a slight impact. Accordingly, tire microplastics, as an emerging environmental pollutant, can act as carries for bacterial colonization and propagation, particularly harmful microorganisms. Therefore, the obtained findings can provide new insight into potential risks of harmful microorganisms that colonize tire microplastics in urban water environments.
Collapse
Affiliation(s)
- Liyuan Wang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuanxi Luo
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China.
| | - Zhuo Zhen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yu Yan
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Xiaofei Ma
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lang Sun
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mei Wang
- College of Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Xinyi Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Anyi Hu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
24
|
Wang L, Pang Q, Zhou Y, Peng F, He F, Li W, Xu B, Cui Y, Zhu X. Robust nitrate removal and bioenergy generation with elucidating functional microorganisms under carbon constraint in a novel multianode tidal constructed wetland coupled with microbial fuel cell. BIORESOURCE TECHNOLOGY 2020; 314:123744. [PMID: 32615443 DOI: 10.1016/j.biortech.2020.123744] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
This study investigated synthetic wastewater treatment under low inflow C/N ratio and characterized NO3--N-transforming and electricity-producing bacteria in a multi-anode tidal constructed wetland-microbial fuel cell (TFCW-MFC). The optimal concurrent average removal rates of NH4+-N and NO3--N were 73% and 78%, respectively, under a flood/rest/flood time of 4 h/2h/4h in "tide" mode accompanied by one recirculation. The lowest NO3--N concentration among all anodes was observed when the electrode gap was 45 cm. Similarly, the 45 cm anode exhibited selective enrichment of Variovorax and Azoarcus. Correction analysis showed that the high relative abundance of Azoarcus was crucial in enhancing NO3--N removal, and the internal resistance significantly decreased as the relative abundance of Acidovorax increased. These results suggest that NO3--N removal and bioelectricity generation can be promoted in a TFCW-MFC with limited carbon by improving the culture conditions for specific genera.
Collapse
Affiliation(s)
- Longmian Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China.
| | - Qingqing Pang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Ying Zhou
- College of Environment, Hohai University, Nanjing 210098, PR China
| | - Fuquan Peng
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Fei He
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Weixin Li
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| | - Bin Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Yibin Cui
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Xiang Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| |
Collapse
|
25
|
Genomic Characteristics of a Novel Species of Ammonia-Oxidizing Archaea from the Jiulong River Estuary. Appl Environ Microbiol 2020; 86:AEM.00736-20. [PMID: 32631866 DOI: 10.1128/aem.00736-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/30/2020] [Indexed: 11/20/2022] Open
Abstract
Ammonia-oxidizing archaea (AOA) are ubiquitous in diverse ecosystems and play a pivotal role in global nitrogen and carbon cycling. Although AOA diversity and distribution are widely studied, mainly based on the amoA (alpha subunit of ammonia monooxygenase) genotypes, only limited investigations have addressed the relationship between AOA genetic adaptation, metabolic features, and ecological niches, especially in estuaries. Here, we describe the AOA communities along the Jiulong River estuary in southern China. Nine high-quality AOA metagenome-assembled genomes (MAGs) were obtained by metagenomics. Five of the MAGs are proposed to constitute a new species, "Candidatus Nitrosopumilus aestuariumsis" sp. nov., based on the phylogenies of the 16S and 23S rRNA genes and concatenated ribosomal proteins, as well as the average amino acid identity. Comparative genomic analysis revealed unique features of the new species, including a high number of genes related to diverse carbohydrate-active enzymes, phosphatases, heavy-metal transport systems, flagellation, and chemotaxis. These genes may be crucial for AOA adaptation to the eutrophic and heavy-metal-contaminated Jiulong River estuary. The uncovered detailed genomic characteristics of the new estuarine AOA species highlight AOA contributions to ammonia oxidation in the Jiulong River estuary.IMPORTANCE In this study, AOA communities along a river in southern China were characterized, and metagenome-assembled genomes (MAGs) of a novel AOA clade were also obtained. Based on the characterization of AOA genomes, the study suggests adaptation of the novel AOAs to estuarine environments, providing new information on the ecology of estuarine AOA and the nitrogen cycle in contaminated estuarine environments.
Collapse
|
26
|
Luo Y, Wei X, Yang S, Gao YH, Luo ZH. Fungal diversity in deep-sea sediments from the Magellan seamounts as revealed by a metabarcoding approach targeting the ITS2 regions. Mycology 2020; 11:214-229. [PMID: 33062383 PMCID: PMC7534268 DOI: 10.1080/21501203.2020.1799878] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022] Open
Abstract
Recent reports have revealed diverse and abundant fungal communities in the deep-sea biosphere, while their composition, distribution, and variations in seamount zones are poorly understood. Using a metabarcoding approach targeting the ITS2 regions, we present the structure of the fungal community in 18 sediment samples from the Magellan seamount area of the northwest Pacific. A total of 1,979 fungal OTUs was obtained, which were taxonomically assigned to seven phyla, 17 classes, 43 orders, 7 families, and 98 genera. The majority of these OTUs were affiliated to Basidiomycota (873 OTUs, 44.11% of total OTUs) and Ascomycota (486 OTUs, 24.56% of total OTUs), followed by other five minor phyla (Mortierellomycota, Chytridiomycota, Mucoromycota, Glomeromycota, and Monoblepharidomycota). Sordriomycetes is the most abundant class, followed by Eurotiomycetes, and Dothideomycetes. Five genera were common in most of the samples, including worldwide reported genera Aspergillus, Cladosporium, Fusarium, Chaetomium, and Penicillium. The environmental data we collected (sampling depth, sampling location latitude and longitude, organic carbon content, and organic nitrogen content in the sediment) had no significant influence on the composition and distribution of fungal communities. Our findings provide valuable information for understanding the distribution and potential ecological functions of fungi in the deep-sea sediments of the Magellan seamounts.
Collapse
Affiliation(s)
- Ye Luo
- Key Laboratory of Marine Biogenetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, PR China
| | - Xu Wei
- Key Laboratory of Marine Biogenetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, PR China
| | - Shuai Yang
- Key Laboratory of Marine Biogenetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, PR China
| | - Yuan-Hao Gao
- Key Laboratory of Marine Biogenetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, PR China
| | - Zhu-Hua Luo
- Key Laboratory of Marine Biogenetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, PR China
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing, PR China
- Co-Innovation Center of Jiangsu Marine Bioindustry Technology, Jiangsu Ocean University, Lianyungang, PR China
| |
Collapse
|
27
|
Zhang BT, Gao Y, Lin C, Liu T, Liu X, Ma Y, Wang H. Spatial distribution of phthalate acid esters in sediments and its relationships with anthropogenic activities and environmental variables of the Jiaozhou Bay. MARINE POLLUTION BULLETIN 2020; 155:111161. [PMID: 32310100 DOI: 10.1016/j.marpolbul.2020.111161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
The spatial distribution of phthalate acid esters (PAEs) in sediments of the Jiaozhou Bay and its relationships with anthropogenic activities and environmental variables were investigated in this work. Thirteen PAEs were prevalent in sediments and the total PAE concentrations ranged from 462.1 to 15,133.2 μg/kg. The PAE concentrations increased northeastward and northwestward from the bay mouth in saddle shapes and the highest concentrations were located in the northeastern region according to the spatial distribution patterns generated by geographic information systems. The rivers were the main routes for transporting pollutants into the bay and terrigenous PAEs diluted offshore, so the PAE distribution in sediments was originated from anthropogenic activity intensity. There were strong positive correlations among PAEs with each other, except for di-n-octyl phthalate, and the average residence time (ART) exerted a significant positive impact on the PAE concentrations by Pearson correlation and redundancy analysis. The dibutyl phthalate and di-(2-ethylhexyl) phthalate had high risks to organisms in the northeast and west regions according to the environmental risk limits and risk quotients. The results might provide new insights into the PAE researches and supply information for environmental management and remediation.
