1
|
Liang C, Wang J, Zhang Y, Liu Z, Zhu Q, Huo Y, Zhang Z, Huo M. Assessing the viral enrichment methods and their roles in indicating wastewater-associated pollution in aquatic environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117951. [PMID: 40020382 DOI: 10.1016/j.ecoenv.2025.117951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
With the increasing need for monitoring viral contamination in aquatic environments, research has increasingly focused on utilizing viruses as indicators for microbial contamination assessment. However, studies on enrichment techniques for waterborne viruses and their occurrence and risk characteristics in the environment remain relatively limited. In this study, samples were collected over one year from a wastewater treatment plant and its receiving stream to evaluate the optimal enrichment method and to assess the presence of four representative viral indicators-human adenovirus (HAdV), crAssPhage, enterovirus (EV), and the pepper mild mottle virus (PMMoV)-in the urban water environment. The results showed that skimmed milk flocculation (SMF) and silica attachment method (SAM) achieved better viral enrichment performance in both wastewater and surface water, demonstrating greater seasonal consistency compared to other methods. Seasonal variations in virus concentrations were observed, with HAdV and crAssphage peaking in winter, while EV and PMMoV peaked in summer. Virus concentrations in wastewater treatment plants were reduced by 8.61 log10 copies/L from influent to effluent. However, residual viruses discharged into receiving streams still pose a significant environmental exposure risk, as indicated by Quantitative Microbial Risk Assessment (QMRA) results, which exhibited a strong correlation with population density. This study highlights the importance of waterborne viral indicators in developing effective water quality management strategies to ensure the safe control of viruses in aquatic environments.
Collapse
Affiliation(s)
- Chen Liang
- School of Environment, Northeast Normal University, Changchun 130117, China; Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Jiaxu Wang
- School of Environment, Northeast Normal University, Changchun 130117, China; Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Ying Zhang
- School of Environment, Northeast Normal University, Changchun 130117, China; Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Zhibo Liu
- School of Environment, Northeast Normal University, Changchun 130117, China; Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Qiyu Zhu
- School of Environment, Northeast Normal University, Changchun 130117, China; Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Yang Huo
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China; Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Zhiruo Zhang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; School of Economics and Management, Jilin Jianzhu University, Changchun 130118, China
| | - Mingxin Huo
- School of Environment, Northeast Normal University, Changchun 130117, China; Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| |
Collapse
|
2
|
Wagner JPS, Rech MF, Prandi BA, Franco AC, Rigotto C, Horn F. Epidemiological monitoring of sewage sludge and wastewater from an upflow anaerobic sludge blanket reactor using SARS-CoV-2 as a model. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2025; 91:333-343. [PMID: 40018894 DOI: 10.2166/wst.2025.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 01/15/2025] [Indexed: 03/01/2025]
Abstract
This study explores the potential of sludge-based monitoring from an upflow anaerobic sludge blanket reactor for epidemiological surveillance, using SARS-CoV-2 as a model. We monitored SARS-CoV-2 copy numbers and mutations, and compared concentrations in sludge to concentrations in wastewater samples taken on the same days. From January to August 2021, 32 sludge samples were analyzed; 30 (93%) were positive for SARS-CoV-2, and copy numbers varied from 0.147 to 2.314 copies ×106/L. In wastewater samples collected on the same days, 31 (96%) were positive for SARS-CoV-2, and copy numbers ranged from 0.058 to 3.014 copies ×106/L. The concentration of SARS-CoV-2 in the sludge rose along with confirmed hospitalization cases in March, while wastewater SARS-CoV-2 concentrations rose 2 weeks earlier along with numbers of new confirmed cases. Mutations of variants of concern, Gamma and Delta, were identified in sludge samples in the same months that they became dominant in the corresponding regions. Our results indicate that, although monitoring of sewage sludge was not effective in anticipating infection numbers, it is a promising way to gain insight into the epidemiological situation in a city or region.
Collapse
Affiliation(s)
- João Pedro Stepan Wagner
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre 90650-001, Brasil
| | - Maria Fernanda Rech
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre 90650-001, Brasil
| | - Bruno Aschidamini Prandi
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brasil
| | - Ana Cláudia Franco
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brasil
| | - Caroline Rigotto
- Departamento de Virologia, Instituto de Ciências da Saúde, Laboratório de Microbiologia Molecular Universidade Feevale, Novo Hamburgo 93525-075, Brasil E-mail:
| | - Fabiana Horn
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre 90650-001, Brasil
| |
Collapse
|
3
|
Ribeiro AVC, Mannarino CF, Dos Santos Leal T, de Oliveira CS, Bianco K, Clementino MM, Novo SPC, Prado T, de Castro EDSG, Lermontov A, Fumian TM, Miagostovich MP. Environmental Dissemination of SARS-CoV-2: An Analysis Employing Crassphage and Next-Generation Sequencing Protocols. FOOD AND ENVIRONMENTAL VIROLOGY 2025; 17:13. [PMID: 39776004 DOI: 10.1007/s12560-024-09620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/07/2024] [Indexed: 01/11/2025]
Abstract
This study aimed to investigate the dissemination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in water samples obtained during the coronavirus disease 2019 pandemic period, employing cross-assembly phage (crAssphage) as a fecal contamination biomarker and next-generation sequencing protocols to characterize SARS-CoV-2 variants. Raw wastewater and surface water (stream and sea) samples were collected for over a month in Rio de Janeiro, Brazil. Ultracentrifugation and negatively charged membrane filtration were employed for viral concentration of the wastewater and surface water samples, respectively. Viruses were detected and quantified by (RT-)qPCR applying TaqMan® system protocols. SARS-CoV-2 RNA signals were detected in 92.5% (37/40) of the wastewater samples and in 31.25% (10/32) of the stream water samples, but not in seawater samples. CrAssphage was detected in 100% of the wastewater samples, 93.75% (30/32) of the stream samples, and in 2/4 of the seawater samples. CrAssphage detection and high concentrations in stream surface waters (median 8.95 log10 gc/L) revealed diffuse contamination by domestic wastewater in a region with high sanitary coverage. The correlations detected between SARS-CoV-2 data and the moving averages of clinical cases per capita over the sampling period were moderate to strong when applying a 13-day offset, regardless of normalization by crAssphage data or not. Sequencing of the receptor-binding domain of the spike protein confirmed the detection of SARS-CoV-2, but did not characterize the circulating variant. On the other hand, the whole genome sequencing protocol identified circulation of the Gamma variant, corroborating the sampling period clinical data.
Collapse
Affiliation(s)
- André Vinicius Costa Ribeiro
- Stricto Sensu Graduate Program in Cellular and Molecular Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil.
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21040-360, Brazil.
| | - Camille Ferreira Mannarino
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Thiago Dos Santos Leal
- Niterói City Hall/Secretariat for Environment, Water Resources and Sustainability, Niterói, 24020-206, Brazil
| | - Carla Santos de Oliveira
- Laboratory of Arbovirus and Hemorrhagic Virus, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Kayo Bianco
- National Institute of Quality Control in Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Maysa Mandetta Clementino
- National Institute of Quality Control in Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Shênia Patricia Corrêa Novo
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Tatiana Prado
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | | | - André Lermontov
- Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149 - Cidade Universitária, Rio de Janeiro, 21941-909, Brazil
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| |
Collapse
|
4
|
Ribeiro AVC, Mannarino CF, Novo SPC, Prado T, Lermontov A, de Paula BB, Fumian TM, Miagostovich MP. Assessment of crAssphage as a biological variable for SARS-CoV-2 data normalization in wastewater surveillance. J Appl Microbiol 2024; 135:lxae177. [PMID: 39013607 DOI: 10.1093/jambio/lxae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/18/2024]
Abstract
AIMS This study aimed to assess the use of cross-assembled phage (crAssphage) as an endogenous control employing a multivariate normalization analysis and its application as a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) data normalizer. METHODS AND RESULTS A total of 188 twelve-hour composite raw sewage samples were obtained from eight wastewater treatment plants (WWTP) during a 1-year monitoring period. Employing the N1 and N2 target regions, SARS-CoV-2 RNA was detected in 94% (177) and 90% (170) of the samples, respectively, with a global median of 5 log10 genomic copies per liter (GC l-1). CrAssphage was detected in 100% of the samples, ranging from 8.29 to 10.43 log10 GC l-1, with a median of 9.46 ± 0.40 log10 GC l-1, presenting both spatial and temporal variabilities. CONCLUSIONS Although SARS-CoV-2 data normalization employing crAssphage revealed a correlation with clinical cases occurring during the study period, crAssphage normalization by the flow per capita per day of each WWTP increased this correlation, corroborating the importance of normalizing wastewater surveillance data in disease trend monitoring.
Collapse
Affiliation(s)
- André Vinicius Costa Ribeiro
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Camille Ferreira Mannarino
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Shênia Patrícia Corrêa Novo
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Tatiana Prado
- Laboratory of Respiratory, Exanthematic, Enteroviruses and Viral Emergencies, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - André Lermontov
- Chemical and Biochemical Process Technology, School of Chemistry/Federal University of Rio de Janeiro - EQ/UFRJ, Rio de Janeiro 21941-909, Brazil
| | - Bruna Barbosa de Paula
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
5
|
Martínez-Puchol S, Tarradas-Alemany M, Mejías-Molina C, Itarte M, Rusiñol M, Baliellas J, Abasolo N, Canela N, Monastiri A, López-Roig M, Serra-Cobo J, Abril JF, Bofill-Mas S. Target enrichment metaviromics enables comprehensive surveillance of coronaviruses in environmental and animal samples. Heliyon 2024; 10:e31556. [PMID: 38845944 PMCID: PMC11153099 DOI: 10.1016/j.heliyon.2024.e31556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/09/2024] Open
Abstract
The COVID-19 pandemic has underscored the importance of understanding the role of animals in the transmission of coronaviruses (CoVs) and their impact on human health. A One Health approach, integrating human, animal, and environmental health, is essential for effective CoVs control. Next-generation sequencing has played a pivotal role in identifying and monitoring the evolution of novel CoVs strains, like SARS-CoV-2. However, viral occurrence and diversity studies in environmental and animal samples are challenging because of the complexity of viral communities and low abundance of viruses in these samples. Target enrichment sequencing (TES) has emerged as a valuable tool for investigating viral families in challenging samples. This approach involves the specific capture and enrichment of viral genomes using sequence-specific probes, thereby enhancing the efficiency of detection and characterization. In this study, we aimed to develop and validate a TES panel to study CoVs in various complex environmental and animal derived samples. The results demonstrated the panel's effectiveness in capturing and sequencing a wide diversity of CoVs providing valuable insights into their abundance and host diversity in urban wastewater, farm animal corpses lixiviates and bat guano samples. In sewage samples, CoVs were detected solely when TES was employed while in guano samples, sequencing of CoVs species was achieved in 2 out of 4 samples showing an almost three-logarithmic increase in the number of reads obtained in comparison with the untargeted approach. For animal lixiviates, only the TES application enabled the acquisition of CoVs reads. The information obtained can significantly contribute to early detection, surveillance, and control measures for CoVs, including viral discovery and potential spillover events. Additionally, this sequencing panel shows potential for studying other significant viral families and monitoring viral diversity in different animal populations.
Collapse
Affiliation(s)
- Sandra Martínez-Puchol
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Vicerectorat de Recerca. Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Maria Tarradas-Alemany
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Computational Genomics Lab, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Cristina Mejías-Molina
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de l’Aigua (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Itarte
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de l’Aigua (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Rusiñol
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de l’Aigua (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | | | - Nerea Abasolo
- Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Catalonia, Spain
| | - Núria Canela
- Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Catalonia, Spain
| | - Abir Monastiri
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBiO), Universitat de Barcelona, Catalonia, Spain
| | - Marc López-Roig
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBiO), Universitat de Barcelona, Catalonia, Spain
| | - Jordi Serra-Cobo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBiO), Universitat de Barcelona, Catalonia, Spain
| | - Josep F. Abril
- Computational Genomics Lab, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Sílvia Bofill-Mas
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de l’Aigua (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
6
|
Ahmed W, Schoen ME, Soller J, Harrison JC, Hamilton KA, Gebrwold M, Simpson SL, Payyappat S, Cassidy M, Harrison N, Besley C. Site-specific risk-based threshold (RBT) concentrations for sewage-associated markers in estuarine swimming waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172448. [PMID: 38615775 DOI: 10.1016/j.scitotenv.2024.172448] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
This study establishes site-specific risk-based threshold (RBT) concentrations for sewage-associated markers, including Bacteroides HF183 (HF183), Lachnospiraceae Lachno3 (Lachno3), cross-assembly phage (CrAssphage), and pepper mild mottle virus (PMMoV), utilizing quantitative microbial risk assessment (QMRA) for recreational estuarine waters (EW). The QMRA model calculates a RBT concentration corresponding to a selected target illness risk for ingestion of EW contaminated with untreated sewage. RBT concentrations were estimated considering site-specific decay rates and concentrations of markers and reference pathogen (human norovirus; HNoV), aiding in the identification of high-risk days during the swimming season. Results indicated varying RBT concentrations for fresh (Day 0) and aged (Days 1 to 10) sewage contamination scenarios over 10 days. HF183 exhibited the highest RBT concentration (26,600 gene copis (GC)/100 mL) initially but decreased rapidly with aging (2570 to 3120 GC/100 mL on Day 10) depending on the decay rates, while Lachno3 and CrAssphage remained relatively stable. PMMoV, despite lower initial RBT (3920 GC/100 mL), exhibited increased RBT (4700 to 6440 GC/100 mL) with aging due to its slower decay rate compared to HNoV. Sensitivity analysis revealed HNoV concentrations as the most influential parameter. Comparison of marker concentrations in estuarine locations with RBT concentrations showed instances of marker exceedance, suggesting days of potential higher risks. The observed discrepancies between bacterial and viral marker concentrations in EW highlight the need for optimized sample concentration method and simultaneous measurement of multiple markers for enhanced risk predictions. Future research will explore the utility of multiple markers in risk management. Overall, this study contributes to better understanding human health risks in recreational waters, aiding regulators, and water quality managers in effective decision-making for risk prioritization and mitigation strategies.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Mary E Schoen
- Soller Environmental, LLC, 3022 King St, Berkeley, CA 94703, USA
| | - Jeffrey Soller
- Soller Environmental, LLC, 3022 King St, Berkeley, CA 94703, USA
| | - Joanna Ciol Harrison
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA
| | - Kerry A Hamilton
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ 85281, USA
| | - Metasebia Gebrwold
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Stuart L Simpson
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Sudhi Payyappat
- Sydney Water, 2 Parramatta Square, Parramatta, NSW 2150, Australia
| | - Michele Cassidy
- Sydney Water, 2 Parramatta Square, Parramatta, NSW 2150, Australia
| | - Nathan Harrison
- Sydney Water, 2 Parramatta Square, Parramatta, NSW 2150, Australia
| | - Colin Besley
- Sydney Water, 2 Parramatta Square, Parramatta, NSW 2150, Australia
| |
Collapse
|
7
|
Syngouna VI, Georgopoulou MP, Bellou MI, Vantarakis A. Effect of Human Adenovirus Type 35 Concentration on Its Inactivation and Sorption on Titanium Dioxide Nanoparticles. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:143-158. [PMID: 38308001 DOI: 10.1007/s12560-023-09582-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/30/2023] [Indexed: 02/04/2024]
Abstract
Removal of pathogenic viruses from water resources is critically important for sanitation and public health. Nanotechnology is a promising technology for virus inactivation. In this paper, the effects of titanium dioxide (TiO2) anatase nanoparticles (NPs) on human adenovirus type 35 (HAdV-35) removal under static and dynamic (with agitation) batch conditions were comprehensively studied. Batch experiments were performed at room temperature (25 °C) with and without ambient light using three different initial virus concentrations. The virus inactivation experimental data were satisfactorily fitted with a pseudo-first-order expression with a time-dependent rate coefficient. The experimental results demonstrated that HAdV-35 sorption onto TiO2 NPs was favored with agitation under both ambient light and dark conditions. However, no distinct relationships between virus initial concentration and removal efficiency could be established from the experimental data.
