1
|
Lin Y, Cheng C, Dai Y, Li W, Chen J, Chen M, Xie P, Gao Q, Fan X, Deng X. The origins of odor (β-cyclocitral) under different water nutrient conditions: Algae or submerged plants? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:173024. [PMID: 38719048 DOI: 10.1016/j.scitotenv.2024.173024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/23/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Among the problems caused by water eutrophication, the issue of odor compounds has attracted notable attention. β-Cyclocitral, a widely distributed and versatile odor compound, is commonly derived from both algae and aquatic plants. Planting aquatic plants is a common method of water purification. However, there is limited study on their impact on β-cyclocitral levels in water. Here, we conducted a study on the β-cyclocitral levels in water and the submerged plant leaves under three nutrient levels and six plant density treatments. Our findings revealed the following: (1) Chlorophyll-a (Chla), β-cyclocitral in the water (Wcyc), β-cyclocitral in Potamogeton lucens leaves (Pcyc) and the biomass of the submerged plants increase with rising nutrient concentration, which increased about 83 %, 95 %, 450 %, 320 % from eutrophic treatment to oligotrophic treatment, respectively. (2) In water, β-cyclocitral is influenced not only by algae but also by submerged plants, with primary influencing factors varying across different nutrient levels and plant densities. The main source of β-cyclocitral in water becomes from plants to algae as the water eutrophication and plant density decrease. (3) As submerged plants have the capability to emit β-cyclocitral, the release of β-cyclocitral increases with the density of submerged plants. Hence, when considering planting submerged plants for water purification purposes, it is crucial to carefully manage submerged plant density to mitigate the risk of odor pollution emanating from aquatic plants. This study offers fresh insights into selecting optimal water density for submerged plants and their role in mitigating the release of β-cyclocitral.
Collapse
Affiliation(s)
- Yu Lin
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Chaoyue Cheng
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yutai Dai
- Faculty of Resource and Environment, Hubei University, Wuhan 430062, China
| | - Weijie Li
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Jiping Chen
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Ecology and Environment, Tibet University, Lhasa 850012, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Mo Chen
- Faculty of Resource and Environment, Hubei University, Wuhan 430062, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Qiang Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Xiaoyue Fan
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xuwei Deng
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; University of Chinese Academy of Sciences, Beijing 10049, China.
| |
Collapse
|
2
|
Wang X, Cao H, Zhu Y, Zhou T, Teng F, Tao Y. β-cyclocitral induced rapid cell death of Microcystis aeruginosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123824. [PMID: 38513945 DOI: 10.1016/j.envpol.2024.123824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
β-cyclocitral (BCC) is an odorous compound that can be produced by bloom-forming cyanobacteria, for example, Microcystis aeruginosa. BCC has been proposed to explain the rapid decline of cyanobacterial blooms in natural water bodies due to its lytic effects on cyanobacteria cells. However, few insights have been gained regarding the mechanisms of its lethality on cyanobacteria. In this study, M. aeruginosa was exposed to 0-300 mg/L BCC, and the physiological responses were comprehensively studied at the cellular, molecular, and transcriptomic levels. The result indicated that the lethal effect was concentration-dependent; 100 mg/L BCC only caused recoverable stress, while 150-300 mg/L BCC caused rapid rupture of cyanobacterial cells. Scanning electron microscope images suggested two typical morphological changes exposed to above 150 mg/LBCC: wrinkled/shrank with limited holes on the surface at 150 and 200 mg/L BCC exposure; no apparent shrinkage at the surface but with cell perforation at 250 and 300 mg/L BCC exposure. BCC can rapidly inhibit the photosynthetic activity of M. aeruginosa cells (40%∼100% decreases for 100-300 mg/L BCC) and significantly down-regulate photosynthetic system Ⅰ-related genes. Also, chlorophyll a (by 30%∼90%) and ATP (by ∼80%) contents severely decreased, suggesting overwhelming pressure on the energy metabolism in cells. Glutathione levels increased significantly, and stress response-related genes were upregulated, indicating the perturbation of intracellular redox homeostasis. Two cell death pathways were proposed to explain the lethal effect: apoptosis-like death as revealed by the upregulation of SOS response genes when exposed to 200 mg/L BCC and mazEF-mediated death as revealed by the upregulation of mazEF system genes when exposed to 300 mg/L BCC. Results of the current work not only provide insights into the potential role of BCC in inducing programmed cell death during bloom demise but also indicate the potential of using BCC for harmful algal control.
Collapse
Affiliation(s)
- Xuejian Wang
- Groundwater Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China; Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Huansheng Cao
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, 215316, China
| | - Yinjie Zhu
- Groundwater Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China; Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Tingru Zhou
- Groundwater Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China; Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Fei Teng
- Groundwater Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Yi Tao
- Groundwater Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China; Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China; Tsinghua University-Kunming Joint Research Center for Dianchi Plateau Lake, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Harris TD, Reinl KL, Azarderakhsh M, Berger SA, Berman MC, Bizic M, Bhattacharya R, Burnet SH, Cianci-Gaskill JA, Domis LNDS, Elfferich I, Ger KA, Grossart HPF, Ibelings BW, Ionescu D, Kouhanestani ZM, Mauch J, McElarney YR, Nava V, North RL, Ogashawara I, Paule-Mercado MCA, Soria-Píriz S, Sun X, Trout-Haney JV, Weyhenmeyer GA, Yokota K, Zhan Q. What makes a cyanobacterial bloom disappear? A review of the abiotic and biotic cyanobacterial bloom loss factors. HARMFUL ALGAE 2024; 133:102599. [PMID: 38485445 DOI: 10.1016/j.hal.2024.102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 03/19/2024]
Abstract
Cyanobacterial blooms present substantial challenges to managers and threaten ecological and public health. Although the majority of cyanobacterial bloom research and management focuses on factors that control bloom initiation, duration, toxicity, and geographical extent, relatively little research focuses on the role of loss processes in blooms and how these processes are regulated. Here, we define a loss process in terms of population dynamics as any process that removes cells from a population, thereby decelerating or reducing the development and extent of blooms. We review abiotic (e.g., hydraulic flushing and oxidative stress/UV light) and biotic factors (e.g., allelopathic compounds, infections, grazing, and resting cells/programmed cell death) known to govern bloom loss. We found that the dominant loss processes depend on several system specific factors including cyanobacterial genera-specific traits, in situ physicochemical conditions, and the microbial, phytoplankton, and consumer community composition. We also address loss processes in the context of bloom management and discuss perspectives and challenges in predicting how a changing climate may directly and indirectly affect loss processes on blooms. A deeper understanding of bloom loss processes and their underlying mechanisms may help to mitigate the negative consequences of cyanobacterial blooms and improve current management strategies.
Collapse
Affiliation(s)
- Ted D Harris
- Kansas Biological Survey and Center for Ecological Research, University of Kansas, 2101 Constant Ave., Lawrence, KS, 66047
| | - Kaitlin L Reinl
- Lake Superior National Estuarine Research Reserve, University of Wisconsin - Madison Division of Extension, 14 Marina Dr, Superior, WI 54880
| | - Marzi Azarderakhsh
- Department of Construction and Civil Engineering, New York City College of Technology, 300 Jay Street, New York, NY 11201
| | - Stella A Berger
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Zur alten Fischerhütte 2, 16775 Stechlin, Germany
| | - Manuel Castro Berman
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 and Darrin Freshwater Institute, Rensselaer Polytechnic Institute, Bolton Landing, NY, 12814
| | - Mina Bizic
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Zur alten Fischerhütte 2, 16775 Stechlin, Germany
| | - Ruchi Bhattacharya
- Department of Biological, Geological & Environmental Sciences, Cleveland State University, Cleveland, OH 44115
| | - Sarah H Burnet
- University of Idaho, Fish and Wildlife Sciences, Moscow, ID, USA, 83844
| | - Jacob A Cianci-Gaskill
- Old Woman Creek National Estuarine Research Reserve, Ohio Department of Natural Resources, 2514 Cleveland Rd East, Huron, OH 44839
| | - Lisette N de Senerpont Domis
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6708 PB Wageningen, The Netherlands; Department of Water Resources and Pervasive Systems Group, faculty of EEMCS and ITC, University of Twente, The Netherlands
| | - Inge Elfferich
- Cardiff University, Earth and Environmental Sciences, Main Building, Park Place CF10 3AT, Cardiff, UK
| | - K Ali Ger
- Department of Ecology, Center for Biosciences, Universidade Federal do Rio Grande do Norte, R. das Biociencias, Lagoa Nova, Natal, RN, 59078-970, Brazil
| | - Hans-Peter F Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Zur alten Fischerhütte 2, 16775 Stechlin, Germany; Potsdam University, Institute of Biochemistry and Biology, Maulbeeralle 2, 14469 Potsdam, Germany
| | - Bas W Ibelings
- Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, 66 Blvd Carl Vogt, 1205, Geneva, Switzerland
| | - Danny Ionescu
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Zur alten Fischerhütte 2, 16775 Stechlin, Germany
| | - Zohreh Mazaheri Kouhanestani
- School of Natural Resources, University of Missouri-Columbia, Anheuser-Busch Natural Resources Building, Columbia, MO, 65211-7220
| | - Jonas Mauch
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany
| | - Yvonne R McElarney
- Fisheries and Aquatic Ecosystems, Agri-Food and Biosciences Institute, Belfast, Northern Ireland
| | - Veronica Nava
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, MI, Italy.
