1
|
Tamminen LM, Dicksved J, Eriksson E, Keeling LJ, Emanuelson U. Untangling the role of environmental and host-related determinants for on-farm transmission of verotoxin-producing Escherichia coli O157. Infect Ecol Epidemiol 2024; 14:2406852. [PMID: 39386259 PMCID: PMC11463013 DOI: 10.1080/20008686.2024.2406852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Background: Cattle colonised by the zoonotic pathogen verotoxin-producing Escherichia coli of serotype O157 (VTEC O157) can shed high levels of the pathogen in their faeces. A suggested key for controlling VTEC O157 is preventing colonisation of individuals. Aim: In this study the role of individual super-shedders and factors related to susceptibility and environmental exposure in the transmission of VTEC O157 among dairy calves are explored. Methods: The association between sex, age, pen hygiene, pen type and stocking density and colonisation of individual calves, established by recto-anal mucosal swabs, on farms where pathogenic VTEC O157 had been confirmed was investigated. In a follow-up sampling, the consistency of previously identified risk factors and the role of shedding pen mates was assessed by studying the risk of new/re-colonisation. Results: The results suggest an important role of stocking density that decreases with age, possibly due to increased resistance to colonisation following exposure. However, previous colonisation did not influence the risk of being colonised in the second sampling. Super-shedders (shedding >103 colony forming units/g faeces) significantly increased the risk of colonisation in peers (OR = 10, CI 4.2-52). In addition, environmental factors associated with survival of the bacteria, affected risk. Conclusion: The results confirm the suggested importance of super-shedders but also emphasises the importance of considering the combined exposure from peers and the environment.
Collapse
Affiliation(s)
- Lena-Mari Tamminen
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johan Dicksved
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Linda J. Keeling
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ulf Emanuelson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
2
|
Bava R, Castagna F, Lupia C, Poerio G, Liguori G, Lombardi R, Naturale MD, Mercuri C, Bulotta RM, Britti D, Palma E. Antimicrobial Resistance in Livestock: A Serious Threat to Public Health. Antibiotics (Basel) 2024; 13:551. [PMID: 38927217 PMCID: PMC11200672 DOI: 10.3390/antibiotics13060551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Antimicrobial resistance represents an alarming public health problem; its importance is related to the significant clinical implications (increased morbidity, mortality, disease duration, development of comorbidities, and epidemics), as well as its economic effects on the healthcare sector. In fact, therapeutic options are severely limited by the advent and spread of germs resistant to many antibiotics. The situation worldwide is worrying, especially in light of the prevalence of Gram-negative bacteria-Klebsiella pneumoniae and Acinetobacter baumannii-which are frequently isolated in hospital environments and, more specifically, in intensive care units. The problem is compounded by the ineffective treatment of infections by patients who often self-prescribe therapy. Resistant bacteria also show resistance to the latest generation antibiotics, such as carbapenems. In fact, superbacteria, grouped under the acronym extended-spectrum betalactamase (ESBL), are becoming common. Antibiotic resistance is also found in the livestock sector, with serious repercussions on animal production. In general, this phenomenon affects all members of the biosphere and can only be addressed by adopting a holistic "One Health" approach. In this literature overview, a stock is taken of what has been learned about antibiotic resistance, and suggestions are proposed to stem its advance.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
| | - Carmine Lupia
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
| | - Giusi Poerio
- ATS Val Padana, Via dei Toscani, 46100 Mantova, Italy;
| | | | - Renato Lombardi
- IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo (FG), 71013 Foggia, Italy;
| | - Maria Diana Naturale
- Ministry of Health, Directorate General for Health Programming, 00144 Rome, Italy;
| | - Caterina Mercuri
- Department of Experimental and Clinical Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy;
| | - Rosa Maria Bulotta
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Center for Pharmacological Research, Food Safety, High Tech and Health (IRC-FSH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Amadio A, Bono JL, Irazoqui M, Larzábal M, Marques da Silva W, Eberhardt MF, Riviere NA, Gally D, Manning SD, Cataldi A. Genomic analysis of shiga toxin-containing Escherichia coli O157:H7 isolated from Argentinean cattle. PLoS One 2021; 16:e0258753. [PMID: 34710106 PMCID: PMC8553066 DOI: 10.1371/journal.pone.0258753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/04/2021] [Indexed: 11/19/2022] Open
Abstract
Cattle are the main reservoir of Enterohemorrhagic Escherichia coli (EHEC), with O157:H7 the distinctive serotype. EHEC is the main causative agent of a severe systemic disease, Hemolytic Uremic Syndrome (HUS). Argentina has the highest pediatric HUS incidence worldwide with 12–14 cases per 100,000 children. Herein, we assessed the genomes of EHEC O157:H7 isolates recovered from cattle in the humid Pampas of Argentina. According to phylogenetic studies, EHEC O157 can be divided into clades. Clade 8 strains that were classified as hypervirulent. Most of the strains of this clade have a Shiga toxin stx2a-stx2c genotype. To better understand the molecular bases related to virulence, pathogenicity and evolution of EHEC O157:H7, we performed a comparative genomic analysis of these isolates through whole genome sequencing. The isolates classified as clade 8 (four strains) and clade 6 (four strains) contained 13 to 16 lambdoid prophages per genome, and the observed variability of prophages was analysed. An inter strain comparison show that while some prophages are highly related and can be grouped into families, other are unique. Prophages encoding for stx2a were highly diverse, while those encoding for stx2c were conserved. A cluster of genes exclusively found in clade 8 contained 13 genes that mostly encoded for DNA binding proteins. In the studied strains, polymorphisms in Q antiterminator, the Q-stx2A intergenic region and the O and P γ alleles of prophage replication proteins are associated with different levels of Stx2a production. As expected, all strains had the pO157 plasmid that was highly conserved, although one strain displayed a transposon interruption in the protease EspP gene. This genomic analysis may contribute to the understanding of the genetic basis of the hypervirulence of EHEC O157:H7 strains circulating in Argentine cattle. This work aligns with other studies of O157 strain variation in other populations that shows key differences in Stx2a-encoding prophages.