Collapse
Affiliation(s)
- Vasiliki I Syngouna
- Environmental Microbiology Unit, Department of Public Health, Medical School, University of Patras, 26504, Patras, Greece.
| | | | - Maria I Bellou
- Environmental Microbiology Unit, Department of Public Health, Medical School, University of Patras, 26504, Patras, Greece
| | - Apostolos Vantarakis
- Environmental Microbiology Unit, Department of Public Health, Medical School, University of Patras, 26504, Patras, Greece
| |
Collapse
|
8
|
Carmona-Vicente N, Pandiscia A, Santiso-Bellón C, Perez-Cataluña A, Rodríguez-Díaz J, Costantini VP, Buesa J, Vinjé J, Sánchez G, Randazzo W. Human intestinal enteroids platform to assess the infectivity of gastroenteritis viruses in wastewater. WATER RESEARCH 2024; 255:121481. [PMID: 38520776 DOI: 10.1016/j.watres.2024.121481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024]
Abstract
Fecal-orally transmitted gastroenteritis viruses, particularly human noroviruses (HuNoVs), are a public health concern. Viral transmission risk through contaminated water results underexplored as they have remained largely unculturable until recently and the robust measuring of gastroenteritis viruses infectivity in a single cell line is challenging. This study primarily aimed to test the feasibility of the human intestinal enteroids (HIE) model to demonstrate the infectivity of multiple gastroenteritis viruses in wastewater. Initially, key factors affecting viral replication in HIE model were assessed, and results demonstrated that the reagent-assisted disruption of 3D HIE represents an efficient alternative to syringe pass-through, and the filtering of HuNoV stool suspensions could be avoided. Moreover, comparable replication yields of clinical strains of HuNoV genogroup I (GI), HuNoV GII, rotavirus (RV), astrovirus (HAstV), and adenoviruses (HAdV) were obtained in single and multiple co-infections. Then, the optimized HIE model was used to demonstrate the infectivity of multiple naturally occurring gastroenteritis viruses from wastewater. Thus, a total of 28 wastewater samples were subjected to (RT)-qPCR for each virus, with subsequent testing on HIE. Among these, 16 samples (57 %) showed replication of HuNoVs (n = 3), RV (n = 5), HAstV (n = 8), and/or HAdV (n = 5). Three samples showed HuNoV replication, and sequences assigned to HuNoV GI.3[P13] and HuNoV GII.4[P16] genotypes. Concurrent replication of multiple gastroenteritis viruses occurred in 4 wastewater samples. By comparing wastewater concentrate and HIE supernatant sequences, diverse HAstV and HAdV genotypes were identified in 4 samples. In summary, we successfully employed HIE to demonstrate the presence of multiple infectious human gastroenteritis viruses, including HuNoV, in naturally contaminated wastewater samples.
Collapse
Affiliation(s)
| | - Annamaria Pandiscia
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain; Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | | | - Alba Perez-Cataluña
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain
| | - Jesús Rodríguez-Díaz
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain; INCLIVA Health Research Institute, Valencia, Spain
| | - Veronica P Costantini
- National Calicivirus Laboratory, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Javier Buesa
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain; INCLIVA Health Research Institute, Valencia, Spain
| | - Jan Vinjé
- National Calicivirus Laboratory, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain.
| |
Collapse
|
9
|
Perry WB, Chrispim MC, Barbosa MRF, de Souza Lauretto M, Razzolini MTP, Nardocci AC, Jones O, Jones DL, Weightman A, Sato MIZ, Montagner C, Durance I. Cross-continental comparative experiences of wastewater surveillance and a vision for the 21st century. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170842. [PMID: 38340868 DOI: 10.1016/j.scitotenv.2024.170842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
The COVID-19 pandemic has brought the epidemiological value of monitoring wastewater into sharp focus. The challenges of implementing and optimising wastewater monitoring vary significantly from one region to another, often due to the array of different wastewater systems around the globe, as well as the availability of resources to undertake the required analyses (e.g. laboratory infrastructure and expertise). Here we reflect on the local and shared challenges of implementing a SARS-CoV-2 monitoring programme in two geographically and socio-economically distinct regions, São Paulo state (Brazil) and Wales (UK), focusing on design, laboratory methods and data analysis, and identifying potential guiding principles for wastewater surveillance fit for the 21st century. Our results highlight the historical nature of region-specific challenges to the implementation of wastewater surveillance, including previous experience of using wastewater surveillance, stakeholders involved, and nature of wastewater infrastructure. Building on those challenges, we then highlight what an ideal programme would look like if restrictions such as resource were not a constraint. Finally, we demonstrate the value of bringing multidisciplinary skills and international networks together for effective wastewater surveillance.
Collapse
Affiliation(s)
| | - Mariana Cardoso Chrispim
- Environmental and Biosciences Department, School of Business, Innovation and Sustainability, Halmstad University, Kristian IV:s väg 3, 30118 Halmstad, Sweden
| | - Mikaela Renata Funada Barbosa
- Environmental Analysis Department, Environmental Company of the São Paulo State (CETESB), Av. Prof. Frederico Hermann Jr., 345, São Paulo CEP 05459-900, Brazil; NARA - Center for Research in Environmental Risk Assessment, School of Public Health, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil
| | - Marcelo de Souza Lauretto
- NARA - Center for Research in Environmental Risk Assessment, School of Public Health, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil; School of Arts, Sciences and Humanities, University of Sao Paulo, Rua Arlindo Bettio, 1000, São Paulo CEP 03828-000, Brazil
| | - Maria Tereza Pepe Razzolini
- NARA - Center for Research in Environmental Risk Assessment, School of Public Health, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil; School of Public Health, University of Sao Paulo, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil
| | - Adelaide Cassia Nardocci
- NARA - Center for Research in Environmental Risk Assessment, School of Public Health, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil; School of Public Health, University of Sao Paulo, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil
| | - Owen Jones
- School of Mathematics, Cardiff University, Cardiff CF24 4AG, UK
| | - Davey L Jones
- Environment Centre Wales, Bangor University, Bangor LL57 2UW, UK; Food Futures Institute, Murdoch University, Murdoch WA 6105, Australia
| | | | - Maria Inês Zanoli Sato
- Environmental Analysis Department, Environmental Company of the São Paulo State (CETESB), Av. Prof. Frederico Hermann Jr., 345, São Paulo CEP 05459-900, Brazil; NARA - Center for Research in Environmental Risk Assessment, School of Public Health, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil
| | - Cassiana Montagner
- Environmental Chemistry Laboratory, Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083970, Brazil
| | - Isabelle Durance
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
10
|
Viviana B, Matias S, Daiana M, Rodney C, Matias V. Molecular Characterization of Gastroenteric Viruses in Wastewater from Cities in Uruguay. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:318-330. [PMID: 37872461 DOI: 10.1007/s12560-023-09567-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023]
Abstract
Group A Rotavirus, Human Astrovirus, and Norovirus (RVA, HAstV, and NoV) are recognized as the major causative agents of acute gastroenteritis in children and adults worldwide. The aim of this study was to determine the prevalence and molecular epidemiology of RVA, HAstV, and NoV in wastewater from three cities in Uruguay. Thirty-six samples from Bella Unión, Salto, and Fray Bentos cities were analyzed using quantitative and qualitative PCR. RVA was the most frequently detected virus (50%), followed by HAstV (39%), NoV GII (36%), and NoV GI (25%). RVA strains were characterized as P[8] and G3 based on the VP4 and VP7 genes, respectively. Among NoV-positive samples, genotypes GI.2, GI.3, GI.5, GI.6, GI.7, GII.2, GII.6, and GII.4 were detected, and only one HAstV genotype (MLB1) was found. Our wastewater-based epidemiological approach provides a snapshot of the overall genetic diversity of these viruses in three cities of the Uruguay River basin during 2017-2018. These findings reinforce the importance of this environmental surveillance tool for monitoring epidemiological trends of enteric viruses circulating in the population, which can be used to guide public health intervention.
Collapse
Affiliation(s)
- Bortagaray Viviana
- Laboratory of Molecular Virology, Department of Biological Sciences, CENUR Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay
| | - Salvo Matias
- Department of Water, CENUR Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay
| | - Mir Daiana
- Genomic and Bioinformatic Unit, Department of Biological Sciences, CENUR Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay
| | - Colina Rodney
- Laboratory of Molecular Virology, Department of Biological Sciences, CENUR Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay
| | - Victoria Matias
- Laboratory of Molecular Virology, Department of Biological Sciences, CENUR Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay.
| |
Collapse
|
11
|
Andrianjakarivony FH, Bettarel Y, Desnues C. Searching for a Reliable Viral Indicator of Faecal Pollution in Aquatic Environments. J Microbiol 2023:10.1007/s12275-023-00052-6. [PMID: 37261715 DOI: 10.1007/s12275-023-00052-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
The disposal of sewage in significant quantities poses a health hazard to aquatic ecosystems. These effluents can contain a wide range of pathogens, making faecal contamination a leading source of waterborne diseases around the world. Yet monitoring bacteria or viruses in aquatic environments is time consuming and expensive. The standard indicators of faecal pollution all have limitations, including difficulty in determining the source due to lack of host specificity, poor connection with the presence of non-bacterial pathogens, or low environmental persistence. Innovative monitoring techniques are sorely needed to provide more accurate and targeted solutions. Viruses are a promising alternative to faecal indicator bacteria for monitoring, as they are more persistent in ambient water, more abundant in faeces, and are extremely host-specific. Given the range of viruses found in diverse contexts, it is not easy to find one "ideal" viral indicator of faecal pollution; however, several are of interest. In parallel, the ongoing development of molecular techniques coupled with metagenomics and bioinformatics should enable improved ways to detect faecal contamination using viruses. This review examines the evolution of faecal contamination monitoring with the following aims (i) to identify the characteristics of the main viral indicators of faecal contamination, including human enteric viruses, bacteriophages, CRESS and plant viruses, (ii) to assess how these have been used to monitor water pollution in recent years, (iii) to evaluate the reliability of recent detection methods of such viruses, and (iv) to tentatively determine which viruses may be most effective as markers of faecal pollution.
Collapse
Affiliation(s)
- Felana Harilanto Andrianjakarivony
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, 13005, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), 13009, Marseille, France
| | - Yvan Bettarel
- MARBEC, Marine Biodiversity, Exploitation and Conservation, University of Montpellier, CNRS, Ifremer, IRD, 34090, Montpellier, France.
| | - Christelle Desnues
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, 13005, Marseille, France
| |
Collapse
|
12
|
Ribeiro AVC, Mannarino CF, de Castro ESG, Prado T, Ferreira FC, Fumian TM, Miagostovich MP. Assessment of virus concentration methods for detecting SARS-CoV-2 IN wastewater. Braz J Microbiol 2023; 54:965-973. [PMID: 36877444 PMCID: PMC9987392 DOI: 10.1007/s42770-023-00941-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/24/2023] [Indexed: 03/07/2023] Open
Abstract
Wastewater-based epidemiology has been described as a valuable tool for monitoring the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a community. However, there is no consensus on the best concentration method to allow reliable detection of SARS-CoV-2 in this matrix, considering different laboratory facilities. This study compares two viral concentration methods, ultracentrifugation (ULT) and skimmed-milk flocculation (SMF), for detecting SARS-CoV-2 in wastewater samples. The analytical sensitivity (limits of detection and quantification [LoD/LoQ]) of both methods was evaluated using a bovine respiratory syncytial virus (BRSV) as a surrogate. Three different approaches were conducted to establish LoD of each method based on the assays on the standard curve (ALoDsc), on the dilution of internal control (ALoDiC), and the processing steps (PLoD). For PLoD, ULT method had the lowest value (1.86 × 103 genome copy/microliter [GC/µL]) when compared to the SMF method (1.26 × 107 GC/µL). The LoQ determination showed a mean value of 1.55 × 105 GC/µL and 3.56 × 108 GC/µL to ULT and SMF, respectively. The detection of SARSCoV-2 in naturally contaminated wastewater revealed 100% (12/12) and 25% (3/12) of detection using ULT and SMF with quantification ranging from 5.2 to 7.2 log10 genome copy/liter (GC/L) and 5.06 to 5.46 log10 GC/L, respectively. The detection success rate of BRSV used as an internal control process was 100% (12/12) for ULT and 67% (8/12) for SMF, with an efficiency recovery rate ranging from 12 to 38% and 0.1 to 5%, respectively. Our data consolidates the importance of assessing the methods used; however, further analysis should be carried out to improve low-cost concentration methodologies, essential for use in low-income and developing countries.