| | - Rebecca L North
- School of Natural Resources, University of Missouri-Columbia, Anheuser-Busch Natural Resources Building, Columbia, MO, 65211-7220
| | - Igor Ogashawara
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Zur alten Fischerhütte 2, 16775 Stechlin, Germany
| | - Ma Cristina A Paule-Mercado
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, České Budějovice 370 05, Czech Republic
| | - Sara Soria-Píriz
- Département des sciences biologiques, Université du Québec à Montréal, 141 Av. du Président-Kennedy, Montréal, QC H2 × 1Y4, Montréal, QC, Canada
| | - Xinyu Sun
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | | | - Gesa A Weyhenmeyer
- Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Kiyoko Yokota
- Biology Department, State University of New York at Oneonta, Oneonta, NY 13820, USA
| | - Qing Zhan
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
4
|
Senavirathna MDHJ, Yan H. Flow velocity and light intensity combination is important for Microcystis aeruginosa physical suppression. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10991. [PMID: 38291777 DOI: 10.1002/wer.10991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 02/01/2024]
Abstract
The cyanobacterial response to flow velocity or light intensity deviates from the combined effect of both factors. The responses of Microcystis aeruginosa to different combinations of flow velocities and light intensities were tested. Growth (OD730 and protein), stress (catalase, ascorbate peroxidase, and glutathione peroxidase), and photosynthetic ability (chlorophyll-a and fluorescence) parameters of M. aeruginosa were measured to evaluate the effects of different combinations. Exposure to different flow velocity-light combinations significantly affected the growth and physiology of M. aeruginosa. Flow velocities of 0.4 m s-1 showed a prominent influence on most of the measured parameters compared with no flow velocity or higher flow velocity conditions. The 1.2-m s-1 flow velocity and high light intensity (1200 μmol m-2 s-1 ) exposure caused a significant elevation in oxidative stress. Lower velocities are beneficial for M. aeruginosa at light stress, whereas extreme velocities are adverse and elevate the stress. Two categories of light-velocity combinations were identified as preferred and extreme categories, depending on whether they suppressed or supported M. aeruginosa growth. In controlling cyanobacteria blooms using flow or high-intensity light, it is imperative to consider the interaction of these two factors, as their combined effects can significantly vary the stress levels in cyanobacteria. A new system, designed to minimize mechanical damage on M. aeruginosa, was used to generate flow velocities. Additionally, the combined effects of flow velocities and light intensities have been considered for the first time. PRACTITIONER POINTS: Flow velocity can influence the effect of light on Microcystis aeruginosa. High light exposure effect on Microcystis aeruginosa can be reduced by low flow velocity. High flow velocity and high light exposure increase the stress on Microcystis aeruginosa. Different light intensities and flow velocity combinations changed Microcystis aeruginosa stress physiology.
Collapse
Affiliation(s)
| | - Hongyu Yan
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
5
|
Zorz J, Paquette AJ, Gillis T, Kouris A, Khot V, Demirkaya C, De La Hoz Siegler H, Strous M, Vadlamani A. Coordinated proteome change precedes cell lysis and death in a mat-forming cyanobacterium. THE ISME JOURNAL 2023; 17:2403-2414. [PMID: 37914776 PMCID: PMC10689466 DOI: 10.1038/s41396-023-01545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Cyanobacteria form dense multicellular communities that experience transient conditions in terms of access to light and oxygen. These systems are productive but also undergo substantial biomass turnover through cell death, supplementing heightened heterotrophic respiration. Here we use metagenomics and metaproteomics to survey the molecular response of a mat-forming cyanobacterium undergoing mass cell lysis after exposure to dark and anoxic conditions. A lack of evidence for viral, bacterial, or eukaryotic antagonism contradicts commonly held beliefs on the causative agent for cyanobacterial death during dense growth. Instead, proteogenomics data indicated that lysis likely resulted from a genetically programmed response triggered by a failure to maintain osmotic pressure in the wake of severe energy limitation. Cyanobacterial DNA was rapidly degraded, yet cyanobacterial proteins remained abundant. A subset of proteins, including enzymes involved in amino acid metabolism, peptidases, toxin-antitoxin systems, and a potentially self-targeting CRISPR-Cas system, were upregulated upon lysis, indicating possible involvement in the programmed cell death response. We propose this natural form of cell death could provide new pathways for controlling harmful algal blooms and for sustainable bioproduct production.
Collapse
Affiliation(s)
- Jackie Zorz
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB, Canada.
| | - Alexandre J Paquette
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB, Canada
| | - Timber Gillis
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB, Canada
| | - Angela Kouris
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB, Canada
- Synergia Biotech Inc., Calgary, AB, Canada
| | - Varada Khot
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB, Canada
| | - Cigdem Demirkaya
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | | | - Marc Strous
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB, Canada
| | - Agasteswar Vadlamani
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB, Canada
- Synergia Biotech Inc., Calgary, AB, Canada
| |
Collapse
|
6
|
Manganelli M, Testai E, Tazart Z, Scardala S, Codd GA. Co-Occurrence of Taste and Odor Compounds and Cyanotoxins in Cyanobacterial Blooms: Emerging Risks to Human Health? Microorganisms 2023; 11:microorganisms11040872. [PMID: 37110295 PMCID: PMC10146173 DOI: 10.3390/microorganisms11040872] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Cyanobacteria commonly form large blooms in waterbodies; they can produce cyanotoxins, with toxic effects on humans and animals, and volatile compounds, causing bad tastes and odors (T&O) at naturally occurring low concentrations. Notwithstanding the large amount of literature on either cyanotoxins or T&O, no review has focused on them at the same time. The present review critically evaluates the recent literature on cyanotoxins and T&O compounds (geosmin, 2-methylisoborneol, β-ionone and β-cyclocitral) to identify research gaps on harmful exposure of humans and animals to both metabolite classes. T&O and cyanotoxins production can be due to the same or common to different cyanobacterial species/strains, with the additional possibility of T&O production by non-cyanobacterial species. The few environmental studies on the co-occurrence of these two groups of metabolites are not sufficient to understand if and how they can co-vary, or influence each other, perhaps stimulating cyanotoxin production. Therefore, T&Os cannot reliably serve as early warning surrogates for cyanotoxins. The scarce data on T&O toxicity seem to indicate a low health risk (but the inhalation of β-cyclocitral deserves more study). However, no data are available on the effects of combined exposure to mixtures of cyanotoxins and T&O compounds and to combinations of T&O compounds; therefore, whether the co-occurrence of cyanotoxins and T&O compounds is a health issue remains an open question.
Collapse
Affiliation(s)
- Maura Manganelli
- Istituto Superiore di Sanità, Department of Environment and Health, viale Regina Elena, 299, 00162 Rome, Italy; (E.T.); (S.S.)
- Correspondence:
| | - Emanuela Testai
- Istituto Superiore di Sanità, Department of Environment and Health, viale Regina Elena, 299, 00162 Rome, Italy; (E.T.); (S.S.)
| | - Zakaria Tazart
- Department of Food Sciences and Nutrition, University of Malta, 2080 Msida, Malta;
| | - Simona Scardala
- Istituto Superiore di Sanità, Department of Environment and Health, viale Regina Elena, 299, 00162 Rome, Italy; (E.T.); (S.S.)
| | - Geoffrey A. Codd
- School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK;
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
7
|
Kimura S, Sato M, Fan X, Ohmori M, Ehira S. The two-component response regulator OrrA confers dehydration tolerance by regulating avaKa expression in the cyanobacterium Anabaena sp. strain PCC 7120. Environ Microbiol 2022; 24:5165-5173. [PMID: 36054741 PMCID: PMC9804601 DOI: 10.1111/1462-2920.16162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/06/2022] [Indexed: 01/05/2023]
Abstract
The cyanobacterium Anabaena sp. strain PCC 7120 exhibits dehydration tolerance. The regulation of gene expression in response to dehydration is crucial for the acquisition of dehydration tolerance, but the molecular mechanisms underlying dehydration responses remain unknown. In this study, the functions of the response regulator OrrA in the regulation of salt and dehydration responses were investigated. Disruption of orrA abolished or diminished the induction of hundreds of genes in response to salt stress and dehydration. Thus, OrrA is a principal regulator of both stress responses. In particular, OrrA plays a crucial role in dehydration tolerance because an orrA disruptant completely lost the ability to regrow after dehydration. Moreover, in the OrrA regulon, avaKa encoding a protein of unknown function was revealed to be indispensable for dehydration tolerance. OrrA and AvaK are conserved among the terrestrial cyanobacteria, suggesting their conserved functions in dehydration tolerance in cyanobacteria.