Collapse
Affiliation(s)
- Ariel Amadio
- Instituto de Investigación de la Cadena Láctea IDICaL (INTA-CONICET), Rafaela, Argentina
| | - James L. Bono
- U.S Meat Animal Research Center, Agricultural Research Service, U.S. Department of Agriculture, Clay Center, Nebraska, United States of America
| | - Matías Irazoqui
- Instituto de Investigación de la Cadena Láctea IDICaL (INTA-CONICET), Rafaela, Argentina
| | - Mariano Larzábal
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO)-CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET), Hurlingham, Argentina
| | - Wanderson Marques da Silva
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO)-CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET), Hurlingham, Argentina
| | | | - Nahuel A. Riviere
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO)-CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET), Hurlingham, Argentina
| | - David Gally
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Shannon D. Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Angel Cataldi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO)-CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET), Hurlingham, Argentina
- * E-mail:
| |
Collapse
|
4
|
Abdelfattah EM, Ekong PS, Okello E, Chamchoy T, Karle BM, Black RA, Sheedy D, ElAshmawy WR, Williams DR, Califano D, Tovar LFD, Ongom J, Lehenbauer TW, Byrne BA, Aly SS. Epidemiology of antimicrobial resistance (AMR) on California dairies: descriptive and cluster analyses of AMR phenotype of fecal commensal bacteria isolated from adult cows. PeerJ 2021; 9:e11108. [PMID: 33976962 PMCID: PMC8063881 DOI: 10.7717/peerj.11108] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/23/2021] [Indexed: 12/17/2022] Open
Abstract
Background This study describes the occurrence of antimicrobial resistance (AMR) in commensal Escherichia coli and Enterococcus/Streptococcus spp. (ES) isolated from fecal samples of dairy cows and assesses the variation of AMR profiles across regions and seasons following the implementation of the Food and Agricultural Code (FAC) Sections 14400–14408 (formerly known as Senate Bill, SB 27) in California (CA). Methods The study was conducted on ten dairies distributed across CA’s three milk sheds: Northern California (NCA), Northern San Joaquin Valley (NSJV), and the Greater Southern California (GSCA). On each study dairy, individual fecal samples were collected from two cohorts of lactating dairy cows during the fall/winter 2018 and spring/summer 2019 seasons. Each cohort comprised of 12 cows per dairy. The fecal samples were collected at enrollment before calving (close-up stage) and then monthly thereafter for four consecutive time points up to 120 days in milk. A total of 2,171 E. coli and 2,158 ES isolates were tested for antimicrobial susceptibility using the broth microdilution method against a select panel of antimicrobials. Results The E. coli isolates showed high resistance to florfenicol (83.31% ± 0.80) and sulphadimethoxine (32.45%), while resistance to ampicillin (1.10% ± 0.21), ceftiofur (1.93% ± 0.29), danofloxacin (4.01% ± 0.42), enrofloxacin (3.31% ± 0.38), gentamicin (0.32% ± 0.12) and neomycin (1.61% ± 0.27) had low resistance proportions. The ES isolates were highly resistant to tildipirosin (50.18% ± 1.10), tilmicosin (48% ± 1.10), tiamulin (42%) and florfenicol (46% ± 1.10), but were minimally resistant to ampicillin (0.23%) and penicillin (0.20%). Multidrug resistance (MDR) (resistance to at least 1 drug in ≥3 antimicrobial classes) was observed in 14.14% of E. coli isolates and 39% of ES isolates. Escherichia coli isolates recovered during winter showed higher MDR prevalence compared to summer isolates (20.33% vs. 8.04%). A higher prevalence of MDR was observed in NSJV (17.29%) and GSCA (15.34%) compared with NCA (10.10%). Conclusions Our findings showed high rates of AMR to several drugs that are not labeled for use in lactating dairy cattle 20 months of age or older. Conversely, very low resistance was observed for drugs labeled for use in adult dairy cows, such as cephalosporins and penicillin. Overall, our findings identified important differences in AMR by antimicrobial class, region and season.
Collapse
Affiliation(s)
- Essam M Abdelfattah
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, USA.,Department of Animal Hygiene, and Veterinary Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Qalyubia, Egypt
| | - Pius S Ekong
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, USA.,Department of Epidemiology, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Emmanuel Okello
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, USA.,Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Tapakorn Chamchoy
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, USA
| | - Betsy M Karle
- Cooperative Extension, Division of Agriculture and Natural Resources, University of California, Davis, Orland, CA, USA
| | - Randi A Black
- Cooperative Extension, Division of Agriculture and Natural Resources, University of California, Davis, Santa Rosa, CA, USA
| | - David Sheedy
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, USA
| | - Wagdy R ElAshmawy
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, USA.,Department of Internal Medicine and Infectious Diseases, Cairo University, Giza, Giza, Egypt
| | - Deniece R Williams
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, USA
| | - Daniela Califano
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, USA
| | - Luis Fernando Durán Tovar
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, USA
| | - Jonathan Ongom
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, USA
| | - Terry W Lehenbauer
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, USA.,Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Barbara A Byrne
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Sharif S Aly
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, USA.,Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| |
Collapse
|
5
|
Engblom S, Eriksson R, Widgren S. Bayesian epidemiological modeling over high-resolution network data. Epidemics 2020; 32:100399. [PMID: 32799071 DOI: 10.1016/j.epidem.2020.100399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/06/2020] [Accepted: 06/08/2020] [Indexed: 01/10/2023] Open
Abstract
Mathematical epidemiological models have a broad use, including both qualitative and quantitative applications. With the increasing availability of data, large-scale quantitative disease spread models can nowadays be formulated. Such models have a great potential, e.g., in risk assessments in public health. Their main challenge is model parameterization given surveillance data, a problem which often limits their practical usage. We offer a solution to this problem by developing a Bayesian methodology suitable to epidemiological models driven by network data. The greatest difficulty in obtaining a concentrated parameter posterior is the quality of surveillance data; disease measurements are often scarce and carry little information about the parameters. The often overlooked problem of the model's identifiability therefore needs to be addressed, and we do so using a hierarchy of increasingly realistic known truth experiments. Our proposed Bayesian approach performs convincingly across all our synthetic tests. From pathogen measurements of shiga toxin-producing Escherichia coli O157 in Swedish cattle, we are able to produce an accurate statistical model of first-principles confronted with data. Within this model we explore the potential of a Bayesian public health framework by assessing the efficiency of disease detection and -intervention scenarios.
Collapse
Affiliation(s)
- Stefan Engblom
- Division of Scientific Computing, Department of Information Technology, Uppsala University, SE-751 05 Uppsala, Sweden.
| | - Robin Eriksson
- Division of Scientific Computing, Department of Information Technology, Uppsala University, SE-751 05 Uppsala, Sweden.
| | - Stefan Widgren
- Department of Disease Control and Epidemiology, National Veterinary Institute, SE-751 89 Uppsala, Sweden.
| |
Collapse
|
6
|
Vidovic N, Vidovic S. Antimicrobial Resistance and Food Animals: Influence of Livestock Environment on the Emergence and Dissemination of Antimicrobial Resistance. Antibiotics (Basel) 2020; 9:antibiotics9020052. [PMID: 32023977 PMCID: PMC7168261 DOI: 10.3390/antibiotics9020052] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023] Open
Abstract
The emergence and dissemination of antimicrobial resistance among human, animal and zoonotic pathogens pose an enormous threat to human health worldwide. The use of antibiotics in human and veterinary medicine, and especially the use of large quantities of antibiotics in livestock for the purpose of growth promotion of food animals is believed to be contributing to the modern trend of the emergence and spread of bacteria with antibiotic resistant traits. To better control the emergence and spread of antimicrobial resistance several countries from Western Europe implemented a ban for antibiotic use in livestock, specifically the use of antibiotics for growth promotion of food animals. This review article summarizes the recent knowledge of molecular acquisition of antimicrobial resistance and the effects of implementation of antibiotic growth promoter bans on the spread of antimicrobial resistant bacteria in animals and humans. In this article, we also discuss the main zoonotic transmission routes of antimicrobial resistance and novel approaches designed to prevent or slow down the emergence and spread of antimicrobial resistance worldwide. Finally, we provide future perspectives associated with the control and management of the emergence and spread of antimicrobial resistant bacteria.
Collapse
Affiliation(s)
- Nikola Vidovic
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7K 4H3, Canada;
| | - Sinisa Vidovic
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA
- Correspondence:
| |
Collapse
|
7
|
Vidovic S, Medihala P, Dynes JJ, Daida P, Vujanovic V, Hitchcock AP, Shetty D, Zhang H, Brown DR, Lawrence JR, Korber DR. Importance of the RpoE Regulon in Maintaining the Lipid Bilayer during Antimicrobial Treatment with the Polycationic Agent, Chlorhexidine. Proteomics 2018; 18. [PMID: 29280319 DOI: 10.1002/pmic.201700285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/23/2017] [Indexed: 12/28/2022]
Abstract
The emergence of multidrug resistance in bacteria has reached alarming levels. To solve this growing problem, discovery of novel cellular targets or pathways important for antimicrobial resistance is urgently needed. In this study, we explored how the alternative sigma factor, RpoE, protects Escherichia coli O157 against the toxic effects of the polycationic antimicrobial agent, chlorhexidine (CHX). Susceptibility of this organism to CHX was found to directly correlate to the growth rate, with the faster replicating wild-type being more susceptible to CHX than its more slowly replicating ΔrpoE O157 mutant. Once the wild-type and rpoE mutant strains had undergone growth arrest (entered the stationary growth phase), their resistance to CHX became entirely dependent on the functionality of RpoE. The RpoE regulon plays a critical role in maintaining the integrity of the asymmetric lipid bilayer of E. coli, thereby preventing the intracellular accumulation of CHX. Finally, using a single-cell, high-resolution, synchrotron-based approach, we discovered a subpopulation of the rpoE mutant strain with no detectable intracellular CHX, a predominant characteristic of the wild-type CHX-resistant population. This finding reveals a role of phenotypic heterogeneity in antimicrobial resistance.