Collapse
Affiliation(s)
- André V C Ribeiro
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, CEP 21040-360, Brazil.
| | - Camille F Mannarino
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, CEP 21040-360, Brazil
| | - Eduardo S G de Castro
- Federal Institute of Education, Science and Technology of Rio de Janeiro, IFRJ, Rua Lúcio Tavares Senador Furtado Street, 1045, Nilópolis, Rio de Janeiro, CEP 26530-06020270-021, Brazil
| | - Tatiana Prado
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, CEP 21040-360, Brazil
| | - Fernando C Ferreira
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, CEP 21040-360, Brazil
| | - Tulio M Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, CEP 21040-360, Brazil
| | - Marize P Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, CEP 21040-360, Brazil
| |
Collapse
|
13
|
Hamza IA, Abd-Elmaksoud S. Applicability of crAssphage as a performance indicator for viral reduction during activated sludge wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50723-50731. [PMID: 36800087 PMCID: PMC10104927 DOI: 10.1007/s11356-023-25824-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/05/2023] [Indexed: 04/16/2023]
Abstract
A major threat to water quality is the discharge of human-derived wastewater, which can cause waterborne illnesses associated with enteric viruses. A poor association exists between fecal indicator bacteria and virus fate in the environment, especially during wastewater treatment. In the current study, the potential of using a novel human gut bacteriophage crAssphage as a wastewater treatment process indicator was evaluated. Using qPCR, influent and effluent wastewater samples of two wastewater treatment plants were analyzed for crAssphage and human viruses including human bocavirus (HBoV), human adenovirus (HAdV), and human polyomavirus (HPyV). All samples were positive for crAssphage. The annual crAssphage concentrations varied between 1.45E + 04 and 2.39E + 08 gc/l in influent samples and from 1.25E + 04 to 7.88E + 06 gc/l in effluent samples. Human viruses concentrations were some orders of magnitude lower than that of crAssphage. Data demonstrated a significant correlation between crAssphage, HAdV, and HPyV during the wastewater treatment process, suggesting that crAssphage and human viral pathogens have similar removal mechanisms. Ultimately, this work concludes that crAssphage could be a performance indicator for viral reduction in the wastewater treatment process.
Collapse
Affiliation(s)
- Ibrahim Ahmed Hamza
- Environmental Virology Laboratory, Department of Water Pollution Research, National Research Centre, 33 El Buhouth St., Giza, 12622, Dokki, Egypt.
| | - Sherif Abd-Elmaksoud
- Environmental Virology Laboratory, Department of Water Pollution Research, National Research Centre, 33 El Buhouth St., Giza, 12622, Dokki, Egypt
| |
Collapse
|
14
|
Takuissu GR, Kenmoe S, Ebogo-Belobo JT, Kengne-Ndé C, Mbaga DS, Bowo-Ngandji A, Ndzie Ondigui JL, Kenfack-Momo R, Tchatchouang S, Kenfack-Zanguim J, Lontuo Fogang R, Zeuko’o Menkem E, Kame-Ngasse GI, Magoudjou-Pekam JN, Veneri C, Mancini P, Bonanno Ferraro G, Iaconelli M, Orlandi L, Del Giudice C, Suffredini E, La Rosa G. Occurrence of Hepatitis A Virus in Water Matrices: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1054. [PMID: 36673812 PMCID: PMC9859052 DOI: 10.3390/ijerph20021054] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Hepatitis A is a common form of viral hepatitis. It is usually transmitted through the ingestion of contaminated food and water. This systematic review was carried out to summarise the overall prevalence of Hepatitis A virus (HAV) in different water matrices: untreated and treated wastewater, surface water, groundwater, drinking water, and others (e.g., irrigation water and floodwater). The literature search was performed in four databases: PubMed, Web of Science, Global Index Medicus, and Excerpta Medica Database. Heterogeneity (I2) was assessed using the χ2 test on the Cochran Q statistic and H parameters. A total of 200 prevalence data from 144 articles were included in this meta-analysis. The overall prevalence of HAV in water matrices was 16.7% (95% CI: 13.4−20.3). The prevalence for individual matrix was as follows: 31.4% (95% CI: 23.0−40.4) untreated wastewater, 18.0% (95% CI: 9.5−28.2) treated wastewater, 15.0% (95% CI: 10.1−20.5) surface water, 2.3% (95% CI: 0.1−6.0) in groundwater, 0.3% (95% CI: 0.0−1.7) in drinking water, and 8.5% (95% CI: 3.1−15.6) in other matrices. The prevalence was higher in low-income economies (29.0%). Africa and Eastern Mediterranean were the regions with higher HAV prevalence values. This study showed a high heterogeneity (I2 > 75%) with a significant publication bias (p value Egger test < 0.001). The results of this review suggest that water matrices could be an important route of HAV transmission even in industrialized countries, despite the lower prevalence compared to less industrialized countries, and the availability of advanced water management systems. More effective water/wastewater treatment strategies are needed in developing countries to limit the environmental circulation of HAV.
Collapse
Affiliation(s)
- Guy Roussel Takuissu
- Centre for Food, Food Security and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - Sebastien Kenmoe
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Jean Thierry Ebogo-Belobo
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - Cyprien Kengne-Ndé
- Epidemiological Surveillance, Evaluation and Research Unit, National AIDS Control Committee, Yaounde, Cameroon
| | | | - Arnol Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | | | - Raoul Kenfack-Momo
- Department of Biochemistry, The University of Yaounde I, Yaounde, Cameroon
| | | | | | | | | | - Ginette Irma Kame-Ngasse
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | | | - Carolina Veneri
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Pamela Mancini
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giusy Bonanno Ferraro
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Marcello Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Lidia Orlandi
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Claudia Del Giudice
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
15
|
Huge BJ, North D, Mousseau CB, Bibby K, Dovichi NJ, Champion MM. Comparison of RT-dPCR and RT-qPCR and the effects of freeze-thaw cycle and glycine release buffer for wastewater SARS-CoV-2 analysis. Sci Rep 2022; 12:20641. [PMID: 36450877 PMCID: PMC9709738 DOI: 10.1038/s41598-022-25187-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Public health efforts to control the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic rely on accurate information on the spread of the disease in the community. Acute and surveillance testing has been primarily used to characterize the extent of the disease. However, obtaining a representative sample of the human population is challenging because of limited testing capacity and incomplete testing compliance. Wastewater-based epidemiology is an agnostic alternative to surveillance testing that provides an average sample from the population served by the treatment facility. We compare the performance of reverse transcription quantitative PCR (RT-qPCR) and reverse transcription digital droplet PCR (RT-dPCR) for analysis of SARS-CoV-2 RNA in a regional wastewater treatment facility in northern Indiana, USA from the earliest stages of the pandemic. 1-L grab samples of wastewater were clarified and concentrated. Nucleic acids were extracted from aliquots and analyzed in parallel using the two methods. Synthetic viral nucleic acids were used for method development and generation of add-in standard-curves. Both methods were highly sensitive in detecting SARS-CoV-2 in wastewater, with detection limits as low as 1 copy per 500 mL wastewater. RT-qPCR and RT-dPCR provided essentially identical coefficients of variation (s/[Formula: see text] = 0.15) for triplicate measurements made on wastewater samples taken on 16 days. We also observed a sevenfold decrease in viral load from a grab sample that was frozen at - 80 °C for 92 days compared to results obtained without freezing. Freezing samples before analysis should be discouraged. Finally, we found that treatment with a glycine release buffer resulted in a fourfold inhibition in RT-qPCR signal; treatment with a glycine release buffer also should be discouraged. Despite their prevalence and convenience in wastewater analysis, glycine release and freezing samples severely and additively (~ tenfold) degraded recovery and detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Bonnie Jaskowski Huge
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Devin North
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - C Bruce Mousseau
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
- Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
- Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
16
|
Aschidamini Prandi B, Mangini AT, Santiago Neto W, Jarenkow A, Violet-Lozano L, Campos AAS, Colares ERDC, Buzzetto PRDO, Azambuja CB, Trombin LCDB, Raugust MDS, Lorenzini R, Larre ADS, Rigotto C, Campos FS, Franco AC. Wastewater-based epidemiological investigation of SARS-CoV-2 in Porto Alegre, Southern Brazil. SCIENCE IN ONE HEALTH 2022; 1:100008. [PMID: 39076600 PMCID: PMC9894774 DOI: 10.1016/j.soh.2023.100008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/20/2023] [Indexed: 09/03/2023]
Abstract
Wastewater-based epidemiology (WBE) may be successfully used to comprehensively monitor and determine the scale and dynamics of some infections in the community. We monitored severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in raw wastewater samples from Porto Alegre, Southern Brazil. The samples were collected and analyzed every week between May 2020 to May 2021. Meanwhile, different social restrictions were applied according to the number of hospitalized patients in the region. Weekly samples were obtained from two wastewater treatment plants (WWTP), named Navegantes and Serraria. To determine the SARS-CoV-2 RNA titers in wastewater, we performed RT-qPCR analysis targeting the N gene (N1). The highest titer of SARS-CoV-2 RNA was observed between epidemiological weeks (EWs) 33-37 (August), 42-43 (October), 45-46 (November), 49-51 (December) in 2020, and 1-3 (January), 7-13 (February to March) in 2021, with viral loads ranging from 1 × 106-3 × 106 genomic copies/Liter. An increase in positive confirmed cases followed such high viral loads. Depending on the sampling method used, positive cases increased in 6-7 days and 15 days after the rise of viral RNA titers in wastewater, with composite sampling methods showing a lower time lag and a higher resolution on the analyses. The results showed a direct relation between strict social restrictions and the loads of detected RNA reduction in wastewater, corroborating the number of confirmed cases. Differences in viral loads between different sampling points and methods were observed, as composite samples showed more stable results during the analyzed period. Besides, viral loads obtained from samples collected at Serraria WWTP were consistently higher than the ones obtained at Navegantes WWTP, indicating differences in local dynamics of SARS-CoV-2 spread in different regions of Porto Alegre. In conclusion, wastewater sampling to monitor SARS-CoV-2 is a robust tool to evaluate the viral loads contributing to hospitalized patients' data and confirmed cases. In addition, SARS-CoV-2 detection in sewage may inform and alert the government when there are asymptomatic or non-tested patients.
Collapse
Affiliation(s)
- Bruno Aschidamini Prandi
- Virology Laboratory, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Arthur Tonietto Mangini
- Virology Laboratory, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Waldemir Santiago Neto
- Virology Laboratory, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - André Jarenkow
- State Center for Health Surveillance, Rio Grande do Sul State Health Department, Porto Alegre, Rio Grande do Sul, 90119-900, Brazil
| | - Lina Violet-Lozano
- Virology Laboratory, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Aline Alves Scarpellini Campos
- Virology Laboratory, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
- State Center for Health Surveillance, Rio Grande do Sul State Health Department, Porto Alegre, Rio Grande do Sul, 90119-900, Brazil
| | - Evandro Ricardo da Costa Colares
- State Center for Health Surveillance, Rio Grande do Sul State Health Department, Porto Alegre, Rio Grande do Sul, 90119-900, Brazil
| | | | | | - Lisiane Correa de Barros Trombin
- State Center for Health Surveillance, Rio Grande do Sul State Health Department, Porto Alegre, Rio Grande do Sul, 90119-900, Brazil
| | - Margot de Souza Raugust
- State Center for Health Surveillance, Rio Grande do Sul State Health Department, Porto Alegre, Rio Grande do Sul, 90119-900, Brazil
| | - Rafaela Lorenzini
- State Center for Health Surveillance, Rio Grande do Sul State Health Department, Porto Alegre, Rio Grande do Sul, 90119-900, Brazil
| | - Alberto da Silva Larre
- State Center for Health Surveillance, Rio Grande do Sul State Health Department, Porto Alegre, Rio Grande do Sul, 90119-900, Brazil
| | - Caroline Rigotto
- FEEVALE University, ERS 239 n° 2755, Novo Hamburgo, RS, 93352-000, Brazil
| | - Fabrício Souza Campos
- Virology Laboratory, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Ana Cláudia Franco
- Virology Laboratory, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| |
Collapse
|
17
|
Viral metagenomics reveals persistent as well as dietary acquired viruses in Antarctic fur seals. Sci Rep 2022; 12:18207. [PMID: 36307519 PMCID: PMC9616810 DOI: 10.1038/s41598-022-23114-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/25/2022] [Indexed: 12/31/2022] Open
Abstract
Viruses linked to animals inhabiting Antarctic latitudes remain poorly studied. Remote environments hosting large pinniped populations may be prone to exposure of immunologically naïve animals to new infectious agents due to increasing human presence or introduction of new animal species. Antarctic fur seals (Arctocephalus gazella) inhabiting the Western Antarctic Peninsula and the South Shetland Islands are challenged because of climate change and increased anthropogenic activity. In the present study, the fecal and serum virome of A. gazella was characterized by applying target enrichment next generation sequencing. The resulting viromes were dominated by CRESS-DNA sequences. Viruses known to infect vertebrate and invertebrate hosts were also observed in fecal samples. Fur seal picornavirus was present in all the fecal pools studied suggesting it is a prevalent virus in these species. Six different viruses presenting similarities with previously described A. gazella viruses or other otariids and mammal viruses were identified as potential new A. gazella viruses. Also, diet-derived viruses such as crustacean viruses were present in fecal content. Penguin viruses, but not fish viruses, were also detected. Obtained results contribute to a better understanding of the viral community present in these species, which is relevant for its conservation.