Collapse
Affiliation(s)
- Bo-Tao Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| | - Yiman Gao
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Tong Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Xitao Liu
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yan Ma
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Hongrui Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
28
|
Taylor HB, Kurtz HD. Composition, diversity, and activity of aerobic ammonia-oxidizing Bacteria and Archaea in the intertidal sands of a grand strand South Carolina beach. Microbiologyopen 2020; 9:e1011. [PMID: 32126588 PMCID: PMC7221436 DOI: 10.1002/mbo3.1011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 01/22/2023] Open
Abstract
Aerobic ammonia oxidation to nitrite has been established as an important ecosystem process in regulating the level of nitrogen in marine ecosystems. This process is carried out by ammonia-oxidizing bacteria (AOB) within the classes Betaproteobacteria and Gammaproteobacteria and ammonia-oxidizing Archaea (AOA) from the phylum Thaumarchaeota, and the latter of which has been established as more prevalent in marine systems. This study investigated the presence, abundance, and activity of these groups of microbes at a beach near Springmaid Pier in Myrtle Beach, South Carolina, through the implementation of next generation sequencing, quantitative PCR (qPCR), and microcosm experiments to monitor activity. Sequencing analysis revealed a diverse community of ammonia-oxidizing microbes dominated by AOA classified within the family Nitrosopumilaceae, and qPCR revealed the abundance of AOA amoA genes over AOB by at least an order of magnitude in most samples. Microcosm studies indicate that the rates of potential ammonia oxidation in these communities satisfy Michaelis-Menten substrate kinetics and this process is more active at temperatures corresponding to summer months than winter. Potential rates in AOA medium were higher than that of AOB medium, indicating a potentially greater contribution of AOA to this process in this environment. In conclusion, this study provides further evidence of the dominance of AOA in these environments compared with AOB and highlights the overall efficiency of this process at turning over excess ammonium that may be present in these environments.
Collapse
Affiliation(s)
- Harrison B Taylor
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States
| | - Harry D Kurtz
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States
| |
Collapse
|
29
|
Xu Y, Lu J, Wang Y, Liu G, Wan X, Hua Y, Zhu D, Zhao J. Diversity and abundance of comammox bacteria in the sediments of an urban lake. J Appl Microbiol 2020; 128:1647-1657. [PMID: 31989773 DOI: 10.1111/jam.14593] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 02/01/2023]
Abstract
AIMS Although comammox have been discovered in a variety of ecosystems, there are few studies in urban lakes. This paper attempted to confirm whether this ammonia-oxidizing microbe exists in urban lakes and to determine the factors influencing its existence. METHODS AND RESULTS This study investigated the diversity and abundance of comammox bacteria in sediments of a typical urban lake in China, and their ecological relationship with other ammonia-oxidizing micro-organisms. The phylogenetic analysis indicated that comammox clade A existed in the sediment of Lake Donghu, and the comammox bacteria co-existed with ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB) and anaerobic ammonia-oxidizing (anammox) bacteria in the sediment of this lake. The abundances of the ammonia monooxygenase subunit A (amoA) genes for comammox, AOA, AOB and anammox 16S rRNA were 2·43 × 108 , 1·07 × 108 , 3·24 × 107 and 3·21 × 1011 copies per gram dry sediment respectively. Moreover, the amoA gene abundance of comammox was positively correlated with that of AOA and AOB. The redundancy analysis showed that the abundance of the comammox amoA gene was negatively correlated with the concentration of main indicators for nitrogen status in both the sediment and the water column, indicating that eutrophication may inhibit the growth of comammox bacteria. CONCLUSIONS Comammox bacteria play an important ecological role in the nitrogen cycle of urban lake sediments. SIGNIFICANCE AND IMPACT OF THE STUDY Our results indicated comammox bacteria were widespread in urban lakes and eutrophication may inhibit their growth.
Collapse
Affiliation(s)
- Y Xu
- Laboratory of Eco-Environmental Engineering Research of Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, China
| | - J Lu
- Australian Rivers Institute, Griffith University, Nathan, Qld, Australia
| | - Y Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing, China.,Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - G Liu
- Laboratory of Eco-Environmental Engineering Research of Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, China
| | - X Wan
- Laboratory of Eco-Environmental Engineering Research of Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, China
| | - Y Hua
- Laboratory of Eco-Environmental Engineering Research of Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, China
| | - D Zhu
- Laboratory of Eco-Environmental Engineering Research of Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, China
| | - J Zhao
- Laboratory of Eco-Environmental Engineering Research of Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, China
| |
Collapse
|
30
|
Response of ammonia-oxidizing Bacteria and Archaea to long-term saline water irrigation in alluvial grey desert soils. Sci Rep 2020; 10:489. [PMID: 31949227 PMCID: PMC6965641 DOI: 10.1038/s41598-019-57402-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/30/2019] [Indexed: 11/16/2022] Open
Abstract
Soil nitrification via ammonia oxidation is a key ecosystem process in terrestrial environments, but little is known of how increasing irrigation of farmland soils with saline waters effects these processes. We investigated the effects of long-term irrigation with saline water on the abundances and community structures of ammonia-oxidizing bacteria (AOB) and archaea (AOA). Irrigation with brackish or saline water increased soil salinity (EC1:5) and NH4-N compared to irrigation with freshwater, while NO3-N, potential nitrification rates (PNR) and amoA gene copy numbers of AOA and AOB decreased markedly under irrigation regimes with saline waters. Moreover, irrigation with brackish water lowered AOA/AOB ratios. PNR was positively correlated with AOA and AOB amoA gene copy numbers across treatments. Saline and brackish water irrigation significantly increased the diversity of AOA, as noted by Shannon index values, while saline water irrigation markedly reduced AOB diversity. In addition, irrigation with brackish or fresh waters resulted in higher proportions of unclassified taxa in the AOB communities. However, irrigation with saline water led to higher proportions of unclassified taxa in the AOA communities along with the Candidatus Nitrosocaldus genus, as compared to soils irrigated with freshwater. AOA community structures were closely associated with soil salinity, NO3−N, and pH, while AOB communities were only significantly associated with NO3−N and pH. These results suggest that salinity was the dominant factor affecting the growth of ammonia-oxidizing microorganisms and community structure. These results can provide a scientific basis for further exploring the response mechanism of ammonia-oxidizing microorganisms and their roles in nitrogen transformation in alluvial grey desert soils of arid areas.