Collapse
Affiliation(s)
- Sinisa Vidovic
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Prabhakara Medihala
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | - James J Dynes
- Canadian Light Source, Inc., University of Saskatchewan, Saskatoon, Canada
| | - Prasad Daida
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Vladimir Vujanovic
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Adam P Hitchcock
- Brockhouse Institute for Materials Research, McMaster University, Hamilton, Canada
| | - Deeksha Shetty
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Haixia Zhang
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - David R Brown
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | | | - Darren R Korber
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
8
|
Alshalchi S, Hayer SS, An R, Munoz-Aguayo J, Flores-Figueroa C, Nguyen R, Lauer D, Olsen K, Alvarez J, Boxrud D, Cardona C, Vidovic S. The Possible Influence of Non-synonymous Point Mutations within the FimA Adhesin of Non-typhoidal Salmonella (NTS) Isolates in the Process of Host Adaptation. Front Microbiol 2017; 8:2030. [PMID: 29089942 PMCID: PMC5651078 DOI: 10.3389/fmicb.2017.02030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 10/04/2017] [Indexed: 12/18/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) remains a global pathogen that affects a wide range of animal species. We analyzed a large number of NTS isolates of different host origins, including Salmonella Heidelberg (n = 80, avian), S. Dublin (50, bovine), S. Typhimurium var 5- (n = 40, porcine), S. 4,5,12,:i:- (n = 40, porcine), S. Cerro (n = 16, bovine), and S. Montevideo (n = 14, bovine), using virulence profiling of the bcfC, mgtC, ssaC, invE, pefA, stn, sopB, and siiE virulence-associated genes, a biofilm production assay, pulsed field gel electrophoresis, and the full-length sequencing of the fimA (adhesin) and iroN (receptor) genes. We determined a key amino acid substitution, A169 (i.e., threonine changed to alanine at position 169), in the FimA protein that changed ligand affinity of FimA toward N-acetyl-D-glucosamine. This finding clearly indicates the important role of non-synonymous single nucleotide polymorphism (nsSNPs) in adhesin functionality that may impact the host tropism of NTS. This nsSNP was found in S. Heidelberg and S. Cerro isolates. Although this was not the case for the IroN receptor, the phylogeny of this receptor and different host origins of NTS isolates were positively correlated, suggesting existence of specific host immune selective pressures on this unique receptor in S. enterica. We found that pefA, a gene encoding major fimbrial subunit, was the most-segregative virulence factor. It was associated with S. Heidelberg, S. Typhimurium var 5- and S. 4,5,12,:i:- but not with the rest of NTS strains. Further, we observed a significantly higher frequency of non-biofilm producers among NTS strains that do not carry pefA (42.5%) compared to S. Heidelberg (2.5%) and S. Typhimurium var 5- (7.5%) and S. 4,5,12,:i:- (0%). This study provides new insights into the host adaptation of avian and mammalian NTS isolates that are based on the bacterial antigens FimA and IroN as well as the interrelationships between host adaptation, overall genetic relatedness, and virulence potential in these NTS isolates.
Collapse
Affiliation(s)
- Sahar Alshalchi
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minnesota, MN, United States
| | - Shivdeep S Hayer
- Department of Population Medicine, University of Minnesota, Minnesota, MN, United States
| | - Ran An
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minnesota, MN, United States
| | - Jeannette Munoz-Aguayo
- Mid-Central Research and Outreach Center, University of Minnesota, Minnesota, MN, United States
| | | | - Ryan Nguyen
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minnesota, MN, United States
| | - Dale Lauer
- Minnesota Poultry Testing Laboratory, University of Minnesota, Minnesota, MN, United States
| | - Karen Olsen
- Veterinary Diagnostic Laboratory, University of Minnesota, Minnesota, MN, United States
| | - Julio Alvarez
- Department of Population Medicine, University of Minnesota, Minnesota, MN, United States
| | - David Boxrud
- Public Health Laboratory, Minnesota Department of Health, Minnesota, MN, United States
| | - Carol Cardona
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minnesota, MN, United States
| | - Sinisa Vidovic
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minnesota, MN, United States
| |
Collapse
|
9
|
Colavecchio A, Cadieux B, Lo A, Goodridge LD. Bacteriophages Contribute to the Spread of Antibiotic Resistance Genes among Foodborne Pathogens of the Enterobacteriaceae Family - A Review. Front Microbiol 2017; 8:1108. [PMID: 28676794 PMCID: PMC5476706 DOI: 10.3389/fmicb.2017.01108] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 05/31/2017] [Indexed: 01/21/2023] Open
Abstract
Foodborne illnesses continue to have an economic impact on global health care systems. There is a growing concern regarding the increasing frequency of antibiotic resistance in foodborne bacterial pathogens and how such resistance may affect treatment outcomes. In an effort to better understand how to reduce the spread of resistance, many research studies have been conducted regarding the methods by which antibiotic resistance genes are mobilized and spread between bacteria. Transduction by bacteriophages (phages) is one of many horizontal gene transfer mechanisms, and recent findings have shown phage-mediated transduction to be a significant contributor to dissemination of antibiotic resistance genes. Here, we review the viability of transduction as a contributing factor to the dissemination of antibiotic resistance genes in foodborne pathogens of the Enterobacteriaceae family, including non-typhoidal Salmonella and Shiga toxin-producing Escherichia coli, as well as environmental factors that increase transduction of antibiotic resistance genes.
Collapse
Affiliation(s)
- Anna Colavecchio
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-BellevueQC, Canada
| | - Brigitte Cadieux
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-BellevueQC, Canada
| | - Amanda Lo
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-BellevueQC, Canada
| | - Lawrence D Goodridge
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-BellevueQC, Canada
| |
Collapse
|
10
|
Spencer SEF, Besser TE, Cobbold RN, French NP. 'Super' or just 'above average'? Supershedders and the transmission of Escherichia coli O157:H7 among feedlot cattle. J R Soc Interface 2016; 12:0446. [PMID: 26269231 DOI: 10.1098/rsif.2015.0446] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Supershedders have been suggested to be major drivers of transmission of Escherichia coli O157:H7 (E. coli O157:H7) among cattle in feedlot environments, despite our relatively limited knowledge of the processes that govern periods of high shedding within an individual animal. In this study, we attempt a data-driven approach, estimating the key characteristics of high shedding behaviour, including effects on transmission to other animals, directly from a study of natural E. coli O157:H7 infection of cattle in a research feedlot, in order to develop an evidence-based definition of supershedding. In contrast to the hypothesized role of supershedders, we found that high shedding individuals only modestly increased the risk of transmission: individuals shedding over 10(3) cfu g(-1) faeces were estimated to pose a risk of transmission only 2.45 times greater than those shedding below that level. The data suggested that shedding above 10(3) cfu g(-1) faeces was the most appropriate definition of supershedding behaviour and under this definition supershedding was surprisingly common, with an estimated prevalence of 31.3% in colonized individuals. We found no evidence that environmental contamination by faeces of shedding cattle contributed to transmission over timescales longer than 3 days and preliminary evidence that higher stocking density increased the risk of transmission.