Collapse
Affiliation(s)
- Satoshi Kimura
- Department of Biochemistry and Molecular Biology, Faculty of ScienceSaitama UniversitySaitamaJapan
| | - Miho Sato
- Department of Biological Sciences, Graduate school of ScienceTokyo Metropolitan UniversityTokyoJapan
| | - Xingyan Fan
- Department of Biological Sciences, Graduate school of ScienceTokyo Metropolitan UniversityTokyoJapan
| | - Masayuki Ohmori
- Department of Biochemistry and Molecular Biology, Faculty of ScienceSaitama UniversitySaitamaJapan
| | - Shigeki Ehira
- Department of Biochemistry and Molecular Biology, Faculty of ScienceSaitama UniversitySaitamaJapan,Department of Biological Sciences, Graduate school of ScienceTokyo Metropolitan UniversityTokyoJapan
| |
Collapse
|
8
|
Faizan M, Tonny SH, Afzal S, Farooqui Z, Alam P, Ahmed SM, Yu F, Hayat S. β-Cyclocitral: Emerging Bioactive Compound in Plants. Molecules 2022; 27:molecules27206845. [PMID: 36296438 PMCID: PMC9608612 DOI: 10.3390/molecules27206845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
β-cyclocitral (βCC), a main apocarotenoid of β-carotene, increases plants’ resistance against stresses. It has recently appeared as a novel bioactive composite in a variety of organisms from plants to animals. In plants, βCC marked as stress signals that accrue under adverse ecological conditions. βCC regulates nuclear gene expression through several signaling pathways, leading to stress tolerance. In this review, an attempt has been made to summarize the recent findings of the potential role of βCC. We emphasize the βCC biosynthesis, signaling, and involvement in the regulation of abiotic stresses. From this review, it is clear that discussing compound has great potential against abiotic stress tolerance and be used as photosynthetic rate enhancer. In conclusion, this review establishes a significant reference base for future research.
Collapse
Affiliation(s)
- Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad 500032, India
| | - Sadia Haque Tonny
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Shadma Afzal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Zeba Farooqui
- College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - S Maqbool Ahmed
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad 500032, India
| | - Fangyuan Yu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, Nanjing 210037, China
| | - Shamsul Hayat
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
9
|
Du S, Xu H, Yang M, Pan N, Zheng T, Xu C, Li Y, Zuo Z. Toxic mechanism of two cyanobacterial volatiles β-cyclocitral and β-ionone on the photosynthesis in duckweed by altering gene expression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119711. [PMID: 35809713 DOI: 10.1016/j.envpol.2022.119711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/30/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Volatile organic compounds (VOCs) promote cyanobacteria dominating eutrophicated waters, with aquatic plant decrease and even disappearance. To uncover the toxic mechanism of cyanobacterial VOCs on aquatic plants, we investigated the growth, photosynthetic pigment levels, photosynthetic abilities and related gene expression in duckweed treated with β-cyclocitral and β-ionone, 2 main components in the VOCs. The levels of chlorophylls and carotenoids gradually declined with raising the concentration of the 2 compounds and prolonging the treatment time. Their decline should result from the down-regulation of 8 genes associated with photosynthetic pigment biosynthesis and up-regulation of 2 genes involved in carotenoid degradation. The reduction was also found in the photosystem II (PSII) efficiency and O2 evolution rate, which should result from the lowered photosynthetic pigment levels and down-regulation of 38 genes related with photosynthetic process. The frond numbers, total frond area and fresh weight gradually decreased with raising the 2 compound concentration, which may result from the lowered photosynthetic abilities as well as down-regulated expression of 7 genes associated with growth-promoting hormone biosynthesis and signal transduction. It can be speculated that cyanobacterial VOCs may poison aquatic plants by lowering the photosynthesis and growth through altering related gene expression.
Collapse
Affiliation(s)
- Siyi Du
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Haozhe Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Mengdan Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ning Pan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Tiefeng Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Chenyi Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhaojiang Zuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
10
|
Koteska D, Sanchez Garcia S, Wagner-Döbler I, Schulz S. Identification of Volatiles of the Dinoflagellate Prorocentrum cordatum. Mar Drugs 2022; 20:371. [PMID: 35736174 PMCID: PMC9230497 DOI: 10.3390/md20060371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 11/21/2022] Open
Abstract
The dinoflagellate Prorocentrum cordatum, often called P. minimum, is a potentially toxic alga found in algal blooms. Volatile compounds released by the alga might carry important information, e.g., on its physiological state, and may act as chemical messengers. We report here the identification of volatile organic compounds emitted by two strains, xenic P. cordatum CCMP 1529 and axenic P. cordatum CCMP 1329. The volatiles released during culture were identified despite their low production rates, using sensitive methods such as open-system-stripping analysis (OSSA) on Tenax TA desorption tubes, thermodesorption, cryofocusing and GC/MS-analysis. The analyses revealed 16 compounds released from the xenic strain and 52 compounds from the axenic strain. The majority of compounds were apocarotenoids, aromatic compounds and small oxylipins, but new natural products such as 3,7-dimethyl-4-octanolide were also identified and synthesized. The large difference of compound composition between xenic and axenic algae will be discussed.
Collapse
Affiliation(s)
- Diana Koteska
- Institute of Organic Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany;
| | - Selene Sanchez Garcia
- Institute of Microbiology, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.S.G.); (I.W.-D.)
| | - Irene Wagner-Döbler
- Institute of Microbiology, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.S.G.); (I.W.-D.)
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany;
| |
Collapse
|
11
|
Moretto JAS, de Freitas PNN, de Almeida ÉC, Altarugio LM, da Silva SV, de Fátima Fiore M, Pinto E. Effects of different cultivation conditions on the production of β-cyclocitral and β-ionone in Microcystis aeruginosa. BMC Microbiol 2022; 22:78. [PMID: 35321650 PMCID: PMC8944028 DOI: 10.1186/s12866-022-02473-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 02/12/2022] [Indexed: 12/20/2022] Open
Abstract
Background Cyanobacteria blooms have become a major environmental problem and concern because of secondary metabolites produced by cyanobacteria released into the water. Cyanobacteria produce volatile organic compounds (VOCs), such as the compounds β-cyclocitral and β-ionone, which comprise odors, off-flavors, defense compounds, as well as growth regulators. Therefore, the general objective of this work was to evaluate the VOCs produced by two strains of Microcystis aeruginosa, differing in their ability to produce microcystins (LTPNA 01—non-producing and LTPNA 08—toxin-producing). The analysis of VOC production was carried out in (1) normal culture conditions, (2) under different light intensities (LI), and (3) after the external application of β-ionone in both cultures. Results The results showed that β-cyclocitral and β-ionone are produced in all growth phases of LTPNA 01 and LTPNA 08. Both strains were producers of β-cyclocitral and β-ionone in normal culture conditions. It was observed that the β-cyclocitral concentration was higher than β-ionone in all light intensities investigated in this study. Additionally, the strain LTPNA 01 produced more β-cyclocitral than LTPNA 08 at almost all times and LIs analyzed. However, the strain LTPNA 08 produced more β-ionone, mainly at the initial times. In addition, the experiment results with the external addition of β-ionone in the cultures showed that the strain LTPNA 01 produced more β-cyclocitral in control conditions than in treatment. Nonetheless, β-ionone production was higher in treatment conditions in LTPNA 08, indicating that the addition of β-ionone may favor the production of these compounds and inhibit the production of β-cyclocitral. Conclusion Our results showed that some abiotic factors, such as different light intensities and external application of β-ionone, can be triggers that lead to the production of VOCs. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02473-6.
Collapse
Affiliation(s)
| | - Paloma Nathane Nunes de Freitas
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil.,Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | | | | | | | - Marli de Fátima Fiore
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Ernani Pinto
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil. .,Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil. .,Food Research Center (FoRC - CEPID), University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
12
|
Production of β-Cyclocitral and Its Precursor β-Carotene in Microcystis aeruginosa: Variation at Population and Single-Cell Levels. Toxins (Basel) 2022; 14:toxins14030201. [PMID: 35324698 PMCID: PMC8955627 DOI: 10.3390/toxins14030201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/10/2022] Open
Abstract
Bloom-forming cyanobacteria produce and release odorous compounds and pose threats to the biodiversity of aquatic ecosystem and to the drinking water supply. In this study, the concentrations of β-cyclocitral in different bacterial growth phases were investigated using GC–MS to determine the growth stage of Microcystis aeruginosa at high risk for β-cyclocitral production. Moreover, the synchronicity of the production of β-cyclocitral and its precursor β-carotene at both population and single-cell levels was assessed. The results indicated that β-cyclocitral was the main odorous compound produced by M. aeruginosa cells. The intracellular concentration of β-cyclocitral (Cβ-cc) as well as its cellular quota (Qβ-cc) increased synchronously in the log phase, along with the increase of cell density. However, they reached the maximum values of 415 μg/L and 10.7 fg/cell in the late stationary phase and early stationary phase, respectively. The early stage of the stationary phase is more important for β-cyclocitral monitoring, and the sharp increase in Qβ-cc is valuable for anticipating the subsequent increase in Cβ-cc. The molar concentrations of β-cyclocitral and β-carotene showed a linear relationship, with an R2 value of 0.92, suggesting that the production of β-cyclocitral was linearly dependent on that of β-carotene, especially during the log phase. However, the increase in Qβ-cc was slower than that in β-carotene during the stationary phase, suggesting that β-cyclocitral production turned to be carotene oxygenase-limited when the growth rate decreased. These results demonstrate that variations of β-cyclocitral production on a single-cell level during different bacterial growth phases should be given serious consideration when monitoring and controlling the production of odorous compounds by M. aeruginosa blooms.