Collapse
|
31
|
Ou H, Li M, Wu S, Jia L, Hill RT, Zhao J. Characteristic Microbiomes Correlate with Polyphosphate Accumulation of Marine Sponges in South China Sea Areas. Microorganisms 2019; 8:microorganisms8010063. [PMID: 31905988 PMCID: PMC7022310 DOI: 10.3390/microorganisms8010063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 12/02/2022] Open
Abstract
Some sponges have been shown to accumulate abundant phosphorus in the form of polyphosphate (polyP) granules even in waters where phosphorus is present at low concentrations. But the polyP accumulation occurring in sponges and their symbiotic bacteria have been little studied. The amounts of polyP exhibited significant differences in twelve sponges from marine environments with high or low dissolved inorganic phosphorus (DIP) concentrations which were quantified by spectral analysis, even though in the same sponge genus, e.g., Mycale sp. or Callyspongia sp. PolyP enrichment rates of sponges in oligotrophic environments were far higher than those in eutrophic environments. Massive polyP granules were observed under confocal microscopy in samples from very low DIP environments. The composition of sponge symbiotic microbes was analyzed by high-throughput sequencing and the corresponding polyphosphate kinase (ppk) genes were detected. Sequence analysis revealed that in the low DIP environment, those sponges with higher polyP content and enrichment rates had relatively higher abundances of cyanobacteria. Mantel tests and canonical correspondence analysis (CCA) examined that the polyP enrichment rate was most strongly correlated with the structure of microbial communities, including genera Synechococcus, Rhodopirellula, Blastopirellula, and Rubripirellula. About 50% of ppk genes obtained from the total DNA of sponge holobionts, had above 80% amino acid sequence similarities to those sequences from Synechococcus. In general, it suggested that sponges employed differentiated strategies towards the use of phosphorus in different nutrient environments and the symbiotic Synechococcus could play a key role in accumulating polyP.
Collapse
Affiliation(s)
- Huilong Ou
- College of Ocean and Earth Science of Xiamen University, Xiamen 361005, China; (H.O.); (M.L.); (S.W.); (L.J.)
| | - Mingyu Li
- College of Ocean and Earth Science of Xiamen University, Xiamen 361005, China; (H.O.); (M.L.); (S.W.); (L.J.)
| | - Shufei Wu
- College of Ocean and Earth Science of Xiamen University, Xiamen 361005, China; (H.O.); (M.L.); (S.W.); (L.J.)
| | - Linli Jia
- College of Ocean and Earth Science of Xiamen University, Xiamen 361005, China; (H.O.); (M.L.); (S.W.); (L.J.)
| | - Russell T. Hill
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
- Correspondence: (J.Z.); (R.T.H.); Tel.: +86-592-288-0811 (J.Z.); Tel.: +(410)-234-8802 (R.T.H.)
| | - Jing Zhao
- College of Ocean and Earth Science of Xiamen University, Xiamen 361005, China; (H.O.); (M.L.); (S.W.); (L.J.)
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen 361005, China
- Correspondence: (J.Z.); (R.T.H.); Tel.: +86-592-288-0811 (J.Z.); Tel.: +(410)-234-8802 (R.T.H.)
| |
Collapse
|
32
|
Florez JZ, Camus C, Hengst MB, Marchant F, Buschmann AH. Structure of the epiphytic bacterial communities of Macrocystis pyrifera in localities with contrasting nitrogen concentrations and temperature. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101706] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
33
|
Lu M, Luo X, Jiao JJ, Li H, Wang X, Gao J, Zhang X, Xiao K. Nutrients and heavy metals mediate the distribution of microbial community in the marine sediments of the Bohai Sea, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113069. [PMID: 31541809 DOI: 10.1016/j.envpol.2019.113069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/07/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
The Bohai Sea, one of the largest marginal seas in China, is extensively influenced by human and industrial activities. The pollutant loads from anthropogenic activities have induced severe ecological problems. The study investigates the physicochemical characteristics of seawater and sediments in Bohai Bay and Laizhou Bay of the Bohai Sea. The diversity and composition of microbial community in sediments are analyzed by 16S rRNA gene amplicon sequencing. The sequencing results present 16 phyla and 31 classes from the samples. Proteobacteria constituted a dominant phylum, of which the classes of Gamma-, Delta-, and Epsilon-are predominant sub-divisions. Nitrogen, phosphorus, and sulfur cycling related microbes present high abundance in both bays. The metabolism of organic matters is the main factor that influences the distribution of microbial communities in Bohai Bay, while the inflow of Yellow River is the dominant factor that influences the distribution of microbial communities in Laizhou Bay. Sulfur oxidizing process is expected to be positively influenced by heavy metals, while ammonia (NH4+) oxidizing process is prone to be negatively affected by heavy metals in both bays. Microbial communities in the offshore sediments of Laizhou Bay and the majority microbial communities in Bohai Bay sediments are subject to similar predominant controlling factors. This phenomenon is likely ascribed to ocean circulation. The results of this study can provide constructive guidelines on ecosystem management of marginal seas in Bohai and elsewhere.
Collapse
Affiliation(s)
- Meiqing Lu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China; Department of Earth Sciences, The University of Hong Kong, 999077, PR China; The University of Hong Kong, Shenzhen Research Institute (SIRI), Shenzhen, 518057, PR China; The University of Hong Kong-Zhejiang Institute of Research and Innovation (HKU-ZIRI), Hangzhou, 311305, PR China
| | - Xin Luo
- Department of Earth Sciences, The University of Hong Kong, 999077, PR China
| | - Jiu Jimmy Jiao
- Department of Earth Sciences, The University of Hong Kong, 999077, PR China
| | - Hailong Li
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China.
| | - Xuejing Wang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - Jingyan Gao
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - Xiaolang Zhang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China; Department of Earth Sciences, The University of Hong Kong, 999077, PR China
| | - Kai Xiao
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China
| |
Collapse
|
34
|
Bernhard AE, Chelsky A, Giblin AE, Roberts BJ. Influence of local and regional drivers on spatial and temporal variation of ammonia-oxidizing communities in Gulf of Mexico salt marshes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:825-834. [PMID: 31646752 DOI: 10.1111/1758-2229.12802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
We characterized ammonia-oxidizing archaea (AOA) and bacteria (AOB) from salt marsh sediments in the Gulf of Mexico over 5 years to identify environmental drivers of nitrifying community patterns following the Deepwater Horizon oil spill. Samples were collected from oiled and unoiled sites in July of 2012-2016 from 12 marshes spanning three regions on the Louisiana coast. No consistent oil effect was detected for either AOA or AOB abundance or community composition. At the local scale, abundance was correlated with changes in marsh elevation, suggesting that oxygen may be an important driver. Regional differences in abundance were best explained by salinity and soil moisture, while interannual variation may be more linked to changes in climate and Mississippi River discharge. Variation of AOA communities was correlated with organic sediment nutrients, while AOB communities were correlated with soil extractable nutrients. AOA and AOB diversity and AOB abundance decreased in 2014 in all regions, suggesting that broad-scale drivers, such as climate, may explain synchronous shifts throughout the coastal area. Our results provide insights about large-scale disturbances on nitrifying microbes in the Gulf of Mexico, and suggest that nitrogen cycling may be controlled primarily by local factors, but large-scale drivers might override these localized differences at times.