Collapse
Affiliation(s)
| | - Thomas E Besser
- Department Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Rowland N Cobbold
- School of Veterinary Science, University of Queensland, Gatton, Queensland, Australia 4343
| | - Nigel P French
- mEpiLab, Infectious Disease Research Centre, Institute of Veterinary Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
11
|
Widgren S, Söderlund R, Eriksson E, Fasth C, Aspan A, Emanuelson U, Alenius S, Lindberg A. Longitudinal observational study over 38 months of verotoxigenic Escherichia coli O157:H7 status in 126 cattle herds. Prev Vet Med 2015; 121:343-52. [PMID: 26321656 DOI: 10.1016/j.prevetmed.2015.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/26/2015] [Accepted: 08/14/2015] [Indexed: 10/23/2022]
Abstract
Verotoxigenic Escherichia coli O157:H7 (VTEC O157:H7) is an important zoonotic pathogen capable of causing infections in humans, sometimes with severe symptoms such as hemorrhagic colitis and hemolytic uremic syndrome (HUS). It has been reported that a subgroup of VTEC O157:H7, referred to as clade 8, is overrepresented among HUS cases. Cattle are considered to be the main reservoir of VTEC O157:H7 and infected animals shed the bacteria in feces without showing clinical signs of disease. The aims of the present study were: (1) to better understand how the presence of VTEC O157:H7 in the farm environment changes over an extended period of time, (2) to investigate potential risk factors for the presence of the bacteria, and (3) describe the distribution of MLVA types and specifically the occurrence of the hypervirulent strains (clade 8 strains) of VTEC O157:H7. The farm environment of 126 cattle herds in Sweden were sampled from October 2009 to December 2012 (38 months) using pooled pat and overshoe sampling. Each herd was sampled, on average, on 17 occasions (range=1-20; median=19), at intervals of 64 days (range=7-205; median=58). Verotoxigenic E. coli O157:H7 were detected on one or more occasions in 53% of the herds (n=67). In these herds, the percentage of positive sampling occasions ranged from 6% to 72% (mean=19%; median=17%). Multi-locus variable number tandem repeat analysis (MLVA) typing was performed on isolates from infected herds to identify hypervirulent strains (clade 8). Clustering of MLVA profiles yielded 35 clusters and hypervirulent strains were found in 18 herds; the same cluster was often identified on consecutive samplings and in nearby farms. Using generalized estimating equations, an association was found between the probability of detecting VTEC O157:H7 and status at the preceding sampling, season, herd size, infected neighboring farms and recent introduction of animals. This study showed that the bacteria VTEC O157:H7 were spontaneously cleared from the farm environment in most infected herds over time, and key factors were identified to prevent the spread of VTEC O157:H7 between cattle herds.
Collapse
Affiliation(s)
| | | | - Erik Eriksson
- National Veterinary Institute (SVA), Uppsala, Sweden
| | | | - Anna Aspan
- National Veterinary Institute (SVA), Uppsala, Sweden
| | | | | | - Ann Lindberg
- National Veterinary Institute (SVA), Uppsala, Sweden
| |
Collapse
|
12
|
Differing populations of endemic bacteriophages in cattle shedding high and low numbers of Escherichia coli O157:H7 bacteria in feces. Appl Environ Microbiol 2014; 80:3819-25. [PMID: 24747892 DOI: 10.1128/aem.00708-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objectives of this study were to identify endemic bacteriophages (phages) in the feedlot environment and determine relationships of these phages to Escherichia coli O157:H7 from cattle shedding high and low numbers of naturally occurring E. coli O157:H7. Angus crossbred steers were purchased from a southern Alberta (Canada) feedlot where cattle excreting ≥ 10(4) CFU · g(-1) of E. coli O157:H7 in feces at a single time point were identified as supershedders (SS; n = 6), and cattle excreting <10(4) CFU · g(-1) of feces were identified as low shedders (LS; n = 5). Fecal pats or fecal grabs were collected daily from individual cattle for 5 weeks. E. coli O157:H7 in feces was detected by immunomagnetic separation and enumerated by direct plating, and phages were isolated using short- and overnight-enrichment methods. The total prevalence of E. coli O157:H7 isolated from feces was 14.4% and did not differ between LS and SS (P = 0.972). The total prevalence of phages was higher in the LS group (20.9%) than in the SS group (8.3%; P = 0.01). Based on genome size estimated by pulsed-field gel electrophoresis and morphology determined by transmission electron microscopy, T4- and O1-like phages of Myoviridae and T1-like phage of Siphoviridae were isolated. Compared to T1- and O1-like phages, T4-like phages exhibited a broad host range and strong lytic capability when targeting E. coli O157:H7. Moreover, the T4-like phages were more frequently isolated from feces of LS than SS, suggesting that endemic phages may impact the shedding dynamics of E. coli O157:H7 in cattle.
Collapse
|
13
|
Callaway TR, Edrington TS, Nisbet DJ. MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM: Ecological and dietary impactors of foodborne pathogens and methods to reduce fecal shedding in cattle1,2. J Anim Sci 2014; 92:1356-65. [DOI: 10.2527/jas.2013-7308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- T. R. Callaway
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, USDA, College Station, TX 77845
| | - T. S. Edrington
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, USDA, College Station, TX 77845
| | - D. J. Nisbet
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, USDA, College Station, TX 77845
| |
Collapse
|
14
|
Islam MZ, Musekiwa A, Islam K, Ahmed S, Chowdhury S, Ahad A, Biswas PK. Regional variation in the prevalence of E. coli O157 in cattle: a meta-analysis and meta-regression. PLoS One 2014; 9:e93299. [PMID: 24691253 PMCID: PMC3972218 DOI: 10.1371/journal.pone.0093299] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/03/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Escherichia coli O157 (EcO157) infection has been recognized as an important global public health concern. But information on the prevalence of EcO157 in cattle at the global and at the wider geographical levels is limited, if not absent. This is the first meta-analysis to investigate the point prevalence of EcO157 in cattle at the global level and to explore the factors contributing to variation in prevalence estimates. METHODS Seven electronic databases- CAB Abstracts, PubMed, Biosis Citation Index, Medline, Web of Knowledge, Scirus and Scopus were searched for relevant publications from 1980 to 2012. A random effect meta-analysis model was used to produce the pooled estimates. The potential sources of between study heterogeneity were identified using meta-regression. PRINCIPAL FINDINGS A total of 140 studies consisting 220,427 cattle were included in the meta-analysis. The prevalence estimate of EcO157 in cattle at the global level was 5.68% (95% CI, 5.16-6.20). The random effects pooled prevalence estimates in Africa, Northern America, Oceania, Europe, Asia and Latin America-Caribbean were 31.20% (95% CI, 12.35-50.04), 7.35% (95% CI, 6.44-8.26), 6.85% (95% CI, 2.41-11.29), 5.15% (95% CI, 4.21-6.09), 4.69% (95% CI, 3.05-6.33) and 1.65% (95% CI, 0.77-2.53), respectively. Between studies heterogeneity was evidenced in most regions. World region (p<0.001), type of cattle (p<0.001) and to some extent, specimens (p = 0.074) as well as method of pre-enrichment (p = 0.110), were identified as factors for variation in the prevalence estimates of EcO157 in cattle. CONCLUSION The prevalence of the organism seems to be higher in the African and Northern American regions. The important factors that might have influence in the estimates of EcO157 are type of cattle and kind of screening specimen. Their roles need to be determined and they should be properly handled in any survey to estimate the true prevalence of EcO157.