Collapse
|
13
|
Harada KI. [Elucidation of Phenomena Involving Cyanobacteria in Freshwater Ecosystem by Chemically Ecological Approach]. YAKUGAKU ZASSHI 2022; 142:39-64. [PMID: 34980750 DOI: 10.1248/yakushi.21-00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lakes Sagami and Tsukui are reservoirs constructed by connecting to the Sagami River. Because of eutrophication of the lakes, cyanobacteria have appeared every year. This review deals with phenomena related to occurrence of cyanobacteria that have been observed for 40 years since 1974 at the lakes. These 40 years of observations raised three interesting issues including the retention of cyanobacteria on their surfaces. These phenomena have been attributed to the usual factors, such as illuminance, nutrition and water temperature, but our research results suggested that they cannot be resolved without the introduction of another factor. We have attempted to elucidate various phenomena involving cyanobacteria in lake ecosystems by chemical ecological methods using volatile organic compounds (VOCs) produced by the cyanobacteria as indicators. One of the VOCs, β-cyclocitral, was significantly involved in the above phenomena, which was considered to be produced by the carotenoid cleavage dioxygenase (CCD) of the cyanobacteria. β-Cyclocitral was not produced in the two known CCDs, but two additional CCDs to Microcystis aeruginosa participated to produce the β-cyclocitral. These CCDs did not directly produce β-cyclocitral, but it was accumulated in cells as their precursors. The released β-cyclocitral underwent a Baeyer-Villiger-like oxidation. It was speculated that Microcystis activated the CCD genes through density stress and produced β-cyclocitral, which acted as an allelopathic substance. As a result, the number of cells of cyanobacteria decreased, and the resulting nitrogen and phosphorus were fed to the living cyanobacteria. It is postulated that this "quorum sensing" was functioning in the above-mentioned issues.
Collapse
|
14
|
Arii S, Yamashita R, Tsuji K, Tomita K, Hasegawa M, Bober B, Harada KI. Differences in susceptibility of cyanobacteria species to lytic volatile organic compounds and influence on seasonal succession. CHEMOSPHERE 2021; 284:131378. [PMID: 34217930 DOI: 10.1016/j.chemosphere.2021.131378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacteria produce numerous volatile organic compounds (VOCs) that show a lytic activity against other cyanobacteria. We found the lytic phenomenon under natural conditions and during densification experiments, and also observed the species change of the cyanobacteria during the lysis processes, in which Microcystis finally became dominant. The species change of the cyanobacteria was strongly suggested to depend on the susceptibility of the cyanobacteria toward the VOCs. To verify this suggestion, the susceptibility of the species was evaluated by the minimal inhibitory concentration (MIC) using axenic cyanobacterial strains against β-cyclocitral, its oxidation products and β-ionone with the aid of log D. It was found that the difference depended on the susceptibility of the cyanobacteria toward the VOCs, in which β-cyclocitral played a crucial role and Microcystis had a significantly protective ability compared to the other cyanobacteria. In addition, the species change of cyanobacteria was consistent with the cyanobacterial seasonal succession in Lakes Sagami and Tsukui, based on data that had been accumulated for 10 years. Conventionally, although this phenomenon could be explained by nutrient availability or the physical structure of the environment, the results of this study revealed that it was controlled by the VOCs, particularly β-cyclocitral produced by the cyanobacteria.
Collapse
Affiliation(s)
- Suzue Arii
- Graduate School of Environmental and Human Science and Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya, 468-8503, Japan.
| | - Ryuji Yamashita
- Graduate School of Environmental and Human Science and Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya, 468-8503, Japan
| | - Kiyomi Tsuji
- Kanagawa Prefectural Institute of Public Health, Shimomachiya, Chigasaki, Kanagawa, 253-0087, Japan
| | - Koji Tomita
- Aichi Prefectural Institute of Public Health, Tsujimachi, Kita, Nagoya, 462-8576, Japan
| | - Masateru Hasegawa
- Aichi Prefectural Institute of Public Health, Tsujimachi, Kita, Nagoya, 462-8576, Japan
| | - Beata Bober
- Graduate School of Environmental and Human Science and Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya, 468-8503, Japan; Department of Plant Physiology and Development, Jagiellonian University, Krakow, Poland
| | - Ken-Ichi Harada
- Graduate School of Environmental and Human Science and Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya, 468-8503, Japan
| |
Collapse
|
15
|
Sound JK, Peters A, Bellamy-Carter J, Rad-Menéndez C, MacKechnie K, Green DH, Leney AC. Rapid Cyanobacteria Species Identification with High Sensitivity Using Native Mass Spectrometry. Anal Chem 2021; 93:14293-14299. [PMID: 34657414 PMCID: PMC8552214 DOI: 10.1021/acs.analchem.1c03412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteria have evolved over billions of years to adapt and survive in diverse climates. Environmentally, this presents a huge challenge because cyanobacteria can now rapidly form algae blooms that are detrimental to aquatic life. In addition, many cyanobacteria produce toxins, making them hazardous to animals and humans that they encounter. Rapid identification of cyanobacteria is essential to monitor and prevent toxic algae blooms. Here, we show for the first time how native mass spectrometry can quickly and precisely identify cyanobacteria from diverse aquatic environments. By monitoring phycobiliproteins, abundant protein complexes within cyanobacteria, simple, easy-to-understand mass spectral "fingerprints" were created that were unique to each species. Moreover, our method is 10-fold more sensitive than the current MALDI-TOF mass spectrometric methods, meaning that cyanobacteria can be monitored using this technology prior to bloom formation. Together, the data show great promise for the simultaneous detection and identification of co-existing cyanobacteria in situ.
Collapse
Affiliation(s)
- Jaspreet K Sound
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Anna Peters
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | | | - Cecilia Rad-Menéndez
- Scottish Association for Marine Science, Argyll PA37 1QA, U.K.,Culture Collection of Algae and Protozoa (CCAP), Scottish Marine Institute, Oban PA37 1QA, U.K
| | - Karen MacKechnie
- Scottish Association for Marine Science, Argyll PA37 1QA, U.K.,Culture Collection of Algae and Protozoa (CCAP), Scottish Marine Institute, Oban PA37 1QA, U.K
| | - David H Green
- Scottish Association for Marine Science, Argyll PA37 1QA, U.K
| | - Aneika C Leney
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
16
|
Franklin DJ. Examining the Evidence for Regulated and Programmed Cell Death in Cyanobacteria. How Significant Are Different Forms of Cell Death in Cyanobacteria Population Dynamics? Front Microbiol 2021; 12:633954. [PMID: 33828539 PMCID: PMC8019747 DOI: 10.3389/fmicb.2021.633954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/12/2021] [Indexed: 12/22/2022] Open
Abstract
Cyanobacteria are ancient and versatile members of almost all aquatic food webs. In freshwater ecosystems some cyanobacteria form “bloom” populations containing potent toxins and such blooms are therefore a key focus of study. Bloom populations can be ephemeral, with rapid population declines possible, though the factors causing such declines are generally poorly understood. Cell death could be a significant factor linked to population decline. Broadly, three forms of cell death are currently recognized – accidental, regulated and programmed – and efforts are underway to identify these and standardize the use of cell death terminology, guided by work on better-studied cells. For cyanobacteria, the study of such differing forms of cell death has received little attention, and classifying cell death across the group, and within complex natural populations, is therefore hard and experimentally difficult. The population dynamics of photosynthetic microbes have, in the past, been principally explained through reference to abiotic (“bottom-up”) factors. However, it has become clearer that in general, only a partial linkage exists between abiotic conditions and cyanobacteria population fluctuations in many situations. Instead, a range of biotic interactions both within and between cyanobacteria, and their competitors, pathogens and consumers, can be seen as the major drivers of the observed population fluctuations. Whilst some evolutionary processes may theoretically account for the existence of an intrinsic form of cell death in cyanobacteria, a range of biotic interactions are also likely to frequently cause the ecological incidence of cell death. New theoretical models and single-cell techniques are being developed to illuminate this area. The importance of such work is underlined by both (a) predictions of increasing cyanobacteria dominance due to anthropogenic factors and (b) the realization that influential ecosystem modeling work includes mortality terms with scant foundation, even though such terms can have a very large impact on model predictions. These ideas are explored and a prioritization of research needs is proposed.