Collapse
Affiliation(s)
| | - Ariella Chelsky
- Louisiana Universities Marine Consortium, Chauvin, LA
- San Francisco Estuary Institute, Richmond, CA
| | - Anne E Giblin
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA
| | | |
Collapse
|
35
|
Zheng Y, Hou L, Liu M, Yin G. Dynamics and environmental importance of anaerobic ammonium oxidation (anammox) bacteria in urban river networks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112998. [PMID: 31422342 DOI: 10.1016/j.envpol.2019.112998] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/03/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is recognized as an important bioprocess for nitrogen removal, yet little is known about the associated microbial communities in urban river networks which are intensively disturbed by human activity. In the present study, we investigated the community composition and abundance of anammox bacteria in the urban river network of Shanghai, and explored their potential correlations with nitrogen removal activities and the environmental parameters. High biodiversity of anammox bacteria was detected in the sediment of urban river networks, including Candidatus Brocadia, Scalindua, Jettenia, and Kuenenia. Anammox bacterial abundance ranged from 3.7 × 106 to 3.9 × 107 copies g-1 dry sediment based on 16S rRNA gene, which was strongly correlated to the metabolic activity of anammox bacteria (P < 0.01). A strong linkage between anammox bacteria and denitrifiers was detected (P < 0.05), implying a potential metabolic interdependence between these two nitrogen-removing microbes was existed in urban river networks. Sediment ammonium (NH4+) made a significant contribution to the anammox bacterial community-environment relationship, while anammox bacterial abundance related significantly with sediment total organic carbon (TOC) and silt contents (P < 0.05). However, no statistically significant correlation was observed between cell-specific anammox rate and the measured environmental factors (P > 0.05). In general, the community composition and abundance of anammox bacteria in different hierarchies of the river network was homogeneous, without significant spatial variations (P > 0.05). These results provided an opportunity to further understand the microbial mechanism of nitrogen removal bioprocesses in urban river networks.
Collapse
Affiliation(s)
- Yanling Zheng
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Min Liu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Guoyu Yin
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| |
Collapse
|
36
|
Zhang W, Bai Y, Ruan X, Yin L. The biological denitrification coupled with chemical reduction for groundwater nitrate remediation via using SCCMs as carbon source. CHEMOSPHERE 2019; 234:89-97. [PMID: 31203045 DOI: 10.1016/j.chemosphere.2019.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
Renewable additional carbon sources for groundwater denitrification, such as sustainable-releasing compound carbon source materials (SCCMs), are required. This work reports long-term groundwater denitrification with permeable reactive barriers filled with SCCMs; the coupling of biological denitrification and chemical reduction avoided the need for a continuous carbon source supply. Four 370-day lab-scale permeable reactive barrier experiments with four SCCMs showed that NO3- removal efficiency in zero-valent iron (ZVI) SCCMs was higher than in ZVI-free SCCMs. In the ZVI SCCMs, the NO3- removal reaction began quickly in the early stage, owing to ZVI chemical reduction, whereas biological denitrification was lower and incomplete with a NO2- concentration of 0.8 mg L-1 in the ZVI SCCM system. As the chemical reduction efficiency decreased, the biological denitrification efficiency increased, and the highest NO3- removal efficiency was 98.8%. Decreasing the Fe2+concentration decreased ZVI chemical reduction. High-throughput sequencing indicated that the proportion of denitrifying bacteria attached to the SCCMs was up to 34.4% at the family level, leading to the denitrification gene being predominant. Quantitative PCR indicated increased microbial metabolic activity, richer bacterial community diversity, and more bacteria. Long-term monitoring data for SCCMs will help realize the use of biological denitrification coupled with chemical reduction for groundwater NO3- remediation.
Collapse
Affiliation(s)
- Wen Zhang
- Key Laboratory of Surficial Geochemistry, Ministry of Education, China; School of Earth Science and Engineering, Nanjing University, 210023, Nanjing, China
| | - Ying Bai
- Key Laboratory of Surficial Geochemistry, Ministry of Education, China; School of Earth Science and Engineering, Nanjing University, 210023, Nanjing, China
| | - Xiaohong Ruan
- Key Laboratory of Surficial Geochemistry, Ministry of Education, China; School of Earth Science and Engineering, Nanjing University, 210023, Nanjing, China.
| | - Lin Yin
- Key Laboratory of Surficial Geochemistry, Ministry of Education, China
| |
Collapse
|
37
|
Liu TT, Yang H. An RNA-based quantitative and compositional study of ammonium-oxidizing bacteria and archaea in Lake Taihu, a eutrophic freshwater lake. FEMS Microbiol Ecol 2019; 95:5533317. [DOI: 10.1093/femsec/fiz117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/16/2019] [Indexed: 11/14/2022] Open
Abstract
ABSTRACTAmmonium-oxidizing archaea (AOA) and bacteria (AOB) play crucial roles in ammonium oxidation in freshwater lake sediment. However, previous reports on the predominance of AOA and AOB in the surface sediment of Lake Taihu have been based on DNA levels, detecting the total abundance of microbiota (including inactive cells), and have resulted in numerous contradictory conclusions. Existing RNA-level studies detecting active transcription are very limited. The current study, using RNA-based real-time quantification and clone library analysis, demonstrated that the amoA gene abundance of active AOB was higher than that of active AOA, despite conflicting results at the DNA level. Further exploration revealed a significant positive correlation between the potential nitrification rate (PNR) and the abundance of AOA and AOB at the RNA level, with irregular or contradictory correlation found at the DNA level. Ultimately, using quantitative analysis of RNA levels, we show AOB to be the active dominant contributor to ammonium oxidation. Our investigations also indicated that AOB were more diverse in high-ammonium lake regions, with Nitrosomonas being the active and dominating cluster, but that AOA had an advantage in the low-ammonium lake regions.
