1
|
Wiese M, van der Wurff M, Ouwens A, van Leijden B, Verheij ER, Heerikhuisen M, van der Vossen JMBM. Modeling the effects of prebiotic interventions on luminal and mucosa-associated gut microbiota without and with Clostridium difficile challenge in vitro. Front Nutr 2024; 11:1403007. [PMID: 39183984 PMCID: PMC11342808 DOI: 10.3389/fnut.2024.1403007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/10/2024] [Indexed: 08/27/2024] Open
Abstract
Prebiotics can modulate the gut microbial community composition and function for improved (gut) health and increase resilience against infections. In vitro models of the gut facilitate the study of intervention effects on the gut microbial community relevant to health. The mucosa-associated gut microbiota, which thrives in close contact with the host plays a pivotal role in colonization resistance and health. Therefore, we here introduce the Mi-screen, an experimental approach implementing a 96-well plate equipped with a mucus agar layer for the additional culturing of mucosa-associated microbiota in vitro. In this study, we screened the effects of 2'-Fucosyllactose (2'-FL), fructooligosaccharides (FOS), and inulin within a complex microbiota without and with infection with the C. difficile strains ATCC 43599 (Ribotype 001) or ATCC BAA-1870 (Ribotype 027). We analyzed the microbial community composition and short-chain fatty acid levels after 48 h of incubation. The inclusion of an additional substrate and surface in the form of the mucus agar layer allowed us to culture a microbial richness ranging between 100-160 in Chao index, with Shannon indices of 5-6 across culture conditions, indicative of a microbial diversity of physiological relevance. The mucus agar layer stimulated the growth of characteristic mucosa-associated bacteria such as Roseburia inulinovorans. The prebiotic interventions affected luminal and mucosal microbial communities cultured in vitro and stimulated short-chain fatty acid production. FOS, inulin and 2'-FL promoted the growth of Bifidobacterium adolescentis within the mucosa-associated microbiota cultured in vitro. When spiking the untreated conditions with pathogenic C. difficile, the strains thrived within the luminal and the mucosal sample types, whereas prebiotic treatments exhibited inhibitory effects on C. difficile growth and prevented colonization. In conclusion, the Mi-screen facilitates the screening of luminal and mucosa-associated gut microbial community dynamics in vitro and therefore fills an important gap in the field of in vitro modeling.
Collapse
Affiliation(s)
- Maria Wiese
- Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Michelle van der Wurff
- Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Anita Ouwens
- Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Bowien van Leijden
- Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Elwin R. Verheij
- Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Margreet Heerikhuisen
- Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Jos M. B. M. van der Vossen
- Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| |
Collapse
|
2
|
JohnBritto JS, Di Ciaula A, Noto A, Cassano V, Sciacqua A, Khalil M, Portincasa P, Bonfrate L. Gender-specific insights into the irritable bowel syndrome pathophysiology. Focus on gut dysbiosis and permeability. Eur J Intern Med 2024; 125:10-18. [PMID: 38467533 DOI: 10.1016/j.ejim.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Irritable bowel syndrome (IBS) is the most common functional gastrointestinal disorder involving the brain-gut interaction. IBS is characterized by persistent abdominal pain and changes in bowel habits. IBS exerts significant impacts on quality of life and imposes huge economic costs. Global epidemiological data reveal variations in IBS prevalence, both globally and between genders, necessitating comprehensive studies to uncover potential societal and cultural influences. While the exact pathophysiology of IBS remains incompletely understood, the mechanism involves a dysregulation of the brain-gut axis, leading to disturbed intestinal motility, local inflammation, altered intestinal permeability, visceral sensitivity, and gut microbiota composition. We reviewed several gender-related pathophysiological aspects of IBS pathophysiology, by focusing on gut dysbiosis and intestinal permeability. This perspective paves the way to personalized and multidimensional clinical management of individuals with IBS.
Collapse
Affiliation(s)
- Jerlin Stephy JohnBritto
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Antonino Noto
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Velia Cassano
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Mohamad Khalil
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy.
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
3
|
Zhu J, He L. The Modulatory Effects of Curcumin on the Gut Microbiota: A Potential Strategy for Disease Treatment and Health Promotion. Microorganisms 2024; 12:642. [PMID: 38674587 PMCID: PMC11052165 DOI: 10.3390/microorganisms12040642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Curcumin (CUR) is a lipophilic natural polyphenol that can be isolated from the rhizome of turmeric. Studies have proposed that CUR possesses a variety of biological activities. Due to its anti-inflammatory and antioxidant properties, CUR shows promise in the treatment of inflammatory bowel disease, while its anti-obesity effects make it a potential therapeutic agent in the management of obesity. In addition, curcumin's ability to prevent atherosclerosis and its cardiovascular benefits further expand its potential application in the treatment of cardiovascular disease. Nevertheless, owing to the limited bioavailability of CUR, it is difficult to validate its specific mechanism of action in the treatment of diseases. However, the restricted bioavailability of CUR makes it challenging to confirm its precise mode of action in disease treatment. Recent research indicates that the oral intake of curcumin may lead to elevated levels of residual curcumin in the gastrointestinal system, hinting at curcumin's potential to directly influence gut microbiota. Furthermore, the ecological dysregulation of the gut microbiota has been shown to be critical in the pathogenesis of human diseases. This review summarizes the impact of gut dysbiosis on host health and the various ways in which curcumin modulates dysbiosis and ameliorates various diseases caused by it through the administration of curcumin.
Collapse
Affiliation(s)
- Junwen Zhu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| | | |
Collapse
|
4
|
Oliva RL, Vogt C, Bublitz TA, Camenzind T, Dyckmans J, Joergensen RG. Galactosamine and mannosamine are integral parts of bacterial and fungal extracellular polymeric substances. ISME COMMUNICATIONS 2024; 4:ycae038. [PMID: 38616925 PMCID: PMC11014887 DOI: 10.1093/ismeco/ycae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Extracellular polymeric substances (EPS) are produced by microorganisms and interact to form a complex matrix called biofilm. In soils, EPS are important contributors to the microbial necromass and, thus, to soil organic carbon (SOC). Amino sugars (AS) are used as indicators for microbial necromass in soil, although the origin of galactosamine and mannosamine is largely unknown. However, indications exist that they are part of EPS. In this study, two bacteria and two fungi were grown in starch medium either with or without a quartz matrix to induce EPS production. Each culture was separated in two fractions: one that directly underwent AS extraction (containing AS from both biomass and EPS), and another that first had EPS extracted, followed then by AS determination (exclusively containing AS from EPS). We did not observe a general effect of the quartz matrix neither of microbial type on AS production. The quantified amounts of galactosamine and mannosamine in the EPS fraction represented on average 100% of the total amounts of these two AS quantified in cell cultures, revealing they are integral parts of the biofilm. In contrast, muramic acid and glucosamine were also quantified in the EPS, but with much lower contribution rates to total AS production, of 18% and 33%, respectively, indicating they are not necessarily part of EPS. Our results allow a meaningful ecological interpretation of mannosamine and galactosamine data in the future as indicators of microbial EPS, and also attract interest of future studies to investigate the role of EPS to SOC and its dynamics.
Collapse
Affiliation(s)
- Rebeca Leme Oliva
- Soil Biology and Plant Nutrition, University of Kassel, 37213 Witzenhausen, Germany
| | - Carla Vogt
- Soil Biology and Plant Nutrition, University of Kassel, 37213 Witzenhausen, Germany
| | - Tábata Aline Bublitz
- Soil Biology and Plant Nutrition, University of Kassel, 37213 Witzenhausen, Germany
| | - Tessa Camenzind
- Institute of Biology, Department of Plant Ecology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jens Dyckmans
- Centre for Stable Isotope Research Analysis, University of Göttingen, 37077 Göttingen, Germany
| | | |
Collapse
|
5
|
Alsaady IM. Cryptosporidium and irritable bowel syndrome. Trop Parasitol 2024; 14:8-15. [PMID: 38444793 PMCID: PMC10911187 DOI: 10.4103/tp.tp_10_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 03/07/2024] Open
Abstract
Cryptosporidium is an apicomplexan parasite that causes gastrointestinal disease in a wide variety of hosts and is associated with waterborne outbreaks. Nonetheless, the parasite is underdiagnosed. Cryptosporidium has been proposed as an etiological cause of irritable bowel syndrome (IBS) in several studies. However, the exact mechanism of pathogenesis is unknown, and no direct link has been discovered. This review will discuss several parasite-induced modifications, such as immunological, microbiome, and metabolite modifications, as well as their interactions. To summarize, Cryptosporidium causes low inflammation, dysbiosis, and unbalanced metabolism, which leads to a lack of homeostasis in the intestine in a comparable pattern to postinfectious IBS.
Collapse
Affiliation(s)
- Isra Mohammad Alsaady
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- King Fahad Medical Research Centre, Special Infectious Agents Unit, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Gao H, He C, Xin S, Hua R, Du Y, Wang B, Gong F, Yu X, Pan L, Liang C, Gao L, Shang H, Xu JD. Rhubarb extract rebuilding the mucus homeostasis and regulating mucin-associated flora to relieve constipation. Exp Biol Med (Maywood) 2023; 248:2449-2463. [PMID: 38073524 PMCID: PMC10903230 DOI: 10.1177/15353702231211859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/21/2023] [Indexed: 01/23/2024] Open
Abstract
In clinical trials, rhubarb extract (Rb) was demonstrated to efficiently alleviate constipation. We would like to find out the underlying mechanism of rhubarb relieving constipation. However, there are few studies on the effects of rhubarb on colonic mucus secretion and constipation. The aim of this study was to investigate the effects of rhubarb on colonic mucus secretion and its underlying mechanism. The mice were randomly divided into four groups. Group I was the control group and Group II was the rhubarb control group, with Rb (24 g/kg body weight [b.w.]) administered through intragastric administration for three days. Group III mice were given diphenoxylate (20 mg/kg b.w.) for five days via gavage to induce constipation. Group IV received diphenoxylate lasting five days before undergoing Rb administration for three days. The condition of the colon was evaluated using an endoscope. Particularly, the diameter of blood vessels in the colonic mucosa expanded considerably in constipation mice along with diminishing mucus output, which was in line with the observation via scanning electron microscope (SEM) and transmission electron microscope (TEM). We also performed metagenomic analysis to reveal the microbiome related to mucin gene expression level referring to mucin secretion. In conclusion, Rb relieves constipation by rebuilding mucus homeostasis and regulating the microbiome.
Collapse
Affiliation(s)
- Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Department of Clinical Laboratory, Aerospace Center Hospital, Beijing 100039, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yixuan Du
- Department of Oral Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Boya Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Fengrong Gong
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xinyi Yu
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Luming Pan
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Chen Liang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Lei Gao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jing-dong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
7
|
Liu B, Garza DR, Gonze D, Krzynowek A, Simoens K, Bernaerts K, Geirnaert A, Faust K. Starvation responses impact interaction dynamics of human gut bacteria Bacteroides thetaiotaomicron and Roseburia intestinalis. THE ISME JOURNAL 2023; 17:1940-1952. [PMID: 37670028 PMCID: PMC10579405 DOI: 10.1038/s41396-023-01501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/07/2023]
Abstract
Bacterial growth often alters the environment, which in turn can impact interspecies interactions among bacteria. Here, we used an in vitro batch system containing mucin beads to emulate the dynamic host environment and to study its impact on the interactions between two abundant and prevalent human gut bacteria, the primary fermenter Bacteroides thetaiotaomicron and the butyrate producer Roseburia intestinalis. By combining machine learning and flow cytometry, we found that the number of viable B. thetaiotaomicron cells decreases with glucose consumption due to acid production, while R. intestinalis survives post-glucose depletion by entering a slow growth mode. Both species attach to mucin beads, but only viable cell counts of B. thetaiotaomicron increase significantly. The number of viable co-culture cells varies significantly over time compared to those of monocultures. A combination of targeted metabolomics and RNA-seq showed that the slow growth mode of R. intestinalis represents a diauxic shift towards acetate and lactate consumption, whereas B. thetaiotaomicron survives glucose depletion and low pH by foraging on mucin sugars. In addition, most of the mucin monosaccharides we tested inhibited the growth of R. intestinalis but not B. thetaiotaomicron. We encoded these causal relationships in a kinetic model, which reproduced the observed dynamics. In summary, we explored how R. intestinalis and B. thetaiotaomicron respond to nutrient scarcity and how this affects their dynamics. We highlight the importance of understanding bacterial metabolic strategies to effectively modulate microbial dynamics in changing conditions.