Collapse
|
18
|
Rashed MK, El-Senousy WM, Sayed ETAE, AlKhazindar M. Infectious Pepper Mild Mottle Virus and Human Adenoviruses as Viral Indices in Sewage and Water Samples. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:246-257. [PMID: 35713790 PMCID: PMC9458564 DOI: 10.1007/s12560-022-09525-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/27/2022] [Indexed: 05/14/2023]
Abstract
The objective of this study was to compare human adenoviruses (HAdVs) genome and infectivity, polyomaviruses (JC and BK) genome (JCPyVs) and (BKPyVs), Pepper Mild Mottle Virus (PMMoV) genome and infectivity, and infectious bacteriophages as viral indices for sewage and water samples. One hundred and forty-four samples were collected from inlets and outlets of water and wastewater treatment plants (WTPs), and WWTPs within Greater Cairo from October 2015 till March 2017. Two methods of viral concentration [Aluminium hydroxide (Al(OH)3) precipitation method and adsorption-elution technique followed by organic flocculation method] were compared to determine which of them was the best method to concentrate viruses from sewage and water. Although samples with only one litre volume were concentrated using Al(OH)3 precipitation method and the same samples with larger volumes (5-20 L) were concentrated using the adsorption-elution technique followed by the organic flocculation method, a non-significant difference was observed between the efficiency of the two methods in all types of samples except for the drinking water samples. Based on the qualitative prevalence of studied viruses in water and wastewater samples, the number of genome copies and infectious units in the same samples, resistance to treatment processes in water and wastewater treatment plants, higher frequency of both adenoviruses and PMMoV genomes as candidate viral indices in treated sewage and drinking water was observed. The problem of having a viral genome as indices of viral pollution is that it does not express the recent viral pollution because of the longer survivability of the viral genome than the infectious units in water and wastewater. Both infectious adenovirus and infectious phiX174 bacteriophage virus showed similar efficiencies as indices for viral pollution in drinking water and treated sewage samples. On the other hand, qualitative detection of infectious PMMoV failed to express efficiently the presence/absence of infectious enteric viruses in drinking water samples. Infectious adenoviruses and infectious bacteriophage phiX174 virus may be better candidates than adenoviruses genome, polyomaviruses genome, and PMMoV genome and infectivity as viral indices for water and wastewater.
Collapse
Affiliation(s)
- Mohammed Kamal Rashed
- Environmental Virology Lab, Water Pollution Research Department, Environmental and Climate Change Research Institute and Food-Borne Viruses Group, Centre of Excellence for Advanced Sciences, National Research Centre (NRC), 33 El-Buhouth Street, P. O. 12622, Dokki, Giza, Egypt
| | - Waled Morsy El-Senousy
- Environmental Virology Lab, Water Pollution Research Department, Environmental and Climate Change Research Institute and Food-Borne Viruses Group, Centre of Excellence for Advanced Sciences, National Research Centre (NRC), 33 El-Buhouth Street, P. O. 12622, Dokki, Giza, Egypt
| | | | - Maha AlKhazindar
- Botany and Microbiology Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
19
|
Sabar MA, Honda R, Haramoto E. CrAssphage as an indicator of human-fecal contamination in water environment and virus reduction in wastewater treatment. WATER RESEARCH 2022; 221:118827. [PMID: 35820313 DOI: 10.1016/j.watres.2022.118827] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 05/14/2023]
Abstract
Viral indicators of human-fecal contamination in wastewaters and environmental waters have been getting much attention in the past decade. Cross-assembly phage (crAssphage) is the most abundant DNA virus in human feces. Recently, the usefulness of crAssphage as a microbial source tracking and water quality monitoring tool for human-fecal contamination has been highlighted. Here, we conducted a comprehensive review on crAssphage in water, focusing on detection methodology, concentration range in various waters and wastewaters, specificity to human-fecal contamination, and reduction in wastewater treatment systems. This review highlights that crAssphage is globally distributed in wastewaters and various fecal-contaminated water bodies at high concentrations without seasonal fluctuations. CrAssphage is highly specific to human-fecal contamination and is rarely found in animal feces. It also has a good potential as a performance indicator to ensure virus reduction in wastewater treatment systems. Accordingly, crAssphage could be an effective tool for monitoring of human-fecal contamination and potential presence of fecal pathogenic microbes in environmental waters. Bridging the research gaps highlighted in this review would make crAssphage a powerful tool to support the control of water-related health risks.
Collapse
Affiliation(s)
| | - Ryo Honda
- Faculty of Geoscience and Civil Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Eiji Haramoto
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Japan
| |
Collapse
|
20
|
Gholipour S, Hosseini M, Nikaeen M, Hadi M, Sarmadi M, Saderi H, Hassanzadeh A. Quantification of human adenovirus in irrigation water-soil-crop continuum: are consumers of wastewater-irrigated vegetables at risk? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:54561-54570. [PMID: 35304720 DOI: 10.1007/s11356-022-19588-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Because of health concerns regarding the presence of enteric viruses in wastewater effluents, this study was designed to investigate the occurrence of human adenovirus (HAdV) in the irrigation water-soil-crop continuum. Viral particles were extracted from wastewater and wastewater- or water-irrigated soil and crop samples and analyzed using real-time PCR. Concentration of fecal indicator bacteria (FIB) were also determined. Quantitative microbial risk assessment was performed to determine the HAdV illness risk associated with the consumption of wastewater-irrigated vegetables. HAdV-F was detected in 74% of wastewater effluent samples with a mean concentration of 38 Genomic Copy (GC)/mL. HAdV was also detected in wastewater-irrigated soil (2 × 102 GC/g) and crop (< 10 GC/g) samples, with no statistically significant difference in concentrations between wastewater- and freshwater-irrigated samples. The results showed no correlation between concentrations of FIB and HAdV in the analyzed samples. Mean probability of illness risk from consumption of wastewater-irrigated vegetables was 4 × 10-1 per person per year (pppy) which was about two orders of magnitude higher than the proposed value by WHO (10-3 pppy) for safe reuse of wastewater. This finding suggests that the wastewater reuse for irrigation of vegetables eaten raw could pose a threat to human health with respect to the risk of viral illness, signifying stricter management of wastewater reuse. However, because of uncertainties in the QMRA model, particularly the ratio of infectious to non-infectious virus particles, more data is required to validate the predicted risk. This information is especially important in arid and semi-arid regions where high temperatures, UV radiation intensity, and desiccation can efficiently inactivate microorganisms in the environment.
Collapse
Affiliation(s)
- Sahar Gholipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mona Hosseini
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mahdi Hadi
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Sarmadi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Horieh Saderi
- Molecular Microbiology Research Center (MMRC), Shahed University, Tehran, Iran
| | - Akbar Hassanzadeh
- Department of Statistics & Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
21
|
Chen JS, Tsai HC, Nagarajan V, Hsu BM. Adenovirus in fishery harbours and identification of contamination sources. WATER RESEARCH 2022; 219:118538. [PMID: 35526430 DOI: 10.1016/j.watres.2022.118538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Adenoviruses (AdVs) are a major cause of clinical infections and have been proposed as indicators of water quality. However, quantitative data on the environmental prevalence of AdVs is lacking. We investigated the prevalence, distribution, seasonal occurrence, quantity, and genotype of AdVs in 13 fishing harbours in Taiwan. AdVs in the water samples were isolated by membrane filtration and the AdV DNA was extracted. Next, AdVs were detected using nested polymerase chain reaction. Genotyping and phylogenetic analysis were performed to identify various AdV genotypes present in the water samples. The F species human AdV (HAdV) serotype 41 (63.6%) and C species porcine AdV (PAdV) serotype 5 (33.3%) were more prevalent than the other serotypes. The prevalence of AdVs was highest in the fall, followed by in the spring and summer. Among the fishing harbours, the highest detection rate of AdVs was observed in Yenpudongang in all seasons. However, Puoziliao was the only site at which AdVs were not detected during the study period. AdV detection at sampling sites may be correlated with sewage and livestock wastewater discharge via outflow of nearby rivers to fishing ports. Statistical analysis (Mann-Whitney U test) based on data from water quality indicators revealed that the presence of AdVs was significantly associated with the heterotrophic plate count, pH, and salinity. Human and swine population data from nearby local townships and river/drainage basins were collected from the Taiwan Central Government's website. The data were analyzed using Spearman's rank correlation coefficient to determine the relationship between the prevalence of AdVs, HAdVs, and PAdVs in fishing harbours, and microbial water quality indicators. Statistical evidence indicated that the detection levels of HAdVs and PAdVs in fishing harbours were mainly associated with human and swine populations in the corresponding river/drainage basin, respectively. Additionally, the swine population in the river/drainage basin was positively correlated with microbial water quality indicators.
Collapse
Affiliation(s)
- Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Hsin-Chi Tsai
- Department of Psychiatry, School of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Psychiatry, Tzu-Chi General Hospital, Hualien, Taiwan
| | - Viji Nagarajan
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Minhsiung Township, Chiayi 62102, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Minhsiung Township, Chiayi 62102, Taiwan.
| |
Collapse
|
22
|
Briancesco R, Paduano S, Paradiso R, Coccia AM, La Rosa G, Della Libera S, Semproni M, Bonadonna L. An Italian survey on the microbiological safety of toys containing aqueous media. J Appl Microbiol 2022; 133:1882-1891. [PMID: 35771141 DOI: 10.1111/jam.15695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/01/2022]
Abstract
AIMS The purpose of the present investigation is to fill the current gap in information regarding the microbiological quality of toys containing aqueous media and the related risks for users. METHODS Over eighteen years, a total of 491 sealed toys containing aqueous media were analysed using conventional microbial culture methods. In addition, molecular methods (PCR/nested RT-PCR, followed by Sanger sequencing) were employed to test for enteric viruses (enteroviruses and adenoviruses) in a subset of toys; subsequently, the infectivity of the positive samples was tested on cell cultures. RESULTS Of the examined toys, 23.8% were noncompliant with the limits of the European guideline. The most frequently exceeded limits were those for Aerobic bacteria (84.6%), and Pseudomonas aeruginosa (29.9%). Other opportunistic bacterial species that were frequently detected were Stenotrophomonas maltophilia, Pseudomonas fluorescens, Burkholderia cepacia Sphingomonas paucimobilis and Comamonas acidovorans. In a subset of 28 samples, adenovirus (25%) and enterovirus (11%) genome was also found to be present, although the samples with viral positivity did not show infectivity after inoculation on appropriate cell monolayers. CONCLUSIONS The results indicate a condition of microbial exposure related to the use of toys containing aqueous media. SIGNIFICANCE AND IMPACT OF STUDY The investigation highlights the need for more stringent monitoring during the production, packaging and storage of toys containing aqueous matrices in order to safeguard children's health.
Collapse
Affiliation(s)
- R Briancesco
- Department of the Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - S Paduano
- Department of Biomedical, Metabolic and Neural Sciences, Public Health Section, University of Modena and Reggio Emilia, Modena, Italy
| | - R Paradiso
- Department of the Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - A M Coccia
- Department of the Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - G La Rosa
- Department of the Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - S Della Libera
- Department of the Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Semproni
- Department of the Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - L Bonadonna
- Department of the Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
23
|
Surveillance of Adenovirus and Norovirus Contaminants in the Water and Shellfish of Major Oyster Breeding Farms and Fishing Ports in Taiwan. Pathogens 2022; 11:pathogens11030316. [PMID: 35335640 PMCID: PMC8954279 DOI: 10.3390/pathogens11030316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
The enteric viruses, including adenovirus (AdVs) and norovirus (NoVs), in shellfish is a significant food safety risk. This study investigated the prevalence, seasonal occurrence, genetic diversity, and quantification of AdVs and NoVs in the water and cultured shellfish samples at the four major coastal oyster breeding farms (COBF), five major fishing ports (FP), and their markets in Taiwan. The AdVs/NoVs in the water and shellfish samples were isolated by the membrane filtration and direct elution methods. The RNA of NoVs was reverse-transcribed into complementary DNA through reverse transcription reaction. Further NoVs and AdVs were detected using nested PCR. A higher detection rate was recorded in the low-temperature period than high-temperature. Detection difference was noted between nested PCR and qPCR outcomes for AdVs. The total detection rate of AdVs was higher in the water samples (COBF-40.6%, FP 20%) than the shellfish samples (COBF-11.7% and FP 6.3%). The AdVs load in the water and shellfish samples ranged from 1.23 × 103 to 1.00 × 106 copies/L and 3.57 × 103 to 4.27 × 104 copies/100g, respectively. The total detection of NoVs was highest in the water samples of the FP and their market shellfish samples (11.1% and 3.2%, respectively). Genotyping and phylogenetic analysis were identified as the prevalent AdVs and NoVs genotypes in the water and shellfish samples: A species HAdVs serotype 12; F species HAdVs serotype 41; and C species PAdVs serotype 5 (NoVs GI.2, GI.3 and GII.2). No significant differences were observed between the presence of AdVs, and all of the water quality parameters evaluated (heterotrophic plate count, water temperature, turbidity, pH, salinity, and dissolved oxygen). The virus contamination occurs mainly due to the direct discharge of domestic sewage, livestock farm, and fishing market wastewater into the coastal environment. Thus, this study suggested framing better estuarine management to prevent AdVs/NoVs transmission in water and cultured/distributed shellfish.
Collapse
|
24
|
Olalemi AO, Akinwumi IM. Microbial health risks associated with rotavirus and enteric bacteria in River Ala in Akure, Nigeria. J Appl Microbiol 2022; 132:3995-4006. [PMID: 35179285 DOI: 10.1111/jam.15497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/19/2022] [Accepted: 02/13/2022] [Indexed: 11/28/2022]
Abstract
AIM This study was carried out to determine the microbial health risks associated with a surface water commonly used for bathing, drinking, domestic and irrigational activities in Akure, Nigeria. METHODS AND RESULTS Water samples were collected from the river from March to June, 2018. The load of enteric bacteria, somatic coliphages and rotavirus in the water samples were determined using culture-based methods and molecular technique. The physicochemical characteristics of the water samples were determined using standard methods. The risks of rotavirus, Salmonella and Shigella infections resulting from ingestion of the water from the river were estimated using dose-response model. Redundancy analysis revealed that the levels of E. coli and Salmonella were highly associated with salinity and turbidity. The risks of infection associated with rotavirus (3.3 × 10-3 ) was higher than those associated with Salmonella (1.3 × 10-4 ) and Shigella (1.3 × 10-3 ), and were all above the WHO acceptable risk limit (10-4 ). CONCLUSION Accidental or intentional ingestion of water from the river may pose potential risks of gastrointestinal illness to humans. SIGNIFICANCE AND IMPACT OF STUDY Quantitative microbial risk assessment is essential in establishing adequate water management practices that must be strictly followed in order to protect human health.