Collapse
Affiliation(s)
- Tong-tong Liu
- State Key Laboratory of Microbial metabolism, and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Hong Yang
- State Key Laboratory of Microbial metabolism, and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| |
Collapse
|
38
|
Zhu W, Liu Y, Wang S, Yu M, Qian W. Development of microbial community-based index of biotic integrity to evaluate the wetland ecosystem health in Suzhou, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:377. [PMID: 31104161 DOI: 10.1007/s10661-019-7512-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
The development of microbial community-based biological indicators for assessing aquatic ecological status is urgently needed in heavily impaired regions, due to the local extinction of traditional indicator macro-organisms. The aim of this study was to develop and validate a microbial community-based index of biotic integrity (MC-IBI) to assess the health of wetlands in Suzhou, China. High-throughput sequencing was used to obtain information about microbial communities in wetlands and to investigate the health of the wetlands. When constructing the index, we selected what we considered were the most important environmental factors and biological parameters, and identified sensitive and tolerant species. We then used the index to evaluate the health of the inflows and outflows of 15 wetlands in Suzhou. The results showed that, of the 30 samples collected at the 10 impacted inflow sites, 2 were classified as "poor," 5 were "commonly," 18 were sub-healthy, and 5 were healthy; at the restored outflow sites, 24 were "healthy" and 6 were "sub-healthy." The health was worst at the inflows of wetlands that received agricultural effluent, followed by those that received industrial effluent, and was best at those that received urban effluent. The results from our study show that this newly developed MC-IBI gave reasonable evaluations of the health of wetland ecosystems. This application demonstrates that the evaluation system was feasible and we suggest that evaluations that further MC-IBI evaluation approaches should be developed further in the future.
Collapse
Affiliation(s)
- Wenting Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Suzhou Polytechnic Institute of Agricultures, Suzhou, 215008, China
| | - Yingying Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Suzhou Polytechnic Institute of Agricultures, Suzhou, 215008, China
| | - Sitan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Suzhou Polytechnic Institute of Agricultures, Suzhou, 215008, China
| | - Miao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Suzhou Polytechnic Institute of Agricultures, Suzhou, 215008, China
| | - Wei Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
39
|
Xu Z, Te SH, He Y, Gin KYH. The Characteristics and Dynamics of Cyanobacteria-Heterotrophic Bacteria Between Two Estuarine Reservoirs - Tropical Versus Sub-Tropical Regions. Front Microbiol 2018; 9:2531. [PMID: 30459732 PMCID: PMC6232297 DOI: 10.3389/fmicb.2018.02531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022] Open
Abstract
In this study, Illumina MiSeq sequencing technique was employed to explore the characteristics and dynamics of cyanobacteria–heterotrophic bacteria between two estuarine reservoirs in sub-tropical (reservoir A in Shanghai) and tropical (reservoir B in Singapore) regions. The results indicated that significant differences in bacterial community composition were found between two estuarine reservoirs, which influenced by varied environmental variables. The environmental heterogeneity in reservoir A was much higher, which indicated that the composition of bacterial community in reservoir A was more complex. In contrast, reservoir B provided a suitable and temperate water environment conditions for bacterial growth, which resulted in higher community diversity and less co-exclusion correlations. The molecular ecological network indicated that the presence of dominant bacterial community in each of the reservoir were significant different. These differences mainly reflected the responses of bacterial community to the variations of environmental variables. Although Synechococcus was the dominant cyanobacterial species in both reservoirs, it exhibited co-occurrence patterns with different heterotrophic bacteria between reservoirs. In addition, the cyanobacteria–heterotrophic bacteria interaction exhibited highly dynamic variations, which was affected by nutrition and survive space. Also, the co-occurrence of Microcystis and Pseudanabaena found in reservoir B implied that the non-N-fixing Microcystis accompanied with N-fixing Pseudanabeana occurrence in freshwater lakes, so as to better meet the demand for nitrogen source.
Collapse
Affiliation(s)
- Zheng Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shu Harn Te
- NUS Environmental Research Institute (NERI), National University of Singapore, Singapore, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute (NERI), National University of Singapore, Singapore, Singapore.,Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
40
|
Baquiran JIP, Conaco C. Sponge-microbe partnerships are stable under eutrophication pressure from mariculture. MARINE POLLUTION BULLETIN 2018; 136:125-134. [PMID: 30509793 DOI: 10.1016/j.marpolbul.2018.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 06/09/2023]
Abstract
Sponges harbor a great diversity of symbiotic microorganisms. However, environmental stresses can affect this partnership and influence the health and abundance of the host sponges. In Bolinao, Pangasinan, Philippines, chronic input of organic materials from mariculture activities contributes to a eutrophic coastal environment. To understand how these conditions might affect sponge-microbial partnerships, transplantation experiments were conducted with the marine sponge Gelliodes obtusa. High-throughput sequencing of 16S rRNA revealed that the associated microbial community of the sponges did not exhibit significant shifts after six weeks of transplantation at a eutrophic fish farm site compared to sponges grown at a coral reef or a seagrass area. However, sponges at the fish farm revealed higher abundance of the amoA gene, suggesting that microbiome members are responsive to increased ammonium levels at the site. The stable association between G. obtusa and its microbiome indicates that the sponge holobiont can withstand eutrophication pressure from mariculture.
Collapse
Affiliation(s)
- Jake Ivan P Baquiran
- Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Cecilia Conaco
- Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines.
| |
Collapse
|
41
|
Kong Z, Kou W, Ma Y, Yu H, Ge G, Wu L. Seasonal dynamics of the bacterioplankton community in a large, shallow, highly dynamic freshwater lake. Can J Microbiol 2018; 64:786-797. [DOI: 10.1139/cjm-2018-0126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spatiotemporal shifts of the bacterioplankton community can mirror their transition of functional traits in an aquatic ecosystem. However, the spatiotemporal variation of the bacterioplankton community composition structure (BCCS) within a large, shallow, highly dynamic freshwater lake is still poorly understood. Here, we examined the seasonal and spatial variability of the BCCs within Poyang Lake by sequencing the 16S rRNA gene amplicon to explore how hydrological changes affect the BCCs. Principal coordinate analysis showed that the BCCs varied significantly among four sampling seasons, but not spatially. The seasonal changes of the BCCs were mainly attributed to the differences between autumn and spring–winter. Higher α diversity indices were observed in autumn. Redundancy analysis indicated that the BCCs co-variated with water level, pH, temperature, total phosphorus, ammoniacal nitrogen, electrical conductivity, total nitrogen, and turbidity. Among them, water level was the key determinant separating autumn BCCs from the BCCs in other seasons. A significantly lower relative abundance of Burkholderiales (betI and betVII) and a higher relative abundance of Actinomycetales (acI, acTH1, and acTH2) were found in autumn than in other seasons. Overall, our results suggest that water level changes associated with pH, temperature, and nutrient status shaped the seasonal patterns of the BCCs within Poyang Lake.