Collapse
Affiliation(s)
- Md. Zohorul Islam
- Department of Microbiology, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh
| | - Alfred Musekiwa
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Kamrul Islam
- Department of Microbiology, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh
| | - Shahana Ahmed
- Chittagong Veterinary Laboratory, Chittagong, Bangladesh
| | - Sharmin Chowdhury
- Department of Pathology and Parasitology, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh
| | - Abdul Ahad
- Department of Microbiology, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh
| | - Paritosh Kumar Biswas
- Department of Microbiology, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh
| |
Collapse
|
15
|
Ateba CN, Mbewe M. Determination of the genetic similarities of fingerprints from Escherichia coli O157:H7 isolated from different sources in the North West Province, South Africa using ISR, BOXAIR and REP-PCR analysis. Microbiol Res 2013; 168:438-46. [DOI: 10.1016/j.micres.2013.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/31/2013] [Accepted: 02/06/2013] [Indexed: 11/27/2022]
|
16
|
Mandal SM, Sharma S, Pinnaka AK, Kumari A, Korpole S. Isolation and characterization of diverse antimicrobial lipopeptides produced by Citrobacter and Enterobacter. BMC Microbiol 2013; 13:152. [PMID: 23834699 PMCID: PMC3716907 DOI: 10.1186/1471-2180-13-152] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/03/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Increasing multidrug-resistance in bacteria resulted in a greater need to find alternative antimicrobial substances that can be used for clinical applications or preservation of food and dairy products. Research on antimicrobial peptides including lipopeptides exhibiting both narrow and broad spectrum inhibition activities is increasing in the recent past. Therefore, the present study was aimed at isolation and characterization of antimicrobial lipopeptide producing bacterial strains from fecal contaminated soil sample. RESULTS The phenotypic and 16S rRNA gene sequence analysis of all isolates identified them as different species of Gram-negative genera Citrobacter and Enterobacter. They exhibited common phenotypic traits like citrate utilization, oxidase negative and facultative anaerobic growth. The HPLC analysis of solvent extracts obtained from cell free fermented broth revealed the presence of multiple antimicrobial lipopeptides. The comprehensive mass spectral analysis (MALDI-TOF MS and GC-MS) of HPLC purified fractions of different isolates revealed that the lipopeptides varied in their molecular weight between (m/z) 607.21 to 1536.16 Da. Isomers of mass ion m/z 984/985 Da was produced by all strains. The 1495 Da lipopeptides produced by strains S-3 and S-11 were fengycin analogues and most active against all strains. While amino acid analysis of lipopeptides suggested most of them had similar composition as in iturins, fengycins, kurstakins and surfactins, differences in their β-hydroxy fatty acid content proposed them to be isoforms of these lipopeptides. CONCLUSION Although antimicrobial producing strains can be used as biocontrol agents in food preservation, strains with ability to produce multiple antimicrobial lipopeptides have potential applications in biotechnology sectors such as pharmaceutical and cosmetic industry. This is the first report on antibacterial lipopeptides production by strains of Citrobacter and Enterobacter.
Collapse
Affiliation(s)
- Santi M Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Shalley Sharma
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Anil Kumar Pinnaka
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Annu Kumari
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Suresh Korpole
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| |
Collapse
|
17
|
Technical specifications on harmonised epidemiological indicators for biological hazards to be covered by meat inspection of bovine animals. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
18
|
Molecular and antimicrobial susceptibility analyses distinguish clinical from bovine Escherichia coli O157 strains. J Clin Microbiol 2013; 51:2082-8. [PMID: 23616449 DOI: 10.1128/jcm.00307-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A population-based study combining (i) antimicrobial, (ii) genetic, and (iii) virulence analyses with molecular evolutionary analyses revealed segregative characteristics distinguishing human clinical and bovine Escherichia coli O157 strains from western Canada. Human (n = 50) and bovine (n = 50) strains of E. coli O157 were collected from Saskatchewan and Manitoba in 2006 and were analyzed by using the six-marker lineage-specific polymorphism assay (LSPA6), antimicrobial susceptibility analysis, the colicin assay, plasmid and virulence profiling including the eae, ehxA, espA, iha, stx1, stx2, stx2c, stx2d, stx2d-activatable, stx2e, and stx2f virulence-associated genes, and structure analyses. Multivariate logistic regression and Fisher's exact test strongly suggested that antimicrobial susceptibility was the most distinctive characteristic (P = 0.00487) associated with human strains. Among all genetic, virulence, and antimicrobial determinants, resistance to tetracycline (P < 0.000) and to sulfisoxazole (P < 0.009) were the most strongly associated segregative characteristics of bovine E. coli O157 strains. Among 11 virulence-associated genes, stx2c showed the strongest association with E. coli O157 strains of bovine origin. LSPA6 genotyping showed the dominance of the lineage I genotype among clinical (90%) and bovine (70%) strains, indicating the importance of lineage I in O157 epidemiology and ecology. Population structure analysis revealed that the more-diverse bovine strains came from a unique group of strains characterized by a high degree of antimicrobial resistance and high frequencies of lineage II genotypes and stx2c variants. These findings imply that antimicrobial resistance generated among bovine strains of E. coli O157 has a large impact on the population of this human pathogen.
Collapse
|
19
|
Smith BA, Fazil A, Lammerding AM. A risk assessment model for Escherichia coli O157:H7 in ground beef and beef cuts in Canada: Evaluating the effects of interventions. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.03.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Vidovic S, Thakur SD, Horsman GB, Levett PN, Anvari V, Dillon JAR. Longitudinal analysis of the evolution and dissemination of Neisseria gonorrhoeae strains (Saskatchewan, Canada, 2005 to 2008) reveals three major circulating strains and convergent evolution of ciprofloxacin and azithromycin resistance. J Clin Microbiol 2012; 50:3823-30. [PMID: 22972828 PMCID: PMC3502962 DOI: 10.1128/jcm.01402-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 08/30/2012] [Indexed: 12/28/2022] Open
Abstract
A longitudinal study combining multilocus sequence typing with molecular evolutionary analysis determined the distribution, population structure, and evolution of antibiotic resistance in Neisseria gonorrhoeae isolates in Saskatchewan that were collected between 2005 and 2008. Of 195 gonococcal isolates examined, 29 sequence types (STs) were identified with 3 major circulating strains (ST-1 through ST-3) comprising 52% of all gonococcal isolates studied. The prevalences, persistence, distribution patterns, and clonalities of these isolates strongly suggest that gonorrhea endemicity within this broad geographic region was driven by these 3 circulating strains. ST-1 exhibited a significantly (P = 0.001) higher prevalence throughout the study than did the others, accounting for ∼25% of the tested isolates each year. The spatial distributions of the gonococcal strains indicated that ST-1 in 2007 entered a linear component of the sexual network, reaching the remote north and resulting in the further spread and maintenance of infection. Ciprofloxacin and azithromycin resistances were observed in distantly related gonococcal lineages, clearly indicating the convergent acquisition of these antibiotic-resistant phenotypes. In addition, all ciprofloxacin- and azithromycin-resistant lineages were found at the edges of the minimum spanning tree, far from the major lineages, suggesting that these antibiotic phenotypes were most likely introduced into the province. In contrast, resistance to penicillin was found mostly in the endemic gonococcal lineages, suggesting that penicillin resistance was probably acquired in Saskatchewan as a result of spontaneous mutations in already-established lineages. Tetracycline resistance was present in all STs except one, indicating its ubiquitous nature in the gonococcal population studied.