Collapse
Affiliation(s)
- A O Olalemi
- Department of Microbiology, Federal University of Technology, Ondo, Nigeria
| | - I M Akinwumi
- Department of Microbiology, Federal University of Technology, Ondo, Nigeria
| |
Collapse
|
25
|
Nagarajan V, Chen J, Hsu B, Hsu G, Wang J, Hussain B. Prevalence, Distribution, and Genotypes of Adenovirus and Norovirus in the Puzi River and Its Tributaries and the Surrounding Areas in Taiwan. GEOHEALTH 2021; 5:e2021GH000465. [PMID: 34977444 PMCID: PMC8686652 DOI: 10.1029/2021gh000465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/18/2021] [Accepted: 11/27/2021] [Indexed: 05/04/2023]
Abstract
This study investigated the prevalence, distribution, and genotypes of adenoviruses (AdVs) and noroviruses (NoVs) in the Puzi River and surrounding areas in Taiwan. The viruses in the water samples were isolated using the membrane filtration method and the viral nucleic acids were extracted. The RNA of NoVs was reverse-transcribed into complementary DNA using reverse transcriptase-polymerase chain reaction. AdVs and NoVs were detected using nested PCR. Genotyping and phylogenetic analyses were performed to identify the various viral genotypes in the water samples. Human adenovirus (HAdVs) and porcine adenovirus (PAdVs) were the predominant genotypes in the water samples. The prevalence of F species HAdVs serotype 41 (79.2%) and C species PAdVs serotype 5 (18.1%) was higher than that of other serotypes. Among NoVs, genogroup GII was more prevalent than GI. In particular, GII.4 (21.2%) and GII.17 (18.2%) were the predominant genotypes, which was consistent with the clinical findings. The prevalence of both AdVs and NoVs was higher in the winter than spring, summer and autumn seasons. AdVs and NoVs detection results were statistically analyzed by investigating their association with water quality indicators. The results revealed that the presence of AdVs was significantly correlated with the heterotrophic bacterial count, total coliform Escherichia coli, turbidity, salinity, and dissolved oxygen. Meanwhile, the presence of NoVs was only significantly correlated with temperature, pH, and dissolved oxygen. Microbial pollution sources may include urban runoff and discharge of water from livestock farms situated near the river and tributaries within this region of Taiwan. Future studies should include comparisons of the presence of AdVs and NoVs in these known pollution sources and water quality monitoring of these watersheds, as this will allow potential identification of pollution sources. Additionally, remediation strategies must be developed to minimize viral contamination in the river ecosystem.
Collapse
Affiliation(s)
- Viji Nagarajan
- Department of Earth and Environmental SciencesNational Chung Cheng UniversityChiayi CountyTaiwan
| | | | - Bing‐Mu Hsu
- Department of Earth and Environmental SciencesNational Chung Cheng UniversityChiayi CountyTaiwan
| | - Gwo‐Jong Hsu
- Division of Infectious DiseasesDitmanson Medical FoundationChia‐Yi Christian HospitalChiayi CountyTaiwan
| | - Jiun‐Ling Wang
- Department of Internal MedicineNational Cheng Kung University HospitalTainanTaiwan
| | - Bashir Hussain
- Department of Earth and Environmental SciencesNational Chung Cheng UniversityChiayi CountyTaiwan
- Department of Biomedical SciencesNational Chung Cheng UniversityChiayi CountyTaiwan
| |
Collapse
|
26
|
Saadoun I, Ababneh Q, Jaradat Z. Genomic detection of waterborne enteric viruses as water quality indicators in Al-Zarqa River, Jordan. JOURNAL OF WATER AND HEALTH 2021; 19:604-615. [PMID: 34371497 DOI: 10.2166/wh.2021.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Al-Zarqa River is the second main tributary to River Jordan after the Yarmouk River. The river flow has been modified by discharge of industrial wastewater and treated domestic water. Concerns about the occurrence of waterborne pathogenic viruses in the surface waters of Al-Zarqa River prompted the analysis of the surface water quality with respect to the presence of enteric viruses. Viruses were concentrated from a total of 33 different water environmental samples including raw sewage, effluent samples and river water collected from and around the river over a period of 11 months. Calculated recovery yields for these concentration methods ranged between 2 and 8%. Polymerase chain reaction (PCR), reverse transcriptase-PCR (RT-PCR), nested RT-PCR and southern blotting hybridization analysis were used for the detection of hepatitis A virus, norovirus, astrovirus and human adenovirus 40/41, with the later one being detected in 21 (64%) of the samples that also showed previous positive presence for enteroviruses. To our knowledge, this is the first molecular biology report in Jordan describing the circulation of adenoviruses, which were detected more frequently than enteroviruses in sewage and water samples, and therefore, they can be used as an index for the presence of human pathogenic viruses in water environment.
Collapse
Affiliation(s)
- Ismail Saadoun
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, UAE E-mail:
| | - Qutaiba Ababneh
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Ziad Jaradat
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
27
|
Masachessi G, Prez VE, Michelena JF, Lizasoain A, Ferreyra LJ, Martínez LC, Giordano MO, Barril PA, Paván JV, Pisano MB, Farías AA, Isa MB, Ré VE, Colina R, Nates SV. Proposal of a pathway for enteric virus groups detection as indicators of faecal contamination to enhance the evaluation of microbiological quality in freshwater in Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143400. [PMID: 33199001 DOI: 10.1016/j.scitotenv.2020.143400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
An environmental survey was conducted in order to assess the frequency of detection of picobirnavirus (PBV), human adenovirus (HAdV) and infective enterovirus (iEV) as indicators of faecal contamination in freshwater, and to determine their potential as reporters of the presence of other enteric viruses, such as group A rotavirus (RVA). The study was carried out over a three-year period (2013-2015) in the San Roque Dam, Córdoba, Argentina. The overall frequency detection was 62.9% for PBV, 64.2% for HAdV and 70.4% for iEV. No significant differences were observed in the rates of detection for any of these viruses through the years studied, and a seasonal pattern was not present. Whenever there was RVA detection in the samples analyzed, there was also detection of iEV and/or HAdV and/or PBV. At least one of the viral groups analyzed was demonstrated in the 100% of the samples with faecal coliforms values within the guideline limits. In this setting, especially in those samples which reveal faecal indicator bacteria within the guideline limit, we propose to carry out a pathway, involving PBV, HAdV and iEV detection in order to enhance the evaluation of microbiological quality in freshwater in Argentina. The proposed methodological strategy could report faecal contamination in water, mainly of human origin, and the condition of the matrix to maintain viral viability. In addition, the viral groups selected could report the presence of RV.
Collapse
Affiliation(s)
- G Masachessi
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET, Argentina.
| | - V E Prez
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET, Argentina
| | - J F Michelena
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina
| | - A Lizasoain
- Laboratorio de Virología Molecular-Departamento de Ciencias Biológicas, Centro Universitario Regional del Litoral Norte-Universidad de la República, Salto, Uruguay
| | - L J Ferreyra
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina
| | - L C Martínez
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina
| | - M O Giordano
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina
| | - P A Barril
- Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET, Argentina; Laboratorio de Microbiología de los Alimentos, Centro de Investigación y Asistencia Técnica a la Industria (CIATI A.C.), Expedicionarios del Desierto 1310, CP 8309 Centenario, Neuquén, Argentina
| | - J V Paván
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina
| | - M B Pisano
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET, Argentina
| | - A A Farías
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina
| | - M B Isa
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina
| | - V E Ré
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET, Argentina
| | - R Colina
- Laboratorio de Virología Molecular-Departamento de Ciencias Biológicas, Centro Universitario Regional del Litoral Norte-Universidad de la República, Salto, Uruguay
| | - S V Nates
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina
| |
Collapse
|
28
|
Hess S, Niessner R, Seidel M. Quantitative detection of human adenovirus from river water by monolithic adsorption filtration and quantitative PCR. J Virol Methods 2021; 292:114128. [PMID: 33716046 DOI: 10.1016/j.jviromet.2021.114128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022]
Abstract
Water contaminated with fecally derived viruses, also known as enteric viruses, represents a particularly high risk for human health. However, they have not been included in water quality regulations yet. The detection of these viruses is often more expensive and time-consuming compared to the analysis of conventional fecal indicator organisms. In addition, most methods are not sensitive enough to detect small viral loads that may already cause serious health issues if present in water. In this study, we established a workflow for the successful and direct enrichment of human adenovirus (HAdV) from artificially contaminated river water based on monolithic adsorption filtration (MAF) and quantitative polymerase reaction (qPCR). With a clear focus on efficiency, we used targeted synthetic DNA fragments as standard for the quantification of HAdV by qPCR, leading to accurate and robust results with a qPCR efficiency of 95 %, a broad working range over 6 orders of magnitude and an LOD of 1 GU/μL. We carried out a cascade of spiking experiments, enhancing the complexity of the spiking matrix with each step to progressively evaluate MAF for the direct concentration of HAdV. We found that negatively charged MAF using monoliths with hydroxyl groups (MAF-OH) showed a better reproducibility and a significantly faster turnaround time than skimmed milk flocculation (SMF) when concentrating HAdV35 from artificially contaminated, acidified mineral water. We then validated positively charged MAF using monoliths with diethyl aminoethyl groups (MAF-DEAE) for the direct concentration of HAdV5 without pre-conditioning of water samples using tap water as spiking matrix with a less defined and controlled water chemistry. Finally, we evaluated MAF-DEAE for the direct concentration of HAdV5 from surface water using river water as representative matrix with an undefined water chemistry. We found, that MAF-DEAE achieved reproducible recoveries of HAdV5, independently of the spiked concentration level or sample volume. Furthermore, we showed, that MAF-DEAE drastically reduced the limit of detection (LOD) of HAdV5 by a factor of 115 from 6.0 ∙ 103 GU/mL before to 5.2 ∙ 101 GU/mL after MAF-DEAE. We identified that recoveries increased for smaller processing volumes with a peak at 0.5 L of 84.0 % and showed that recovery efficiency depends on sample volume and matrix type. The here presented workflow based on MAF-DEAE and qPCR offers an easy-to-implement and highly efficient alternative to existing approaches and allows for a fast detection of HAdV in water.
Collapse
Affiliation(s)
- Sandra Hess
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Elisabeth-Winterhalter-Weg 6, 81377 Munich, Germany
| | - Reinhard Niessner
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Elisabeth-Winterhalter-Weg 6, 81377 Munich, Germany
| | - Michael Seidel
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Elisabeth-Winterhalter-Weg 6, 81377 Munich, Germany.
| |
Collapse
|
29
|
Diversity of β-lactamase-encoding genes in wastewater: bacteriophages as reporters. Arch Virol 2021; 166:1337-1344. [PMID: 33683473 DOI: 10.1007/s00705-021-05024-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
A reservoir of antibiotic resistance genes (ARGs) is present in pathogenic, commensal, and environmental bacteria as well as in mobile genetic elements, including bacteriophages. Wastewater treatment plants (WWTPs) are considered hotspots for the spread of ARGs. The aim of this work was to analyze the diversity of the highly prevalent ARGs blaCTX-M and blaTEM in bacterial and bacteriophage fractions associated with human and animal environments through the study of urban waste and animal residues discharged into WWTPs to provide information about the composition and maintenance of the current resistome in Buenos Aires, Argentina. The results showed that a putative extended-spectrum variant of the blaTEM gene was the most frequently detected, with blaTEM-116 being the most prevalent, while a recently described type, blaTEM-229, was also found. In the bacteriophage fraction, we detected blaCTX-M genes from four out of the five clusters described. The detection of blaCTX- M-9-like and blaCTX-M-25-like genes was unexpected based on surveys of the ARGs from clinical pathogens circulating regionally. The finding of divergent blaCTX-M sequences associated with previously reported environmental genes argues in favor of the natural environment as a reservoir of resistance genes. ARGs were detected in bacteriophages as frequently as in bacterial communities, and furthermore, the blaCTX-M genes were more diverse in the bacteriophage fraction. Bacteriophages might therefore play a role in the spread of ARGs in the environment, but they might also be used as "reporters" for monitoring circulating ARGs.
Collapse
|
30
|
Upfold NS, Luke GA, Knox C. Occurrence of Human Enteric Viruses in Water Sources and Shellfish: A Focus on Africa. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:1-31. [PMID: 33501612 PMCID: PMC7837882 DOI: 10.1007/s12560-020-09456-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/16/2020] [Indexed: 05/02/2023]
Abstract
Enteric viruses are a diverse group of human pathogens which are primarily transmitted by the faecal-oral route and are a major cause of non-bacterial diarrhoeal disease in both developed and developing countries. Because they are shed in high numbers by infected individuals and can persist for a long time in the environment, they pose a serious threat to human health globally. Enteric viruses end up in the environment mainly through discharge or leakage of raw or inadequately treated sewage into water sources such as springs, rivers, dams, or marine estuaries. Human exposure then follows when contaminated water is used for drinking, cooking, or recreation and, importantly, when filter-feeding bivalve shellfish are consumed. The human health hazard posed by enteric viruses is particularly serious in Africa where rapid urbanisation in a relatively short period of time has led to the expansion of informal settlements with poor sanitation and failing or non-existent wastewater treatment infrastructure, and where rural communities with limited or no access to municipal water are dependent on nearby open water sources for their subsistence. The role of sewage-contaminated water and bivalve shellfish as vehicles for transmission of enteric viruses is well documented but, to our knowledge, has not been comprehensively reviewed in the African context. Here we provide an overview of enteric viruses and then review the growing body of research where these viruses have been detected in association with sewage-contaminated water or food in several African countries. These studies highlight the need for more research into the prevalence, molecular epidemiology and circulation of these viruses in Africa, as well as for development and application of innovative wastewater treatment approaches to reduce environmental pollution and its impact on human health on the continent.
Collapse
Affiliation(s)
- Nicole S Upfold
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Garry A Luke
- Centre for Biomolecular Sciences, School of Biology, Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Scotland, KY16 9ST, UK
| | - Caroline Knox
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
31
|
Sano D, Watanabe R, Oishi W, Amarasiri M, Kitajima M, Okabe S. Viral Interference as a Factor of False-Negative in the Infectious Adenovirus Detection Using Integrated Cell Culture-PCR with a BGM Cell Line. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:84-92. [PMID: 33392927 DOI: 10.1007/s12560-020-09453-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
This study investigated the influence of viral interference on the detection of enteric viruses using the integrated cell culture (ICC)-PCR with a BGM cell line. It was possible to detect 102 plaque-forming units (PFU)/flask of enterovirus 71 (EV71) in spite of the presence of 104 PFU/flask of adenovirus 40 (AdV40). Meanwhile, 104 PFU/flask of AdV40 was not detected in the presence of 102 PFU/flask of EV71. This inhibition of AdV40 detection using ICC-PCR was attributable to the growth of EV71, because the addition of a growth inhibitor of EV71 (rupintrivir) neutralized the detection inhibition of AdV40. The growth inhibition of AdV40 under co-infection with EV71 is probably caused by the immune responses of EV71-infected cells. AdV is frequently used as a fecal contamination indicator of environmental water, but this study demonstrated that false-negative detection of infectious AdV using ICC-PCR could be caused by the co-existence of infectious EV in a water sample. The addition of rupintrivir could prevent false-negative detection of AdV using ICC-PCR. This study, therefore, emphasizes the importance of confirming the presence of multiple enteric viruses in a sample derived from environmental water prior to the application of ICC-PCR because the viral interference phenomenon may lead to the false-negative detection of target viruses.