Collapse
Affiliation(s)
- Zhaoyu Kong
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
- Key Laboratory of Aquatic Resources and Utilization of Jiangxi, Nanchang University, Nanchang 330022, China
| | - Wenbo Kou
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Yantian Ma
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Haotian Yu
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Gang Ge
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Lan Wu
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
- Key Laboratory of Aquatic Resources and Utilization of Jiangxi, Nanchang University, Nanchang 330022, China
| |
Collapse
|
42
|
Liu Y, Liu J, Yao P, Ge T, Qiao Y, Zhao M, Zhang XH. Distribution patterns of ammonia-oxidizing archaea and bacteria in sediments of the eastern China marginal seas. Syst Appl Microbiol 2018; 41:658-668. [PMID: 30172418 DOI: 10.1016/j.syapm.2018.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/26/2018] [Accepted: 08/13/2018] [Indexed: 01/19/2023]
Abstract
Ammonia-oxidizing archaea (AOA) and bacteria (AOB) vary in their contribution to nitrification in different environments. The eastern China marginal seas (ECMS) are featured by complex river runoffs and ocean currents, forming different sediment patches. Here, via quantitative PCR and clone library analysis of the amoA genes, we showed that AOB were more abundant than AOA in ECMS sediments. The abundance, diversity and richness of AOA, but not AOB, were higher in the East China Sea (ECS) than in the Yellow Sea (YS) and Bohai Sea (BS). Nitrosopumilus (AOA) and Nitrosospira (AOB) were predominant lineages, but their abundances varied significantly between ECS, and BS and YS. This was mainly attributed to salinity and dissolved oxygen of the bottom water. The discovery of a high abundance of Nitrosophaera at estuarine sites suggested strong terrigenous influence exerted on the AOA community. In contrast, variations in ocean conditions played more important roles in structuring the AOB community, which was separated by bottom water dissolved oxygen into two groups: the south YS, and the north YS and BS. This study provides a comprehensive insight into the spatial distribution pattern of ammonia-oxidizing prokaryotes in ECMS sediments, laying a foundation for understanding their relative roles in nitrification.
Collapse
Affiliation(s)
- Yuyang Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiwen Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Peng Yao
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Tiantian Ge
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanlu Qiao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Meixun Zhao
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
43
|
He H, Zhen Y, Mi T, Fu L, Yu Z. Ammonia-Oxidizing Archaea and Bacteria Differentially Contribute to Ammonia Oxidation in Sediments from Adjacent Waters of Rushan Bay, China. Front Microbiol 2018; 9:116. [PMID: 29456526 PMCID: PMC5801408 DOI: 10.3389/fmicb.2018.00116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/18/2018] [Indexed: 11/20/2022] Open
Abstract
Ammonia oxidation plays a significant role in the nitrogen cycle in marine sediments. Ammonia-oxidizing archaea (AOA) and bacteria (AOB) are the key contributors to ammonia oxidation, and their relative contribution to this process is one of the most important issues related to the nitrogen cycle in the ocean. In this study, the differential contributions of AOA and AOB to ammonia oxidation in surface sediments from adjacent waters of Rushan Bay were studied based on the ammonia monooxygenase (amoA) gene. Molecular biology techniques were used to analyze ammonia oxidizers’ community characteristics, and potential nitrification incubation was applied to understand the ammonia oxidizers’ community activity. The objective was to determine the community structure and activity of AOA and AOB in surface sediments from adjacent waters of Rushan Bay and to discuss the different contributions of AOA and AOB to ammonia oxidation during summer and winter seasons in the studied area. Pyrosequencing analysis revealed that the diversity of AOA was higher than that of AOB. The majority of AOA and AOB clustered into Nitrosopumilus and Nitrosospira, respectively, indicating that the Nitrosopumilus group and Nitrosospira groups may be more adaptable in studied sediments. The AOA community was closely correlated to temperature, salinity and ammonium concentration, whereas the AOB community showed a stronger correlation with temperature, chlorophyll-a content (chla) and nitrite concentration. qPCR results showed that both the abundance and the transcript abundance of AOA was consistently greater than that of AOB. AOA and AOB differentially contributed to ammonia oxidation in different seasons. AOB occupied the dominant position in mediating ammonia oxidation during summer, while AOA might play a dominant role in ammonia oxidation during winter.
Collapse
Affiliation(s)
- Hui He
- College of Marine Life Science, Ocean University of China, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China
| | - Yu Zhen
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Tiezhu Mi
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Lulu Fu
- College of Marine Life Science, Ocean University of China, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China
| | - Zhigang Yu
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Qingdao, China
| |
Collapse
|
44
|
Ling J, Lin X, Zhang Y, Zhou W, Yang Q, Lin L, Zeng S, Zhang Y, Wang C, Ahmad M, Long L, Dong J. Community Composition and Transcriptional Activity of Ammonia-Oxidizing Prokaryotes of Seagrass Thalassia hemprichii in Coral Reef Ecosystems. Front Microbiol 2018; 9:7. [PMID: 29422885 PMCID: PMC5788956 DOI: 10.3389/fmicb.2018.00007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 01/04/2018] [Indexed: 11/17/2022] Open
Abstract
Seagrasses in coral reef ecosystems play important ecological roles by enhancing coral reef resilience under ocean acidification. However, seagrass primary productivity is typically constrained by limited nitrogen availability. Ammonia oxidation is an important process conducted by ammonia-oxidizing archaea (AOA) and bacteria (AOB), yet little information is available concerning the community structure and potential activity of seagrass AOA and AOB. Therefore, this study investigated the variations in the abundance, diversity and transcriptional activity of AOA and AOB at the DNA and transcript level from four sample types: the leaf, root, rhizosphere sediment and bulk sediment of seagrass Thalassia hemprichii in three coral reef ecosystems. DNA and complementary DNA (cDNA) were used to prepare clone libraries and DNA and cDNA quantitative PCR (qPCR) assays, targeting the ammonia monooxygenase-subunit (amoA) genes as biomarkers. Our results indicated that the closest relatives of the obtained archaeal and bacterial amoA gene sequences recovered from DNA and cDNA libraries mainly originated from the marine environment. Moreover, all the obtained AOB sequences belong to the Nitrosomonadales cluster. Nearly all the AOA communities exhibited higher diversity than the AOB communities at the DNA level, but the qPCR data demonstrated that the abundances of AOB communities were higher than that of AOA communities based on both DNA and RNA transcripts. Collectively, most of the samples shared greater community composition similarity with samples from the same location rather than sample type. Furthermore, the abundance of archaeal amoA gene in rhizosphere sediments showed significant relationships with the ammonium concentration of sediments and the nitrogen content of plant tissue (leaf and root) at the DNA level (P < 0.05). Conversely, no such relationships were found for the AOB communities. This work provides new insight into the nitrogen cycle, particularly nitrification of seagrass meadows in coral reef ecosystems.