Collapse
Affiliation(s)
- Sinisa Vidovic
- Vaccine and Infectious Disease Organization, Saskatoon, Saskatchewan, Canada
| | - Sidharath D. Thakur
- Vaccine and Infectious Disease Organization, Saskatoon, Saskatchewan, Canada
| | - Greg B. Horsman
- Saskatchewan Disease Control Laboratory, Regina, Saskatchewan, Canada
| | - Paul N. Levett
- Saskatchewan Disease Control Laboratory, Regina, Saskatchewan, Canada
| | | | - Jo-Anne R. Dillon
- Vaccine and Infectious Disease Organization, Saskatoon, Saskatchewan, Canada
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
21
|
Vidovic S, Mangalappalli-Illathu AK, Xiong H, Korber DR. Heat acclimation and the role of RpoS in prolonged heat shock of Escherichia coli O157. Food Microbiol 2012; 30:457-64. [PMID: 22365361 DOI: 10.1016/j.fm.2011.12.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/11/2011] [Accepted: 12/28/2011] [Indexed: 11/29/2022]
Abstract
Escherichia coli, a commensal mesophile that primarily inhabits the gastro-intestinal tract, responds to temperature up-shifts with transient expression of stress-response proteins. The goal of this study was to identify adaptive proteins of E. coli O157 crucial for growth resumption of this human pathogen after heat shock, with specific focus on the role of the RpoS sigma factor. Using the comparative proteomic analysis of hyper-thermally acclimatized wild-type strain B-1 and rpoS-mutant strain SV521, we identified 39 proteins that underwent significantly-different induction upon temperature shock at 45°C or rpoS mutation. All identified proteins of the heat post-acclimation stimulon fell into two large sub-groups: (i) stress proteins, including molecular chaperons, proteases, DNA/RNA stabilizing enzymes, and anti-oxidant proteins, and (ii) housekeeping proteins. It was found that in the heat stress stimulon RpoS has significantly (P=0.012) limited control over the key stress proteins involved in translation, translational elongation, protein folding and refolding. However, RpoS showed a significant (P=0.035) control over the cellular metabolic processes that included NADPH regeneration, pentose-phosphate shunt, nicotinamide nucleotide and NADP metabolic processes, reflecting its specific importance in promoting resource utilization (energy, protein synthesis etc.) during proliferation of hyperthermally-adapted cells. Pathogenic strains, like E. coli O157, have the ability to survive a variety of harsh stress conditions, leading to their entry into the food chain, and subsequent pathogenesis. This research offers insights into the physiological response of this pathogen during the critical period following adaptation to thermal stress and subsequent resumption of growth.
Collapse
Affiliation(s)
- Sinisa Vidovic
- Department of Food and Bioproducts Sciences, University of Saskatchewan, Saskatoon SK S7N 5A8, Canada
| | | | | | | |
Collapse
|
22
|
Rosales-Castillo JA, Vázquez-Garcidueñas MS, Álvarez-Hernández H, Chassin-Noria O, Varela-Murillo AI, Zavala-Páramo MG, Cano-Camacho H, Vázquez-Marrufo G. Genetic diversity and population structure of Escherichia coli from neighboring small-scale dairy farms. J Microbiol 2011; 49:693-702. [DOI: 10.1007/s12275-011-0461-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 04/21/2011] [Indexed: 10/15/2022]
|
23
|
O’ Halloran J, Barbosa T, Morrissey J, Kennedy J, O’ Gara F, Dobson A. Diversity and antimicrobial activity of Pseudovibrio spp. from Irish marine sponges. J Appl Microbiol 2011; 110:1495-508. [DOI: 10.1111/j.1365-2672.2011.05008.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
Vidovic S, Mangalappalli-Illathu AK, Korber DR. Prolonged cold stress response of Escherichia coli O157 and the role of rpoS. Int J Food Microbiol 2011; 146:163-9. [DOI: 10.1016/j.ijfoodmicro.2011.02.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 02/14/2011] [Accepted: 02/17/2011] [Indexed: 11/26/2022]
|
25
|
Aslam M, Stanford K, McAllister T. Characterization of antimicrobial resistance and seasonal prevalence ofEscherichia coliO157:H7 recovered from commercial feedlots in Alberta, Canada. Lett Appl Microbiol 2010; 50:320-6. [DOI: 10.1111/j.1472-765x.2010.02798.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Pearce MC, Chase-Topping ME, McKendrick IJ, Mellor DJ, Locking ME, Allison L, Ternent HE, Matthews L, Knight HI, Smith AW, Synge BA, Reilly W, Low JC, Reid SWJ, Gunn GJ, Woolhouse MEJ. Temporal and spatial patterns of bovine Escherichia coli O157 prevalence and comparison of temporal changes in the patterns of phage types associated with bovine shedding and human E. coli O157 cases in Scotland between 1998-2000 and 2002-2004. BMC Microbiol 2009; 9:276. [PMID: 20040112 PMCID: PMC2808314 DOI: 10.1186/1471-2180-9-276] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 12/29/2009] [Indexed: 11/10/2022] Open
Abstract
Background Escherichia coli O157 is an important cause of acute diarrhoea, haemorrhagic colitis and, especially in children, haemolytic uraemic syndrome (HUS). Incidence rates for human E. coli O157 infection in Scotland are higher than most other United Kingdom, European and North American countries. Cattle are considered the main reservoir for E. coli O157. Significant associations between livestock related exposures and human infection have been identified in a number of studies. Results Animal Studies: There were no statistically significant differences (P = 0.831) in the mean farm-level prevalence between the two studies (SEERAD: 0.218 (95%CI: 0.141-0.32); IPRAVE: 0.205 (95%CI: 0.135-0.296)). However, the mean pat-level prevalence decreased from 0.089 (95%CI: 0.075-0.105) to 0.040 (95%CI: 0.028-0.053) between the SEERAD and IPRAVE studies respectively (P < 0.001). Highly significant (P < 0.001) reductions in mean pat-level prevalence were also observed in the spring, in the North East and Central Scotland, and in the shedding of phage type (PT) 21/28. Human Cases: Contrasting the same time periods, there was a decline in the overall comparative annual reported incidence of human cases as well as in all the major PT groups except 'Other' PTs. For both cattle and humans, the predominant phage type between 1998 and 2004 was PT21/28 comprising over 50% of the positive cattle isolates and reported human cases respectively. The proportion of PT32, however, was represented by few (<5%) of reported human cases despite comprising over 10% of cattle isolates. Across the two studies there were differences in the proportion of PTs 21/28, 32 and 'Other' PTs in both cattle isolates and reported human cases; however, only differences in the cattle isolates were statistically significant (P = 0.002). Conclusion There was no significant decrease in the mean farm-level prevalence of E. coli O157 between 1998 and 2004 in Scotland, despite significant declines in mean pat-level prevalence. Although there were declines in the number of human cases between the two study periods, there is no statistically significant evidence that the overall rate (per 100,000 population) of human E. coli O157 infections in Scotland over the last 10 years has altered. Comparable patterns in the distribution of PTs 21/28 and 32 between cattle and humans support a hypothesized link between the bovine reservoir and human infections. This emphasizes the need to apply and improve methods to reduce bovine shedding of E. coli O157 in Scotland where rates appear higher in both cattle and human populations, than in other countries.
Collapse
|
27
|
Cobbaut K, Berkvens D, Houf K, De Deken R, De Zutter L. Escherichia coli O157 prevalence in different cattle farm types and identification of potential risk factors. J Food Prot 2009; 72:1848-53. [PMID: 19777885 DOI: 10.4315/0362-028x-72.9.1848] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Although the prevalence of Escherichia coli O157 on cattle farms has been examined extensively, the relationship between this pathogen and farm type has been established only rarely. A large-scale study was designed to determine the prevalence of E. coli O157 in the Flemish region of Belgium on farms of dairy cattle, beef cattle, mixed dairy and beef cattle, and veal calves. The effect of various factors on the occurrence at the pen level also was evaluated. In 2007, 180 farms were randomly selected based on region, farm size, and number of animals purchased and were examined using the overshoe sampling method. When possible, overshoes used in areas containing animals in three different age categories (< 8 months, 8 to 30 months, and > 30 months) were sampled on each farm. In total, 820 different pens were sampled and analyzed for the presence of E. coli O157 by enrichment, immunomagnetic separation, and plating on selective agar. Presumptive E. coli O157 colonies were identified using a multiplex PCR assay for the presence of the rfb(O157) and fliC(H7) genes. The statistical analysis was carried out with Stata SE/10.0 using a generalized linear regression model with a logit link function and a binomial error distribution. The overall farm prevalence of E. coli O157 was 37.8% (68 of 180 farms). The highest prevalence was found on dairy cattle farms (61.2%, 30 of 49 farms). The prevalences on beef, mixed dairy and beef, and veal calf farms were 22.7% (17 of 75 farms), 44.4% (20 of 45 farms), and 9.1% (1 of 11 farms), respectively. A significant positive correlation between age category and E. coli O157 prevalence was found only on mixed dairy and beef farms and dairy farms. No influence of farm size or introduction of new animals was demonstrated.