Collapse
Affiliation(s)
- Bin Liu
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, B-3000, Leuven, Belgium
| | - Daniel Rios Garza
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, B-3000, Leuven, Belgium
| | - Didier Gonze
- Unité de Chronobiologie Théorique, Faculté des Sciences, CP 231, Université Libre de Bruxelles, Bvd du Triomphe, B-1050, Bruxelles, Belgium
| | - Anna Krzynowek
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, B-3000, Leuven, Belgium
| | - Kenneth Simoens
- Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), KU Leuven, B-3001, Leuven, Belgium
| | - Kristel Bernaerts
- Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), KU Leuven, B-3001, Leuven, Belgium
| | - Annelies Geirnaert
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zürich, CH-8092, Zürich, Switzerland
| | - Karoline Faust
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, B-3000, Leuven, Belgium.
| |
Collapse
|
8
|
Zanditenas E, Trebicz-Geffen M, Kolli D, Domínguez-García L, Farhi E, Linde L, Romero D, Chapman M, Kolodkin-Gal I, Ankri S. Digestive exophagy of biofilms by intestinal amoeba and its impact on stress tolerance and cytotoxicity. NPJ Biofilms Microbiomes 2023; 9:77. [PMID: 37813896 PMCID: PMC10562373 DOI: 10.1038/s41522-023-00444-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
The human protozoan parasite Entamoeba histolytica is responsible for amebiasis, a disease endemic to developing countries. E. histolytica trophozoites colonize the large intestine, primarily feeding on bacteria. However, in the gastrointestinal tract, bacterial cells form aggregates or structured communities called biofilms too large for phagocytosis. Remarkably, trophozoites are still able to invade and degrade established biofilms, utilizing a mechanism that mimics digestive exophagy. Digestive exophagy refers to the secretion of digestive enzymes that promote the digestion of objects too large for direct phagocytosis by phagocytes. E. histolytica cysteine proteinases (CPs) play a crucial role in the degradation process of Bacillus subtilis biofilm. These proteinases target TasA, a major component of the B. subtilis biofilm matrix, also contributing to the adhesion of the parasite to the biofilm. In addition, they are also involved in the degradation of biofilms formed by Gram-negative and Gram-positive enteric pathogens. Furthermore, biofilms also play an important role in protecting trophozoites against oxidative stress. This specific mechanism suggests that the amoeba has adapted to prey on biofilms, potentially serving as an untapped reservoir for novel therapeutic approaches to treat biofilms. Consistently, products derived from the amoeba have been shown to restore antibiotic sensitivity to biofilm cells. In addition, our findings reveal that probiotic biofilms can act as a protective shield for mammalian cells, hindering the progression of the parasite towards them.
Collapse
Affiliation(s)
- Eva Zanditenas
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Meirav Trebicz-Geffen
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Divya Kolli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Laura Domínguez-García
- Departamento de Microbiología, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| | - Einan Farhi
- Technion Genomics Center, Technion - Israel Institute of Technology, Haifa, Israel
| | - Liat Linde
- Technion Genomics Center, Technion - Israel Institute of Technology, Haifa, Israel
| | - Diego Romero
- Departamento de Microbiología, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| | - Matthew Chapman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Ilana Kolodkin-Gal
- Department of Plant Pathology and Microbiology, the Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
- Scojen Institute for Synthetic Biology, Reichman University, Herzliya, Israel.
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
9
|
Pal P, Shastry RP. Exploring the complex role of gut microbiome in the development of precision medicine strategies for targeting microbial imbalance-induced colon cancer. Folia Microbiol (Praha) 2023; 68:691-701. [PMID: 37624549 DOI: 10.1007/s12223-023-01085-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
The gut microbiome has been increasingly recognized as a key player in the development and progression of colon cancer. Alterations in the gut microbiota, known as dysbiosis, can lead to a variety of medical issues. Microbial adaptation through signals and small molecules can enhance pathogen colonization and modulate host immunity, significantly impacting disease progression. Quorum sensing peptides and molecules have been linked to the progression of colon cancer. Various interventions, such as fecal microbiota transplantation, probiotics, prebiotics, synbiotics, and antibiotics, have been used to reverse dysbiosis with mixed results and potential side effects. Thus, a personalized approach to treatment selection based on patient characteristics, such as individual gut microbiota manipulation, is necessary to prevent and treat diseases like colon cancer. With advances in metagenomic sequencing and other omics technologies, there has been a growing interest in developing precision medicine strategies for microbial imbalance-induced colon cancer. This review serves as a comprehensive synthesis of current knowledge on the gut microbiome involvement in colon cancer. By exploring the potential of utilizing the gut microbiome as a target for precision medicine, this review underscores the exciting opportunities that lie ahead. Although challenges exist, the integration of microbiome data into precision medicine approaches has the potential to revolutionize the management of colon cancer, providing patients with more personalized and effective treatment options.
Collapse
Affiliation(s)
- Pamela Pal
- Division of Microbiology and Biotechnology, Yenepoya (Deemed to Be University), Yenepoya Research Centre, University Road, Mangaluru-575018, India
| | - Rajesh P Shastry
- Division of Microbiology and Biotechnology, Yenepoya (Deemed to Be University), Yenepoya Research Centre, University Road, Mangaluru-575018, India.
| |
Collapse
|
10
|
Gutierrez A, Pucket B, Engevik MA. Bifidobacterium and the intestinal mucus layer. MICROBIOME RESEARCH REPORTS 2023; 2:36. [PMID: 38045921 PMCID: PMC10688832 DOI: 10.20517/mrr.2023.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/21/2023] [Accepted: 09/13/2023] [Indexed: 12/05/2023]
Abstract
Bifidobacterium species are integral members of the human gut microbiota and these microbes have significant interactions with the intestinal mucus layer. This review delves into Bifidobacterium-mucus dynamics, shedding light on the multifaceted nature of this relationship. We cover conserved features of Bifidobacterium-mucus interactions, such as mucus adhesion and positive regulation of goblet cell and mucus production, as well as species and strain-specific attributes of mucus degradation. For each interface, we explore the molecular mechanisms underlying these interactions and their potential implications for human health. Notably, we emphasize the ability of Bifidobacterium species to positively influence the mucus layer, shedding light on its potential as a mucin-builder and a therapeutic agent for diseases associated with disrupted mucus barriers. By elucidating the complex interplay between Bifidobacterium and intestinal mucus, we aim to contribute to a deeper understanding of the gut microbiota-host interface and pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Alyssa Gutierrez
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Brenton Pucket
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Melinda A. Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
11
|
Pandey H, Tang DWT, Wong SH, Lal D. Gut Microbiota in Colorectal Cancer: Biological Role and Therapeutic Opportunities. Cancers (Basel) 2023; 15:cancers15030866. [PMID: 36765824 PMCID: PMC9913759 DOI: 10.3390/cancers15030866] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Colorectal cancer (CRC) is the second-leading cause of cancer-related deaths worldwide. While CRC is thought to be an interplay between genetic and environmental factors, several lines of evidence suggest the involvement of gut microbiota in promoting inflammation and tumor progression. Gut microbiota refer to the ~40 trillion microorganisms that inhabit the human gut. Advances in next-generation sequencing technologies and metagenomics have provided new insights into the gut microbial ecology and have helped in linking gut microbiota to CRC. Many studies carried out in humans and animal models have emphasized the role of certain gut bacteria, such as Fusobacterium nucleatum, enterotoxigenic Bacteroides fragilis, and colibactin-producing Escherichia coli, in the onset and progression of CRC. Metagenomic studies have opened up new avenues for the application of gut microbiota in the diagnosis, prevention, and treatment of CRC. This review article summarizes the role of gut microbiota in CRC development and its use as a biomarker to predict the disease and its potential therapeutic applications.
Collapse
Affiliation(s)
- Himani Pandey
- Redcliffe Labs, Electronic City, Noida 201301, India
| | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Correspondence: (S.H.W.); (D.L.)
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
- Correspondence: (S.H.W.); (D.L.)
| |
Collapse
|
12
|
Di Tommaso N, Santopaolo F, Gasbarrini A, Ponziani FR. The Gut-Vascular Barrier as a New Protagonist in Intestinal and Extraintestinal Diseases. Int J Mol Sci 2023; 24:ijms24021470. [PMID: 36674986 PMCID: PMC9864173 DOI: 10.3390/ijms24021470] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The intestinal barrier, with its multiple layers, is the first line of defense between the outside world and the intestine. Its disruption, resulting in increased intestinal permeability, is a recognized pathogenic factor of intestinal and extra-intestinal diseases. The identification of a gut-vascular barrier (GVB), consisting of a structured endothelium below the epithelial layer, has led to new evidence on the etiology and management of diseases of the gut-liver axis and the gut-brain axis, with recent implications in oncology as well. The gut-brain axis is involved in several neuroinflammatory processes. In particular, the recent description of a choroid plexus vascular barrier regulating brain permeability under conditions of gut inflammation identifies the endothelium as a key regulator in maintaining tissue homeostasis and health.
Collapse
Affiliation(s)
- Natalia Di Tommaso
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence:
| |
Collapse
|
13
|
Implication of gut microbes and its metabolites in colorectal cancer. J Cancer Res Clin Oncol 2023; 149:441-465. [PMID: 36572792 DOI: 10.1007/s00432-022-04422-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer with a significant impact on loss of life. In 2020, nearly 1.9 million new cases and over 9,35,000 deaths were reported. Numerous microbes that are abundant in the human gut benefit host physiology in many ways. Although the underlying mechanism is still unknown, their association appears to be crucial in the beginning and progression of CRC. Diet has a significant impact on the microbial composition and may increase the chance of getting CRC. Increasing evidence points to the gut microbiota as the primary initiator of colonic inflammation, which is connected to the development of colonic tumors. However, it is unclear how the microbiota contributes to the development of CRCs. Patients with CRC have been found to have dysbiosis of the gut microbiota, which can be identified by a decline in commensal bacterial species, such as those that produce butyrate, and a concurrent increase in harmful bacterial populations, such as opportunistic pathogens that produce pro-inflammatory cytokines. We believe that using probiotics or altering the gut microbiota will likely be effective tools in the fight against CRC treatment. PURPOSE In this review, we revisited the association between gut microbiota and colorectal cancer whether cause or effect. The various factors which influence gut microbiome in patients with CRC and possible mechanism in relation with development of CRC. CONCLUSION The clinical significance of the intestinal microbiota may aid in the prevention and management of CRC.