Collapse
Affiliation(s)
- Daisuke Sano
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan.
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan.
| | - Ryosuke Watanabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Wakana Oishi
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Mohan Amarasiri
- Department of Health Science, School of Allied Health Sciences, Kitasato University, A1-505, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| |
Collapse
|
32
|
Lahrich S, Laghrib F, Farahi A, Bakasse M, Saqrane S, El Mhammedi MA. Review on the contamination of wastewater by COVID-19 virus: Impact and treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:142325. [PMID: 33182015 PMCID: PMC7481832 DOI: 10.1016/j.scitotenv.2020.142325] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 04/14/2023]
Abstract
Emerging viruses are a major public health problem. Most zoonotic pathogens originate in wildlife, including human immunodeficiency virus (HIV), influenza, Ebola, and coronavirus. Severe acute respiratory syndrome (SARS) is a viral respiratory illness caused by a coronavirus called SARS-associated coronavirus (SARS-CoV). Viruses are charged colloidal particles that have the ability to adsorb on surfaces depending on pH. Their sorptive interaction with solid particles has important implications for their behavior in aquatic environments, soils, sewage sludge, and other solid materials and their removal or concentration by water treatment processes. Current state of knowledge on the potential of wastewater surveillance to understand the COVID-19 pandemic is reviewed. This study also identified wastewater irrigation systems with a higher risk of COVID-19 transmission. Emphasis was placed on methodologies for the detection and quantification of SARS-CoV-2 in wastewater.
Collapse
Affiliation(s)
- S Lahrich
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - F Laghrib
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - A Farahi
- Ibn Zohr University, Team of Catalysis and Environment, Faculty of Sciences, BP 8106 Cité Dakhla, Agadir, Morocco
| | - M Bakasse
- Chouaib Doukkali University, Faculty of Sciences, Laboratory of Organic Bioorganic Chemistry and Environment, El Jadida, Morocco
| | - S Saqrane
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - M A El Mhammedi
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco.
| |
Collapse
|
33
|
Montagna MT, De Giglio O, Calia C, Pousis C, Triggiano F, Murgolo S, De Ceglie C, Bagordo F, Apollonio F, Diella G, Narracci M, Acquaviva MI, Ferraro GB, Mancini P, Veneri C, Brigida S, Grassi T, De Donno A, Di Iaconi C, Caputo MC, Cavallo RA, La Rosa G, Mascolo G. Microbiological and Chemical Assessment of Wastewater Discharged by Infiltration Trenches in Fractured and Karstified Limestone (SCA.Re.S. Project 2019-2020). Pathogens 2020; 9:1010. [PMID: 33266323 PMCID: PMC7759865 DOI: 10.3390/pathogens9121010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 01/13/2023] Open
Abstract
This study investigated the environmental contamination of groundwater as a consequence of the discharge of treated wastewater into the soil. The investigation focused on a wastewater treatment plant located in an area fractured by karst in the Salento peninsula (Apulia, Italy). Water samples were collected at four sites (raw wastewater, treated wastewater, infiltration trench, and monitoring well), monthly from May to December 2019 (with the exception of August), and were tested for (1) panel of bacteria; (2) enteric viruses; and (3) chemical substances. A gradual reduction in the concentration of bacteria, viruses and contaminants of emerging concern was observed across the profile of soil fissured by karst. All monitored bacteria were absent from the monitoring well, except for Pseudomonas aeruginosa. Pepper mild mottle virus and adenovirus were detected at all sampling sites. Personal care products and X-ray contrast media showed the greatest decrease in concentration from infiltration trench to the monitoring well, while the highest residual concentrations in the monitoring well were found for anticonvulsants (78.5%), antimicrobials (41.3%), and antipsychotic drugs (38.6%). Our results show that parameters provided by current law may not always be sufficient to evaluate the sanitary risk relating to the discharge of treated wastewater to the soil.
Collapse
Affiliation(s)
- Maria Teresa Montagna
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (M.T.M.); (C.C.); (C.P.); (F.T.); (F.A.); (G.D.)
| | - Osvalda De Giglio
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (M.T.M.); (C.C.); (C.P.); (F.T.); (F.A.); (G.D.)
| | - Carla Calia
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (M.T.M.); (C.C.); (C.P.); (F.T.); (F.A.); (G.D.)
| | - Chrysovalentinos Pousis
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (M.T.M.); (C.C.); (C.P.); (F.T.); (F.A.); (G.D.)
| | - Francesco Triggiano
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (M.T.M.); (C.C.); (C.P.); (F.T.); (F.A.); (G.D.)
| | - Sapia Murgolo
- National Research Council (CNR), Water Research Institute (IRSA), via F. De Blasio, 5, 70132 Bari, Italy; (S.M.); (C.D.C.); (S.B.); (C.D.I.); (M.C.C.); (G.M.)
| | - Cristina De Ceglie
- National Research Council (CNR), Water Research Institute (IRSA), via F. De Blasio, 5, 70132 Bari, Italy; (S.M.); (C.D.C.); (S.B.); (C.D.I.); (M.C.C.); (G.M.)
| | - Francesco Bagordo
- Laboratory of Hygiene, Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 165, 73100 Lecce, Italy; (F.B.); (T.G.); (A.D.D.)
| | - Francesca Apollonio
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (M.T.M.); (C.C.); (C.P.); (F.T.); (F.A.); (G.D.)
| | - Giusy Diella
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (M.T.M.); (C.C.); (C.P.); (F.T.); (F.A.); (G.D.)
| | - Marcella Narracci
- National Research Council (CNR), Water Research Institute (IRSA), S.S. di Taranto, via Roma 3, 74123 Taranto, Italy; (M.N.); (M.I.A.); (R.A.C.)
| | - Maria Immacolata Acquaviva
- National Research Council (CNR), Water Research Institute (IRSA), S.S. di Taranto, via Roma 3, 74123 Taranto, Italy; (M.N.); (M.I.A.); (R.A.C.)
| | - Giusy Bonanno Ferraro
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.B.F.); (P.M.); (C.V.); (G.L.R.)
| | - Pamela Mancini
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.B.F.); (P.M.); (C.V.); (G.L.R.)
| | - Carolina Veneri
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.B.F.); (P.M.); (C.V.); (G.L.R.)
| | - Silvia Brigida
- National Research Council (CNR), Water Research Institute (IRSA), via F. De Blasio, 5, 70132 Bari, Italy; (S.M.); (C.D.C.); (S.B.); (C.D.I.); (M.C.C.); (G.M.)
| | - Tiziana Grassi
- Laboratory of Hygiene, Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 165, 73100 Lecce, Italy; (F.B.); (T.G.); (A.D.D.)
| | - Antonella De Donno
- Laboratory of Hygiene, Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 165, 73100 Lecce, Italy; (F.B.); (T.G.); (A.D.D.)
| | - Claudio Di Iaconi
- National Research Council (CNR), Water Research Institute (IRSA), via F. De Blasio, 5, 70132 Bari, Italy; (S.M.); (C.D.C.); (S.B.); (C.D.I.); (M.C.C.); (G.M.)
| | - Maria Clementina Caputo
- National Research Council (CNR), Water Research Institute (IRSA), via F. De Blasio, 5, 70132 Bari, Italy; (S.M.); (C.D.C.); (S.B.); (C.D.I.); (M.C.C.); (G.M.)
| | - Rosa Anna Cavallo
- National Research Council (CNR), Water Research Institute (IRSA), S.S. di Taranto, via Roma 3, 74123 Taranto, Italy; (M.N.); (M.I.A.); (R.A.C.)
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.B.F.); (P.M.); (C.V.); (G.L.R.)
| | - Giuseppe Mascolo
- National Research Council (CNR), Water Research Institute (IRSA), via F. De Blasio, 5, 70132 Bari, Italy; (S.M.); (C.D.C.); (S.B.); (C.D.I.); (M.C.C.); (G.M.)
| |
Collapse
|
34
|
Martínez-Puchol S, Rusiñol M, Fernández-Cassi X, Timoneda N, Itarte M, Andrés C, Antón A, Abril JF, Girones R, Bofill-Mas S. Characterisation of the sewage virome: comparison of NGS tools and occurrence of significant pathogens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136604. [PMID: 31955099 DOI: 10.1016/j.scitotenv.2020.136604] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 04/14/2023]
Abstract
NGS techniques are excellent tools to monitor and identify viral pathogens circulating among the population with some limitations that need to be overcome, especially in complex matrices. Sewage contains a high amount of other microorganisms that could interfere when trying to sequence viruses for which random PCR amplifications are needed before NGS. The selection of appropriate NGS tools is important for reliable identification of viral diversity among the population. We have compared different NGS methodologies (Untargeted Viral Metagenomics, Target Enrichment Sequencing and Amplicon Deep Sequencing) for the detection and characterisation of viruses in urban sewage, focusing on three important human pathogens: papillomaviruses, adenoviruses and enteroviruses. A full picture of excreted viruses was obtained by applying Untargeted Viral Metagenomics, which detected members of four different vertebrate viral families in addition to bacteriophages, plant viruses and viruses infecting other hosts. Target Enrichment Sequencing, using specific vertebrate viral probes, allowed the detection of up to eight families containing human viruses, with high variety of types within the families and with a high genome coverage. By applying Amplicon Deep Sequencing, the diversity of enteroviruses, adenoviruses and papillomaviruses observed was higher than when applying the other two strategies and this technique allowed the subtyping of an enterovirus A71 C1 strain related to a brainstem encephalitis outbreak occurring at the same time in the sampling area. From the data obtained, we concluded that the different strategies studied provided different levels of analysis: TES is the best strategy to obtain a broad picture of human viruses present in complex samples such as sewage. Other NGS strategies are useful for studying the virome of complex samples when also targeting viruses infecting plants, bacteria, invertebrates or fungi (Untargeted Viral Metagenomics) or when observing the variety within a sole viral family is the objective of the study (Amplicon Deep Sequencing).
Collapse
Affiliation(s)
- Sandra Martínez-Puchol
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology &Statistics Dept., Universitat de Barcelona, Barcelona, Catalonia, Spain; The Water Research Institute (IdRA); Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | - Marta Rusiñol
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology &Statistics Dept., Universitat de Barcelona, Barcelona, Catalonia, Spain; The Water Research Institute (IdRA); Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Xavier Fernández-Cassi
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology &Statistics Dept., Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Natàlia Timoneda
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology &Statistics Dept., Universitat de Barcelona, Barcelona, Catalonia, Spain; Computational Genomics Lab, Genetics, Microbiology & Statistics Dept., Universitat de Barcelona, Institut de Biomedicina (IBUB), Barcelona, Catalonia, Spain
| | - Marta Itarte
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology &Statistics Dept., Universitat de Barcelona, Barcelona, Catalonia, Spain; The Water Research Institute (IdRA); Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Cristina Andrés
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andrés Antón
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep F Abril
- Computational Genomics Lab, Genetics, Microbiology & Statistics Dept., Universitat de Barcelona, Institut de Biomedicina (IBUB), Barcelona, Catalonia, Spain
| | - Rosina Girones
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology &Statistics Dept., Universitat de Barcelona, Barcelona, Catalonia, Spain; The Water Research Institute (IdRA); Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Sílvia Bofill-Mas
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology &Statistics Dept., Universitat de Barcelona, Barcelona, Catalonia, Spain; The Water Research Institute (IdRA); Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
35
|
Ballesté E, Belanche-Muñoz LA, Farnleitner AH, Linke R, Sommer R, Santos R, Monteiro S, Maunula L, Oristo S, Tiehm A A, Stange C, Blanch AR. Improving the identification of the source of faecal pollution in water using a modelling approach: From multi-source to aged and diluted samples. WATER RESEARCH 2020; 171:115392. [PMID: 31865126 DOI: 10.1016/j.watres.2019.115392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 05/20/2023]
Abstract
The last decades have seen the development of several source tracking (ST) markers to determine the source of pollution in water, but none of them show 100% specificity and sensitivity. Thus, a combination of several markers might provide a more accurate classification. In this study Ichnaea® software was improved to generate predictive models, taking into account ST marker decay rates and dilution factors to reflect the complexity of ecosystems. A total of 106 samples from 4 sources were collected in 5 European regions and 30 faecal indicators and ST markers were evaluated, including E. coli, enterococci, clostridia, bifidobacteria, somatic coliphages, host-specific bacteria, human viruses, host mitochondrial DNA, host-specific bacteriophages and artificial sweeteners. Models based on linear discriminant analysis (LDA) able to distinguish between human and non-human faecal pollution and identify faecal pollution of several origins were developed and tested with 36 additional laboratory-made samples. Almost all the ST markers showed the potential to correctly target their host in the 5 areas, although some were equivalent and redundant. The LDA-based models developed with fresh faecal samples were able to differentiate between human and non-human pollution with 98.1% accuracy in leave-one-out cross-validation (LOOCV) when using 2 molecular human ST markers (HF183 and HMBif), whereas 3 variables resulted in 100% correct classification. With 5 variables the model correctly classified all the fresh faecal samples from 4 different sources. Ichnaea® is a machine-learning software developed to improve the classification of the faecal pollution source in water, including in complex samples. In this project the models were developed using samples from a broad geographical area, but they can be tailored to determine the source of faecal pollution for any user.