Collapse
Affiliation(s)
- K Cobbaut
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | | | | | | | | |
Collapse
|
28
|
Franz E, van Bruggen AH. Ecology ofE. coliO157:H7 andSalmonella entericain the Primary Vegetable Production Chain. Crit Rev Microbiol 2008; 34:143-61. [DOI: 10.1080/10408410802357432] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
29
|
Chase-Topping M, Gally D, Low C, Matthews L, Woolhouse M. Super-shedding and the link between human infection and livestock carriage of Escherichia coli O157. Nat Rev Microbiol 2008; 6:904-12. [PMID: 19008890 PMCID: PMC5844465 DOI: 10.1038/nrmicro2029] [Citation(s) in RCA: 256] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cattle that excrete more Escherichia coli O157 than others are known as super-shedders. Super-shedding has important consequences for the epidemiology of E. coli O157 in cattle--its main reservoir--and for the risk of human infection, particularly owing to environmental exposure. Ultimately, control measures targeted at super-shedders may prove to be highly effective. We currently have only a limited understanding of both the nature and the determinants of super-shedding. However, super-shedding has been observed to be associated with colonization at the terminal rectum and might also occur more often with certain pathogen phage types. More generally, epidemiological evidence suggests that super-shedding might be important in other bacterial and viral infections.
Collapse
Affiliation(s)
- Margo Chase-Topping
- Centre for Infectious Diseases, University of Edinburgh, Kings Buildings, Edinburgh, EH9 3JT, UK.
| | | | | | | | | |
Collapse
|
30
|
Phenotypic and genotypic characterization of verotoxin-producing Escherichia coli O103:H2 isolates from cattle and humans. J Clin Microbiol 2008; 46:3569-75. [PMID: 18768648 DOI: 10.1128/jcm.01095-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Characterization of important non-O157 verotoxin-producing Escherichia coli (VTEC) has lagged considerably behind that of O157:H7 strains. This study characterized 91 VTEC O103:H2 strains from bovine and human sources and of North American and European origins by virulence or putative virulence genes, pulsed-field gel electrophoresis (PFGE) patterns, plasmid profiles, antimicrobial resistance, and colicin production. All strains were positive for vt1 and eae-epsilon; 97% were positive for ehxA; and all were negative for hlyA. Two strains carried vt2. There were 66 PFGE patterns grouped in six clusters, and there were 25 different plasmid profiles. Plasmid-encoded katP and etp genes were significantly more frequent in European than in North American human strains. The distribution of selected phenotypes was as follows: enterohemorrhagic E. coli (EHEC) hemolysin, 95%; colicin production, 38%; antimicrobial resistance, 58%. All the strains were negative for the alpha-hemolytic phenotype. In conclusion, the VTEC O103:H2 strains were diverse, as shown by PFGE, plasmid profiles, virulence markers, and antimicrobial resistance patterns, and all strains showed an EHEC hemolytic phenotype instead of the alpha-hemolytic phenotype that has been shown previously.
Collapse
|
31
|
Characterisation of Escherichia coli O157 strains from humans, cattle and pigs in the North-West Province, South Africa. Int J Food Microbiol 2008; 128:181-8. [PMID: 18848733 DOI: 10.1016/j.ijfoodmicro.2008.08.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 08/07/2008] [Accepted: 08/18/2008] [Indexed: 11/21/2022]
Abstract
Escherichia coli O157 strains cause diseases in humans that result from the consumption of food and water contaminated with faeces of infected animals and/or individuals. The objectives of this study were to isolate and characterise E. coli O157 strains from humans, cattle and pigs and to determine their antibiotic resistant profiles as well as detection of virulence genes by PCR. Eight hundred faecal samples were analysed for typical E. coli O157 and 76 isolates were positively identified as E. coli O157 strains. 16S rRNA sequence data were used to confirm the identity of the isolates. Susceptibility profiles to 9 antibiotics were determined and the multiple antibiotic resistant (MAR) patterns were compiled. A large proportion (52.6%-92.1%) of the isolates from pigs, cattle and humans were resistant to tetracycline, sulphamethoxazole and erythromycin. Thus the phenotype Smx-T-E (sulphamethozaxole-tetracycline-erythromycin) was present in most of the predominant MAR phenotypes obtained. Cluster analysis of antibiotic resistances revealed a closer relationship between isolates from pig and human faeces than cattle and humans. PCR were performed to amplify STEC virulence and tetracycline resistance gene fragments. A tetB gene fragment was amplified among the isolates. Eighteen (60%) of the isolates possessed the hlyA gene and 7(23.3%) the eae gene while only 5(16.7%) possessed both genes. Although shiga toxin genes were detected in the E. coli O157:H7 positive control strain none of the isolates that were screened possessed these genes. In a related study we reported that the prevalence of E. coli O157 was higher in pigs than cattle and humans. A high market demand for pork and beef in South Africa amplifies the risk that diseased animals pose to human health. This highlighted the need for proper hygiene management to reduce the prevalence of E. coli O157 in farm animals and prevent the spread from animals to humans.
Collapse
|
32
|
Genotypic characterization and prevalence of virulence factors among Canadian Escherichia coli O157:H7 strains. Appl Environ Microbiol 2008; 74:4314-23. [PMID: 18487402 DOI: 10.1128/aem.02821-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this study, the association between genotypic and selected phenotypic characteristics was examined in a collection of Canadian Escherichia coli O157:H7 strains isolated from humans and cattle in the provinces of Alberta, Ontario, Saskatchewan, and Quebec. In a subset of 69 strains selected on the basis of specific phage types (PTs), a strong correlation between the lineage-specific polymorphism assay (LSPA6) genotype and PT was observed with all strains of PTs 4, 14, 21, 31, 33, and 87 belonging to the LSPA6 lineage I (LSPA6-LI) genotype, while those of PTs 23, 45, 67, and 74 belonged to LSPA6 lineage II (LSPA6-LII) genotypes. This correlation was maintained when additional strains of each PT were tested. E. coli O157:H7 strains with the LSPA6-LI genotype were much more common in the collection than were the LSPA6-LII or lineage I/II (LSPA6-LI/II)-related genotypes (82.6, 11.2, and 5.8%, respectively). Of the strains tested, proportionately more LSPA6-LI than LSPA6-LII genotype strains were isolated from humans (52.7% versus 19.7%) than from cattle (47.8% versus 80.2%). In addition, 96.7% of the LSPA6-LII strains carried the stx(2c) variant gene, while only 50.0% of LSPA6-LI/II and 2.7% of LSPA6-LI strains carried this gene. LSPA6-LII strains were also significantly more likely to possess the colicin D gene, cda (50.8% versus 23.2%), and have combined resistance to streptomycin, sulfisoxazole, and tetracycline (72.1% versus 0.9%) than were LSPA6-LI strains. The LSPA6 genotype- and PT-related characteristics identified may be important markers of specific ecotypes of E. coli O157:H7 that have unique epidemiological and virulence characteristics.
Collapse
|
33
|
Vidovic S, Block HC, Korber DR. Effect of soil composition, temperature, indigenous microflora, and environmental conditions on the survival of Escherichia coli O157:H7. Can J Microbiol 2008; 53:822-9. [PMID: 17898837 DOI: 10.1139/w07-041] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The survival of Escherichia coli O157:H7 in replicate soil microcosms was quantified in 2 types of silty clay loam soil (high carbon and low carbon) under either sterile or nonsterile conditions. Microcosms were held at -21, 4, and 22 degrees C under constant soil moisture content. Differences existed (P < 0.05) in survival of E. coli O157:H7 in low- and high-carbon soil at all temperatures, indicating an important role of soil composition on the survival of this pathogen. The highest death rate of E. coli O157:H7 in sterile soil occurred in the low-carbon soil at 4 degrees C, whereas in nonsterile soil the highest death rate was observed in the low-carbon soil at 22 degrees C. These results suggest that the most lethal effects on E. coli O157:H7 in the sterile system occurred via the synergy of nutrient limitation and cold stress, whereas in the nonsterile system lethality was owing to inhibition by indigenous soil microorganisms and starvation. Results obtained from an in situ field survival experiment demonstrated the apparent sensitivity of E. coli O157:H7 cells to dehydration, information that may be used to reduce environmental spread of this pathogen as well as formulate appropriate waste management strategies.