Collapse
Affiliation(s)
- Daniel J Franklin
- Centre for Ecology, Environment and Sustainability, Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, United Kingdom
| |
Collapse
|
17
|
Jalili F, Trigui H, Guerra Maldonado JF, Dorner S, Zamyadi A, Shapiro BJ, Terrat Y, Fortin N, Sauvé S, Prévost M. Can Cyanobacterial Diversity in the Source Predict the Diversity in Sludge and the Risk of Toxin Release in a Drinking Water Treatment Plant? Toxins (Basel) 2021; 13:toxins13010025. [PMID: 33401450 PMCID: PMC7823770 DOI: 10.3390/toxins13010025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 02/05/2023] Open
Abstract
Conventional processes (coagulation, flocculation, sedimentation, and filtration) are widely used in drinking water treatment plants and are considered a good treatment strategy to eliminate cyanobacterial cells and cell-bound cyanotoxins. The diversity of cyanobacteria was investigated using taxonomic cell counts and shotgun metagenomics over two seasons in a drinking water treatment plant before, during, and after the bloom. Changes in the community structure over time at the phylum, genus, and species levels were monitored in samples retrieved from raw water (RW), sludge in the holding tank (ST), and sludge supernatant (SST). Aphanothece clathrata brevis, Microcystis aeruginosa, Dolichospermum spiroides
, and Chroococcus minimus were predominant species detected in RW by taxonomic cell counts. Shotgun metagenomics revealed that Proteobacteria was the predominant phylum in RW before and after the cyanobacterial bloom. Taxonomic cell counts and shotgun metagenomic showed that the Dolichospermum bloom occurred inside the plant. Cyanobacteria and Bacteroidetes were the major bacterial phyla during the bloom. Shotgun metagenomics also showed that Synechococcus, Microcystis
, and Dolichospermum were the predominant detected cyanobacterial genera in the samples. Conventional treatment removed more than 92% of cyanobacterial cells but led to cell accumulation in the sludge up to 31 times more than in the RW influx. Coagulation/sedimentation selectively removed more than 96% of Microcystis and Dolichospermum. Cyanobacterial community in the sludge varied from raw water to sludge during sludge storage (1-13 days). This variation was due to the selective removal of coagulation/sedimentation as well as the accumulation of captured cells over the period of storage time. However, the prediction of the cyanobacterial community composition in the SST remained a challenge. Among nutrient parameters, orthophosphate availability was related to community profile in RW samples, whereas communities in ST were influenced by total nitrogen, Kjeldahl nitrogen (N- Kjeldahl), total and particulate phosphorous, and total organic carbon (TOC). No trend was observed on the impact of nutrients on SST communities. This study profiled new health-related, environmental, and technical challenges for the production of drinking water due to the complex fate of cyanobacteria in cyanobacteria-laden sludge and supernatant.
Collapse
Affiliation(s)
- Farhad Jalili
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (H.T.); (J.F.G.M.); (S.D.); (M.P.)
- Correspondence:
| | - Hana Trigui
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (H.T.); (J.F.G.M.); (S.D.); (M.P.)
| | - Juan Francisco Guerra Maldonado
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (H.T.); (J.F.G.M.); (S.D.); (M.P.)
| | - Sarah Dorner
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (H.T.); (J.F.G.M.); (S.D.); (M.P.)
| | - Arash Zamyadi
- Water Research Australia, Adelaide SA 5001, Australia;
| | - B. Jesse Shapiro
- Department of Biological Sciences, University of Montréal, Montréal, QC H2V 0B3, Canada; (B.J.S.); (Y.T.)
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- McGill Genome Center, McGill University, Montréal, QC H3A 0G1, Canada
| | - Yves Terrat
- Department of Biological Sciences, University of Montréal, Montréal, QC H2V 0B3, Canada; (B.J.S.); (Y.T.)
| | - Nathalie Fortin
- National Research Council Canada, Energy, Mining and Environment, Montréal, QC H4P 2R2, Canada;
| | - Sébastien Sauvé
- Department of Chemistry, University of Montréal, Montréal, QC H3C 3J7, Canada;
| | - Michèle Prévost
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (H.T.); (J.F.G.M.); (S.D.); (M.P.)
| |
Collapse
|
18
|
Foo SC, Chapman IJ, Hartnell DM, Turner AD, Franklin DJ. Effects of H 2O 2 on growth, metabolic activity and membrane integrity in three strains of Microcystis aeruginosa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38916-38927. [PMID: 32638304 DOI: 10.1007/s11356-020-09729-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
The application of hydrogen peroxide (H2O2) as a management tool to control Microcystis blooms has become increasingly popular due to its short lifetime and targeted action. H2O2 increases intracellular reactive oxygen species resulting in oxidative stress and subsequently cell death. H2O2 is naturally produced in freshwater bodies as a result of photocatalytic reactions between dissolved organic carbon and sunlight. Previously, some studies have suggested that this environmental source of H2O2 selectively targets for toxigenic cyanobacteria strains in the genus Microcystis. Also, past studies only focused on the morphological and biochemical changes of H2O2-induced cell death in Microcystis with little information available on the effects of different H2O2 concentrations on growth, esterase activity and membrane integrity. Therefore, this study investigated the effects of non-lethal (40-4000 nM) concentrations on percentage cell death; with a focus on sub-lethal (50 μM) and lethal (275 μM; 500 μM) doses of H2O2 on growth, cells showing esterase activity and membrane integrity. The non-lethal dose experiment was part of a preliminary study. Results showed a dose- and time-dependent relationship in all three Microcystis strains post H2O2 treatment. H2O2 resulted in a significant increase in intracellular reactive oxygen species, decreased chlorophyll a content, decreased growth rate and esterase activity. Interestingly, at sub-lethal (50 μM H2O2 treatment), percentage of dead cells in microcystin-producing strains was significantly higher (p < 0.05) than that in non-microcystin-producing strains at 72 h. These findings further cement our understanding of the influence of H2O2 on different strains of Microcystis and its impact on membrane integrity and metabolic physiology: important to future toxic bloom control programmes.
Collapse
Affiliation(s)
- Su Chern Foo
- Department of Life & Environmental Sciences, Faculty of Science & Technology, Bournemouth University, Talbot Campus, Fern Barrow, Poole, Dorset, BH12 5BB, UK.
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Ian J Chapman
- Department of Life & Environmental Sciences, Faculty of Science & Technology, Bournemouth University, Talbot Campus, Fern Barrow, Poole, Dorset, BH12 5BB, UK
- New South Wales Shellfish Program, NSW Food Authority, Taree, NSW, 2430, Australia
| | - David M Hartnell
- Department of Life & Environmental Sciences, Faculty of Science & Technology, Bournemouth University, Talbot Campus, Fern Barrow, Poole, Dorset, BH12 5BB, UK
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, UK
| | - Andrew D Turner
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, UK
| | - Daniel J Franklin
- Department of Life & Environmental Sciences, Faculty of Science & Technology, Bournemouth University, Talbot Campus, Fern Barrow, Poole, Dorset, BH12 5BB, UK
| |
Collapse
|
19
|
Elmassry MM, Farag MA, Preissner R, Gohlke BO, Piechulla B, Lemfack MC. Sixty-One Volatiles Have Phylogenetic Signals Across Bacterial Domain and Fungal Kingdom. Front Microbiol 2020; 11:557253. [PMID: 33101231 PMCID: PMC7554305 DOI: 10.3389/fmicb.2020.557253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/07/2020] [Indexed: 11/13/2022] Open
Abstract
Microorganisms are diverse in their genome sequences and subsequently in their encoded metabolic pathways, which enabled them to adapt to numerous environmental conditions. They produce thousands of small molecules, many of which are volatiles in nature and play important roles in signaling in intra- and inter-species to kingdom and domain interactions, survival, or virulence. Many of these compounds have been studied, characterized, and organized in the mVOC 2.0 database. However, such dataset has not been investigated comprehensively in terms of its phylogeny to determine key volatile markers for certain taxa. It was hypothesized that some of the volatiles described in the mVOC 2.0 database could function as a phylogenetic signal since their production is conserved among certain taxa within the microbial evolutionary tree. Our meta-analysis revealed that some volatiles were produced by a large number of bacteria but not in fungal genera such as dimethyl disulfide, acetic acid, 2-nonanone, dimethyl trisulfide, 2-undecanone, isovaleric acid, 2-tridecanone, propanoic acid, and indole (common bacterial compounds). In contrast, 1-octen-3-ol, 3-octanone, and 2-pentylfuran (common fungal compounds) were produced primarily by fungal genera. Such chemical information was further confirmed by investigating genomic data of publicly available databases revealing that bacteria or fungi harbor gene families involved in these volatiles’ biosynthesis. Our phylogenetic signal testing identified 61 volatiles with a significant phylogenetic signal as demonstrated by phylogenetic D statistic P-value < 0.05. Thirty-three volatiles were phylogenetically conserved in the bacterial domain (e.g., cyclocitral) compared to 17 volatiles phylogenetically conserved in the fungal kingdom (e.g., aristolochene), whereas 11 volatiles were phylogenetically conserved in genera from both bacteria and fungi (e.g., geosmin). These volatiles belong to different chemical classes such as heterocyclic compounds, long-chain fatty acids, sesquiterpenoids, and aromatics. The performed approaches serve as a starting point to investigate less explored volatiles with potential roles in signaling, antimicrobial therapy, or diagnostics.
