1
|
Tunkaew K, Liewhiran C, Vaddhanaphuti CS. Functionalized metal oxide nanoparticles: A promising intervention against major health burden of diseases. Life Sci 2024; 358:123154. [PMID: 39433083 DOI: 10.1016/j.lfs.2024.123154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Metal oxide nanoparticles (MONPs) is one of the most effective materials for medical applications with their substantial surface metallic ions and high surface area-volume ratio. Over decades, MONPs have been considered potential treatments due to their demonstrated ability and reactivity to target diverse cellular signaling pathways implicated in antimicrobial effects, as well as in the amelioration of oxidative stress, inflammation, cancer progression, and glucose together with lipid dysregulation. Based on their unique characteristics, MONPs have shown to be biodegradable and biocompatible vehicles for drugs, which have recently been applied in drug delivery as nanocarriers to enhance their delivery capacity for mechanistic membrane transport. However, little is known about the precise cellular responses, molecular mechanisms, and potential use of MONPs in the medical field. This review emphasizes on elaborating the biochemical reactivities of MONPs on molecular and cellular reactions, highlighting the physiological responses, mechanisms of action, certain drawbacks, and remediation of these functionalized materials. The significant goal of this literature is to shed light on the new perspectives of MONPs in pre-clinical application to pursue for clinical research as alternative-personalized medicines to prevent individuals from drastic diseases.
Collapse
Affiliation(s)
- Kornwalai Tunkaew
- Innovative Research Unit of Epithelial Transport and Regulation (iETR), Department of Physiology, Faculty of Medicine, Chiang Mai University, 50200, Thailand
| | - Chaikarn Liewhiran
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chutima S Vaddhanaphuti
- Innovative Research Unit of Epithelial Transport and Regulation (iETR), Department of Physiology, Faculty of Medicine, Chiang Mai University, 50200, Thailand.
| |
Collapse
|
2
|
Fang Y, Liu Z, Jin Y, Huang Y, Zhou S, Tian H, Wu H. Electrospun high hydrophilicity antimicrobial poly (lactic acid)/silk fibroin nanofiber membrane for wound dressings. Int J Biol Macromol 2024; 277:133905. [PMID: 39079839 DOI: 10.1016/j.ijbiomac.2024.133905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 08/25/2024]
Abstract
Antimicrobial wound dressings can aid wound healing by preventing bacterial infection. This is particularly true of electrospun ones, which have a porous structure and can be easily loaded with antimicrobial drugs. Here, Poly lactic acid (PLA), Silk Fibroin (SF) and antimicrobial agents of Silver nanoparticles (Ag NPs) and Silver oxide (Ag2O) to prepare the PLA/SF composites antimicrobial nanofiber membrane by electrospinning. The PLA with 30 % SF nanofiber membrane show the water vapor permeability (WVP) and the liquid absorption of 36 g·mm/(m2·d·kPa) and 1721 %. With the increasing of SF contents, the degradation rate and surface hydrophilicity of the nanofiber membrane increase significantly. The nanofiber membrane exhibited excellent antimicrobial activity against Pseudomonas aeruginosa (P. aeruginosa) with the inhibition circle reach at 18.2 mm. The resultant nanofiber membrane showed high cytosolic activity, good cytocompatibility and strong antimicrobial ability, which laid a theoretical foundation for the construction of a new PLA/SF composites antimicrobial fiber membrane.
Collapse
Affiliation(s)
- Yiqi Fang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China
| | - Zixuan Liu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yujuan Jin
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Yansong Huang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China
| | - Sudan Zhou
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China
| | - Huafeng Tian
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Hua Wu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
3
|
Oheix E, Daou TJ, Pieuchot L. Antimicrobial zeolites and metal-organic frameworks. MATERIALS HORIZONS 2024. [PMID: 39291597 DOI: 10.1039/d4mh00259h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The current surge in antibiotic resistance and the emergence of pandemics have created an urgent need for novel antimicrobial strategies. The controlled release of antimicrobial active principles remains the most viable strategy to date, and transition metal ions currently represent the main alternative to antibiotics. In this review, we explore the potential of two types of materials, zeolites and metal-organic frameworks (MOFs), for the controlled release of antimicrobial active principles, notably transition metal ions. These materials have unique crystalline microporous structures that act as reservoirs, enabling sustained bactericidal effects in various applications such as coatings, packaging, and medical devices. However, there are currently no convenient and standardised methods for evaluating their metal ion release and antimicrobial efficacy. This work discusses analytical techniques and the proposed mechanisms of action while highlighting recent advances in film, membrane, and coating technologies. By addressing the current limitations, microporous materials can revolutionise antimicrobial approaches, offering enhanced effectiveness and long-term sustainability.
Collapse
Affiliation(s)
- Emmanuel Oheix
- Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute Alsace (UHA), CNRS, UMR 7361, 3 bis rue Alfred Werner, F-68093 Mulhouse, France.
- Université de Strasbourg (UniStra), F-67000 Strasbourg, France
| | - T Jean Daou
- Aptar CSP Technologies, 9 rue du Sandholz, Niederbronn les Bains, France.
| | - Laurent Pieuchot
- Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute Alsace (UHA), CNRS, UMR 7361, 3 bis rue Alfred Werner, F-68093 Mulhouse, France.
- Université de Strasbourg (UniStra), F-67000 Strasbourg, France
| |
Collapse
|
4
|
Li LJ, Lung CYK, Ge KX, Song K, Chu CH, Yu OY. Developing a novel calcium silver zeolite for caries management. BMC Oral Health 2024; 24:1098. [PMID: 39285379 PMCID: PMC11406761 DOI: 10.1186/s12903-024-04878-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVE To develop a novel calcium silver zeolite (Ca-Ag-Zeo) and assess its biocompatibility, physiochemical properties and antimicrobial effects. METHODS Ca-Ag-Zeo was synthesized using ion-exchange method with calcium chloride, silver nitrate and Zeolite X (Zeo). Silver zeolite X (Ag-Zeo) and Zeo were set as control. The chemical structure, morphology, crystal structure and elemental composition of Ca-Ag-Zeo was characterized by X-ray diffraction spectrum, scanning electron microscopy, transmission electron microscopy and energy dispersive spectroscopy, respectively. Its biocompatibility on the human gingival fibroblasts was assessed by cell counting kit-8 assay. Its physiochemical properties were determined by the released calcium and silver ion using Inductive Coupled Plasma Emission Spectrometry for up to 12 weeks. The antimicrobial properties on Streptococcus mutans, Lactobacillus acidophilus, Lactobacillus casei, and Candida albicans were assessed by minimum bactericidal concentration (MBC) or minimum fungicidal concentration (MFC) assay. RESULTS Ca-Ag-Zeo with a hexagonal cage structure was synthesized. As for biocompatibility, the half-maximal inhibitory concentration (± SD in mg/mL) of Ca-Ag-Zeo, Ag-Zeo and Zeo in human gingival fibroblasts were 0.52 ± 0.05, 0.15 ± 0.01 and 3.35 ± 0.58, respectively (Zeo > Ca-Ag-Zeo > Ag-Zeo; p < 0.05). As for physiochemical properties, the accumulated ion release (± SD in mg) of Ca-Ag-Zeo, Ag-Zeo and Zeo were 0.011 ± 0.003, 0 and 0 for calcium ion, respectively (Ca-Ag-Zeo > Ag-Zeo, Zeo; p < 0.001), and 0.213 ± 0.032, 0.209 ± 0.019 and 0 for silver ion, respectively (Ca-Ag-Zeo, Ag-Zeo > Zeo; p < 0.001). As for anti-microbial ability, the MBC/MFC (mg/mL) of Ca-Ag-Zeo, Ag-Zeo and Zeo were 32, 16 and > 256 against Streptococcus mutans; 32, 16, > 256 against Lactobacillus acidophilus; 16, 16, and 256 against Lactobacillus casei; 0.25, 0.125; and 2, 1, > 256 against Candida albicans, respectively. CONCLUSION A novel Ca-Ag-Zeo was developed. It presented better biocompatibility compared to Ag-Zeo. It released calcium and silver ions sustainably, and it could inhibit the growth of common cariogenic microorganisms.
Collapse
Affiliation(s)
- Laura Jiaxuan Li
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong, S.A.R., China
| | - Christie Ying-Kei Lung
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong, S.A.R., China
| | - Kelsey Xingyun Ge
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong, S.A.R., China
| | - Ke Song
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chun-Hung Chu
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong, S.A.R., China
| | - Ollie Yiru Yu
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong, S.A.R., China.
| |
Collapse
|
5
|
Sahu SK, Kushwaha A, Pradhan U, Majhi P, Shukla AK, Ghorai TK. Sustainable green synthesis of Hedychium coronarium leaf extract-stabilized silver nanoparticles and their applications: colorimetric sensing of Sn 2+ and Hg 2+ and antifungal and antimicrobial properties. NANOSCALE ADVANCES 2024:d4na00443d. [PMID: 39247859 PMCID: PMC11376088 DOI: 10.1039/d4na00443d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024]
Abstract
Hedychium coronarium (Hc) (commonly known as Gulbakawali) leaf extract was used for the stable and sustainable green synthesis of silver nanoparticles (Hc-AgNPs), which were biodegradable and non-toxic. Hedychium coronarium leaf extract was used as a reducing agent to stabilize the Hc-AgNPs by converting Ag+ to Ag0 without adding any capping agent. It demonstrated stability for up to six months, and no agglomeration was observed. The Hc-AgNPs were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), ultraviolet-visible spectrophotometry, and fluorescence spectroscopy analysis. The UV-visible spectrum supported the formation of stable Hc-AgNPs by displaying a strong surface plasmon resonance (SPR) peak at 440 nm. FT-IR spectra showed the functional groups present in the leaf extract of Hedychium coronarium, which was the primary source of secondary metabolites attached to Ag0. XRD analysis revealed a distinct 2θ peak of Hc-AgNPs at 38.15°, indicating a face-centred cubic structure with a crystallite size of 22.6 ± 1 nm at the (111) plane. Moreover, TEM demonstrated the spherical morphology of the Hc-AgNPs with an average particle size of 22.42 ± 1 nm. The photophysical characteristics of the Hc-AgNPs, as highlighted by their UV-vis and fluorescence characteristics, revealed their semiconducting nature with an impressive band gap (E g) value of 3.78 eV. Fascinatingly, the fluorescence activity of Hc-AgNPs at 504 nm showed a broad emission band corresponding to the absorption band at 251 nm. We performed the selective colorimetric sensing of Sn2+ metal ions using Hc-AgNPs, which demonstrated a detection limit of 10-3 M, suggesting their potential as very good solid biosensors. Interestingly, the Hc-AgNPs showed antifungal activity, which has not been reported before. Specifically, the results showed that the Hc-AgNPs had a higher fungitoxicity effect against Aspergillus flavus (59.58 ± 3.68) than against Fusarium oxysporum (57.93 ± 4.18). The antibacterial activity of the Hc-AgNPs was evaluated against three Gram-negative phytopathogenic bacteria: Xanthomonas oryzae (X. oryzae), Ralstonia solanacearum (R. solanacearum), and Erwinia carotovora (E. carotovora), showing effective inhibition zones of 16.33 ± 0.57, 15.33 ± 0.57, and 14.33 ± 0.57 mm, respectively. These results indicate that the Hc-AgNPs could inhibit these phytopathogenic bacteria with varying degrees of effectiveness in the order of X. oryzae > R. solanacearum > E. carotovora.
Collapse
Affiliation(s)
- Sanjay Kumar Sahu
- Nanomaterials and Crystal Design Laboratory, Department of Chemistry, Indira Gandhi National Tribal University Amarkantak 484887 Madhya Pradesh India
| | - Anjana Kushwaha
- Nanomaterials and Crystal Design Laboratory, Department of Chemistry, Indira Gandhi National Tribal University Amarkantak 484887 Madhya Pradesh India
| | - Umakant Pradhan
- Microbiology Laboratory, Department of Botany, Indira Gandhi National Tribal University Amarkantak 484887 Madhya Pradesh India
| | - Purusottam Majhi
- Microbiology Laboratory, Department of Botany, Indira Gandhi National Tribal University Amarkantak 484887 Madhya Pradesh India
| | - Awadesh Kumar Shukla
- Microbiology Laboratory, Department of Botany, Indira Gandhi National Tribal University Amarkantak 484887 Madhya Pradesh India
| | - Tanmay Kumar Ghorai
- Nanomaterials and Crystal Design Laboratory, Department of Chemistry, Indira Gandhi National Tribal University Amarkantak 484887 Madhya Pradesh India
| |
Collapse
|
6
|
Hani U, Kidwan FN, Albarqi LA, Al-Qahtani SA, AlHadi RM, AlZaid HA, Haider N, Ansari MA. Biogenic silver nanoparticle synthesis using orange peel extract and its multifaceted biomedical application. Bioprocess Biosyst Eng 2024; 47:1363-1375. [PMID: 38740634 DOI: 10.1007/s00449-024-03031-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
The aim of this study was to employ an agro-industrial byproduct, specifically Citrus sinensis peels, as a reservoir of polyphenols. The natural chemicals present in C. sinensis peels serve as reducing agents in an environmentally benign method for synthesizing silver nanoparticles (AgNPs). This methodology not only provides a more environmentally friendly method for synthesizing nanoparticles but also enhances the value of agricultural waste, emphasizing the sustainable utilization of resources. In our study, AgNPs were successfully synthesized using peel aqueous exact of C. sinensis and then their various biological activity has been investigated. The synthesized AgNPs were characterized by UV-vis spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and transmission electron microscopy (TEM) analysis. Furthermore, their effectiveness in inhibiting growth and biofilm formation of Escherichia coli, Staphylococcus aureus, and Candida albicans has been investigated. The minimum inhibitory concentrations (MIC) for E. coli and S. aureus were both 32 μg/mL, and for C. albicans, it was 128 µg/mL. At 250 µg/mL of AgNPs, 94% and 92% biofilm inhibition were observed against E. coli and S. aureus, respectively. Furthermore, AgNPs demonstrated significant toxic effects against human prostate cancer cell line DU145 as investigated by anti-apoptotic, 4',6-diamidino-2-phenylindole (DAPI), reactive oxygen species (ROS), and acridine orange/ethidium bromide (AO/EtBr) assays. We also conducted uptake analysis on these pathogens and cancer cell lines to preliminarily investigate the mechanisms underlying their toxic effects. These findings confirm that AgNPs can serve as a cost-effective, non-toxic, and environmentally friendly resource for green synthesis of medicinal AgNPs. Moreover, this approach offers an alternative recycling strategy that contributes to the sustainable use of biological by-products.