Collapse
Affiliation(s)
- Elisenda Ballesté
- Dept. Genetics, Microbiology and Statistics, University of Barcelona, Catalonia, Spain.
| | | | - Andreas H Farnleitner
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Environmental Microbiology and Molecular Diagnostics 166/5/3, TU Wien, Getreidemarkt 9/166, 1060, Vienna, Austria; Karl Landsteiner University of Health Sciences, Research Division Water Quality and Health, Dr.-Karl-Dorrek-Straße 30, 3500, Krems an der Donau, Austria
| | - Rita Linke
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Environmental Microbiology and Molecular Diagnostics 166/5/3, TU Wien, Getreidemarkt 9/166, 1060, Vienna, Austria
| | - Regina Sommer
- Unit of Water Hygiene, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Ricardo Santos
- Laboratório Analises, Instituto Superior Tecnico. Universidade Lisboa, Lisbon, Portugal
| | - Silvia Monteiro
- Laboratório Analises, Instituto Superior Tecnico. Universidade Lisboa, Lisbon, Portugal
| | - Leena Maunula
- Dept. Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Satu Oristo
- Dept. Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Andreas Tiehm A
- Dept. Microbiology and Molecular Biology, DVGW-Technologiezentrum Wasser, Germany
| | - Claudia Stange
- Dept. Microbiology and Molecular Biology, DVGW-Technologiezentrum Wasser, Germany
| | - Anicet R Blanch
- Dept. Genetics, Microbiology and Statistics, University of Barcelona, Catalonia, Spain
| |
Collapse
|
36
|
Wu Z, Greaves J, Arp L, Stone D, Bibby K. Comparative fate of CrAssphage with culturable and molecular fecal pollution indicators during activated sludge wastewater treatment. ENVIRONMENT INTERNATIONAL 2020; 136:105452. [PMID: 31931347 DOI: 10.1016/j.envint.2019.105452] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 05/04/2023]
Abstract
Wastewater treatment plants are typically monitored using fecal indicator bacteria to ensure adequate microbial water quality of the treated effluent. Fecal indicator bacteria exhibit poor correlation with virus fate in the environment, including during wastewater treatment. Viral-based microbial source tracking methods have the potential to overcome this limitation. The recently discovered human gut bacteriophage crAssphage is a promising viral human fecal indicator. In this current study, primary influent, primary effluent, secondary effluent, and final effluent of a conventional activated sludge wastewater treatment plant were analyzed for a suite of fecal indicators to evaluate the suitability of crAssphage as a wastewater process indicator for virus removal. CrAssphage was the most abundant fecal indicator measured through the wastewater treatment process. Culturable and molecular bacterial fecal pollution indicators showed higher removal than viral fecal pollution indicators, including crAssphage, confirming the necessity of a viral-specific fecal monitoring target. CrAssphage was strongly correlated with adenovirus and polyomavirus molecular indicators through the wastewater treatment process. Literature comparison demonstrated site-specific removal of molecular fecal indicators during wastewater treatment highlighting the need for local performance validation. The high abundance of crAssphage and correlation with pathogenic viruses suggests the potential suitability of crAssphage as a viral fecal pollution process indicator during wastewater treatment.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, South Bend, IN, 46556, USA
| | - Justin Greaves
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, South Bend, IN, 46556, USA
| | - Lillian Arp
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, South Bend, IN, 46556, USA
| | - Daniel Stone
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, South Bend, IN, 46556, USA
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, South Bend, IN, 46556, USA.
| |
Collapse
|
37
|
Onosi O, Upfold NS, Jukes MD, Luke GA, Knox C. The First Detection of Human Bocavirus Species 2 and 3 in Raw Sewage and Mussels in South Africa. FOOD AND ENVIRONMENTAL VIROLOGY 2020; 12:84-88. [PMID: 31786741 DOI: 10.1007/s12560-019-09417-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/27/2019] [Indexed: 05/18/2023]
Abstract
Human bocavirus (HBoV) has a global distribution and is associated with respiratory and enteric infections, particularly in the paediatric population. In this study, raw sewage and mussel samples were analysed for the presence of HBoV using nested PCR with primers targeting the VP1/VP2 junction. Amplification and sequencing of the 382 bp region followed by phylogenetic analysis indicated the presence of HBoV 2 in mussel samples and HBoV 3 in sewage samples. This is the first report describing the presence of enteric-associated HBoV in environmental samples from South Africa and in mussel samples from the African continent. The results signify the need for further studies examining the potential risk of foodborne transmission of HBoV and highlight the importance of continued screening to determine the prevalence and epidemiology of HBoV in South Africa.
Collapse
Affiliation(s)
- Oikwathaile Onosi
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Nicole S Upfold
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.
| | - Michael D Jukes
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Garry A Luke
- Centre for Biomolecular Sciences, School of Biology, Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, KY16 9ST, Scotland, UK
| | - Caroline Knox
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| |
Collapse
|
38
|
Bouseettine R, Hassou N, Bessi H, Ennaji MM. Waterborne Transmission of Enteric Viruses and Their Impact on Public Health. EMERGING AND REEMERGING VIRAL PATHOGENS 2020. [PMCID: PMC7148740 DOI: 10.1016/b978-0-12-819400-3.00040-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Viruses of human or animal origin can spread in the environment and infect people via water and food. These viruses are released into the environment by various routes including water runoffs and aerosols. Furthermore, zoonotic viruses may infect humans exposed to contaminated surface waters. Viruses are emerging pathogens and are able to adapt by mutation, recombination, and reassortment and can thus become able to infect new hosts and to adjust to new environments. Enteric viruses are among the commonest and most hazardous waterborne pathogens, causing both sporadic and outbreak-related illness. While considerable research has documented the risk of enteric viruses to human health from contact with contaminated water, the current bacterial indicator-based methods for the evaluation of water quality are often ineffectual proxies for pathogenic viruses, but no correlation was established between the enteric bacteria and viruses studied. The present chapter will focus on viral pathogens shown to be transmitted through water. It will also provide an overview of viruses that had not been a concern for waterborne transmission in the past, but that may represent potentially emerging waterborne pathogens due to their occurrence and persistence in water environments. Monitoring effluents from wastewater treatment plants is important to preventing both environmental contamination and the spread of disease.
Collapse
|
39
|
A new solid matrix for preservation of viral nucleic acid from clinical specimens at ambient temperature. J Virol Methods 2019; 274:113732. [DOI: 10.1016/j.jviromet.2019.113732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 01/08/2023]
|
40
|
Pimenta AI, Margaça FM, Cabo Verde S. Virucidal activity of gamma radiation on strawberries and raspberries. Int J Food Microbiol 2019; 304:89-96. [DOI: 10.1016/j.ijfoodmicro.2019.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022]
|
41
|
Kokkinos P, Katsanou K, Lambrakis N, Vantarakis A. Assessment of the Incidence of Human Adenovirus in Surface Waters of Southwest Greece: Vouraikos River as a Case Study. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:309-313. [PMID: 30972691 DOI: 10.1007/s12560-019-09385-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
The purpose of this study is to assess the overall impact of different anthropogenic activities in the Vouraikos River basin (southwestern Greece, Natura 2000 area). Virological quality of river water samples was investigated. Positive samples for human adenoviruses were found occasionally, while porcine adenoviruses and bovine polyoma viruses were not detected. It is the first time that virological data are collected in the study area.
Collapse
Affiliation(s)
- P Kokkinos
- Environmental Microbiology Unit, Department of Public Health, University of Rio, 26500, Patras, Greece.
| | - K Katsanou
- Laboratory of Hydrogeology, Section of Applied Geology and Geophysics, Department of Geology, University of Patras, Rio, 26504, Patras, Greece
| | - N Lambrakis
- Laboratory of Hydrogeology, Section of Applied Geology and Geophysics, Department of Geology, University of Patras, Rio, 26504, Patras, Greece
| | - A Vantarakis
- Environmental Microbiology Unit, Department of Public Health, University of Rio, 26500, Patras, Greece
| |
Collapse
|
42
|
Keller R, Pratte-Santos R, Scarpati K, Martins SA, Loss SM, Fumian TM, Miagostovich MP, Cassini ST. Surveillance of Enteric Viruses and Thermotolerant Coliforms in Surface Water and Bivalves from a Mangrove Estuary in Southeastern Brazil. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:288-296. [PMID: 31154653 DOI: 10.1007/s12560-019-09391-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/27/2019] [Indexed: 05/02/2023]
Abstract
This study was conducted to evaluate the microbiological quality of a mangrove estuary in the Vitória Bay region, Espírito Santo, Brazil. We analyzed the presence and concentration of enteric viruses and thermotolerant coliforms in water, mussels (Mytella charruana and Mytella guyanensis), and oysters (Crassostrea rhizophorae), collected over a 13-month period. Human adenovirus, rotavirus A (RVA), and norovirus genogroup II were analyzed by quantitative PCR. The highest viral load was found in RVA-positive samples with a concentration of 3.0 × 104 genome copies (GC) L-1 in water samples and 1.3 × 105 GC g-1 in bivalves. RVA was the most prevalent virus in all matrices. Thermotolerant coliforms were quantified as colony-forming units (CFU) by the membrane filtration method. The concentration of these bacteria in water was in accordance with the Brazilian standard for recreational waters (< 250 CFU 100 mL-1) during most of the monitoring period (12 out of 13 months). However, thermotolerant coliform concentrations of 3.0, 3.1, and 2.6 log CFU 100 g-1 were detected in M. charruana, M. guyanensis, and C. rhizophorae, respectively. The presence of human-specific viruses in water and bivalves reflects the strong anthropogenic impact on the mangrove and serves as an early warning of waterborne and foodborne disease outbreaks resulting from the consumption of shellfish and the practice of water recreational activities in the region.
Collapse
Affiliation(s)
- Regina Keller
- Laboratório de Saneamento, Universidade Federal do Espírito Santo, Vitória, ES, Brazil.
| | - Rodrigo Pratte-Santos
- Laboratório de Saneamento, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
- Faculdade PIO XII, Cariacica, ES, Brazil
| | - Karolina Scarpati
- Laboratório de Saneamento, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Sara Angelino Martins
- Laboratório de Saneamento, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Suzanne Mariane Loss
- Laboratório de Saneamento, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Túlio Machado Fumian
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Marize Pereira Miagostovich
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Sérvio Túlio Cassini
- Laboratório de Saneamento, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| |
Collapse
|
43
|
Célia da Silva Lanna M, Viancelli A, Michelon W, Castro Carvalho SV, de Almeida Dos Reis D, Fernandez de Salles LA, Sant'Anna IH, Resende LT, de Souza Ferreira C, Aparecido das Chagas I, Hernández M, Treichel H, Rodríguez-Lázaro D, Fongaro G. Household-based biodigesters promote reduction of enteric virus and bacteria in vulnerable and poverty rural area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:8-13. [PMID: 31146241 DOI: 10.1016/j.envpol.2019.05.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 05/03/2023]
Abstract
The present study evaluated the river water quality improvement by implementation of household-based biodigesters in vulnerability and poverty rural area, in Minas Gerais State-Brazil. For that, 78 household-based biodigesters were installed for domestic wastewater treatment. Wastewater was collected before and after treatment and the physicochemical parameters and pathogens removal (human adenovirus (HAdV), hepatitis A (HAV) virus, Salmonella sp. and Escherichia coli) were evaluated; Additionally, river water was sampled before and after the household-based biodigesters implementation, to verify the contamination reduction and the positive impact of domestic wastewater treatment on waterborne pathogen reduction, considering HAdV, HAV, Salmonella sp. and E. coli quantification. The applicability in real-scale of decentralized treatment systems using household-based biodigesters promoted reduction of 90, 99, 99.99 and 99.999% from HAV, Salmonella sp., E. coli and HAdV from domestic wastewater, respectively; The river water quality improvement before the wastewater treatment application was highlight in the present study, considering that the reduction of waterborne pathogens in this water in 90, 99.99 and 99.999% of E. coli, HAV and HAdV, respectively (Salmonella sp. was not detected in river water). In general, this is an important study for encouraging the decentralized sanitation in vulnerable and poverty area, as well in rural sites, considering the positive impact of this implementation on public health.
Collapse
Affiliation(s)
- Maria Célia da Silva Lanna
- Laboratory of Microbiology and Technological Bioprospection, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Aline Viancelli
- Universidade do Contestado - UNC, PMPECSA, Concórdia, SC, Brazil
| | - Wiliam Michelon
- Universidade do Contestado - UNC, PMPECSA, Concórdia, SC, Brazil
| | | | - Deyse de Almeida Dos Reis
- Laboratory of Microbiology and Technological Bioprospection, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | | | - Iago Hashimoto Sant'Anna
- Laboratory of Microbiology and Technological Bioprospection, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Letícia Teresinha Resende
- Laboratory of Microbiology and Technological Bioprospection, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Clovis de Souza Ferreira
- Laboratory of Microbiology and Technological Bioprospection, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Igor Aparecido das Chagas
- Laboratory of Microbiology and Technological Bioprospection, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Marta Hernández
- Laboratory of Molecular Biology and Microbiology, Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain; Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Universidade Federal da Fronteira Sul (UFFS), Erechim, RS, Brazil
| | | | - Gislaine Fongaro
- Laboratory of Applied Virology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
44
|
Hamza H, Rizk NM, Gad MA, Hamza IA. Pepper mild mottle virus in wastewater in Egypt: a potential indicator of wastewater pollution and the efficiency of the treatment process. Arch Virol 2019; 164:2707-2713. [PMID: 31456085 DOI: 10.1007/s00705-019-04383-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/24/2019] [Indexed: 02/03/2023]
Abstract
There is increasing evidence that the fecal indicator bacteria that are routinely used for testing water quality are inadequate for ensuring protection of the public health. Pepper mild mottle virus (PMMoV) has recently been suggested as an alternative indicator of human fecal contamination in water; however, in Egypt there are no data available about its occurrence and concentration in aquatic environment. The concentration of PMMoV in the influent and effluent of three wastewater treatment plants was measured using qRT-PCR over a period of one year and compared to that of human adenovirus (HAdV), which is considered an indicator for human fecal contamination. PMMoV was detected in ~ 94% of the influent samples and 78% of the effluent samples, with concentrations ranging from 3.9 × 104 to 3.3 × 108 genome copies/l (GC/l) in the influent and 3.9 × 104 to 1.2 × 107 GC/l in the effluent. Similarly, HAdV was identified in 88% and 78% of the influent and effluent samples, respectively. The HAdV concentration ranged between 1.5 × 104 and 1.5 × 107 GC/l for the influent and 2.6 × 104 and 4.4 × 106 GC/l for the effluent. No significant difference was found between the removal ratio of PMMoV and HAdV. Viral reduction of 0.2-1.9 log10 and 0.2- 2.3 log10 by the treatment process was observed for PMMoV and HAdV, respectively. Both viruses showed no clear seasonality. Our data support the use of PMMoV as a fecal indicator of wastewater contamination and a process indicator for the performance of the treatment process.