Collapse
Affiliation(s)
- Moamen M Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, Egypt.,Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Robert Preissner
- Institute of Physiology and Science-IT, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Björn-Oliver Gohlke
- Institute of Physiology and Science-IT, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Birgit Piechulla
- Institute of Biological Science, University of Rostock, Rostock, Germany
| | - Marie C Lemfack
- Institute of Biological Science, University of Rostock, Rostock, Germany
| |
Collapse
|
20
|
Havaux M. β-Cyclocitral and derivatives: Emerging molecular signals serving multiple biological functions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:35-41. [PMID: 32738580 DOI: 10.1016/j.plaphy.2020.07.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 05/16/2023]
Abstract
β-cyclocitral is a volatile short-chain apocarotenoid generated by enzymatic or non-enzymatic oxidation of the carotenoid β-carotene. β-cyclocitral has recently emerged as a new bioactive compound in various organisms ranging from plants and cyanobacteria to fungi and animals. In vascular plants, β-cyclocitral and its direct oxidation product, β-cyclocitric acid, are stress signals that accumulate under unfavorable environmental conditions such as drought or high light. Both compounds regulate nuclear gene expression through several signaling pathways, leading to stress acclimation. In cyanobacteria, β-cyclocitral functions as an inhibitor of competing microalgae and as a repellent against grazers. As a volatile compound, this apocarotenoid plays also an important role in intra-species and inter-species communication. This review summarizes recent findings on the multiple roles of β-cyclocitral and of some of its derivatives.
Collapse
Affiliation(s)
- Michel Havaux
- Aix-Marseille University, CNRS UMR7265, CEA, Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA/Cadarache, F-13108, Saint-Paul-lez-Durance, France.
| |
Collapse
|
21
|
Asukabe H, Akahori S, Ueno E, Nakayama T, Yamashita R, Arii S, Harada KI, Imanishi SY. Cyanobacterial Classification with the Toxicity Using MALDI Biotyper. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1572-1578. [PMID: 32501712 DOI: 10.1021/jasms.0c00148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An abnormal growth of cyanobacteria in eutrophicated freshwaters can cause various environmental problems. In particular, Microcystis producing hepatotoxic cyclic heptapeptides microcystins (MCs) has been globally observed. Recent studies have demonstrated that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) offers a rapid classification of cyanobacteria; however, they have not fully considered the toxicity yet. In this study, we have performed MALDI-TOF MS for intact cyanobacterial cells using Biotyper software and optimized their conditions to achieve cyanobacterial classification with the toxicity. The detection mass range used for Biotyper was extended to cover small molecules, but their intense ions were suppressed as a function of the used instrument Autoflex Speed, which enabled simultaneous observations of large molecular fingerprints and small MCs with comparable ion intensity. Hierarchical clustering of mass spectra obtained under the optimized conditions differentiated toxic and non-toxic clusters of Microcystis strains and furthermore formed a tight cluster of non-toxic strains possessing the MC biosynthesis gene mcyG. Spectral libraries were expanded to >30 genera (>80 strains) under the default and optimized conditions to improve the confidence of cyanobacterial classification. Consequently, spectral library searching allowed for characterization of cyanobacteria from a field sample as mixed toxic and non-toxic Microcystis cells, without isolating those cells.
Collapse
Affiliation(s)
- Hirohiko Asukabe
- Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya 468-8503, Japan
| | - Satoko Akahori
- Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya 468-8503, Japan
| | - Ema Ueno
- Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya 468-8503, Japan
| | - Takuma Nakayama
- Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya 468-8503, Japan
| | - Ryuji Yamashita
- Graduate School of Environmental and Human Sciences, Meijo University, Yagotoyama 150, Tempaku, Nagoya 468-8503, Japan
| | - Suzue Arii
- Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya 468-8503, Japan
| | - Ken-Ichi Harada
- Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya 468-8503, Japan
- Graduate School of Environmental and Human Sciences, Meijo University, Yagotoyama 150, Tempaku, Nagoya 468-8503, Japan
| | - Susumu Y Imanishi
- Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya 468-8503, Japan
| |
Collapse
|
22
|
Couteau C, Coiffard L. Phycocosmetics and Other Marine Cosmetics, Specific Cosmetics Formulated Using Marine Resources. Mar Drugs 2020; 18:md18060322. [PMID: 32570957 PMCID: PMC7345487 DOI: 10.3390/md18060322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
Marine resources exist in vast numbers and show enormous diversity. As a result, there are likely many possible applications for marine molecules of interest in the cosmetic industry, whether as excipients or additives, but especially as active substances. It is possible to obtain extracts from active substances; for example, quite a few algae species can be used in moisturizing or anti-ageing products. In the field of topical photoprotection, mycosporine-like amino acids and gadusol are important lines of enquiry that should not be overlooked. In the field of additives, the demonstration that certain seaweed (algae) extracts have antimicrobial properties suggests that they could provide alternatives to currently authorized preservatives. These promising leads must be explored, but it should be kept in mind that it is a long process to bring ingredients to market that are both effective and safe to use.
Collapse
|
23
|
Zheng T, Zhou M, Yang L, Wang Y, Wang Y, Meng Y, Liu J, Zuo Z. Effects of high light and temperature on Microcystis aeruginosa cell growth and β-cyclocitral emission. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110313. [PMID: 32066007 DOI: 10.1016/j.ecoenv.2020.110313] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Cyanobacteria always massively grow and even occur blooms in summer, with releasing amount of β-cyclocitral. To uncover the effects of summer high irradiance and temperature on cyanobacterial growth and β-cyclocitral emission, the cell growth, reactive oxygen species (ROS) levels, photosynthetic pigment content, chlorophyll fluorescence and β-cyclocitral emission were investigated in Microcystis aeruginosa under high light and temperature. Compared to the control under 50 μmol m-2·s-1, the cell growth was promoted under 100 μmol m-2·s-1, but inhibited under 500 and 1000 μmol m-2·s-1. The inhibition was also detected under high temperature at 30 and 35 °C in contrast to the control at 25 °C. Under high light and high temperature, M. aeruginosa increased ROS levels and reduced photosynthetic pigment content and photosystem II (PSII) efficiency, which resulted in the inhibition on cell growth. With increasing the light intensity and temperature, 1O2 levels gradually increased, while β-carotene content gradually decreased by quenching 1O2, with increasing β-cyclocitral emission. In summer, high irradiance and temperature not benefited the growth of cyanobacteria, but the emission of β-cyclocitral derived from β-carotene quenching 1O2 may offset the disadvantages by poisoning other algae.
Collapse
Affiliation(s)
- Tiefeng Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Min Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Yan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Yaya Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Yiyu Meng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jialu Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhaojiang Zuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
24
|
ARII S, TSUJI K, HARADA KI. Trends in the appearance of cyanobacteria and factors influencing the bloom formation of cyanobacteria in two eutrophic reservoirs (Lakes Sagami and Tsukui): 40 years of monitoring. ACTA ACUST UNITED AC 2020. [DOI: 10.3739/rikusui.81.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | | | - Ken-Ichi HARADA
- Graduate School of Environmental and Human Science, Meijo University
| |
Collapse
|
25
|
Analytical Technique Optimization on the Detection of β-cyclocitral in Microcystis Species. Molecules 2020; 25:molecules25040832. [PMID: 32075007 PMCID: PMC7070943 DOI: 10.3390/molecules25040832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 11/16/2022] Open
Abstract
β-Cyclocitral, specifically produced by Microcystis, is one of the volatile organic compounds (VOCs) derived from cyanobacteria and has a lytic activity. It is postulated that β-cyclocitral is a key compound for regulating the occurrence of cyanobacteria and related microorganisms in an aquatic environment. β-Cyclocitral is sensitively detected when a high density of the cells is achieved from late summer to autumn. Moreover, it is expected to be involved in changes in the species composition of cyanobacteria in a lake. Although several analysis methods for β-cyclocitral have already been reported, β-cyclocitral could be detected using only solid phase micro-extraction (SPME), whereas it could not be found at all using the solvent extraction method in a previous study. In this study, we investigated why β-cyclocitral was detected using only SPME GC/MS. Particularly, three operations in SPME, i.e., extraction temperature, sample stirring rate, and the effect of salt, were examined for the production of β-cyclocitral. Among these, heating (60 °C) was critical for the β-cyclocitral formation. Furthermore, acidification with a 1-h storage was more effective than heating when comparing the obtained amounts. The present results indicated that β-cyclocitral did not exist as the intact form in cells, because it was formed by heating or acidification of the resulting intermediates during the analysis by SPME. The obtained results would be helpful to understand the formation and role of β-cyclocitral in an aquatic environment.
Collapse
|
26
|
Huang H, Xu X, Shi C, Liu X, Wang G. Response of Taste and Odor Compounds to Elevated Cyanobacteria Biomass and Temperature. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 101:272-278. [PMID: 29974165 DOI: 10.1007/s00128-018-2386-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
Taste and odor (T&O) compounds are frequently reported during black blooms, however, their production mechanisms and influencing factors are far from clear. In this study, laboratory simulation experiment was carried out to investigate the formation processes of T&O compounds under the influences of temperature, cyanobacteria biomass and their combined effects. The decay of cyanobacteria blooms caused increased T&O compounds loading to water. Results showed the maximum dimethyl sulfide (DMS) release concentration was observed at 35°C compared with that at 25 and 30°C. DMS release concentration under cyanobacteria biomass of 25000 g/m3 demonstrated the highest production, whereas the minimum DMS production were obtained under 7500 g/m3. Similar patterns were observed for dimethyl disulfide, dimethyl trisulfide, β-cyclocitral and β-ionone production. Therefore, higher temperature and higher cyanobacteria biomass can enhance the concentration of T&O compounds. Furthermore, there were synergistic effects of cyanobacteria biomass and temperature on the production of T&O compounds.