Collapse
Affiliation(s)
- Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.
| | - Fawziah Nasser Kidwan
- Department of Doctor of Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Lamis Ahmed Albarqi
- Department of Doctor of Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | | | - Ruba Muhammad AlHadi
- Department of Doctor of Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Haifa Abdullah AlZaid
- Pharmaceutical Sciences, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia.
| |
Collapse
|
7
|
Hussain R, Naz S, Alam S, Ali HM, Ali A, Khan MS, Fouad D, Ataya FS, Mammadov A, Li K. Temporal and dosage impact of magnesium oxide nanoparticles on grass carp: unveiling oxidative stress, DNA damage, and antioxidant suppression. Toxicol Mech Methods 2024:1-13. [PMID: 39034674 DOI: 10.1080/15376516.2024.2382801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Magnesium oxide nanoparticles (MgO NPs) have gained significant importance in biomedicine and variety of nanotechnology-based materials used in the agriculture and biomedical industries. However, the release of different nanowastes in the water ecosystem becomes a serious concern. Therefore, this study was executed to evaluate the toxic impacts of MgO NPs on grass carp. A total of 60 grass carp were randomly divided in three groups (G0, G1, and G2). Fish reared in group G0 were kept as control while fish of groups G1 and G2 were exposed to 0.5 mg/L and 0.7 mg/L MgO NPs, respectively, mixed in water for 21 days. The 96h median lethal concentration (LC50) of MgO NPs was found to be 4.5 mg/L. Evaluation of oxidative stress biomarkers, antioxidant enzymes, DNA damage in different visceral organs and the presence of micronuclei in erythrocytes were determined on days 7, 14, and 21 of the trial. Results revealed dose- and time-dependent significantly increased values of reactive oxygen species, lipid peroxidation product, DNA damage in multiple visceral organs and formation of micronuclei in the erythrocytes of treated fish (0.7 mg/L). The results on antioxidant profile exhibited significantly lower amounts of total proteins, catalase, superoxide dismutase, and peroxidase in visceral organs of the fish exposed to MgO NPs (0.5 and 0.7 mg/L) at day 21 of trial compared to control group. In conclusion, it has been recorded that MgO NPs severely influence the normal physiological functions of the grass carp even at low doses.
Collapse
Affiliation(s)
- Riaz Hussain
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Saima Naz
- Department of Zoology, Government Sadiq College Women University, Bahawalpur, Pakistan
| | - Sana Alam
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hafiz Muhammad Ali
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Arooj Ali
- Faculty of Physical & Mathematical Sciences Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Shahid Khan
- Faculty of Physical & Mathematical Sciences Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Farid Shokry Ataya
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ayaz Mammadov
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Tan J, Hao J, Vann D, Pavelić K, Ozer F. Effect of Zeolite Incorporation on the Ion Release Properties of Silver-Reinforced Glass Ionomer Cement. Biomimetics (Basel) 2024; 9:365. [PMID: 38921245 PMCID: PMC11202068 DOI: 10.3390/biomimetics9060365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/22/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Zeolite can release antimicrobial silver ions in a targeted and controlled manner for an extended time, selectively inhibiting the growth of pathogenic oral bacteria when added to dental materials. The objective of this study was to investigate the effect of the addition of zeolite to silver-reinforced glass ionomer cement on the release of silver ions over time. METHODS Five concentrations of silver-zeolite (0%, 0.5%, 1%, 2%, 4% wt) were incorporated into silver-reinforced GIC in the form of 10 mm × 2 mm circular disks (n = 5). The disks were incubated in deionized water at 37 °C and ion release from the samples was measured at 1, 2, 7, and 30 days after immersion by inductively coupled atomic emission spectroscopy. RESULTS Incorporating silver-zeolite increased silver ion release from silver-reinforced GIC disks compared to the control disks (p < 0.05), while incorporating zeolite alone had no effect. Higher concentrations of added silver-zeolite resulted in increased silver ion release. Sustained silver ion release was observed for up to 30 days. CONCLUSION Adding silver-zeolite to silver-reinforced GIC may enhance its extended antibacterial effect in the oral cavity.
Collapse
Affiliation(s)
- Jessica Tan
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.T.); (J.H.)
| | - Jessica Hao
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.T.); (J.H.)
| | - David Vann
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Krešimir Pavelić
- Faculty of Medicine, Juraj Dobrila University of Pula, 52100 Pula, Croatia;
| | - Fusun Ozer
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.T.); (J.H.)
| |
Collapse
|
9
|
Fares A, Mahdy A, Ahmed G. Unraveling the mysteries of silver nanoparticles: synthesis, characterization, antimicrobial effects and uptake translocation in plant-a review. PLANTA 2024; 260:7. [PMID: 38789841 PMCID: PMC11126449 DOI: 10.1007/s00425-024-04439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
MAIN CONCLUSION The study thoroughly investigates nanosilver production, properties, and interactions, shedding light on its multifaceted applications. It underscores the importance of characterizing nanosilver for predicting its behavior in complex environments. Particularly, it highlights the agricultural and environmental ramifications of nanosilver uptake by plants. Nowadays, silver nanoparticles (AgNPs) are a very adaptable nanomaterial with many uses, particularly in antibacterial treatments and agricultural operations. Clarification of key elements of nanosilver, such as its synthesis and characterization procedures, antibacterial activity, and intricate interactions with plants, particularly those pertaining to uptake and translocation mechanisms, is the aim of this in-depth investigation. Nanosilver synthesis is a multifaceted process that includes a range of methodologies, including chemical, biological, and sustainable approaches that are also environmentally benign. This section provides a critical evaluation of these methods, considering their impacts on repeatability, scalability, and environmental impact. The physicochemical properties of nanosilver were determined by means of characterization procedures. This review highlights the significance of analytical approaches such as spectroscopy, microscopy, and other state-of the-art methods for fully characterizing nanosilver particles. Although grasp of these properties is necessary in order to predict the behavior and potential impacts of nanosilver in complex biological and environmental systems. The second half of this article delves into the intricate interactions that plants have with nanosilver, emphasizing the mechanisms of absorption and translocation. There are significant ramifications for agricultural and environmental problems from the uptake of nanosilver by plants and its subsequent passage through their tissues. In summary, by summarizing the state-of-the-art information in this field, this study offers a comprehensive overview of the production, characterization, antibacterial capabilities, and interactions of nanosilver with plants. This paper contributes to the ongoing conversation in nanotechnology.
Collapse
Affiliation(s)
- Ahmed Fares
- Plant Research Department, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Abdou Mahdy
- Plant Pathology Department, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Gamal Ahmed
- Plant Pathology Department, Faculty of Agriculture, Benha University, Benha, Egypt
| |
Collapse
|
10
|
Grifasi N, Ziantoni B, Fino D, Piumetti M. Fundamental properties and sustainable applications of the natural zeolite clinoptilolite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33656-5. [PMID: 38780851 DOI: 10.1007/s11356-024-33656-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
This review explores a set of sustainable applications of clinoptilolite, a natural zeolite abundant around the world in different localities. Thanks to its physico-chemical properties this material is extremely versatile for several applications, ranging from environmental catalysis and CO2 removal to industrial and agricultural wastewater purification, aquaculture, animal feeding, and food industry but also medical applications and energy storage systems. Due to the presence of cations in its framework, it is possible to tune the material's features making it suitable for adsorbing specific compounds. Thus, this review aims to provide insight into developing new technologies based on the use of this material that is sustainable, not harmful for humans and animals, naturally abundant, and above all cost-effective. Furthermore, it is intended to promote the use of natural materials in various areas with a view to sustainability and to reduce as far as possible the use of chemicals or other materials whose synthesis process can have a polluting effect on the environment.
Collapse
Affiliation(s)
- Nadia Grifasi
- Department of Applied Science and Technology, Corso Duca Degli Abruzzi, 24, 10129, Turin, Italy
| | - Bianca Ziantoni
- Department of Applied Science and Technology, Corso Duca Degli Abruzzi, 24, 10129, Turin, Italy
| | - Debora Fino
- Department of Applied Science and Technology, Corso Duca Degli Abruzzi, 24, 10129, Turin, Italy
| | - Marco Piumetti
- Department of Applied Science and Technology, Corso Duca Degli Abruzzi, 24, 10129, Turin, Italy.
| |
Collapse
|
11
|
Komodromos D, Sergelidis D, Amvrosiadis I, Kontominas MG. Combined Effect of an Active AgIon ® Absorbent Pad and a Chitosan Coating on the Preservation of Fresh Beef. Foods 2024; 13:1387. [PMID: 38731758 PMCID: PMC11083966 DOI: 10.3390/foods13091387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
In the present study, the combined effect of an AgIon® antimicrobial absorbent (Ζ) pad and a chitosan coating (C) on the preservation of fresh beef stored aerobically at 5 °C was investigated. Microbiological, physicochemical, and sensory attributes were monitored for up to 10 days of storage. The microbiological data indicated that the C and chitosan coating plus absorbent pad (CZ) treatments were the most efficient in reducing total viable counts (TVC) by 4.09 and 3.53 log cfu/g compared to the control W and Z treatments on day 4 of storage (p < 0.05). An analogous reduction in the counts of the other microbial groups monitored was recorded. pH values were ca. 5.7 for treatments W and Z and 5.45 for treatments C and CZ on day 4 of storage (p < 0.05). The total volatile basic nitrogen (TVB-N) values remained <20 mg/100 g for all treatments on day 4 and for treatments C and CZ on day 10 of storage. The total color difference values decreased (p < 0.05) during storage for treatments W and Z, but remained constant for treatments C and CZ. Based on sensory, microbiological and physico-chemical data, beef shelf life was ca ^# + 3 days for samples W and Z and at least 10 + 3 days for samples C and CZ. Between the two antimicrobial treatments, chitosan was considerably more effective than the AgIon® antimicrobial absorbent pad, which showed practically no antimicrobial activity in direct contact with beef meat.
Collapse
Affiliation(s)
- Dimitrios Komodromos
- Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece;
- Department of Veterinary Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (D.S.); (I.A.)
| | - Daniel Sergelidis
- Department of Veterinary Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (D.S.); (I.A.)
| | - Ioannis Amvrosiadis
- Department of Veterinary Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (D.S.); (I.A.)
| | | |
Collapse
|
12
|
Bertão AR, Teixeira F, Ivasiv V, Parpot P, Almeida-Aguiar C, Fonseca AM, Bañobre-López M, Baltazar F, Neves IC. Machine Learning-Assisted Optimization of Drug Combinations in Zeolite-Based Delivery Systems for Melanoma Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5696-5707. [PMID: 38271191 PMCID: PMC10859889 DOI: 10.1021/acsami.3c18224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Two independent artificial neural network (ANN) models were used to determine the optimal drug combination of zeolite-based delivery systems (ZDS) for cancer therapy. The systems were based on the NaY zeolite using silver (Ag+) and 5-fluorouracil (5-FU) as antimicrobial and antineoplastic agents. Different ZDS samples were prepared, and their characterization indicates the successful incorporation of both pharmacologically active species without any relevant changes to the zeolite structure. Silver acts as a counterion of the negative framework, and 5-FU retains its molecular integrity. The data from the A375 cell viability assays, involving ZDS samples (solid phase), 5-FU, and Ag+ aqueous solutions (liquid phase), were used to train two independent machine learning (ML) models. Both models exhibited a high level of accuracy in predicting the experimental cell viability results, allowing the development of a novel protocol for virtual cell viability assays. The findings suggest that the incorporation of both Ag and 5-FU into the zeolite structure significantly potentiates their anticancer activity when compared to that of the liquid phase. Additionally, two optimal AgY/5-FU@Y ratios were proposed to achieve the best cell viability outcomes. The ZDS also exhibited significant efficacy against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus); the predicted combination ratio is also effective against S. aureus, underscoring the potential of this approach as a therapeutic option for cancer-associated bacterial infections.