Collapse
Affiliation(s)
- Hazem Hamza
- Environmental Virology Laboratory, Department of Water Pollution Research, National Research Centre, Cairo, Egypt
| | - Neveen Magdy Rizk
- Environmental Virology Laboratory, Department of Water Pollution Research, National Research Centre, Cairo, Egypt
| | - Mahmoud Afw Gad
- Environmental Virology Laboratory, Department of Water Pollution Research, National Research Centre, Cairo, Egypt
| | - Ibrahim Ahmed Hamza
- Environmental Virology Laboratory, Department of Water Pollution Research, National Research Centre, Cairo, Egypt.
| |
Collapse
|
45
|
Ghosh SK, Lekshmi M, Das O, Kumar S, Nayak BB. Occurrence of Human Enteric Adenoviruses in Fresh Tropical Seafood from Retail Markets and Landing Centers. J Food Sci 2019; 84:2256-2260. [PMID: 31334844 DOI: 10.1111/1750-3841.14735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 01/28/2023]
Abstract
Human adenoviruses (HAdVs) are the foodborne enteric pathogens transmitted by the consumption of contaminated shellfish. In this study, the occurrence of enteric adenoviruses in finfish and shellfish was investigated by virus concentration and polymerase chain reaction (PCR). Total plate count, total coliform, and fecal coliform levels were determined and correlated with the presence of adenovirus. Samples of fish, bivalve mollusks, crustaceans, and cephalopods were collected from supermarkets, landing centers, and retail fish markets of Mumbai, India for the study. Overall, the adenovirus DNA was detected in 21.27% of all the samples analyzed. The highest incidence was detected in clams (14.89%), followed by oysters, shrimps, and finfish (2.13% each). High prevalence of enteric adenovirus in filter-feeding bivalves, such as clams and oysters, as well as in fish suggests persistent fecal contamination of coastal waters in the region of study. The occurrence of adenoviruses in samples showed a positive correlation with the bacteriological indicators of fecal contamination, suggesting that fecal indicator bacteria may be used to monitor the presence of adenoviruses in seafood. PRACTICAL APPLICATION: This research demonstrates the occurrence of human adenoviruse (HAdV) in fresh seafood and the utility of fecal coliforms as indicators of HAdV presence in seafood. The study emphasizes the need to identify HAdV in seafood as a human health hazard and implement measures to prevent sewage pollution of fish and shellfish harvesting areas in India.
Collapse
Affiliation(s)
- Subal Kumar Ghosh
- QC Laboratory, Post Harvest Technology Dept., ICAR-Central Inst. of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Manjusha Lekshmi
- QC Laboratory, Post Harvest Technology Dept., ICAR-Central Inst. of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Oishi Das
- QC Laboratory, Post Harvest Technology Dept., ICAR-Central Inst. of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Sanath Kumar
- QC Laboratory, Post Harvest Technology Dept., ICAR-Central Inst. of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Binaya Bhusan Nayak
- QC Laboratory, Post Harvest Technology Dept., ICAR-Central Inst. of Fisheries Education (CIFE), Mumbai, 400061, India
| |
Collapse
|
46
|
Fusco G, Anastasio A, Kingsley DH, Amoroso MG, Pepe T, Fratamico PM, Cioffi B, Rossi R, La Rosa G, Boccia F. Detection of Hepatitis A Virus and Other Enteric Viruses in Shellfish Collected in the Gulf of Naples, Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2588. [PMID: 31331104 PMCID: PMC6678136 DOI: 10.3390/ijerph16142588] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/12/2019] [Accepted: 07/14/2019] [Indexed: 12/28/2022]
Abstract
To assess the quality of shellfish harvest areas, bivalve mollusk samples from three coastal areas of the Campania region in Southwest Italy were evaluated for viruses over a three-year period (2015-2017). Screening of 289 samples from shellfish farms and other locations by qPCR and RT-qPCR identified hepatitis A virus (HAV; 8.9%), norovirus GI (NoVGI; 10.8%) and GII (NoVGII; 39.7%), rotavirus (RV; 9.0%), astrovirus (AsV; 20.8%), sapovirus (SaV; 18.8%), aichivirus-1 (AiV-1; 5.6%), and adenovirus (AdV, 5.6%). Hepatitis E virus (HEV) was never detected. Sequence analysis identified HAV as genotype IA and AdV as type 41. This study demonstrates the presence of different enteric viruses within bivalve mollusks, highlighting the limitations of the current EU classification system for shellfish growing waters.
Collapse
Affiliation(s)
- Giovanna Fusco
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, Portici, 80055 Naples, Italy
| | - Aniello Anastasio
- Department of Veterinary Medicine and Animal Production, Università degli Studi di Napoli Federico II, Via Federico Delpino 1, 80137 Naples, Italy
| | - David H Kingsley
- U.S. Department of Agriculture, Agricultural Research Service, Delaware State University, Dover, DE 19901, USA
| | - Maria Grazia Amoroso
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, Portici, 80055 Naples, Italy
| | - Tiziana Pepe
- Department of Veterinary Medicine and Animal Production, Università degli Studi di Napoli Federico II, Via Federico Delpino 1, 80137 Naples, Italy
| | - Pina M Fratamico
- USDA, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Barbara Cioffi
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, Portici, 80055 Naples, Italy
| | - Rachele Rossi
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, Portici, 80055 Naples, Italy
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Federica Boccia
- Department of Veterinary Medicine and Animal Production, Università degli Studi di Napoli Federico II, Via Federico Delpino 1, 80137 Naples, Italy.
| |
Collapse
|
47
|
Xu C, Xu J, Liu J, Chen Y, Evensen Ø, Munang’andu HM, Qian G. Human adenovirus penton base and encapsidation sequences detected in Pelodiscus sinensis by next generation sequencing. Future Virol 2019. [DOI: 10.2217/fvl-2019-0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Chinese soft-shelled turtle ( Pelodiscus sinensis) has become one of the leading cultured organisms in China and South East Asia. The objectives of the present study were to use next generation sequencing to identify viral genomes present in liver tissues from Chinese soft-shelled turtle in China. BLAST analysis of viral sequences from liver samples showed high homology with the human adenovirus (HAdV) penton base and encapsidation proteins. This homology points to possible existence of HAdV in freshwater environments used for the culture of soft-shelled turtles. Therefore, our findings merit further investigations to determine possible contamination of HAdV in aquaculture environments and the possible role of the Chinese soft-shelled turtle in transmitting HAdV to humans.
Collapse
Affiliation(s)
- Cheng Xu
- Zhejiang Provincial Top Key Discipline of Biological Engineering, Zhejiang Wanli University, Ningbo 315100, PR China
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Basic Sciences & Aquatic Medicine, PO Box 369, 0102, Oslo, Norway
| | - Jiehao Xu
- Zhejiang Provincial Top Key Discipline of Biological Engineering, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Jiating Liu
- Zhejiang Provincial Top Key Discipline of Biological Engineering, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Yu Chen
- Zhejiang Provincial Top Key Discipline of Biological Engineering, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Øystein Evensen
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Basic Sciences & Aquatic Medicine, PO Box 369, 0102, Oslo, Norway
| | - Hetron Mweemba Munang’andu
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Basic Sciences & Aquatic Medicine, PO Box 369, 0102, Oslo, Norway
| | - Guoying Qian
- Zhejiang Provincial Top Key Discipline of Biological Engineering, Zhejiang Wanli University, Ningbo 315100, PR China
| |
Collapse
|
48
|
Shin H, Park H, Seo DJ, Jung S, Yeo D, Wang Z, Park KH, Choi C. Foodborne Viruses Detected Sporadically in the Fresh Produce and Its Production Environment in South Korea. Foodborne Pathog Dis 2019; 16:411-420. [DOI: 10.1089/fpd.2018.2580] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Hansaem Shin
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, Republic of Korea
| | - Hyunkyung Park
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, Republic of Korea
| | - Dong Joo Seo
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, Republic of Korea
| | - Soontag Jung
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, Republic of Korea
| | - Daseul Yeo
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, Republic of Korea
| | - Zhaoqi Wang
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, Republic of Korea
| | - Ki Hwan Park
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
- Bio and Environmental Technology Research Institute, Chung-Ang University, Anseong-si, Republic of Korea
| | - Changsun Choi
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, Republic of Korea
- Bio and Environmental Technology Research Institute, Chung-Ang University, Anseong-si, Republic of Korea
| |
Collapse
|
49
|
Masciopinto C, De Giglio O, Scrascia M, Fortunato F, La Rosa G, Suffredini E, Pazzani C, Prato R, Montagna MT. Human health risk assessment for the occurrence of enteric viruses in drinking water from wells: Role of flood runoff injections. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:559-571. [PMID: 30807946 DOI: 10.1016/j.scitotenv.2019.02.107] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 05/18/2023]
Abstract
We demonstrated that floods can induce severe microbiological contamination of drinking water from wells and suggest strategies to better address water safety plans for groundwater drinking supplies. Since 2002, the Italian Water Research Institute (IRSA) has detected hepatitis A virus, adenovirus, rotavirus, norovirus, and enterovirus in water samples from wells in the Salento peninsula, southern Italy. Perturbations in the ionic strength in water flow can initiate strong virus detachments from terra rossa sediments in karst fractures. This study therefore explored the potential health impacts of prolonged runoff injections in Salento groundwater caused by severe flooding during October 2018. A mathematical model for virus fate and transport in fractures was applied to determine the impact of floodwater injection on groundwater quality by incorporating mechanisms that affect virus attachment/detachment and survival in flowing water at microscale. This model predicted target concentrations of enteric viruses that can occur unexpectedly in wells at considerable distances (5-8 km) from the runoff injection site (sinkhole). Subsequently, the health impact of viruses in drinking water supplied from contaminated wells was estimated during the summer on the Salento coast. Specific unpublished dose-response model coefficients were proposed to determine the infection probabilities for Echo-11 and Polio 1 enteroviruses through ingestion. The median (50%) risk of infection was estimated at 6.3 · 10-3 with an uncertainty of 23%. The predicted burden of diseases was 4.89 disability adjusted life years per year, i.e., twice the maximum tolerable disease burden. The results highlight the requirement for additional water disinfection treatments in Salento prior to the distribution of drinking water. Moreover, monthly controls of enteric virus occurrence in water from wells should be imposed by a new water framework directive in semiarid regions because of the vulnerability of karst carbonate aquifers to prolonged floodwater injections and enteric virus contamination.
Collapse
Affiliation(s)
- Costantino Masciopinto
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca Sulle Acque (IRSA), Reparto di Chimica e Tecnologia delle Acque, Bari, Italy.
| | - Osvalda De Giglio
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli Studi Aldo Moro, Bari, Italy
| | - Maria Scrascia
- Dipartimento di Biologia, Università degli Studi Aldo Moro, Bari, Italy
| | | | - Giuseppina La Rosa
- Dipartimento Ambiente e Salute, Istituto Superiore di Sanità, Roma, Italy
| | - Elisabetta Suffredini
- Dipartimento di Sicurezza Alimentare, Nutrizione e Sanità Pubblica Veterinaria, Istituto Superiore di Sanità, Roma, Italy
| | - Carlo Pazzani
- Dipartimento di Biologia, Università degli Studi Aldo Moro, Bari, Italy
| | - Rosa Prato
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Foggia, Italy
| | - Maria Teresa Montagna
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli Studi Aldo Moro, Bari, Italy
| |
Collapse
|
50
|
Gonzales-Gustavson E, Rusiñol M, Medema G, Calvo M, Girones R. Quantitative risk assessment of norovirus and adenovirus for the use of reclaimed water to irrigate lettuce in Catalonia. WATER RESEARCH 2019; 153:91-99. [PMID: 30703677 DOI: 10.1016/j.watres.2018.12.070] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/22/2018] [Accepted: 12/31/2018] [Indexed: 05/21/2023]
Abstract
Wastewater is an important resource in water-scarce regions of the world, and its use in agriculture requires the guarantee of acceptable public health risks. The use of fecal indicator bacteria to evaluate safety does not represent viruses, the main potential health hazards. Viral pathogens could complement the use of fecal indicator bacteria in the evaluation of water quality. In this study, we characterized the concentration and removal of human adenovirus (HAdV) and norovirus genogroup II (NoV GII), highly abundant and important viral pathogens found in wastewater, in two wastewater treatment plants (WWTPs) that use different tertiary treatments (constructed wetland vs conventional UV, chlorination and Actiflo® treatments) for a year in Catalonia. The main objective of this study was to develop a Quantitative Microbial Risk Assessment for viral gastroenteritis caused by norovirus GII and adenovirus, associated with the ingestion of lettuce irrigated with tertiary effluents from these WWTPs. The results show that the disease burden of NoV GII and HAdV for the consumption of lettuce irrigated with tertiary effluent from either WWTP was higher than the WHO recommendation of 10-6 DALYs for both viruses. The WWTP with constructed wetland showed a higher viral reduction on average (3.9 and 2.8 logs for NoV GII and HAdV, respectively) than conventional treatment (1.9 and 2.5 logs) but a higher variability than the conventional WWTP. Sensitivity analysis demonstrated that the input parameters used to estimate the viral reduction by treatment and viral concentrations accounted for much of the model output variability. The estimated reductions required to reach the WHO recommended levels in tertiary effluent are influenced by the characteristics of the treatments developed in the WWTPs, and additional average reductions are necessary (in WWTP with a constructed wetland: A total of 6.7 and 5.1 logs for NoV GII and HAdV, respectively; and in the more conventional treatment: 7 and 5.6 logs). This recommendation would be achieved with an average quantification of 0.5 genome copies per 100 mL in reclaimed water for both viruses. The results suggest that the analyzed reclaimed water would require additional treatments to achieve acceptable risk in the irrigation of vegetables with reclaimed water.
Collapse
Affiliation(s)
- Eloy Gonzales-Gustavson
- Laboratory of Virus Contaminants of Water and Food, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Catalonia, Spain; Tropical and Highlands Veterinary Research Institute, School of Veterinary Medicine, San Marcos University, Carretera Central s/n, El Mantaro, Peru.
| | - Marta Rusiñol
- Laboratory of Virus Contaminants of Water and Food, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Catalonia, Spain.
| | - Gertjan Medema
- KWR Watercycle Research Institute, P.O. Box 1072, 3430, BB Nieuwegein, the Netherlands; The Netherlands and Delft University of Technology, the Netherlands.
| | - Miquel Calvo
- Section of Statistics, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Catalonia, Spain.
| | - Rosina Girones
- Laboratory of Virus Contaminants of Water and Food, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Catalonia, Spain.
| |
Collapse
|