Collapse
Affiliation(s)
- Heyong Huang
- School of Geography Science, Nanjing Normal University, Nanjing, 210097, China
- Analysis and Testing Center, Nanjing Normal University, Nanjing, 210097, China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing, 210097, China.
| | - Chenfei Shi
- School of Environment, Nanjing Normal University, Nanjing, 210097, China
| | - Xiansheng Liu
- School of Environment, Nanjing Normal University, Nanjing, 210097, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing, 210097, China.
| |
Collapse
|
27
|
Cuellar-Bermúdez SP, Barba-Davila B, Serna-Saldivar SO, Parra-Saldivar R, Rodriguez-Rodriguez J, Morales-Davila S, Goiris K, Muylaert K, Chuck-Hernández C. Deodorization of Arthrospira platensis biomass for further scale-up food applications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:5123-5130. [PMID: 28429461 DOI: 10.1002/jsfa.8391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/13/2017] [Accepted: 04/16/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Given the importance of A. platensis as a potential food protein source, we describe an affordable deodorization process that does not significantly affect the nutritional value of algae biomass. RESULTS Ethanol, acetone or hexane were used to deodorize algae biomass and then to identify the profile of volatile compounds associated with its distinctive odor. Sensorial characteristics were improved in the biomass cake after the proposed solvent extraction. Panelists identified the ethanolic extract with the most pronounced algae-related odor. Gas chromatography-mass spectrometry analysis showed that a mixture of 20 different compounds derived from fatty acids and amino acids contributed to the characteristic smell of A. platensis biomass. The results of the present study show that the ethanol solvent-free A. platensis biomass contained > 600 g kg-1 protein, < 10 g kg-1 crude fat and > 65% in vitro protein digestibility, similar to the original biomass. The Fourier transform infrared spectroscopy secondary protein structure was comparable among samples, indicating that the only change after ethanol extraction was a reduction of the algae smell. CONCLUSION The various extraction procedures investigated in the present study were effective in deodorizing the algae biomass. The most effective protocol was the removal of odoriferous compounds with ethanol. This particular procedure yielded an algae biomass with an improved sensorial traits. The results of the present study should help with the identification of odoriferous compounds derived from fatty acids, pigments and proteins associated with A. platensis. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Bertha Barba-Davila
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León, Mexico
| | | | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León, Mexico
| | | | - Sandra Morales-Davila
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León, Mexico
| | - Koen Goiris
- Laboratory of Enzyme, Fermentation and Brewing Technology (EFBT), KU Leuven, Faculty of Engineering Technology, Gent, Belgium
| | | | | |
Collapse
|
28
|
Yan X, Xu X, Wang M, Wang G, Wu S, Li Z, Sun H, Shi A, Yang Y. Climate warming and cyanobacteria blooms: Looks at their relationships from a new perspective. WATER RESEARCH 2017; 125:449-457. [PMID: 28898702 DOI: 10.1016/j.watres.2017.09.008] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/05/2017] [Accepted: 09/03/2017] [Indexed: 06/07/2023]
Abstract
Climate warming and eutrophication are regarded as two important contributors to the occurrence of cyanobacteria blooms in aquatic ecosystems. However, the feedback of cyanobacteria blooms to climate warming and eutrophication is not fully clear. In this study, a microcosm system was established to simulate the decomposition processes of cyanobacteria blooms. It was observed that a large amount of nitrogen and phosphorus was released into the overlying water, and the concentrations of nitrogen and phosphorus were increased with the amount of added cyanobacteria bloom biomass addition. Subsequently, these released nutrients became available for primary production and intensified the eutrophic state of freshwater lakes. During the decomposition of cyanobacteria blooms, the microenvironment acquired low DO, low pH, and reductive conditions. Together with abundant organic matter in the water column and sediment, a large amount of CH4 and CO2 produced through organic matter mineralization, in which CH4 was the dominant fraction, occupied 50%-92% in mass of emitted carbon. Furthermore, a certain amount of N2O, probably underestimated, was produced with a strong greenhouse effect, even though its magnitude was small. These observations clarify that the feedbacks among cyanobacteria blooms formation and climate warming as well as the eutrophication of freshwater lakes are not unidirectional, but bidirectional. Given that climate warming enhanced the occurrence of cyanobacteria blooms, it was proposed that there are two vicious loops between cyanobacteria blooms, lake eutrophication and climate warming, which should be considered in the future management of aquatic ecosystems.
Collapse
Affiliation(s)
- Xingcheng Yan
- School of Environment, Nanjing Normal University, 210023 Nanjing, China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, 210023 Nanjing, China.
| | - Mingyue Wang
- School of Environment, Nanjing Normal University, 210023 Nanjing, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, 210023 Nanjing, China.
| | - Songjun Wu
- School of Environment, Nanjing Normal University, 210023 Nanjing, China
| | - Zhichun Li
- School of Environment, Nanjing Normal University, 210023 Nanjing, China
| | - Hao Sun
- School of Environment, Nanjing Normal University, 210023 Nanjing, China
| | - Ao Shi
- School of Environment, Nanjing Normal University, 210023 Nanjing, China
| | - Yunhao Yang
- School of Environment, Nanjing Normal University, 210023 Nanjing, China
| |
Collapse
|
29
|
Lee J, Rai PK, Jeon YJ, Kim KH, Kwon EE. The role of algae and cyanobacteria in the production and release of odorants in water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 227:252-262. [PMID: 28475978 DOI: 10.1016/j.envpol.2017.04.058] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
This review covers literatures pertaining to algal and cyanobacterial odor problems that have been published over the last five decades. Proper evaluation of algal and cyanobacterial odors may help establish removal strategies for hazardous metabolites while enhancing the recyclability of water. A bloom of microalgae is a sign of an anthropogenic disturbance in aquatic systems and can lead to diverse changes in ecosystems along with increased production of odorants. In general, because algal and cyanobacterial odors vary in chemistry and intensity according to blooming pattern, it is necessary to learn more about the related factors and processes (e.g., changes due to differences in taxa). This necessitates systematic and transdisciplinary approaches that require the cooperation of chemists, biologists, engineers, and policy makers.
Collapse
Affiliation(s)
- Jechan Lee
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Young Jae Jeon
- Department of Microbiology, Pukyong National University, Busan 48513, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
30
|
Lee NK, Oh HM, Kim HS, Ahn CY. Higher production of C-phycocyanin by nitrogen-free (diazotrophic) cultivation of Nostoc sp. NK and simplified extraction by dark-cold shock. BIORESOURCE TECHNOLOGY 2017; 227:164-170. [PMID: 28024193 DOI: 10.1016/j.biortech.2016.12.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 05/23/2023]
Abstract
Nostoc sp. NK (KCTC 12772BP) was isolated and cultivated in a BG11 medium and a nitrate-free BG11 medium (BG110). To enhance C-phycocyanin (C-PC) content in the cells, different fluorescent lamps (white, plant, and red) were used as light sources for complementary chromatic adaptation (CCA). The maximum biomass productivity was 0.42g/L/d and 0.32g/L/d under BG11 and BG110 conditions, respectively. The maximum C-PC contents were 8.4% (w/w) under white lamps, 13.6% (w/w) under plant lamps, and 18% (w/w) under BG110 and the red light condition. The maximum C-PC productivity was 57.4mg/L/d in BG110 under the red lamp condition. These results indicate that a higher C-PC content could be obtained under a diazotrophic condition and a CCA reaction. The C-PC could be released naturally from cells without any extraction processes, when Nostoc sp. NK was cultivated in the BG110 medium with CO2 aeration and put in dark conditions at 5°C.