Collapse
Affiliation(s)
- Ana Raquel Bertão
- CQUM,
Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Life
and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s
- PT Government Associate Laboratory, University
of Minho, 4710-057 Braga/Guimarães, Portugal
- Advanced
(Magnetic) Theranostic Nanostructures Lab, Nanomedicine Group, International
Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Filipe Teixeira
- CQUM,
Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Viktoriya Ivasiv
- CQUM,
Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Pier Parpot
- CQUM,
Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- CEB
- Centre of Biological Engineering, University
of Minho, 4710-057 Braga, Portugal
| | - Cristina Almeida-Aguiar
- CBMA - Centre
of Molecular and Environmental Biology, University of Minho, 4710-057 Braga, Portugal
| | - António M. Fonseca
- CQUM,
Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- CEB
- Centre of Biological Engineering, University
of Minho, 4710-057 Braga, Portugal
| | - Manuel Bañobre-López
- Advanced
(Magnetic) Theranostic Nanostructures Lab, Nanomedicine Group, International
Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Fátima Baltazar
- Life
and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s
- PT Government Associate Laboratory, University
of Minho, 4710-057 Braga/Guimarães, Portugal
| | - Isabel C. Neves
- CQUM,
Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- CEB
- Centre of Biological Engineering, University
of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
13
|
Taipe Huisa AJ, Estrella Josende M, Gelesky MA, Fernandes Ramos D, López G, Bernardi F, Monserrat JM. Açaí (Euterpe oleracea Mart.) green synthesis of silver nanoparticles: antimicrobial efficacy and ecotoxicological assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12005-12018. [PMID: 38227263 DOI: 10.1007/s11356-024-31949-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/05/2024] [Indexed: 01/17/2024]
Abstract
The synthesis of silver nanoparticles (AgNPs) is usually based on expensive methods that use or generate chemicals that can negatively impact the environment. Our study presents a simple one-step synthesis process for obtaining AgNP using an aqueous extract of Amazonian fruit açai (Euterpe oleracea Mart.) as the reducing and stabilizing agents. The bio-synthesized AgNP (bio-AgNP) were comprehensively characterized by diverse techniques, and as a result, 20-nm spherical particles (transmission electron microscopy) were obtained. X-ray diffraction analysis (XRD) confirmed the presence of crystalline AgNP, and Fourier-transform infrared spectroscopy (FT-IR) suggested that polyphenolic compounds of açaí were present on the surface. The bio-AgNP showed antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii. In Caenorhabditis elegans exposed to 10 μg/L bio-AgNP for 96 h, there were no significant effects on growth, reproduction, or reactive oxygen species (ROS) concentration; however, there was an increase in superoxide dismutase (SOD) and glutathione-S-transferase (GST) enzymatic activity. In contrast, when worms were exposed to chemically synthesized AgNP (PVP-AgNP), an increase in ROS, SOD, and GST activity and a reduction in oxidative stress resistance were observed. In conclusion, our study not only showcased the potential of açaí in the simple and rapid production of AgNP but also highlighted the broad-spectrum antimicrobial activity of the synthesized nanoparticles using our protocol. Moreover, our findings revealed that these AgNPs exhibited reduced toxicity to C. elegans at environmentally realistic concentrations compared with PVP-AgNP.
Collapse
Affiliation(s)
- Andy Joel Taipe Huisa
- Physiological Sciences Post Graduation Program, Institute of Biological Sciences (ICB), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Marcelo Estrella Josende
- Physiological Sciences Post Graduation Program, Institute of Biological Sciences (ICB), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Marcos Alexandre Gelesky
- Technological and Environmental Chemistry Post Graduation Program. School of Chemistry and Food (EQA), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Daniela Fernandes Ramos
- Medicine Faculty (FAMED), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
- Post Graduation Program in Health Sciences, FURG, Rio Grande, RS, Brazil
| | | | - Fabiano Bernardi
- Physics Institute, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - José María Monserrat
- Physiological Sciences Post Graduation Program, Institute of Biological Sciences (ICB), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil.
| |
Collapse
|
14
|
Girma A, Abera B, Mekuye B, Mebratie G. Antibacterial Activity and Mechanisms of Action of Inorganic Nanoparticles against Foodborne Bacterial Pathogens: A Systematic Review. IET Nanobiotechnol 2024; 2024:5417924. [PMID: 38863967 PMCID: PMC11095078 DOI: 10.1049/2024/5417924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 06/13/2024] Open
Abstract
Foodborne disease outbreaks due to bacterial pathogens and their toxins have become a serious concern for global public health and security. Finding novel antibacterial agents with unique mechanisms of action against the current spoilage and foodborne bacterial pathogens is a central strategy to overcome antibiotic resistance. This study examined the antibacterial activities and mechanisms of action of inorganic nanoparticles (NPs) against foodborne bacterial pathogens. The articles written in English were recovered from registers and databases (PubMed, ScienceDirect, Web of Science, Google Scholar, and Directory of Open Access Journals) and other sources (websites, organizations, and citation searching). "Nanoparticles," "Inorganic Nanoparticles," "Metal Nanoparticles," "Metal-Oxide Nanoparticles," "Antimicrobial Activity," "Antibacterial Activity," "Foodborne Bacterial Pathogens," "Mechanisms of Action," and "Foodborne Diseases" were the search terms used to retrieve the articles. The PRISMA-2020 checklist was applied for the article search strategy, article selection, data extraction, and result reporting for the review process. A total of 27 original research articles were included from a total of 3,575 articles obtained from the different search strategies. All studies demonstrated the antibacterial effectiveness of inorganic NPs and highlighted their different mechanisms of action against foodborne bacterial pathogens. In the present study, small-sized, spherical-shaped, engineered, capped, low-dissolution with water, high-concentration NPs, and in Gram-negative bacterial types had high antibacterial activity as compared to their counterparts. Cell wall interaction and membrane penetration, reactive oxygen species production, DNA damage, and protein synthesis inhibition were some of the generalized mechanisms recognized in the current study. Therefore, this study recommends the proper use of nontoxic inorganic nanoparticle products for food processing industries to ensure the quality and safety of food while minimizing antibiotic resistance among foodborne bacterial pathogens.
Collapse
Affiliation(s)
- Abayeneh Girma
- Department of Biology, College of Natural and Computational Science, Mekdela Amba University, P.O. Box 32, Tuluawlia, Ethiopia
| | - Birhanu Abera
- Department of Physics, College of Natural and Computational Science, Mekdela Amba University, P.O. Box 32, Tuluawlia, Ethiopia
| | - Bawoke Mekuye
- Department of Physics, College of Natural and Computational Science, Mekdela Amba University, P.O. Box 32, Tuluawlia, Ethiopia
| | - Gedefaw Mebratie
- Department of Physics, College of Natural and Computational Science, Mekdela Amba University, P.O. Box 32, Tuluawlia, Ethiopia
| |
Collapse
|
15
|
Nawab R, Ali M, Haroon U, Kamal A, Akbar M, Anwar F, Ahmed J, Chaudhary HJ, Iqbal A, Hashem M, Alamri S, ALHaithloul HAS, Munis MFH. Calotropis procera (L.) mediated synthesis of AgNPs and their application to control leaf spot of Hibiscus rosa-sinensis (L.). BRAZ J BIOL 2024; 84:e261123. [DOI: 10.1590/1519-6984.261123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/23/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract Nature is gifted with a wide range of ornamental plants, which beautify and clean the nature. Due to its great aesthetic value, there is a need to protect these plants from a variety of biotic and abiotic stresses. Hibiscus rosa-sinensis (L.) is an ornamental plant and it is commonly known as China rose or shoeblack plant. It is affected by several fungal and bacterial pathogens. Current study was designed to isolate leaf spot pathogen of H. rosa-sinensis and its control using silver nanoparticles (AgNPs). Based on molecular and morphological features, the isolated leaf spot pathogen was identified as Aspergillus niger. AgNPs were synthesized in the leaf extract of Calotropis procera and characterized. UV-vis spectral analysis displayed discrete plasmon resonance bands on the surface of synthesized AgNPs, depicting the presence of aromatic amino acids. Fourier transform infrared spectroscopy (FTIR) described the presence of C-O, NH, C-H, and O-H functional groups, which act as stabilizing and reducing molecules. X-ray diffraction (XRD) revealed the average size (~32.43 nm) of AgNPs and scanning electron microscopy (SEM) depicted their spherical nature. In this study, in vitro and in vivo antifungal activity of AgNPs was investigated. In vitro antifungal activity analysis revealed the highest growth inhibition of mycelia (87%) at 1.0 mg/ml concentration of AgNPs. The same concentration of AgNPs tremendously inhibited the spread of disease on infected leaves of H. rosa-sinensis. These results demonstrated significant disease control ability of AgNPs and suggested their use on different ornamental plants.
Collapse
Affiliation(s)
- R. Nawab
- Quaid-i-Azam University, Pakistan
| | - M. Ali
- Quaid-i-Azam University, Pakistan
| | | | - A. Kamal
- Quaid-i-Azam University, Pakistan
| | - M. Akbar
- Quaid-i-Azam University, Pakistan
| | - F. Anwar
- Quaid-i-Azam University, Pakistan
| | - J. Ahmed
- Quaid-i-Azam University, Pakistan
| | | | - A. Iqbal
- Quaid-i-Azam University, Pakistan
| | - M. Hashem
- King Khalid University, Saudi Arabia; Assiut University, Egypt
| | - S. Alamri
- King Khalid University, Saudi Arabia
| | | | | |
Collapse
|
16
|
Nguyen Q, Le DV, Phan AN, Nguyen VD. Synthesis of Biodegradable and Antimicrobial Nanocomposite Films Reinforced for Coffee and Agri-Food Product Preservation. ACS OMEGA 2023; 8:42177-42185. [PMID: 38024691 PMCID: PMC10652363 DOI: 10.1021/acsomega.3c04017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/12/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023]
Abstract
The antimicrobial activity of silver nanoparticles is widely known. However, their application to biodegradable polymeric materials is still limited. In this work, we report a strategy involving the green synthesis of nanocomposite films based on a natural biodegradable matrix. Nanometer-sized silver nanoparticles (C-AgNPs) were synthesized with the aid of ultrasound waves between the silver nitrate solution and the nanocurcumin solution. The green synthesized C-AgNPs were found to have particle sizes in the range of 5-25 nm and demonstrated good antimicrobial activity against Clostridium perfringens, Staphylococcus aureus, Bacillus subtilis, Macrophoma theicola, and Aspergillus flavus. Owing to their physical-chemical and mechanical properties and the excellent antimicrobial activities, the obtained AgNPs were used together with chitosan, cassava starch, and poly(vinyl alcohol) (PVA) to make nanocomposite films, which are suitable for the packaging requirements of various key agricultural and food products such as coffee beans, bamboo straws, and fruits. The nanocomposite films lost up to 85% of their weight after being buried in the soil for 120 days. This indicates that the films made with natural biodegradable materials are environmentally friendly.
Collapse
Affiliation(s)
- Quang
Lich Nguyen
- School
of Engineering and Technology, Hue University, Hue City 530000, Vietnam
| | - Dai Vuong Le
- School
of Engineering and Technology, Hue University, Hue City 530000, Vietnam
| | - Anh N. Phan
- School
of Engineering, Chemical Engineering, Newcastle
University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Van Duy Nguyen
- School
of Engineering, Chemical Engineering, Newcastle
University, Newcastle
upon Tyne NE1 7RU, U.K.
- Institute
of Biotechnology and Environment, Nha Trang
University, Nha Trang 650000, Khanh Hoa, Vietnam
| |
Collapse
|
17
|
Baig MIR, Kadu P, Bawane P, Nakhate KT, Yele S, Ojha S, Goyal SN. Mechanisms of emerging resistance associated with non-antibiotic antimicrobial agents: a state-of-the-art review. J Antibiot (Tokyo) 2023; 76:629-641. [PMID: 37605076 DOI: 10.1038/s41429-023-00649-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
Although the development of resistance by microorganisms to antimicrobial drugs has been recognized as a global public health concern, the contribution of various non-antibiotic antimicrobial agents to the development of antimicrobial resistance (AMR) remains largely neglected. The present review discusses various chemical substances and factors other than typical antibiotics, such as preservatives, disinfectants, biocides, heavy metals and improper chemical sterilization that contribute to the development of AMR. Furthermore, it encompasses the mechanisms like co-resistance and co-selection, horizontal gene transfer, changes in the composition and permeability of cell membrane, efflux pumps, transposons, biofilm formation and enzymatic degradation of antimicrobial chemicals which underlie the development of resistance to various non-antibiotic antimicrobial agents. In addition, the review addresses the resistance-associated changes that develops in microorganisms due to these agents, which ultimately contribute to the development of resistance to antibiotics. In order to prevent the indiscriminate use of chemical substances and create novel therapeutic agents to halt resistance development, a more holistic scientific approach might provide diversified views on crucial factors contributing to the persistence and spread of AMR. The review illustrates the common and less explored mechanisms contributing directly or indirectly to the development of AMR by non-antimicrobial agents that are commonly used.