Collapse
Affiliation(s)
- Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiancheng Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanying Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Tropical Marine Biological Research Station in Hainan, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, China
| | - Weiguo Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liyun Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Siquan Zeng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cong Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Manzoor Ahmad
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lijuan Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Tropical Marine Biological Research Station in Hainan, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
45
|
Yan L, Yu D, Hui N, Naanuri E, Viggor S, Gafarov A, Sokolov SL, Heinaru A, Romantschuk M. Distribution of Archaeal Communities along the Coast of the Gulf of Finland and Their Response to Oil Contamination. Front Microbiol 2018; 9:15. [PMID: 29410652 PMCID: PMC5787342 DOI: 10.3389/fmicb.2018.00015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/05/2018] [Indexed: 11/13/2022] Open
Abstract
The Baltic Sea is vulnerable to environmental changes. With the increasing shipping activities, the risk of oil spills remains high. Archaea are widely distributed in many environments. However, the distribution and the response of archaeal communities to oil contamination have rarely been investigated in brackish habitats. Hence, we conducted a survey to investigate the distribution, diversity, composition, and species interactions of indigenous archaeal communities at oil-contaminated sites along the coast of the Gulf of Finland (GoF) using high-throughput sequencing. Surface water and littoral sediment samples were collected at presumably oil-contaminated (oil distribution facilities) and clean sites along the coastline of the GoF in the winter 2015 and the summer 2016. Another three samples of open sea surface water were taken as offshore references. Of Archaea, Euryarchaeota dominated in the surface water and the littoral sediment of the coast of the GoF, followed by Crenarchaeota (including Thaumarchaeota, Thermoprotei, and Korarchaeota based on the Greengenes database used). The unclassified sequences accounted for 5.62% of the total archaeal sequences. Our study revealed a strong dependence of the archaeal community composition on environmental variables (e.g., salinity, pH, oil concentration, TOM, electrical conductivity, and total DNA concentration) in both littoral sediment and coastal water in the GoF. The composition of archaeal communities was season and ecosystem dependent. Archaea was highly diverse in the three ecosystems (littoral sediment, coastal water, and open sea water). Littoral sediment harbored the highest diversity of archaea. Oil was often detected in the littoral sediment but rarely detected in water at those presumably contaminated sites. Although the composition of archaeal community in the littoral sediment was sensitive to low-input oil contamination, the unchanged putative functional profiles and increased interconnectivity of the archaeal core species network plausibly revealed resilience and the potential for oil degradation. Halobacteriaceae and putative cytochrome P450 pathways were significantly enriched in the oil-contaminated littoral sediment. The archaeal taxa formed highly interconnected and interactive networks, in which Halobacteriaceae, Thermococcus, and methanogens were the main components, implying a potential relevant trophic connection between hydrocarbon degradation, methanogenesis, sulfate reduction, and/or fermentative growth.
Collapse
Affiliation(s)
- Lijuan Yan
- Department of Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Dan Yu
- Department of Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Nan Hui
- Department of Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Eve Naanuri
- Faculty of Science and Technology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Signe Viggor
- Faculty of Science and Technology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Arslan Gafarov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
| | - Sergei L Sokolov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
| | - Ain Heinaru
- Faculty of Science and Technology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Martin Romantschuk
- Department of Environmental Sciences, University of Helsinki, Lahti, Finland.,Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia
| |
Collapse
|
46
|
Hou D, Huang Z, Zeng S, Liu J, Wei D, Deng X, Weng S, He Z, He J. Environmental Factors Shape Water Microbial Community Structure and Function in Shrimp Cultural Enclosure Ecosystems. Front Microbiol 2017; 8:2359. [PMID: 29238333 PMCID: PMC5712584 DOI: 10.3389/fmicb.2017.02359] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/15/2017] [Indexed: 02/01/2023] Open
Abstract
The effects of environmental factors on water microbial communities have been extensively studied, but little is known about the effects in shrimp cultural enclosure ecosystems. We analyzed 16S rRNA gene amplicons to determine the principal environmental factors that shape the structure and function of microbial communities in shrimp cultural enclosure ecosystems from Guangdong and Hainan provinces, in China. High quality sequences were clustered into operational taxonomic units (OTUs) at the 97% similarity level, generating 659-1,835 OTUs per sample. The 10 most abundant phyla were Proteobacteria, Bacteroidetes, Cyanobacteria, Planctomycetes, Actinobacteria, Verrucomicrobia, Firmicutes, Chlorobi, Chloroflexi, and Chlamydiae. The results of canonical correspondence analyses (CCA) indicated that salinity, total phosphate (TP), total nitrogen (TN), temperature, and pH were the most important factors shaping microbial community structure. Differences in microbial community structure between high and low salinity samples were explained by changes in the relative abundances of some OTUs (e.g., OTU5, OTU19, OTU21, OTU39, and OTU71). Moreover, the contribution of spatial distribution to the microbial community assembly was investigated via aggregated boosted tree (ABT) analyses, and the results indicated spatial isolation was not a major factor affecting the phylogenetic diversity and phylotypes of water microbial communities. Furthermore, we predicted water microbial community functional profiling using the PICRUSt program and principal component analyses (PCA) suggested that salinity was a major contributor to the structure and function of the microbial communities. Collectively, these results showed that environmental factors influenced the structure and function of water microbial communities, while salinity was the principal environmental factor instead of temperature, TP, TN, and pH in shrimp cultural enclosure ecosystems.
Collapse
Affiliation(s)
- Dongwei Hou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhijian Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shenzheng Zeng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dongdong Wei
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xisha Deng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaoping Weng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhili He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.,Department of Botany and Microbiology, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, United States
| | - Jianguo He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
47
|
Zhang Y, Wang X, Zhen Y, Mi T, He H, Yu Z. Microbial Diversity and Community Structure of Sulfate-Reducing and Sulfur-Oxidizing Bacteria in Sediment Cores from the East China Sea. Front Microbiol 2017; 8:2133. [PMID: 29163420 PMCID: PMC5682103 DOI: 10.3389/fmicb.2017.02133] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 10/18/2017] [Indexed: 02/03/2023] Open
Abstract
Sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) have been studied extensively in marine sediments because of their vital roles in both sulfur and carbon cycles, but the available information regarding the highly diverse SRB and SOB communities is not comprehensive. High-throughput sequencing of functional gene amplicons provides tremendous insight into the structure and functional potential of complex microbial communities. Here, we explored the community structure, diversity, and abundance of SRB and SOB simultaneously through 16S rRNA, dsrB and soxB gene high-throughput sequencing and quantitative PCR analyses of core samples from the East China Sea. Overall, high-throughput sequencing of the dsrB and soxB genes achieved almost complete coverage (>99%) and revealed the high diversity, richness, and operational taxonomic unit (OTU) numbers of the SRB and SOB communities, which suggest the existence of an active sulfur cycle in the study area. Further analysis demonstrated that rare species make vital contributions to the high richness, diversity, and OTU numbers obtained. Depth-based distributions of the dsrB, soxB, and 16S rRNA gene abundances indicated that the SRB abundance might be more sensitive to the sedimentary dynamic environment than those of total bacteria and SOB. In addition, the results of unweighted pair group method with arithmetic mean (UPGMA) clustering analysis and redundancy analysis revealed that environmental parameters, such as depth and dissolved inorganic nitrogen concentrations, and the sedimentary dynamic environment, which differed between the two sampling stations, can significantly influence the community structures of total bacteria, SRB, and SOB. This study provided further comprehensive information regarding the characteristics of SRB and SOB communities.