Collapse
Affiliation(s)
- Na Kyeong Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Green Chemistry and Environmental Biotechnology, University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Green Chemistry and Environmental Biotechnology, University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Green Chemistry and Environmental Biotechnology, University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Green Chemistry and Environmental Biotechnology, University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
31
|
Imanishi SY, Nakayama T, Asukabe H, Harada KI. Application of MALDI Biotyper to cyanobacterial profiling. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:325-332. [PMID: 27862451 DOI: 10.1002/rcm.7793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/11/2016] [Accepted: 11/11/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) has been used for bacterial profiling. A few reports have shown MALDI-MS profiling of isolated/cultured cyanobacteria; however, these applications have been limited. In this study, we have investigated whether rapid profiling and differentiation of cyanobacteria including harmful genera Microcystis and Anabaena (Dolichospermum) can be performed by MALDI Biotyper analysis of intact cells. METHODS Twenty-two cyanobacterial strains including 12 Microcystis, 7 Anabaena, 1 Pseudanabaena, 1 Planktothrix, and 1 Synechocystis were cultured. Also, natural pond water containing cyanobacteria was collected. Intact cyanobacterial cells were deposited on a target plate, and analyzed using an Autoflex Speed MALDI-TOF mass spectrometer with Biotyper software. Mass spectra obtained from m/z 2000 to 20000 were used for clustering and spectral library searching of cyanobacterial strains. RESULTS MALDI-MS analysis of cultured cyanobacterial cells showed clear ion signals under optimized conditions. Hierarchical clustering of mass spectra using Biotyper resulted in a tight cluster of Microcystis strains which was clearly differentiated from a cluster of Anabaena strains. Spectral library searching was able to identify Microcystis aeruginosa NIES-298 and Synechocystis sp. PCC 6803 even when these two cells were mixed. Furthermore, cyanobacterial cells in the pond water were successfully classified as Anabaena. CONCLUSIONS We have demonstrated that MALDI-MS in combination with Biotyper analysis is applicable to cyanobacterial profiling. Increasing the size of the spectral library may facilitate monitoring of cyanobacteria in crude cyanobacterial blooms. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Susumu Y Imanishi
- Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya, 468-8503, Japan
| | - Takuma Nakayama
- Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya, 468-8503, Japan
| | - Hirohiko Asukabe
- Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya, 468-8503, Japan
| | - Ken-Ichi Harada
- Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya, 468-8503, Japan
- Graduate School of Environmental and Human Sciences, Meijo University, Yagotoyama 150, Tempaku, Nagoya, 468-8503, Japan
| |
Collapse
|
32
|
Liu X, Shi C, Xu X, Li X, Xu Y, Huang H, Zhao Y, Zhou Y, Shen H, Chen C, Wang G. Spatial distributions of β-cyclocitral and β-ionone in the sediment and overlying water of the west shore of Taihu Lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:430-438. [PMID: 27890412 DOI: 10.1016/j.scitotenv.2016.11.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/12/2016] [Accepted: 11/12/2016] [Indexed: 06/06/2023]
Abstract
After large-scale outbreaks of algal blooms in eutrophic water, considerable amounts of algae residue accumulate in near-shore zones before fermenting rapidly and becoming malodorous. Taste and odor pollution caused by secondary metabolites from cyanobacterial blooms has become a serious and widespread environmental problem. Two typical odorous compounds, β-cyclocitral and β-ionone, have gained increasing attention in recent years. In this paper, the spatial distributions of β-cyclocitral and β-ionone in the sediments and overlying water off the west shore of Taihu Lake were investigated. The results showed that β-cyclocitral, β-ionone and nutrients are released during the degradation of fresh cyanobacteria, especially in the early stages. The odorous compounds and nutrients greatly decreased as the depth of sediment increased, indicating that reed roots can absorb β-cyclocitral, β-ionone and nutrients. Furthermore, removing cyanobacteria and dredging sludge might reduce the release of β-cyclocitral and β-ionone.
Collapse
Affiliation(s)
- Xiansheng Liu
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, PR China
| | - Chenfei Shi
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, PR China.
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, PR China
| | - Xiaojun Li
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, PR China
| | - Yuan Xu
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, PR China
| | - Heyong Huang
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, PR China
| | - Yanping Zhao
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, PR China
| | - Yiwen Zhou
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Huichao Shen
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, PR China
| | - Chong Chen
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, PR China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, PR China.
| |
Collapse
|
33
|
Nozaki H, Ueki N, Isaka N, Saigo T, Yamamoto K, Matsuzaki R, Takahashi F, Wakabayashi KI, Kawachi M. A New Morphological Type of Volvox from Japanese Large Lakes and Recent Divergence of this Type and V. ferrisii in Two Different Freshwater Habitats. PLoS One 2016; 11:e0167148. [PMID: 27880842 PMCID: PMC5120847 DOI: 10.1371/journal.pone.0167148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/09/2016] [Indexed: 11/26/2022] Open
Abstract
Volvox sect. Volvox is characterized by having unique morphological characteristics, such as thick cytoplasmic bridges between adult somatic cells in the spheroids and spiny zygote walls. Species of this section are found from various freshwater habitats. Recently, three species of Volvox sect. Volvox originating from rice paddies and a marsh were studied taxonomically based on molecular and morphological data of cultured materials. However, taxonomic studies have not been performed on cultured materials of this section originating from large lake water bodies. We studied a new morphological type of Volvox sect. Volvox (“Volvox sp. Sagami”), using cultured materials originating from two large lakes and a pond in Japan. Volvox sp. Sagami produced monoecious sexual spheroids and may represent a new morphological species; it could be clearly distinguished from all previously described monoecious species of Volvox sect. Volvox by its small number of eggs or zygotes (5–25) in sexual spheroids, with short acute spines (up to 3 μm long) on the zygote walls and elongated anterior somatic cells in asexual spheroids. Based on sequences of internal transcribed spacer (ITS) regions of nuclear ribosomal DNA (rDNA; ITS-1, 5.8S rDNA and ITS-2) and plastid genes, however, the Volvox sp. Sagami lineage and its sister lineage (the monoecious species V. ferrisii) showed very small genetic differences, which correspond to the variation within a single biological species in other volvocalean algae. Since V. ferrisii was different from Volvox sp. Sagami, by having approximately 100–200 zygotes in the sexual spheroids and long spines (6–8.5 μm long) on the zygote walls, as well as growing in Japanese rice paddies, these two morphologically distinct lineages might have diverged rapidly in the two different freshwater habitats. In addition, the swimming velocity during phototaxis of Volvox sp. Sagami spheroids originating from large lakes was significantly higher than that of V. ferrisii originating from rice paddies, suggesting adaptation of Volvox sp. Sagami to large water bodies.
Collapse
Affiliation(s)
- Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113–0033, Japan
- * E-mail:
| | - Noriko Ueki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226–8503, Japan
| | - Nanako Isaka
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113–0033, Japan
| | - Tokiko Saigo
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113–0033, Japan
| | - Kayoko Yamamoto
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113–0033, Japan
| | - Ryo Matsuzaki
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa 16–2, Tsukuba-shi, Ibaraki, 305–8506, Japan
| | - Fumio Takahashi
- College of Life Sciences, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu-shi, Shiga, 525–8577, Japan
| | - Ken-ichi Wakabayashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226–8503, Japan
| | - Masanobu Kawachi
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa 16–2, Tsukuba-shi, Ibaraki, 305–8506, Japan
| |
Collapse
|
34
|
Tomita K, Hasegawa M, Arii S, Tsuji K, Bober B, Harada KI. Characteristic oxidation behavior of β-cyclocitral from the cyanobacterium Microcystis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:11998-12006. [PMID: 26961531 DOI: 10.1007/s11356-016-6369-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
The cyanobacterium Microcystis produces volatile organic compounds such as β-cyclocitral and 3-methyl-1-butanol. The lysis of cyanobacteria involving the blue color formation has been occasionally observed in a natural environment. In this study, we focused on the oxidation behavior of β-cyclocitral that contributed to the blue color formation in a natural environment and compared β-cyclocitral with a structurally related compound concerning its oxidation, acidification, and lytic behavior. The oxidation products of β-cyclocitral were identified by the addition of β-cyclocitral in water, in which 2,2,6-trimethylcyclohex-1-ene-1-yl formate and 2,2,6-trimethylcyclohexanone were structurally characterized. That is, β-cyclocitral was easily oxidized to produce the corresponding carboxylic acid and the enol ester in water without an oxidizing reagent, suggesting that this oxidation proceeded according to the Baeyer-Villiger oxidation. The oxidation behavior of β-cyclocitral in a laboratory was different from that in the natural environment, in which 2,2,6- trimethylcyclohexanone was detected at the highest amount in the natural environment, whereas the highest amount in the laboratory was β-cyclocitric acid. A comparison of β-cyclocitral with structurally similar aldehydes concerning the lytic behavior of a Microcystis strain and the acidification process indicated that only β-cyclocitral was easily oxidized. Furthermore, it was found that a blue color formation occurred between pH 5.5 and 6.5, suggesting that chlorophyll a and β-carotene are unstable and decomposed, whereas phycocyanin was stable to some extent in this range. The obtained results of the characteristic oxidation behavior of β-cyclocitral would contribute to a better understanding of the cyanobacterial life cycle.
Collapse
Affiliation(s)
- Koji Tomita
- Aichi Prefectural Institute of Public Health, Tsujimachi, Kita, Nagoya, 462-8576, Japan.
- Graduate School of Environmental and Human Science and Faculty of Pharmacy, Meijo University, 150 Yagotoyama Tempaku, Nagoya, 468-8503, Japan.
| | - Masateru Hasegawa
- Graduate School of Environmental and Human Science and Faculty of Pharmacy, Meijo University, 150 Yagotoyama Tempaku, Nagoya, 468-8503, Japan
| | - Suzue Arii
- Graduate School of Environmental and Human Science and Faculty of Pharmacy, Meijo University, 150 Yagotoyama Tempaku, Nagoya, 468-8503, Japan
| | - Kiyomi Tsuji
- Kanagawa Prefectural Institute of Public Health, Shimomachiya, Chigasaki, Kanagawa, 253-0087, Japan
| | - Beata Bober
- Graduate School of Environmental and Human Science and Faculty of Pharmacy, Meijo University, 150 Yagotoyama Tempaku, Nagoya, 468-8503, Japan
- Department of Plant Physiology and Development, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Ken-Ichi Harada
- Graduate School of Environmental and Human Science and Faculty of Pharmacy, Meijo University, 150 Yagotoyama Tempaku, Nagoya, 468-8503, Japan
| |
Collapse
|