Collapse
|
14
|
Hou Y, Dong L, Lu X, Shi H, Xu B, Zhong W, Ma L, Wang S, Yang C, He X, Zhao Y, Wang S. Distinctions Between Fecal and Intestinal Mucosal Microbiota in Subgroups of Irritable Bowel Syndrome. Dig Dis Sci 2022; 67:5580-5592. [PMID: 35879512 DOI: 10.1007/s10620-022-07588-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 04/14/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIMS Recent studies have shown that changes in the intestinal microbiota contribute to the pathogenesis of irritable bowel syndrome (IBS). This study aimed to investigate the characteristics of the fecal and intestinal mucosal microbiota in IBS patients, and the correlation between microbiota and clinical manifestations. METHODS Fecal and intestinal mucosal samples were collected from 14 constipation-predominant IBS (IBS-C) patients, 20 diarrhea-predominant IBS (IBS-D) patients, and 20 healthy controls (HCs). 16S rRNA gene sequencing and fluorescence in situ hybridization were used for the analysis of samples. RESULTS Community richness and diversity of the fecal microbiota in IBS patients were significantly reduced compared with the HCs. The mucosal samples in IBS patients showed decreased Bifidobacterium and increased Bacteroides caccae compared with HCs; Eubacterium and Roseburia were decreased in IBS-C patients and increased in IBS-D patients. A comparison of the fecal and mucosal microbiota in IBS patients showed significantly increased Bifidobacterium in fecal samples and a decrease in mucosal samples in IBS-C patients; Bacteroides caccae and Roseburia were significantly reduced in fecal samples and increased in mucosal samples of IBS patients. A correlation between microbiota and clinical manifestations in IBS patients showed that Bacteroides caccae and Roseburia in fecal samples and Bifidobacterium and Eubacterium in mucosal samples were associated with abdominal pain and distention. CONCLUSIONS Distinct differences exist between the fecal and intestinal mucosal microbiota in IBS patients, with the changes in the latter appearing more consistent with the pathophysiology of IBS. Changes in intestinal microbiota were associated with the clinical manifestations in IBS.
Collapse
Affiliation(s)
- Yangfan Hou
- Department of Gastroenterology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, China.,Pulmonary and Critical Care Medicine, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, China
| | - Lei Dong
- Department of Gastroenterology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, China
| | - Xiaolan Lu
- Department of Gastroenterology, Shanghai Pudong Hospital, Shanghai, 201399, China
| | - Haitao Shi
- Department of Gastroenterology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, China
| | - Bing Xu
- Department of Gastroenterology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, China
| | - Wenting Zhong
- International Medical Ward, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, 710061, China
| | - Lin Ma
- Department of Gastroenterology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, China
| | - Shuhui Wang
- Department of Gastroenterology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, China
| | - Caifeng Yang
- Departments of Gastroenterology, Xi'an City First Hospital, Xi'an, 710002, China
| | - Xinyi He
- Department of Gastroenterology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, China
| | - Yidi Zhao
- Emergency Department, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, China
| | - Shenhao Wang
- Department of Gastroenterology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, China.
| |
Collapse
|
15
|
Biofilms and Benign Colonic Diseases. Int J Mol Sci 2022; 23:ijms232214259. [PMID: 36430737 PMCID: PMC9698058 DOI: 10.3390/ijms232214259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
The colon has a very large surface area that is covered by a dense mucus layer. The biomass in the colon includes 500-1000 bacterial species at concentrations of ~1012 colony-forming units per gram of feces. The intestinal epithelial cells and the commensal bacteria in the colon have a symbiotic relationship that results in nutritional support for the epithelial cells by the bacteria and maintenance of the optimal commensal bacterial population by colonic host defenses. Bacteria can form biofilms in the colon, but the exact frequency is uncertain because routine methods to undertake colonoscopy (i.e., bowel preparation) may dislodge these biofilms. Bacteria in biofilms represent a complex community that includes living and dead bacteria and an extracellular matrix composed of polysaccharides, proteins, DNA, and exogenous debris in the colon. The formation of biofilms occurs in benign colonic diseases, such as inflammatory bowel disease and irritable bowel syndrome. The development of a biofilm might serve as a marker for ongoing colonic inflammation. Alternatively, the development of biofilms could contribute to the pathogenesis of these disorders by providing sanctuaries for pathogenic bacteria and reducing the commensal bacterial population. Therapeutic approaches to patients with benign colonic diseases could include the elimination of biofilms and restoration of normal commensal bacteria populations. However, these studies will be extremely difficult unless investigators can develop noninvasive methods for measuring and identifying biofilms. These methods that might include the measurement of quorum sensing molecules, measurement of bile acids, and identification of bacteria uniquely associated with biofilms in the colon.
Collapse
|
16
|
Kessler C, Hou J, Neo O, Buckner MMC. In situ, in vivo, and in vitro approaches for studying AMR plasmid conjugation in the gut microbiome. FEMS Microbiol Rev 2022; 47:6807411. [PMID: 36341518 PMCID: PMC9841969 DOI: 10.1093/femsre/fuac044] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/23/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global threat, with evolution and spread of resistance to frontline antibiotics outpacing the development of novel treatments. The spread of AMR is perpetuated by transfer of antimicrobial resistance genes (ARGs) between bacteria, notably those encoded by conjugative plasmids. The human gut microbiome is a known 'melting pot' for plasmid conjugation, with ARG transfer in this environment widely documented. There is a need to better understand the factors affecting the incidence of these transfer events, and to investigate methods of potentially counteracting the spread of ARGs. This review describes the use and potential of three approaches to studying conjugation in the human gut: observation of in situ events in hospitalized patients, modelling of the microbiome in vivo predominantly in rodent models, and the use of in vitro models of various complexities. Each has brought unique insights to our understanding of conjugation in the gut. The use and development of these systems, and combinations thereof, will be pivotal in better understanding the significance, prevalence, and manipulability of horizontal gene transfer in the gut microbiome.
Collapse
Affiliation(s)
- Celia Kessler
- Institute of Microbiology and Infection College of Medical and Dental Sciences Biosciences Building University Road West University of Birmingham, B15 2TT, United Kingdom
| | - Jingping Hou
- Institute of Microbiology and Infection College of Medical and Dental Sciences Biosciences Building University Road West University of Birmingham, B15 2TT, United Kingdom
| | - Onalenna Neo
- Institute of Microbiology and Infection College of Medical and Dental Sciences Biosciences Building University Road West University of Birmingham, B15 2TT, United Kingdom
| | - Michelle M C Buckner
- Corresponding author: Biosciences Building, University Road West, University of Birmingham, Birmingham B15 2TT, United Kingdom. Tel: +44 (0)121 415 8758; E-mail:
| |
Collapse
|
17
|
Tian B, Zhang Y, Deng C, Guo C. Efficacy of Probiotic Consortium Transplantation on Experimental Necrotizing Enterocolitis. J Surg Res 2022; 279:598-610. [PMID: 35926310 DOI: 10.1016/j.jss.2022.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/22/2022] [Accepted: 05/22/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Fecal microbiota transplantation (FMT) is a promising therapy, but it has not been used to treat neonatal necrotizing enterocolitis (NEC) due to reports of adverse side effects. Probiotics are considered relatively safe with practicable administrative procedures; however, no systematic research has compared the results of FMT and probiotic consortium transplantation (PCT) on oxidative stress in the intestines of patients with NEC. We conducted this study to provide a basis for optimizing NEC therapy. METHODS Eight-day-old newborn C57BL/6 mice were randomly divided into the following four groups: the dam-fed group (control group); the NEC induction group (NEC group); the NEC induction and transplantation of Lactobacillus reuteri and Bifidobacterium infantis consortium group (NEC + PCT group); and the NEC induction and the FMT group (NEC + FMT). Intestinal injury, oxidative stress indexes, intestinal barrier function, and inflammatory cytokines were assessed in the terminal ileum. RESULTS FMT more effectively modulates oxidative stress in the intestine than does PCT; however, the difference between the effects of PCT and FMT was not significant. The protective effect was associated with enhanced antioxidant capacity, regulation of the main components of the mucus layer, reduced inflammatory reactions, and improved intestinal integrity. CONCLUSIONS Intestinal dysbiosis affects oxidative stress, inflammatory response, and mucosal integrity. Although FMT is more effective than PCT in regulating oxidative stress, PCT may be preferred in pediatrics because the proportion and dose of transplanted bacteria can be standardized and individualized according to individual conditions.
Collapse
Affiliation(s)
- Bing Tian
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China; Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqin, China
| | - Yunfei Zhang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China; School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China; National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital, Chongqing Medical University, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Chun Deng
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqin, China; School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Pediatrics, Children's Hospital, Chongqing Medical University, Chongqing, China.
| | - Chunbao Guo
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Pediatrics, Children's Hospital, Chongqing Medical University, Chongqing, China; Department of Pediatric Surgery, Women and Chidren's Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
18
|
Li C, Zhang X. Current in Vitro and Animal Models for Understanding Foods: Human Gut-Microbiota Interactions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12733-12745. [PMID: 36166347 DOI: 10.1021/acs.jafc.2c04238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The food-gut microbiota interaction is an important regulator of human health. Numerous in vitro and animal models have thus been developed in order to simulate the specific food-gut microbiota and/or host-gut microbiota interactions in the human colon. This review summarizes the design principles of each model and discusses their advantages and weaknesses in terms of studying food-gut microbiota interactions. In vitro fermentation models appear to be reliable methods to investigate various aspects involved in the food-gut microbiota interactions in humans. However, many physiological perspectives lack appreciation of these models, such as peristaltic movement, biochemical conditions, and gastrointestinal anatomy. Animal models provide more physiological relevance to human trials compared to in vitro models. However, they may have gastrointestinal tract aspects that are distinct from human subjects. This review contains important information that can help the development of more advanced models to study food-gut microbiota interactions in humans.
Collapse
Affiliation(s)
- Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Joint International Research Laboratory of Agriculture Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xiaowei Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
19
|
Gut Non-Bacterial Microbiota: Emerging Link to Irritable Bowel Syndrome. Toxins (Basel) 2022; 14:toxins14090596. [PMID: 36136534 PMCID: PMC9503233 DOI: 10.3390/toxins14090596] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022] Open
Abstract
As a common functional gastrointestinal disorder, irritable bowel syndrome (IBS) significantly affects personal health and imposes a substantial economic burden on society, but the current understanding of its occurrence and treatment is still inadequate. Emerging evidence suggests that IBS is associated with gut microbial dysbiosis, but most studies focus on the bacteria and neglect other communities of the microbiota, including fungi, viruses, archaea, and other parasitic microorganisms. This review summarizes the latest findings that link the nonbacterial microbiota with IBS. IBS patients show less fungal and viral diversity but some alterations in mycobiome, virome, and archaeome, such as an increased abundance of Candida albicans. Moreover, fungi and methanogens can aid in diagnosis. Fungi are related to distinct IBS symptoms and induce immune responses, intestinal barrier disruption, and visceral hypersensitivity via specific receptors, cells, and metabolites. Novel therapeutic methods for IBS include fungicides, inhibitors targeting fungal pathogenic pathways, probiotic fungi, prebiotics, and fecal microbiota transplantation. Additionally, viruses, methanogens, and parasitic microorganisms are also involved in the pathophysiology and treatment. Therefore, the gut nonbacterial microbiota is involved in the pathogenesis of IBS, which provides a novel perspective on the noninvasive diagnosis and precise treatment of this disease.
Collapse
|
20
|
Nishida A, Nishino K, Ohno M, Sakai K, Owaki Y, Noda Y, Imaeda H. Update on gut microbiota in gastrointestinal diseases. World J Clin Cases 2022; 10:7653-7664. [PMID: 36158494 PMCID: PMC9372855 DOI: 10.12998/wjcc.v10.i22.7653] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/20/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
The human gut is a complex microbial ecosystem comprising approximately 100 trillion microbes collectively known as the "gut microbiota". At a rough estimate, the human gut microbiome contains almost 3.3 million genes, which are about 150 times more than the total human genes present in the human genome. The vast amount of genetic information produces various enzymes and physiologically active substances. Thus, the gut microbiota contributes to the maintenance of host health; however, when healthy microbial composition is perturbed, a condition termed "dysbiosis", the altered gut microbiota can trigger the development of various gastrointestinal diseases. The gut microbiota has consequently become an extremely important research area in gastroenterology. It is also expected that the results of research into the gut microbiota will be applied to the prevention and treatment of human gastrointestinal diseases. A randomized controlled trial conducted by a Dutch research group in 2013 showed the positive effect of fecal microbiota transplantation (FMT) on recurrent Clostridioides difficile infection (CDI). These findings have led to the development of treatments targeting the gut microbiota, such as probiotics and FMT for inflammatory bowel diseases (IBD) and other diseases. This review focuses on the association of the gut microbiota with human gastrointestinal diseases, including CDI, IBD, and irritable bowel syndrome. We also summarize the therapeutic options for targeting the altered gut microbiota, such as probiotics and FMT.