Collapse
Affiliation(s)
- Mirza Ilyas Rahim Baig
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, 400056, India
| | - Pramod Kadu
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, 400056, India.
| | - Pradip Bawane
- Department of Pharmacognosy, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| | - Santosh Yele
- Department of Pharmacognosy, SVKM's NMIMS, School of Pharmacy & Technology Management, Hyderabad, 509301, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Sameer N Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| |
Collapse
|
18
|
Gawai AA, Kharat AR, Chorge SS, Dhawale SA. Green synthesis of silver nanoparticles mediated Azadirachta indica extract and study of their characterization, molecular docking, and antibacterial activity. J Mol Recognit 2023; 36:e3051. [PMID: 37594180 DOI: 10.1002/jmr.3051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/12/2023] [Accepted: 07/30/2023] [Indexed: 08/19/2023]
Abstract
The green production of silver nanoparticles (AgNPs) produces AgNPs with minimum influence on the environment by using plant components such as alkaloids, carbohydrates, lipids, enzymes, flavonoids, terpenoids, and polyphenols as reducing agents. In the present investigation, Azadirachta indica leaf extract was used to form AgNPs from a 1 mM silver nitrate solution. The plan proved to be incredibly straightforward, cost-effective, and effective. The production of the nanoparticles was observed visually, where the colorless fluid turns into a brown-colored solution. Further research was carried out using x-ray diffraction, Fourier-transform infrared analysis, scanning electron microscopy, and transmission electron microscopy (TEM) in addition to UV-visible spectroscopy. The size range of AgNPs determined by TEM was 10-30 nm. When the diffusion technique was employed to demonstrate the antibacterial effect of AgNPs on various pathogens, the zones of inhibition for Staphylococcus aureus, Bacillus cereus, and Escherichia coli, when 50 g of AgNPs were used were 16, 12, and 17 mm, respectively. By examining the leakage of reducing sugars and proteins, the mechanism by which nanoparticle antibacterial properties were explored, showed that AgNPs were capable of lowering membrane permeability.
Collapse
Affiliation(s)
- Ashish A Gawai
- Anuradha College of Pharmacy, Chikhli, Maharashtra, India
| | - Amol R Kharat
- Government College of Pharmacy, Aurangabad, Maharashtra, India
| | | | - Sachin A Dhawale
- Shreeyash Institute of Pharmaceutical Education and Research, Aurangabad, Maharashtra, India
| |
Collapse
|
19
|
Vlad-Bubulac T, Hamciuc C, Serbezeanu D, Macsim AM, Lisa G, Anghel I, Preda DM, Kalvachev Y, Rîmbu CM. Simultaneous Enhancement of Flame Resistance and Antimicrobial Activity in Epoxy Nanocomposites Containing Phosphorus and Silver-Based Additives. Molecules 2023; 28:5650. [PMID: 37570620 PMCID: PMC10419371 DOI: 10.3390/molecules28155650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The design and manufacture of innovative multifunctional materials possessing superior characteristics, quality and standards, rigorously required for future development of existing or emerging advanced technologies, is of great importance. These materials should have a very low degree of influence (or none) on the environmental and human health. Adjusting the properties of epoxy resins with organophosphorus compounds and silver-containing additives is key to the simultaneous improvement of the flame-resistant and antimicrobial properties of advanced epoxy-based materials. These environmentally friendly epoxy resin nanocomposites were manufactured using two additives, a reactive phosphorus-containing bisphenol derived from vanillin, namely, (4-(((4-hidroxyphenyl)amino)(6-oxido-6H-dibenzo[c,e][1,2]oxaphosphinin-6-yl)methyl)-2-methoxyphenyl) phenylphosphonate (BPH), designed as both cross-linking agent and a flame-retardant additive for epoxy resin; and additional silver-loaded zeolite L nanoparticles (Ze-Ag NPs) used as a doping additive to impart antimicrobial activity. The effect of BPH and Ze-Ag NPs content on the structural, morphological, thermal, flame resistance and antimicrobial characteristics of thermosetting epoxy nanocomposites was investigated. The structure and morphology of epoxy nanocomposites were investigated via FTIR spectroscopy and scanning electron microscopy (SEM). In general, the nanocomposites had a glassy and homogeneous morphology. The samples showed a single glass transition temperature in the range of 166-194 °C and an initiation decomposition temperature in the range of 332-399 °C. The introduction of Ze-Ag NPs in a concentration of 7-15 wt% provided antimicrobial activity to epoxy thermosets.
Collapse
Affiliation(s)
- Tăchiță Vlad-Bubulac
- Department of Polycondensation and Thermally Stable Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (C.H.); (D.S.); (A.-M.M.)
| | - Corneliu Hamciuc
- Department of Polycondensation and Thermally Stable Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (C.H.); (D.S.); (A.-M.M.)
| | - Diana Serbezeanu
- Department of Polycondensation and Thermally Stable Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (C.H.); (D.S.); (A.-M.M.)
| | - Ana-Maria Macsim
- Department of Polycondensation and Thermally Stable Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (C.H.); (D.S.); (A.-M.M.)
| | - Gabriela Lisa
- Department of Chemical Engineering, Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Bd. Mangeron, 700050 Iasi, Romania;
| | - Ion Anghel
- Fire Officers Faculty, Police Academy “Alexandru Ioan Cuza”, 3 Morarilor St., Sector 2, 022451 Bucharest, Romania; (I.A.); (D.-M.P.)
| | - Dana-Maria Preda
- Fire Officers Faculty, Police Academy “Alexandru Ioan Cuza”, 3 Morarilor St., Sector 2, 022451 Bucharest, Romania; (I.A.); (D.-M.P.)
| | - Yuri Kalvachev
- Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl.11, 1113 Sofia, Bulgaria;
| | - Cristina Mihaela Rîmbu
- Department of Public Health, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 8 Sadoveanu Alley, 707027 Iasi, Romania;
| |
Collapse
|
20
|
Rajaramon S, Shanmugam K, Dandela R, Solomon AP. Emerging evidence-based innovative approaches to control catheter-associated urinary tract infection: a review. Front Cell Infect Microbiol 2023; 13:1134433. [PMID: 37560318 PMCID: PMC10407108 DOI: 10.3389/fcimb.2023.1134433] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
Healthcare settings have dramatically advanced the latest medical devices, such as urinary catheters (UC) for infection, prevention, and control (IPC). The continuous or intermittent flow of a warm and conducive (urine) medium in the medical device, the urinary catheter, promotes the formation of biofilms and encrustations, thereby leading to the incidence of CAUTI. Additionally, the absence of an innate immune host response in and around the lumen of the catheter reduces microbial phagocytosis and drug action. Hence, the review comprehensively overviews the challenges posed by CAUTI and associated risks in patients' morbidity and mortality. Also, detailed, up-to-date information on the various strategies that blended/tailored the surface properties of UC to have anti-fouling, biocidal, and anti-adhesive properties to provide an outlook on how they can be better managed with futuristic solutions.
Collapse
Affiliation(s)
- Shobana Rajaramon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthi Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, Odisha, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
21
|
Vlad-Bubulac T, Hamciuc C, Serbezeanu D, Suflet DM, Rusu D, Lisa G, Anghel I, Preda DM, Todorova T, Rîmbu CM. Organophosphorus Reinforced Poly(vinyl alcohol) Nanocomposites Doped with Silver-Loaded Zeolite L Nanoparticles as Sustainable Materials for Packaging Applications. Polymers (Basel) 2023; 15:polym15112573. [PMID: 37299371 DOI: 10.3390/polym15112573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The sustainable development of innovative eco-friendly multifunctional nanocomposites, possessing superior characteristics, is a noteworthy topic. Novel semi-interpenetrated nanocomposite films based on poly(vinyl alcohol) covalently and thermally crosslinked with oxalic acid (OA), reinforced with a novel organophosphorus flame retardant (PFR-4) derived from co-polycondensation in solution reaction of equimolar amounts of co-monomers, namely, bis((6-oxido-6H-dibenz[c,e][1,2]oxaphosphorinyl)-(4-hydroxyaniline)-methylene)-1,4-phenylene, bisphenol S, and phenylphosphonic dichloride, in a molar ratio of 1:1:2, and additionally doped with silver-loaded zeolite L nanoparticles (ze-Ag), have been prepared by casting from solution technique. The morphology of the as prepared PVA-oxalic acid films and their semi-interpenetrated nanocomposites with PFR-4 and ze-Ag was investigated by scanning electron microscopy (SEM), while the homogeneous distribution of the organophosphorus compound and nanoparticles within the nanocomposite films has been introspected by means of energy dispersive X-ray spectroscopy (EDX). It was established that composites with a very low phosphorus content had noticeably improved flame retardancy. The peak of the heat release rate was reduced up to 55%, depending on the content of the flame-retardant additive and the doping ze-Ag nanoparticles introduced into the PVA/OA matrix. The ultimate tensile strength and elastic modulus increased significantly in the reinforced nanocomposites. Considerably increased antimicrobial activity was revealed in the case of the samples containing silver-loaded zeolite L nanoparticles.
Collapse
Affiliation(s)
- Tăchiță Vlad-Bubulac
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Corneliu Hamciuc
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Diana Serbezeanu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Dana Mihaela Suflet
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Daniela Rusu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Gabriela Lisa
- Department of Chemical Engineering, Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, 73 Bd. Mangeron, 700050 Iasi, Romania
| | - Ion Anghel
- Fire Officers Faculty, Police Academy "Alexandru Ioan Cuza", Morarilor Str. 3, Sector 2, 022451 Bucharest, Romania
| | - Dana-Maria Preda
- Fire Officers Faculty, Police Academy "Alexandru Ioan Cuza", Morarilor Str. 3, Sector 2, 022451 Bucharest, Romania
| | - Totka Todorova
- Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl.11, 1113 Sofia, Bulgaria
| | - Cristina Mihaela Rîmbu
- Department of Public Health, Iasi University of Life Sciences, 8 Sadoveanu Alley, 707027 Iasi, Romania
| |
Collapse
|
22
|
Rapid membrane surface functionalization with Ag nanoparticles via coupling electrospray and polymeric solvent bonding for enhanced antifouling and catalytic performance: Deposition and interfacial reaction mechanisms. J Colloid Interface Sci 2023; 639:203-213. [PMID: 36805745 DOI: 10.1016/j.jcis.2023.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
Electrospray is an effective, fast, and potentially scalable approach for membrane surface functionalization using various engineered nanomaterials (ENMs). However, the lack of fundamental understandings of the deposition process hinders the controlled deposition, efficient utilization, and long-term stabilization of the ENMs, and thus the practical applications of the nanocomposite membranes. To bridge this critical knowledge gap, advanced online characterization techniques (laser diffraction size measurement and laser doppler velocimetry) coupled with mathematical aerosol modeling are utilized to understand the three key process parameters: droplet size, deposition velocity, and evaporation rate. After deposition, polymeric solvent bonding (i.e., interdiffusion and subsequent entanglement of polymers) was found to substantially stabilize the deposited Ag NPs. We further provide a comprehensive description of such interfacial reaction mechanisms. Our results show a consistency between theoretical predication and measurement of the droplet size or deposition velocity, whereas realistic droplet evaporation rate is lower than the theoretical value due to the addition of the polymer. Successful stabilization of Ag NPs via interfacial polymeric bonding occurs under the conditions of large material contact area, high material compatibility, proper temperature (e.g., 22 °C), and polymer-to-solvent ratio (e.g., 3-5%). Our coupled approach achieves superior Ag NP coverage with high stability within minutes. Despite some reduction in water permeance, the resultant membrane shows markedly improved catalytic and antimicrobial (antibiofouling) performance (>90% enhancement) and maintained rejection. Taken together, our findings provide fundamental insights into the coupled process of electrospray deposition and polymeric solvent bonding to enable additive manufacturing of novel nanocomposite membranes with diverse structures and multiple functions.
Collapse
|
23
|
Yin X, Lai Y, Du Y, Zhang T, Gao J, Li Z. Metal-Based Nanoparticles: A Prospective Strategy for Helicobacter pylori Treatment. Int J Nanomedicine 2023; 18:2413-2429. [PMID: 37192898 PMCID: PMC10182771 DOI: 10.2147/ijn.s405052] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/24/2023] [Indexed: 05/18/2023] Open
Abstract
Helicobacter pylori (H. pylori) is an infectious pathogen and the leading cause of gastrointestinal diseases, including gastric adenocarcinoma. Currently, bismuth quadruple therapy is the recommended first-line treatment, and it is reported to be highly effective, with >90% eradication rates on a consistent basis. However, the overuse of antibiotics causes H. pylori to become increasingly resistant to antibiotics, making its eradication unlikely in the foreseeable future. Besides, the effect of antibiotic treatments on the gut microbiota also needs to be considered. Therefore, effective, selective, antibiotic-free antibacterial strategies are urgently required. Due to their unique physiochemical properties, such as the release of metal ions, the generation of reactive oxygen species, and photothermal/photodynamic effects, metal-based nanoparticles have attracted a great deal of interest. In this article, we review recent advances in the design, antimicrobial mechanisms and applications of metal-based nanoparticles for the eradication of H. pylori. Additionally, we discuss current challenges in this field and future perspectives that may be used in anti-H. pylori strategies.