Collapse
Affiliation(s)
- Yu Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China.,Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xungong Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China.,Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu Zhen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China.,Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tiezhu Mi
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China.,Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hui He
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Zhigang Yu
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Marine Chemical Theory and Technology, Ministry of Education, Qingdao, China
| |
Collapse
|
48
|
Assessment of molecular detection of anaerobic ammonium-oxidizing (anammox) bacteria in different environmental samples using PCR primers based on 16S rRNA and functional genes. Appl Microbiol Biotechnol 2017; 101:7689-7702. [PMID: 28932888 DOI: 10.1007/s00253-017-8502-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/10/2017] [Accepted: 08/26/2017] [Indexed: 10/18/2022]
Abstract
Eleven published PCR primer sets for detecting genes encoding 16S ribosomal RNA (rRNA), hydrazine oxidoreductase (HZO), cytochrome cd 1-containing nitrite reductase (NirS), and hydrazine synthase subunit A (HzsA) of anaerobic ammonium-oxidizing (anammox) bacteria were assessed for the diversity and abundance of anammox bacteria in samples of three environments: wastewater treatment plant (WWTP), wetland of Mai Po Nature Reserve (MP), and the South China Sea (SCS). Consistent phylogenetic results of three biomarkers (16S rRNA, hzo, and hzsA) of anammox bacteria were obtained from all samples. WWTP had the lowest diversity with Candidatus Kuenenia dominating while the SCS was dominated by Candidatus Scalindua. MP showed the highest diversity of anammox bacteria including C. Scalindua, C. Kuenenia, and Candidatus Brocadia. Comparing different primer sets, no significant differences in specificity for 16S rRNA gene could be distinguished. Primer set CL1 showed relatively high efficiency in detecting the anammox bacterium hzo gene from all samples, while CL2 showed greater selectivity for WWTP samples. The recently reported primer sets of the hzsA gene resulted in high efficiencies in detecting anammox bacteria while nirS primer sets were more selective for specific samples. Results collectively indicate that the distribution of anammox bacteria is niche-specific within different ecosystems and primer specificity may cause biases on the diversity detected.
Collapse
|
49
|
Wu H, Li Y, Zhang J, Niu L, Zhang W, Cai W, Zhu X. Sediment bacterial communities in a eutrophic lake influenced by multiple inflow-rivers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:19795-19806. [PMID: 28685337 DOI: 10.1007/s11356-017-9602-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
Sediment bacterial communities are sensitive to environmental fluctuations, particularly external input sources. Studying the relationships between bacterial community distribution and the estuarine environment is critical for understanding the river-lake confluence ecosystem and the effect of inflow-rivers on lakes. In the present study, bacterial communities from the sediments of 14 estuaries and four pelagic sites of the Taihu Lake were investigated via high-throughput sequencing. The results demonstrated that Delta-, Beta-, and Gamma-proteobacteria, Acidobacteria, Nitrospira, Bacilli, Anaerolineae, and Actinobacteria were the major classes in sediment bacterial communities of the Taihu Lake. In general, the inflow-rivers of different pollution types have distinctly different influences on sediment bacterial communities of the lake. The bacterial community composition and physicochemical properties of pelagic sites were closer to those of the estuaries of western region which was polluted by serious industrial and agricultural pollution. The bacterial community diversity of estuaries was lower than those of pelagic sites. Spearman correlation analysis indicated that α-diversity of the bacterial community was significantly correlated with C/N, total nitrogen, and total carbon in estuarine sediments. Redundancy analysis revealed that the variance in bacterial community composition was also significantly associated with C/N (24.9%) followed by total phosphorus (15.8%), nitrite (7.2%), and nitrate (7.7%) among different estuaries. This study provides a reference to understand the influence of inflow-rivers on the lake ecosystem, which offered a basic guidance for maintaining the ecological system and protecting the water environment of lacustrine basin.
Collapse
Affiliation(s)
- Hainan Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Jing Zhang
- College of Environment and Chemical Technology, Dalian University, Dalian, 116622, People's Republic of China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Wei Cai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Xiaoxiao Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
50
|
Zheng Y, Hou L, Liu M, Newell SE, Yin G, Yu C, Zhang H, Li X, Gao D, Gao J, Wang R, Liu C. Effects of silver nanoparticles on nitrification and associated nitrous oxide production in aquatic environments. SCIENCE ADVANCES 2017; 3:e1603229. [PMID: 28782034 PMCID: PMC5540255 DOI: 10.1126/sciadv.1603229] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/28/2017] [Indexed: 05/18/2023]
Abstract
Silver nanoparticles (AgNPs) are the most common materials in nanotechnology-based consumer products globally. Because of the wide application of AgNPs, their potential environmental impact is currently a highly topical focus of concern. Nitrification is one of the processes in the nitrogen cycle most susceptible to AgNPs but the specific effects of AgNPs on nitrification in aquatic environments are not well understood. We report the influence of AgNPs on nitrification and associated nitrous oxide (N2O) production in estuarine sediments. AgNPs inhibited nitrification rates, which decreased exponentially with increasing AgNP concentrations. The response of nitrifier N2O production to AgNPs exhibited low-dose stimulation (<534, 1476, and 2473 μg liter-1 for 10-, 30-, and 100-nm AgNPs, respectively) and high-dose inhibition (hormesis effect). Compared with controls, N2O production could be enhanced by >100% at low doses of AgNPs. This result was confirmed by metatranscriptome studies showing up-regulation of nitric oxide reductase (norQ) gene expression in the low-dose treatment. Isotopomer analysis revealed that hydroxylamine oxidation was the main N2O production pathway, and its contribution to N2O emission was enhanced when exposed to low-dose AgNPs. This study highlights the molecular underpinnings of the effects of AgNPs on nitrification activity and demonstrates that the release of AgNPs into the environment should be controlled because they interfere with nitrifying communities and stimulate N2O emission.
Collapse
Affiliation(s)
- Yanling Zheng
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
- Corresponding author. (L.H.); (M.L.)
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Corresponding author. (L.H.); (M.L.)
| | - Silvia E. Newell
- Department of Earth and the Environment, Boston University, Boston, MA 02215, USA
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Chendi Yu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Hongli Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Xiaofei Li
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Dengzhou Gao
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Juan Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Rong Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Cheng Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| |
Collapse
|