Collapse
Affiliation(s)
- Atsushi Nishida
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| | - Kyohei Nishino
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| | - Masashi Ohno
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| | - Keitaro Sakai
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| | - Yuji Owaki
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| | - Yoshika Noda
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| | - Hirotsugu Imaeda
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| |
Collapse
|
21
|
Wang S, Huang G, Wang JX, Tian L, Zuo XL, Li YQ, Yu YB. Altered Gut Microbiota in Patients With Peutz–Jeghers Syndrome. Front Microbiol 2022; 13:881508. [PMID: 35910641 PMCID: PMC9326469 DOI: 10.3389/fmicb.2022.881508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/06/2022] [Indexed: 11/14/2022] Open
Abstract
Background Peutz–Jeghers syndrome (PJS) is a rare genetic disorder characterized by the development of pigmented spots and gastrointestinal polyps and increased susceptibility to cancers. It remains unknown whether gut microbiota dysbiosis is linked to PJS. Aim This study aimed to assess the structure and composition of the gut microbiota, including both bacteria and fungi, in patients with PJS and investigate the relationship between gut microbiota dysbiosis and PJS pathogenesis. Methods The bacterial and fungal composition of the fecal microbiota was analyzed in 23 patients with PJS (cases), 17 first-degree asymptomatic relatives (ARs), and 24 healthy controls (HCs) using 16S (MiSeq) and ITS2 (pyrosequencing) sequencing for bacteria and fungi, respectively. Differential analyses of the intestinal flora were performed from the phylum to species level. Results Alpha-diversity distributions of bacteria and fungi indicated that the abundance of both taxa differed between PJS cases and controls. However, while the diversity and composition of fecal bacteria in PJS cases were significantly different from those in ARs and HCs, fungal flora was more stable. High-throughput sequencing confirmed the special characteristics and biodiversity of the fecal bacterial and fungal microflora in patients with PJS. They had lower bacterial biodiversity than controls, with a higher frequency of the Proteobacteria phylum, Enterobacteriaceae family, and Escherichia-Shigella genus, and a lower frequency of the Firmicutes phylum and the Lachnospiraceae and Ruminococcaceae families. Of fungi, Candida was significantly higher in PJS cases than in controls. Conclusion The findings reported here confirm gut microbiota dysbiosis in patients with PJS. This is the first report on the bacterial and fungal microbiota profile of subjects with PJS, which may be meaningful to provide a structural basis for further research on intestinal microecology in PJS.
Collapse
Affiliation(s)
- Sui Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Gang Huang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Jue-Xin Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Tian
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiu-Li Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Yan-Qing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Yan-Bo Yu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Yan-Bo Yu
| |
Collapse
|
22
|
León ED, Francino MP. Roles of Secretory Immunoglobulin A in Host-Microbiota Interactions in the Gut Ecosystem. Front Microbiol 2022; 13:880484. [PMID: 35722300 PMCID: PMC9203039 DOI: 10.3389/fmicb.2022.880484] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
In the gastrointestinal tract (GIT), the immune system interacts with a variety of microorganisms, including pathogens as well as beneficial symbionts that perform important physiological functions for the host and are crucial to sustain intestinal homeostasis. In normal conditions, secretory immunoglobulin A (SIgA) is the principal antibody produced by B cells in the GIT mucosa. Polyreactivity provides certain SIgA molecules with the ability of binding different antigens in the bacterial surface, such as O-antigens and teichoic acids, while cross-species reactivity allows them to recognize and interact with different types of bacteria. These functions may be crucial in allowing SIgA to modulate the complex gut microbiota in an efficient manner. Several studies suggest that SIgA can help with the retention and proliferation of helpful members of the gut microbiota. Gut microbiota alterations in people with IgA deficiency include the lack of some species that are known to be normally coated by SIgA. Here, we discuss the different ways in which SIgA behaves in relation to pathogens and beneficial bacteria of the gut microbiota and how the immune system might protect and facilitate the establishment and maintenance of certain gut symbionts.
Collapse
Affiliation(s)
- E Daniel León
- Department of Genomics and Health, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - M Pilar Francino
- Department of Genomics and Health, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain.,CIBER en Epidemiología y Salud Pública, Madrid, Spain
| |
Collapse
|
23
|
Wang L, Song C, Wang Y, Hu L, Liu X, Zhang J, Ji X, Man S, Zhang N, Li G, Yang Y, Peng L, Wei Z, Huang F. Symptoms Compatible with Rome IV Functional Bowel Disorder in Patients with Ankylosing Spondylitis. Mod Rheumatol 2022:6612220. [PMID: 35727178 DOI: 10.1093/mr/roac064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/21/2022] [Accepted: 06/20/2022] [Indexed: 11/14/2022]
Abstract
OBJECTIVES To determine the frequency of symptoms meeting Rome IV functional bowel disorder (FBD) in patients with ankylosing spondylitis (AS), investigate factors associated with FBD symptoms, and assess whether having FBD symptoms might influence AS disease activity. METHODS In this cross-sectional study, we enrolled 153 AS patients without known colonic ulcer and 56 sex- and age-matched controls to evaluate FBD (or its subtypes) symptoms. Disease characteristics were also evaluated in AS group. RESULTS Sixty (39.2%) of 153 AS patients had FBD symptoms, which was more prevalent than controls (23.2%). Besides, symptoms compatible with irritable bowel syndrome (IBS) and chronic diarrhea were detected in 18 and 43 AS patients respectively. For AS group, multivariable logistic regression analyses showed that symptoms of FBD, IBS, and chronic diarrhea were negatively associated with using non-steroidal anti-inflammatory drug (NSAID), and positively associated with comorbid fibromyalgia, respectively. In exploration about effects of FBD (or its subtypes) symptoms on AS disease activity by multivariable linear regression analyses, FBD symptoms and chronic diarrhea had universal positive associations with assessments of AS disease characteristics respectively. CONCLUSION Patients with AS had frequent symptoms compatible with FBD, IBS, and chronic diarrhea, proportions of which were lower in those with NSAID-use. The improvement of FBD symptoms and chronic diarrhea might be conducive to disease status of AS patients.
Collapse
Affiliation(s)
- Lei Wang
- Department of Rheumatology and Immunology, The First Medical Center, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Chuan Song
- Department of Rheumatology and Immunology, The First Medical Center, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Yiwen Wang
- Department of Rheumatology and Immunology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Lidong Hu
- Department of Rheumatology and Immunology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xingkang Liu
- Department of Rheumatology and Immunology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jiaxin Zhang
- Department of Rheumatology and Immunology, The First Medical Center, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Xiaojian Ji
- Department of Rheumatology and Immunology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Siliang Man
- Department of Rheumatology, Beijing JiShuiTan Hospital, Beijing, China
| | - Nana Zhang
- Medical School of Chinese PLA, Beijing, China.,Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Gang Li
- Health Service Department of the Guard Bureau of the Joint Staff Department, Beijing, China
| | - Yunsheng Yang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Lihua Peng
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhimin Wei
- Health Service Department of the Guard Bureau of the Joint Staff Department, Beijing, China
| | - Feng Huang
- Department of Rheumatology and Immunology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
24
|
Rastall RA, Diez-Municio M, Forssten SD, Hamaker B, Meynier A, Moreno FJ, Respondek F, Stah B, Venema K, Wiese M. Structure and function of non-digestible carbohydrates in the gut microbiome. Benef Microbes 2022; 13:95-168. [PMID: 35729770 DOI: 10.3920/bm2021.0090] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Together with proteins and fats, carbohydrates are one of the macronutrients in the human diet. Digestible carbohydrates, such as starch, starch-based products, sucrose, lactose, glucose and some sugar alcohols and unusual (and fairly rare) α-linked glucans, directly provide us with energy while other carbohydrates including high molecular weight polysaccharides, mainly from plant cell walls, provide us with dietary fibre. Carbohydrates which are efficiently digested in the small intestine are not available in appreciable quantities to act as substrates for gut bacteria. Some oligo- and polysaccharides, many of which are also dietary fibres, are resistant to digestion in the small intestines and enter the colon where they provide substrates for the complex bacterial ecosystem that resides there. This review will focus on these non-digestible carbohydrates (NDC) and examine their impact on the gut microbiota and their physiological impact. Of particular focus will be the potential of non-digestible carbohydrates to act as prebiotics, but the review will also evaluate direct effects of NDC on human cells and systems.
Collapse
Affiliation(s)
- R A Rastall
- Department of Food and Nutritional Sciences, The University of Reading, P.O. Box 226, Whiteknights, Reading, RG6 6AP, United Kingdom
| | - M Diez-Municio
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - S D Forssten
- IFF Health & Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - B Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907-2009, USA
| | - A Meynier
- Nutrition Research, Mondelez France R&D SAS, 6 rue René Razel, 91400 Saclay, France
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - F Respondek
- Tereos, Zoning Industriel Portuaire, 67390 Marckolsheim, France
| | - B Stah
- Human Milk Research & Analytical Science, Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - K Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, St. Jansweg 20, 5928 RC Venlo, the Netherlands
| | - M Wiese
- Department of Microbiology and Systems Biology, TNO, Utrechtseweg 48, 3704 HE, Zeist, the Netherlands
| |
Collapse
|
25
|
Duncan K, Carey-Ewend K, Vaishnava S. Spatial analysis of gut microbiome reveals a distinct ecological niche associated with the mucus layer. Gut Microbes 2022; 13:1874815. [PMID: 33567985 PMCID: PMC8253138 DOI: 10.1080/19490976.2021.1874815] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mucus-associated bacterial communities are critical for determining disease pathology and promoting colonization resistance. Yet the key ecological properties of mucus resident communities remain poorly defined. Using an approach that combines in situ hybridization, laser microdissection and 16s rRNA sequencing of spatially distinct regions of the mouse gut lumen, we discovered that a dense microbial community resembling a biofilm is embedded in the mucus layer. The mucus-associated biofilm-like community excluded bacteria belonging to phylum Proteobacteria. Additionally, it was significantly more diverse and consisted of bacterial species that were unique to it. By employing germ-free mice deficient in T and B lymphocytes we found that formation of biofilm-like structure was independent of adaptive immunity. Instead the integrity of biofilm-like community depended on Gram-positive commensals such as Clostridia. Additionally, biofilm-like community in the mucus lost fewer Clostridia and showed smaller bloom of Proteobacteria compared to the lumen upon antibiotic treatment. When subjected to time-restricted feeding biofilm-like structure significantly enhanced in size and showed enrichment of Clostridia. Taken together our work discloses that mucus-associated biofilm-like community represents a specialized community that is structurally and compositionally distinct that excludes aerobic bacteria while enriching for anaerobic bacteria such as Clostridia, exhibits enhanced stability to antibiotic treatment and that can be modulated by dietary changes.