Collapse
Affiliation(s)
- Xiaojing Yin
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Yongkang Lai
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
- Department of Gastroenterology, Ganzhou People’s Hospital Affiliated to Nanchang University, Ganzhou, Jiangxi, 341000, People’s Republic of China
| | - Yiqi Du
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Zhaoshen Li
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
24
|
Elsebaie EM, El-Wakeil NHM, Khalil AMM, Bahnasy RM, Asker GA, El-Hassnin MF, Ibraheim SS, El-Farsy MFA, Faramawy AA, Essa RY, Badr MR. Silver Nanoparticle Synthesis by Rumex vesicarius Extract and Its Applicability against Foodborne Pathogens. Foods 2023; 12:foods12091746. [PMID: 37174285 PMCID: PMC10177795 DOI: 10.3390/foods12091746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The consumption of foods polluted with different foodborne pathogens such as fungus, viruses, and bacteria is considered a serious cause of foodborne disease in both humans and animals. Multidrug-resistant foodborne pathogens (MRFP) cause morbidity, death, and substantial economic loss, as well as prolonged hospitalization. This study reports on the use of aqueous Rumex leaf extract (ARLE) in the synthesis of silver nanoparticles (ARLE-AgNPs) with versatile biological activities. The synthesized ARLE-AgNPs had spherical shapes with smooth surfaces and an average hydrodynamic size of 27 nm. ARLE-AgNPs inhibited the growth of Escherichia coli ATCC25721, Pseudomonas aeruginosa ATCC27843, Streptococcus gordonii ATCC49716, Enterococcus faecalis ATCC700813, and Staphylococcus aureus ATCC4342. The ARLE-AgNPs were more active against Escherichia coli ATCC25721 than other harmful bacterial strains (26 ± 3 mm). The zone of inhibition for antibacterial activity ranged between 18 ± 3 mm and 26 ± 3 mm in diameter. The nanoparticles' MIC values varied from 5.19 µg/mL to 61 µg/mL, while their MBC values ranged from 46 µg/mL to 119 µg/mL. The nanoparticles that were created had antioxidant potential. The cytotoxic activity was tested using normal fibroblast cell lines (L-929), and the enhanced IC50 value (764.3 ± 3.9 g/mL) demonstrated good biological compatibility. These nanoparticles could be evolved into new antibacterial compounds for MRFP prevention.
Collapse
Affiliation(s)
- Essam Mohamed Elsebaie
- Food Technology Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | | | | | - Rasha M Bahnasy
- Nutrition &Food Science Department, Faculty of Home Economics, Al-Azhar University, Tanta 31512, Egypt
| | - Galila Ali Asker
- Food Science &Technology Department, Faculty of Home Economics, Al-Azhar University, Tanta 31512, Egypt
| | - Marwa Fawzy El-Hassnin
- Nutrition &Food Science Department, Faculty of Home Economics, Al-Azhar University, Tanta 31512, Egypt
| | - Suzan S Ibraheim
- Nutrition &Food Science Department, Faculty of Home Economics, Al-Azhar University, Tanta 31512, Egypt
| | | | - Asmaa Antar Faramawy
- Nutrition &Food Science Department, Faculty of Home Economics, Al-Azhar University, Tanta 31512, Egypt
| | - Rowida Younis Essa
- Food Technology Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mohamed Reda Badr
- Food Science and Technology Department, Agriculture Faculty, Tanta University, Tanta 31512, Egypt
| |
Collapse
|
25
|
Kayhan EY, Yildirim A, Kocer MB, Uysal A, Yilmaz M. A cellulose-based material as a fluorescent sensor for Cr(VI) detection and investigation of antimicrobial properties of its encapsulated form in two different MOFs. Int J Biol Macromol 2023; 240:124426. [PMID: 37060971 DOI: 10.1016/j.ijbiomac.2023.124426] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 04/08/2023] [Indexed: 04/17/2023]
Abstract
It is crucial to detect toxic chromium ions quickly, reliably, sensitively and at low concentrations. In recent years, fluorescence-based methods have been developed for the rapid detection and determination of toxic ions such as chromium. In present work, we focused on the development of a cellulose-based fluorescent probe (Cel-Nap) for the determination of Cr(VI). The fluorescent probe bearing the 1,8-naphthalimide group displayed a low LOD of 1.07 μM for Cr(VI) in the working range of 0.33 × 10-5-3.22 × 10-5 M. The fluorescence and antibacterial properties of UiO-66-Cel-Nap and ZIF-8-Cel-Nap materials prepared by encapsulating Cel-Nap with 2 different MOF types (UiO-66 and ZIF-8) were investigated. While it was found that ZIF-8-based materials had better antimicrobial properties compared to those of UiO-66, it was determined that materials containing Ag+ were more effective against microbial than those containing AgNPs. It was found that the most effective material was ZIF-8-Cel-Nap-Ag+ and it had a significant antibacterial effect against E. coli at a MIC value of 0.0024 mg/mL.
Collapse
Affiliation(s)
| | - Ayse Yildirim
- Selcuk University, Faculty of Science, Department of Chemistry, Konya, Turkey
| | - Mustafa Baris Kocer
- Selcuk University, Faculty of Science, Department of Chemistry, Konya, Turkey
| | - Ahmet Uysal
- Selcuk University, Vocational School of Health Services, Department of Medical Services and Techniques, Konya, Turkey
| | - Mustafa Yilmaz
- Selcuk University, Faculty of Science, Department of Chemistry, Konya, Turkey.
| |
Collapse
|
26
|
Singh R, Dutt S, Sharma P, Sundramoorthy AK, Dubey A, Singh A, Arya S. Future of Nanotechnology in Food Industry: Challenges in Processing, Packaging, and Food Safety. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200209. [PMID: 37020624 PMCID: PMC10069304 DOI: 10.1002/gch2.202200209] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/18/2023] [Indexed: 05/27/2023]
Abstract
Over the course of the last several decades, nanotechnology has garnered a growing amount of attention as a potentially valuable technology that has significantly impacted the food industry. Nanotechnology helps in enhancing the properties of materials and structures that are used in various fields such as agriculture, food, pharmacy, and so on. Applications of nanotechnology in the food market have included the encapsulation and distribution of materials to specific locations, the improvement of flavor, the introduction of antibacterial nanoparticles into food, the betterment of prolonged storage, the detection of pollutants, enhanced storage facilities, locating, identifying, as well as consumer awareness. Labeling food goods with nano barcodes helps ensure their security and may also be used to track their distribution. This review article presents a discussion about current advances in nanotechnology along with its applications in the field of food-tech, food packaging, food security, enhancing life of food products, etc. A detailed description is provided about various synthesis routes of nanomaterials, that is, chemical, physical, and biological methods. Nanotechnology is a rapidly improving the field of food packaging and the future holds great opportunities for more enhancement via the development of new nanomaterials and nanosensors.
Collapse
Affiliation(s)
- Rajesh Singh
- Food Craft InstituteDepartment of Skill DevelopmentNagrotaJammuJammu and Kashmir181221India
| | - Shradha Dutt
- School of SciencesCluster University of JammuJammuJammu and Kashmir180001India
| | - Priyanka Sharma
- School of Hospitality and Tourism ManagementUniversity of JammuJammuJammu and Kashmir180006India
| | - Ashok K. Sundramoorthy
- Centre for Nano‐BiosensorsDepartment of ProsthodonticsSaveetha Dental College and HospitalsSaveetha Institute of Medical and Technical SciencesChennaiTamil Nadu600077India
| | - Aman Dubey
- Department of PhysicsUniversity of JammuJammuJammu and Kashmir180006India
| | - Anoop Singh
- Department of PhysicsUniversity of JammuJammuJammu and Kashmir180006India
| | - Sandeep Arya
- Department of PhysicsUniversity of JammuJammuJammu and Kashmir180006India
| |
Collapse
|
27
|
Peralta LCF, Almeida NLM, Pontes FML, Rinaldo D, Carneiro CA, Neppelenbroek KH, Lara VS, Porto VC. Silver nanoparticles in denture adhesive: An antimicrobial approach against Candida albicans. J Dent 2023; 131:104445. [PMID: 36773742 DOI: 10.1016/j.jdent.2023.104445] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/21/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
OBJECTIVE To evaluate the antimicrobial potential of silver nanoparticles (Ag NPs) synthesized using three different routes (ultraviolet light, Turkevich, and green chemistry method using Glycine max extract) associated with COREGA® denture powder adhesive. METHODS Heat-cured acrylic resin specimens were treated with different Ag NPs associated with the adhesive (AD + Ag UV, AD + Ag Turk, and AD + Ag Gm groups). As controls, the specimens were treated with a combination of adhesive and nystatin (AD + Nyst group), only adhesive (AD group), or submerged on the surface of the specimens (PBS group). After the treatments, biofilms of C. albicans developed for 3, 6, and 12 h on the specimen surfaces. The biofilm was quantified using colony-forming units per milliliter, colorimetric assay, and confocal laser scanning microscopy. RESULTS Regardless of the period, we observed an inhibition of fungal load and a reduction in metabolic activity and biofilm mass in the resin specimens treated with the combinations AD/Ag NPs, compared to AD and PBS. The antimicrobial action of the AD + Turk and AD + Ag Gm groups was similar than that for the AD + Nyst group in all periods and viability tests, except for the biofilm mass (12 h). CONCLUSIONS The COREGA® adhesive with Ag NPs, mainly those synthesized using the Turkevich and Glycine max methods, showed excellent antimicrobial activity against C. albicans biofilms, maintained for up to 12 h. CLINICAL SIGNIFICANCE The association of Ag NPs to the adhesive can add preventive or therapeutic effects against denture stomatitis, to this prosthetic material.
Collapse
Affiliation(s)
- Laura Catalí Ferreira Peralta
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil, 17012-901
| | - Nara Ligia Martins Almeida
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil, 17012-901
| | | | - Daniel Rinaldo
- Department of Chemistry, São Paulo State University (UNESP), Bauru, Brazil
| | - Camila Alves Carneiro
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil, 17012-901
| | - Karin Hermana Neppelenbroek
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil, 17012-901
| | - Vanessa Soares Lara
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil, 17012-901
| | - Vinicius Carvalho Porto
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil, 17012-901.
| |
Collapse
|
28
|
Elzahaby DA, Farrag HA, Haikal RR, Alkordi MH, Abdeltawab NF, Ramadan MA. Inhibition of Adherence and Biofilm Formation of Pseudomonas aeruginosa by Immobilized ZnO Nanoparticles on Silicone Urinary Catheter Grafted by Gamma Irradiation. Microorganisms 2023; 11:microorganisms11040913. [PMID: 37110336 PMCID: PMC10142706 DOI: 10.3390/microorganisms11040913] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Nosocomial infections caused by microbial biofilm formation on biomaterial surfaces such as urinary catheters are complicated by antibiotic resistance, representing a common problem in hospitalized patients. Therefore, we aimed to modify silicone catheters to resist microbial adherence and biofilm formation by the tested microorganisms. This study used a simple direct method to graft poly-acrylic acid onto silicone rubber films using gamma irradiation to endow the silicone surface with hydrophilic carboxylic acid functional groups. This modification allowed the silicone to immobilize ZnO nanoparticles (ZnO NPs) as an anti-biofilm. The modified silicone films were characterized by FT-IR, SEM, and TGA. The anti-adherence ability of the modified silicone films was evidenced by the inhibition of biofilm formation by otherwise strong biofilm-producing Gram-positive, Gram-negative, and yeast clinical isolates. The modified ZnO NPs grafted silicone showed good cytocompatibility with the human epithelial cell line. Moreover, studying the molecular basis of the inhibitory effect of the modified silicone surface on biofilm-associated genes in a selected Pseudomonas aeruginosa isolate showed that anti-adherence activity might be due to the significant downregulation of the expression of lasR, lasI, and lecB genes by 2, 2, and 3.3-fold, respectively. In conclusion, the modified silicone catheters were low-cost, offering broad-spectrum anti-biofilm activity with possible future applications in hospital settings.