Collapse
Affiliation(s)
- Sinisa Vidovic
- Applied Microbiology and Food Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | | | | |
Collapse
|
34
|
Carson CA, Reid-Smith R, Irwin RJ, Martin WS, McEwen SA. Antimicrobial resistance in generic fecal Escherichia coli from 29 beef farms in Ontario. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2008; 72:119-28. [PMID: 18505200 PMCID: PMC2276896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The occurrence of antimicrobial resistance in generic Escherichia coli can serve as an indicator of the pool of resistance genes potentially available for transfer to pathogenic organisms. This study was conducted on 29 volunteer beef farms in Ontario to describe the prevalence and patterns of antimicrobial resistance in E. coli, and to describe changes in the prevalence of resistance during the feedlot stage of production. From the pooled fecal samples on 28 of the 29 farms, 31% of isolates from feedlots (n = 993) and 12% of isolates from cow-calf farms (n = 807) were resistant to one or more of 16 antimicrobials tested. No isolates were resistant to ceftriaxone, ciprofloxacin, gentamicin, or nalidixic acid, and < 1% of the pooled isolates were resistant to ceftiofur. Two percent of both feedlot and cow-calf isolates were resistant to > or = 5 antimicrobials. Cow-calf farms were at significantly lower risk than feedlots for having E. coli isolates that were resistant to streptomycin, sulfamethoxazole, and tetracycline. On average, the prevalence of sulfamethoxazole resistant E. coli isolates was significantly higher in calves than in cows. No resistance was observed to ceftriaxone or ciprofloxacin among isolates (n = 1265) obtained from individually sampled feedlot animals on 2 farms. Less than 1% of these isolates were resistant to gentamicin, nalidixic acid, and ceftiofur. From the individually sampled feedlot animals, resistance to streptomycin (on 1 farm), sulfamethoxazole, and tetracycline increased significantly from arrival to mid-point during the feeding period, and these levels persisted until market-readiness.
Collapse
Affiliation(s)
- Carolee A Carson
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, 160 Research Lane, Unit 103, Guelph, Ontario N1G 5B2. (Carson,
| | | | | | | | | |
Collapse
|
35
|
Mathew AG, Cissell R, Liamthong S. Antibiotic resistance in bacteria associated with food animals: a United States perspective of livestock production. Foodborne Pathog Dis 2007; 4:115-33. [PMID: 17600481 DOI: 10.1089/fpd.2006.0066] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The use of antimicrobial compounds in food animal production provides demonstrated benefits, including improved animal health, higher production and, in some cases, reduction in foodborne pathogens. However, use of antibiotics for agricultural purposes, particularly for growth enhancement, has come under much scrutiny, as it has been shown to contribute to the increased prevalence of antibiotic-resistant bacteria of human significance. The transfer of antibiotic resistance genes and selection for resistant bacteria can occur through a variety of mechanisms, which may not always be linked to specific antibiotic use. Prevalence data may provide some perspective on occurrence and changes in resistance over time; however, the reasons are diverse and complex. Much consideration has been given this issue on both domestic and international fronts, and various countries have enacted or are considering tighter restrictions or bans on some types of antibiotic use in food animal production. In some cases, banning the use of growth-promoting antibiotics appears to have resulted in decreases in prevalence of some drug resistant bacteria; however, subsequent increases in animal morbidity and mortality, particularly in young animals, have sometimes resulted in higher use of therapeutic antibiotics, which often come from drug families of greater relevance to human medicine. While it is clear that use of antibiotics can over time result in significant pools of resistance genes among bacteria, including human pathogens, the risk posed to humans by resistant organisms from farms and livestock has not been clearly defined. As livestock producers, animal health experts, the medical community, and government agencies consider effective strategies for control, it is critical that science-based information provide the basis for such considerations, and that the risks, benefits, and feasibility of such strategies are fully considered, so that human and animal health can be maintained while at the same time limiting the risks from antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Alan G Mathew
- Department of Animal Science, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee 37996, USA.
| | | | | |
Collapse
|
36
|
Abstract
Bovine manure is an important source of Escherichia coli O157 contamination of the environment and foods; therefore, effective interventions targeted at reducing the prevalence and magnitude of fecal E. coli O157 excretion by live cattle (preharvest) are desirable. Preharvest intervention methods can be grouped into 3 categories: 1) exposure reduction strategies, 2) exclusion strategies, and 3) direct antipathogen strategies. Exposure reduction involves environmental management targeted at reducing bovine exposure to E. coli O157 through biosecurity and environmental niche management such as feed and drinking water hygiene, reduced exposure to insects or wildlife, and improved cleanliness of the bedding or pen floor. In the category of exclusion, we group vaccination and dietary modifications such as selection of specific feed components; feeding of prebiotics, probiotics, or both; and supplementation with competitive exclusion cultures to limit proliferation of E. coli O157 in or on exposed animals. Direct antipathogen strategies include treatment with sodium chlorate, antibiotics, bacteriophages, in addition to washing of animals before slaughter. Presently, only 1 preharvest control for E. coli O157 in cattle has been effective and has gained widespread adoption-the feeding probiotic Lactobacillus acidophilus. More research into the effectiveness of parallel and simultaneous application of 1 or more preharvest control strategies, as well as the identification of new pre-harvest control methods, may provide practical means to substantially reduce the incidence of human E. coli O157-related illness by intervening at the farm level.
Collapse
Affiliation(s)
- J T LeJeune
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691, USA.
| | | |
Collapse
|
37
|
Vidovic S, Germida JJ, Korber DR. Sensitivity of two techniques to detect Escherichia coli O157 in naturally infected bovine fecal samples. Food Microbiol 2006; 24:633-9. [PMID: 17418315 DOI: 10.1016/j.fm.2006.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 11/15/2006] [Accepted: 12/12/2006] [Indexed: 11/26/2022]
Abstract
The aim of this study was to investigate the sensitivity and reliability of two techniques commonly used for the isolation of Escherichia coli O157: (i) buffered peptone water (BPW) containing vancomycin, cefsulodin and cefixime followed by immunomagnetic separation (IMS-VCC) and (ii) modified E. coli (EC) broth supplemented with novobiocin (m ECn), both followed by culturing on cefixime tellurite sorbitol McConkey (ctSMAC) agar plates. Over a 2-year period, 24 feedlots located over a large geographical area (approximately 600 x 450 km) were screened for the presence of E. coli O157. A total of 194 E. coli O157 isolates were identified; 151 (77.4%) using IMS-VCC and 108 (55.4%) using m ECn. The recovery rates of IMS-VCC varied from 100% to 47%, whereas for m ECn ranged from 100% to 16%. All isolates were grouped, using randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR), into 3 major clusters that comprised 39 different subtypes, providing evidence of considerable genetic heterogeneity. The results from this study revealed false negatives in IMS-VCC technique, most probably due to the high genetic diversity of environmental E. coli O157 isolates and antibiotic sensitivity. Using only IMS-VCC as a method for detection may result in significant underestimation of the pathogen. Performing two different enrichment steps in parallel can lead to markedly improved recovery rates of E. coli O157 isolates from naturally infected samples.
Collapse
Affiliation(s)
- Sinisa Vidovic
- Department of Applied Microbiology and Food Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, Sask, Canada S7N 5A8
| | | | | |
Collapse
|