Collapse
Affiliation(s)
- Kellyanne Duncan
- Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Kelly Carey-Ewend
- Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Shipra Vaishnava
- Molecular Microbiology and Immunology, Brown University, Providence, RI, United States,CONTACT Shipra Vaishnava Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, United States
| |
Collapse
|
26
|
Supplementing Glycerol to Inoculum Induces Changes in pH, SCFA Profiles, and Microbiota Composition in In-Vitro Batch Fermentation. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation8010018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glycerol was generally added to the inoculum as a cryoprotectant. However, it was also a suitable substrate for microbial fermentation, which may produce more SCFAs, thereby decreased pH of the fermentation broth. This study investigated the effect of supplementing glycerol to inoculum on in vitro fermentation and whether an enhanced buffer capacity of medium could maintain the pH stability during in vitro batch fermentation, subsequently improving the accuracy of short chain fatty acids (SCFAs) determination, especially propionate. Two ileal digesta were fermented by pig fecal inoculum with or without glycerol (served as anti-frozen inoculum or frozen inoculum) in standard buffer or enhanced buffer solution (served as normal or modified medium). Along with the fermentation, adding glycerol decreased the pH of fermentation broth (p < 0.05). However, modified medium could alleviate the pH decrement compared with normal medium (p < 0.05). The concentration of total propionic acid production was much higher than that of other SCFAs in anti-frozen inoculum fermentation at 24 and 36 h, thereby increasing the variation (SD) of net production of propionate. The α-diversity analysis showed that adding glycerol decreased Chao1 and Shannon index under normal medium fermentation (p < 0.05) compared to modified medium (p < 0.05) along with fermentation. PCoA showed that all groups were clustered differently (p < 0.01). Adding glycerol improved the relative abundances of Firmicutes, Anaerovibrio, unclassified_f_Selenomonadaceae, and decreased the relative abundance of Proteobacteria (p < 0.05). The relative abundances of Firmicutes, such as Lactobacillus, Blautia and Eubacterium_Ruminantium_group in modified medium with frozen inoculum fermentation were higher than (p < 0.05) those in normal medium at 36 h of incubation. These results showed that adding glycerol in inoculum changed the fermentation patterns, regardless of substrate and medium, and suggested fermentation using frozen inoculum with modified medium could maintain stability of pH, improve the accuracy of SCFA determination, as well as maintain a balanced microbial community.
Collapse
|
27
|
Understanding of the Site-Specific Microbial Patterns towards Accurate Identification for Patients with Diarrhea-Predominant Irritable Bowel Syndrome. Microbiol Spectr 2021; 9:e0125521. [PMID: 34937163 PMCID: PMC8694097 DOI: 10.1128/spectrum.01255-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fecal microbial community could not fully represent the intestinal microbial community. However, most studies analyzing diarrhea-dominant irritable bowel syndrome (IBS-D) were mainly based on fecal samples. We aimed to characterize the IBS-D microbial community patterns using samples at multiple intestinal sites. This study recruited 74 IBS-D patients and 20 healthy controls (HC). 22.34%, 8.51%, 14.89%, and 54.26% of them contributed to one, two, three, and four sites: duodenal mucosa (DM), duodenal lumen (DL), rectal mucosa (RM), and rectal lumen (RL) of intestinal samples, respectively. Then 16S rRNA gene analysis was performed on these 283 samples. The result showed that IBS-D microbial communities have specific patterns at each intestinal site differing from that of HC. Across hosts and sites, Bacillus, Burkholderia, and Faecalibacterium were the representative genera in duodenum of IBS-D, duodenum of HC, and rectum of HC, respectively. Samples from mucosa and lumen in rectum were highly distinguishable, regardless of IBS-D and HC. Additionally, IBS-D patients have lower microbial co-abundance network connectivity. Moreover, RM site-specific biomarker: Bacteroides used alone or together with Prevotella and Oscillospira in RM showed outstanding performance in IBS-D diagnosis. Furthermore, Bacteroides and Prevotella in RM were strongly related to the severity of abdominal pain, abdominal discomfort, and bloating in IBS-D patients. In summary, this study also confirmed fecal microbial community could not fully characterize intestinal microbial communities. Among these site-specific microbial communities, RM microbial community would be more applicable in the diagnosis of IBS-D. IMPORTANCE Microbial community varied from one site to another along the gastrointestinal tract, but current studies about intestinal microbial community in IBS-D were mainly based on fecal samples. Based on 283 intestinal samples collected from DM, DL, RM, and RL of HC and IBS-D, we found different intestinal sites had their site-specific microbial patterns in IBS-D. Notably, RM site-specific microbes Bacteroides, Prevotella, and Oscillospira could be used to discriminate IBS-D from HC accurately. Our findings could help clinicians realize the great potential of the intestinal microbial community in RM for better diagnosis of IBS-D patients.
Collapse
|
28
|
Béchon N, Ghigo JM. Gut biofilms: Bacteroides as model symbionts to study biofilm formation by intestinal anaerobes. FEMS Microbiol Rev 2021; 46:6440158. [PMID: 34849798 DOI: 10.1093/femsre/fuab054] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
Bacterial biofilms are communities of adhering bacteria that express distinct properties compared to their free-living counterparts, including increased antibiotic tolerance and original metabolic capabilities. Despite the potential impact of the biofilm lifestyle on the stability and function of the dense community of micro-organisms constituting the mammalian gut microbiota, the overwhelming majority of studies performed on biofilm formation by gut bacteria focused either on minor and often aerobic members of the community or on pathogenic bacteria. In this review, we discuss the reported evidence for biofilm-like structures formed by gut bacteria, the importance of considering the anaerobic nature of gut biofilms and we present the most recent advances on biofilm formation by Bacteroides, one of the most abundant genera of the human gut microbiota. Bacteroides species can be found attached to food particles and colonizing the mucus layer and we propose that Bacteroides symbionts are relevant models to probe the physiology of gut microbiota biofilms.
Collapse
Affiliation(s)
- Nathalie Béchon
- Institut Pasteur, Université de Paris, UMR CNRS2001, Genetics of Biofilms Laboratory 75015 Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université de Paris, UMR CNRS2001, Genetics of Biofilms Laboratory 75015 Paris, France
| |
Collapse
|
29
|
Mucolytic bacteria: prevalence in various pathological diseases. World J Microbiol Biotechnol 2021; 37:176. [PMID: 34519941 DOI: 10.1007/s11274-021-03145-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023]
Abstract
All mucins are highly glycosylated and a key constituent of the mucus layer that is vigilant against pathogens in many organ systems of animals and humans. The viscous layer is organized in bilayers, i.e., an outer layer that is loosely arranged, variable in thickness, home to the commensal microbiota that grows in the complex environment, and an innermost layer that is stratified, non-aspirated, firmly adherent to the epithelial cells and devoid of any microorganisms. The O-glycosylation moiety represents the site of adhesion for pathogens and due to the increase of motility, mucolytic activity, and upregulation of virulence factors, some microorganisms can circumvent the component of the mucus layer and cause disruption in organ homeostasis. A dysbiotic microbiome, defective mucus barrier, and altered immune response often result in various diseases. In this review, paramount emphasis is given to the role played by the bacterial species directly or indirectly involved in mucin degradation, alteration in mucus secretion or its composition or mucin gene expression, which instigates many diseases in the digestive, respiratory, and other organ systems. A systematic view can help better understand the etiology of some complex disorders such as cystic fibrosis, ulcerative colitis and expand our knowledge about mucin degraders to develop new therapeutic approaches to correct ill effects caused by these mucin-dwelling pathogens.
Collapse
|
30
|
Jahnes BC, Poudel K, Staats AM, Sabree ZL. Microbial colonization promotes model cockroach gut tissue growth and development. JOURNAL OF INSECT PHYSIOLOGY 2021; 133:104274. [PMID: 34216600 DOI: 10.1016/j.jinsphys.2021.104274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Digestive tissues are essential for diet processing and nutrient accessibility, especially in omnivores, and these functions occur despite and in collaboration with dynamic microbial communities that reside within and upon these tissues. Prolonged host development and reduced digestive tissue sizes have been observed in germ-free animals, and normal host phenotypes were recovered following the re-introduction of typical gut microbiomes via coprophagy. RESULTS High-resolution histological analyses of Periplaneta americana cockroach digestive tissues revealed that total prevention of microbial colonization of the gut had severe impacts on the growth and development of gut tissues, especially the posterior midgut and anterior hindgut subcompartments that are expected to be colonized and inhabited by the greatest number of bacteria. Juveniles that were briefly exposed to normal gut microbiota exhibited a partial gut morphological recovery, suggesting that a single inoculation was insufficient. These data highlight gut microbiota as integral to normal growth and development of tissues they are in direct contact with and, more broadly, the organism in which they reside. CONCLUSIONS We draw on these data, host life history traits (i.e. multigenerational cohousing, molting, and filial coprophagy and exuvia feeding), and previous studies to suggest a host developmental model in which gut tissues reflect a conflict-collaboration dynamic where 1) nutrient-absorptive anterior midgut tissues are in competition with transient and resident bacteria for easily assimilable dietary nutrients and whose growth is least-affected by the presence of gut bacteria and 2) posterior midgut, anterior hindgut, and to a lesser degree, posterior hindgut tissues are significantly impacted by gut bacterial presence because they are occupied by the greatest number of bacteria and the host is relying upon, and thus collaborating with, them to assist with complex polysaccharide catabolism processing and nutrient provisioning (i.e. short-chain fatty acids).
Collapse
Affiliation(s)
- Benjamin C Jahnes
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Keyshap Poudel
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH, USA
| | - Amelia M Staats
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Zakee L Sabree
- Department of Microbiology, Ohio State University, Columbus, OH, USA; Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
31
|
Dashti N, Zarebavani M. Probiotics in the management of Giardia duodenalis: an update on potential mechanisms and outcomes. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1869-1878. [PMID: 34324017 DOI: 10.1007/s00210-021-02124-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Giardia duodenalis is a common cause of infection in children and travelers. The most frequent symptom is diarrhea in these patients. G. duodenalis trophozoites use a highly specialized adhesive disc to attach the host intestinal epithelium to induce intestinal damages. Pathological features of the small intestine following giardiasis include villous atrophy; infiltration of granulocytes, lymphocytes, and plasma cells into the lamina propria; and nodular lymphoid hyperplasia. The disturbed intestinal microbiota has been observed in patients with giardiasis. Therefore, a growing body of evidence has emphasized restoring the gut microbiome by probiotics in giardiasis. This study aimed to review the literature to find the pathologic features of giardiasis and its relationship with imbalanced microbiota. Then, benefits of probiotics in giardiasis and their potential molecular mechanisms were discussed. It has been illustrated that using probiotics (e.g., Lactobacillus and Saccharomyces) can reduce the time of gastrointestinal symptoms and repair the damages, particularly in giardiasis. Probiotics' capability in restoring the composition of commensal microbiota may lead to therapeutic outcomes. According to preclinical and clinical studies, probiotics can protect against parasite-induced mucosal damages via increasing the antioxidant capacity, suppressing oxidative products, and regulating the systemic and mucosal immune responses. In addition, they can reduce the proportion of G. duodenalis load by directly targeting the parasite. They can destroy the cellular architecture of parasites and suppress the proliferation and growth of trophozoites via the production of some factors with anti-giardial features. Further researches are required to find suitable probiotics for the prevention and treatment of giardiasis.
Collapse
Affiliation(s)
- Nasrin Dashti
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Zarebavani
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Simon E, Călinoiu LF, Mitrea L, Vodnar DC. Probiotics, Prebiotics, and Synbiotics: Implications and Beneficial Effects against Irritable Bowel Syndrome. Nutrients 2021; 13:nu13062112. [PMID: 34203002 PMCID: PMC8233736 DOI: 10.3390/nu13062112] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/05/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is still a common functional gastrointestinal disease that presents chronic abdominal symptoms but with a pathophysiology that is not yet fully elucidated. Moreover, the use of the synergistic combination of prebiotics and probiotics, known as synbiotics, for IBS therapy is still in the early stages. Advancements in technology led to determining the important role played by probiotics in IBS, whereas the present paper focuses on the detailed review of the various pathophysiologic mechanisms of action of probiotics, prebiotics, and synbiotics via multidisciplinary domains involving the gastroenterology (microbiota modulation, alteration of gut barrier function, visceral hypersensitivity, and gastrointestinal dysmotility) immunology (intestinal immunological modulation), and neurology (microbiota–gut–brain axis communication and co-morbidities) in mitigating the symptoms of IBS. In addition, this review synthesizes literature about the mechanisms involved in the beneficial effects of prebiotics and synbiotics for patients with IBS, discussing clinical studies testing the efficiency and outcomes of synbiotics used as therapy for IBS.