Collapse
|
29
|
Shen H, Yang M, Wang J, Zou X, Tong D, Zhang Y, Tang L, Sun H, Yang L. Dose-dependent joint resistance action of antibacterial mixtures in their hormetic effects on bacterial resistance based on concentration addition model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160574. [PMID: 36455746 DOI: 10.1016/j.scitotenv.2022.160574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The judgment of joint resistance action is significant for evaluating the resistance risk of antibacterial mixture. Using bacterial mutation frequency (MF) and conjugative transfer frequency (CTF) to respectively characterize the bacterial endogenous and exogenous resistance, mutation unit and conjugative transfer unit have been proposed to judge the joint resistance action of antibacterial mixture at a certain dose. However, these methods could not evaluate the antibacterial mixture's joint resistance action at a larger concentration-range. In this study, the concentration addition for bacterial resistance (CA-BR) approach was used to judge the joint resistance actions between kanamycin sulfate (KAN) and some other typical antibacterial agents, including sulfonamides (SAs), sulfonamide potentiators (SAPs), and silver antibacterial compounds (SACs). Through comparing the hormetic dose-response curves of the binary mixtures on the MF (or CTF) in Escherichia coli (E. coli) and the corresponding CA-BR curves calculated from the hormetic dose-responses of the single agents, the joint resistance actions between KAN and other agents were judged to exhibit dose-dependent feature: with the increase of mixture concentration, the joint mutation actions between KAN and SAs (or SAPs) were fixed at synergism, and the joint mutation actions between KAN and SACs varied from antagonism to synergism; the joint conjugative transfer actions between KAN and other agents changed from antagonism to synergism. Mechanistic explanation suggested that the heterogeneous pattern of joint resistance action had a close relationship with the interplays among the agents' modes of action, and meanwhile was significantly influenced by their joint survival pressure on E. coli. This study reveals the dose-dependent feature for the joint resistance action of antibacterial mixture and highlights the importance of exposure concentration, which will benefit clarifying the resistance risk of antibacterial mixture in the environment.
Collapse
Affiliation(s)
- Hongyan Shen
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Mingru Yang
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Jing Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Xiaoming Zou
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Danqing Tong
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yulian Zhang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Haoyu Sun
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Lei Yang
- Hebei Chemical & Pharmaceutical College, Shijiazhuang 050026, China
| |
Collapse
|
30
|
Xu N, Huang Q, Shi L, Wang J, Li X, Guo W, Yan D, Ni T, Yang Z, Yan Y. A bioinspired polydopamine-FeS nanocomposite with high antimicrobial efficiency via NIR-mediated Fenton reaction. Dalton Trans 2023; 52:1687-1701. [PMID: 36649112 DOI: 10.1039/d2dt03765c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ferrous and sulfur ions are essential elements for the human body, which play an active role in maintaining the body's normal physiology. Meanwhile, mussel-inspired polydopamine (PDA) possesses good hydrophilicity and biocompatibility. In the present work, ferrous sulfide embedded into polydopamine nanoparticles (PDA@FeS NPs) was designed and synthesized via a simple predoping polymerization-coprecipitation strategy and the intelligent PDA matrix successfully prevented the oxidation and agglomeration of FeS nanoparticles. Importantly, there was an obvious synergistic enhancement of the photothermal effect between polydopamine and ferrous sulfide. The PDA@FeS NPs exhibited excellent photothermal antibacterial effects against both E. coli and S. aureus. The near-infrared (NIR) light-mediated release of ferrous ions could reach about 26.5% under weakly acidic conditions, further triggering the Fenton reaction to produce toxic hydroxyl radicals (·OH) in the presence of hydrogen peroxide. The antibacterial mechanism could be attributed to cell membrane damage and cellular content leakage with the synergistic effect of PTT and CDT. This study highlighted the germicidal efficacy of PDA@FeS NPs and provided a new strategy for designing and developing next-generation antibacterial platforms.
Collapse
Affiliation(s)
- Na Xu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China. .,Xinxiang Engineering Research Center for Functional Nanomedicine Materials, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Qianqian Huang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China. .,Xinxiang Engineering Research Center for Functional Nanomedicine Materials, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Li Shi
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China. .,Xinxiang Engineering Research Center for Functional Nanomedicine Materials, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Jia Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China. .,Xinxiang Engineering Research Center for Functional Nanomedicine Materials, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Xiangrong Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China. .,Xinxiang Engineering Research Center for Functional Nanomedicine Materials, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Wei Guo
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China. .,Xinxiang Engineering Research Center for Functional Nanomedicine Materials, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Dong Yan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Tianjun Ni
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China. .,Xinxiang Engineering Research Center for Functional Nanomedicine Materials, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Zhijun Yang
- Xinxiang Engineering Research Center for Functional Nanomedicine Materials, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Yunhui Yan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China. .,Xinxiang Engineering Research Center for Functional Nanomedicine Materials, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| |
Collapse
|
31
|
Haris M, Hussain T, Mohamed HI, Khan A, Ansari MS, Tauseef A, Khan AA, Akhtar N. Nanotechnology - A new frontier of nano-farming in agricultural and food production and its development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159639. [PMID: 36283520 DOI: 10.1016/j.scitotenv.2022.159639] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 05/27/2023]
Abstract
The potential of nanotechnology for the development of sustainable agriculture has been promising. The initiatives to meet the rising food needs of the rapidly growing world population are mainly powered by sustainable agriculture. Nanoparticles are used in agriculture due to their distinct physicochemical characteristics. The interaction of nanomaterials with soil components is strongly determined in terms of soil quality and plant growth. Numerous research has been carried out to investigate how nanoparticles affect the growth and development of plants. Nanotechnology has been applied to improve the quality and reduce post-harvest loss of agricultural products by extending their shelf life, particularly for fruits and vegetables. This review assesses the latest literature on nanotechnology, which is used as a nano-biofertilizer as seen in the agricultural field for high productivity and better growth of plants, an important source of balanced nutrition for the crop, seed germination, and quality enrichment. Additionally, post-harvest food processing and packaging can benefit greatly from the use of nanotechnology to cut down on food waste and contamination. It also critically discusses the mechanisms involved in nanoparticle absorption and translocation within the plants and the synthesis of green nanoparticles.
Collapse
Affiliation(s)
- Mohammad Haris
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Touseef Hussain
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; Division. of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Heba I Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, Egypt.
| | - Amir Khan
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Moh Sajid Ansari
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Atirah Tauseef
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Abrar Ahmad Khan
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Naseem Akhtar
- Department of Pharmaceutics, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, Qassim 51418, Saudi Arabia
| |
Collapse
|
32
|
Washable Antimicrobial Wipes Fabricated from a Blend of Nanocomposite Raw Cotton Fiber. Molecules 2023; 28:molecules28031051. [PMID: 36770717 PMCID: PMC9919265 DOI: 10.3390/molecules28031051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
In this study, a simple and effective way to produce washable antimicrobial wipes was developed based on the unique ability of raw cotton fiber to produce silver nanoparticles. A nanocomposite substructure of silver nanoparticles (25 ± 3 nm) was generated in raw cotton fiber without reducing and stabilizing agents. This nanocomposite raw cotton fiber (2100 ± 58 mg/kg in the concentration of silver) was blended in the fabrication of nonwoven wipes. Blending small amounts in the wipes-0.5% for antimicrobial properties and 1% for wipe efficacy-reduced the viability of S. aureus and P. aeruginosa by 99.9%. The wipes, fabricated from a blend of 2% nanocomposite raw cotton fiber, maintained their antibacterial activities after 30 simulated laundering cycles. The washed wipes exhibited bacterial reductions greater than 98% for both Gram-positive and Gram-negative bacteria.
Collapse
|
33
|
Li Y, Zhang P, Li M, Shakoor N, Adeel M, Zhou P, Guo M, Jiang Y, Zhao W, Lou B, Rui Y. Application and mechanisms of metal-based nanoparticles in the control of bacterial and fungal crop diseases. PEST MANAGEMENT SCIENCE 2023; 79:21-36. [PMID: 36196678 DOI: 10.1002/ps.7218] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/16/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Nanotechnology is a young branch of the discipline generated by nanomaterials. Its development has greatly contributed to technological progress and product innovation in the field of agriculture. The antimicrobial properties of nanoparticles (NPs) can be used to develop nanopesticides for plant protection. Plant diseases caused by bacterial and fungal infestations are the main types of crop diseases. Once infected, they will seriously threaten crop growth, reduce yield and quality, and affect food safety, posing a health risk to humans. We reviewed the application of metal-based nanoparticles in inhibiting plant pathogenic bacteria and fungi, and discuss the antibacterial mechanisms of metal-based nanoparticles from two aspects: the direct interaction between nanoparticles and pathogens, and the indirect effects of inducing plant resilience to disease. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Mingshu Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, China
| | - Pingfan Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Manlin Guo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Yaqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - BenZhen Lou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
34
|
Khan H, Andleeb S, Nisar T, Latif Z, Raja SA, Awan UA, Maqbool K, Khurshid S. Interactions of Chitosan-coated Green Synthesized Silver Nanoparticles using Mentha spicata and Standard Antibiotics against Bacterial Pathogens. Curr Pharm Biotechnol 2023; 24:203-212. [PMID: 35382716 DOI: 10.2174/1389201023666220405120914] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/30/2022] [Accepted: 02/17/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Infectious diseases are caused by various multidrug-resistant pathogenic bacteria and in recent scenarios, nanoparticles have been used as innovative antimicrobial agents. AIMS This current research aimed to evaluate the bactericidal effect of chitosan-coated green synthesized silver nanoparticles using aqueous extract of Mentha spicata (MSaqu) against bacterial pathogens, i.e., Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Serratia marcescens, Staphylococcus aureus, and Streptococcus pyogenes. METHODS Synthesis and characterization of silver nanoparticles (MSAgNPs) were carried out via atomic absorption spectrometer and Fourier-transform infrared spectroscopy. Agar well and agar disc diffusion methods were used to assess the antibacterial and synergistic effect of chitosanmediated biogenic silver nanoparticles and standard antibiotics. Three types of interactions, i.e., antagonistic (↓), synergistic (↑), and additive (¥) were observed. RESULTS Synergistic effect was recorded against Pseudomonas aeruginosa (8.5±0.25 mm↑), Serratia marcescens (19.0±1.0 mm↑), and Klebsiela pneumonia (8.5±0.25 mm↑), an additive effect was exhibited by Escherichia coli (9.0±0.0 mm¥), Streptococcus pyogenes (10.0±0.0 mm¥), and Staphylococcus aureus (7.5±0.25 mm↓) and they showed antagonistic effects when chitosan-coated silver nanoparticles (CLMSAgNPs) were applied compared to chitosan, MSaqu, and MSAgNPs. Interesting antibacterial results were recorded when chitosan-coated Mentha spicata extract and silver nanoparticles were applied along with antibiotics. The synergistic effects of chitosan-coated silver nanoparticles (CLMSAgNPs) + K were recorded against E. coli (14.5±0.25 mm). The synergistic effects of chitosan-coated silver nanoparticles (CLMSAgNPs) + AML were recorded against E. coli (5.5±0.0 mm), S. pyogenes (10.0±0.0 mm), K. pneumonia (5.5±0.0 mm), and S. aureus (4.0±0.0 mm). The synergistic effects of chitosan-coated silver nanoparticles (CLMSAgNPs) + NOR were recorded against E. coli (16.0±0.0 mm), P. aeruginosa (19.0±0.0 mm), S. marcescens (19.5±0.25 mm), S. pyogenes (11.5.0±0.25 mm), K. pneumonia (23.0±0.0 mm), and S. aureus (8.5±0.25 mm). CONCLUSION Current findings concluded that chitosan-coated biogenic silver nanoparticles have potential bactericidal effects against infectious pathogens and could be used as forthcoming antibacterial agents.
Collapse
Affiliation(s)
- Habib Khan
- Microbial Biotechnology lab, Department of Zoology, University of Azad Jammu and Kashmir, King Abdullah Campus, Chattar Kalas, Muzaffarabad, 13100, Pakistan
| | - Saiqa Andleeb
- Microbial Biotechnology lab, Department of Zoology, University of Azad Jammu and Kashmir, King Abdullah Campus, Chattar Kalas, , 13100, Pakistan
| | - Tayba Nisar
- Microbial Biotechnology lab, Department of Zoology, University of Azad Jammu and Kashmir, King Abdullah Campus, Chattar Kalas, Muzaffarabad, 13100, Pakistan
| | - Zahid Latif
- Microbial Biotechnology lab, Department of Zoology, University of Azad Jammu and Kashmir, King Abdullah Campus, Chattar Kalas, Muzaffarabad, 13100, Pakistan
| | - Sadaf Azad Raja
- Department of Bioscience, COMSATS University, Park Road, Tarlai Kalan, Islamabad, 44000, Pakistan
| | - Uzma Azeem Awan
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Kiran Maqbool
- Microbial Biotechnology lab, Department of Zoology, University of Azad Jammu and Kashmir, King Abdullah Campus, Chattar Kalas, Muzaffarabad, 13100, Pakistan
| | - Sadia Khurshid
- Microbial Biotechnology lab, Department of Zoology, University of Azad Jammu and Kashmir, King Abdullah Campus, Chattar Kalas, Muzaffarabad, 13100, Pakistan
| |
Collapse
|
35
|
M G, DJ M, Vinaykiya V, V B, Dutta S, Pawar R, Raghavendra VB. Screening of Antibacterial and Antioxidant Activity of Biogenically Synthesized Silver Nanoparticles from Alternaria alternata, Endophytic Fungus of Dendrophthoe falcata-a Parasitic Plant. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-021-00932-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Nam S, Hillyer MB, He Z, Chang S, Edwards JV. Self-induced transformation of raw cotton to a nanostructured primary cell wall for a renewable antimicrobial surface. NANOSCALE ADVANCES 2022; 4:5404-5416. [PMID: 36540117 PMCID: PMC9724696 DOI: 10.1039/d2na00665k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Herein, raw cotton is shown to undergo self-induced transformation into a nanostructured primary cell wall. This process generates a metal nanoparticle-mediated antimicrobial surface that is regenerable through multiple washings. Raw cotton, without being scoured and bleached, contains noncellulosic constituents including pectin, sugars, and hemicellulose in its primary cell wall. These noncellulosic components provide definitive active binding sites for the in situ synthesis of silver nanoparticles (Ag NPs). Facile heating in an aqueous solution of AgNO3 activated raw cotton to produce Ag NPs (ca. 28 nm in diameter and 2261 mg kg-1 in concentration). Compared with scoured and bleached cotton, raw cotton requires lower concentrations of AgNO3-ten times lower for Klebsiella pneumonia and two times lower for Staphylococcus aureus-to achieve 99.9% reductions of both Gram-positive and Gram-negative bacteria. The Ag NPs embedded in the primary cell wall, which was confirmed via transmission electron microscopy images of the fiber cross-sections, are immobilized, exhibiting resistance to leaching as judged by continuous laundering. A remarkable percentage (74%) of the total Ag NPs remained in the raw cotton after 50 laundering cycles.
Collapse
Affiliation(s)
- Sunghyun Nam
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center New Orleans LA 70124 USA +1 504 286 4390 +1 504 286 4229
| | - Matthew B Hillyer
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center New Orleans LA 70124 USA +1 504 286 4390 +1 504 286 4229
| | - Zhongqi He
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center New Orleans LA 70124 USA +1 504 286 4390 +1 504 286 4229
| | - SeChin Chang
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center New Orleans LA 70124 USA +1 504 286 4390 +1 504 286 4229
| | - J Vincent Edwards
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center New Orleans LA 70124 USA +1 504 286 4390 +1 504 286 4229
| |
Collapse
|
37
|
Taher HS, Sayed R, Loutfi A, Abdulla H. Construction of a domestic wastewater disinfection filter from biosynthesized and commercial nanosilver: a comparative study. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01688-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Biosynthesis of nanoparticles is an eco-friendly process and considered one of the most significant aspects of nanotechnology. Silver nanoparticles (Ag NPs) have a better bactericidal activity due to its high surface area to volume ratio. In this paper, Streptomyces sp. U13 (KP109813) was used to biosynthesize silver nanoparticles (Ag NPs) to construct wastewater disinfection filter.
Methods
The biosynthesized nanosilver and a commercially available ink nanosilver were characterized, and their wastewater disinfection efficiency was compared. The nanometrological characteristics of both nanosilver such as structure, shape, and size were investigated using the X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FTIR), high-resolution transmission electron microscope (HR-TEM), and UV-visible spectroscopy.
Result
The results revealed that the biosynthesized and ink Ag NPs were well dispersed and had a spherical shape, with sizes ranged from 5 to 37 nm and from 2 to 26 nm, respectively. To examine the disinfection capabilities, Ag NPs were loaded on two substrates, foam and limestone gravel, and packed into a glass column receiving domestic wastewater. Results showed that Ag NPs attached to limestone gravel eliminate 100% of the coliform bacteria better than foam. Comparing to control columns (without silver), only 50 and 10% reduction of the total coliform in gravel and foam column were achieved, respectively.
Conclusion
This work concluded that the type of substrate controls the amount of Ag NPs loaded on it and thus controls the disinfection process. No significant difference between biosynthesized and ink nanosilver in wastewater disinfection was observed. Using limestone gravel filter loaded with 200 mg/l Ag NPs with contact time of 150 min achieves a complete eradication of coliform bacteria.
Collapse
|
38
|
Gondal AJ, Choudhry N, Bukhari H, Rizvi Z, Yasmin N. Characterization of Genomic Diversity among Carbapenem-Resistant Escherichia coli Clinical Isolates and Antibacterial Efficacy of Silver Nanoparticles from Pakistan. Microorganisms 2022; 10:2283. [PMID: 36422353 PMCID: PMC9699514 DOI: 10.3390/microorganisms10112283] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/03/2022] [Accepted: 11/16/2022] [Indexed: 01/18/2024] Open
Abstract
The emergence of carbapenem-resistant Escherichia coli (E. coli) is considered an important threat to public health resulting in resistance accumulation due to antibiotics misuse and selection pressure. This warrants periodic efforts to investigate and develop strategies for infection control. A total of 184 carbapenem-resistant clinical strains of E. coli were characterized for resistance pattern, resistance genes, plasmids, sequence types and in vitro efficacy of silver nanoparticles (AgNPs). Carbapenem resistance was prevalent in E. coli isolated from female patients (64.7%), urine samples (40.8%) and surgical wards (32.1%). Polymyxin-B showed higher susceptibility. ESBLs and carbapenemases were produced in 179 and 119 isolates, respectively. Carbapenemase-encoding genes were observed among 104 strains with blaNDM-1 (45.1%), blaOXA-48 (27%), blaNDM-7 (3.8%), blaNDM-1/blaOXA-48 (15.4%), blaNDM-7/blaOXA-48 (2.9%), blaOXA-48/blaVIM (3.8%) and blaNDM-1/blaVIM (2%). ESBL resistance genes were detected in 147 isolates, namely blaSHV (24.9%), blaCTX-M (17.7%), blaTEM (4.8%), blaSHV/blaCTX-M (29.2%), blaSHV/blaTEM (15%) and blaCTX-M/blaTEM (8.8%). ST405 (44.4%) and ST131 (29.2%) were more frequent sequence types with ST101 (9.7%), ST10 (9.7%) and ST648 (7%). The replicon types IncFII, IncFIIK, IncA/C, IncN and IncL/M were detected. The combination of MEM/AgNPs remained effective against carbapenemase-positive E. coli. We reported genetically diverse E. coli strains coharboring carbapenemases/ESBLs from Pakistan. Moreover, this study highlights the enhanced antibacterial activity of MEM/AgNPs and may be used to manage bacterial infections.
Collapse
Affiliation(s)
- Aamir Jamal Gondal
- Department of Biomedical Sciences, King Edward Medical University, Lahore 54000, Pakistan
| | - Nakhshab Choudhry
- Department of Biochemistry, King Edward Medical University, Lahore 54000, Pakistan
| | - Hina Bukhari
- Department of Pathology, King Edward Medical University, Lahore 54000, Pakistan
| | - Zainab Rizvi
- Department of Oral Pathology, de’Montmorency College of Dentistry, Lahore 54000, Pakistan
| | - Nighat Yasmin
- Department of Biomedical Sciences, King Edward Medical University, Lahore 54000, Pakistan
| |
Collapse
|
39
|
The optimal concentration of silver nanoparticles in sterilizing fish skin grafts. Sci Rep 2022; 12:19483. [PMID: 36376399 PMCID: PMC9663429 DOI: 10.1038/s41598-022-23853-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Collagen integrity should be considered on using a sterilizing agent for fish skin grafts. This study defined the optimal concentration of silver nanoparticles (Ag NPs) for sterilization of fish skin grafts without disrupting collagen content based on microbiological and histological evaluation. Strips of tilapia skin (n = 5) were randomly allocated to be immersed in Ag NPs solution at different concentrations of 25, 50, 100, and 250 µg/mL, respectively, for 5 min. The treated skin strips underwent bacteriological and histological evaluation. Yeast and fungi were more sensitive to Ag NPs than bacteria. On increasing the nanoparticles concentration, the total counts of aerobic bacteria decrease giving 933.3 ± 28.67, 601 ± 27.66, 288 ± 16.8, 15 ± 4.08 (CFU/cm2 ± S.D) at 25, 50, 100, and 250 µg/mL, respectively, comparing with untreated sample (1453.3 ± 57.92). Yeasts and filamentous fungi also exhibited a similar response, achieving a complete inhibition at 100 and 250 µg/mL. Bacillus cereus and Escherichia coli were the dominant aerobic bacteria, Candida albicans and Rhodotorula glutinis were the dominant aerobic yeasts, whereas Aspergillus niger, Aspergillus fumigatus, and Rhizopus stolonifer were the dominant aerobic fungi. The collagen fibers were loose with a wavey pattern at 25 µg/mL, wavey and slightly disorganized at 50 µg/mL, highly disorganized at 100 µg/mL, and compactly arranged and slightly loose at 250 µg/mL. Ag NPs at a concentration of 250 µg/mL could be considered a reliable and feasible method for the sterilization of fish skin grafts before application on human skin with an effective antimicrobial effect and less disrupting impact on collagen content.
Collapse
|
40
|
Dhyani A, Repetto T, Bartikofsky D, Mirabelli C, Gao Z, Snyder SA, Snyder C, Mehta G, Wobus CE, VanEpps JS, Tuteja A. Surfaces with instant and persistent antimicrobial efficacy against bacteria and SARS-CoV-2. MATTER 2022; 5:4076-4091. [PMID: 36034972 PMCID: PMC9399129 DOI: 10.1016/j.matt.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Surfaces contaminated with bacteria and viruses contribute to the transmission of infectious diseases and pose a significant threat to global public health. Modern day disinfection either relies on fast-acting (>3-log reduction within a few minutes), yet impermanent, liquid-, vapor-, or radiation-based disinfection techniques, or long-lasting, but slower-acting, passive antimicrobial surfaces based on heavy metal surfaces, or metallic nanoparticles. There is currently no surface that provides instant and persistent antimicrobial efficacy against a broad spectrum of bacteria and viruses. In this work, we describe a class of extremely durable antimicrobial surfaces incorporating different plant secondary metabolites that are capable of rapid disinfection (>4-log reduction) of current and emerging pathogens within minutes, while maintaining persistent efficacy over several months and under significant environmental duress. We also show that these surfaces can be readily applied onto a variety of desired substrates or devices via simple application techniques such as spray, flow, or brush coating.
Collapse
Affiliation(s)
- Abhishek Dhyani
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Taylor Repetto
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dylan Bartikofsky
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carmen Mirabelli
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhihe Gao
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah A Snyder
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Catherine Snyder
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Geeta Mehta
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - J Scott VanEpps
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Departments of Emergency Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anish Tuteja
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
41
|
Functional biomaterials for comprehensive periodontitis therapy. Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
42
|
Zhang W, Ye G, Liao D, Chen X, Lu C, Nezamzadeh-Ejhieh A, Khan MS, Liu J, Pan Y, Dai Z. Recent Advances of Silver-Based Coordination Polymers on Antibacterial Applications. Molecules 2022; 27:7166. [PMID: 36363993 PMCID: PMC9656551 DOI: 10.3390/molecules27217166] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 07/30/2023] Open
Abstract
With the continuous evolution of bacteria and the constant use of traditional antibiotics, the emergence of drug-resistant bacteria and super viruses has attracted worldwide attention. Antimicrobial therapy has become the most popular and important research field at present. Coordination Polymer (CP) and/or metal-organic framework (MOF) platforms have the advantages of a high biocompatibility, biodegradability, and non-toxicity, have a great antibacterial potential and have been widely used in antibacterial treatment. This paper reviewed the mechanism and antibacterial effect of three typical MOFs (pure Ag-MOFs, hybrid Ag-MOFs, and Ag-containing-polymer @MOFs) in silver-based coordination polymers. At the same time, the existing shortcomings and future views are briefly discussed. The study on the antibacterial efficacy and mechanism of Ag-MOFs can provide a better basis for its clinical application and, meanwhile, open up a novel strategy for the preparation of more advanced Ag-contained materials with antibacterial characteristics.
Collapse
Affiliation(s)
- Wenfeng Zhang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Gaomin Ye
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Donghui Liao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xuelin Chen
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
| | - Chengyu Lu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
| | | | - M. Shahnawaz Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Jianqiang Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
| | - Ying Pan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Zhong Dai
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
43
|
Preparation and performance of amidoximated silver-silica core–shell nanoparticles for uranium extraction from seawater. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
44
|
Habib U, Ahmad Khan A, Rahman TU, Zeb MA, Liaqat W. Green synthesis, characterization, and antibacterial activity of silver nanoparticles using stem extract of Zanthoxylum armatum. Microsc Res Tech 2022; 85:3830-3837. [PMID: 36125078 DOI: 10.1002/jemt.24231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/31/2022] [Accepted: 08/25/2022] [Indexed: 11/08/2022]
Abstract
In this study, we report the green synthesis of silver nanoparticles (AgNPs) using Zanthoxylum armatum stem extract. The characteristic absorption at 385 nm suggested synthesis of AgNPs which was further confirmed by SEM, with a size in the range of 46.66 nm to 60.12 nm and a spherical shape, having an FCC structure, analyzed by XRD. FTIR analysis revealed the presence of phenol and secondary alcohol groups over the AgNPS. The elemental composition was further investigated by FESEM-EDX analysis which revealed the presence of silver in the synthesis nanoparticles. The synthesized silver nanoparticles exhibited antimicrobial activity against tested microorganisms with a zone of inhibition of 21 mm for Staphylococcus aureus, 17 mm for Pseudomonas aeruginosa, 18 mm for Salmonella enteric, and 18 mm for Escherichia coli. Overall, the results showed that the green silver nanoparticles could be safe, as they are capable of potential antimicrobial activity against S. aureus.