Collapse
Affiliation(s)
- Elemer Simon
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj-Napoca, Romania; (E.S.); (L.F.C.)
| | - Lavinia Florina Călinoiu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj-Napoca, Romania; (E.S.); (L.F.C.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj-Napoca, Romania;
| | - Laura Mitrea
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj-Napoca, Romania;
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj-Napoca, Romania; (E.S.); (L.F.C.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj-Napoca, Romania;
- Correspondence: ; Tel.: +40-747-341-881
| |
Collapse
|
33
|
Compatibility, Cytotoxicity, and Gastrointestinal Tenacity of Bacteriocin-Producing Bacteria Selected for a Consortium Probiotic Formulation to Be Used in Livestock Feed. Probiotics Antimicrob Proteins 2021; 13:208-217. [PMID: 32712896 DOI: 10.1007/s12602-020-09687-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacteriocin-producing Escherichia coli ICVB442, E. coli ICVB443, Enterococcus faecalis ICVB497, E. faecalis ICVB501, and Pediococcus pentosaceus ICVB491 strains were examined for their pathogenic risks and compatibility and hence suitability as consortium probiotic bacteria. Except for E. coli ICVB442, all were inclined to form biofilm. All were gelatinase-negative, sensitive to most of the antibiotics tested and not cytotoxic to porcine intestinal epithelial cells (IPEC-1) when tested at a multiplicity of infection (MOI) of 1. P. pentosaceus ICVB491 stood apart by inhibiting the other four strains. Both E. coli strains and E. faecalis ICVB497 strain were β-hemolytic. Survival in the TIM-1 dynamic model of the human digestive system was 139% for the tested E. coli ICVB443 strain, 46% for P. pentosaceus ICVB491, and 32% for the preferred E. faecalis ICVB501 strain. These three potential probiotics, which are bacteriocin-producing strains, will be considered for simultaneous use as consortium with synergistic interactions in vivo on animal model.
Collapse
|
34
|
Ivashkin V, Poluektov Y, Kogan E, Shifrin O, Sheptulin A, Kovaleva A, Kurbatova A, Krasnov G, Poluektova E. Disruption of the pro-inflammatory, anti-inflammatory cytokines and tight junction proteins expression, associated with changes of the composition of the gut microbiota in patients with irritable bowel syndrome. PLoS One 2021; 16:e0252930. [PMID: 34115808 PMCID: PMC8195381 DOI: 10.1371/journal.pone.0252930] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a pathologic condition characterized by changes in gut microbiome composition, low-grade inflammation, and disruption of intestinal wall permeability. The interaction between the gut microbiome and the disease manifestation remains unclear. The changing of tight junction proteins and cytokines expression throughout the gastrointestinal tract in IBS patients has not been studied yet. AIM OF THE STUDY To assess the changes of gut microbiome composition, tight junction proteins, and cytokines expression of intestinal mucosa from the duodenum to the distal part of the colon in IBS patients and healthy volunteers. METHODS In 31 IBS patients (16 patients with IBS-D; 15 patients with IBS-C) and 10 healthy volunteers the expression of CLD-2, CLD-3, CLD-5, IL-2, IL-10, and TNF-α in mucosal biopsy specimens was determined by morphological and immune-histochemical methods. The qualitative and quantitative composition of the intestinal microbiota was assessed based on 16S rRNA gene sequencing in both groups of patients. RESULTS The expression of IL-2 and TNF-α was significantly increased in IBS patients compared with the controls (p<0.001), with a gradual increase from the duodenum to the sigmoid colon. The expression of IL-10, CLD-3, and CLD-5 in mucosal biopsy specimens of these patients was lower than in the control group (p<0.001). Increased ratios of Bacteroidetes and decreased ratios of Firmicutes were noted in IBS patients compared to healthy volunteers (p<0.05). CONCLUSION IBS patients have impaired gut permeability and persisting low-grade inflammation throughout the gastrointestinal tract. Changes in the gut microbiota may support or exacerbate these changes.
Collapse
Affiliation(s)
- V. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Y. Poluektov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - E. Kogan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - O. Shifrin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - A. Sheptulin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - A. Kovaleva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - A. Kurbatova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - G. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - E. Poluektova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| |
Collapse
|
35
|
Engevik MA, Engevik AC, Engevik KA, Auchtung JM, Chang-Graham AL, Ruan W, Luna RA, Hyser JM, Spinler JK, Versalovic J. Mucin-Degrading Microbes Release Monosaccharides That Chemoattract Clostridioides difficile and Facilitate Colonization of the Human Intestinal Mucus Layer. ACS Infect Dis 2021; 7:1126-1142. [PMID: 33176423 DOI: 10.1021/acsinfecdis.0c00634] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It is widely accepted that the pathogen Clostridioides difficile exploits an intestinal environment with an altered microbiota, but the details of these microbe-microbe interactions are unclear. Adherence and colonization of mucus has been demonstrated for several enteric pathogens and it is possible that mucin-associated microbes may be working in concert with C. difficile. We showed that C. difficile ribotype-027 adheres to MUC2 glycans and using fecal bioreactors, we identified that C. difficile associates with several mucin-degrading microbes. C. difficile was found to chemotax toward intestinal mucus and its glycan components, demonstrating that C. difficile senses the mucus layer. Although C. difficile lacks the glycosyl hydrolases required to degrade mucin glycans, coculturing C. difficile with the mucin-degrading Akkermansia muciniphila, Bacteroides thetaiotaomicron, and Ruminococcus torques allowed C. difficile to grow in media that lacked glucose but contained purified MUC2. Collectively, these studies expand our knowledge on how intestinal microbes support C. difficile.
Collapse
Affiliation(s)
- Melinda A. Engevik
- Department of Pathology & Immunology, Baylor College of Medicine Houston Texas 77030, United States
- Department of Pathology, Texas Children’s Hospital Houston Texas 77030, United States
| | - Amy C. Engevik
- Department of Surgery, Vanderbilt University School of Medicine, Nashville Tennessee 37232, United States
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville Tennessee 37232, United States
| | - Kristen A. Engevik
- Department of Molecular Virology and Microbiology, Baylor College of Medicine Houston Texas 77030, United States
| | - Jennifer M. Auchtung
- Department of Molecular Virology and Microbiology, Baylor College of Medicine Houston Texas 77030, United States
- Department of Food Science and Technology, University of Nebraska—Lincoln, Lincoln Nebraska 68588, United States
| | - Alexandra L. Chang-Graham
- Department of Molecular Virology and Microbiology, Baylor College of Medicine Houston Texas 77030, United States
| | - Wenly Ruan
- Department of Pathology & Immunology, Baylor College of Medicine Houston Texas 77030, United States
- Department of Pathology, Texas Children’s Hospital Houston Texas 77030, United States
| | - Ruth Ann Luna
- Department of Pathology & Immunology, Baylor College of Medicine Houston Texas 77030, United States
- Department of Pathology, Texas Children’s Hospital Houston Texas 77030, United States
| | - Joseph M. Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine Houston Texas 77030, United States
| | - Jennifer K. Spinler
- Department of Pathology & Immunology, Baylor College of Medicine Houston Texas 77030, United States
- Department of Pathology, Texas Children’s Hospital Houston Texas 77030, United States
| | - James Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine Houston Texas 77030, United States
- Department of Pathology, Texas Children’s Hospital Houston Texas 77030, United States
| |
Collapse
|
36
|
Schepler H, Wang X, Neufurth M, Wang S, Schröder HC, Müller WEG. The therapeutic potential of inorganic polyphosphate: A versatile physiological polymer to control coronavirus disease (COVID-19). Theranostics 2021; 11:6193-6213. [PMID: 33995653 PMCID: PMC8120197 DOI: 10.7150/thno.59535] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Rationale: The pandemic caused by the novel coronavirus SARS-CoV-2 is advancing rapidly. In particular, the number of severe courses of the disease is still dramatically high. An efficient drug therapy that helps to improve significantly the fatal combination of damages in the airway epithelia, in the extensive pulmonary microvascularization and finally multiorgan failure, is missing. The physiological, inorganic polymer, polyphosphate (polyP) is a molecule which could prevent the initial phase of the virus life cycle, the attachment of the virus to the target cells, and improve the epithelial integrity as well as the mucus barrier. Results: Surprisingly, polyP matches perfectly with the cationic groove on the RBD. Subsequent binding studies disclosed that polyP, with a physiological chain length of 40 phosphate residues, abolishes the binding propensity of the RBD to the ACE2 receptor. In addition to this first mode of action of polyP, this polymer causes in epithelial cells an increased gene expression of the major mucins in the airways, of MUC5AC and MUC1, as well as a subsequent glycoprotein production. MUC5AC forms a gel-like mucus layer trapping inhaled particles which are then transported out of the airways, while MUC1 constitutes the periciliary liquid layer and supports ciliary beating. As a third mode of action, polyP undergoes enzymatic hydrolysis of the anhydride bonds in the airway system by alkaline phosphatase, releasing metabolic energy. Conclusions: This review summarizes the state of the art of the biotherapeutic potential of the polymer polyP and the findings from basic research and outlines future biomedical applications.
Collapse
Affiliation(s)
- Hadrian Schepler
- Department of Dermatology, University Clinic Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
37
|
Burin R, Shah DH. Phenelzine and Amoxapine Inhibit Tyramine and d-Glucuronic Acid Catabolism in Clinically Significant Salmonella in A Serotype-Independent Manner. Pathogens 2021; 10:469. [PMID: 33924374 PMCID: PMC8070173 DOI: 10.3390/pathogens10040469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
Non-typhoidal Salmonella ingeniously scavenges energy for growth from tyramine (TYR) and d-glucuronic acid (DGA), both of which occur in the host as the metabolic byproducts of the gut microbial metabolism. A critical first step in energy scavenging from TYR and DGA in Salmonella involves TYR-oxidation via TYR-oxidoreductase and production of free-DGA via β-glucuronidase (GUS)-mediated hydrolysis of d-glucuronides (conjugated form of DGA), respectively. Here, we report that Salmonella utilizes TYR and DGA as sole sources of energy in a serotype-independent manner. Using colorimetric and radiometric approaches, we report that genes SEN2971, SEN3065, and SEN2426 encode TYR-oxidoreductases. Some Salmonella serotypes produce GUS, thus can also scavenge energy from d-glucuronides. We repurposed phenelzine (monoaminoxidase-inhibitor) and amoxapine (GUS-inhibitor) to inhibit the TYR-oxidoreductases and GUS encoded by Salmonella, respectively. We show that phenelzine significantly inhibits the growth of Salmonella by inhibiting TYR-oxidoreductases SEN2971, SEN3065, and SEN2426. Similarly, amoxapine significantly inhibits the growth of Salmonella by inhibiting GUS-mediated hydrolysis of d-glucuronides. Because TYR and DGA serve as potential energy sources for Salmonella growth in vivo, the data and the novel approaches used here provides a better understanding of the role of TYR and DGA in Salmonella pathogenesis and nutritional virulence.
Collapse
Affiliation(s)
- Raquel Burin
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA;
| | - Devendra H. Shah
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA;
- Paul Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
38
|
Ladaycia A, Loretz B, Passirani C, Lehr CM, Lepeltier E. Microbiota and cancer: In vitro and in vivo models to evaluate nanomedicines. Adv Drug Deliv Rev 2021; 170:44-70. [PMID: 33388279 DOI: 10.1016/j.addr.2020.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 02/08/2023]
Abstract
Nanomedicine implication in cancer treatment and diagnosis studies witness huge attention, especially with the promising results obtained in preclinical studies. Despite this, only few nanomedicines succeeded to pass clinical phase. The human microbiota plays obvious roles in cancer development. Nanoparticles have been successfully used to modulate human microbiota and notably tumor associated microbiota. Taking the microbiota involvement under consideration when testing nanomedicines for cancer treatment might be a way to improve the poor translation from preclinical to clinical trials. Co-culture models of bacteria and cancer cells, as well as animal cancer-microbiota models offer a better representation for the tumor microenvironment and so potentially better platforms to test nanomedicine efficacy in cancer treatment. These models would allow closer representation of human cancer and might smoothen the passage from preclinical to clinical cancer studies for nanomedicine efficacy.