Collapse
Affiliation(s)
- Uroosa Habib
- Department of Chemistry, Women University of Azad Jammu & Kashmir, Bagh, Pakistan
| | - Ashfaq Ahmad Khan
- Department of Chemistry, Women University of Azad Jammu & Kashmir, Bagh, Pakistan
| | - Taj Ur Rahman
- Department of Chemistry, Mohi-Ud-Din Islamic University, Nerian Sharif, Pakistan
| | - Muhammad Aurang Zeb
- Department of Chemistry, Mohi-Ud-Din Islamic University, Nerian Sharif, Pakistan
| | - Wajiha Liaqat
- Department of Chemistry, Mohi-Ud-Din Islamic University, Nerian Sharif, Pakistan
| |
Collapse
|
45
|
Ge C, Huang M, Huang D, Dang F, Huang Y, Ahmad HA, Zhu C, Chen N, Wu S, Zhou D. Effect of metal cations on antimicrobial activity and compartmentalization of silver in Shewanella oneidensis MR-1 upon exposure to silver ions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156401. [PMID: 35654200 DOI: 10.1016/j.scitotenv.2022.156401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Silver is an antimicrobial agent that is used extensively in consumer products, such as fabrics and humidifiers. Silver ion (Ag+) uptake in bacteria represents a crucial phase of antimicrobial activity. However, the uptake mechanism of Ag+ in bacteria remains largely unknown. The genus Shewanella drives many geochemical processes of nutrients and pollutants in soils. In the present study, Ag+ uptake by Shewanella oneidensis MR-1 was first investigated in a laboratory in defined anaerobic, oligotrophic, and inorganic media with or without cations (potassium ions [K+], magnesium ions [Mg2+], and zinc ions [Zn2+]). Our results revealed variations in antimicrobial activity of Ag+ in the presence of Mg2+ and Zn2+. First, Mg2+ significantly decreased antimicrobial activity of Ag+ in S. oneidensis MR-1 by inhibiting cellular Ag+ uptake when compared with K+. The results were consistent with that of Co2+ (Mg2+ channel blocker) decreased Ag+ uptake by S. oneidensis MR-1. Moreover, Mg2+ promoted riboflavin secretion and facilitated the formation of metallic Ag nanoparticles on bacterial surfaces, which was beneficial for extracellular electron transfer and consequently reduced antibacterial activity of Ag+. Second, Zn2+ increased the antimicrobial activity of Ag+ in S. oneidensis MR-1, although the effect on Ag+ uptake was minimal. A synergistic interaction between Zn2+ and Ag+ led to an increase in dead cells and decreased ferrihydrite reduction capacity. The findings suggest that Mg2+ could reduce the environmental risk of Ag+ to soil bacteria, while Zn2+ should be of particular concern due to its synergistic antimicrobial effect on bacteria.
Collapse
Affiliation(s)
- Chenghao Ge
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Mingquan Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Danyu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, PR China
| | - Yingnan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hafiz Adeel Ahmad
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Changyin Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Ning Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Song Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
46
|
Trivedi R, Upadhyay TK, Kausar MA, Saeed A, Sharangi AB, Almatroudi A, Alabdallah NM, Saeed M, Aqil F. Nanotechnological interventions of the microbiome as a next-generation antimicrobial therapy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155085. [PMID: 35398124 DOI: 10.1016/j.scitotenv.2022.155085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/22/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
The rise of antimicrobial resistance (AMR) impacts public health due to the diminished potency of existing antibiotics. The microbiome plays an important role in the host's immune system activity and shows the history of exposure to antimicrobials and its manipulation in combating antimicrobial resistance. Advancements in gene technologies, DNA sequencing, and computational biology have emerged as powerful platforms to better understand the relationship between animals and microorganisms (MOs). The past few years have witnessed an increase in the use of nanotechnology, both in industry and in academia, as tools to tackle antimicrobial resistance. New strategies of microbiome manipulation have been developed, such as the use of prebiotics, probiotics, peptides, antibodies, an appropriate diet, phage therapy, and the use of various nanotechnological techniques. Owing to the research outcomes, targeted delivery of antimicrobials with some modifications with nanoparticles can lead to the destruction of resistant microbial cells. In addition, nanoparticles have been studied for their potential antimicrobial effects both in vitro and in vivo. In this review, we highlight key opportunistic areas for applying nanotechnologies with the aim of manipulating the microbiome for the treatment of antimicrobial resistance. Besides providing a detailed review on various nanomaterials, technologies, opportunities, technical needs, and potential approaches for the manipulation of the microbiome to address these challenges, we discuss future challenges and our perspective.
Collapse
Affiliation(s)
- Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara 391760, India.
| | - Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Hail, PO Box 2240, Hail, Saudi Arabia
| | - Amir Saeed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, PO Box 2240, Hail, Saudi Arabia
| | - Amit Baran Sharangi
- Department of Plantation Spices Medicinal and Aromatic Crops, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Nadiyah M Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, PO Box 2240, Hail, Saudi Arabia.
| | - Farrukh Aqil
- UofL Health - Brown Cancer Center and Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
47
|
Li H, Zhao Y, Zhang J, Li W, You Q, Zeng X, Xu H. Silver nanoparticles reduce the tolerance of Cronobacter sakazakii to environmental stress by inhibiting expression of related genes. J Dairy Sci 2022; 105:6469-6482. [PMID: 35840406 DOI: 10.3168/jds.2022-21833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/25/2022] [Indexed: 11/19/2022]
Abstract
Cronobacter sakazakii is a food-borne pathogen that is resistant to a variety of environmental stress conditions. It can survive in harsh environments. We studied the effects of silver nanoparticles (AgNP) on the environmental tolerance and biofilm formation of C. sakazakii. First, we determined the minimum inhibitory concentration (MIC) of AgNP to C. sakazakii and determined the growth curve of C. sakazakii treated with different concentrations of AgNP by using the plate counting method. After determining the sub-inhibition concentrations (SIC) of AgNP on C. sakazakii, we studied the effects of AgNP on the resistance of C. sakazakii to heat, desiccation, osmotic pressure, and acid. The antibiofilm activity of AgNP was also studied. Finally, real-time quantitative PCR was used to analyze the transcription levels of 16 genes related to the environmental tolerance of C. sakazakii. The SIC of AgNP significantly reduced the survival rate of C. sakazakii under various environmental stress conditions. The results showed that AgNP at 0.625 and 1.25 μg/mL significantly inhibited the formation of C. sakazakii biofilms. The expression levels of most genes were significantly downregulated in C. sakazakii cells treated with 0.625 and 1.25 μg/mL AgNP. Therefore, AgNP may reduce the environmental tolerance of C. sakazakii by inhibiting the expression of genes related to stress tolerance. Moreover, AgNP inhibited the production of ATP in C. sakazakii cells and the formation of C. sakazakii biofilms. Our research provides a theoretical basis for the application of AgNP in food packaging, bactericidal coatings, and other fields.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yi Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Jingjing Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Wen Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Qixiu You
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Xianxiang Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
48
|
Insights on the Dynamics and Toxicity of Nanoparticles in Environmental Matrices. Bioinorg Chem Appl 2022; 2022:4348149. [PMID: 35959228 PMCID: PMC9357770 DOI: 10.1155/2022/4348149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 12/29/2022] Open
Abstract
The manufacturing rate of nanoparticles (10–100 nm) is steadily increasing due to their extensive applications in the fabrication of nanoproducts related to pharmaceuticals, cosmetics, medical devices, paints and pigments, energy storage etc. An increase in research related to nanotechnology is also a cause for the production and disposal of nanomaterials at the lab scale. As a result, contamination of environmental matrices with nanoparticles becomes inevitable, and the understanding of the risk of nanoecotoxicology is getting larger attention. In this context, focusing on the environmental hazards is essential. Hence, this manuscript aims to review the toxic effects of nanoparticles on soil, water, aquatic, and terrestrial organisms. The effects of toxicity on vertebrates, invertebrates, and plants and the source of exposure, environmental and biological dynamics, and the adverse effects of some nanoparticles are discussed.
Collapse
|
49
|
Tariq M, Mohammad KN, Ahmed B, Siddiqui MA, Lee J. Biological Synthesis of Silver Nanoparticles and Prospects in Plant Disease Management. Molecules 2022; 27:4754. [PMID: 35897928 PMCID: PMC9330430 DOI: 10.3390/molecules27154754] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023] Open
Abstract
Exploration of nanoparticles (NPs) for various biological and environmental applications has become one of the most important attributes of nanotechnology. Due to remarkable physicochemical properties, silver nanoparticles (AgNPs) are the most explored and used NPs in wide-ranging applications. Also, they have proven to be of high commercial use since they possess great chemical stability, conductivity, catalytic activity, and antimicrobial potential. Though several methods including chemical and physical methods have been devised, biological approaches using organisms such as bacteria, fungi, and plants have emerged as economical, safe, and effective alternatives for the biosynthesis of AgNPs. Recent studies highlight the potential of AgNPs in modern agricultural practices to control the growth and spread of infectious pathogenic microorganisms since the introduction of AgNPs effectively reduces plant diseases caused by a spectrum of bacteria and fungi. In this review, we highlight the biosynthesis of AgNPs and discuss their applications in plant disease management with recent examples. It is proposed that AgNPs are prospective NPs for the successful inhibition of pathogen growth and plant disease management. This review gives a better understanding of new biological approaches for AgNP synthesis and modes of their optimized applications that could contribute to sustainable agriculture.
Collapse
Affiliation(s)
- Moh Tariq
- Department of Botany, Lords University, Alwar 301028, India
- Section of Plant Pathology and Nematology, Aligarh Muslim University, Aligarh 202002, India; (K.N.M.); (M.A.S.)
| | - Khan Nazima Mohammad
- Section of Plant Pathology and Nematology, Aligarh Muslim University, Aligarh 202002, India; (K.N.M.); (M.A.S.)
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Mansoor A. Siddiqui
- Section of Plant Pathology and Nematology, Aligarh Muslim University, Aligarh 202002, India; (K.N.M.); (M.A.S.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
50
|
Fernandes T, Costa IF, Jorge P, Sousa AC, André V, Cabral RG, Cerca N, Kirillov AM. Hybrid Silver(I)-Doped Soybean Oil and Potato Starch Biopolymer Films to Combat Bacterial Biofilms. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25104-25114. [PMID: 35621184 PMCID: PMC9773233 DOI: 10.1021/acsami.2c03010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This study describes the preparation, characterization, and antimicrobial properties of novel hybrid biopolymer materials doped with bioactive silver(I) coordination polymers (bioCPs). Two new bioCPs, [Ag2(μ6-hfa)]n (1) and [Ag2(μ4-nda)(H2O)2]n (2), were assembled from Ag2O and homophthalic (H2hfa) or 2,6-naphthalenedicarboxylic (H2nda) acids as unexplored building blocks. Their structures feature 2D metal-organic and supramolecular networks with 3,6L64 or sql topology. Both compounds act as active antimicrobial agents for producing bioCP-doped biopolymer films based on epoxidized soybean oil acrylate (SBO) or potato starch (PS) as model biopolymer materials with a different rate of degradability and silver release. BioCPs and their hybrid biopolymer films (1@[SBO]n, 2@[SBO]n, 1@[PS]n, and 2@[PS]n) with a very low loading of coordination polymer (0.05-0.5 wt %) show remarkable antimicrobial activity against Staphylococcus aureus and Staphylococcus epidermidis (Gram-positive) and Escherichia coli and Pseudomonas aeruginosa (Gram-negative) bacteria. Biopolymer films also effectively impair the formation of bacterial biofilms, allowing total biofilm inhibition in several cases. By reporting on new bioCPs and biopolymer films obtained from renewable biofeedstocks (soybean oil and PS), this study blends highly important research directions and widens a limited antimicrobial application of bioCPs and derived functional materials. This research thus opens up the perspectives for designing hybrid biopolymer films with outstanding bioactivity against bacterial biofilms.
Collapse
Affiliation(s)
- Tiago
A. Fernandes
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Inês F.M. Costa
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Paula Jorge
- Centre
of Biological Engineering, University of
Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana Catarina Sousa
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Área
Departamental de Engenharia Química, ISEL—Instituto Superior de Engenharia de Lisboa, Instituto
Politécnico de Lisboa, R. Conselheiro Emídio Navarro, 1, 1959-007 Lisbon, Portugal
| | - Vânia André
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Rafaela G. Cabral
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Área
Departamental de Engenharia Química, ISEL—Instituto Superior de Engenharia de Lisboa, Instituto
Politécnico de Lisboa, R. Conselheiro Emídio Navarro, 1, 1959-007 Lisbon, Portugal
| | - Nuno Cerca
- Centre
of Biological Engineering, University of
Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Alexander M. Kirillov
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|