Collapse
|
39
|
Zhang YX, Zhang ML, Wang XW. C-Type Lectin Maintains the Homeostasis of Intestinal Microbiota and Mediates Biofilm Formation by Intestinal Bacteria in Shrimp. THE JOURNAL OF IMMUNOLOGY 2021; 206:1140-1150. [PMID: 33526439 DOI: 10.4049/jimmunol.2000116] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 12/02/2020] [Indexed: 11/19/2022]
Abstract
Intestinal microbiota are closely related to host physiology. Over the long course of evolution and interaction, both commensal bacteria and their host have evolved multiple strategies to adapt to each other. However, in invertebrates, the regulatory mechanism of intestinal microbiota homeostasis is largely unknown. In the current study, a digestive tract-specific C-type lectin, designated as CTL33, was identified because of its abundance and response to bacteria in the intestine of kuruma shrimp (Marsupenaeus japonicus). Silencing of CTL33 expression led directly to intestinal dysbiosis, tissue damage, and shrimp death. CTL33 could facilitate biofilm formation by the intestinal bacteria. This function originated from its unique architecture, with a lectin domain responsible for bacteria recognition and a coiled coil region that mediated CTL33 dimerization and cross-linked the bacteria into a biofilm-like complex. By mediating the formation of a biofilm, CTL33 promoted the establishment of intestinal bacteria in intestine and maintained the homeostasis of the microbiota. Thus, to our knowledge, we demonstrated a new mechanism of C-type lectin-mediated biofilm formation by intestinal bacteria, providing new insights into intestinal homeostasis regulation in invertebrates.
Collapse
Affiliation(s)
- Yu-Xuan Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Ming-Lu Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, Shandong, China; .,State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China; and.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, Shandong, China
| |
Collapse
|
40
|
Adjunctive treatment with probiotics partially alleviates symptoms and reduces inflammation in patients with irritable bowel syndrome. Eur J Nutr 2020; 60:2553-2565. [PMID: 33225399 DOI: 10.1007/s00394-020-02437-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/04/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE Irritable bowel syndrome (IBS) is a functional bowel disorder. This study aimed to assess the effect of a probiotic product (containing Lactobacillus casei Zhang, Lactobacillus plantarum P-8, and Bifdobacterium animalis subsp. lactis V9) as an adjunct to a routine regimen in IBS management. METHODS Forty-five patients with IBS were randomized into the probiotic (n = 24) and control (n = 21) groups, receiving the routine regimen with or without probiotics for 28 days, respectively. Serum and fecal samples were collected and analyzed. RESULTS The IBS-symptom severity score (P < 0.01), serum levels of IL-6 (P < 0.01) and TNF-α (P < 0.001) were significantly lower in the probiotic group than the control group at day 28. The probiotic adjunctive treatment resulted in significant decreases in some bacterial genera that worsen IBS, such as Bacteroides (P < 0.01), Escherichia (P < 0.05), and Citrobacter (P < 0.05), significant decreases were also observed in some beneficial genera in the control group, including Bifidobacterium (P < 0.05), Eubacterium (P < 0.05), Dorea (P < 0.01), and Butyricicoccus (P < 0.05). Furthermore, significant correlations were found between some monitored parameters and compositional changes in the fecal microbiota, suggesting that the clinical improvement of IBS was likely associated with gut microbiota modulation. The enterotype analysis revealed that the initial fecal microbiota composition could influence clinical outcomes. CONCLUSIONS The adjunctive use of probiotics with a routine regimen showed additional clinical effectiveness compared to the routine regimen alone in managing IBS. A pretreatment gut microbiome analysis might help tailor a personalized probiotic regimen to optimize treatment effects.
Collapse
|
41
|
Ishikawa T, Omori T, Kikuchi K. Bacterial biomechanics-From individual behaviors to biofilm and the gut flora. APL Bioeng 2020; 4:041504. [PMID: 33163845 PMCID: PMC7595747 DOI: 10.1063/5.0026953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Bacteria inhabit a variety of locations and play important roles in the environment and health. Our understanding of bacterial biomechanics has improved markedly in the last decade and has revealed that biomechanics play a significant role in microbial biology. The obtained knowledge has enabled investigation of complex phenomena, such as biofilm formation and the dynamics of the gut flora. A bottom-up strategy, i.e., from the cellular to the macroscale, facilitates understanding of macroscopic bacterial phenomena. In this Review, we first cover the biomechanics of individual bacteria in the bulk liquid and on surfaces as the base of complex phenomena. The collective behaviors of bacteria in simple environments are next introduced. We then introduce recent advances in biofilm biomechanics, in which adhesion force and the flow environment play crucial roles. We also review transport phenomena in the intestine and the dynamics of the gut flora, focusing on that in zebrafish. Finally, we provide an overview of the future prospects for the field.
Collapse
Affiliation(s)
| | - Toshihiro Omori
- Department Finemechanics, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | | |
Collapse
|
42
|
Pereira FC, Wasmund K, Cobankovic I, Jehmlich N, Herbold CW, Lee KS, Sziranyi B, Vesely C, Decker T, Stocker R, Warth B, von Bergen M, Wagner M, Berry D. Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. Nat Commun 2020; 11:5104. [PMID: 33037214 PMCID: PMC7547075 DOI: 10.1038/s41467-020-18928-1] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Many intestinal pathogens, including Clostridioides difficile, use mucus-derived sugars as crucial nutrients in the gut. Commensals that compete with pathogens for such nutrients are therefore ecological gatekeepers in healthy guts, and are attractive candidates for therapeutic interventions. Nevertheless, there is a poor understanding of which commensals use mucin-derived sugars in situ as well as their potential to impede pathogen colonization. Here, we identify mouse gut commensals that utilize mucus-derived monosaccharides within complex communities using single-cell stable isotope probing, Raman-activated cell sorting and mini-metagenomics. Sequencing of cell-sorted fractions reveals members of the underexplored family Muribaculaceae as major mucin monosaccharide foragers, followed by members of Lachnospiraceae, Rikenellaceae, and Bacteroidaceae families. Using this information, we assembled a five-member consortium of sialic acid and N-acetylglucosamine utilizers that impedes C. difficile's access to these mucosal sugars and impairs pathogen colonization in antibiotic-treated mice. Our findings underscore the value of targeted approaches to identify organisms utilizing key nutrients and to rationally design effective probiotic mixtures.
Collapse
Affiliation(s)
- Fátima C Pereira
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Althanstrasse 14, 1090, Vienna, Austria
| | - Kenneth Wasmund
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Althanstrasse 14, 1090, Vienna, Austria
| | - Iva Cobankovic
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Nico Jehmlich
- Helmholtz-Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Permoserstraße 15, 04318, Leipzig, Germany
| | - Craig W Herbold
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Althanstrasse 14, 1090, Vienna, Austria
| | - Kang Soo Lee
- Ralph M. Parsons Laboratory for Environmental Science and Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Barbara Sziranyi
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Althanstrasse 14, 1090, Vienna, Austria
| | - Cornelia Vesely
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Vienna, Austria
| | - Thomas Decker
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Roman Stocker
- Ralph M. Parsons Laboratory for Environmental Science and Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Martin von Bergen
- Helmholtz-Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Permoserstraße 15, 04318, Leipzig, Germany
| | - Michael Wagner
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Althanstrasse 14, 1090, Vienna, Austria
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - David Berry
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Althanstrasse 14, 1090, Vienna, Austria.
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria.
| |
Collapse
|
43
|
Yekani M, Baghi HB, Naghili B, Vahed SZ, Sóki J, Memar MY. To resist and persist: Important factors in the pathogenesis of Bacteroides fragilis. Microb Pathog 2020; 149:104506. [PMID: 32950639 DOI: 10.1016/j.micpath.2020.104506] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/15/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Bacteroides fragilis is a most frequent anaerobic pathogen isolated from human infections, particularly found in the abdominal cavity. Different factors contribute to the pathogenesis and persistence of B. fragilis at infection sites. The knowledge of the virulence factors can provide applicable information for finding alternative options for the antibiotic therapy and treatment of B. fragilis caused infections. Herein, a comprehensive review of the important B. fragilis virulence factors was prepared. In addition to B. fragilis toxin (BFT) and its potential role in the diarrhea and cancer development, some other important virulence factors and characteristics of B. fragilis are described including capsular polysaccharides, iron acquisition, resistance to antimicrobial agents, and survival during the prolonged oxidative stress, quorum sensing, and secretion systems.
Collapse
Affiliation(s)
- Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee,Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - József Sóki
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Microbiology Department, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
44
|
Cai R, Cheng C, Chen J, Xu X, Ding C, Gu B. Interactions of commensal and pathogenic microorganisms with the mucus layer in the colon. Gut Microbes 2020; 11:680-690. [PMID: 32223365 PMCID: PMC7524288 DOI: 10.1080/19490976.2020.1735606] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/17/2020] [Accepted: 02/17/2020] [Indexed: 02/03/2023] Open
Abstract
The intestinal mucosal barrier, which is composed of epithelial cells and mucus layers secreted by goblet cells and contains commensal bacteria, constitutes the first line of defense against pathogenic gut microbiota. However, homeostasis between the microbiota and mucus layer is easily disrupted by certain factors, resulting in alteration of the gut microbiota and entry of pathogens to the intestinal mucosal barrier. In this review, we describe the structures and functions of the mucus layer, expound several crucial influencing factors, including diet styles, medications and host genetics, and discuss how pathogenic microorganisms interact with the mucus layer and commensal microbiota, with the understanding that unraveling their complex interactions under homeostatic and dysbiosis conditions in the colon would help reveal some underlying pathogenic mechanisms and thus develop new strategies to prevent pathogenic microbiological colonization.
Collapse
Affiliation(s)
- Rui Cai
- Medical Technology School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chen Cheng
- Medical Technology School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | | | | | - Chao Ding
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bing Gu
- Medical Technology School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
45
|
Jia YQ, Yuan ZW, Zhang XS, Dong JQ, Liu XN, Peng XT, Yao WL, Ji P, Wei YM, Hua YL. Total alkaloids of Sophora alopecuroides L. ameliorated murine colitis by regulating bile acid metabolism and gut microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2020; 255:112775. [PMID: 32205259 DOI: 10.1016/j.jep.2020.112775] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/25/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sophora alopecuroides L. is one of the most commonly used plants in traditional medicine for the management conditions including inflammatory and gastrointestinal disease. However, the therapeutic mechanism of Sophora alopecuroides L.particularly in inflammatory bowel disease (IBD) remains unclear. AIM OF THE STUDY To evaluate the treatment effects of total alkaloids of Sophora alopecuroides L. in ulcerative colitis (UC) mice model and explore the therapeutic mechanism of KDZ on UC based on bile acid metabolism and gut microbiota. MATERIALS AND METHODS Colitis were induced in BALB/c mice by administering 3.5% dextran sulfate sodium (DSS) in drinking water for 7 days. The mice were then given KDZ (300, 150 and 75 mg/kg) and the positive drug sulfasalazine (SASP, 450 mg/kg) via oral administration for 7 days. The levels of 23 bile acids in the liver, bile, serum, cecum content and colon were determined through ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS). The cecum microbiota was characterized through high-throughput Illumina MiSeq sequencing. RESULTS KDZ treatment significantly decreased the disease activity index (DAI) scores and ameliorated colonic injury in DSS-treated mice. The expression of IL-1β and TGF-β1 were suppressed, yet, IL-10 was up-regulated by KDZ and SASP treatment compared with those in the model group. Meanwhile, the serum contents of total bile acid and total cholesterol in the DSS group increased significantly compared with those in the control group, but reversed by SASP and KDZ. The relative abundance of Firmicutes increased after KDZ was administration, whereas the abundance of Bacteroidetes decreased. αMCA, βMCA, ωMCA and CA in the SASP and KDZ groups did not differ from those in the control group, whereas these parameters significantly increased in the DSS group. CONCLUSIONS KDZ had a protective effect on DSS-induced colitis by mitigating colonic injury, preventing gut microbiota dysbiosis and regulating bile acid metabolism.
Collapse
Affiliation(s)
- Ya-Qian Jia
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China.
| | - Zi-Wen Yuan
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China.
| | - Xiao-Song Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China.
| | - Jia-Qi Dong
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China.
| | - Xue-Nan Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China.
| | - Xiao-Ting Peng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China.
| | - Wan-Ling Yao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China.
| | - Peng Ji
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China.
| | - Yan-Ming Wei
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China.
| | - Yong-Li Hua
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China.
| |
Collapse
|
46
|
Jasemi S, Emaneini M, Fazeli MS, Ahmadinejad Z, Nomanpour B, Sadeghpour Heravi F, Sechi LA, Feizabadi MM. Toxigenic and non-toxigenic patterns I, II and III and biofilm-forming ability in Bacteroides fragilis strains isolated from patients diagnosed with colorectal cancer. Gut Pathog 2020; 12:28. [PMID: 32518594 PMCID: PMC7273666 DOI: 10.1186/s13099-020-00366-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background Enterotoxigenic Bacteroides fragilis (ETBF) associated with the initiation and progression of colorectal cancer (CRC) has been alarmingly reported all over the world. In this study, simultaneous investigation of toxigenic and non-toxigenic patterns I, II and III and biofilm formation ability of Bacteroides fragilis isolated from patients with colorectal cancer was performed. Methods Thirty-one patients diagnosed with CRC and thirty-one control subjects were recruited in this study. Specimens were cultured on BBE and BBA culture media. Classical phenotypic identification tests and PCR was performed to verify Bacteroides fragilis presence. Also, biofilm-forming ability and expression of bft gene were assessed under biofilm and planktonic forms. Results A total of 68 B.fragilis was isolated from all colorectal tissue, of which 13 isolates (19.1%) (11 isolates from CRC and 2 from normal tissue) were positive for bft gene. The abundance patterns of I, II and III were as follow in descending order; pattern I > pattern III > pattern II in CRC subjects and pattern II > pattern III > pattern I in normal tissues. Also, pattern I showed higher biofilm formation ability compared to other patterns. Toxin expression was significantly reduced in biofilm form comparing with planktonic form. Conclusions Based on our findings, there was a difference between the abundance of patterns I, II, and III and biofilm formation in isolates obtained from CRC and normal tissues. Biofilm formation ability and toxin encoding gene (bft) are two main virulence factors in B. fragilis pathogenicity which require more investigation to treat B. fragilis infections effectively.
Collapse
Affiliation(s)
- Seyedesomaye Jasemi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Fazeli
- Department of Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Ahmadinejad
- Department of Infectious Diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Bizhan Nomanpour
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemah Sadeghpour Heravi
- Surgical Infection Research Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Leonardo A Sechi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Mohammad Mehdi Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
47
|
Host responses to mucosal biofilms in the lung and gut. Mucosal Immunol 2020; 13:413-422. [PMID: 32112046 PMCID: PMC8323778 DOI: 10.1038/s41385-020-0270-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/17/2020] [Accepted: 02/08/2020] [Indexed: 02/04/2023]
Abstract
The impact of the human microbiome on health and disease is of utmost importance and has been studied intensively in recent years. Microbes promote immune system development and are essential to the production and absorption of nutrients for the host but are also implicated in disease pathogenesis. Particularly, bacterial biofilms have long been recognized as contributors to chronic infections and diseases in humans. However, our understanding of how the host responds to the presence of biofilms, specifically the immune response to biofilms, and how this contributes to disease pathogenesis is limited. This review aims to highlight what is known about biofilm formation and in vivo models available for the biofilm study. We critique the contribution of biofilms to human diseases, focusing on the lung diseases, cystic fibrosis and chronic obstructive pulmonary disease, and the gut diseases, inflammatory bowel disease and colorectal cancer.
Collapse
|
48
|
Christley S, Shogan B, Levine Z, Koo H, Guyton K, Owens S, Gilbert J, Zaborina O, Alverdy JC. Comparative genetics of Enterococcus faecalis intestinal tissue isolates before and after surgery in a rat model of colon anastomosis. PLoS One 2020; 15:e0232165. [PMID: 32343730 PMCID: PMC7188289 DOI: 10.1371/journal.pone.0232165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/08/2020] [Indexed: 12/17/2022] Open
Abstract
We have recently demonstrated that collagenolytic Enterococcus faecalis plays a key and causative role in the pathogenesis of anastomotic leak, an uncommon but potentially lethal complication characterized by disruption of the intestinal wound following segmental removal of the colon (resection) and its reconnection (anastomosis). Here we hypothesized that comparative genetic analysis of E. faecalis isolates present at the anastomotic wound site before and after surgery would shed insight into the mechanisms by which collagenolytic strains are selected for and predominate at sites of anastomotic disruption. Whole genome optical mapping of four pairs of isolates from rat colonic tissue obtained following surgical resection (herein named “pre-op” isolates) and then 6 days later from the anastomotic site (herein named “post-op” isolates) demonstrated that the isolates with higher collagenolytic activity formed a distinct cluster. In order to perform analysis at a deeper level, a single pair of E. faecalis isolates (16A pre-op and 16A post-op) was selected for whole genome sequencing and assembled using a hybrid assembly algorithm. Comparative genomics demonstrated absence of multiple gene clusters, notably a pathogenicity island in the post-op isolate. No differences were found in the fsr-gelE-sprE genes (EF1817-1822) responsible for regulation and production of collagenolytic activity. Analysis of unique genes among the 16A pre-op and post-op isolates revealed the predominance of transporter systems-related genes in the pre-op isolate and phage-related and hydrolytic enzyme-encoding genes in the post-op isolate. Despite genetic differences observed between pre-op and post-op isolates, the precise genetic determinants responsible for their differential expression of collagenolytic activity remains unknown.
Collapse
Affiliation(s)
- Scott Christley
- Department of Surgery, University of Chicago, Chicago, IL, United States of America
| | - Benjamin Shogan
- Department of Surgery, University of Chicago, Chicago, IL, United States of America
| | - Zoe Levine
- Department of Surgery, University of Chicago, Chicago, IL, United States of America
| | - Hyun Koo
- Department of Surgery, University of Chicago, Chicago, IL, United States of America
| | - Kristina Guyton
- Department of Surgery, University of Chicago, Chicago, IL, United States of America
| | - Sarah Owens
- Argonne National Laboratory, Argonne, IL, United States of America
| | - Jack Gilbert
- Department of Surgery, University of Chicago, Chicago, IL, United States of America
- Argonne National Laboratory, Argonne, IL, United States of America
| | - Olga Zaborina
- Department of Surgery, University of Chicago, Chicago, IL, United States of America
| | - John C. Alverdy
- Department of Surgery, University of Chicago, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
49
|
Li X, Gao H, Sun X, Huang Z, Wang B, Li Y, Wei W, Wang C, Ni Y. A preliminary study on the role of Bacteroides fragilis in stent encrustation. World J Urol 2020; 39:579-588. [PMID: 32307555 DOI: 10.1007/s00345-020-03185-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/25/2020] [Indexed: 10/24/2022] Open
Abstract
OBJECTIVE To preliminarily study the characteristics of bacterial flora distribution in the urine of ureteral stent encrustation patients as well as the relation between Bacteroides and stent encrustation. METHODS Patients undergoing ureteral stenting were included in the study and divided into encrustation group and non-encrustation group based on the condition of stent encrustation. The urine of patients was collected to undergo 16s DNA test to compare the bacterial flora distribution characteristics of the two groups. The bacterial genus with highest abundance in the urine of encrustation group was used for animal experiment. A rat model with a foreign body in the bladder was created, in which the rats were injected with the aforesaid bacterial genus. A control group injected with normal saline was also formed. The incidence of foreign body tube encrustation between the two groups was compared. RESULTS The urine collected from the patients in encrustation group contained a variety of bacteria, while dominant bacteria genera included g_Lactobacillus (23.1%), g_Bacteroides (18.8%) and g_norank_Bacteroides (17.1%). While the urine from the non-encrustation group was less diverse in bacteria flora, as the major bacteria genera were g_Escherichia-Shigella (32.2%), g_Enterococcus (24.9%) and g_Pseudomonas (18.2%). Bacteroidetes in the encrustation group were significantly higher, therefore Bacteroides fragilis in this genus was adopted for animal experiment, resulting in a higher incidence of foreign body tube encrustation in the bladder among rats. CONCLUSION The present study enriches our knowledge about ureteral stent encrustation and reveals that the target regulation of urine bacteria is worth further research and clinical application.
Collapse
Affiliation(s)
- Xiaopeng Li
- Department of Urology, Shandong Provincial Third Hospital, No. 12, Wuyingshan Middle Road, Jinan, Shandong, China.,Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Han Gao
- Department of Urology, Shandong Provincial Third Hospital, No. 12, Wuyingshan Middle Road, Jinan, Shandong, China.,Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaolu Sun
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhongxian Huang
- Department of Urology, Jinan Central Hospital, Jinan, Shandong, China
| | - Bo Wang
- Department of Urology, Jinan Jigang Hospital, Jinan, Shandong, China
| | - Yan Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wei Wei
- Department of Urology, Shandong Provincial Third Hospital, No. 12, Wuyingshan Middle Road, Jinan, Shandong, China.
| | | | - Yongliang Ni
- Department of Urology, Shandong Provincial Third Hospital, No. 12, Wuyingshan Middle Road, Jinan, Shandong, China.
| |
Collapse
|
50
|
Ghosh SS, Wang J, Yannie PJ, Ghosh S. Intestinal Barrier Dysfunction, LPS Translocation, and Disease Development. J Endocr Soc 2020; 4:bvz039. [PMID: 32099951 PMCID: PMC7033038 DOI: 10.1210/jendso/bvz039] [Citation(s) in RCA: 316] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/05/2020] [Indexed: 12/24/2022] Open
Abstract
The intestinal barrier is complex and consists of multiple layers, and it provides a physical and functional barrier to the transport of luminal contents to systemic circulation. While the epithelial cell layer and the outer/inner mucin layer constitute the physical barrier and are often referred to as the intestinal barrier, intestinal alkaline phosphatase (IAP) produced by epithelial cells and antibacterial proteins secreted by Panneth cells represent the functional barrier. While antibacterial proteins play an important role in the host defense against gut microbes, IAP detoxifies bacterial endotoxin lipopolysaccharide (LPS) by catalyzing the dephosphorylation of the active/toxic Lipid A moiety, preventing local inflammation as well as the translocation of active LPS into systemic circulation. The causal relationship between circulating LPS levels and the development of multiple diseases underscores the importance of detailed examination of changes in the “layers” of the intestinal barrier associated with disease development and how this dysfunction can be attenuated by targeted interventions. To develop targeted therapies for improving intestinal barrier function, it is imperative to have a deeper understanding of the intestinal barrier itself, the mechanisms underlying the development of diseases due to barrier dysfunction (eg, high circulating LPS levels), the assessment of intestinal barrier function under diseased conditions, and of how individual layers of the intestinal barrier can be beneficially modulated to potentially attenuate the development of associated diseases. This review summarizes the current knowledge of the composition of the intestinal barrier and its assessment and modulation for the development of potential therapies for barrier dysfunction-associated diseases.
Collapse
Affiliation(s)
| | - Jing Wang
- Department of Internal Medicine, VCU Medical Center, Richmond, Virginia
| | - Paul J Yannie
- Hunter Homes McGuire VA Medical Center, Richmond, Virginia
| | - Shobha Ghosh
- Department of Internal Medicine, VCU Medical Center, Richmond, Virginia.,Hunter Homes McGuire VA Medical Center, Richmond, Virginia
| |
Collapse
|